
Brigham Young University Brigham Young University

BYU ScholarsArchive BYU ScholarsArchive

Theses and Dissertations

2016-05-01

Barriers to Initiation of Open Source Software Projects in Barriers to Initiation of Open Source Software Projects in

Research Libraries Research Libraries

Jason Curtis Thacker
Brigham Young University - Provo

Follow this and additional works at: https://scholarsarchive.byu.edu/etd

 Part of the Computer Sciences Commons

BYU ScholarsArchive Citation BYU ScholarsArchive Citation
Thacker, Jason Curtis, "Barriers to Initiation of Open Source Software Projects in Research Libraries"
(2016). Theses and Dissertations. 5879.
https://scholarsarchive.byu.edu/etd/5879

This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion
in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please
contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.

http://home.byu.edu/home/
http://home.byu.edu/home/
https://scholarsarchive.byu.edu/
https://scholarsarchive.byu.edu/etd
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F5879&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsarchive.byu.edu%2Fetd%2F5879&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/5879?utm_source=scholarsarchive.byu.edu%2Fetd%2F5879&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu,%20ellen_amatangelo@byu.edu

Barriers to Initiation of Open Source Software Projects

in Research Libraries

Jason Curtis Thacker

A thesis submitted to the faculty of
Brigham Young University

in partial fulfillment of the requirements for the degree of

Master of Science

Christophe Giraud-Carrier, Chair
Parris Egbert
Bryan Morse

Department of Computer Science

Brigham Young University

May 2016

Copyright © 2016 Jason Curtis Thacker

All Rights Reserved

ABSTRACT

Barriers to Initiation of Open Source Software Projects
in Research Libraries

Jason Curtis Thacker
Department of Computer Science, BYU

 Master of Science

Libraries share a number of core values with the Open Source Software (OSS)
movement, suggesting there should be a natural tendency toward library participation in OSS
projects. However, Dale Askey’s 2008 Code4Lib column entitled We Love Open Source
Software. No, You Can’t Have Our Code, claims that while libraries are strong proponents of
OSS, they are unlikely to actually contribute to OSS projects. He identifies, but does not
empirically substantiate, six barriers that he believes contribute to this apparent inconsistency.

The goal of this thesis is to empirically investigate not only Askey’s central claim but
also the six barriers he proposes. Additionally, we will utilize statistical methods and machine
learning algorithms to identify barriers encountered by libraries as they grapple with whether or
not to release their code as open source. We will offer insights into possible correlations between
a library’s engineering, talent management and innovation policies and practices and its
propensity to initiate open source software projects.

Keywords: open source software, research libraries

ACKNOWLEDGMENTS

I acknowledge the support and love of my family. To my parents, Todd and Trudy, thank

you for your love, council and encouragement. Thank you for being proud of me. To my

children: Paige, Peter, Parker, Peyton, and Preston, you are a constant source of passion and

motivation.

I express deep gratitude to Dr. Christophe Giraud-Carrier and Dr. Charles Knutson who

have elevated my thinking and taught me to write. Certainly, this work would not be possible

without their help.

From the Harold B. Lee Library, I acknowledge Bill Lund and Grant Laycock who have

offered consistent encouragement and support. I also thank Scott Bertagnole who has been an

editor and sounding board through this process.

Most of all, I thank my fantastic wife, Brianne, for her confidence, love and enduring

patience.

iv

TABLE OF CONTENTS

TITLE ... i

ABSTRACT ... ii

ACKNOWLEDGMENTS ... iii

TABLE OF CONTENTS .. iv

LIST OF FIGURES ... viii

LIST OF TABLES ... ix

1 Introduction ... 1

1.1 Background .. 1

1.1.1 Empirical Software Engineering ... 1

1.1.2 Open Source Software ... 2

1.1.3 Academic Libraries & Open Source Software .. 2

1.2 Project Description .. 4

2 SPEC Kit 340: Open Source Software .. 5

2.1 Executive Summary ... 5

2.1.1 Open Source Software ... 5

2.1.2 Library IT .. 6

2.1.3 Adoption .. 8

2.1.4 Development ... 10

2.1.5 Conclusion... 13

2.2 Survey Questions and Responses ... 14

2.2.1 Survey Response ... 16

v

2.2.2 In-house Software Development ... 16

2.2.3 Systems Built In-house That Aren’t Open Sourced .. 21

2.2.4 Customizing Proprietary Systems ... 23

2.2.5 Library Software ... 25

2.2.6 OSS Policies .. 31

2.2.7 Reasons for Adopting OSS ... 36

2.2.8 Cost of Adopting OSS ... 53

2.2.9 Benefits and Challenges of Adopting OSS ... 55

2.2.10 Library Contributions to OSS Projects ... 67

2.2.11 Cost of Contributing to OSS Projects ... 81

2.2.12 Benefits and Challenges of Contributing to OSS Projects .. 82

2.2.13 Tools for OSS Projects ... 89

2.2.14 Licensing Model for Distribution of OSS ... 91

2.2.15 OSS Project Assessment ... 92

2.2.16 Library Doesn’t Use OSS ... 94

2.2.17 Additional Comments ... 94

3 Barriers to Initiation of Open Source Software Projects in Libraries 98

3.1 Abstract .. 98

3.2 Motivation .. 98

3.3 Methods .. 100

3.4 OSS Adoption ... 103

3.5 OSS Contribution .. 106

3.6 OSS Initiation ... 107

3.6.1 Perfectionism ... 108

3.6.2 Dependency ... 109

vi

3.6.3 Quirkiness ... 109

3.6.4 Redundancy ... 110

3.6.5 Competitiveness .. 110

3.6.6 Misunderstanding .. 110

3.7 Additional Insights .. 112

3.8 Threats to Validity ... 114

3.9 Future Work .. 114

3.10 Conclusion .. 115

3.11 Acknowledgements .. 115

4 Toward Understanding the Propensity of Libraries to Initiate Open Source Software

Projects... 116

4.1 Abstract .. 116

4.2 Introduction ... 116

4.3 Background .. 119

4.4 Methods .. 121

4.5 Results and Discussion .. 122

4.5.1 Software Engineering Policies and Practices .. 122

4.5.2 Talent Management Policies and Practices ... 123

4.5.3 Innovation and R&D Policies and Practices ... 126

4.6 Limitations ... 127

4.7 Conclusion .. 127

4.8 Acknowledgements .. 128

5 Conclusion ... 129

5.1 Summary of Findings .. 129

5.2 Future Work .. 130

vii

5.2.1 More Data.. 130

5.2.2 Reflexivity ... 130

5.2.3 Project Initiation .. 131

5.2.4 Commodity Software .. 131

References .. 132

viii

LIST OF FIGURES

Figure 3.1: A sample question for the SPEC Survey. ... 102

Figure 4.1: Venn diagram showing the overlap of SPEC Kits 339, 340 and 344. 121

ix

LIST OF TABLES

Table 2.1: Number of library IT staff. .. 16

Table 2.2: Number of library IT staff, academic libraries only. ... 16

Table 2.3: Number of library IT staff, government libraries only. ... 16

Table 2.4: Number of library IT staff, public libraries only. .. 17

Table 2.5: Software Development Practices ARL libraries participate in. 18

Table 2.6: Methods used by ARL Libraries to provide feedback to library IT staff. 20

Table 2.7: Reasons cited for not releasing one or more library specific system as open source. . 22

Table 2.8: Implementation/adoption of library specific software. .. 26

Table 2.9: The importance of a given set of criteria used when selecting software. 29

Table 2.10: Policies related to OSS. ... 31

Table 2.11: Library sustainability and exit strategies. .. 32

Table 2.12: Reasons for adopting OSS over a competing vended product. 42

Table 2.13: Number of staff and staff hours to adopt an OSS projects. 48

Table 2.14: Number of staff and staff hours required to maintain an OSS project. 53

Table 2.15: Reported costs of adopting an OSS system. .. 54

Table 2.16: Reported sources of funding for OSS systems. ... 54

Table 2.17: Reported benefits of adopting OSS. .. 59

Table 2.18: Reported challenges of adopting OSS. .. 67

Table 2.19: Ways libraries reported they are contributing to OSS. .. 71

Table 2.20: OSS projects libraries have contributed to and initiated. .. 75

x

Table 2.21: The number of library staff and about what percent of their time are dedicated to

contributing to the development of OSS projects. .. 77

Table 2.22: Distribution of the number of library staff and about what percent of their time are

dedicated to contributing to the development of OSS projects... 77

Table 2.23: The importance of a common set of reasons used to decide to open source a project.

... 80

Table 2.24: Reported costs of contributions made by ARL libraries to OSS projects. 81

Table 2.25: Reported funding sources for OSS contributions. ... 82

Table 2.26: Reported benefits of contributing to OSS projects. ... 85

Table 2.27: Reported challenges of contributing to OSS projects. ... 89

Table 2.28: Code repository or forge used by responding libraries. ... 90

Table 2.29: Collaboration tools used by respondents. .. 90

Table 2.30: OSS licenses used by respondents. .. 91

Table 2.31: Reported indicators that a contribution to an OSS project has been successful. 93

Table 3.1: A mapping between Askey's claims and the issue as stated in the SPEC Survey. 103

Table 3.2: Adoption of various types of library OSS. .. 105

Table 3.3: Reported Contributions to OSS projects.. 107

Table 3.4: The initiation practices of responding libraries. .. 108

1

Chapter 1

Introduction

1.1 Background

1.1.1 Empirical Software Engineering

Empirical software engineering studies the process and people problems related to the creation of

software. The formalization of empirical software engineering research came in 1986 when Vic

Basili presented a framework for analyzing experimental work in this area [1]. Basili described

empirical software engineering as a laboratory science [2]. In recent years researchers have

applied techniques from sociology, psychology and data mining to inform this research process

[3-5]. Sjøberg et al. [4] describes empirical methods this way:

Software systems form the foundation of the modern information society, and

many of those systems are among the most complex things ever created. Software

engineering (SE) is about developing, maintaining and managing high-quality software

systems in a cost-effective and predictable way. SE research studies the real-world

phenomena of SE and concerns (1) the development of new, or modification of existing,

technologies (process models, methods, techniques, tools or languages) to support SE

activities, and (2) the evaluation and comparison of the effect of using such technology in

the often very complex interaction of individuals, teams, projects and organizations, and

various types of task and software system. Sciences that study real-world phenomena,

i.e., empirical sciences, of necessity use empirical methods, which use consists of

gathering information on the basis of systematic observation and experiment, rather than

deductive logic or mathematics. Hence, if SE research is to be scientific, it too must use

empirical methods.

2

Significant empirical software engineering research has been done in BYU’s Software

Engineering Quality: Observation, Insight, Analysis (SEQuOIA) lab.

1.1.2 Open Source Software

One of the major research areas within empirical software engineering is open source software

(OSS). OSS “licenses must permit non-exclusive commercial exploitation of the licensed work,

must make available the work’s source code, and must permit the creation of derivative works

from the work itself” [6]. The open nature of OSS gives easy access to source code, code

repositories, contributors and other project data [7-9]. This data gives a unique view into the

creation of software. Researchers have also studied many other aspects of OSS including

motivations to contribute [10-15], barriers to adoption [16-18], the application of OSS principles

in a professional setting [19], the structure of OSS projects [16, 20-22] and even the meaning of

OSS [23, 24]. BYU’s SEQuOIA lab has published on the subject of OSS many times in the last 6

years [9, 22, 23, 25-31] and has contributed sundry insights to the OSS community. In addition

researchers have explored various contexts of OSS such as real-time applications [32-34],

medicine [35-37], and education [38-40] to name a few.

1.1.3 Academic Libraries & Open Source Software

Libraries rely heavily on software to carry out their basic business functions. Much of this

software is Commercial off the Shelf (COTS), however adoption of OSS is also becoming a

viable option. There are many library specific open source software projects. The adoption of,

contribution to and initiation of OSS projects in the Library IT context is only beginning to be

studied.

The mission statement of the American Library Association includes the charge to

“ensure access to information for all.” This charge comes without cost or qualification. Stated

3

another way, libraries make information freely available to all regardless of how that information

will be used. The core values of libraries and the OSS movement are similar, suggesting that

libraries should tend to favor the OSS model. In particular, they may feel a responsibility to share

the code they have developed with other libraries in a spirit of openness and access for all.

The predisposition of libraries toward OSS adoption and contribution is not a new idea.

Pat Eyler, an open source developer for the Koha ILS project, said “That more librarians aren’t

actively using and evangelizing free software is an indictment against us for not letting them in

on our secret” [41]. Richard Stallman, the pioneering free software evangelist, stated that “…

universities shouldn’t be developing proprietary software. It is better if they develop none at all,

because [by doing so] they are betraying their mission to contribute to human knowledge” [42].

Nicole Engard characterized the issue this way: “It has been suggested that libraries are almost

ethically required to use, develop and support open source software” [43].

Despite the suggestion that libraries are ethically required to use and create OSS, it has been

observed that libraries seem reluctant to share their code. In 2008 Dale Askey authored a paper

entitled We Love Open Source Software. No, You Can’t Have Our Code. He states that

“Librarians are among the strongest proponents of open source software. Paradoxically, libraries

are also among the least likely to actively contribute their code to open source projects” [44].

Further, Askey identified a list of six likely interrelated issues that he believes contribute to this

dichotomy. In his own words:

● perfectionism – unless the code is perfect, we don’t want anyone to see it.

● dependency – if we share this with you, you will never leave us alone.

● quirkiness – we’d gladly share, but we can’t since we’re so weird.

● redundancy – we think your project is neat, but we can do better.

4

● competitiveness – we want to be the acknowledged leader.

● misunderstanding – a fundamental inability to understand how an open source

community works.

The validity and potential impact of these issues have not been tested empirically. In this

thesis, I will create an instrument to empirically investigate Askey’s central claim. I will also

examine the six barriers he proposes in light of my empirical results. Further, I seek to identify

the characteristics of libraries that initiate OSS projects.

1.2 Project Description

This thesis describes the creation of a survey to empirically test the prevalence of OSS adoption,

contribution, and initiation practices, and is an exploration of these findings within the context of

research libraries and open source software. Chapter 2, published as ARL SPEC Kit 340 [45],

contains complete survey results, as well as the details of survey preparation and administration.

Chapter 3, originally published in the code4lib journal [46] responds to Askey’s claims. Chapter

4 is a yet to be published paper that outlines and discusses findings discovered utilizing an

expanded dataset and data mining techniques. Finally, chapter 5 contains concluding remarks

and future work.

5

Chapter 2

SPEC Kit 340: Open Source Software1

2.1 Executive Summary

2.1.1 Open Source Software

Open source software (OSS) “licenses must permit non-exclusive commercial exploitation of the

licensed work, must make available the work’s source code, and must permit the creation of

derivative works from the work itself.” [St. Laurent, Andrew M. (2008). Understanding Open

Source and Free Software Licensing. O’Reilly Media, p 8. ISBN 9780596553951].

The emergence of OSS increases collaboration among research libraries, providing

greater control of library tools, as well as improving usability and quality of library resources.

This collaborative approach fits neatly with the knowledge and resource sharing ideology of

libraries. While OSS is ostensibly “free,” adoption of OSS within an organization is not without

significant support, integration, and development costs.

The purpose of this survey is to study ARL member libraries’ adoption and/or

development of OSS for functions such as an integrated library system (ILS), discovery layer,

electronic resource management, inter-library loan, digital asset management, institutional

repository, course reserve, streaming media, study room scheduler, digital preservation,

publishing, floor maps, data warehouse, and other library-related purposes. We would like to

understand organizational factors that affect decisions to adopt OSS, the cost of OSS, and the

awareness of OSS systems already in use. With regard to development of OSS, we would like to

understand: 1) research libraries’ policies and practices on open sourcing their code; 2) the

1 This chapter is published as ARL SPEC Kit 340, 2014 [45].

6

frequency of research library contributions to open source projects; 3) the reluctance of research

libraries to make their code openly available; and 4) the most common benefits and challenges

encountered when research libraries open source their code.

2.1.2 Library IT

This survey was distributed to 127 ARL member libraries in February 2014. Seventy-seven

libraries (61%) responded to the survey.

For libraries affiliated with research universities, Library Information Technology (LIT)

averaged 15.7 staff members, with a median of 14.0, minimum of 2, and maximum of 50. For

governmental libraries (Library of Congress, National Archives and Records Administration, and

the National Library of Medicine), library IT organizations were significantly larger, averaging

243.3 staff members, with a median of 250, minimum of 130, and maximum of 350. Only one

public library was represented in the survey with an LIT organization of 30 staff members. The

bimodal distribution of LIT organizations by staff size is stark, with governmental libraries an

order of magnitude larger than their university counterparts. Despite this difference in staff size,

we find no statistically significant differences in the relative participation of governmental

libraries in OSS projects compared to research university libraries.

Seventy respondents (91%) developed software in-house. Of those, the most common

software development practices included using version control (86%) and performing usability

tests (86%). The least common practices included the use of independent quality assurance

(24%), adherence to a formal, written code reuse policy (10%) and the presence of a committee

or working group to encourage code reuse (7%). The most common software practices

mentioned by respondents in the comments were agile/scrum development methodologies (5

respondents) and pair programming (2 respondents).

7

Most respondents reported that their LIT staff were encouraged to experiment with new

technologies (99%), and prototype potential projects (82%).

When asked how users give feedback to LIT staff, several findings emerged:

• Library Employees most commonly give feedback through a helpdesk or bug tracking

system (69 respondents, 91%) and by emailing or calling the system

manger/developer directly (67 respondents, 88%).

• Employees of the parent institution give feedback through a form on the library

website (54 respondents, 71%), through subject librarians (44 respondents, 59%), by

emailing or calling the system manger/developer directly (39 respondents, 51%), and

through a helpdesk or bug tracking system (35 respondents, 46%).

• In-library patrons most commonly give feedback through a form on the library

website (59 respondents, 78%) and through subject librarians (58 respondents, 76%).

• Remote users most commonly give feedback through a form on the library website

(60 respondents, 79%), and through subject librarian (49 respondents, 64%)

In-library users and remote users most commonly gave feedback using the same methods,

suggesting that proximity to the physical library may not significantly impact feedback channels.

As expected, we found a strong positive correlation between staff size and support for

software development best practices (particularly creation of software documentation and

specifications, creation of user documentation, performing code reviews, using version control,

practicing casual code reuse, and standardizing development by utilizing a common framework).

In our review of organizations that contribute to open source projects, software development

staff ranged from one or two to as many as fourteen. While organizations that contribute to large

scale, formal open source projects were clearly investing heavily in programming staff, it was

8

also clear that a few organizations who didn't have resources for large technology staffs could

still contribute to projects with as few as one programmer. The median number of staff reported

as working on OSS projects was two, with an average of nearly four.

Organizational structures varied considerably. Within smaller organizations, single

programmers were often located in library systems or web units. Within larger organizations,

software development staff were often clustered together in application development units

located in digital library, digital projects, or library technology branches of the organization.

2.1.3 Adoption

Seventy-four (97%) respondents have deployed open source software in their library. Each

respondent was asked to provide information about the type of software being used for various

purposes. Below are some of the highlights.

• Fifty-eight respondents (76%) use a vended, locally hosted integrated library system

(ILS). No respondents use an ILS built in house, but four use an open source ILS.

• Forty-five respondents (59%) use a vended, locally hosted interlibrary loan (ILL) system

and twenty-nine (38%) license a software as a service (SaaS) ILL system.

• Forty-nine respondents (64%) use a SaaS discovery Layer. Seventeen respondents (22%)

use a vended, locally hosted discovery layer, and ten respondents (13%) use a discovery

layer that is built in house. Several respondents indicated that their discovery layer was

both a vended, locally hosted system and also built in house suggesting significant

customizations to a vended product.

• Forty-seven respondents (62%) use a locally hosted and supported institutional

repository.

• Forty respondents (53%) use a locally hosted and supported digital preservation system.

9

• Thirty-four institutions (45%) have adopted a system that is open source and supported

by a third party.

• The most commonly built in-house systems were floor maps (28 respondents) and digital

assent management systems (19 respondents).

• The systems most frequently adopted as open source systems include digital repositories

(57 total), institutional repositories (54 total), blogging (53 total) and publishing (43

total).

Forty-three respondents (59%) had no formal library or parent institution policy related to

OSS adoption. Only one library’s parent institution and only five libraries have a formal written

policy related to adoption of OSS. Several respondents reported that policies were currently

being created, but could not be shared at the time of their response.

Most respondents indicated their institution had no sustainability strategy (50 respondents,

70%) or exit strategy (53 respondents, 75%). Strategies included minimizing customizations,

providing sufficient staffing with needed expertise, and only adopting systems with good

documentation and an active community. Respondents reporting an exit strategy frequently

emphasized the criticality of data migration (more than half of relevant comments, 8 of 15).

Survey respondents were asked to identify the open source system they had most recently

adopted and to provide the number of staff and hours required to implement that system. A wide

variety of projects were adopted, the most common being Drupal (6 respondents), Blacklight (5

respondents), Omeka (5 respondents), and DSpace (4 respondents). Respondents reported from

one to eight staff members dedicated to implementation, with a mean and median of three staff.

The number of hours required for initial implementation varied dramatically, ranging from 0.75

hours to 9,000 hours with a mean of 573 hours and a median of 160 hours.

10

Respondents were asked to identify the open source system they most recently adopted that is

still in production and to describe the resources needed to support that system. For most

respondents, the system referred to in this question was the same system described in the

implementation question above. The number of staff required to maintain this system ranges

from 0 to 10 with a mean of 2.1 and a median of 2. The number of hours required to support this

system ranged from 0 to 512 per month, with a mean of 68 hours and a median of 20 hours.

Only ten (14%) of the respondents were able to track the cost of their most recently adopted

OSS system. Of those who could track their costs, expenses ranged from $400 to over $600,000

and, in some cases, represented a multiple year investment. These funds covered a variety of

expenses including staff time, hosting, travel, and consulting. The nearly universal primary

source of funding was the library’s operating budget (69 respondents, 99%).

Respondents were asked to describe three benefits and three challenges associated with

adopting OSS. The most common benefit is the ability to customize the software (50 responses).

Other common themes included low cost or time to implement (27 responses) and the association

with an active community (27 responses). The most common challenge was the need for highly

skilled staff that could provide support for the OSS system (40 responses). Other commonly

cited challenges included poor documentation (19 responses), a need for additional training or

expertise (16 responses), and substandard development practices (12 responses).

2.1.4 Development

Fifty-six respondents (78%) have contributed to an open source project, including DSpace (12

respondents), Fedora (11 respondents), Hydra (9 respondents), Kuali (6 respondents), Blacklight

(5 respondents) and ArchivesSpace (4 respondents). Respondents were asked to describe their

contributions to open source projects. Below are some of the highlights.

11

• The most common contributions involved code or developer time (47 respondents),

funding (36 respondents), hosting (36 respondents), and testing (8 respondents).

• Across all types of contributions, the most common types of projects included

institutional repositories (65 respondents), digital preservation (61 respondents),

digital asset management (37 respondents), discovery layer (21 respondents),

publishing (18 respondents), ILS (18 respondents), and streaming media (16

respondents).

• Where code was contributed, the most common types of projects included

institutional repository (32 respondents), digital preservation (22 respondents), digital

asset management (20 respondents) and discovery layer (11 respondents).

• Where funding was contributed, the most common projects included institutional

repository (18 respondents), digital preservation (19 respondents), and digital asset

management (8 respondents).

• Where hosting was contributed, the most common project was digital preservation (9

respondents).

Fifty-six respondents (78%) have contributed to a library related open source project. Of

these, respondents were involved in an average of 4.6 projects (median of 3, minimum of 1,

maximum of 20), and primary contributors on an average of 1.9 projects (median of 1, minimum

of 0, maximum of 20).

Thirty-two respondents identified themselves as the original developer of an open source

project. When asked about reasons for open sourcing their project, respondents listed the

following as being “important” or “very important”: a belief that open sourcing would lead to

better software (30 respondents), a desire to contribute to an open source community (29

12

respondents), and shared effort in development and quality assurance of the project (27

respondents).

Sixty respondents (78%) develop plugins, extensions, or customizations for a library-related

proprietary or vended system. Of these, 31 (54%) indicated vendors allowed them to distribute

the code under an open source license.

Eight-one percent of open source contributors (43 respondents) said they were not able to

track the costs of their most recent OSS project.

Of the respondents able to identify the source of their open source funding, 96% (43

respondents) said that funds came from their library operating budget. Ten respondents (22%)

secured grant money to cover their open source contributions.

Survey respondents were asked to describe the OSS policies used by their library and parent

institution. Forty-four (60%) respondents indicated their library has no policy in place for

contribution to open source projects, while 20 respondents (27%) have an informal policy.

Thirty-four respondents stated that they have no tech transfer policy, while 33 respondents (32%)

indicated that their parent institution has a formal, written tech transfer policy.

Respondents were asked to describe three benefits and three challenges associated with

contributing to OSS. The benefit most commonly cited was engagement in the open source

community (38 responses). Other common themes included control of product features and

direction (25 responses), and recognition/reputation (14 responses). The most common challenge

was allocating sufficient staff time to make meaningful contributions (24 responses). Other

commonly cited challenges included writing generalized software for use by a larger community

(7 responses) and securing the financial resources needed to support the open source project and

community (7 responses).

13

Since open source project members are rarely collocated, a variety of tools were employed to

help coordinate development efforts. Common tools used included shared version control (37

respondents), an issue tracker (36 respondents), a mailing list, (32 respondents), and a wiki (25

respondents). Forty-one respondents (79%) use a public repository or forge to share their open

source code; Github was by far the most common (38 of 41 respondents, 93%).

The most common licenses used by respondents were GPL v3 (16 respondents), Apache (15

respondents), and Creative Commons (15 respondents).

Respondents were asked to rank a set of success indicators in terms of their importance for

the respondent’s institution. A significant number (41 respondents, 80%) identified as most

important that the functionality better suits their institution’s needs.

Respondents were asked if any of their in-house software could have been, but has not yet

been, released under an open source license. The 53 respondents (69%) who answered in the

affirmative expressed concerns about the following: staff time commitment required to support

the community (41 respondents, 77%); readiness of code quality for public adoption (39

respondents, 74%); and dependence on other internal systems (30 respondents, 57%).

2.1.5 Conclusion

This survey reveals that nearly all responding ARL Libraries are developing custom software

and/or adopting one or more open source systems. Contribution to OSS projects is also common,

with more than three quarters of respondents actively contributing to OSS projects.

Many respondents expressed a desire on the part of their developers to share with and

participate in one or more OSS communities. Larger LIT organizations committed more

resources to OSS projects than smaller LIT organizations, but we found no significant

correlations suggesting a disproportionate level of commitment to OSS projects as a function of

14

LIT staff size. The nearly universal adoption of OSS systems and the high level of contribution

to OSS projects may suggest that adoption of and contribution to OSS projects has entered the

mainstream for LIT organizations. Simply stated, LIT organizations that develop software also

predominantly contribute to OSS projects.

The results of this survey suggest that we view organizational behaviors surrounding the

adoption of open source software separate from contribution to OSS projects. For example, while

OSS adoption is viewed by respondents as a means of saving time and resources, OSS

contribution is not similarly viewed. Rather, contribution to OSS projects is viewed as being

advantageous for different reasons, namely engagement in an OSS community. For developers,

the sense of social involvement in a community represented by an OSS project can be a positive

source of professional satisfaction, ultimately leading to greater productivity and a return on

investment for the LIT organization.

Control of software emerged as a theme common to both adoption and contribution.

Those adopting OSS products felt that access to source code gave them greater control, allowing

them to change the software as needed, rather than being subject to the whims of a proprietary

solution. Those that contributed to OSS projects felt that they gained greater opportunity to

influence product direction, especially with respect to product features. In both cases, LIT

organizations perceived a sufficient benefit to their overall productivity to justify the expense of

their involvement (as adopters, contributors, or both) in OSS systems.

2.2 Survey Questions and Responses

The SPEC Survey on Open Source Software was designed by Curtis Thacker, Discovery

Systems Manager at Brigham Young University’s Harold B. Lee Library, Dr. Charles Knutson,

Associate Professor of Computer Science at Brigham Young University, and Mark Dehmlow,

15

Program Director for Information Technology at the University of Notre Dame’s Hesburgh

Libraries. These results are based on data submitted by 77 of the 125 ARL member libraries

(62%) by the deadline of March 18, 2014. The survey’s introductory text and questions are

reproduced below, followed by the response data and selected comments from the respondents.

Open source software (OSS) is software that adheres to the following principles: “open

source licenses must permit non-exclusive commercial exploitation of the licensed work, must

make available the work’s source code, and must permit the creation of derivative works from

the work itself.” [St. Laurent, Andrew M. (2008). Understanding Open Source and Free

Software Licensing. O’Reilly Media, p 8. ISBN 9780596553951].

The emergence of OSS has increased collaboration among research libraries, providing

greater control of library tools, as well as improving usability and quality of library resources.

This collaborative approach fits neatly with the knowledge and resource sharing ideology of

libraries. While OSS is ostensibly “free,” adoption of OSS within an organization is not without

significant support, integration, and development costs.

The purpose of this survey is to study ARL member libraries’ adoption and/or

development of OSS for functions such as ILS, discovery layer, electronic resource management,

inter-library loan, digital asset management, institutional repository, course reserve, streaming

media, study room scheduler, digital preservation, publishing, floor maps, data warehouse, or

other library-related purposes. We would like to understand organizational factors that affect

decisions to adopt OSS, the cost of OSS, and the awareness of OSS systems already in use. With

regard to development of OSS, we would like to understand: 1) research libraries’ policies and

practices on open sourcing their code; 2) the frequency with which research libraries contribute

to open source projects; 3) whether research libraries are reluctant to make their code openly

16

available; and 4) the most common benefits and challenges encountered when research libraries

open source their code.

2.2.1 Survey Response

79 of the 129 ARL Libraries Responded

Total Response Rate - 61%

76 of the 122 Academic – 62% of ARL Academic Institutions

3 of the 6 Governmental - 50% of ARL Governmental Institutions

1 of the 2 Public – 50% of ARL Public Libraries

2.2.2 In-house Software Development

1. How many individuals in your library are responsible for information technology as all or

part of their duties? (“Library IT staff” could be a well-defined department or a small part of

one person’s duties.) N=69

Number of Library IT staff

Minimum Maximum Mean Median Std Dev

2 350 25.98 15.0 51.34

Table 2.1: Number of library IT staff.

Minimum Maximum Mean Median Std Dev

2 50 15.88 14.0 10.17

Table 2.2: Number of library IT staff, academic libraries only.

Minimum Maximum Mean Median Std Dev

130 350 243.33 250 110.15

Table 2.3: Number of library IT staff, government libraries only.

17

Minimum Maximum Mean Median Std Dev

30 30 30 30 N/A

Table 2.4: Number of library IT staff, public libraries only.

2. Do library IT staff develop any in-house software? N=77

Yes 70 91%
No 7 9%

If yes, which of the following software development practices do library IT staff employ?
Check all that apply. N=70

Software Development Practice N Percent

Usability testing 60 86%

Version control 60 86%

Software documentation and specifications 55 79%

Iterative releases (i.e., small and frequent releases) 53 76%

Reuse of in-house code libraries 52 74%

Reuse of shared framework(s) 51 73%

Casual code reuse between developers 50 71%

User documentation 49 70%

Developer unit testing 44 63%

Accessibility testing 39 56%

Code reviews 38 54%

Coding style guidelines 35 50%

Code commenting guidelines 33 47%

Independent quality assurance 17 24%

18

Reuse of purchased code libraries 13 19%

A formal written code reuse policy 7 10%

A committee or working group to encourage reuse and oversee shared code 5 7%

Other software development practice(s) 15 21%

Table 2.5: Software Development Practices ARL libraries participate in.

Please briefly describe the other software development practice(s) your library IT staff

employ. N=15

• Acceptance testing, pair programming, community code review, continuous

integration, DevOps practices

• Agile / Scrum project management practices

• Agile development

• Agile development methodology with active involvement of customer

• Agile Project management

• Agile Scrum development methodology. Also note that not all practices checked

above are applied universally across all projects.

• Continuous integration, bug/enhancement tracking, backlog management

• Deployment strategies, such as Capistrano

• Experimental software as part of research projects

• Functional testing. Virtualized development environments and code driven

environment configuration. Design patterns. Agile approach, trying to implement

a 2–3 week cycle for milestones. Frequent standups, not daily but certainly when

issues arise. Iterative development with incremental feedback.

• Informal usability test

19

• Modify open source code for library use.

• Pair programming

• Pair programming, interaction design (personas, user stories, prototyping), TDD

• Security checks, penetration testing

3. Which of the following activities are library IT staff encouraged to participate in? Check all
that apply. N=76

Experimenting with new technologies 75 99%

Prototyping for potential projects 62 82%

Rewriting existing systems to make them easier to support 57 75%

Collaborating on projects that are not part of their specific responsibility 56 74%

Other related activity 10 13%

Please briefly describe the other related activity. N=10

• Collaborating with developers outside the Libraries, participating in open-source

developer communities, attending developer users’ groups meetups.

• Configuring, customizing, and extending existing systems.

• DevOps work to support operations staff.

• Existing systems are rewritten only when there is a need.

• Inter-campus work, marketing department and ITS

• Other responsibilities as assigned/needed.

• Professional conferences

• Streamline services, decommission paid services, security review.

• Training on related emerging software technologies and platforms.

20

• We work to keep applications supportable in the library by choosing technologies

and languages that can be supported by more than one person in IT, and through

cross training on those technologies.

4. How do users of library systems give feedback to your library IT staff? Check all that apply.

N=76

Table 2.6: Methods used by ARL Libraries to provide feedback to library IT staff.

If you selected “Other method” above, please specify the user group and briefly describe that

method. N=12

• “Contact us” link and Chat

• Emails or chat notes or phone messages forwarded by other library employees.

• In person

• In person discussions [with library employees]

• Our public feedback takes place through email to support web sites, or notes in

suggestion boxes. Our system user feedback takes place through the Help Desk.

Feedback Method In-library
patrons

Library
employees

Institution
employees

Remote
users

N

Through a helpdesk or bug tracking
system

25 69 35 31 71

Emailing or calling the system
manager/developer directly

16 67 39 23 68

Through a web form built into the
library website

59 48 54 60 65

Through subject librarians 58 33 44 49 65

There is no established method 1 — — — 1

Other method 6 5 3 6 8

Number of Responses 75 76 69 71 76

21

• Service teams for our major brands who help assess requests for features,

problems, projects, etc.

• Through library public service staff (not all of them necessarily subject

librarians).

• User research, informal conversations with members of various groups

• We have a User Experience department that employs several methods for

gathering feedback of existing services, as well as feedback and input on services

as they are being implemented.

• We have an extensive release testing process that involves faculty and staff

throughout the libraries.

• We no longer have a web form for tech support; it was replaced with a web

helpdesk ticketing system. The IT ticketing system has many different categories

of help, and it is used by a variety of campus departments. Help requests are

triaged to the appropriate campus department based on need.

• We occasionally hold focus group sessions with student users (generally

undergraduates). These are sometimes very informal introductions to prototypes

on which we gather first-reaction comments to inform further development, at

other times, these are more structured formal feedback opportunities.

2.2.3 Systems Built In-house That Aren’t Open Sourced

5. Has your library built in-house any library-specific systems that could be, but have not been,

released as open source? N=77

Yes 53 69%

No 24 31%

22

If yes, what are the primary reasons for not releasing it as open source? Check all that apply.

N=53

Reason Cited for Not Releasing System as Open Source N Percent

Concerns about staff time commitment required to support the community 41 77%

Concerns that the code quality is not ready for public adoption 39 74%

Dependence on other internal systems 30 57%

It didn’t occur to us 7 13%

Seeking to license or sell the system 2 4%

A competitive desire to have the best system 1 2%

Other reason(s) 12 23%

Table 2.7: Reasons cited for not releasing one or more library specific system as open source.

Please briefly describe the other reason(s) for not open sourcing the system. N=12

1. Highly customized to address local requirements.

2. Lack of clarity about campus policies for licensing and intellectual property

ownership.

3. Legal considerations.

4. Narrow niche applications where a community is unlikely to develop.

5. Not approved for release.

6. Not documented for external audiences.

7. Often these systems reflect local practices. We’ve not viewed them as useful

beyond our local environment.

8. Planning to release a service as open source, working on appropriate licensing

language at this time.

9. Security

23

10. Security concerns related to embedded information.

11. Technology Commercialization Office needs to review any software developed at

Ohio State University.

12. Time needed for review of and compliance with licenses of third-party

components.

2.2.4 Customizing Proprietary Systems

6. Does your library develop plugins, extensions, or customizations for any proprietary or

vended systems? N=77

Yes 60 78%

No 17 22%

If yes, do those vendors allow the code you developed to be openly distributed with OSS

licensing? N=57

Yes 31 54%

No 26 46%

Comments N=17

• Customizations are specific to our institution’s unique requirements and would not be

generally useful to others. Some customizations would not be supported by

organization for security and support reasons.

• Ex Libris allows/encourages development and customization of their systems, but

sharing is limited to other Ex Libris user institutions via CodeShare on the password-

protected Ex Libris EL Commons web site.

24

• In some cases, we are not sure, because we have not specifically asked the vendor. In

the case of our ILS vendor, their willingness to have our code openly distributed

depends upon how much proprietary information about the system would be divulged

by the new software, i.e., the nature of the software and how it interacts with the

proprietary system.

• LC has developed plugins for use with its proprietary ILS software (Voyager). LC has

shared the plugins with other libraries. They are considered a federal employee

product, therefore public domain.

• Most do allow for this. Or, they at least have an established community of their

customers where code can be shared. We attempt to write code that is mostly

generalizable to any like system, in order to allow ourselves the flexibility to changes

systems later on with fewer dependencies on custom development.

• Not all our vendors allow this. Some applications would reveal proprietary

information about the data model used in vendor product.

• Not sure if it’s allowed (haven’t asked).

• Some allow this, some do not.

• Some vendors allow it, others do not. Ability to redistribute is not a major factor in

determining whether we develop plugins, extensions, or customizations.

• Some vendors do, some vendors don’t.

• The library IT staff has plans to develop plugins, extensions, or customization for the

ILS. The ILS vendor does allow APIs to be openly distributed.

• Unsure [whether vendor allows this]

• We do provide the extensions without a license but we include a disclaimer.

25

• We have a couple of vendors that have taken contributions from our teams but that

code is not openly distributed with OSS licensing.

• We primarily build them for us and share them if we can. Some vendors allow for

semi-open sharing.

• With the signing of appropriate releases and/or agreements.

2.2.5 Library Software

7. Please identify the type of software used by your library for each of the following purposes.

Check all that apply. N=76

Purpose OSS

(locally
hosted,
locally

supported)

OSS
(locally
hosted,

supported
by a third

party)

OSS
(hosted

and
supported
by a third

party)

Vended
product
(locally
hosted)

Vended
product
(hosted
by the
vendor

or SaaS)

Built
in-

house

N/A N

Inter-library
loan

2 — 1 45 29 4 3 76

Institutional
repository

47 1 6 5 12 14 7 76

Digital
preservation

40 10 7 11 3 15 19 76

ILS 3 1 2 58 17 — 1 75

Discovery
layer

16 2 3 17 49 10 2 75

Course reserve 2 — 2 43 16 12 7 75

Electronic
resource
management

8 — 1 18 38 13 3 74

Streaming
media

16 1 — 33 18 5 12 74

Blogging 38 2 13 11 8 1 9 74

26

Purpose OSS
(locally
hosted,
locally

supported)

OSS
(locally
hosted,

supported
by a third

party)

OSS
(hosted

and
supported
by a third

party)

Vended
product
(locally
hosted)

Vended
product
(hosted
by the
vendor

or SaaS)

Built
in-

house

N/A N

Authentication
/identity
management

25 7 8 33 8 11 7 74

Digital asset
management

33 3 2 20 11 19 9 73

Study room
scheduler

17 — 1 13 20 13 14 73

Publishing 36 3 4 4 10 5 19 73

Link resolver 5 1 4 22 43 7 3 73

Floor maps 8 — — 8 5 28 28 71

Web analytics 15 2 7 10 47 4 — 71

Data
warehouse

11 1 2 7 4 10 43 69

ELMS 4 1 2 11 6 2 45 68

Data analysis 6 1 1 17 11 8 36 68

Visualization 10 — — 15 8 3 40 67

Other purpose 13 1 — 4 3 9 10 31

Number of
Responses

70 22 40 76 73 50 67 76

Table 2.8: Implementation/adoption of library specific software.

If you indicated above that the library is using any software for an “Other purpose,” please

briefly describe that purpose. N=25

• Archival description software (ICA-AtoM for archival finding aids)

• Archival Management -- For managing archival data

• Citation Fox and IL Fox

• Content management system

27

• Course reserve is Blackboard, hosted by university IT, not the library

• Database software (MySQL), Web Server (Apache), Exhibits (Omeka), Timeline &

Map web support (Neatline)

• Electronic Finding Aids: currently use Archon, will move to ArchiveSpace in the

future.

• Enterprise service bus and rapid application development environment afforded by

Kuali Rice.

• FYI, we are considering vended product/hosted by vendor to include Ohio State’s

central IT unit (Office of the Chief Information Officer) and central academic

computing unit (Office of Distance Education and E-Learning).

• Here are some top software products the Libraries have developed to fulfill our needs:

research consultation services, equipment management, trouble ticket, feedback,

hours, event administration, news/alerts, reference transactions, spam blocking,

reminders. Also, we have a vendor product for single-sign on for our ILS. Lastly,

there are additionally more campus central IT run services that the Libraries use.

Please contact us for more information as needed.

• Just wanted to note an additional dimension to consider. We make use both of very

library-specific software primarily managed by the Libraries but are also heavy users

of software provided by our university’s central IT dept. In some cases, the

relationship is somewhere in between a locally hosted and vendor hosted situation.

• Many of the choices above do not allow for accurate categorization of our

environment.

• Monitoring, performance analysis, metrics, digital signage

28

• Note: Dataverse (Data Warehouse) and geospatial software (Data Analysis) on shared

consortial system: From Scholars Portal, of the Ontario Council of University

Libraries.

• Offsite storage inventory, RFID, self-checkout.

• Omeka for online exhibits

• Other purpose is Digital Collections application and CONTENTdm for metadata

management.

• Persistent identifier software

• Research guides/FAQs, digital exhibits, EAD repository, staff directory, Database A-

Z

• Resource annotation and analysis tool (RUanalytic). Metadata and resource handling

application (OpenWMS) and ETD submission system (RUetd)

• Scientific data analysis, text mining

• Social media archiving, and social media display/sharing

• Subject-specific databases/portals, electronic access

• We also have several productivity tools that are small productivity applications, such

as tools for replacement materials workflows, another for reformatting, our subject

pages are driven by the MyLibrary toolkit, we use Library a la Carte for subject

guides.

• We use OSS and in-house software for many other needs: lots of back end server

stuff like sharing data between systems, and front end custom displays for various

resources.

29

8. Please indicate how important each of the following software selection criteria is to your

library. Please make one selection per row. N=76

Criteria 1 Not
Important

2 3 4 5 Very
Important

N

Functionality that best meets our needs — — 1 14 61 76

Staff time to support — 2 13 35 26 76

Control and customizability — 1 13 36 26 76

Monetary cost for support and maintenance — — 14 40 22 76

Staff time to implement — 3 21 31 21 76

Monetary cost for implementation and
licensing

— 2 14 31 27 74

Other criteria 1 — 2 6 12 21

Number of Responses 1 6 42 65 70 76

Table 2.9: The importance of a given set of criteria used when selecting software.

If you indicated above that the library is using any “Other criteria” to select library software,

please briefly describe the criteria. N=17

• Academically developed and controlled to reduce risk. We do buy vendor solutions

but with intention and critical analysis due to the amount of data we have and priority

to preserve and make that information available.

• ADA compliant, standards based, interoperable with other systems, meets security

standards

• Adoption of the software in the wider (library) community. Whether or not the

software is actively being maintained.

• Compatibility with existing systems

• Compliance with industry standards for system interoperation

30

• Integration with complex information environment; ability to extend software beyond

library to provide services to other departments and institutions; opportunities

afforded for professional development in open- and community-sourced software.

• Integration with existing systems

• Integration with other library systems. Community of software users and evidence of

development.

• Interoperability with existing systems. Community around an OSS project.

• Interoperability with other systems; sustainability

• Is it open source?

• It is important for any systems to meet accessibility standards.

• Safety and security of the software (impact on IT security at the Library of Congress)

• Software quality and reliability

• Use of open data standards

• Vendor responsiveness for vended products or a robust user community or user

groups for OSS.

• We try to insure that all components of our cyberinfrastructure, whether developed in

house or not, work well together to fit within the RUcore architectural framework. All

tools and services can then be managed together and receive upgrades/enhancements

on the same schedule. Our commercial ILS, Sirsi/Dynix does not support this and one

IMPORTANT reason we are moving to Kuali OLE is the ability to integrate all our

cyberinfrastructure into a coherent platform where the focus can be an integrated

approach to user needs.

Please select the correct statement about the use of OSS at your library. N=76

31

Our library is using open source software 74 97%

Our library is NOT using any open source software 2 3%

2.2.6 OSS Policies

9. Please indicate the kinds of policies your institution has related to OSS. Check all that apply.

N=73

OSS Policy Content Formal,
written
library
policy

Formal,
written
parent

institution
policy

Informal
library
policy

Informal
parent

institution
policy

No
policy

N

Adoption of OSS
developed elsewhere

5 1 25 7 43 73

Development of OSS in-
house

3 4 20 10 44 73

Contributing resources to
OSS projects

4 5 20 6 44 73

Technology transfer 2 23 4 8 34 69

Number of responses 7 24 32 16 59 73

Table 2.10: Policies related to OSS.

Comments N=9

• http://uctas.ucop.edu/documents/uc-guidelines-contributing-oss-communities.pdf

http://www.ucop.edu/ott/genresources/genguidance.html

• I am not aware of any official or documented policy regarding OSS at the institution

at this time.

• LC has policies and procedures for making LC-produced open source code available

outside LC. The policies are currently under editorial revision and are expected to be

released later in 2014.

• Not aware of university policy though it may exist.

32

• Our library informally supports and greatly encourages IT staff to use and contribute

to OSS projects.

• We are just beginning to develop policies in this area.

• We have no formal policies with regards to OSS. We are pragmatic in our approach

to open source software, and compare with vended solutions based on criteria noted

earlier in this survey.

• We know from experience there is a process, but could not locate the policies.

• Whether a commercial vendor or OSS product best meets a given need is determined

on a case-by-case basis.

10. Does your institution have either a sustainability or exit strategy related to OSS projects?

N=71

Strategy Yes No

Sustainability strategy 21 50

Exit strategy 18 53

Table 2.11: Library sustainability and exit strategies.

If there is either a sustainability or an exit strategy, and a document that describes the

strategy, please include the document in the Call for Documents at the end of the survey.

If there is a strategy, but no document, please briefly describe the strategy below.

Sustainability Strategy N=15

• https://wiki.duraspace.org/display/hydra/Hydra+Community+Framework - the closest

is the Hydra partner agreement

• Informal. Must be sustainable. Implementing department is accountable.

33

• Minimize customization.

• Platform review on a regular basis (~five-year cycle).

• Provide staff support for ongoing development of our open source content

management system (Drupal) and ongoing support and development of our

institutional repository (if we stay with an open source product after our pilot project).

• Staff to support; minimum customization; data management a requirement.

• Stated in strategic plan and through staffing, but no formal document.

• Supported as a strategic application, that is, assigned as primary responsibility for a

group or person in IT.

• The Kuali OLE project, not yet in production, is developing a sustainability plan to

grow and sustain the software for at least a decade. This includes ongoing support, in

cash and in-kind, from partners, attracting new partners, and partnering with

commercial affiliates for software support, training, implementation, and

development contributions.

• The way in which we contribute and leverage OSS assures that UVa has access to all

OSS and can continue to maintain, develop or discard that technology according to

our needs and priorities. We are involved in the strategic steering, operational and

development of the majority of OSS that we use.

• We adopt only OSS projects that have a healthy, active community for

collaboration/support. We also choose projects with methods for contributing code

back, and with good documentation so in-house work can begin quickly.

34

• We avoid making extreme customizations that are super specific or require extensive

changes to the base code, hence sustaining our OSS from one version to another is

relatively flexible.

• We plan out sustainability in the same manner as other software implementations and

development activities.

• We will adopt an enterprise OSS system or component only if it is developed within

the narrow range of technologies--languages and deployment platforms—in which we

have expertise and experience, and only if the system or component is supported by

an established, stable community. We follow best practices, particularly around

testing and engineering for stability and scalability, in order to minimize support and

maintenance costs. We move support out of the development group and into a support

group (with partial success).

• When adopting OSS or engaging in development of OSS, we look for and/or try to

establish a broadly-based community of support in order to mitigate risks of being too

dependent on one institution’s / individual’s resource commitment.

Exit Strategy N=15

• Data migration mandatory

• Exit strategy only concerning ability to export all data and relationships from

software.

• For the eXtensible Catalog (XC), our exit strategy (which we are now implementing)

involves moving all infrastructure support for the software to a library consortium

(CARLI) that has been a major partner in developing the system. Our strategy also

35

has included a detailed communication plan for notifying all stakeholders. We have

not deployed XC locally. For IR+, we are now discussing possible options for future

actions that may include a formal exit strategy.

• Informal. Must have a reasonable exit strategy. Implementing department is

accountable.

• Native export tools/XML, etc. unique to each application

• No formal exit strategy. We do choose software with open data standards so that our

information can be exported on a whim and used in different software.

• Not only with OSS, but with all software systems, we develop such that dependencies

are not vendor or product specific, but could allow for replacement of a part of our

infrastructure with a like service without having to redesign the whole.

• Our data adheres to open standard policies, so if we ever need to migrate out or exit

out of the OSS, our data would be compatible with any other system.

• The plan will include an exit strategy to allow either end-of-life of the software, or

mechanism for turning over software to other interested parties.

• To ensure that our data are portable, we require that an open source software be

capable of exporting our data in a standard data exchange format.

• Use of a software system whether OSS or vended requires data export capability.

• We always look at an exit strategy when making a decision about a particular

technology solution, regardless of whether it is open source or not.

• We keep data and presentation layers separate, so that migration out is easier. We

choose OSS with data storage techniques that allow for complete export of all

relevant data in a format for easy migration.

36

• We may resort to a hosted/vended product for our institutional repository if we’re not

satisfied with the results of our pilot project using an open source software repository

product.

• We regularly evaluate our needs against the technologies we are using and are aware

of alternatives. Because we are involved in the strategy and development of most of

the OSS, we are also aware of the threats for the OSS that we use. Use of OSS affords

us greater time to plan migration or alternative strategies. We have experience and

expertise with vended solutions that offered minimum time and therefore forced

quick migration and alternative solutions that in some cases have proven to not meet

our needs.

2.2.7 Reasons for Adopting OSS

11. Please identify the open source software that has been adopted. N=66

• Apache, Eventum, Movable Type

• Archivists’ Toolkit

• AutoDewey: software was created at Northwestern University Libraries, adapted at

LC.

• AWStats, DSpace, Islandora, Fedora Commons, ICA-AtoM, Archivematica, Drupal,

Apache Solr, Apache Lucene, Apache, Squid, KeePass, Nagios, PuTTY, MongoDB

• Blacklight content management system, Google Map viewer API, California Digital

Library Micro Services, Archivists’ Toolkit, ArchivesSpace, Dspace, LibStats,

Drupal, Omeka, Linux, Apache, LOCKSS

37

• Blacklight discovery layer, Fedora Commons Repository, DSpace, Handles,

WordPress

• Blacklight, Fedora,

• Blacklight, Hydra, Solr, Fedora Commons, DSpace, Opencast Matterhorn, Avalon

Media System, Variations Digital Music Library System. Many utilities/tools such as

ffmpeg, JHOVE, etc.

• Digital Library Extension Service (DLXS), Fedora Commons, Omeka, Guide on the

Side, Apache, Tomcat, Wikimedia, Linux

• Drupal

• Drupal, PHP, phpScheduleIt, Blacklight

• Drupal, CORAL, Guide on the Side, ArchivesSpace

• DSpace

• DSpace, Open Journal System (OJS)

• DSpace

• DSpace, Drupal

• DSpace, and several others

• DSpace, Fedora Commons, Hippo CMS, Drupal, Open Journal Systems

• DSpace, Fedora Commons, Hydra, Apache, MySQL, Solr, Linux, Open Journal

System (OJS), Python, R, Ruby, Archivists’ Toolkit, ArchiveSpace, WordPress,

Drupal, Tomcat

• DSpace, Islandora, Fedora Commons, Drupal, Tesseract, ICA-AtoM, Open Journal

System (OJS), Open Book Systems (OBS), Manitobia, LOCKSS, PostgreSQL,

MySQL, Apache suite of applications, Python, Redmine, Git

38

• DSpace, Omeka, MDID

• DSpace, Umlaut, WordPress

• DSpace, Open Journal System (OJS), and VuFind

• DSpace, Open Journal Systems (OJS), Archivematica, ICA-AtoM, LOCKSS,

WordPress, MediaWiki

• DSpace, Open Journals System (OJS), eXtensible Text Framework (XTF), Omeka,

WordPress, Drupal

• DSpace, Fedora Commons, Archivematica, ResourceSpace; Public Knowledge

Project (PKP) including Open Monograph Press (OMP), Open Journal Systems

(OJS), Open Conference Systems (OCS); General Transit Feed Specifications

(GTFS), RefStat, Suma, Xibo, Mondo Grinder, phpScheduleIt, software for hours and

locations

• DSpace, File Analyzer, Archivists’ Toolkit, LOCKSS

• Fedora Commons

• Fedora Commons, Hydra, CORAL, Apache, Puppet

• Fedora Commons, Blacklight, Hydra, SOLR, Avalon, WordPress, ArchivesSpace

(soon), Piwik, MySQL, Apache, Neatline, and many other components for

transforming or disseminating information.

• Fedora Commons, DSpace, Open Journal Systems (OJS), Open Conference Systems

(OCS)

• Fedora Commons, DSpace, Umlaut, Shibboleth, Xerxes, Blacklight, Vireo, Hydra,

Solr. As well we have adopted several OSS, such as Tomcat and Apache, that do not

seem to be the focal point of this survey.

39

• Apache web Server, Drupal, Webinator, Fedora Commons, WordPress, Omeka,

BuddyPress, Avalon Media System, eXtensible Text Framework (XTF), Bugzilla,

Handles, PostgreSQL, PHP, Perl, Linux

• Hydra, Blacklight, Solr, Drupal

• Hydra, DSpace, Drupal, WordPress, LC Newspaper Viewer, Archivists’ ToolKit,

VireoCat, various open source utilities

• Hydra, Fedora Commons, Solr, Blacklight, phpScheduleIt, Open Harvester,

WordPress, others.

• Islandora

• Koha, Fedora Commons, Xerxes, Library a la Carte, WordPress, MyLibrary,

eReserves, Blacklight, VuFind, Hydra, CORAL

• Linux, Django, Python, Solr, Lucene, Nginx, PostgreSQL, various support libraries

and toolkits

• LOCKSS, Public Knowledge Project (PKP), Omeka, Plone

• Lots. Drupal, EZProxy when it was OSS, our web stack, our Moodle LMS, our IR,

others.

• Open Journal Systems (OJS) and Omeka; CORAL

• Open Journal Systems (OJS), DSpace, Omeka

• Open Journal Systems (OJS), Open Monograph Press (OMP), Drupal, WordPress,

Dokuwiki, MediaWiki, Islandora, Fedora Commons, Spiceworks, PWik, Omeka,

Archivists’ Toolkit

• Omeka, Avalon media System, WordPress, Silverstripe, DSpace, Open Journal

System (OJS), Open Conference System (OCS)

40

• Open Journal System (OJS)

• Open Journal System (OJS), eXtensible Text Framework (XTF), AWStats, Daily

Stats, WordPress, Webilizer, GoogleAnalytics, MySQL, PHP

• Open Journal Systems (OJS)

• phpScheduleIT, Omeka, WordPress, Archon, ArchivesSpace, Blacklight,

SubjectsPlus, Variations Digital Music Library System, Avalon Media Server, Fixity,

Assana, MarcEdit, DMPTool, Lucene, Solr, EZProxy, E-Prints

• PHP, Blacklight, MongoDB, PostgreSQL, MySQL, Northwestern U Book Viewer,

Solr, Lucene, GSearch, Djatoka, Fedora Commons, SciDB, Openstack, Django,

Openshift, Drupal, CentOS, Cassandra, sqe, Ruby, Python (and libraries), Perl and

libraries, many Apache tools, GNU tools, Nagios Open Monitoring Distribution

(OMD), Spacewalk, OCS Inventory

• PHP, MySQL, Linux, Apache, Drupal

• Hydra, Omeka, Drupal, Shibboleth

• Public Knowledge Project (PKP), Research Project Calculator (Assignment

Calculator), ArchivesSpace, Apache, Linux, MySQL, PostgreSQL, Hydra,

Blacklight, Fedora, Solr, PersistantURLs (PURLZ), Omeka, Open Journal Systems

(OJS)

• Streetprint, DSpace, OS Ticket, DokuWiki, Guide on the Side

• DuraSpace products, SugarCRM, ArchiveSpace

• The main library-specific OSS we use: VuFind, Solr, DSpace, LOCKSS. We make

heavy use of other general open source software including Ubuntu, Apache, Tomcat,

WordPress, etc.

41

• This list could go on for pages: Apache, Fedora Commons, DSpace, Islandora,

WordPress, Drupal, MySQL, Linux, Docker, Redmine, OpenLDAP, VuFind,

Arduino IDE, Open Journal Systems (OJS), Raspbian, OpenOffice, GIMP, etc. We

have both servers and desktops running various Linux flavours; nearly every piece of

software on them is by nature OSS.

• Too many to mention. But here are some: Ubuntu, Apache, PostgreSQL, Python,

django, Perl, PHP, Java (openjdk), Solr, jQuery, D3, postfix, Nagios, phpScheduleIt,

DSpace, Drupal, MySQL, ostickets.

• UCLA MWF, Dspace, MySQL, Apache, PHP, SAMBA, Open SSL, Open SSH,

Linux (CentOS and Ubuntu), Sendmail, Solr, Nutch, Tomcat, WINE, VirtualBox,

KeePass, PuTTY, Pidgin, Stat Transfer, WinSCP, 7zip, Firefox, Thunderbird, SPSS,

Audacity, MarcEdit, FreeMind, Gimp

• Umlaut, Blacklight, Xerxes, Fedora Commons, Solr, DSpace, Drupal, WordPress,

Rails, Jenkins, Djatoka, OpenLayers, Git, Linux, PHP, Java, Apache, Tomcat, GNU

Compiler Collection (GCC)

• VuFind

• VuFind to develop our discovery layer. Shibboleth for identity management (this is

the standard at our parent institution and it has been integrated with library systems).

• VuFind, Drupal, CORAL, ARC, Omeka, Solr

• VuFind, DSpace, Open Journal System (OJS), Papyrus, Islandora

• WebCalendar, Hydra

• WordPress, XTF, Omeka, Nagios, Public Knowledge Project (PKP), OAI Harvester

42

12. Please indicate how important each of the following reasons for adopting OSS over a

competing vended product is to your library. Please make one selection per row. N=72

Reasons 1 Not
Important

2 3 4 5 Very
Important

N

The functionality of the open source system
best meets our needs — 1 3 14 54 72

Greater control and customizability 1 — 5 26 40 72

Lower monetary cost for implementation
and licensing 2 6 25 18 21 72

Lower monetary cost for support and
maintenance 2 8 23 25 14 72

Library or institutional policies encourage
the use of OSS 27 15 18 11 — 71

Desire to contribute to the library OSS
community 6 15 22 18 9 70

Less staff time to implement 2 18 32 10 7 69

Less staff time to support 4 11 31 17 4 67

Other reason(s) 3 — 4 — 3 10

Number of Responses 31 37 65 61 67 72

Table 2.12: Reasons for adopting OSS over a competing vended product.

If you indicated above that the library has other reason(s) for adopting OSS over a competing

vended product, please briefly describe the reason(s). N=7

3 Moderately Important

Limited availability of software

Ongoing economic sustainability is critical for determination to adopt OSS or a vended

product. All public facing web applications must be made accessible for disabled users, so

control of this is vital for our institution.

43

OSS implementations relate to gaps in the vended market.

Staff familiarity with OSS systems.

5 Very Important

Better integration with RUcore cyberinfrastructure.

Freedom to study, copy, modify, and redistribute. Availability of potential staff candidates

familiar with free software options. Trust in the respective developer communities.

Resourcing: Leveraging pooled resources within community, which decreases cost for cross

training and ensures forward movement and support during staff shortages. Training &

retention: staff have a ready network of peers and training opportunities which greatly

supports skill building, impact of work, visibility of their work and professional networking.

Additional Comments N=5

• As a federal agency LC must be very cautious about appearing to endorse one type of

product over another, hence has not provided answers to question no. 8.

• NOTE: For above statements, don’t necessarily agree, e.g., “less staff time to

implement” - generally takes more time to implement an OSS - so not important is

what was selected.

• Security, analytics, integration with older systems

• We disagree with the statements above that OSS takes less time to implement and less

staff time to support, and so were unsure how to respond to them. Saying that they are

“not important” to us would be misleading, so we left them blank.

• We like our OSS to have a robust developer community.

44

13. Please identify your most recently adopted OSS system that has been deployed, and

indicate how many staff and how many hours of staff time were required to complete the

initial production deployment. An estimate of the number of hours is acceptable. N=64

OSS System Staff Staff hours Comments

Archivematica

ArchivesSpace

ArchivesSpace 2 160

Archivists’ Toolkit 1 100 Customization was contracted out.

Blacklight 3 1500

Blacklight 4 100 The work was done in two 2-week sprints
of ca. 25 hr/wk. Part of the experience
was getting used to Blacklight as a
development environment, in addition to
developing the intended discovery piece.

Blacklight 8 9,000 (very
rough

estimate)

Work on this project spanned many
groups and involved work across several
units of our organization. This estimate is
likely to be fairly inaccurate.

Blacklight We cannot share cost related information
at this time.

Blacklight, Fedora
Commons, Djatoka,
Lucene, Book Viewer

2 Approximatel
y 2,000 hours

OSS allowed team to select best
components for specific parts of project to
meet project goals of this major
development effort. OSS allowed us to
greatly customize presentation and
functionality. Functional changes are
more easily achieved with OSS than a
vended product, but of course requires in-
house development staff.

CORAL (e-resource
management)

1 30 Does not include hours spent with data
management from Technical Services;
just the time the developer spent.

45

OSS System Staff Staff hours Comments

DAMS – Islandora,
Fedora Commons

1 630

Dokuwiki 1 8

Drupal 2 500 Change platform for library website.

Drupal 3

Drupal 3 1000

Drupal 3 at least 240
hours

Three staff members were involved in the
implementation of Drupal, but only a
portion of their time for a period of about
three months.

Drupal 5 3500 Library website development and
deployment.

Drupal 3 Number of hours was not tracked.

DSpace 2 40

DSpace 4 200

DSpace 5 1000 Hours calculated on 4 hours of work per
week spread across 5 staff for one year.
This relates to a grant project has been
going on for several years. 1000 hours is
probably a conservative estimate. We
have not been formally tracking personnel
time for OSS projects.

DSpace 4 200 Mostly one IT staff implementing
configurations and changes and two
librarian/admin staff making design
decisions and testing. Sysadmin time
during startup.

Fedora Commons 3 80

Fedora Commons 4 unknown

File Analyzer 1 5

Guide on the Side 3 500 This is a piece of software that we
actually developed, so the number of staff

46

OSS System Staff Staff hours Comments

hours is very high due to the development
time.

Guide on the Side 3 2 Staff included 1 technical resource and 2
librarians.

Hippo CMS 5 2500 Very rough estimate; also includes
building the html/cuss for new website
from scratch.

I don’t have the details

ICA - AtoM 3 700

Islandora 2 many We can’t calculate staff hours with any
accuracy, as we haven’t been
systematically keeping track.

Islandora 2 16 We are counting server build only.
Software install was completed by support
vendor. We are not counting system
evaluation prior to purchase of vendor
support or
customizations/configuration/initial
material ingest.

Islandora 3 Difficult to estimate; deployment bleeds
into other issues, such as metadata import,
etc.

Islandora 4 160 We have four full time staff developing on
the Islandora stack. This includes efforts
for Drupal, Solr, and Fedora, which
comprise Islandora.

Koha 7 130

LC Newspaper Viewer 4 100

Linux/Apache/django
stack for library widget

2 0.75

Movable Type Project occurred 8 years ago; estimate of
staff time unknown.

47

OSS System Staff Staff hours Comments

obento (our in-house
developed bento
search)

4 500 (approx.)

Open Journal System
(OJS)

3 100

Omeka 1.5 40

Omeka 2 60 Developer created an accessible fork of
Omeka, called Omeka_a11y, for use in
our library, then removed institution-
specific changes and released the fork on
GitHub.

Omeka 3 20

Omeka 5 450

Omeka 301 One digital exhibit.

Open Journal System
(OJS)

2 50

Open Journal Systems
(OJS)

2 400

Papyrus 2 210

ResourceSpace 1 8

Room Booking 2 60

RUanalytic 3 400

phpScheduleIT 4 400

Shibboleth N/A N/A The development was driven by the
university’s Middleware Group, so it is
difficult to estimate library time on the
project.

Social Feed Manager 2 40

UCLA Mobile Web
Framework

1 40 Software started at UCLA to create a
framework to have web sites work well on
a mobile device without having to create
apps for devices.

48

OSS System Staff Staff hours Comments

Vireo 2 200 Times are grossly estimated for the last
question.

Wireo 2 120

VIVO 4 100 Deployment was spread over several
months.

VIVO 6 250

VuFind 2 500

WebCalendar 1

WordPress 1

WordPress 2 25-35 We were already using WordPress on a
limited scale for blogs and some web
pages, but recently fully adopted
WordPress for our library web site. Hours
are based only on the time to setup and
configure a new web server environment
and WordPress instance for the intended
use. Time spent creating and adding
content was in addition and significantly
greater.

Xerxes 2 2 * 280 hours

Table 2.13: Number of staff and staff hours to adopt an OSS projects.

Additional Comment

• We do not have a metric for this at this time because it is not useful to capture

unless we are comparing two similar scoped systems (OSS vs Vendor). Much also

depends on the type of application and needs it presents: rebrand requirements,

training requirements, configuration and sometimes development to utilize.

49

14. Please identify your most recently adopted OSS system that is still in production, and

indicate how many staff and how many staff hours per month are required to maintain the

system. An estimate of the number of hours is acceptable. N=58

OSS System Staff Staff hours
per month

Comments

ArchivesSpace 5 15 We are still in the process of migrating
from Archon to ArchivesSpace.

Archivists’ Toolkit 1 100

Blacklight 3 200

Blacklight 4 300 The system, though deployed, is still
under active development. We cannot
separate development from support.

Blacklight We cannot share cost related information
at this time.

CORAL 1 2

DAMS – Islandora,
Fedora Commons

2 280 The number of staff hours includes more
than maintenance because the system is
continually being developed for use
beyond the library, to the entire enterprise.
The 2 staff are working full time on the
system, migrating digital assets from other
legacy and proprietary systems into the
DAMS, implementing authentication,
user-centered interface and navigation,
writing bulk ingesters, creating testing
scripts, distributed solutions, data
preservation processes, etc.

Droid 2 200

Drupal 1 20

Drupal 2 30–40

Drupal 2 75 Two staff members are involved with
maintaining Drupal, but not full time. It
adds up to about .5 FTE.

50

OSS System Staff Staff hours
per month

Comments

Drupal 5 125 Library web site.

Drupal 5 100

Drupal 3 Hours unknown

DSpace 1 2

DSpace 1 5

DSpace 2 32 We are not currently tracking maintenance
time for OSS systems.

DSpace 2 120

DSpace 2 10 One Sysadmin handling
patches/updates/security and one
Developer handling feature requests and
fixes.

eReserves 2 250 This is a locally developed system that we
don’t open source currently.

Fedora Commons 3 80

Fedora Commons 4 512

File Analyzer 1 20

Guide on the Side 1 <10 Really strange question, especially related
to the previous question.

Hippo CMS 10 40 Includes maintenance and occasional
upgrades; does not include development
of new website features.

Hydra 1 60 By “in production,” in this question, it
appears to us you actually mean still in
development prior to deployment or in the
earliest stages of deployment?

Hydra 3 100

I don’t have the
details

ICA - AtoM 2 20

51

OSS System Staff Staff hours
per month

Comments

Islandora 1 70

Islandora 2 See above comment.

Nagios 0.25 1 For this OSS component, there only
requires minimal effort to maintain, just
the application of system patches.

 Not sure how this differs from above. The
distinction between these two is unclear to
us.

obento (our in-house
developed bento
search)

2 20

Open Journal
System (OJS)

1 10

Open Journal
Systems (OJS)

3 75 24 instances; customer support and
updates to software

Omeka — — One digital exhibit

Omeka 1 10 The active installation requires minimal
work. We are in the midst of a version
update, to replace the current production
installation -- that is a larger time
commitment, but I view it as a “project”
not “support”.

Omeka 1 2 Most effort spent sporadically when
software needs to be upgraded.

Omeka 1.5 2 Very difficult to give staff hours per
month; depends very much on the release
cycle for product and status of projects
being implemented.

Omeka 3 10

Open Journal
Systems (OJS)

1 8 Hours/Staff do not include continued
development time.

Open Journal
Systems (OJS)

2 44

52

OSS System Staff Staff hours
per month

Comments

RUanalytic 2 40 We are currently enhancing it via an NSF
grant so spending more time on it than
normal, particularly in response to
feedback from grant P.I.

same

Shibboleth N/A N/A This is incremental process, since we are
supporting the university’s single sign-on
initiative. Library use of Shibboleth is
being gradually phased in, with the goal of
Shibboleth becoming the standard.

Social Feed Manager 1 2

Solr, Nutch 3 20 Apache based product to create a search
index for our public web site.

Spiceworks 2 4 For this question, we are assuming that “in
production” means systems that we are
actually depending upon, as opposed to
systems that we have installed but not
started to actively use (“deployed”), as in
the previous question.

Umlaut 2 2 * 21 hours

Vireo 2 < 10

Vireo 4 10

VIVO 1 10

VIVO 3 180

WordPress,
Confluence, JIRA,
Jenkins

1 to 2 20

WordPress 1 25

WordPress 1 We have one full-time webmaster who
spends the majority of his time doing
custom design, maintenance, etc. on our
WordPress site, as well as many other
library staff who spend smaller

53

OSS System Staff Staff hours
per month

Comments

percentages of their time creating content
(blog posts, web pages, etc.)

WordPress 2 15-20 This is time spent maintaining the web
server and WordPress environments and
does not include time spent maintaining
web site content.

Table 2.14: Number of staff and staff hours required to maintain an OSS project.

Additional Comment

• We do not have figures for separating software only maintenance and support and

again is not useful unless comparing to something similar that offers the same

functions. Much of the software we develop does not have vendor alternatives and

our requirements go beyond just what the software delivers.

2.2.8 Cost of Adopting OSS

15. Were you able to track the costs of the most recently adopted and deployed OSS system?

N=71

Yes 10 14%

No 61 86%

If yes, please indicate the costs of adopting that OSS system, and briefly describe what

expenses were covered (e.g., staff time, equipment, training, travel, etc.) N=10

Cost Expenses Covered

$400 Server hosting agreement for VM with university central IT
department; cost here doesn’t include staff time.

$646,119.07 over 4 years (yearly
average cost $161,529.76)

Staff (IT, Archival, Tech Services), 3rd party developers,
Amazon cloud hosting & storage

$3,800 3800

Approximately $8,000 Staff time

54

Cost Expenses Covered

$50,000 Consulting, hosting, staff time, training, travel

$17,000 Vendor installation and support, virtual server, travel. Other
costs not tracked so not included.

$40,000 Staff development time - NSF grant budget

$45,500 Staff time

We cannot share cost related
information at this time.

We cannot share cost related information at this time.

Approximately $200,000 Staff time, equipment

Table 2.15: Reported costs of adopting an OSS system.

What was the source of the funds for adopting this OSS system? Check all that apply. N=70

Library’s operating budget 69 99%

Grant(s) 6 9%

Parent institution 4 6%

Consortial budget(s) 4 6%

Gift(s) 1 1%

Other funding source(s) 3 4%

Table 2.16: Reported sources of funding for OSS systems.

Please specify the other funding source(s). N=3

• 2014 expenses will be reduced by the Amazon cloud hosting, storage and back-up

costs ($130,034.16) because the university’s central IST department will provide

these services locally.

• Note: We are able to track project costs but our practice is not to track time spent

to implement.

• We have library staff working on this project, but we have not tracked their hours,

since it is part of their day-to-day duties.

55

2.2.9 Benefits and Challenges of Adopting OSS

16. Please briefly describe up to three benefits your library enjoys as a result of adopting OSS

systems. N=65

Benefit 1 Benefit 2 Benefit 3

A cost effective means to deploy
business critical software and
services.

Ability to customize for internal
uses.

Ability to serve users of the
digital library with software
standards and standard interfaces.

A single system hosts many
formats; still images, books,
newspapers, audio, video and
manages all associated files,
derivatives, preservation data.

The core system was further
developed to meet specific local
functional requirements of users
without waiting for vendor
releases.

The system is scalable to millions
of objects and can provide a
single enterprise solution for the
whole university.

Ability to contribute bug fixes
and enhancements desired at our
institution

Lower initial cost outlay Control over support and
maintenance costs

Ability to customize/extend the
software to meet local needs.

Easier to evaluate/test/prototype
different options.

Staff experience gained from
working with the source code.

Ability to have applications that
better meet the library’s needs

Accessibility and usability are
usually better for library patrons

In line with library values to
support open access

Ability to have solutions more
customized to our and our users’
needs

Ability to provide innovative
services beyond the reach of
commercial products

Reduced dependency on vendor
changes in products and priorities

Ability to modify or change
software based on specific needs

Community based support and
knowledge availability

Reduced/eliminated licensing
costs

Ability to rapidly respond to local
needs/issues

Ability to configure/customize
service to local needs

Local knowledge of
interoperability issues w/ other
systems in use by institution

Because we have a local software
development shop, we can adjust
OSS systems to meet our
requirements, and have
succeeded in deploying systems
that we believe are superior to
commercial systems.

The quality of OSS systems is
often very high.

OSS systems can evolve rapidly
in response to new ideas and
trends.

56

Benefit 1 Benefit 2 Benefit 3

Better engagement with the
communities doing the work

Ability to contribute to the
improvement of systems used by
libraries and archives

Better able to recruit and
maintain developers from a wider
circle of practitioners

Built for a specific need Cost of licensing

Can customize to fit our
requirements

Broader base of software support

Community of Support Better understanding of the
technology

Good exit strategy

Configurable Broad user base Ease of use

Control and customizability Speed to adopt Ability to participate in
community and shape direction

Control of functionality Participation in community over
roadmap

Flexibility of customization

Control over customization and
software direction

Less effort to support Functionality meets our needs

Control over discovery system Ability to expand scope of
discovery system

Unlinking back end from
discovery

Control over system features and
design.

Reduced time to fix issues or
troubleshoot.

Creation of highly collaborative
environments

Increased knowledge/skills Having a foundation on which
modifications can be made to
address local needs

Customization Connection to current systems Ownership of data

Customization Community participation

Developing and adopting OSS
affords us flexible, sustainable
solutions that meet complex
problems facing Libraries,
archives and museums.

Reduces risk by affording control
over the solutions that meet our
needs and control over when and
how to use them.

Staff are working on solutions
that have impact beyond our
institution, have a professional
network, higher visibility of the
work they do while the Library
can save in training, resourcing
and stop gap measures during
staff shortages.

Flexibility Reduced cost and purchasing
wait time

Community support

57

Benefit 1 Benefit 2 Benefit 3

Flexibility Low risk in the case of project
failure, due to nature of projects
chosen

Customizability

Flexibility in responding to
changing needs

Opportunities to look for added
value enhancements to services

Engagement with a wider
community of library developers

Flexibility to customize Licenses are cost effective Software easy to require

Freedom to use, study, copy,
modify, and redistribute solutions
that work for us.

Rapid access to really good ideas
by people who don’t work here
with us.

Implied membership in
development communities.

Functionality that meets our
needs

Ability to integrate software into
our infrastructure, and with other
library and university systems

Professional development
opportunities from participation
in the community

Functionality that was not present
in affordable commercial
software

Ability to customize to meet our
needs

Ability to integrate with local
software

Greater control of
implementation timeframes

Lower up-front costs More flexibility with regard to
customization

Greater Flexibility No similar vended tools Ability to develop new tools as
needed from the OSS system

Having access to a wide network
of support for a system.

Participating in a large
community of developers with
library-centric OSS expertise.

Having more control over
features and interfaces.

Improved quality Customizability Cross application integration

Integration with other library
systems

Opportunity to test software with
little investment; low cost
testing/adoption

Involvement at the national /
international level

Can move to another product
with no contractual lock-in

Opportunity to improve the
product

It gives us greater control over
the implementation.

There can be greater
interoperability with OSS
systems.

The cost is internal; it generally
includes staff time and training.

Less staff time to modify and
support OSS systems when
compared to creating homegrown
products.

We have better control over OSS
software and CSU’s data than we
do with vended products.

OSS communities tend to have
vibrant and engaged members,
which can be a good support
resource.

58

Benefit 1 Benefit 2 Benefit 3

Leverage adoption community
support

Attract applied research funding
for OSS projects

Align with Institute mission to
share knowledge

Lower acquisition cost Complete control over user
experience and user privacy

Flexibility

Lower cost Customizability More control

Lower licensing and maintenance
cost

Fast deployment Functionality sharing

Many choices available Allows for quick prototyping Ability to modify to environment

More options to choose from than
just those provided by
commercial vendors.

Can frequently implement
without need of identifying and
budgeting funds to purchase
product.

Can implement more quickly
because there is no need to go
through a complicated and time-
consuming licensing process.

No purchase cost Community support Flexibility to modify

No purchase price More control

Obtaining functionality that best
meets our needs

Control and customizability Community participation

Opportunity to contribute code
that meets not only our
specialized needs but those of
other institutions.

Opportunity for developer to join
a community of developers
(professional development).

Reflects our commitment to the
values/mission of the university
and library profession.

Opportunity to influence future
directions

Opportunity to increase staff
expertise through reviewing and
extending OSS code

Opportunity to leverage work at
other institutions and contributed
back to product

Out of the box, relatively quick to
install

Robust development community Customizable face

Prototyping; ability to try before
you buy the “free puppy”.

Ability to customize to meet our
needs

No licensing fees

Provide additional services to
user community

Less expensive Greater ability to customize

Quality of software Ability to customize Lower cost

Rapid prototyping/updating Community support Reduced cost

Save on licensing costs Ability to customize, integrate
with other library systems

Research and publishing
opportunities

59

Benefit 1 Benefit 2 Benefit 3

Shared expertise with other
libraries

Customizability Extensibility

Software that is developed to
meet the needs of the community
rather than being profit motivated

Software that can be customized Strong support community

Speed of adoption Services provided that would not
otherwise be available

Good community support

Staff development - increasing
skill and knowledge

Flexibility in terms of being able
to change without penalty

Rapid deployment - always faster
to use OSS than a vendor
solution for most anything

Sustainability and influence in
directing future development

More easily able to integrate
other library platforms

Financial

The ability to customize the
product

The ability to influence the
direction of development

The ability to respond quickly
and effectively to the needs of
our user community.

The ability to troubleshoot our
systems because of the deep
understanding we have of the
software.

OSS developer communities are
more responsive than most
vendors’ support systems (at least
in our experiences)

Tools and services that are
designed and customized to real
faculty and student workflow
needs

Tools and services that integrate
into a coherent and cohesive
cyberinfrastructure

Reusable code that can enable
building other things

Using WordPress instead of our
parent institution’s commercial
content management system
allows us to develop a web site
that is more attractive, more
customizable, and meets our
needs.

We have the ability to do deep
customization without waiting for
a vendor

We keep fixed costs down by
avoiding proprietary licensing
and support fees

We help improve the Library
OSS ecosystem by sharing our
code and reusing other code

Table 2.17: Reported benefits of adopting OSS.

17. Please briefly describe up to three challenges your library encountered as a result of adopting
an OSS system and the strategies employed to overcome these challenges. N=64

60

Challenge 1 Challenge 2 Challenge 3

Adapting the service for
multiple users has been a
challenge; we’ve addressed it
by assessing user needs and
conducting training.

Systems security is a concern.
We’ve addressed it through
the use of penetration testing.

Adopting open source
software isn’t free. There are
support costs. We schedule
regular maintenance of our
software.

Some vendors have more
resources and can be quicker
to market to meet a need or
respond to changing
environment. To deal with
this, we always keep our
options open to swapping
pieces between OSS and
vended solutions

Although we try to minimize
support costs through good
engineering, we nevertheless
have to support the
applications. We move most
application support to a
support group after
deployment, but some support
issues require developer
attention, taking time away
from development efforts on
other projects.

The time to deployment can
be long depending on the
level of development or
customization we undertake.

Bad software Bad documentation Too much staff time needed
to get application running

Bugs

Change in mindset on part of
technical staff to contribute to
open source communities

Changing code - careful
tracking of changes

Pressure to always provide
latest version - lots of testing

Compatibility Waiting for developers to
make/implement fixes

Staff support

61

Challenge 1 Challenge 2 Challenge 3

Complex environment >>>
use virtualized environment

Poor documentation >>> staff
enhance documentation
through various means

Rapid change >>> each
successive version of a
software is not necessarily
implemented; assessed to
determine the added value

Configuration and
customization may take time
and may not be possible to
customize to satisfaction

Idiosyncratic code which will
need to be documented and
systemized

Attitude that open source may
mean an inferior product

Continued maintenance Documentation

Coordinating activities across
developers not in the same
location

Managing expectations for
features and delivery dates

Finding qualified developers
and keeping them in the
library

Creation of new tools needs
deeper understanding of the
OSS system

Customizability and time to
maintain customizations

Resource time to support
users in using as the software
is somewhat unintuitive

Deciding whether to develop
custom extensions or install
existing. Resolved through
cost benefit analysis.

Difficulty in getting timely
accurate support. Requires
developing in-house deep
understanding to support.

Finding clearly written
documentation. Building a
documentation system to
accompany OSS systems
necessary.

Understanding limitations in
the feature set of an
application. Building
prototypes and involving
stakeholders in pre-
production testing.

Difficulty with
interoperability

More staff overhead for
maintenance and support

Unclear migration path

Documentation Adoption

Documentation - Develop
local documentation;
contribute testing, bug

Incomplete functionality -
Develop alternative
workflows, contribute
enhancements

Poorly developed or managed
code contribution process -
Minimize customization of
software

62

Challenge 1 Challenge 2 Challenge 3

reports, and documentation to
project

Ensuring enough cross
training, especially to ensure
continuity in case of staff
loss.

Handling non-core
customizations in upgrades of
core.

Occasional gaps in
documentation of OSS
systems.

Finding and selecting
products with the appropriate
functionality. Discovery
committees are usually tasked
with the assessment and
evaluation process.

Conveying support
knowledge from an
experienced staff member to
an inexperienced staff
member. In-house
modifications to the OSS
software can make this more
challenging. The strategy for
overcoming this challenge is
to make extensive comments
within the changed coding.

Gap in web design skills. Had
to use existing resources.

Difficult to organize
functional teams to create
requirements or user-stories.
Developers filled gaps.

Lack of a mature service
model to offer support

Having the skill sets to
support the product over the
long term

Having a voice in governance
within the open source
community

Software bugs with little or
no support to fix issues. To
overcome, we try to purchase
vendor/3rd party support

Highly skilled in-house staff
required in lieu of vendor
support

Deep customizations can
create a local fork that is hard
to upgrade for a new
upstream release

The power to customize is
addicting. Sometimes it’s
better to adjust the local
workflow to fit a 90% good
enough tool than to spend
time building that last 10%.

Immature technology; chose
only established and
mainstream product

Lack of support: chose only
product with available paid
support

Lack of control on product
and feature direction

Increased deployment time
for unfamiliar products;
admins must spend more time
learning software upfront

Users expect sys admins to be
source of expertise for
deployed products; have to
educate users about becoming
self-servant with available

Alignment of local project
timelines with those of OSS
products

63

Challenge 1 Challenge 2 Challenge 3

documentation and
knowledge bases

Initial hardware needs--
repurposed hardware from
other project

Reliance on locally developed
expertise--limit the amount of
customization

Institutional IT department
has had difficulty supporting
large data, bandwidth and
open source philosophy in
general.

Core system needed
considerable development
beyond basic functions.

Version updates not always
scheduled or based on an
upgrade path. Poor
implementation and
documentation.

It still creates IT debt that we
need to manage.

The communities are not big
enough to always add value

We have a greater need for
technical documentation
when we release a OSS
software.

Keeping up with software
updates

Training overhead for new
staff

Lack of documentation -
communication on listserves
and forums

Lack of documentation and
support can slow adoption

Sustainability problems can
lead to abandoned projects

Skepticism on part of non-
technical stakeholders

Lack of necessary elements -
have developed our own or
contributed to community
work to do same

Lack of documentation

Lack of staffing. We haven’t
really resolved this

Lack of training in specific
areas. Fortunately our
location between two large
metropolitan areas has made
this fairly easy to obtain.

Lack of policies and
procedures for OSS. We have
established a work team and
are starting to address this

Learning curve Staff time Server capacity

Learning curve; overcome by
online training resources

Recovering from patches to
customized software;
overcome by before/after
detailed checklists

Training and maintenance;
overcome by building in new
routine tasks for maintenance
and cutting back on other
services.

64

Challenge 1 Challenge 2 Challenge 3

Maintain thorough
documentation of local
implementation &
customization decisions

Failsafe upgrades: need to
make sure locally developed
plugins, etc. don’t crash w/
each new upgrade. Maintain
sandbox environment to
thoroughly test upgrades
before pushing to production

Version control of
development vs production
servers

Managing all the associated
software components of a
software package.

Getting the organization to
make the appropriate level of
investments. Free Software
does not mean no cost.

Have to monitor security
patches more closely

Metrics which can be used to
compare against commercial
software since much of what
we develop and use is done
by OSS communities - we are
not merely shopping,
adopting and tailoring - we
are building it together and
have no access to all the
information needed for valid
metrics. Strategy - gather
information on cost for
solutions that only serve a
portion of needs and be able
to articulate that against
ballpark expense of
equivalent OSS.

Getting software developers
from commercial sector to
understand that the return on
investment for day to day
work is not exact - when you
preserve cultural heritage or
the scholarly record, the
impact on research or
learning is very difficult to
measure- there is no clear
profit margin in terms of
money. Strategy - make
applicants aware of the
mission and strategy of the
organization, be transparent
about the institution and how
the organization fits within
the institution and the larger
educational community.

Managing expectations -
since we have OSS, people
believe they can have
everything but we aim to
standardize practices within
our national and international
communities so we have to
manage expectations on how
much customization and one
off design is sustainable and
practical. Strategy- engage
early, often and be
transparent into why and how
work is being accomplished.

More complexity in
implementation,
configuration

Accommodating local
customizations at time of
software upgrade

More up-front development
work: it’s all our
responsibility

“Forking” code: ending up
with code that is removed
from the open source core

Need to grow staff expertise.
Grew it.

65

Challenge 1 Challenge 2 Challenge 3

New development method
(agile) employed

Managing scope Prioritizing desired
enhancements

Newer versions no longer
supporting important features.
Overcome by changing to a
different system.

Minimal to no support.
Overcome by increasing our
knowledge and expertise, or
securing third-party support
where available.

Lack of availability of formal
training in system use.
Overcome by taking a deep
breath and figuring it out as
we go.

Open source is not free.
Infrastructure costs and
developer salary/benefits add
up over time.

Keeping up with upgrades. Future of the product is not
entirely up to us and may go
in an undesired direction.

Personnel to sustain systems.
Proposal to administration to
re-hire.

Priority conflicts with
multiple systems. Working
with leadership to implement
portfolio management.

No clarity on system
expectations and service
design when OSS solutions
are requested from the IT
department. Working with
leadership to implement
project management.

Poor documentation for the
software- our Systems
Department was helpful
getting the server ready, then
we depended on an active and
enthusiastic user group.

Minimal tech support- we
depended on fellow-users
because help from the
software was limited.

Problems must be resolved by
staff | network with
community of users

Documentation lacking |
network with community of
users; acquire reviews of OSS

Maintenance and upgrades |
Don’t be the first

Software ceasing to be
developed by the community

Software being developed for
technology stacks that we
don’t run

Inconsistent documentation

Some software can have a
steep learning curve

Staff and consultant time
spent on debugging and
customization

Cost of implementation and
support not much less than
commercial products

Product looks behind-the-
times

Staff Cost Long term stability and
robustness of software

Open source licenses can be
variable

66

Challenge 1 Challenge 2 Challenge 3

Staff time Lack of support Lack of clear documentation

Support for changes, bug
fixes is dependent upon user
community. Future
development can be taken in a
different direction than
desired, or stopped
completely.

Learning curve in the
organization for production
implementation & support
after development

Not all open source software
is documented well.

The main supporting group
provides poor support or
abandons the software

Dependence on technologies
that are not well known
within the library

Ability to both customize the
system and track future
releases

Time to deploy Compatibility among
modules

Lack of documentation

Total cost of ownership can
be higher

Replacement of knowledge
when staff involved in OSS
project leaves

More difficult to justify
investment in OSS over
vended solution in face of
budget cuts / constraints

Transition plans for stranded
(abandoned) OOS systems

In-house resources to support
and extend OSS system hard
to cultivate.

Upgrade cycles are resource-
intensive.

Trial and error approach is
sometime necessary/need to
have a tolerance for failure.

Lack of community support at
times.

Development takes time.

Understanding features and
capabilities of OSS now and
in the future so we do
requirements analysis and
trial implementation.

OSS can’t be included as part
of a formal RFP process. No
strategy to overcome.

Understanding the total cost
of ownership for OSS. No
strategy to overcome.

Unplanned costs associated
with maintaining and
customizing the code.

Variable level of support
from the community,
especially with older
versions. Strategy: upgrade
often!

Sometimes missing 1 or 2 key
features that are beyond the
library’s ability to develop in-
house. Strategy: contract out
to third parties.

Greater staff time required to
support. Strategy: ensure staff
know the system thoroughly.

67

Challenge 1 Challenge 2 Challenge 3

We locally customized one
system and are a bit stuck
with our fork now, but it’s a
tradeoff we manage just fine.

Very good modern software
tools often don’t fit our
legacy data; e.g., django
requires utf8 db connections
but voyager requires us7ascii.

WordPress is not supported
by our parent institution
(university), so if we lost our
in-library webmaster we
would have no support.

Table 2.18: Reported challenges of adopting OSS.

2.2.10 Library Contributions to OSS Projects

18. Has your library contributed to any library-related OSS projects (either your own or another

organization’s project) in any way (e.g., code or developer time, money, hosting)? N=72

Yes 56 78%

No 16 22%

If you answered Yes, you will continue to additional questions about your library’s contributions

to OSS projects.

If you answered No, you will skip to the section Additional Comments.

19. Please identify the open source software your library has contributed to. N=50

• ArchivesSpace. Hydra.

• Avalon, Variations Digital Music Library System (testing partner)

• Blacklight Reserves Direct OLE

• Blacklight, Solr, Hydra, Vireo, Umlaut

• Code for custom functions of our ILS

68

• Developing a crowd-sourced transcription tool

• Digital Preservation Network (DPN)

• Droid, Pronom, storage Resource Baker, iRODS

• Drupal, Citation Fox, IL Fox, Movable Type

• Drupal, Omeka, DSpace, APTrust, Digital Library Extension Service (DLXS),

Copyright Review Management System (CRMS), MPach, VuFind, Sakai, Solr,

Lucene, Kaltura

• DSpace

• DSpace

• DSpace

• DSpace and File Analyzer

• DSpace, Kuali, Fedora, Hydra, django

• DSpace, SilverStripe

• Dspace, Vireo, CORAL

• Evergreen, Islandora, Docker

• eXtensible Text Framework (XTF). The work is in progress as of the end of February,

2014.

• EZProxy Wondertool, Mondo License Grinder, Archivematica

• Fedora Commons

• Fedora Commons

• Fedora Commons, DuraSpace, ArchivesSpace

• Fedora Commons, Blacklight, Hydra, Avalon Media System, Hydramata,

ArchiveSpace, APTrust, DPN, SOLR-Marc, Tracksys.

69

• Fedora, Islandora

• Guide on the side

• Hydra

• Hydra

• Hydra, CORAL, MyLibrary

• Hydra, Blacklight, Umlaut, Xerxes, Drupal, ArchivesSpace, Archivists’ Toolkit,

Capistrano

• In-house link tracking software In-house map software Other contributions to VuFind

• IR+. eXtensible Catalog, DSpace

• Islandora, Archivematica, ICA - AtoM

• KentDSS https://github.com/ksulibraries/KentDSS

• Kuali Financial Systems, Shibboleth

• Kuali OLE, Sobek, ASERL Disposition Database, jrnl

• Kuali OLE, Avalon Media System, Fedora Commons, Hydra, Hydramata, Variations

Digital Music Library, METS Navigator, Sakai

• Kuali OLE, Global Open Knowledgebase (GOKb), LOCKSS, Solr, VIVO

• LOCKSS (Private LOCKSS network)

• Manakin (DSpace)

• Manitobia, DSpace, ICA-AtoM, Islandora, Fedora Commons, LOCKSS, Drupal,

Open Journal System (OJS)

• Omeka

• One example: Viewshare

• Hydra, Blacklight

70

• SRA toolkit, BLAST, C++ toolkit, variety of scientific tools

• SubjectsPlus, Remixing Archival Metatdata Project (RAMP); Variations Digital

Music Library System, Avalon Media System, Kuali OLE

• There’s a long list at https://github.com/gwu-libraries/

• UCLA MWF, Dspace

• VIVO, Fedora Commons

• Voyager

20. Please indicate how your library is contributing to each of the following types of OSS

projects. Check all that apply. N=56

Type of OSS Project Code (i.e.,
developer

time)

Money Hosting Other
contribution

N/A N

Institutional repository 32 18 5 10 14 52

Digital preservation 22 19 9 11 19 49

Digital asset management 20 8 4 5 26 48

Discovery layer 11 3 2 5 32 47

Publishing 5 5 5 3 34 47

ILS 6 5 — 7 37 46

Streaming media 7 4 2 3 37 46

Study room scheduler 5 — — 1 39 45

Link resolver 3 1 1 1 41 45

Authentication/identity
management

8 — 1 2 35 45

Inter-library loan 2 1 3 3 39 44

Data analysis 5 1 2 2 39 44

Blogging 2 2 1 — 40 44

71

Type of OSS Project Code (i.e.,
developer

time)

Money Hosting Other
contribution

N/A N

Electronic resource
management

6 — 2 4 33 43

Course reserve 4 — — 2 39 43

Floor maps 4 — 1 1 38 43

Data warehouse 6 — 2 1 37 43

ELMS 3 1 — 1 39 43

Visualization 4 1 1 2 39 43

Web analytics 3 — 1 1 38 43

Other type of project 15 5 2 6 16 30

Number of Responses 47 36 16 27 45 56

Table 2.19: Ways libraries reported they are contributing to OSS.

If you selected “Other contribution” above, please briefly describe the contribution the

library makes to each corresponding project. N=25

• Adding modules, patches as well as providing whole libraries (sra-toolkit, C++ toolkit,

etc.).

• Beta test institution

• Blacklight - regularly host and organize committer calls. Hosted Blacklight developer

conference. Vireo - participate in the governance of the user community. Duraspace -

Silver sponsors. Public Knowledge Project (PKP) - Silver sponsors.

• Both Kuali and Shibboleth are systems that are used university-wide. The Libraries is

responsible for integrating these systems into our existing technology environment.

• Consultation, organization

72

• Contributing Omeka_a11y to the Omeka Project (see question #8 for more detail on

Omeka_a11y), and ShadowPage, a page-turning plugin for content presentation in

Omeka.

• Contributing to and testing enhancements.

• Creating software that intersects with OSS to enhance functionality.

• Developing a crowd-sourced transcription tool.

• Discovery layer, ILL, and “Other type of project”: the library has contributed leadership,

project management, governance, HR, financial management, and IT infrastructure

support via the eXtensible Catalog Project, which developed four toolkits that fit within

these various categories.

• Feedback and bug reports for release candidates/new releases, contributing to support

forms and listserves.

• For both Citation Fox and IL Fox, library staff have provided training and given

presentations at regional conferences.

• Functional requirements, technical requirements, advisory role

• Functional requirements, testing

• ILS: project management, providing use cases. Electronic resource management: project

management. Institutional repository: community membership.

• Kuali OLE [ILS, ERM, Course Reserves] - participate to provide use cases; functional

spec teams; testing of releases. Variations Digital Music Library System, Avalon Media

System - provide use cases; feedback on development priorities; release testing.

• Legal advice; business/sustainability

• Participation in architecture/design sessions; participation in pilot deployments.

73

• Release coordinator, educational efforts

• Strategic direction, project management, research & development, grant

management

• Streaming media: bug reporting & testing (Kaltura). Digital preservation: we manage &

offer fee-based support this project.

• Testing, Feature Requests/Requirements Development

• We have a heavily customized VuFind instance. We share our changes on a publicly

accessible source control server, but we’re not pushing our changes up to mainstream

VuFind (our customizations are too local-specific).

• We have contributed to community engagement, hosted community meetings, facilitated

planning teleconferences, and advanced the designs, strategic plan, and architecture of

these projects.

• We have participated in testing the Fedora Commons repository software.

If you selected “Other type of project” above, please briefly describe the project and the

corresponding contribution the library makes. N=15

• Archival management system, contributed to support forums/listserves

• Bibapp: Campus Research Gateway and Expert Finder

• Citation Fox is open source software that organizes citations into four broad

categories. IL Fox is open source software that provides users with tools related to

information literacy.

• Developing a crowd-sourced transcription tool

• Digital Humanities, Digital Scholarship tools

74

• ICS - AtoM - Archival records management system. Code development, testing,

feature requests/requirements.

• Omeka is an online exhibit building tool that Temple University Libraries is using to

support Digital Scholarship in the arts, humanities, and social sciences.

• Scientific data analysis, text mining

• Social media viewing/sharing and harvesting for archives: coding, project and

community management

• SubjectsPlus [research guides, FAQs, staff directory, database A-Z] - primary code

development; documentation; distribution; support. RAMP [used to generate

authority records for creators of archival collections (using EAC-CPF) and then take

that structured data and transform it into wiki markup to facilitate the creation or

enhancement of Wikipedia pages for those creators; also facilitates examination of

names/organizations for quality control, data visualization] -

development/distribution/support.

• The eXtensible Catalog’s Metadata Services Toolkit is a platform to transform library

metadata into a variety of formats. The library contributed in all of the above areas to

the development of this software.

• VIVO - researcher profiles

• We also contribute to a project called VecNet which isn’t library related.

• We are eliminating frames and developing the capability for responsive web interface

design. We anticipate this to be included in the next version release of XTF.

• Website content management system (Silverstripe) module

75

21. Please indicate how many OSS projects the library has contributed to and for how many

projects your library was the primary code contributor. N=50

 Minimum Maximum Mean Median Std Dev

Projects 1 20 4.64 3.00 3.95

Primary Code Contributor 0 20 1.86 1.00 3.11

Table 2.20: OSS projects libraries have contributed to and initiated.

22. Please indicate how many library staff and about what percent of their time are dedicated to

contributing to the development of OSS projects. N=46

Number of Library Staff Percentage of Time

1 0.05

1 3

1 5

1 5

1 5

1 10

1 10

1 25

1 30

1 50

1 50

1 60

2 3

2 5

2 5

2 10

76

Number of Library Staff Percentage of Time

2 10

2 20

2 25

2 25

2 25

2 50

2 50

2 80

3 10

3 20

3 50

3 90

4 5

4 25

4 90

5 10

5 50

5 50

5 55

6 4

6 25

7 50

8 10

8 15

8 80

10 20

77

Number of Library Staff Percentage of Time

10 50

10 60

12 varies

14 50

Table 2.21: The number of library staff and about what percent of their time are dedicated to contributing to the
development of OSS projects.

 Minimum Maximum Mean Median Std Dev

Staff 1 14 3.89 2.00 3.34

% of Time 0.05 90 30.67 25.00 25.61

Table 2.22: Distribution of the number of library staff and about what percent of their time are dedicated to
contributing to the development of OSS projects.

Library as Original Developer of OSS Projects

23. Is your library the original developer for any of the OSS project(s) in which you participate?

N=56

Yes 32 57%

No 24 43%

If yes, please identify the software. N=31

• Archivists’ Toolkit, ArchivesSpace

• Avalon Media System

• Avalon Media System, Variations Digital Music Library System, METS Navigator

• Blacklight for displaying complex digital objects. Oral History Management

Software.

• BLAST, C++ toolkit, SRA toolkit, PubReader

• Citation Fox, IL Fox

• Co-primary developer of Fedora Commons 4

78

• Curator’s Workbench

• Custom Voyager Reports Server

• Developing a crowd-sourced transcription tool

• Discovery: a SOLR-based discovery tool that generalizes an index, search, browse

and deliver framework that can work with content such as MARC records or EAD

finding aids, but also including non-library context such as open access publication of

scholar research, and a working catalog of global language observations by an

international community of scholars.

• Digital Library Extension Service (DLXS)

• DSpace

• ETD-db, ETD-db 2.0

• EZProxy Wondertool, Mondo License Grinder

• Guide on the Side

• https://github.com/ksulibraries/KentDSS

• Hydra, (parts of) CORAL, MyLibrary, VecNet

• In coordination UVa with Cornell – Fedora Commons; in coordination UVa with

Stanford and Univ of Hull- Hydra; UVa - Blacklight; UVa - Solrmarc; UVa -

Tracksys; in coordination UVa with Roy Rosenzweig Center for History and New

Media - Neatline.

• IR+. eXtensible Catalog

• RAMP, SubjectsPlus

• See https://github.com/gwu-libraries

79

• Simple Archive Format Packager: a tool to support batch ingest of content into the

institutional repository (DSpace) (in Java)

• Sobek, ASERL Disposition Database, jrnl

• Sufia (a Hydra-based repository application)

• Suma (mobile space assessment toolkit), lentil (Instagram viewing/sharing, and

harvesting for archives), Djatoka Ruby gem (Image server wrapper)

• Umlaut was originally developed by Ross Singer. We took it over very early on and

have been the principal developers since. Our library is the primary developer for the

Data Conservancy.

• Viewshare is the LC instance of the Recollection OSS software -- so not totally

created ab novo at LC but considered an LC product now.

• Vireo, Collaborative Book Reader (CoBRe)

• VuFind, Papyrus, Islandora

• We created link-tracking software and map software that is OSS but currently only in

small release (code shared upon request). We plan to clean up these projects (and

several others) to move them to a public GitHub repo.

Please indicate how important each of the following reasons for deciding to open source the

project is to your library. Please make one selection per row. N=43

Reasons 1 Not
Important

2 3 4 5 Very
Important

N

Shared effort in development and quality
assurance of the product 4 5 7 13 14 43

A desire to contribute to an open source
community 1 3 10 15 14 43

80

Reasons 1 Not
Important

2 3 4 5 Very
Important

N

A belief that open sourcing would lead to
better software 1 6 5 17 13 42

A need for expertise not available in your
institution 11 9 11 6 4 41

At the request of another institution 14 7 12 6 2 41

Other reason(s) 2 — 1 3 6 12

Number of Responses 22 23 29 31 31 43

Table 2.23: The importance of a common set of reasons used to decide to open source a project.

If you indicated above that the library has other reason(s) for deciding to open source the

project, please briefly describe the reason(s). N=10

• Ability for others to adapt tools to meet their needs. Provide support for platforms and

services that are not required by our institution.

• Assistance with ongoing sustainability of the product.

• Demonstrate expertise of library staff to project in a non-library context; develop an

alternative business to deepen the libraries’ engagement with researchers and scholars

• How good the system is.

• Need for tools not otherwise available.

• Other libraries have shared generously before us. We have the expertise and feel

some duty to share alike.

• Requirements of granting agencies that software developed with grant funds be

shared under an open source license.

• Risk reduction with resourcing, sustainability and exit strategy.

• There was nothing available at the time that ETD-db was developed. Its recent rewrite

was entirely for the external use community.

81

• Training aid, set an example

2.2.11 Cost of Contributing to OSS Projects

24. Were you able to track the costs of your most recent contribution to an OSS project? N=53

Yes 10 19%

No 43 81%

If yes, please identify the most recent OSS project, indicate the costs of contributing to that

project, and briefly describe what expenses were covered (e.g., staff time, equipment,

training, travel, etc.) N=10

OSS Project Costs Expenses Covered

Avalon Media System Not available Travel to meetings and
conferences

Crowd-sourced transcription
tool

$7500 Consultant, in-house staff time

Custom Voyager Reports
Server

Staff time and equipment Staff time and equipment

DSpace REST API Approx. $10,000 Salary/benefits (2 months
developer time)

Fedora Commons 4 Pending Pending

Fedora Commons We cannot share cost
information at this time.

We cannot share cost
information at this time.

Open Journal System (OJS) 5% of developer time Staff time, travel

Open Journal Systems (OJS) $2750 Conduct design work, client
meetings, programming, testing,
troubleshooting, and
documentation

Papyrus N/A Staff time

Vireo 1 FTE for 1 year Wages, travel, training

Table 2.24: Reported costs of contributions made by ARL libraries to OSS projects.

What was the source of the funds for contributing to this OSS project? Check all that apply.

N=45

82

Funding Source N Percent

Library’s operating budget 43 96%

Grant(s) 10 22%

Parent institution 3 7%

Consortial budget(s) 2 4%

Gift(s) 1 2%

Other funding source(s) 2 4%

Table 2.25: Reported funding sources for OSS contributions.

Please specify the other funding source(s). N=2

• Funded by another university division (Technology Services)

• NOTE: Able to track, chose not to track. Would come from library’s operating

budget.

2.2.12 Benefits and Challenges of Contributing to OSS Projects

25. Please briefly describe up to three benefits your library enjoys as a result of contributing to

OSS projects. N=44

Benefit 1 Benefit 2 Benefit 3

Ability to enhance product and
influence its direction.

Sharing with community.

Ability to influence project
outcome.

Ability to lend expertise to peer
or smaller institutions.

Mutual benefit from reusing
working solutions.

Avoids data lock-in. While it
may not be any less
expensive/time consuming to
migrate data out of an open
source system than a
proprietary system, at least
with open source, there will

User communities and
developer communications
tend to be better formed,
enabling better DIY support,
and not being totally reliant on
a single vendor.

Open source values (access to
and right to share information)
map closely to library values.

83

Benefit 1 Benefit 2 Benefit 3

always be the technical
possibility.

Becoming an active part of
worthwhile communities.

Helping make products we and
others use better.

Increase our skills and
expertise and inspire
productive creativity.

Better service offerings Alignment with institute
mission

Collaboration with non-library
departments and peer
institutions

Broadens their perspective as
developers, product owners
and project managers

Meets the strategic needs of the
organization to engage with the
world and our communities

Helps us build better solutions
with like-minded people and
institutions.

Collaborating with other
institutions to address common
areas of need.

Involvement of library staff in
intellectually engaging and
useful work.

Ending up with a more
sustainable product than if we
had done it just on our own.

Collaboration of common tasks Faster return on requested
features

Giving back

Community is able to benefit
from our developments.

Forces us to write cleaner code
that is generalizable and fits
with our strategies for
replaceable parts.

Contributing code helps to
meet our specialized needs.

We participate in a community
of experts.

Contributing to the project is in
accordance with the Libraries’
and university’s mission.

Contributing to the library
community.

Developing local expertise. Recognition

Contributing, even in a small
way, to non-commercial
inexpensive and highly
functional alternatives to
expensive commercial software
which drain our budgets.

Good press for the university,
and for the Libraries.

Providing software to fill needs
of other institutions.

Control of product design Functionality meets our needs

Credibility in OSS Developer
community

Ability to share problems Modeling good behavior

Customization for our exact
needs

84

Benefit 1 Benefit 2 Benefit 3

Enhanced quality of software
through collaboration

Leveraging effort from
multiple institutions

Ability to use work from other
organizations

Ensures product remains stable
and useful

Fulfill our obligation as a user
of the OSS

Improved understanding of the
OSS

Freedom to use, study, copy,
modify, redistribute our
solutions.

Participation in a broader
community

Visibility in that community as
a contributor

Functionality that best meets
our needs is built into the
software

Community participation Identification and reporting of
bugs and new features

Gain respect as industry leader Community enrichment Education

Good Library citizens /
community contribution

Having features released that
we require

Exposure to new ideas and
professional learning and
sharing from a broader
community

Increased visibility Added enhancements

Institutional needs more likely
to be accommodated

Institutional recognition Creating a better product than
what was currently available

Opportunities for collaboration
both within the U.S. and
abroad

Latest software releases. Ability to help steer direction
of software development.

Ability to tailor software to
local needs.

Our monetary contribution
helps to sustain the open source
federation.

Prestige Providing direction Collegial atmosphere

Pride Forces rigor

Providing flexible solutions to
solve common library issues or
service requirements

Professional development of
team members & providing
exciting/challenging work
environment

Recognition Control of budget

Recognition and community
building

Opportunity to influence
product development

85

Benefit 1 Benefit 2 Benefit 3

Recognition as a source of
expertise

Input into direction of software
development

Reduced support costs - others
can adapt tools rather than
requesting us to make changes.

Ability for others to enhance
and expand on previous efforts.

Safety in numbers; Use helps
to ensure viability of the
solution

Revenue from offering support Bug reports and occasional
code contributions

Shared development

Staff development Reputation Collaboration building

Sustainable solutions - together
we go farther.

Sum is greater than the parts -
quality solutions that meet our
needs.

Investment in our staff - more
meaningful work, deepening
skills, end of isolation.

Tool is available to meet our
needs

Customizability Ability to add features as
needed

Visibility and participation in
the community

Investments benefit other
libraries and can lead to
partnerships, other
collaboration

We are part of the OSS
community.

We helped the Avalon and
Variations projects through
testing.

We use software to solve our
problems that others have
written

Better code is written when
you have an external audience
of coders reviewing your
contribution.

There’s lots of it that’s relevant
to an academic library.

We want to be able to influence
the direction of the effort to
align it with our needs.

By participating in a larger
community, we can contribute
the good ideas of our staff and
in turn learn from the good
ideas of others.

Table 2.26: Reported benefits of contributing to OSS projects.

86

26. Please briefly describe up to three challenges your library encountered as a result of

contributing to OSS projects and the strategies employed to overcome these challenges.

N=37

Challenge 1 Challenge 2 Challenge 3

Adhering to community
standards that differ from in-
house

Committing the resources to
develop contributions

Understanding the code base
and requirements according to
the community need.

Agreement of product direction Coordinate Development

Assessing value to OSS project Confidence in coding
standards

Compliance with OSS review
process

Contribution of developer time
can compete with other local
project priorities.

Remote/asynchronous
collaboration: might have to
wait a long time for responses.

No clear, quantifiable ROI.

Coordinating effort across
institutions challenging/varying
opinions on functionality

Finding financial sources Maintaining and supporting
software

Coordination/management of
developers

Getting good functional
requirements

Developer/programmer will
graduate

Staff required to learn
programming of system

Need to document every phase

Developing a product that is
generic enough to meet needs
of multiple institutions

Supporting and growing the
community around the project

Sustainability: securing
ongoing funding to support the
software

Difficult to make substantial
contribution without more
dedicated time to devote to it.

Extra Time Convincing Stakeholders of
Value

Coming to terms with
applicable licensing models

Finding staff time to contribute Disconnect between OSS
priorities, which may be based
on the funder’s priorities and
our institutional needs

Ongoing financial commitment
as OSS moves to a community
source model

Finding time and resources to
devote to development process

Feature creep

87

Challenge 1 Challenge 2 Challenge 3

Finding time to contribute Time to support and answer
questions

Removing localization

Getting library staff familiar
with OSS/collaborative ways
of working

Lack of control of timelines of
collaborative OSS projects -
need to readjust expectations

Not enough staff time to both
participate actively in OSS
projects and continue local
responsibilities

Increased time spent in detailed
documentation.

Internal buy-in to benefit of
time spent on OSS projects --
communication about project at
all levels of institution ;
reaching out to potential
stakeholders early in process

General Consul was concerned
about our distribution of code,
especially with development
contributed by faculty who
don’t have code development
built into their job description.
The faculty had to sign a
release before we could
contribute the code.

It can take more work to
contribute well to a public
project, but that can tend to
produce better results.

We need to review legal
guidelines around assigning
copyright to external
organizations.

It is more expensive to write
code that is generalizable than
custom code for your
institution. The development
process is slower and requires a
higher mind.

Larger than expected
contribution time required of
local resources

Legal and licensing issues.
Strategy: Involvement of in-
house legal expertise (our
Director of Copyright and
Digital Scholarship) and
coordination with the
university Technology Transfer
office

Need to provide support or
decide how much support to
provide. Strategy: Clearly
communicate expectations
regarding level of support
provided.

Need to support a wider range
of environments than would be
necessary for an internal-only
deployment. Strategy:
Reducing over-dependence on
current architecture can
actually reduce costs over the
full life of a project.

Maintenance of contributed
code to fill the needs of the
outside community.

Monitoring feedback through
multiple channels (pull

88

Challenge 1 Challenge 2 Challenge 3

requests, forum posts, IRC,
etc.)

Managing expectations -
sometimes you have to
compromise. Strategy - engage
with people and be transparent.

Determining which projects to
engage and to what degree.
Strategy - stay connected at a
management level, know your
strategic objectives, know your
staff and what culture is a
good fit for your resources.

Resources. Strategy - be able to
show value toward strategic
objectives for the resource
investment.

Meeting expectations of
adopters when we are the
primary contributors

More meetings take time away
from local development.

Not having solid business
models to refer to showing the
real costs of developing,
supporting, using OSS

Not being able to devote
enough staff effort to OSS
projects. When they are on a
project less than 50% there
return on investment is not as
great

Getting institutional support
beyond the library for certain
solutions. Many administrators
seem to prefer vendor provided
out of the box solutions

Opportunity cost -- developers
not able to contribute to local
initiatives

Partner reliability

Product was too narrowly-
focused for our exact needs to
be worthy of sharing out to the
community

Some open source applications
don’t have formal paid support
options available, so support
risks are transferred from a
vendor to the institution ---
careful evaluation of the risk,
and level, of risk before
making the decision to do an
OSS project

Sometimes a lack of
understanding that open source
doesn’t equal free. The cost to
the institution may be the same
or even greater than a
proprietary solution, just the
money is spent on different
aspects of the project --
discussions with library
stakeholders to make sure
everyone clearly understands
the full cost of OSS projects

Lack of institutional
understanding to the open
source model and licenses can
hinder contributions of code
back to the community

89

Challenge 1 Challenge 2 Challenge 3

Staff time. We just juggle this
part with regular projects.

Support requests related to
OSS projects takes some time

Time and effort for creating it Maintenance

Time and resource
commitment

Time spent to keep track of
project

Time to develop--fit in around
other responsibilities

Time to support/answer
questions--make part of
professional development
responsibilities

Time; overcome only but
choosing not to move forward
on other projects at that time.

Uses valuable staff time.
Overcome by making sure we
only contribute time we can
afford and/or that will provide
a desirable return on
investment.

Table 2.27: Reported challenges of contributing to OSS projects.

2.2.13 Tools for OSS Projects

27. Does your library use a public repository or forge (e.g., GitHub, Sourceforge, Google Code,

Bitbucket) to share your open source code? N=52

Yes 41 79%

No 11 21%

If yes, please identify the repository or forge. N=41

Repository N

GitHub 38

Google Code 3

90

SourceForge 3

Bitbucket 2

Drupal GIT 1

RedMine 1

Subversion 1

Table 2.28: Code repository or forge used by responding libraries.

Comments

• Currently not, but we’re moving to GitHub.

• We’re exploring doing this in a more standardized, regular way, but are exploring

security concerns.

28. What tools does your library use to facilitate collaboration on the OSS projects your library

contributes to? Check all that apply. N=45

Collaboration Tool N Percent

Shared version control 37 82%

An issue tracking software package 36 80%

A mailing list 32 71%

A wiki 25 56%

A forum 12 27%

Other tool(s) 10 22%

Table 2.29: Collaboration tools used by respondents.

Please briefly describe the other tool(s) your library uses to facilitate collaboration on OSS

projects. N=10

• Conference calls

• Google Docs

91

• irc

• IRC for chat collaboration

• IRC, Google Hangouts, Adobe Connect, Skype

• PivotalTracker

• Project management tools (e.g., Trello)

• Skype

• Trello

• Virtual tools for the team, project management software

2.2.14 Licensing Model for Distribution of OSS

29. What licensing models does your organization recommend for distribution of software?

Check all that apply. N=42

OSS License N Percent

GNU Public License (GPL) version 3 16 38.1%

Apache 15 35.7%

Creative commons 15 35.7%

MIT 12 28.6%

GNU Public License (GPL) version 2 11 26.2%

BSD 3 Clause 3 7.1%

BSD 2 Clause 2 4.8%

Other licensing model 12 28.6%

Table 2.30: OSS licenses used by respondents.

Please briefly describe the other licensing model. N=12

• Educational Community License (ECL) - ECL 2

92

• Educational Community License (ECL) - ECL 2

• Educational Community License (ECL)

• I wouldn’t say that we’ve come across this very often or that we have a strong

opinion of which licenses to recommend. If asked, I’d recommend that we evaluate

these options and use the license that best fits the software. Much of the code we

write falls under the license used by the platform or libraries that we leverage.

Further, we haven’t really been open sourcing any internally developed applications.

• Internally developed Rights Statement based very closely on CC.

• OSS produced at LC is generally considered federal work product and public domain.

• Public Domain

• Public Domain (Creative Commons - CC 0)

• There is no organizational policy on licensing models.

• This is just what we’ve used; there is no standard license that we would necessarily

recommend.

• We don’t recommend it per se, rather we use an MIT-style license on our own

software, as approved by the university.

• We have no formal recommendation.

2.2.15 OSS Project Assessment

30. Please indicate how important each of the following indicators that your contribution to an

OSS project has been successful is to your library. Please make one selection per row. N=51

Reasons 1 Not
Important

2 3 4 5 Very
Important

N

The functionality better suits our
institution’s needs

— — 1 8 41 50

93

Reasons 1 Not
Important

2 3 4 5 Very
Important

N

Amount of community
contribution/involvement

1 8 14 17 10 50

Number of project adopters 2 8 15 18 7 50

Number of project releases 4 11 23 9 3 50

Ease of support — 2 21 15 11 49

Staff time savings 5 7 17 14 6 49

Monetary savings 4 13 10 17 5 49

Other indicator(s) 2 — 1 1 1 5

Number of Responses 11 22 45 40 46 51

Table 2.31: Reported indicators that a contribution to an OSS project has been successful.

If you indicated above that the library relies on other indicator(s) that your contribution to an

OSS project has been successful, please briefly describe the indicator(s). N=3

• Community interest in project [altmetrics, conference presentations, articles]

• We are concerned to ensure that software systems are section 508 compliant, this

indicator of success is not necessarily subsumed under “functionality.”

• Sustainability in terms of direction and responsiveness to meet evolving needs.

Additional Comments

• Again, we don’t agree that OSS results in staff time savings or ease of support, so did

not respond to those two statements.

• Did not really understand the question.

• LC did not reply to question no. 18 because as a federal agency we are very cautious

about appearing to favor one kind of product, e.g., OSS, over another, e.g., vended

software.

94

• Who has adopted, and not just the number of adopters.

2.2.16 Library Doesn’t Use OSS

31. Please briefly describe why your library is not using any open source software. N=2

• We don’t have a sufficient IT support to develop, customize, and maintain OSS

software.

• We have not done any major software selection processes in over 5 years, and the

OSS products have not historically had the functions we required. That may be

changing looking forward.

2.2.17 Additional Comments

32. Please enter any additional information that may assist the survey authors’ understanding of

your library’s use of open source software. N=19

• I forgot to add that we developed a collection directory application, currently used for

two projects, WAAND (Women Artists Archives National Directory) and NAP

(Newark Archives Project).

• Last August we hired a programmer with Drupal skills to assist in the library’s web

site redesign. We are trying to get colleagues to use Gimp because the licensing fees

for Adobe Photoshop are prohibitive. Needless to say, Gimp is not being well

received yet. The campus and university system procurement office is trying to

negotiate a campus and system-wide license.

• LC did not respond to Question 10 because we are very cautious about replying to

questions that involve any comparison among products or types of products, since

they could become objects for federal contracting.

95

• OSS allows for greater customizations that fulfill the needs of so many UCI Library

patrons and employees. We are lucky enough to have enough staff to get started on

these projects, but it was very important for us to agree on some core OSS elements

to make it easier to maintain in the long run. A good example of this our use of PHP

and Apache. Focusing on this as a core allows for a smaller number of programmers

to turn out and support a large number of applications. I will note that we have a

smaller use for MySQL as there is a significant cost reduction in licensing Microsoft

SQL for the UC system. Therefore, we are not in the norm in that our Linux, PHP,

and Apache works more with Microsoft SQL than MySQL.

• OSS is a cost effective way to provide solutions that can be customized to local

needs. The various components can be used to build products and solutions large and

small. A staff of skilled software developers is required to use the tools, and products.

It also requires system support staff to learn and support new tools, especially

database systems.

• OSS is used to support operations. Currently, not a major focus. Generally not using

because of development and maintenance costs (staff time).

• The availability of staff skilled in OSS technology remains the one hurdle to

implementing more OSS as a strategy for the library. There is great interest in

utilizing OSS more widely as a part of our technology strategy. But balancing

availability of skillsets vs. demand will be challenging.

• The CSU Libraries and Academic Computing and Networking Services (ACNS) both

report to D. Patrick Burns, Vice President for Information Technology/Dean of

Libraries.

96

• The library has the will to participate in OSS if we had the staff time and resources to

commit to OSS projects.

• The use of OSS is very important to our mission, resource and risk management.

• This survey didn’t ask about future projections of OSS use. We currently have

DSpace but are devoting devoted several full time staff to developing Fedora and

Hydra. IT staff are divided between the ITS department and the Center for Digital

Research and Scholarship.

• We are a typical large research university. The use of OSS for interface to the digital

library (REST APIs) allow for our research faculty to create content with whatever

tools they are comfortable with. We encourage use of our standards, but if they use

the API, they can do what they please with our digital assets.

• We are very supportive of OSS but ultimately use the products that best meet our

needs. Sometimes this is OSS but sometimes it is a commercial vendor product as

there are advantages and disadvantages to both.

• We believe in it deeply. It’s what we do. We’d be up a creek without it.

• We have no preference for OSS over vendor software. We use what works best and

what we can afford.

• We learned (the hard way) from our first experience with putting OSS developed

elsewhere into production (about 10 years ago) that having vendor support and an

active community around an OSS application are very important. With the OSS that

we have developed locally (eXtensible Catalog and IR+), we have been unable to

provide either of these things to potential users of our software, and have thus found

ourselves in this same position with our own software of being unable to sustain the

97

software on our own. While we still strongly support OSS and continue to implement

additional OSS applications, we now make sure that vendor support and an active

user community are already in place before we proceed with deploying the software.

• We take a broad view of OSS and answered based on that approach, not limiting the

scope to library-specific OSS. Our answers would be different were this more clearly

defined, perhaps. Also, it suffices to say that our philosophy is simple: open source

first, vendor only when there’s no viable OS option. For example, we run our own

data center, and for that infrastructure from operating system to virtualization

platform, it is all OS; there’s no VMware, Citrix, etc.

• We’re transitioning from using mostly closed software to preferring mostly open

software, so we’re not yet where we want to be. We’re working out more formal

policies with campus technology transfer to allow us to release GPL software at our

own discretion. We choose to use more OSS than vendor software because we have a

tight budget but a great IT staff. With much of our software support burden being

internal, it doesn’t leave a lot of time to take the extra steps to polish, release, and

support OSS software. But it’s still a major goal for us.

• While we use OSS, our unwritten policy is to use hosted, out of the box solutions

wherever possible. OSS is used to fill in the gaps.

98

Chapter 3

Barriers to Initiation of Open Source Software Projects in Libraries2

3.1 Abstract

Libraries share a number of core values with the Open Source Software (OSS) movement,

suggesting there should be a natural tendency toward library participation in OSS projects.

However, Dale Askey’s 2008 Code4Lib column entitled We Love Open Source Software. No,

You Can’t Have Our Code,3 claims that while libraries are strong proponents of OSS, they are

unlikely to actually contribute to OSS projects. He identifies, but does not empirically

substantiate, six barriers that he believes contribute to this apparent inconsistency. In this study

we empirically investigate not only Askey’s central claim but also the six barriers he proposes. In

contrast to Askey’s assertion, we find that initiation of and contribution to OSS projects are, in

fact, common practices in libraries. However, we also find that these practices are far from

ubiquitous; as Askey suggests, many libraries do have opportunities to initiate OSS projects, but

choose not to do so. Further, we find support for only four of Askey’s six OSS barriers. Thus,

our results confirm many, but not all, of Askey’s assertions.

3.2 Motivation

The mission statement of the American Library Association includes the charge to “ensure

access to information for all.”4 This charge comes without restriction, cost or qualification.

Stated another way, libraries make information freely available to all, regardless of how that

information is to be used. Similarly, open source software (OSS) “licenses must permit non-

exclusive commercial exploitation of the licensed work, must make available the work’s source

2 This chapter is published in the code4lib journal, 2015 [46].
3 See http://journal.code4lib.org/articles/527
4 See http://www.ala.org/aboutala/missionpriorities

99

code, and must permit the creation of derivative works from the work itself” [47]. The core

values of libraries and the OSS movement are similar, suggesting that libraries should tend to

favor the OSS model. In particular, they might feel a responsibility to share the code they have

developed with other libraries in a spirit of openness and access for all.

That libraries are predisposed to OSS adoption and contribution is not a new idea. Pat

Eyler, an open source developer for the Koha ILS project, said “That more librarians aren’t

actively using and evangelizing free software is an indictment against us for not letting them in

on our secret” [41]. Nicole Engard characterized the issue this way: “It has been suggested that

libraries are almost ethically required to use, develop and support open source software” [43].

Richard Stallman, the pioneering free software evangelist, stated that “… universities

shouldn’t be developing proprietary software. It is better if they develop none at all, because [by

doing so] they are betraying their mission to contribute to human knowledge” [42].

Despite the suggestion that libraries are ethically obligated to use and create OSS, it has

been observed that libraries seem reluctant to share their code. In 2008 Dale Askey authored a

column in this journal entitled We Love Open Source Software. No, You Can’t Have Our Code.

He states that “Librarians are among the strongest proponents of open source software.

Paradoxically, libraries are also among the least likely to actively contribute their code to open

source projects” [44]. Askey identified a list of six issues he believes contribute to this

dichotomy. In his own words:

After pondering this issue for some time, I identified the following issues as the driving

forces that undermine the sharing of open source software in libraries:

• perfectionism – unless the code is perfect, we don’t want anyone to see it

• dependency – if we share this with you, you will never leave us alone

100

• quirkiness – we’d gladly share, but we can’t since we’re so weird

• redundancy – we think your project is neat, but we can do better

• competitiveness – we want to be the acknowledged leader

• misunderstanding – a fundamental inability to understand how an open source

community works

Many of these issues operate in combination, but any one of them is sufficient to thwart

the development and adoption of open source software in libraries.

In this paper, we report on our empirical investigation into Askey’s central claim. We

examine the six barriers he proposes in light of our empirical results.

3.3 Methods

The Association of Research Libraries (ARL) “is a nonprofit membership organization of 125

research libraries in North America. The Association operates as a forum for the exchange of

ideas and as an agent for collective action.” Each year ARL distributes and publishes a small

number of surveys, called SPEC Kits, that are proposed and designed by librarians and other

interested parties.

In February 2014, ARL distributed a 32-question survey authored by Curtis Thacker,

Charles Knutson, and Mark Dehmlow, to 127 member libraries. Seventy-seven libraries (61%)

responded to the survey, the results of which were subsequently published as SPEC Kit 340:

Open Source Software [45] (hereafter referred to as “the SPEC survey”).

The purpose of the SPEC survey was to study ARL member libraries’ adoption and/or

development of OSS for the primary functions carried out in libraries. We aimed to understand

organizational factors that affect decisions to adopt OSS. With regard to development of OSS,

we studied: 1) research libraries’ policies and practices on open sourcing their code; 2) the

101

frequency of research library contributions to open source projects; 3) the reluctance of research

libraries to make their code openly available; and 4) the most common benefits and challenges

encountered when research libraries open source their code.

Questions were reviewed, evaluated and refined by empirical software engineering

researchers from the SEQuOIA5 Lab in the Brigham Young University Computer Science

Department. This exercise enabled us to deepen our understanding of issues related to open

source software development by applying the growing body of work in the area of empirical

software engineering. The creation of the survey instrument followed best practices for empirical

software engineering surveys [48].

Questions were crafted to empirically test several of the issues laid out in Askey’s

column. In particular, the following question provided respondents with an opportunity to

identify reasons for not openly releasing software they had developed:

Has your library built in-house any library-specific systems that could be, but have
not been, released as open source?

Yes
No

If yes, what are the primary reason for not releasing it as open source? Check all
the apply.

• Concerns about staff time commitment required to support the
community

• Concerns that the code quality is not ready for public adoption
• Dependence on other internal systems
• It didn’t occur to us

5 SEQuOIA = “Software Engineering Quality: Observation, Insight, Analysis”

102

• Seeking to license or sell the system
• A competitive desire to have the best system
• Other reasons

Figure 3.1: A sample question for the SPEC Survey.

The table below illustrates the relationship between the options presented in the question

and the issues presented by Askey. The first column identifies each issue as presented in the

survey, while the second column presents the issues as stated by Askey. Two of the issues

offered by Askey were not tested because they fell outside the scope of the SPEC survey. Two

other issues were added in an attempt to validate additional reasons for which an institution

might choose not to open source their code. Of these two issues, the second one (“seeking to

license or sell the system”) was inspired by a response6 made to Askey’s column.

Barriers to Initiation of Open Source Software
Projects in Libraries

Barriers to Initiation of Open Source Software
Projects in Libraries

Concerns that the code quality is not ready for
public adoption

perfectionism – unless the code is perfect, we don’t
want anyone to see it

Concerns about staff time commitment required
to support the community

dependency – if we share this with you, you will
never leave us alone

Dependence on other internal systems

quirkiness – we’d gladly share, but we can’t since
we’re so weird

This issue was not addressed in the survey since
it deals more with the adoption of OSS rather
than contribution to or initiation of an OSS
project.

redundancy – we think your project is neat, but we
can do better

A competitive desire to have the best system competitiveness – we want to be the acknowledged
leader

This issue is a catch-all and was addressed by misunderstanding – a fundamental inability to

6 See http://journal.code4lib.org/articles/527#comment-1299

103

the other options presented in this question, as
well through other questions presented the SPEC
survey.

understand how an open source community works

Seeking to license or sell the system N/A

It didn’t occur to us quirkiness – we’d gladly share, but we can’t since
we’re so weird

Table 3.1: A mapping between Askey's claims and the issue as stated in the SPEC Survey.

ARL reviewed and administered the survey. Participants were given four weeks to

respond and ARL sent two email reminders as the deadline approached. A spreadsheet of the

complete response data was returned to the authors for analysis and preparation for publication.

Survey results were reviewed and statistically analyzed. Free response questions were

encoded and qualitatively analyzed for themes and best practices. The executive summary of the

SPEC survey includes an overview of statistical results that spans the entire survey. A specific

set of results relevant to this paper are presented and discussed in the sections below.

3.4 OSS Adoption

Askey’s initial premise is that libraries love OSS. He cites Dan Chudnov [49] who asserts that

infrastructure software and programming languages are widely adopted by libraries. Operating

systems such as Linux, web servers such as Apache, and programming languages such a Ruby

and Java are examples of OSS systems commonly adopted by libraries. These applications

compete with commercial applications for market share and often hold the largest slice of the

pie. Askey also pointed out that OSS adoption is ubiquitous for other common types of software

applications such as web browsers (such as Mozilla) and mail clients (such as Thunderbird).

Market share statistics for Linux7, Apache8 and Mozilla9 substantiate these claims.

7 See operating system statistics at http://www.netmarketshare.com/
8 See http://news.netcraft.com/archives/2015/01/15/january-2015-web-server-survey.html
9 See http://gs.statcounter.com/#all-browser-ww-monthly-201502-201502-bar

104

The SPEC survey found that 74 respondents (97%) had deployed open source software in

their libraries, suggesting that, at least for ARL Libraries, adoption of OSS is essentially

ubiquitous. This data strongly supports Askey’s claim that libraries love OSS. We also wanted to

understand the specific types of OSS that are loved by libraries.

Askey asserts that libraries have “strongly embraced...object repositories such as DSpace

and Fedora and content management systems such as Drupal.” SPEC survey respondents were

invited to provide information about the type of software being used for various purposes.

Respondents most frequently reported choosing OSS solutions for institutional repositories (52

total), blogging (51 total) and digital preservation (50 total). See the table below for more details

on how respondents have adopted OSS within their institutions.

Purpose of System Respondents using
a system for this
purpose

Respondents
using an OSS
solution

Percent respondents
using an OSS
solution

Institutional repository 69 52 75.4%

Blogging 65 51 78.5%

Digital preservation 57 50 87.7%

Publishing 57 42 73.7%

Authentication/identity management 67 35 52.2%

Digital asset management 64 34 53.1%

Web analytics 71 22 31.0%

Discovery layer 73 19 26.0%

Study room scheduler 59 18 30.5%

ELMS 23 17 73.9%

Streaming media 62 17 27.4%

Data warehouse 26 14 53.8%

105

Visualization 27 10 37.0%

Electronic resource management 71 9 12.7%

Link resolver 70 9 12.9%

Floor maps 43 8 18.6%

Data analysis 32 7 21.9%

ILS 74 6 8.1%

Course reserve 68 4 5.9%

Inter-library loan 73 3 4.1%

Table 3.2: Adoption of various types of library OSS.

The SPEC survey confirmed Askey’s sense that DSpace and Fedora were “strongly embraced”

by libraries. Sixty-six respondents reported the OSS projects they had adopted. We found that the

most commonly adopted open source systems were DSpace (31 respondents, 47%10), Fedora (21

respondents, 32%), Open Journal System (19 respondents, 29%), Blacklight (14 respondents,

21%), Hydra (12 respondents, 18%), Vufind (8 respondents, 12%), ArchivesSpace (7

respondents, 11%) and Archivist Toolkit (6 respondents, 9%).

The SPEC survey revealed compelling evidence for the widespread adoption of library

specific software, even beyond Askey’s claims.

Respondents were further asked to describe three benefits and three challenges associated

with adopting OSS. The most commonly reported benefit was the ability to customize the

software (50 responses). Other common themes included low cost or time to implement (27

responses) and association with an active community (27 responses). The most common

challenge was the need for highly skilled staff that could provide support for the OSS system (40

responses). Other commonly cited challenges included poor documentation (19 responses), a

10 Percentages are based on the 66 respondents who reported the OSS projects they had adopted.

106

need for additional training or expertise (16 responses), and substandard development practices

(12 responses).

3.5 OSS Contribution

Askey shares his perception that libraries are reluctant to initiate and/or contribute to OSS

projects, despite their nearly universal enthusiasm for adoption. Askey’s main claim is: “where

we tend to fall flat is in the area of creating, maintaining, and sharing library-specific

applications. There are certainly myriad exceptions to this statement, but I would suggest that

however large and noteworthy, they remain the exceptions, and not the rule” [44]. While

Askey’s statement mainly addresses initiation of OSS projects, maintaining library-specific

applications could be interpreted as contribution to OSS projects.

Askey’s column focused primarily on contributions to OSS projects in the form of source

code. Beyond software, OSS projects benefit from many types of contributions including,

money, hosting, testing, etc. The table below shows the types of contributions that libraries have

made to OSS projects.11

Type of OSS Project Code (i.e.,
developer time)

Money Hosting Other contribution
(e.g., testing,
requirements)

Institutional repository 32 (57%) 18 (32%) 5 (9%) 10 (18%)

Digital preservation 22 (39%) 19 (34%) 9 (16%) 11 (20%)

Digital asset management 20 (36%) 8 (14%) 4 (7%) 5 (9%)

Discovery layer 11 (20%) 3 (5%) 2 (4%) 5 (9%)

Publishing 5 (9%) 5 (9%) 5 (9%) 3 (5%)

ILS 6 (11%) 5 (9%) — 7 (13%)

Streaming media 7 (13%) 4 (7%) 2 (4%) 3 (5%)

11 All percentages are based on the 56 respondents who have contributed to one or more OSS project. All 56 of
these respondents reported on the types of OSS contributions they made.

107

Study room scheduler 5 (9%) — — 1 (2%)

Link resolver 3 (5%) 1 (2%) 1 (2%) 1 (2%)

Authentication/ identity
management

8 (14%) — 1 (2%) 2 (4%)

Inter-library loan 2 (4%) 1 (2%) 3 (5%) 3 (5%)

Data analysis 5 (9%) 1 (2%) 2 (4%) 2 (4%)

Blogging 2 (4%) 2 (4%) 1 (2%) —

Electronic resource
management

6 (11%) — 2 (4%) 4 (7%)

Course reserve 4 (7%) — — 2 (4%)

Floor maps 4 (7%) — 1 (2%) 1 (2%)

Data warehouse 6 (11%) — 2 (4%) 1 (2%)

ELMS 3 (5%) 1 (2%) — 1 (2%)

Visualization 4 (7%) 1 (2%) 1 (2%) 2 (4%)

Web analytics 3 (5%) — 1 (2%) 1 (2%)

Other type of project 15 (27%) 5 (9%) 2 (4%) 6 (11%)

Table 3.3: Reported Contributions to OSS projects

The SPEC survey found that 56 respondents (78%) had contributed to one or more open source

projects; of these, 50 respondents indicated which projects they had contributed to. The most

common projects included DSpace (12 respondents, 24%12), Fedora (11 respondents, 22%),

Hydra (9 respondents, 18%), Kuali (6 respondents, 12%), Blacklight (5 respondents, 10%) and

ArchivesSpace (4 respondents, 8%). The SPEC survey found that respondents had contributed to

an average of 2.6 OSS projects and a median of 1 OSS project. These findings support Askey’s

claim that contribution to OSS by libraries is common, yet far from universal.

3.6 OSS Initiation

12 Percentages are based on the 50 respondents who indicated which projects they had contributed to.

108

Askey addressed initiation of OSS when he claimed that “where we tend to fall flat is in the area

of creating, maintaining, and sharing library-specific applications. There are certainly myriad

exceptions to this statement, but I would suggest that however large and noteworthy, they remain

the exceptions, and not the rule” [44].

Thirty-two (42%) respondents identified themselves as the original developer of an open

source project. Respondents initiated an average of 1.4 OSS projects and a median of zero OSS

projects. Thus we see that while a number of institutions have some experience initiating OSS

projects, initiation is far from the norm. Our finding supports Askey’s claim.

Respondents were asked if any of their in-house software could have been, but had not

yet been, released under an open source license. Fifty-three respondents (69%) answered in the

affirmative. Additionally, the SPEC survey revealed libraries that always choose to share their

sharable projects, and, conversely, there are libraries that could share but have thus far not

chosen to share their code. The table below breaks down these responses in greater detail.

Position on OSS Project Initiation Number of
Respondents

Percent of
respondents

Nothing to share 18 23%

Could but didn’t 52 68%

Sometimes share 24 31%

Never share 28 36%

Always share 7 10%

Total respondents 77 100%

Table 3.4: The initiation practices of responding libraries.

Respondents cited all of Askey’s barriers as reasons for not open sourcing a sharable system. We

address each of these issues in the sections below.

3.6.1 Perfectionism

109

Thirty-nine (74%) of those who chose not to open source their code cited “concerns that the code

quality is not ready for public adoption.” The perception that the code quality is not acceptable,

and therefore cannot be shared, is very common.

This particular question in the SPEC survey was only able to test perceptions of libraries.

As pointed out by Askey, intrinsic to the open source philosophy is the idea that the community

will improve upon an initial system. Linus' Law, as described by Raymond [50], describes OSS

communities this way: "given enough eyeballs, all bugs are shallow", or more formally: "Given a

large enough beta-tester and co-developer base, almost every problem will be characterized

quickly and the fix will be obvious to someone." It follows from Linus’ Law that not sharing

code due to quality issues is more a matter of pride than practicality.

3.6.2 Dependency

“Nothing is more certain in the world than this: if you share software with someone, you will be

asked to support it, even if you make it perfectly clear that you have no ability and no intention

to do so” [44]. Forty-one respondents (77%) cited “staff time commitment required to support

the community” as a reason for not open sourcing a product that could have otherwise been

shared. The SPEC survey offers strong evidence that the perception of dependency is a common

barrier among ARL members.

3.6.3 Quirkiness

Quirkiness is defined by Askey as “the sense that one organization’s needs are so locally-tailored

that [it] would make no sense to release the software to the broader library community.” Later in

the same section he cites an example of quirkiness as dependence on “idiosyncratic local

metadata scheme.” The SPEC survey addresses quirkiness in three ways. First, 30 respondents

(57%) cited “dependence on internal systems” as a reason for not open sourcing a system that

110

could have otherwise been open sourced. Second, 7 respondents (13%) stated “it didn’t occur to

us” as a reason for not open sourcing their software. Third, the issue of quirkiness was directly

addressed by respondents who entered free form responses describing reasons they chose not to

open source a system. Responses included: “Highly customized to address local requirements”;

“Narrow niche applications where a community is unlikely to develop”; and “Often these

systems reflect local practices. We’ve not viewed them as useful beyond our local environment.”

These data are evidence of quirkiness among ARL members and support Askey’s claims.

3.6.4 Redundancy

Redundancy, as described by Askey, “is when there is perfectly acceptable software available

and yet is rejected because it’s not quite what one would have done had they created the

software.” We found that this issue relates more to adoption than initiation of OSS. As a

consequence, we did not study this issue in detail.

3.6.5 Competitiveness

Askey explains that libraries tend to implement their own systems (e.g., institutional repository,

digital libraries, and web services) because they “want to be the acknowledged leader.” While

one respondent of the SPEC survey indicated “a competitive desire to have the best system” as a

reason for not open sourcing their software, no other respondent cited such motivation. As a

result, while we find some support for Askey’s claim, competitiveness does not appear to be

widespread.

3.6.6 Misunderstanding

Askey describes misunderstanding as “a fundamental inability to understand how an open source

community works.” We determined that “misunderstanding” primarily suggested that

respondents did not understand the benefits of involvement with an OSS community. This issue

111

represents a catch-all of sorts that encompasses the other issues we’ve discussed. The breadth of

“misunderstanding” prevented us from testing this issue in the same manner as the other issues

presented above. Other questions in the survey do, however, offer insights into the benefits

libraries currently enjoy as a result of adoption of and contribution to library-specific OSS

projects. We highlight some of these insights below.

Respondents were asked to describe three benefits and three challenges associated with

contribution to OSS. The benefit most commonly cited was engagement in the open source

community (38 responses). Other common themes included control of product features and

direction (25 responses), and recognition/reputation (14 responses). The most common challenge

was allocating sufficient staff time to make meaningful contributions (24 responses). Other

commonly cited challenges included writing generalized software for use by a larger community

(7 responses) and securing the financial resources needed to support the open source project and

community (7 responses).

Control of software emerged as a theme common to both adoption and contribution.

Those adopting OSS products felt that access to source code gave them greater control, allowing

them to change the software as needed, rather than being subject to the whims of a proprietary

solution. Those libraries contributing to OSS projects felt that they gained greater opportunity to

influence product direction, especially with respect to software features. In both cases, library

information technology organizations perceived a sufficient benefit to their overall productivity

to justify the expense of their involvement (as adopters, contributors, or both) in OSS systems.

When asked about reasons for open sourcing their project, SPEC survey respondents

listed the following as being “important” or “very important”: a belief that open sourcing would

lead to better software (30 respondents), a desire to contribute to an open source community (29

112

respondents), and shared effort in development and quality assurance of the project (27

respondents). The experiences shared by respondents who initiated an open source system

support the idea that one way to inject quality into a system is to open source it. In contrast to

Askey’s claim, there were many respondents who demonstrated an understanding of this benefit

of open sourcing their code. Additionally, of the 54 respondents who have a system they chose

not to release as open source, 24 (44%) have initiated at least one open source project. Further

research is required to understand the motivation of these ARLs decision to share one system but

not another.

Many respondents expressed a desire on the part of their developers to share with and

participate in one or more OSS communities. Larger LIT organizations committed more

resources to OSS projects than smaller LIT organizations, but we found no significant

correlations suggesting a disproportionate level of commitment to OSS projects as a function of

LIT staff size. The nearly universal adoption of OSS systems and the high level of contribution

to OSS projects may suggest that adoption of and contribution to OSS projects has entered the

mainstream for LIT organizations. Simply stated, LIT organizations that develop software have

also generally contributed to one or more OSS projects.

3.7 Additional Insights

In the final section of his column Askey makes several suggestions on what should be done to

overcome the issues he discusses. We address a few of these suggestions in this section.

In 2008 Askey claimed that there was no standard way of distributing library specific

code, suggesting that a single place should be agreed upon as the established method for sharing

code. GitHub has emerged as the preferred method for many open source projects (including

libraries) to share their code. GitHub accommodates large OSS projects such as Fedora, DSpace,

113

Hydra and others as well as supporting what Askey calls OSS lite13. Forty-one SPEC survey

respondents indicated that they use a public forge to manage and share their open source

projects. Thirty-eight of these use GitHub for this purpose. While making use of an open source

forge, such as GitHub, to share code is effective, it is unclear whether this tool has impacted the

propensity of libraries to initiate an OSS project.

Askey states that “libraries that wish to use open source software need to understand the

staffing commitment they are making by going that route. Open source software requires

programmers, interface designers, and system administrators.” In our review of organizations

that contribute to open source projects, software development staff ranged from one or two to as

many as fourteen. While organizations that contribute to large-scale, formal open source

projects were clearly investing heavily in programming staff, it was also clear that a few

organizations that didn't have resources for large technology staffs could still contribute to

projects with as few as one or two programmers. The median number of staff reported as

working on OSS projects was two, with an average of nearly four.

The results of the SPEC survey suggest that we view organizational behaviors surrounding

the adoption of open source software separate from contribution to OSS projects. For example,

while OSS adoption is viewed by respondents as a means of saving time and resources, OSS

contribution is not similarly viewed. Rather, contribution to OSS projects is viewed as being

advantageous for different reasons, namely engagement in an OSS community. For developers,

the sense of social involvement in a community represented by an OSS project can be a positive

source of professional satisfaction, ultimately leading to greater productivity and a return on

investment for the LIT organization.

13 Askey defines OSS Lite as “tiny programs written in various scripting languages that drive all the doodads and
widgets on our Websites, or extend (or, in some cases, repair) the functionality of our commercial systems.”

114

3.8 Threats to Validity

Care must be taken when generalizing survey findings to a larger population. The SPEC survey

was distributed to all 127 ARL member libraries. ARL libraries are often considered a model for

best practices, but are not a representative set of research libraries or libraries in general. Further,

the 77 respondents of the survey self-selected, introducing bias toward libraries that are

interested or invested in OSS. Also, survey fatigue is a large concern. The SPEC survey was

relatively long (32 questions), with some questions involving multiple parts and some requiring

respondents to look up specific information in order to answer. Several instances were found

where respondents didn’t answer questions completely, which can be seen in the tables above.

3.9 Future Work

The SPEC survey revealed that there are libraries that always choose to share their sharable

projects, and, conversely, there are libraries that could share their code but have never chosen to.

Future work could include looking for correlations between a library’s software engineering,

talent management and innovation policies and practices, and its propensity to initiate OSS

projects.

In the years since the publication of Askey’s column two significant types of organizations

have arisen within the library landscape, exerting considerable influence on open source software

projects. Governing foundations, such as DuraSpace, Kuali, the Islandora Foundation, the

Software Conservancy Foundation and ArchivesSpace, manage requirements and coordinate

resources of member libraries. Supporting vendors, such as Bywaters and @mire, offer support

and hosting services to OSS adopters. While outside the scope of the research we performed, the

impact of such organizations is highly relevant to the issues posed by Askey and warrants further

investigation.

115

3.10 Conclusion

We found support for many of the issues presented in Askey’s column. The majority of SPEC

survey respondents have adopted and/or contributed to at least one OSS project. Nearly half of

respondents chose to initiate one or more OSS project. While most institutions have some

experience with OSS, most have only made an initial foray into the space. As Askey suggests,

many libraries do have opportunities to initiate OSS projects, but choose not to do so. We found

strong evidence supporting the existence of “perfectionism,” “quirkiness,” “dependency” and

“misunderstanding,” however, “competitiveness” was extremely rare. Thus, we find support for

many, but not all of Askey’s assertions.

The emergence of GitHub as a preferred means of sharing code was highlighted as a

development since Askey’s 2008 column. We would suggest that library information technology

organizations participating in OSS projects typically understand that they must dedicate technical

personnel and other resources in order to do so. Finally, we found that OSS comes with a number

of financial trade-offs that need to be carefully examined when considering adoption,

contribution and initiation of OSS projects.

3.11 Acknowledgements

One of the authors (Curtis Thacker) spoke with Mr. Askey about his column and the work we

were doing on this paper at the CNI Spring 2015 Membership Meeting in Seattle. We

appreciated his encouragement and insights in addition to his thought-provoking column which

contributed inspiration for both the SPEC survey and this paper.

116

Chapter 4

Toward Understanding the Propensity of Libraries to Initiate Open Source Software
Projects

4.1 Abstract

Libraries share a number of core values with the Open Source Software (OSS) movement,

suggesting that there should be a natural tendency toward library participation in OSS projects.

However, our study suggests that while libraries frequently use and contribute to OSS, they often

choose not to initiate OSS projects leveraging code they have created for internal purposes. The

goal of this paper is to empirically investigate possible correlations between a library’s policies

and practices in software engineering, talent management and innovation, and its propensity to

initiate open source software projects.

4.2 Introduction

Libraries rely heavily on software to carry out their basic business functions. Much of this

software is Commercial off the Shelf (COTS), however adoption of Open Source Software

(OSS) has become a viable option. There are many library specific open source software

projects. The adoption of, contribution to and initiation of OSS projects in the Library

Information Technology (LIT) context is only beginning to be studied.

The mission statement of the American Library Association includes the charge to

“ensure access to information for all.” This charge comes without cost or qualification. Stated

another way, libraries make information freely available to all regardless of how that information

will be used. Similarly, open source software (OSS) “licenses must permit non-exclusive

commercial exploitation of the licensed work, must make available the work’s source code, and

must permit the creation of derivative works from the work itself” [47]. Information sharing and

117

open standards are among the values shared by the OSS movement and Libraries [51]. This

confluence of core values suggests that libraries should tend to favor the OSS model. In

particular, they may feel a responsibility to share the code they have developed with other

libraries in a spirit of openness and access for all.

The predisposition of libraries toward OSS adoption and contribution is not a new idea.

Pat Eyler, a developer for the widely-adopted open source integrated library system Koha, said:

“That more librarians aren’t actively using and evangelizing free software is an indictment

against us for not letting them in on our secret” [41]. Richard Stallman, the pioneering free

software evangelist, added that “… universities shouldn’t be developing proprietary software. It

is better if they develop none at all, because [by doing so] they are betraying their mission to

contribute to human knowledge” [42]. Finally, Nicole Engard characterized the issue this way:

“It has been suggested that libraries are almost ethically required to use, develop and support

open source software” [43].

Despite the suggestion that libraries are ethically required to use and create OSS, it has been

observed that libraries seem reluctant to share their code. In 2008, Dale Askey remarked that:

“Librarians are among the strongest proponents of open source software. Paradoxically, libraries

are also among the least likely to actively contribute their code to open source projects” [44].

Further, Askey identified a list of six interrelated issues that he believes contribute to this

dichotomy. In his own words:

• perfectionism – unless the code is perfect, we don’t want anyone to see it

• dependency – if we share this with you, you will never leave us alone

• quirkiness – we’d gladly share, but we can’t since we’re so weird

• redundancy – we think your project is neat, but we can do better

118

• competitiveness – we want to be the acknowledged leader

• misunderstanding – a fundamental inability to understand how an open source

community works

Thacker et al. authored a targeted survey, consisting of 32 questions aimed at studying ARL

member libraries’ adoption and/or development of OSS for the primary functions carried out in

libraries. They wanted to understand organizational factors that affect decisions to adopt OSS,

and test Askey’s assertions. With regard to development of OSS, they studied: 1) research

libraries’ policies and practices on open sourcing their code; 2) the frequency of research library

contributions to open source projects; 3) the reluctance of research libraries to make their code

openly available; and 4) the most common benefits and challenges encountered when research

libraries open source their code. In February 2014, the Association of Research Libraries (ARL)

distributed the survey to 127 member libraries. Seventy-seven libraries (61%) responded, and the

results were subsequently published as SPEC Kit 340 [8]. Thacker et al. were able to empirically

test Askey’s assertions, and offered support for Askey’s primary claim, as well as many of the

contributing factors he identified [45, 46].

Among Thacker et al.’s findings was that 69% of respondents had developed library specific

systems that could, but had not been released as open source. In this paper, we revisit this result,

and study policies and practices in the areas of software engineering, talent management, and

innovation and R&D looking for correlation that offer insights into a library’s motivations

regarding initiation of OSS projects. We add to SPEC Kit 340 data collected via two other

related SPEC Kits, and use statistical and data mining methods to bring out relevant insights and

discuss our findings in light of current software engineering and OSS research, both as they

apply in general and in the specific context of libraries.

119

4.3 Background

DeLone and McLean suggest six interrelated measures of information system success: system

quality, information quality, use, user satisfaction, individual impact, and organizational impact

[52-54]. Crowston et al. revisit these measures and suggest a set of measures that apply to the

OSS process including: movement from alpha to beta to stable, achievement of identified goals,

developer satisfaction, number of developers, developer level of activity, time between releases,

time to close bugs or implement features, individual job opportunities and salary, individual

reputation, and knowledge creation [55].

Much has been written about the motivation of contributors to general OSS projects [7,

10-15, 56-60]. Intrinsic motivations such as learning and altruism tend to be most effective.

Career advancement and reputation are also common motivators. Choi, et al. reported that

altruism and learning are the top two motivations for Library OSS developers [61]. Other

motivations include fun, personal needs, extrinsic rewards and future returns.

West and O’Mahony describe two ways that OSS projects are initiated [32]. Community-

driven projects are founded and managed within the context of a community. Spinout projects

occur when “a sponsor of an internally developed software project releases its code to the public

under an open source software license, inviting the external community to join the project.” West

and O’Mahony find both of these models successful ways to initiate an OSS project, each with

unique strengths and challenges. In particular, while spinout projects can provide a solid

technical foundation for large-scale innovation, the architectural and design goals of the system

may frequently remain as undocumented tacit knowledge fully understood only by the original

project initiators. As a result, the external community often struggles to develop a sense of

120

ownership and does not benefit from the intrinsic motivation associated with creating a system

from the ground up.

Research done by English and Schwiek on OSS divides projects into two phases:

initiation and growth [62]. The initiation phase includes tasks that are more commonly associated

with closed source or proprietary software development such as requirements gathering, design,

initial implementation, and testing. Development is done by a small core group working

independently from the community [63]. A first full release of the product represents the

transition from the initiation to the growth phase. It is argued that most projects fail to make this

transition [62, 64].

The library-specific OSS related literature tends to focus on adoption and contribution to

OSS projects. Adopters and contributors are drawn to specific communities associated with OSS

projects. In particular, they are distributed in terms of resources (effort, cost) [65, 66] and control

that a community offers [67-69]. Libraries benefit from access to open source code in several

noteworthy ways including freeing them from vendor lock in, and giving them the ability to

customize source code and influence the direction projects take. Adopters wrestle with concerns

about how to support installations of OSS, needs for technical expertise, and the hidden costs of

having staff spend time supporting, tailoring, and enhancing software [70, 71]. Chudnov states

that “the library community is starting to see this pattern play out around library Free/Libre and

Open Source Software (FLOSS) applications, with vendors offering support for and integrated

services around FLOSS … tools” [49]. Finally, adopters are concerned with the quality of OSS

solutions as compared with vended solutions [72-75]. Moore et al. nicely sum up this tension.

They say “open source software has often been described as ‘free like a puppy,’ meaning that

even though the applications themselves are free, implementing and maintaining these products

121

requires a long-term investment of time and money, proportional to the complexity of the system

[67].”

4.4 Methods

In order to investigate the policies and practices of libraries with regards to software engineering,

talent management, and innovation, ARL provided us with access to the raw data from their

SPEC Kit 344: Talent Management [76] and SPEC Kit 339: Innovation and R&D [77]. These

surveys were distributed to the same libraries as the OSS survey of SPEC Kit 340. The raw data

allows us to connect responses from all three surveys to a single respondent. The following Venn

diagram shows the number of overlapping respondents.

Figure 4.1: Venn diagram showing the overlap of SPEC Kits 339, 340 and 344.

Responses were removed where respondents did not answer all of the questions in one or

more of the surveys. Several responses for several of the questions in each of the surveys where

discretized before analysis. For example, libraries were asked to indicate the importance of

possible criteria they might use when selecting software for purchase or adoption. Responses

were presented on a 5 point Likert scale with 1 representing “Not Important” and 5 representing

122

“Very Important”. Criteria included “staff time to support”, “functionality that best meets our

needs”, “control and customizability”, and “staff time to implement”. For our analysis we

derived Boolean values for each of these questions with the resulting value being true when the

original value on the Likert scale is “Very Important”, and false otherwise.

For each dataset we used logistic regression and step-wise analysis to identify statistically

factors correlated with libraries that have code they could release as open source but choose not

to.

4.5 Results and Discussion

4.5.1 Software Engineering Policies and Practices

We first looked for correlation in a library’s software engineering policies and practices.

Libraries indicating it is very important that deploying purchased or adopted software require

minimal staff time were found to be 12.0 times more likely to have software they could release

as open source, but chose not to (p-value = 0.0076, R2 = 0.16).

The OSS SPEC Kit 340 revealed a similar data point. Seventy-seven percent of

respondents from this same survey cited concerns around the time commitment to support an

OSS community as a factor impacting the decision to open source their software. Libraries

working to minimize time spent deploying software would also be concerned about sharing code

requiring a time consuming support commitment.

Further, both adoption of and contribution to OSS projects require specialized technical

skills [71, 78]. Individuals possessing these skills tend to have a wide variety of responsibilities

and be involved with many projects. As such, their time comes at a premium. This may help

explain why many institutions who have programmers on staff, have adopted OSS, and even

have created their own custom software that could be released as open source choose not to do so

123

in order to avoid the time commitment needed to grow and support an OSS community around

the project.

4.5.2 Talent Management Policies and Practices

Analysis of the talent management policies and practices revealed a linear regression model with

two significant factors (p-value = 0.0011, R2 = 0.28).

We found that libraries that do not represent employee performance assessment in their

strategic plan are 31.8 times more likely to have software they could open source but choose not

to (p-value = 0.0030). We speculate that this effect may be explained by looking at the effect

these factors have on the culture of an organization. For ease of discussion we state the inverse of

our claim: there is a correlation between a library that either cannot share or always shares and a

library that represents employee performance assessment in their strategic plan.

As additional background, in the talent management survey of SPEC Kit 344, libraries

were asked what talent management activities they currently participate in and which activities

are represented in the library’s strategic plan. Among the activities listed are professional

development opportunities, leadership development opportunities, functional training and

employee performance assessment. All activities share a common theme of employee

development. In the context of this question employee performance assessment as prescribed in a

strategic plan would be used for developmental rather than administrative purposes, meaning that

in addition to tracking performance the developmental aspect of employee performance

assessments creates a focus and a dialog around the growth and progression of the employee as a

professional.

Bettenhausen et al. found evidence supporting their hypothesis that employee

performance appraisals used for development were more likely to produce positive outcomes and

124

less likely to produce negative outcomes than appraisals used for administrative purposes [79].

Positive outcomes included “provide quality feedback to recipients”, “give employees a sense of

participation in the appraisal system”, “help employees do their jobs better”, “increase

productivity of the work unit”, and “increase employees’ feeling of importance to the company”.

Negative outcomes included “foster defensive reactions on the part of employees”, “make

employees feel vulnerable to retribution”, “create a popularity contest”, and “make employees

afraid to tell the truth about coworkers’ performance”. Measuring these outcomes is designed to

track overall cultural health of the organization.

From research surrounding general OSS, it is well known that developers who contribute

to OSS engender altruistic values and intrinsic motivation [61]. Further, Grant offers evidence

that the behavior of those motivated intrinsically and as a result of altruistic values is correlated

with greater persistence, performance and productivity [80]. All of these are represented in the

outcomes described in the Bettenhausen et al. study mentioned above.

Simply stated, contribution to OSS and strategic, developmental employee performance

assessment positively affect the culture of an organization. The presence of both of these factors

may represent an organization that is trying to leverage good culture as a strategic advantage.

A second finding related to talent management policies and practices suggests that

libraries reporting that cost of living has a neutral or positive impact on recruiting are 10.3 times

more likely to have software they could open source, but choose not to (p-value = 0.0062). As

before, the inverse statement is easier to understand and will be the basis of our discussion. We

found a correlation between libraries that initiate OSS projects when they are able and libraries

that report that cost of living has a negative effect on recruiting.

125

Occupational Employment Statistics from the Bureau of Labor Statistics of the U.S

Department of Labor reports that in May of 2015 the average annual salary for Software

Developers, Applications (SOC code 151132) is $102,160. The average for the same occupation,

but limited to those working in colleges, universities and professional schools, is $77,810 [81]. In

other words, Software Developers, Applications in a university setting make 24% less than the

industry average.

One explanation for this difference in pay may be found in donative-labor. Becchetti et

al. theorized that: “The influential theory of the donative-labour predicts a negative relationship

between intrinsic motivations and workers’ pay. The common rationale, consistent with the

principle of compensating wage differentials, is that wage-earners will accept lower pay if they

find intrinsic (non-monetary) value in their jobs. This implies that intrinsically motivated

workers who find that their motivations are satisfied in their occupations and in the missions of

their productive organisations, are willing to donate labor to them” [82]. Donative-labor theory is

supported by several studies. Preston suggests that workers who are intrinsically motivated view

their acceptance of less pay a monetary donation to an organization which produces social

benefits [83]. Frank suggests that intrinsic motivations are a form of compensation unto

themselves [84]. Rose-Ackerman argues that it is the alignment between workers’ ideals and

corporate goals which leads workers to accept lower pay [85]. Finally, Hansmann suggests that

this phenomenon acts as a sorting mechanism, by which workers who attach a relatively lower

weight to monetary compensation and a relatively higher weight to contributing to the public

good are hired in the non-profit industry [86]. Adding specific support to this claim in the

context of LIT, Choi, et al. report that altruism and learning are the top two motivations for

Library OSS developers — above fun, personal needs, extrinsic rewards and future returns [61].

126

We suggest that a cost of living high enough to affect recruiting activities acts as a filter

by removing qualified candidates from the applicant pool who are not willing to accept a lower

wage. Those that remain are prime candidates to be contributors to OSS projects and to drive

libraries to initiate OSS projects.

4.5.3 Innovation and R&D Policies and Practices

Analysis of the Innovation and R&D data set revealed that libraries who recognize innovation

through press releases are 19.0 times more likely to have software they could open source but

choose not to (p-value = 0.0010, R2 = 0.25).

Of the 54 respondents who have a system they choose not to release as open source, 24

(44%) have initiated at least one open source project. This statistic suggests that many libraries

who in one case choose not to share their code have in other case(s) released their code as open

source.

As previously reported, 74% of those who choose not to open source their code cited

“concerns that the code quality is not ready for public adoption.” The perception that the code

quality is not acceptable, and therefore cannot be shared, may be related to an organization that is

protecting its reputation.

Initiation of or contribution to OSS projects is frequently the result of altruistic values,

but may also be related to the reputation or honor of an organization. As Zeitlyn explains:

“Software engineers in the open source movement may have sub-groupings which parallel

kinship groups such as lineages. Within such groups gift giving is not necessarily or directly

reciprocated, instead members work according to the ‘axiom of kinship amity’—direct economic

calculation is not appropriate within the group. What Bourdieu calls ‘symbolic capital’ can be

127

used to understand how people work in order to enhance the reputation of themselves and their

group” [56].

Recognizing innovation through press releases could be seen as a reputation building

activity. Initiating an open source project may be seen similarly, however sharing a system with

poor code quality is a possible exception.

4.6 Limitations

Causation is not inferred in any of the reported results. This is purely an observational study.

Care must be taken when generalizing survey results to larger populations. The OSS survey

SPEC Kit 340 was distributed to 127 ARL member libraries. ARL libraries are often considered

a model for best practices, but are not a representative set of research libraries or libraries in

general. Further, the 77 respondents of the survey self-selected, introducing bias toward libraries

that are interested or invested in OSS. Also, survey fatigue is a significant concern. The OSS

survey was relatively long (32 questions), with some questions involving multiple parts and

some requiring respondents to look up specific information in order to answer. Several instances

were found where respondents did not answer questions completely or did not answer all

questions in the survey.

The data used in this analysis comes from surveys performed on human subjects. The

human factor introduces variance into the data. This is commonly found in empirical software

engineering, just as it is found in other social sciences. The primary implication of this additional

variance is that reportable R2 values tend to be lower than they are in the hard sciences.

4.7 Conclusion

While adoption and contribution are common activities, there are many ARL libraries that have

code they could use to initiate an open source software project but have chosen not to. Utilizing

128

data mining techniques to analyze data aggregated from three ARL SPEC Kits we found

evidence supporting four findings related to this central idea. The fact that a library could but has

chosen not to initiate an OSS project is correlated with the following factors:

1. The library indicates that it is very important that initially customizing and deploying

purchased or adopted software require minimal staff time.

2. The library does not represent employee performance assessment in its strategic plan.

3. The library reports that cost of living has a neutral or positive impact on recruiting.

4. The library recognizes innovation through press releases.

For each, we presented research that helps to explain why these correlations make sense

within the context of open source software and ARL libraries.

The aggregation of surveys utilized in this paper represent an effort to understand how

the culture within a library impacts its propensity to open source their code. In the future, a more

granular survey could be designed for this purpose. Gathering data from many more libraries

would greatly strengthen these findings.

4.8 Acknowledgements

Thanks to Scott Bertagnole for his insights and for helping to edit this paper. Thanks to Dr.

William Lund and the Harold B. Lee Library for supporting this research. We also wish to thank

ARL for giving access to the raw SPEC Kit data, making this analysis possible.

129

Chapter 5

Conclusion

5.1 Summary of Findings

Seventy-seven libraries (61%) responded, and the results were subsequently published as SPEC

Kit 340 [8]. Thacker et al. were able to empirically test Askey’s assertions, and offered support

for Askey’s primary claim, as well as many of the contributing factors he identified [45, 46]

The SPEC survey found that 74 respondents (97%) had deployed open source software in

their libraries, suggesting that, at least for ARL libraries, adoption of OSS is essentially

ubiquitous. The SPEC survey found that 56 respondents (78%) had contributed to one or more

open source projects. In contrast to Askey’s assertion, we find that initiation of and contribution

to OSS projects are, in fact, common practices in libraries. However, we also find that these

practices are far from ubiquitous; as Askey suggests, many libraries do have opportunities to

initiate OSS projects, but choose not to do so.

Thirty-two (42%) respondents identified themselves as the original developer of an open

source project. Respondents initiated an average of 1.4 OSS projects and a median of zero OSS

projects. Respondents were asked if any of their in-house software could have been, but had not

yet been, released under an open source license. Fifty-two respondents (68%) answered in the

affirmative. Further, we find support for only three of Askey’s six OSS barriers: time

commitment to support the community; code quality is not ready to share; dependence on other

systems. Thus, our results confirm many, but not all, of Askey’s assertions.

While adoption and contribution are common activities, there are many ARL libraries

that have code they could use to initiate an open source software project but have chosen not to.

Utilizing data mining techniques to analyze data aggregated from three ARL SPEC Kits we

130

found evidence supporting four findings related to this central idea. The fact that a library could

but has chosen not to initiate an OSS project is correlated with the following factors:

• The library indicates that it is very important that initially customizing and deploying

purchased or adopted software require minimal staff time.

• The library does not represent employee performance assessment in its strategic plan.

• The library reports that cost of living has a neutral or positive impact on recruiting.

• The library recognizes innovation through press releases.

5.2 Future Work

The sections below describe several areas of research I am interested in that build on the research

presented in this thesis.

5.2.1 More Data

The aggregation of surveys utilized in chapter 4 represent an effort to understand how the culture

within a library impacts its propensity to open source their code. A more granular survey could

be designed for this purpose. Gathering data from many more libraries would greatly strengthen

these findings. All findings reported in this paper will require further study before inferences can

be made to a broader population.

5.2.2 Reflexivity

The SEQuOIA lab at BYU has published on the topic of reflexivity in OSS. Reflexivity is “the

intent of developing software for the benefit of oneself or others like oneself (i.e., for other

developers)” [30]. Foushee, et al. found evidence that “the prevalence of reflexivity is positively

correlated with success.” Future work could include an investigation of reflexivity to discover

whether OSS projects created by developers in libraries for developers in libraries are more

successful than irreflexive library-related OSS projects.

131

5.2.3 Project Initiation

West and O’Mahony [87] describe two ways that OSS projects are initiated. Community driven

projects are founded and managed within the context of a community. Spinout projects are where

“a sponsor of an internally developed software project releases its code to the public under an

open source software license, inviting the external community to join the project.” West and

O’Mahony find both of these models successful ways to initiate an OSS project each with unique

challenges. Future work could include an investigation of the success of library-related OSS

projects with relation to community driven and spinout initiation models and the challenges

related to each.

5.2.4 Commodity Software

van der Linden et al. [88] suggests that “for most products, only a small part (5 to 10 percent) of

the software is differentiating (that is, it helps distinguish that product from a competitors’

products). This small part provides the added value over the competitors. The remainder is more

or less common to the domain, or even across different domains; that is, it’s more or less a

commodity.” They argue that there is a strong case for commodity software to be open source.

They further argue that differentiating software should not be open source as this is essentially

giving away intellectual property. Future work could look more closely at common challenges

and the success of commodity based software vs. differentiating software in the research library

context.

132

References

1. Basili, V.R., R.W. Selby, and D.H. Hutchens, Experimentation in Software Engineering.
Software Engineering, IEEE Transactions on, 1986(7): p. 733-743.

2. Basili, V.R. The Role of Experimentation in Software Engineering: Past, Current, and
Future. in Proceedings of the 18th international conference on Software engineering.
1996. IEEE Computer Society.

3. Taylor, Q., C. Giraud-Carrier, and C.D. Knutson, Applications of Data Mining in
Software Engineering. International Journal of Data Analysis Techniques and Strategies,
2010. 2(3): p. 243-257.

4. Sjoberg, D.I., T. Dyba, and M. Jorgensen. The Future of Empirical Methods in Software
Engineering Research. in 2007 Future of Software Engineering. 2007. IEEE Computer
Society.

5. Easterbrook, S., et al., Selecting Empirical Methods for Software Engineering Research,
in Guide to Advanced Empirical Software Engineering. 2008, Springer. p. 285-311.

6. Feller, J. and B. Fitzgerald, Understanding Open Source Software Development. 2002:
Addison-Wesley London.

7. Mockus, A., R.T. Fielding, and J.D. Herbsleb, Two Case Studies of Open Source
Software Development: Apache and Mozilla. ACM Transactions on Software
Engineering and Methodology (TOSEM), 2002. 11(3): p. 309-346.

8. Bird, C., et al., An Analysis of the Effect of Code Ownership on Software Quality across
Windows, Eclipse, and Firefox.

9. Krein, J.L., et al. Language Entropy: A Metric for Characterization of Author
Programming Language Distribution. in 4th Workshop on Public Data about Software
Development. 2009.

10. Bitzer, J., W. Schrettl, and P.J.H. Schröder, Intrinsic Motivation in Open Source Software
Development. Journal of Comparative Economics, 2007. 35(1): p. 160-169.

11. Wu, C.-G., J.H. Gerlach, and C.E. Young, An Empirical Analysis of Open Source
Software Developers’ Motivations and Continuance Intentions. Information &
Management, 2007. 44(3): p. 253-262.

12. Lakhani, K. and R. Wolf, Why Hackers Do What They Do: Understanding Motivation
and Effort in Free/Open Source Software Projects. 2003.

13. Shah, S.K., Motivation, Governance, and the Viability of Hybrid Forms in Open Source
Software Development. Management Science, 2006. 52(7): p. 1000-1014.

133

14. Ye, Y. and K. Kishida. Toward an Understanding of the Motivation of Open Source
Software Developers. in 25th International Conference on Software Engineering. 2003.
IEEE.

15. Hars, A. and S. Ou. Working for Free? Motivations of Participating in Open Source
Projects. in 34th Annual Hawaii International Conference on System Sciences. 2001.
IEEE.

16. Von Krogh, G., S. Spaeth, and K.R. Lakhani, Community, Joining, and Specialization in
Open Source Software Innovation: A Case Study. Research Policy, 2003. 32(7): p. 1217-
1241.

17. Nagy, D., A.M. Yassin, and A. Bhattacherjee, Organizational Adoption of Open Source
Software: Barriers and Remedies. Communications of the ACM, 2010. 53(3): p. 148-
151.

18. Wolff-Marting, V., C. Hannebauer, and V. Gruhn. Patterns for Tearing Down
Contribution Barriers to Floss Projects. in Intelligent Software Methodologies, Tools and
Techniques (SoMeT), 2013 IEEE 12th International Conference on. 2013. IEEE.

19. Stol, K.-J., et al., Key Factors for Adopting Inner Source. ACM Transactions on Software
Engineering and Methodology (TOSEM), 2014. 23(2): p. 18.

20. Bird, C., et al. Latent Social Structure in Open Source Projects. in Proceedings of the
16th ACM SIGSOFT International Symposium on Foundations of software engineering.
2008. ACM.

21. Crowston, K. and J. Howison, The Social Structure of Free and Open Source Software
Development. First Monday, 2005. 10(2).

22. MacLean, A.C., et al., Knowledge Homogeneity and Specialization in the Apache Http
Server Project, in Open Source Systems: Grounding Research. 2011, Springer. p. 106-
122.

23. MacLean, A.C. and C.D. Knutson, Open Source: From Mythos to Meaning. Salvador,
Brazil, 2011: p. 28-41.

24. Gacek, C. and B. Arief, The Many Meanings of Open Source. Software, IEEE, 2004.
21(1): p. 34-40.

25. Chun, S.B., A Reusable Persistence Framework for Replicating Empirical Studies on
Data from Open Source Repositories. 2011, Brigham Young University.

26. Taylor, Q.C., et al., An Analysis of Author Contribution Patterns in Eclipse Foundation
Project Source Code, in Open Source Systems: Grounding Research. 2011, Springer. p.
269-281.

134

27. Taylor, Q.C., Analysis and Characterization of Author Contribution Patterns in Open
Source Software Development. 2012, Brigham Young University.

28. Pratt, L.J., Cliff Walls: Threats to Validity in Empirical Studies of Open Source Forges.
2013.

29. Foushee, B.D., Prevalence of Reflexivity and Its Impact on Success in Open Source
Software Development: An Empirical Study. 2013, Brigham Young University.

30. Foushee, B., et al. Reflexivity, Raymond, and the Success of Open Source Software
Development: A Sourceforge Empirical Study. in Proceedings of the 17th International
Conference on Evaluation and Assessment in Software Engineering. 2013. ACM.

31. MacLean, A.C. and C.D. Knutson. Apache Commits: Social Network Dataset. in Mining
Software Repositories (MSR), 2013 10th IEEE Working Conference on. 2013. IEEE.

32. Centioli, C., et al., Open Source Real-Time Operating Systems for Plasma Control at Ftu.
Nuclear Science, IEEE Transactions on, 2004. 51(3): p. 476-481.

33. Ferrández, J.M., et al. An Open-Source Real-Time System for Remote Robotic Control
Using Neuroblastoma Cultures. in Neural Networks (IJCNN), The 2010 International
Joint Conference on. 2010. IEEE.

34. Rahman, M.S., et al. Implementation of Sctp in an Open Source Real-Time Operating
System. in Military Communications Conference, 2008. MILCOM 2008. IEEE. 2008.
IEEE.

35. McDonald, C.J., et al., Open Source Software in Medical Informatics—Why, How and
What. International journal of medical informatics, 2003. 69(2): p. 175-184.

36. Holland, R.C., et al., Biojava: An Open-Source Framework for Bioinformatics.
Bioinformatics, 2008. 24(18): p. 2096-2097.

37. Ratib, O. and A. Rosset, Open-Source Software in Medical Imaging: Development of
Osirix. International Journal of Computer Assisted Radiology and Surgery, 2006. 1(4): p.
187-196.

38. van Rooij, S.W., Adopting Open-Source Software Applications in Us Higher Education:
A Cross-Disciplinary Review of the Literature. Review of Educational Research, 2009.
79(2): p. 682-701.

39. Dougiamas, M. and P. Taylor. Moodle: Using Learning Communities to Create an Open
Source Course Management System. in World conference on educational multimedia,
hypermedia and telecommunications. 2003.

40. O'Hara, K.J. and J.S. Kay, Open Source Software and Computer Science Education.
Journal of Computing Sciences in Colleges, 2003. 18(3): p. 1-7.

135

41. Eyler, P., Koha: A Gift to Libraries from New Zealand. Linux Journal, 2003. 2003(106):
p. 1.

42. Anderson, P. Richard Stallman on the Road Less Travelled. OSS Watch 2008 11 June
2012 [cited 2015 14 May 2015]; Richard Stallman’s views on free and open source
software are controversial and quite well known, but what are his views on its use in
education? Paul Anderson, from Intelligent Content, catches up with him at the
University of Manchester on a rare visit to the UK during Summer 2008.]. Available
from: http://oss-watch.ac.uk/resources/stallman.

43. Engard, N.C., Practical Open Source Software for Libraries. 2010: Elsevier. 268.

44. Askey, D., We Love Open Source Software. No, You Can’t Have Our Code. Code4Lib
Journal, 2008(5).

45. Thacker, J.C., C.D. Knutson, and M. Dehmlow, Spec Kit 340, in Open Source Software,
L. George, Editor. 2014, Association of Research Libraries: Washington, DC. p. 184.

46. Thacker, J.C. and C.D. Knutson, Barriers to Initiation of Open Source Software Projects
in Libraries. Code4Lib, 2015(29).

47. Laurent, A.M.S., Understanding Open Source and Free Software Licensing. 2004: "
O'Reilly Media, Inc.".

48. Kitchenham, B.A. and S.L. Pfleeger, Personal Opinion Surveys, in Guide to Advanced
Empirical Software Engineering. 2008, Springer. p. 63-92.

49. Chudnov, D., The Future of Floss in Libraries, in Information Tomorrow: Reflections on
Technology and the Future of Public and Academic Libraries. 2007, Information Today,
Inc: Medford, NJ. p. 19-30.

50. Raymond, E., The Cathedral and the Bazaar. Knowledge, Technology & Policy, 1999.
12(3): p. 23-49.

51. Altman, M., Open Source Software for Libraries: From {Greenstone} to the {Virtual
Data Center} and Beyond. iassist Quarterly, 2002. 25.

52. Delone, W.H. and E.R. McLean, The Delone and Mclean Model of Information Systems
Success: A Ten-Year Update. Journal of management information systems, 2003. 19(4):
p. 9-30.

53. DeLone, W.H. and E.R. McLean. Information Systems Success Revisited. in System
Sciences, 2002. HICSS. Proceedings of the 35th Annual Hawaii International Conference
on. 2002. IEEE.

54. DeLone, W.H. and E.R. McLean, Information Systems Success: The Quest for the
Dependent Variable. Information systems research, 1992. 3(1): p. 60-95.

136

55. Crowston, K., H. Annabi, and J. Howison. Defining Open Source Software Project
Success. in International Conference on Information Systems. 2003.

56. Zeitlyn, D., Gift Economies in the Development of Open Source Software:
Anthropological Reflections. Research policy, 2003. 32(7): p. 1287-1291.

57. Hertel, G., S. Niedner, and S. Herrmann, Motivation of Software Developers in Open
Source Projects: An Internet-Based Survey of Contributors to the Linux Kernel. Research
policy, 2003. 32(7): p. 1159-1177.

58. Lerner, J. and J. Tirole, Some Simple Economics of Open Source. Journal of Industrial
Economics, 2002: p. 197-234.

59. Roberts, J.A., I.-H. Hann, and S.A. Slaughter, Understanding the Motivations,
Participation, and Performance of Open Source Software Developers: A Longitudinal
Study of the Apache Projects. Management science, 2006. 52(7): p. 984-999.

60. Dempsey, B.J., et al., Who Is an Open Source Software Developer? Communications of
the ACM, 2002. 45(2): p. 67-72.

61. Choi, N. and J.A. Pruett, The Characteristics and Motivations of Library Open Source
Software Developers: An Empirical Study. Library & Information Science Research,
2015. 37(2): p. 109-117.

62. English, R. and C.M. Schweik, Identifying Success and Tragedy of Floss Commons: A
Preliminary Classification of Sourceforge.Net Projects. Emerging Trends in FLOSS
Research and Development, 2007. FLOSS'07. First International Workshop on, 2007: p.
11-11.

63. Bergquist, M. and J. Ljungberg, The Power of Gifts: Organizing Social Relationships in
Open Source Communities. Information Systems Journal, 2001. 11(4): p. 305-320.

64. Capiluppi, A., P. Lago, and M. Morisio, Evidences in the Evolution of Os Projects
through Changelog Analyses. 2003.

65. van Rooij, S.W., Perceptions of Open Source Versus Commercial Software: Is Higher
Education Still on the Fence? Journal of Research on Technology in Education, 2007.
39(4): p. 433-453.

66. Stranack, K., The Researcher Software Suite: A Case Study of Library Collaboration and
Open Source Software Development. The Serials Librarian, 2008. 55(1-2): p. 117-139.

67. Moore, K.B. and C. Greene, The Search for a New Opac: Selecting an Open Source
Discovery Layer. Serials Review, 2012. 38(1): p. 24-30.

68. Rafiq, M., Lis Community's Perceptions Towards Open Source Software Adoption in
Libraries. The International Information & Library Review, 2009. 41(3): p. 137-145.

137

69. Kumar, V.J., S, Adoption and User Perceptions of Koha Library Management System in
India. Annals of Library and Information Studies (ALIS), 2013. 59(4): p. 223-230.

70. Rehman, A., K. Mahmood, and R. Bhatti. Free and Open Source Software Movement in
Lis Profession in Pakistan. in First Open LIS Professionals Conference. 2011.

71. Muir, S.P., An Introduction to the Open Source Software Issue. Library Hi Tech, 2005.
23(4): p. 465-468.

72. Frumkin, J., Guest Editorial: Balancing the Playing Field. Information Technology and
Libraries, 2002. 21(1): p. 2.

73. Chawner, B. F/Oss in the Library World: An Exploration. in ACM SIGSOFT Software
Engineering Notes. 2005. ACM.

74. Breeding, M., The Viability of Open Source Ils. Bulletin of the American Society for
Information Science and Technology, 2009. 35(2): p. 20-25.

75. Jaffe, L.D. and G. Careaga, Standing up for Open Source. Library Philosophy and
Practice, 2007. 9(2): p. 21.

76. Taylor, M.A. and E. Lee, Spec Kit 344, in Talent Management, L. George, Editor. 2014,
Association of Research Libraries: Washington, DC. p. 183.

77. German, L. and B.S. Namachchivaya, Spec Kit 339, in Innovation and R&D, L. George,
Editor. 2013, Association of Research Libraries: Washington, DC. p. 192.

78. Tennant, R., The Role of Open Source Software. LIBRARY JOURNAL-NEW YORK-,
2000. 125(1): p. 36-36.

79. Bettenhausen, K.L. and D.B. Fedor, Peer and Upward Appraisals a Comparison of Their
Benefits and Problems. Group & Organization Management, 1997. 22(2): p. 236-263.

80. Grant, A.M., Does Intrinsic Motivation Fuel the Prosocial Fire? Motivational Synergy in
Predicting Persistence, Performance, and Productivity. Journal of applied psychology,
2008. 93(1): p. 48.

81. Bureau of Labor Statistics, U.S. Department of Labor, Occupational Employment
Statistics. May 2015 [accessed April 12, 2016]; [http://www.bls.gov/oes/].

82. Becchetti, L., S. Castriota, and E.C. Tortia, Productivity, Wages and Intrinsic
Motivations. Small Business Economics, 2013. 41(2): p. 379-399.

83. Preston, A.E., The Nonprofit Worker in a for-Profit World. Journal of labor economics,
1989: p. 438-463.

84. Frank, R.H., What Price the Moral High Ground? Southern Economic Journal, 1996: p.
1-17.

138

85. Rose-Ackerman, S., Altruism, Nonprofits, and Economic Theory. Journal of economic
literature, 1996. 34(2): p. 701-728.

86. Hansmann, H.B., The Role of Nonprofit Enterprise. The Yale law journal, 1980. 89(5): p.
835-901.

87. West, J. and S. O'Mahony. Contrasting Community Building in Sponsored and
Community Founded Open Source Projects. in System Sciences, 2005. HICSS'05.
Proceedings of the 38th Annual Hawaii International Conference on. 2005. IEEE.

88. Van der Linden, F., B. Lundell, and P. Marttiin, Commodification of Industrial Software:
A Case for Open Source. Software, IEEE, 2009. 26(4): p. 77-83.

	Barriers to Initiation of Open Source Software Projects in Research Libraries
	BYU ScholarsArchive Citation

	tmp.1465324928.pdf.UFvE5

