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ABSTRACT

An Analyzer for Message Passing Programs

Yu Huang
Department of Computer Science, BYU

Doctor of Philosophy

Asynchronous message passing systems are fast becoming a common means for com-
munication between devices. Two problems existing in message passing programs are difficult
to solve. The first problem, intended or otherwise, is message-race where a receive may match
with more than one send in the runtime system. This non-determinism often leads to inter-
mittent and unexpected behavior depending on the resolution of the race. Another problem
is deadlock, which is a situation in that each member process of the group is waiting for some
member process to communicate with it, but no member is attempting to communicate with
it. Detecting if message-race and/or deadlocks exist in a message passing program are both
NP–complete. The difficulty of solving the two problems also comes from three factors that
complicate the semantics: asynchronous communication, synchronous barrier, and buffering
settings including infinite buffering (the system can buffer messages) and zero buffering (the
system has no internal buffering).

To solve the above problems with complicating factors, this research provides a novel
predictive analysis that initializes a concrete execution and then predicts the behavior of
other executions that arise from the initial execution. This research starts with Satisfiability
Modulo Theories (SMT) based model checking that provides precise analysis for the program
behavior. Unfortunately, a precise analysis using SMT does not scale to large programs.
As such, the SMT based model checking is combined with heuristic search for witnessing
program properties. The heuristic search is efficient in identifying how sends may match with
receives in the runtime as it only looks for the match relations for sends and receives in a small
searching space initially; the space is increased only if the program property is not witnessed,
until all possible match relations for sends and receives reflected in message non-determinism
are found. This research also gives a static analysis approach that is scalable as it does
not need to analyze the full set of program behaviors; rather, the static analysis only uses
polynomial-time algorithms to identify all potential deadlocks in a send-receive templates
given a set of pre-defined deadlock patterns. Given the predictive analysis consisting of SMT
based model checking with heuristic search and static analysis, this research is able to solve
the two problems above. The work in this dissertation also demonstrates that the predictive
analysis is more efficient than the existing tools for verifying message passing programs.

Keywords: Message passing, MPI, MCAPI, SMT, Static analysis, Model checking
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Chapter 1

Introduction

1.1 Problem Statements and Importance

Nowadays, asynchronous message passing is widely used in communication between devices

such as medical devices, network infrastructures and automobiles. High performance com-

puting (HPC) also needs message passing to communicate among multiple cores.

The essential structure of asynchronous message passing is the use of two communi-

cation primitives, send and receive, for message communication. Figure 1.1 shows a simple

example of an asynchronous message passing program with two processes running in paral-

lel. The program uses only blocking sends (s) and blocking receives (r). A send or receive

specifies the “from” and the “to” process IDs. Given the scenario in Figure 1.1, the message

passing is accomplished by matching s0 and r0 in the runtime.

With the increasing usage of message passing, numerous issues leading to intermit-

tent and unexpected results become essential to message passing. The primary source of

intermittent or unexpected program behavior is message-race. A message-race is generally

a concern in any message passing program. It is defined as a situation where a receive may

match with more than one send in the runtime system. As a result, the send matched with

p0 p1

r0(from p1, to p0) s0(from p1, to p0)

Figure 1.1: A simple asynchronous message passing program.

1



the receive is non-deterministic as it depends on the runtime system and other external in-

fluences. The problem of determining if a message-race exists in a message passing program

is NP–complete. The message race may lead to invalid computation by the program or

even deadlock. Such non-determinism, although sometimes intended, makes debug and test

difficult because they need to explore the complete program state space which cannot be

trivially accomplished.

Another problem in message passing programs is deadlock. There are two ways to

deadlock: first, message sends and receives resolve into a mutual dependency; and second,

a message is delayed from ever being received. The work in this dissertation assumes weak

fairness meaning that no process will be isolated indefinitely so every issued send will be

received eventually, and as such, deadlock can only arises from a mutual dependency. The

problem of verifying the existence of deadlock from mutual dependency is also NP–complete.

This type of deadlock must be checked as message-race or unexpected communication pattern

that can lead to it.

1.2 Complicating Factors

There are three aspects that complicates the message passing semantics: asynchronous com-

munication, synchronous barriers and buffering settings. The asynchronous communication

is accomplished by a set of primitives such as send, receive or barrier, where they may match

in the runtime to transmit messages. The complexity of asynchronous communication is

that the order of these primitives can be resolved in many ways. For example, for a send

and a receive that may match in the runtime, either the send or the receive can be issued

first, where the match occurs.

The barriers are able to synchronize a program among a group of processes in such

a way that each group member waits at a position in a single process until all the members

are witnessed. The barrier synchronization may impact asynchronous message passing as

the messages are not blocked by synchronization; instead, they can migrate across barriers.

2



This is because a send in asynchronous communication may be issued before the barriers

witness and is delayed to match a receive until the barrier synchronization completes.

The message passing semantics are also complicated because of the two buffering

settings: infinite buffering (the system has internal buffering for the messages) and zero

buffering (the system has no internal buffering). According to the two buffering semantics,

the program behavior may be different. For example, a program under zero buffer semantics

may deadlock while a feasible schedule without deadlock may exist for the same program

under infinite buffer semantics.

In summary, the dissertation focuses on solving the problems of message-race and

deadlock under two buffering settings. To be precise, the question of message-race asks if

there is an incorrect computation as a result of message-race where the messages are received

in such a way that the program output is incorrect. The question of deadlock asks if there

is a schedule where two or more operations each are waiting for the other to finish, and thus

neither ever does. Note that the deadlock may occur via message-race.

To understand the complexity of message passing and begin working on potential

solutions, this dissertation looks at two common message passing standards: Multicore As-

sociation Communications API (MCAPI) [37] and Message Passing Interface (MPI) [3]. This

research starts with a precise SMT based model checking on MCAPI, where a simple point-

to-point communication that only supports non-deterministic receives are specified. This

research then expands and scales the precise SMT encoding to MPI, where a more compli-

cated point-to-point communication with both non-deterministic and deterministic receives

and the barrier synchronization are defined.

1.3 Related Works

The primary challenge of any approach to detecting deadlock or message-race is scalability.

The scalability is difficult to accomplish because of the large number of commands in message

passing programs and complicated program semantics.
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Model checking with SMT provides precise analysis. Model checking technique gen-

erates a model for the input program, and then checks program properties in the model.

The SMT problem is a decision problem for logical formulas with respect to combinations

of background theories expressed in classical first-order logic with equality. Model checking

with SMT leverages SMT to encode program behavior such as program ordering, message

communication, and valid computation as constraints in an SMT problem. Existing SMT

tools, e.g., Yices [2] and Z3 [13], are then used to solve this problem by resolving these

constraints. The prior SMT techniques are not scalable as they encode too many formulas

for the program behavior, and therefore do not complete within a short time because of the

state explosion [17, 18]. Forejt et al. proposed a SAT based approach to detect deadlock

in single-path MPI programs [20]. The solution is correct and efficient for programs with a

low degree of message non-determinism. However, since the size of the encoding is cubic,

checking large programs is time consuming.

The dynamic analysis is performed by executing a program. The existing dynamic

analysis based model checkers are also inefficient to reason about the program behavior as

they exhaustively enumerate all possible program interleavings which can be exponential

[48, 49, 57, 59]. The first push button model checker of MCAPI applications, MCC, system-

atically explores all relevant process interleavings using the Dynamic Partial Order Reduction

(DPOR) algorithm [48]. This model checker uses match pair – a coupling of a send and a

receive that may potentially match in the runtime, to capture the non-determinism of an

MCAPI program. The POE algorithm also uses DPOR [19] in the verifier, ISP, for verifying

MPI programs [57, 59]. This algorithm operates by postponing the cooperative operations

for message passing in transit until each process reaches a blocking call. It then determines

the potential matches of send and receive operations in the runtime. An extension to the

POE algorithm is the MSPOE [49] that is able to detect communication deadlock in MPI

programs.

4



There are many other works that use different approaches in message passing verifica-

tion. Umpire is an approach of runtime verification for checking multiple MPI errors such as

deadlock and resource tracking [60]. The error checking is taken by spawning one manager

thread and several outfielder threads in the execution of an MPI program. A drawback of

the approach is that it relies on a concrete execution, which may miss the errors in the other

execution trace. An extension to Umpire is Marmot [32]. The work uses a centralized sever

instead of multiple threads for error checking. Another extension to Umpire is MUST [23].

The structure of MUST allows users to execute the error checking either in an application

process itself or in extra processes that are used to offload these analyses. However, just like

Umpire and Marmot, the approach is neither sound nor complete for deadlock detection.

MPIDD, like Umpire, has a central manager that traps all MPI calls using the MPI

profiling interface; however Umpire runs as a separate process and communicates using

shared memory with different processes [22]. MPIDD runs as another MPI process and the

trapped information is sent to the central detector using MPI calls. MPIDD is essentially a

deadlock detector. It creates a dependency graph to figure out the potential/real deadlocks.

The detection algorithm is a depth first search for cycles in the dependency graph.

MPI-CHECK uses a macro-like mechanism wherein the MPI calls in the program

are instrumented to have extra arguments [35]. These arguments provide information such

as line number in the source code where the call was made, the MPI function name and

its arguments. The information is recorded in a database known as the Program Database

(PDB). The process of checking is split into two phases. In the first phase, the instrumenta-

tion of MPI programs is performed followed by their compilation. In the second phase, the

execution of the instrumented MPI code under the control of the MPI-CHECK server takes

place.

MPIRace-Check is a tool that identifies message-race [43]. MPIRace-Check uses

vector clocks to discover the racing sends. MPIRace-Check does not have the ability to

5



deterministically replay the program. Since vector clocks are used, MPIRace-Check has

scalability issues.

Vo. et al. proposed a dynamic verification approach for large-scale MPI programs us-

ing lamport clocks with lazy updates [62, 63]. The auxiliary information by setting up a logic

clock is sent out and updated via piggyback messages. This method detects the potential

matches of send and receive operations with respect to the piggyback data assigned to each

operation. This method scales well for MPI applications with large numbers of processes and

messages. However, this method misses potential matches of sends and receives, therefore

making the state exploration incomplete.

MPI-Spin is integrated in the classic model checker – SPIN [24], for verifying MPI

programs [52]. It generates a model of an MPI program and allows one to symbolically

execute it. However, it fails to model non-terminating execution sequences because of the

nature of symbolic execution.

Bouajjani et al. proposed an analysis technology of message passing programs that

bounds the number of process communication cycles [5]. This bounding scheme reduces

concurrency to a non-deterministic sequential program. However, this method restricts the

range of the pending message such that the “task” is the only format. Also, this method can

only resolve message non-determinism caused by “post” operations. Further, this method

has no way to handle the collective operations. As such, this analysis can not be applied for

the paradigm that uses sends and receives for message passing. Synchronous primitives such

as the barriers in MPI programs hinder the program behavior analysis. Some works aim to

ease the analysis by detecting the semantic relations among synchronous primitives.

One of the works is an algorithm that detects the matching of textually unaligned

barriers - the common synchronization primitive in an SPMD–style (single program, multiple

data) program, i.e. programs that are allowed in the MPI or OpenMP specifications [66].

Instead of checking a barrier matching, another work is able to detect the irrelevant barriers

6



[47]. The work relies on the definitions of IntraCB and InterCB that imply the “complete

before” relations among processes.

The Threaded-C Bounded Model Checking (TCBMC) extends the C Bounded Model

Checking (CBMC) [10, 11] to support concurrent C program verification [44]. The approach

bounds the number of context switching allowed among threads because it assumes that

most bug patterns have only a few context switchings. Especially, the work assumes there

are no nested lock-unlock patterns.

Burckhardt et al. presented the CheckFence prototype [7] that exhaustively checks

all executions of a test program by translating a program into SAT formulas. It increments

the observations each time by adding more constraints to SAT formulas.

Dubrovin et al. give a method to translate an asynchronous system into a set of

transition formulas over three partial order semantics [15]. The encoding adds constraints

to compress the search space and decreases the bound on program unwinding.

SATCheck is a scalable technique for model checking concurrent programs based on

concrete execution [14]. The approach first builds a model of an observed execution in an SAT

encoding, then gets an assignment of the encoding that represents an unobserved execution,

builds a model of this execution and repeats the above steps until all the executions are

observed. As such, all the reachable behaviors are explored.

1.4 Our Solution

Solving the problems of message-race and deadlock with both precision and scalability are

difficult. This dissertation looks to predictive analysis that detects program properties in a

set of executions that arise from an initial concrete execution. This dissertation defines a

precise encoding that leverages advances in SMT technology, and then scales the encoding

using heuristic search and static analysis.

The SMT encoding in this dissertation directly uses send-receive match pair to capture

how many ways to resolve message non-determinism. It also precisely constrains the program
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order as well as the buffering semantics into a set of formulas. As such, if an SMT solver

resolves a violating schedule, the violation actually exists in the program.

The SMT based model checking does not scale well as the runtime cost is highly

dependent on how many ways to resolve message non-determinism. As such, the work in

this dissertation combines the precise SMT encoding with heuristic search that is able to

under-approximate the resolutions of message non-determinism. Initially, the heuristic search

approximates a subset of the precise match pairs that are encoded to the SMT problem for

property checking. A property may be a message-race or a deadlock. If a property is detected

with the initial search, then the verification completes; otherwise, the approach iterates to

a larger set of program behaviors and repeats to detect properties until the full set of the

program behaviors is reached. The property detection can be more efficient in an early

iteration of the heuristic search.

Another scalable approach in this dissertation is static analysis. The static analysis

does not rely on the full set of program behaviors; rather, it approximates the existence

of properties by statically searching an abstraction of the program. This static searching

relies on algorithms with low cost of runtime. The feasibility of the detected properties relies

on further validation such as the SMT based model checking. If no property is detected,

however, the program is free of that property.

1.5 Thesis Statement

Verifying message-race and deadlock in message passing programs are NP–complete problems

that can be checked and scaled by predictive analysis including precise SMT encoding with

heuristic search and static analysis.
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1.6 Our Contributions

This section presents an overview of the various research contributions of this dissertation.

Each contribution is an important element in verifying message-race and deadlock using the

work in this dissertation. We list each paper published for a research contribution and a

discussion on the research contribution.

1.6.1 Proving MCAPI Executions Are Correct using SMT

• Yu Huang, Eric Mercer, Jay McCarthy. “Proving MCAPI Executions are Correct

Applying SMT Technology to Message Passing”. In Proceeding of IEEE/ACM Inter-

national Conference on Automated Software Engineering. Palo Alto, CA, November,

2013, 26 - 36.

• Abstract. Chapter 2 provides a way to encode an MCAPI execution as a SMT problem,

which if satisfiable, yields a feasible execution schedule on the same trace, such that

it resolves non-determinism in the MCAPI runtime in a way that it now fails user

provided assertions. The work proves the problem is NP-complete. The encoding is

useful for test, debug, and verification of MCAPI program execution. The novelty in the

encoding is the direct use of match pairs (potential send and receive couplings). Match-

pair encoding for MCAPI executions, when compared to other encoding strategies, is

simpler to reason about, results in significantly fewer terms in the SMT problem,

and captures feasible behaviors that are ignored in previously published techniques.

Further, to our knowledge, this is the first SMT encoding that is able to run in infinite-

buffer semantics, meaning the runtime has unlimited internal buffering as opposed to

no internal buffering. Results demonstrate that the SMT encoding, restricted to zero-

buffer semantics, uses fewer clauses when compared to another zero-buffer technique,

and it runs faster and uses less memory. As a result the encoding scales well for
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programs with high levels of non-determinism in how sends and receives may potentially

match.

• Contribution to thesis. The work in Chapter 2 establishes the complexity of the prob-

lem of verifying message-race and gives the SMT encoding for precise analysis. The

solution is able to verify the correctness of message passing executions.

1.6.2 Detecting MPI Zero Buffer Incompatibility by SMT Encoding

• Yu Huang, Eric Mercer. “Detecting MPI Zero Buffer Incompatibility by SMT Encod-

ing”. In Proceeding of the 7th NASA Formal Methods Symposium. Pasadena, CA,

April, 2015.

• Abstract. Chapter 3 presents an algorithm that encodes a single-path MPI program as

a SMT problem, which if satisfiable, yields a feasible schedule, such that it proves the

program is zero buffer compatible. This encoding is also adaptable to checking assertion

violation for correct computation. To support MPI semantics, this algorithm correctly

defines the point-to-point communication and collective communication with respective

rules for both infinite buffer semantics and zero buffer semantics. The novelty in this

work is considering only the schedules that strictly alternate sends and receives leading

to an intuitive zero buffer encoding. This work proves that the set of all the strictly

alternating schedules is capable of covering all the message communication that may

occur in any execution under zero buffer semantics. Experiments demonstrate that the

SMT encoding is correct and highly efficient for a set of benchmarks compared with

two state-of-the-art MPI verifiers.

• Contribution to thesis. The work in Chapter 3 gives an extension to the SMT encoding

in Chapter 2 that supports zero buffer semantics and collective operations in MPI

semantics. The encoding is capable of detecting zero buffer incompatibility, which is a

type of deadlock under zero buffer semantics. The solution is more efficient than two

state-of-art MPI verifiers, ISP [19] and MOPPER [20].
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1.6.3 An Efficient Approach for Match Pair Approximation in Message Passing

• Yu Huang, Eric Mercer. “An Efficient Approach for Match Pair Approximation in

Message Passing”. Submitted to 8th NASA Formal Methods Symposium. Minneapolis,

MN, June, 2016.

• Abstract. Chapter 4 presents a new algorithm that under-approximates the match

pairs iteratively: first sectioning each process in the CTP such that each potential

sender distributes roughly a bounded number of sends to match the same number of

receives in the process, and then approximating the match pairs for the sends and

receives in each section independently based on the match generation algorithm in

Chapter 2. The algorithm runs in quadratic complexity in the number of operations.

Novel in the work is that the algorithm has the flexibility to generate the match pair

set with various size based on the user input. This work further shows that the precise

match pairs for any CTP can be generated with a bounded input. The experiments

over a set of benchmarks show that the algorithm in this work drastically reduces the

runtime performance of property witnessing as all the properties are witnessed with a

small set of match pairs generated by the new algorithm. The results also show that

the algorithm is able to scale to a program that employs a high degree of message

non-determinism and/or a high degree of deep communication.

• Contribution to thesis. The work in Chapter 4 is a heuristic search that is able to

reduce the size of the match set as input to an SMT encoding for verifying a message

passing program. The work is helpful for large programs to be feasible as the over-

approximated match set for such programs is usually too large to be resolved.

11



1.6.4 A Hybrid Approach of Dynamic and Static Analyses for Deadlock in MPI

Programs

• Yu Huang, Eric Mercer. “A Hybrid Approach of Dynamic and Static Analyses for

Deadlock in MPI Programs”. Submitted to The International Symposium on Software

Testing and Analysis. Saarbrcken, Germany, July, 2016.

• Abstract. Chapter 5 addresses the NP–complete problem of deadlock detection in MPI

programs in the context of a concurrent trace program (CTP). The initial trace pro-

gram is preprocessed by executing the program once. The solution uses progressively

more precise analyses to generate and then prune a potential set of deadlocks: static

matching to identify deadlock pattern instances; execution of the instances on an ab-

stract machine to reject those that are provably non-feasible; and finally, if needed,

validation of the instances to remove any remaining that are non-feasible. Novel in the

work is the abstract machine based on counting to efficiently reject many non-feasible

instances without exhaustively enumerating all message races. The work further de-

fines two deadlock patterns: circular dependency and orphaned receive. The first

pattern relies on simple rules for validation, while the second requires a higher cost

SMT encoding. The work proves the approach sound and complete for each pattern

and compares the approach with two other deadlock tools on typical benchmarks. The

comparison shows that the new approach scales in the presence of millions of possible

send-receive matches and completes on benchmarks where the other tools time out.

The experiments also show that the two deadlock patterns in the work cover all the

deadlock cases in benchmarks.

• Contribution to thesis. The work in Chapter 5 combines static analysis and precise

SMT technique for detecting deadlocks in MPI programs. The solution is more efficient

than two state-of-the-art MPI verifiers, ISP [19] and MOPPER [20].
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1.7 Summary

This dissertation gives a solution that is able to verify message-race and deadlock in message

passing programs for both infinite buffer and zero buffer semantics. The solution uses model

checking with SMT for precise analysis, and is further scaled with heuristic search and static

analysis. The solution is applied to two prevalent message passing standards, MCAPI and

MPI. The work in this dissertation is more efficient than the other existing tools including

other SMT/SAT encoding techniques and dynamic analyses. As such, the work in this

dissertation is able to scale to large message passing programs.
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Chapter 2

Proving MCAPI Executions Are Correct using SMT

Abstract

Asynchronous message passing is an important paradigm in writing applications for em-

bedded heterogeneous multicore systems. The Multicore Association (MCA), an industry

consortium promoting multicore technology, is working to standardize message passing into

a single API, MCAPI, for bare metal implementation and portability across platforms. Cor-

rectness in such an API is difficult to reason about manually, and testing against reference

solutions is equally difficult as reference solutions implement an unknown set of allowed

behaviors, and programmers have no way to directly control API internals to expose or re-

produce errors. This paper provides a way to encode an MCAPI execution as a Satisfiability

Modulo Theories (SMT) problem, which if satisfiable, yields a feasible execution schedule on

the same trace, such that it resolves non-determinism in the MCAPI runtime in a way that

it now fails user provided assertions. The paper proves the problem is NP-complete. The

encoding is useful for test, debug, and verification of MCAPI program execution. The nov-

elty in the encoding is the direct use of match pairs (potential send and receive couplings).

Match-pair encoding for MCAPI executions, when compared to other encoding strategies,

is simpler to reason about, results in significantly fewer terms in the SMT problem, and

captures feasible behaviors that are ignored in previously published techniques. Further,

to our knowledge, this is the first SMT encoding that is able to run in infinite-buffer se-

mantics, meaning the runtime has unlimited internal buffering as opposed to no internal
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buffering. Results demonstrate that the SMT encoding, restricted to zero-buffer semantics,

uses fewer clauses when compared to another zero-buffer technique, and it runs faster and

uses less memory. As a result the encoding scales well for programs with high levels of

non-determinism in how sends and receives may potentially match.
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2.1 Introduction

Embedded devices fill all sorts of crucial roles in our lives. They exist as medical devices,

as network infrastructure, and they control our automobiles. Embedded devices continue

to become more powerful as computing hardware becomes smaller and more modular. It

is now becoming commonplace to find multiple processing units inside a single device. The

Multicore Association (MCA) is an industry group that has formed to define specifications

for low-level communication, resource management, and task management for embedded

heterogeneous multicore devices [36].

One specification that the MCA has released is the Multicore Association Communi-

cations API (MCAPI) [37]. The specification defines types and functions for simple message

passing operations between different computing entities within a device. Messages can be

passed across persistent channels that force an ordering of the messages, or they can be

passed to specific endpoints within the system. The specification places few ordering con-

straints on messages passed from one endpoint to another. This freedom introduces the

possibility of a race between multiple messages to common endpoints thus giving rise to

non-deterministic behavior in the runtime [42]. If an application has non-determinism, it is

not possible to test and debug such an application without a way to directly (or indirectly)

control the MCAPI runtime.

There are two ways to implement the MCAPI semantics: infinite-buffer semantics

(the message is copied into a runtime buffer on the API call) and zero-buffer semantics (the

message has no buffering) [59]. An infinite-buffer semantics provides more non-deterministic

behaviors in matching send and receives because the runtime can arbitrarily delay a send

to create interesting (and unexpected) send reorderings. The zero-buffer semantics follow

intuitive message orderings as a send and receive essentially rendezvous.

Sharma et al. propose a method to indirectly control the MCAPI runtime to verify

MCAPI programs under zero-buffer semantics [48]. As the work does not address infinite-

buffer semantics, it is somewhat limited in its application. The work does provide a dynamic
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partial order reduction for the model checker, but such a reduction is not sufficient to control

state space explosion in the presence of even moderate non-determinism between message

sends and receives. A key insight from the approach is its direct use of match pairs–couplings

for potential sends and receives.

Wang et al. propose an alternative method for resolving non-determinism for program

verification using symbolic methods in the context of shared memory systems [64]. The work

observes a program trace, builds a partial order from that trace called a concurrent trace

program (CTP), and then creates an SMT problem from the CTP that if satisfied indicates

a property violation.

Elwakil et al. extend the work of Wang et al. to message passing and claim the

encoding supports both infinite and zero buffer semantics. A careful analysis of the encoding,

however, shows it to not work under infinite-buffer semantics and to miss behaviors under

zero-buffer semantics [17]. Interestingly, the encoding assumes the user provides a precise

set of match pairs as input with the program trace, and it then uses those match pairs

in a non-obvious way to constrain the happens-before relation in the encoding. The work

does not discuss how to generate the match pairs, which is a non-trivial input to manually

generate for large or complex program traces. An early proof claims that the problem of

finding a precise set of match pairs given a program trace is NP-complete [45].

This paper presents a proof that resolving non-determinism in message passing pro-

grams in a way that meets all assertions is NP-complete. The paper then presents an SMT

encoding for MCAPI program executions that works for both zero and infinite buffer se-

mantics. The encoding does require an input set of match pairs as in prior work, but unlike

prior work, the match-set can be over-approximated and the encoding is still sound and

complete. The encoding requires fewer terms to capture all possible program behavior when

compared to other proposed methods making it more efficient in the SMT solver. To address

the problem of generating match pairs, an algorithm to generate the over-approximated set

is given. To summarize, the main contributions in this paper are
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1. a proof that the problem of matching sends to receives in a way that meets assertions

is NP-complete;

2. a correct and efficient SMT encoding of an MCAPI program execution that detects all

program errors under zero or infinite buffer semantics given the input set of potential

match pairs contains at least the precise set of match pairs; and

3. an O(N2) algorithm to generate an over-approximation of possible match pairs, where

N is the size of the execution trace in lines of code.

Organization: Section 2 gives an example. Section 3 shows the NP-completeness reduction.

Section 4 gives the encoding. Section 5 shows how to generate match-pairs. Section 6 presents

the results. Section 7 discusses related work. And Section 8 is conclusions and future work.

2.2 Example

It is a challenge to explain intended behavior in simple scenarios consisting of a handful of

calls when dealing with concurrency. Consider the MCAPI program execution in Figure 2.1

that includes three tasks that use send (mcapi msg send i) and receive (mcapi msg recv i)

calls to communicate with each other. Line numbers appear in the first column for each task

with the first digit being the task ID. The declarations of the local variables are omitted for

space.

Picking up the scenario just after the endpoints are defined, lines 02 and 05 receive

two messages on the endpoint e0 in variables A and B which are converted to integer values

and stored in variables a and b on lines 04 and 07; task 1 receives one message on endpoint

e1 in variable C on line 13 and then sends the message “1” on line 15 to e0 ; and finally, task

2 sends messages “4” and “Go” on lines 24 and 26 to endpoints e0 and e1 respectively. The

additional code (lines 08 - 09) asserts properties of the values in a and b. The mcapi wait

calls block until the associated send or receive buffer is able to be used. Given the scenario, a
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Task 0 Task 1 Task 2
00 initialize(NODE_0,&v,&s);

01 e0=create_endpoint(PORT_0,&s);

02 msg_recv_i(e0,A,sizeof(A),&h1,&s);

03 wait(&h1,&size,&s,MCAPI_INF);

04 a=atoi(A);

05 msg_recv_i(e0,B,sizeof(B),&h2,&s);

06 wait(&h2,&size,&s,MCAPI_INF);

07 b=atoi(B);

08 if(b > 0);

09 assert(a == 4);

0a finalize(&s);

10 initialize(NODE_1,&v,&s);

11 e1=create_endpoint(PORT_1,&s);

12 e0=get_endpoint(NODE_0,PORT_0,&s);

13 msg_recv_i(e1,C,sizeof(C),&h3,&s);

14 wait(&h3,&size,&s,MCAPI_INF);

15 msg_send_i(e1,e0,"1",2,N,&h4,&s);

16 wait(&h4,&size,&s,MCAPI_INF);

17 finalize(&s);

20 initialize(NODE_2,&v,&s);

21 e2=create_endpoint(PORT_2,&s);

22 e0=get_endpoint(NODE_0,PORT_0,&s);

23 e1=get_endpoint(NODE_1,PORT_1,&s);

24 msg_send_i(e2,e0,"4",2,N,&h5,&s);

25 wait(&h5,&size,&s,MCAPI_INF);

26 msg_send_i(e2,e1,"Go",3,N,&h6,&s);

27 wait(&h6,&size,&s,MCAPI_INF);

28 finalize(&s);

Figure 2.1: An MCAPI concurrent program execution

developer might ask the question: “What are the possible values of a and b after the scenario

completes?”

The intuitive trace is shown in Figure 2.2 using a shorthand notation for the MCAPI

commands: send (denoted as S), receive (denoted as R), or wait (denoted as W). The short-

hand notation further preserves the thread ID and line number as follows: for each command

24 S2,4(0,&h5)
25 W(&h5)
02 R0,2(2,&h1)
03 W(&h1)
26 S2,6(1,&h6)
27 W(&h6)
04 a = atoi(A);
13 R1,3(2,&h3)
14 W(&h3)
15 S1,5(0,&h4)
16 W(&h4)
05 R0,5(1,&h2)
06 W(&h2)
07 b = atoi(B);
08 assume(b > 0);
09 assert(a == 4);

Figure 2.2: A feasible execution traces of the MCAPI program execution in Figure 2.1
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24 S2,4(0,&h5)
25 W(&h5)
26 S2,6(1,&h6)
27 W(&h6)
13 R1,3(2,&h3)
14 W(&h3)
15 S1,5(0,&h4)
16 W(&h4)
02 R0,2(1,&h1)
03 W(&h1)
04 a = atoi(A);
05 R0,5(2,&h2)
06 W(&h2)
07 b = atoi(B);
08 assume(b > 0);
09 assert(a == 4);

Figure 2.3: A second feasible execution traces of the MCAPI program in Figure 2.1

Oi,j(k,&h), O ∈ {S, R} or W(&h), i represents the task ID, j represents the source line number,

k represents the destination endpoint, and h represents the command handler. A specific

destination task ID is in the notation when a trace is fully resolved, otherwise “*” indicates

that a receive has yet to be matched to a send. The lines in the trace indicate the context

switch where a new task executes.

From the trace, variable a should contain 4 and variable b should contain 1 since task

2 must first send message “4” to e0 before it can send message “Go” to e1 ; consequently,

task 1 is then able to send message “1” to e0. The assume notation asserts the control flow

taken by the program execution. In this example, the program takes the true branch of the

condition on line 08. At the end of execution the assertion on line 09 holds and no error is

found.

There is another feasible trace shown in Figure 2.3 which is reachable under the

infinite-buffer semantics. In this trace, the variable a contains 1 instead of 4, since the

message “1” is sent to e0 after sending the message “Go” to e1 as it is possible for the send

on line 24 to be buffered in transit. The MCAPI specification indicates that the wait on

line 25 returns once the buffer is available. That only means the message is somewhere in

the runtime and not that the message is delivered. As such, it is possible for the message

to be buffered in transit allowing the send on line 15 to arrive at e0 first and be received in
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variable “a”. Such a scenario is a program execution that results in an assertion failure at

line 09.

From the discussion above, it is important to consider non-determinism in the MCAPI

runtime when testing or debugging an MCAPI program execution. The next section presents

a proof that the problem of matching sends to receives in a way that meets all assertions

is NP-complete. The proof justifies the encoding and SMT solver. Following the proof, the

algorithm to generate the encoding is presented. It takes an MCAPI program execution

with a set of possible send-receive match pairs and generates an SMT problem that if sat-

isfied proves that non-determinism can be resolved in a way that violates a user provided

assertion (the assertions are negated in the encoding) and if unsatisfiable proves the trace

correct (meaning the user assertions hold on the given execution under all possible runtime

behaviors). The encoding can be solved by an SMT solver such as Yices [16] or Z3 [13].

2.3 NP Completeness Proof

The complexity proof is inspired by the NP-completeness proof for memory coherence and

consistency by Cantin et al. that uses a similar reduction from SAT only in the context of

shared memory [9]. The complexity proof is on a new decision problem: Verifying Assertions

in Message Passing (VAMP).

Definition 1. Verifying Assertions in Message Passing.

INSTANCE: A set of constants D, a set of variables X, and a finite set H of task histories

consisting of send, receive, and assert operations over X and D.

QUESTION: Is there a feasible schedule S for the operations of H that satisfy all the

assertions?

The VAMP problem is NP-complete. The proof is a reduction from SAT. Given an

instance Q of SAT consisting of a set of variables U and set of clauses C over U , an instance

V of VAMP is constructed such that V has a feasible schedule S that meets all the assertions
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if and only if there is a satisfying truth assignment for Q. Feasible in this context means the

schedule is allowed by the MCAPI semantics.

The reduction is illustrated in Figure 2.4. The figure elides the explicit calls to wait

which directly follow each send and receive operation, and it elides the subscript notation

as it is redundant in the figure. The figure also adds the value sent and the variable that

receives the value to the notation as that information is pertinent to the reduction.

The reduction relies on non-determinism in the message passing to decide the value

of each variable in U . The tasks hd0 and hd1 repeatedly send the constant value d0 (false

valuation) or d1 (true valuation) to task hC . The key intuition is that these tasks are

synchronized with hC so they essentially wait to send the value until asked.

The task hC sequentially requests and receives d0 and d1 values for each variable in

the SAT instance Q. It does not request values for a new variable until the current variable

is resolved. As the values come from two separate tasks upon request, the messages race in

the runtime and may arrive in either order at hC . As a result, the value in each variable is

non-deterministically d0 or d1.

After the value of each variable ui is resolved, the hC task asserts the truth of each

clause in the problem instance. As the clauses are conjunctive, the assertions are sequentially

evaluated. If a satisfying assignment exists for Q, then a feasible schedule exists that resolves

the values of each variable in such a way that every assert holds.

Lemma 1. S is a feasible schedule for H that satisfies all assertions if and only if Q is

satisfiable.

Proof. Feasible schedule for V implies Q is satisfiable: proof by contradiction. Assume

that Q is unsatisfiable even though there is a feasible schedule S for V that meets all the

assertions. The reduction in Figure 2.4 considers all truth values of the variables in Q,

over every combination, by virtue of the non-determinism, and then asserts the truth of

each of the clauses in Q. The complete set of possibilities is realized by sending in parallel

from hd0 and hd1 the two truth valuations for a given variable to hC . As these messages
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SAT: U ≡ {u0 , u1 , ..., um}
C ≡ {c0 , c1 , ..., cn}
Q ≡ {c0 ∧ c1 ∧ ... ∧ cn}
VAMPI: H ≡ {hd0 , hd1 , hC}
X ≡ {u0 , ..., um , g0 , g1}
D ≡ {d0 , d1}
hd0 hd1 hC
R(g0, ∗) R(g1, ∗) S(d0, hd0)
S(d0, hC) S(d1, hC) S(d0, hd1)

R(u0, ∗)
R(u0, ∗)

R(g0, ∗) R(g1, ∗) S(d0, hd0)
S(d0, hC) S(d1, hC) S(d0, hd1)

R(u1, ∗)
R(u1, ∗)

. . . . . . . . .
assert(c0)
assert(c1)
. . .

Figure 2.4: General SAT to VAMPI reduction

may be received in any order, each variable may assume either truth value. Further, each

variable resolved is an independent choice so all combinations of variable valuations must be

considered. This fact is a contradiction to the assumption of Q being unsatisfiable as the

same truth values that meet the assertions would be a satisfying assignment in Q.

Q is satisfiable implies feasible schedule for V: the proof is symmetric to the previous

case and proceeds in a like manner.

Theorem 1 (NP-complete). VAMP is NP-complete.

Proof. Membership in NP: a certificate is a schedule matching send and receives in each

of the histories. The schedule is linearly scanned with the histories and checked that it does

not violate MCAPI semantics. Our extended version constructs an operational model of

MCAPI semantics that does just such a check given a schedule [27]. The complexity is linear

in the size of the schedule.
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NP-hard: polynomial reduction from SAT. The correctness of the reduction is established

by Lemma 1. The remainder of the proof is the complexity of the reduction. There are two

tasks to send values d0 and d1 upon request. For each variable ui ∈ U , each of these tasks,

d0 and d1, needs two operations: one to synchronize with hC and another to send the value:

O(2∗2∗ |U |). The task hC must request values from hd0 and hd1 and then receive both those

values; it must do this for each variable: O(2 ∗ 2 ∗ |U |). Once all the values are collected, it

must them assert each clause: O(|C|). As every term is linear, the reduction is linear.

2.4 SMT Encoding

The new SMT encoding is based on (1) a trace of events during an execution of an MCAPI

program including control-flow assumptions and property assertions, such as Figure 2.2; and

(2) a set of possible match pairs. A match pair is the coupling of a receive to a particular

send. In the running example, the set admits, for example, that R0,2 can be matched with

either S1,5 or S2,4. This direct use of match pairs, rather than a state-based or indirect use

of match pairs in an order-based encoding, [17] and [18], is novel.

The purpose of the SMT encoding is to force the SMT solver to resolve the match pairs

for the system in such a way that the final values of program variables meet the assumptions

on control flow but violate some assertion. In essence, the SMT solver completes a partial

order on operations into a total order that determines the final match pair relationships.

2.4.1 Definitions

The encoding needs to express the partial order imposed by the MCAPI semantics as SMT

constraints. The partial order is based on a Happens-Before relation over operations such as

send, receive, wait, or assert:

Definition 2 (Happens-Before). The Happens-Before (HB) relation, denoted as ≺HB, is a

partial order over operations.
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Given two operations, A and B, if A must complete before B in a valid program

execution, then A ≺HB B will be an SMT constraint.

The relation is derived from the program source and potential match pairs. In order

to specify the constraints from the program source, each program operation is mapped to a

set of variables that can be manipulated by the SMT solver.

Definition 3 (Wait). The occurrence of a wait operation, W, is captured by a single variable,

order W, that constrains when the wait occurs.

It is not enough to represent all events as simple numbers that will be ordered in this

way. Such an encoding would not allow the solver to discover what values would flow across

communication primitives. Instead, some events in the trace are modeled as a set of SMT

variables that record the pertinent information about the event. For example,

Definition 4 (Send). A send operation S, is a four-tuple of variables:

1. MS, the order of the matching receive event;

2. order S, the order of the send;

3. eS, the endpoint; and,

4. valueS, the transmitted value.

The endpoints do not change and the transmitted values are constants in an SMT

encoding mainly because this static topology has already been evaluated in an existing

execution trace once the trace was obtained. The most complex operation in MCAPI is

a receive. Since receives are inherently asynchronous, it is not possible to represent them

atomically. Instead, we need to associate each receive with a wait that marks where in the

program the receive operation is guaranteed to be complete. The MCAPI runtime semantics

allow a single wait to witness the completion of many receives due to the message non-

overtaking property. A wait that witnesses the completion of one or more receives is the

nearest-enclosing wait.
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Task 0 Task 1

R0,1(∗,&h1) S1,1(0,&h3)
R0,2(∗,&h2) W(&h3)
W(&h2) S1,2(0,&h4)
W(&h1) W(&h4)

Figure 2.5: Nearest-enclosing Wait example

Definition 5 (Nearest-Enclosing Wait). A wait that witnesses the completion of a receive

by indicating that the message is delivered and that all the previous receives in the same task

issued earlier are complete as well.

Figure 2.5 shows that the wait W(&h2) witnesses the completion of the receive R0,1

and R0,2 in task 0. Thus, W(&h2) is their nearest-enclosing wait.

The encoding requires that every receive operation have a nearest-enclosing wait as

it makes match pair decisions at the wait operation. The requirement is not a limitation

of the encoding, as accessing a buffer from a receive that does not have a nearest-enclosing

wait is an error. Rather, the wait is a convenience in the encoding to mark where a receive

actually takes place. The same requirement can be made for sends for correctness but is not

required for the encoding as send buffering is handled differently than receive buffering. The

encoding effectively ignores wait operations for sends as will be seen.

Definition 6 (Receive). A receive operation R is modeled by a five-tuple of variables:

1. MR, the order of the matching send event;

2. order R, the order of the receive;

3. eR, the endpoint;

4. valueR, the received value; and,

5. nw R, the order of the nearest enclosing wait.

2.4.2 Assumptions, Assertions, and match pairs

The definitions so far merely establish the pertinent information about each event in the

trace as SMT variables. It is necessary to now express constraints on those variables.
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The most trivial kind of constraints are those for control-flow assumptions.

Definition 7 (Assumption). Every assumption A is added as an SMT assertion.

It may seem strange to turn assumptions into assertions, but from a constraint per-

spective, the assumption that we have already observed some property (during control-flow)

is equivalent to instructing the SMT solver to treat it as inviolate truth, or an assertion.

The next level of constraint complexity comes from property assertions. These cor-

respond to the invariants of the program. The goal is to discover if they can be violated,

so we instruct the SMT solver to seek for a way to satisfy their negation given all the other

constraints.

Definition 8 (Property Assertion). For every property assertion P, ¬P is added as an SMT

assertion.

Finally, we must express the relation in a given match pair as a set of SMT constraints.

Informally, a match pair equates the shared components of a send and receive and constrains

the send to occur before the nearest-enclosing wait of the receive. Formally:

Definition 9 (Match Pair). A match pair, 〈R, S〉, for a receive R and a send S corresponds

to the constraints:

1. MR = order S

2. MS = order R

3. eR = eS

4. valueR = valueS and

5. order S ≺HB nw R

The encoding is given a set of potential match pairs over all the sends and receives

in the program trace. The constraints from these match pairs are not simply joined in a

conjunctions. If we were to do that, then we would be constraining the system such that

a single receive must be paired with all possible sends in a feasible execution rather than a
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single send. Therefore, we combine all the constraints for a given receive with all possible

sends as specified by the input match pairs into a single disjunction:

Definition 10 (Receive Matches). For each receive R, if 〈R, S0〉 through 〈R, Sn〉 are match

pairs, then
∨n

i 〈R, Si〉 is used as an SMT constraint.

This encoding of the input ensures that the SMT solver can only use compatible

send/receive pairs and ensures that sends happen before nearest-enclosing waits on receives.

2.4.3 Program Order Constraints

The encoding thus far is missing additional constraints on the Happens-Before relation stem-

ming from program order. These constraints are added in four steps: we must ensure that

sends to common endpoints occur in program order in a single task (step 1); similarly for

receives (step 2); receives occur before their nearest-enclosing wait (step 3); and, that sends

are received in the order they are sent (step 4).

Step 1 For each task, if there are sequential send operations, say S and S′, from that task

to a common endpoint, eS = eS′ , then those sends must follow program order: order S ≺HB

order S′ .

Step 2 For each task, if there are sequential receive operations, say R and R′, in that task

on a common endpoint, eR = eR′ , then those receives must follow program order: order R ≺HB

order R′ .

Step 3 For every receive R and its nearest enclosing wait W, order R ≺HB order W.

Step 4 For any pair of sends S and S′ on common endpoints, eS = eS′ , such that

order S ≺HB order S′ , then those sends must be received in the same order: MS ≺HB MS′ .

For example, consider two tasks where task 0 sends two messages to task 1 as shown

in Figure 2.6. The MS variables from the sends will be assigned to the orders for R1,1 and
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Task 0 Task 1

S0,1(1,&h1) R1,1(∗,&h3)
S0,2(1,&h2) R1,2(∗,&h4)
W(&h1) W(&h3)
W(&h2) W(&h4)

Figure 2.6: Send Ordering Example

R1,2 by the match pairs selected by the SMT solver. The constraints added in this step force

the send to be received in program order using the HB relation which for this example yields

MS0,1 ≺HB MS0,2 .

2.4.4 Zero Buffer Semantics

The constraints presented so far correspond to an infinite-buffer semantics, because we do not

constrain how many messages may be in transit at once. We can add additional, orthogonal,

constraints to further restrict behavior and enforce a zero-buffer semantics. There are two

kinds of such constraints.

First, for each task, if there are two sends S and S′ such that order S ≺HB order S′ , and

S and S′ can both match a receive R, then we add the following constraint to the encoding:

order W ≺HB order S′ where W is the nearest-enclosing wait that witnesses the completion of R

in execution.

The second constraint relies on a dependence relation between two match pairs.

Definition 11. To match pairs are dependent, denoted as 〈R, S〉 ⇀ 〈R′, S′〉, if and only if

1. the nearest-enclosing wait W of R′ issues before S on an identical endpoint; or

2. ∃〈R′′S′′〉 such that 〈R, S〉⇀ 〈R′′, S′′〉 ∧ 〈R′′, S′′〉⇀ 〈R′, S′〉.

With the dependence relation, the second set of constraints for the zero-buffer seman-

tics is given as: for each pair of sends S and S′ that can both match a receive R, if there is

a send S′′ issued after the issuing of S′ by an identical endpoint, and a receive R′ such that

〈R, S〉 ⇀ 〈R′, S′′〉, then we add the following constraint to the encoding: order W ≺HB order S

where W is the nearest-enclosing wait that witnesses the completion of R.
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...

01 orderR0,2 ≺HB orderW(&h1)

02 orderR0,5 ≺HB orderW(&h2)

03 orderR0,2 ≺HB orderR0,5

04 orderR1,3 ≺HB orderW(&h3)

05 (> b 0)

06 (not (= a 4))

07 〈R0,2,S2,4〉 ∨ 〈R0,2,S1,5〉

08 〈R0,5,S2,4〉 ∨ 〈R0,5,S1,5〉

09 〈R1,3,S2,7〉

Figure 2.7: SMT Encoding

2.4.5 Example

Figure 2.7 shows the encoding of Figure 2.1 as an SMT problem. We elide the basic definition

of the variables discussed in Section 2.4.1. Lines 05 through 09 give the assumptions, asser-

tions, and match pairs. The first four lines reflect the program order constraints: receives

happen before corresponding wait operations and receives from a common endpoint follow

program order. There are no constraints between sends because there are no sequential sends

from a common endpoint to a common endpoint. To encode the zero-buffer semantics, the

constraint order W(&h1) ≺HB order S1,5 would need to be added to force the receive to complete

before another send is issued.

2.4.6 Correctness

Before we can state our correctness theorem, we must define a few terms. We define our

encoder as a function from programs and match pair sets to SMT problems:

Definition 12 (Encoder). For all programs, p, and match pair sets m, let SMT (p,m) be

our encoding as an SMT problem.
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We assume that an SMT solver can be represented as a function that takes a problem

and returns a satisfying assignment of variables or an unsatisfiable flag:

Definition 13 (SMT Solver). For all SMT problems, s, let SOL(s) be in σ+UNSAT, where

σ is a satisfying assignment of variables to values.

We assume that from a satisfying assignment to one of our SMT problems, we can

derive an execution trace by observing the values given to each of the ordere variables. In

other words, we can view the SMT solver as returning traces and not assignments.

We assume a semantics for traces that gives their behavior as either having an asser-

tion violation or being correct: 1

Definition 14 (Semantics). For all programs, p, and traces t, SEM(p, t) is either BAD or

OK.

Given this framework, our SMT encoding technique is sound if

Theorem 2 (Soundness). For all programs, p, and match pair sets, m, SOL(SMT (p,m)) =

t⇒ SEM(p, t) = BAD.

Our soundness proof relies on the following lemma:

Lemma 2. Any match pair 〈R, S〉 used in a satisfying assignment of an SMT encoding is a

valid match pair and reflects an actual possible MCAPI program execution.

Proof. We prove this by contradiction. First, assume that 〈R, S〉 is an invalid match pair (i.e.

one that is not valid in an actual MCAPI execution). Second, assume that the SMT solver

finds a satisfying assignment.

Since 〈R, S〉 is not a valid match pair, match R and S requires program order, message

non-overtaking, or no-multiple match to be violated. In other words, the Happens-Before

constraints encoded in the SMT problem are not satisfied.

1In fact, our extended technical report [27] gives such a semantics.
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This is a contradiction: either the SMT solver would not return an assignment or the

match pair was actually valid.

The correctness of our technique relies on completeness:

Theorem 3 (Completeness). For all programs, p, and traces, t, SEM(p, t) = BAD ⇒

∃m.SOL(SMT (p,m)) = t.

We prove completeness in our extended version [27] by designing our semantics, SEM,

such that it simulates the solving of the SMT problem during its operation to ensure that

the two make identical conclusions.

However, these theorems obscure an important problem: how do we know which

match pair set to use? Soundness assumes we have one, while completeness merely asserts

that one exists. Although Section 2.5 discusses our generation algorithm, we prove here an

additional theorem that asserts that any conservative over-approximation of match pair sets

is safe.

Theorem 4 (Approximation). Give two match pair sets m and m′, m ⊆ m′ ⇒

SOL(SMT (p,m)) v SOL(SMT (p,m′)), where UNSAT v σ.

Informally, this is true because larger match pair sets only allow more behavior, which

means that the SMT solver has more freedom to find violations, but that all prior violations

are still present. However, because of soundness, it is not possible that using a larger match

pair set will discover false violations. The formal proof, in our extended version [27], relies

on a match set combination operator that we prove distributes over an essential part of the

semantics.

2.5 Generating Match Pairs

The exact set of match pairs can be generated by simulating the program trace and using a

depth-first search to enumerate non-determinism arising from concurrent sends and receives.
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// initialization

input an MCAPI program

initialize list_r

initialize list_s

// check each receive and send with the same endpoint

for r in list_r

for s in list_s

let dest = destination endpoint(s)

let src = source endpoint(s)

// check matching criteria for r and s

if

1. endpoint(r) = dest

2. index(r) >= index(s)

3. index(r) =< (index(s)

+ count(sends(dest=dest))

- count(sends(src=src, dest=dest)))

then

add pair (r, s) to match_set

else

continue

end if

end for

end for

output match_set;

Figure 2.8: Pseudocode for generating over-approximated match pairs

Such an effort, however, solves the entire problem at once because if you simulate the program

trace exploring all non-determinism, then you may as well verify all runtime choices for

property violations at the same time.

In this section, we present an algorithm that does not require an exhaustive enumer-

ation of runtime behavior in simulation. Our algorithm over-approximates the match pairs

such that match pairs that can exist in the runtime are all included and some bogus match

pairs that cannot exist in the runtime may or may not be included. This algorithm does

well in restricting the size of bogus match pairs where each one is a non-deterministic choice
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that costs an SMT solver more runtime and system memory. Generating a precise set of

match-pairs is NP-complete [45].

The algorithm generates the over-approximated match pair set by matching each pair

of the send and receive commands at common endpoints and then pruning obvious matches

that cannot exist in any runtime implementation of the specification.

Figure 2.8 presents the major steps of the algorithm. The algorithm proceeds by first

linearly traversing each task of the program storing each receive and send command into two

distinct structured lists. The receive list, list r, is structured as in (2.1) and the send list,

list s, is structured as in (2.2).

(e0 → ((0, R0,1), (1, R0,2), . . .))

(e1 → ((0, R1,1), (1, R1,2), . . .))

. . .

(en → ((0, Rn,1), (1, Rn,2), . . .))

(2.1)

The list list r groups receives by the issuing endpoint. The integer field merely records the

order in which the receives are issued and increases by one on each receive. Similarly, the

list list s groups sends first by the destination endpoint and then by the source endpoint.

Like list r, an index increases by one to track the issue order. As the input is a program

execution trace, any sends or receives in loops already have unique identifiers.

“dest” “src” “src”

(e0 → ((e1 → ((0, S1,1), (1, S1,2), . . .), (e2 → (. . .),

. . .))))

(e1 → ((e0 → ((0, S0,1), (1, S0,2), . . .), (e2 → (. . .),

. . .))))

. . .

(en → ((e0 → ((0, S0,3), (1, S0,4), . . .), (e1 → (. . .),

. . .))))

(2.2)

Consider the program in Figure 2.9. The lists list r and list s for the program are

(0 → ((0, R0,1), (1, R0,2), (2, R0,4)))

(1 → ((0, R1,2)))
(2.3)
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Task 0 Task 1 Task 2
R0,1(∗,&h1) S1,1(0,&h5) S2,1(0,&h8)
W(&h1) W(&h5) W(&h8)
R0,2(∗,&h2) R1,2(∗,&h6)
W(&h2) W(&h6)
S0,3(1,&h3) S1,3(0,&h7)
W(&h3) W(&h7)
R0,4(∗,&h4)
W(&h4)

Figure 2.9: Another MCAPI concurrent program

(0 → ((1 → ((0, S1,1), (1, S1,3)), (2 → ((0, S2,1))))))

(1 → ((0 → ((0, S0,3)))))
(2.4)

The sends S1,1, S1,3, and S2,1 have task 0 as an identical destination endpoint. The send

S0,3 has task 1 as the destination endpoint. The list list s in (2.4) reflects this partition.

Receive R0,1 is the first receive operation in endpoint 0. This fact is again reflected in list r

in (2.3).

The algorithm traverses the two lists in a nested loop to generate match pairs be-

tween send and receive commands. The function index(r) takes the endpoint of the receive

and returns the issue order of that receive in the list r structure. Similarly, the function

index(s) takes the destination and source endpoints in the send and returns the issue order

of that send in the list s structure. These indexes help track message non-overtaking.

The criteria to generate a match pair first requires the send and receive to be com-

patible (check 1), consistent with message non-overtaking (check 2), and that message non-

overtaking does not preclude the match (check 3). A match is precluded by message non-

overtaking when a receive cannot possibly match a send because by the time the program

issues the receive, the send must have already been matched somewhere else. The function

count gives the number of sends to a specific destination or the number of sends to a specific

source and destination. As long as a receive is issued early enough to still match the send

given the message non-overtaking rule, then the match is possible.
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In our concrete example, R0,1 is matched with S1,1 or S2,1, but it cannot be matched

with S1,3 since the second rule is not satisfied such that the order of R0,1 is less than the order

of S1,3 (i.e., S1,3 would have to overtake S1,1 to satisfy the rule). The match between R0,4

and S1,1 is also precluded by check 3 as S1,1 must have already matched an earlier receive by

message non-overtaking.

The generated set of match pairs for our example in Figure 2.9 is over-approximated

by the algorithm because it includes pairs that cannot exist in any feasible execution. For

example, the match pair (S2,1 R0,4) is not feasible because it is not possible to order S1,3 before

R0,2 since R1,2 can only match with S0,3 that must occur after R0,2. Fortunately, a satisfying

solution is only possible using feasible match pairs. Non-feasible match pairs merely result

in extra clauses in the encoding and potentially slow down the SMT solver.

The complexity of the algorithm is quadratic. Traversing the tasks to initialize the

lists is O(N), where N is the total lines of code of the program. Traversing the list of receives

and the list of sends takes O(mn) to complete, where m is the total number of sends and n is

the total number of receives. As m+n ≤ N , the algorithm takes O(N+mn) ≤ O(N+N2) ≈

O(N2) to complete.

2.6 Experiments and Results

To assess the new encoding in this paper, three experiments with results are presented:

a comparison to prior SMT encodings on a zero-buffer semantics, a scalability study on

the effects of non-determinism in the execution time on infinite buffer semantics, and an

evaluation on typical benchmark programs again with infinite buffer semantics. All of the

experiments use the Z3 SMT solver ([13]) and are measured on a 2.40 GHz Intel Quad Core

processor with 8 GB memory running Windows 7.

The initial program trace for the experiments is generated using the MCA provided

reference solution with fixed input. In other words, the only non-determinism in the pro-

grams is that allowed by the MCAPI specification. As such, the experiments only consider
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one path of control flow through the program. Complete coverage of the program for verifi-

cation purposes would need to generate input to exercise different control flow paths. Where

appropriate, the time to generate the match pair sets from the input trace is reported sepa-

rately.

2.6.1 Comparison to Prior SMT Encoding

To our best knowledge, the current most effective SMT encoding for verification of message

passing program traces is the order-based encoding that describes the happens-before rela-

tion directly in the encoding and is only functional for zero-buffer semantics in its current

form [17]. The order-based encoding is more complex than the encoding in this paper and

generates more clauses for the SMT solver. Although the tool to generate the encoding is

not publicly available, the authors of the order-based encoding graciously encoded several

contrived benchmarks used for correctness testing. These benchmarks are best understood

as toy examples that plumb the MCAPI semantics to clarify intuition on expected behavior.

The zero-buffer encoding in this paper is compared directly to the order-based en-

coding on the contrived benchmarks. The order-based encoding yields incorrect answers for

several programs. Where the order-based encoding returns correct answers, the new encod-

ing, on average, requires 70% fewer clauses, uses half the memory as reported by the SMT

solver, and runs eight times faster. The dramatic improvement of the new encoding over the

order-based encoding is a direct result of the match pairs that simplify the happens-before

constraints and avoids redundant constraints in the transitive closure of the happens-before

relation.

2.6.2 Scalability Study

The intent of the scalability study is to understand how performance is affected by the

number of messages in the program trace and the level of non-determinism in choosing

match pairs where multiple sends are able to match to multiple receives. The programs for
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Table 2.1: Scaling as a function of non-determinism

Test Programs Performance
N Feasible Sets Time (hh:mm:ss) Memory(MB)
30 30!(∼3E32) 00:00:36 20.11
40 40!(∼8E47) 00:03:22 47.12
50 50!(∼3E64) 00:16:11 102.65
60 60!(∼8E81) 00:47:29 189.53
70 70!(∼1E100) 02:00:30 364.25

this study consist of a simple pattern of a single thread to receive messages and N threads

to send messages. The single thread sequentially receives N messages containing integer

values and then asserts that every message did not receive a specific value. In other words,

a violation is one where each message has a specific value. The remaining N threads send a

message, each containing a different unique integer value, to the single thread that receives.

These programs represent the worst-case scenario for non-determinism in a message passing

program as any send is able to match with any receive in the runtime, and the assertion is

only violated when each send is paired with a specific receive. The SMT solver must search

through the multitude of match pairs, N×N , to find the single precise subset of match pairs

that triggers the violation. In this program structure, there are N ! feasible ways to match

N sends to N receives.

The study takes an initial program of N = 30, so 31 threads, and varies N to see how

the SMT solver scales. A small N is an easy program while a large N is a hard program.

Table 2.1 shows how the new encoding scales with hardness. The first column is the number

of messages, or N , and the second column is the number of feasible match pair subsets that

correctly match every receive to a unique send. As expected, running time and memory

consumption increase non-linearly with hardness.

The case where N = 70 represents having 70 concurrent messages in flight from

70 different threads of execution. Such a scenario is not entirely uncommon in a high

performance computing application, and it appears the new encoding is able to reasonably
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scale to such a level of concurrency. The result provides a bound on expected cost for analysis

given the message passing behavior in a program. It is expected that the analysis of any

program with fewer than 70! possible choices of feasible match pair resolutions will complete

in a reasonable amount of time. Regardless, such a high-level concurrency seems unlikely in

the embedded space to which MCAPI is targeted.

2.6.3 Typical Benchmark Programs

The results in the prior section suggest that the number of messages is not the deciding factor

in hardness for the new encoding; rather, hardness is measured by the number of feasible

match pair sets. This section further explores the observation to show that some programs

are easy, even if there are many messages, while other programs are hard, even though there

are only a few messages.

The goal of these experiments is to measure the new encoding on several benchmark

programs. MCAPI is a new interface, and to date, the authors are not aware of publicly

available programs written against the interface aside from the few toy programs that come

with the library distribution. As such, the benchmarks in the experiments come from a

variety of sources.

• LE is the leader election problem and is common to benchmarking verification algo-

rithms.

• Router is an algorithm to update routing tables. Each router node is in a ring and

communicates only with immediate neighbors to update the tables. The program ends

when all the routing tables are updated.

• MultiM is an extension to a program in the MCAPI library distribution and is similar

to the program in Figure 2.9. The extension adds extra iterations to the original

program execution to generate longer execution trace.

• Pktuse is a benchmark from the MPI test suite [40]. The program creates 5 tasks—each

of which randomly sends several messages to the other tasks.
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Table 2.2: Performance on selected benchmarks

Test Programs Performance
Name # Mesg Feasible Sets EG(s) MG(s) Time (hh:mm:ss) Memory(MB)
LE 620 1 1.49 0.051 <00:00:01 33.41
Router 200 ∼6E2 0.417 0.032 00:00:02 15.03
MultiM 100 ∼1E40 0.632 0.436 00:16:40 135.19
Pktuse 512 ∼1E81 10.190 9.088 02:06:09 1539.90

The benchmark programs are intended to cover a spectrum of program properties. As

before, the primary measure of hardness in the programs in not the number of messages but

rather the size of the match pair set and the number of feasible subsets. The LE program

is the easiest program in the suite. Although it sends 620 messages, there is only a single

feasible match pair set. The programs Router, MultiM, and Pktuse respectively increase in

hardness, which again is not related to the total number of messages but rather the total

number of feasible match-sets that must be considered. For example, even though Router

has 200 messages, it is an easier problem that MultiM that has 100 messages. The Pktuse

program does have the most number of messages, 512, and in this case, the largest number

of feasible match pair sets.

Table 2.2 shows the results for the benchmark suite. Other than the metrics used in

Table 2.1, the time of generating the encoding and the match pairs is included in the third

and fourth columns respectively. Note that the time shown in the third column includes the

time in the fourth column. As before, the running time tracks hardness and not the total

number of messages. The table also shows the cost of match pair generation as it dominates

the encoding time for the Pktuse program (an item for future work).

The benchmark suite demonstrates that a message passing program may have a large

degree of non-determinism in the runtime that is prohibitive to verification approaches that

directly enumerate non-determinism such as a model checker. The SMT encoding, however,

pushes the problem to the SMT solver by generating the possible match pairs and then

relying on advances in SMT technology to resolve the non-determinism in a way that vio-
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lates the assertion. Of course, the SMT problem itself is NP-complete, so performance is

only reasonable for small problem instances. The benchmark suite suggests that problem

instances with astonishingly large numbers of feasible match pair sets are able to complete

in a reasonable amount of time using the new encoding in this paper; though, the time to

generate the match pairs may quickly become prohibitive.

2.7 Related Work

Morse et al. provided a formal modeling paradigm that is callable from the C language

for the MCAPI interface [38]. This model correctly captures the behavior of the interface

and can be applied to model checking C programs that use the API. The work is a direct

application of model checking and directly enumerates the non-determinism in the runtime

to construct an exhaustive proof. The SMT encoding in this paper pushes that complexity

to the SMT solver and leverages recent advances in SMT technology to find a satisfying

assignment.

Sharma et al. present an dynamic model checker for MCAPI programs built on

top of the MCA provided MCAPI runtime [48]. MCC systematically enumerates all non-

determinism in the MCAPI runtime under zero-buffer semantics. It employs a novel dynamic

partial order reduction to avoid enumerating redundant message orders. This work claims

SMT technology is more efficient in practice in resolving non-determinism in a away to

violate correctness properties.

Wang et al. present an SMT encoding for shared memory semantics for a given

input trace from a multi-threaded program [64]. As mentioned previously, the program

is partitioned into several concurrent trace programs, and the encoding for each program

is verified using SMT technology. Elwakil et al. extend the encoding to message passing

programs using the MCAPI semantics [17, 18]. The comparison to the encoding in this work

is already discussed previously.
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An important body of work is being pursued for MPI program verification [19, 51, 53–

55, 59, 61]. Highlights include an extension to the SPIN model checker for MPI programs,

symbolic execution tools for MPI programs including new approaches to computing loop

invariants, and various dynamic verification tools for MPI programs. Although MPI is more

expressive than MCAPI, the correctness properties in MCAPI are similar to those in MPI.

More importantly, the encoding in this work should be applicable to MPI programs that

do not include collective operations. An important aspect of future work is to extend the

encoding to collectives.

There is a rich body of literature for SMT/SAT based Bounded Model Checking.

Burckhardt et al. exhaustively check all executions of a test program by translating the

program implementation into SAT formulas [7]. The approach relies on counter-examples

from the solvers the refine the encoding. The SMT encoding in this work is able to directly

resolve the match-pair set over-approximation directly without needing to check a counter-

example.

Dubrovin et al. give a method to translate an asynchronous system into a transition

formula over three partial order semantics [15]. The encoding adds constraints to compress

the search space and decrease the bound on the program unwinding. The encoding in this

paper operates on a program execution and does not need to resolve a bound.

Kahlon et al. presented a partial order reduction, MPOR, that operates in the

bounded model checking space [31]. It guarantees that exactly one execution is calculated

per each Mazurkiewicz trace to reduce the search space. It would be interesting to see

if MPOR is able to extend to message passing semantics. Other work in bounded model

checking explores heap-manipulating programs and challenges in sequential systems code

[33, 34].

The application of static analysis is another interesting thread of research to test or

debug message passing programs with some work in the MPI domain [6, 21, 66]. The work
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is important as it lays the foundation for refining match-pair sets to only include those that

cannot be statically pruned.

2.8 Conclusions and Future Work

This paper presents a proof that the problem of resolving non-determinism in message passing

in a way that meets asserts is NP-complete. The paper then presents an SMT encoding of

an MCAPI program execution that uses match pairs directly rather than the state-based or

order-based encoding in the prior work. The encoding is generated from a given execution

trace and a set of potential match pairs that can be over-approximated. The encoding

takes extra care in forming the SMT problem to preclude bogus match pairs in any over-

approximation of the match pair input set. Critically, the encoding is the first to correctly

capture the non-deterministic behaviors of an MCAPI program execution under infinite-

buffer semantics.

This paper further defines an algorithm with O(N2) time complexity to over-

approximate the true set of match pairs, where N is the total number of code lines of

the program. A comparison to prior work, [17], for a set of “toy” examples under zero-buffer

semanics shows the new encoding capable and efficient in capturing correct behaviors of an

MCAPI program execution. Experiments further show that the encoding scales to programs

with significant levels of non-determinism in how sends match to receives.

The results show that a large match-pair set does affect the runtime performance of

the encoding in the SMT problem even if the encoding is sound under an over-approximation.

Future work explores new methods for generating a much more precise set of match pairs.

The encoding is dependent on an input execution trace of the program. Future work explores

integrating the encoding into a model checker. The model checker generates a program trace

that is encoded and verified. The result is then used to inform the model checker as to

where it needs to backtrack to generate a new execution trace. The goal is to use the trace

verification to construct a better partial order reduction in the model checker.
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Finally, given the importance of high performance computing, future work looks to

extend the encoding to account for MPI collective operations. This direction is motivated by

the results where the encoding seems to scale to significant levels of concurrency. It should

be possible to express MPI collectives as additional constraints in the encoding and apply

the technique to MPI programs directly.
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Chapter 3

Detecting MPI Zero Buffer Incompatibility by SMT Encoding

A prevalent asynchronous message passing standard is the Message Passing Interface

(MPI). There are two runtime semantics for MPI: zero buffer (messages have no buffering)

and infinite buffer (messages are copied into a runtime buffer on the API call). A problem

in any MPI program, intended or otherwise, is zero buffer incompatibility. A zero buffer

incompatible MPI program deadlocks. This problem is difficult to predict because a devel-

oper does not know if the deadlock is based on the buffering semantics or a bad program.

This paper presents an algorithm that encodes a single-path MPI program as a Satisfiability

Modulo Theories (SMT) problem, which if satisfiable, yields a feasible schedule, such that

it proves the program is zero buffer compatible. This encoding is also adaptable to check-

ing assertion violation for correct computation. To support MPI semantics, this algorithm

correctly defines the point-to-point communication and collective communication with re-

spective rules for both infinite buffer semantics and zero buffer semantics. The novelty in

this paper is considering only the schedules that strictly alternate sends and receives leading

to an intuitive zero buffer encoding. This paper proves that the set of all the strictly alter-

nating schedules is capable of covering all the message communication that may occur in any

execution under zero buffer semantics. Experiments demonstrate that the SMT encoding

is correct and highly efficient for a set of benchmarks compared with two state-of-art MPI

verifiers.
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3.1 Introduction

Message passing technology has become widely used in many fields such as medical devices

and automobile systems. The Message Passing Interface (MPI) plays a significant role as a

common standard. It is easy for a developer to implement a message passing scenario using

MPI semantics, including:

• zero buffer semantics (messages have no buffering) and infinite buffer semantics (mes-

sages are copied into a runtime buffer on the API call) [59],

• MPI point-to-point operations (e.g., send and receive), and

• MPI collective operations (e.g., barrier and broadcast).

A problem in any MPI program is zero buffer incompatibility. A zero buffer incompat-

ible program deadlocks. If there exists any feasible schedule for a program under zero buffer

semantics, this program is zero buffer compatible. Note that the zero buffer incompatibility

is not equivalent to deadlock that may be caused by reasons other than buffering. The zero

buffer incompatibility is essential to any MPI application since it is difficult for a developer to

predict. This problem is also very difficult to verify because of the complicated MPI seman-

tics. In particular, the message passing may be non-deterministic such that a receive may

match more than one send in the runtime system. Also, the MPI collective operations that

synchronize the program may change how messages communicate. To address the problem

of zero buffer incompatibility, this paper presents an algorithm that encodes a single-path

MPI program into a Satisfiability Modulo Theories (SMT) problem [4]. This encoding is

resolved by a standard SMT solver in such a way that the program is proved/disproved to

be zero buffer compatible. This encoding is also adaptable to checking assertion violation

caused by message non-determinism.

Several solutions were proposed to verify MPI programs. The POE algorithm is

capable of dynamically analyzing the behavior of an MPI program [58]. This algorithm is

implemented by a modern MPI verifier, ISP. As far as we know, there is no research proposed

merely for zero buffer incompatibility. Though the works on MPI deadlock are also capable
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of detecting zero buffer incompatibility, they suffer from the scalability problem [20, 49]. In

particular, the algorithm MSPOE is an extension of POE. It is able to detect deadlock in

an MPI program [49]. Forejt et al. proposed a SAT based approach to detect deadlock in a

single-path MPI program [20].

The problem of generating a input match pair set is NP-Complete. The preprocess-

ing, however, only needs to over-approximate the match pairs in quadratic time complexity.

Before discussing how the new algorithm is capable of detecting zero buffer incompatibility,

this paper needs to present in detail the complete list of encoding rules for several MPI

operations, including a few rules that are trivial to define. In particular, the MPI non-

deterministic point-to-point communication is similar to how message communicate in the

Multicore Communications API (MCAPI). As such, this paper adapts the existing encoding

rules for MCAPI defined in prior work [28]. This paper also presents how to encode deter-

ministic receive operations and collective operations, which are essential to MPI semantics,

into a set of SMT formulas. The formula size is quadratic. Note that the prior work also

provides a list of non-intuitive and complicated zero buffer encoding rules. However, these

rules are only useful for manually encoding the zero buffer semantics. The new zero buffer

encoding in this paper considers only the schedules that strictly alternate sends and receives,

therefore, not only is it correct and intuitive, it is easy to build automatically. The use of

strict alternation is able to cover any message communication that may occur in any execu-

tion under zero buffer semantics. This strategy is inspired by Threaded-C Bounded Model

Checking (TCBMC) that extends C Bounded Model Checking (CBMC) [10, 11] to support

concurrent C program verification [44]. It assumes each lock operation and its paired unlock

operation is ordered alternatingly in any execution.

To summarize, the main contributions of this paper include,

• a new zero buffer encoding with strict alternation of sends and receives that is capable

of detecting zero buffer incompatibility,
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• a new encoding algorithm that supports MPI deterministic point-to-point communi-

cation and MPI collective communication, and

• a set of benchmarks that demonstrate the new encoding is more efficient than two

state-of-art MPI verifiers.

The rest of the paper is organized as follows: Sections 2 and 3 present a few trivial

rules for encoding MPI operations, including the summarization of the prior work [28] in

section 2 and the rules for MPI deterministic operations and collective operations in section

3; Based on these rules, section 4 discusses the new zero buffer encoding and how it is able to

check zero buffer incompatibility; Section 5 gives the experiment results; Section 6 discusses

the related work; and Section 7 discusses the conclusion and future work.

3.2 SMT Encoding for MCAPI

This section summarizes the SMT encoding rules (except the rules for zero buffer semantics)

discussed in the prior work for MCAPI verification. MCAPI is a light-weight message passing

interface that only uses sends and wildcard receives for message communication. A wildcard

receive is a receive that can match sends from any source. These rules are used to encode MPI

non-deterministic point-to-point communication. In general, the SMT encoding is generated

from 1) an execution trace of a program that includes a sequence of events; and 2) a set of

possible match pairs for message communication. Intuitively, a match pair is a coupling of

a send and a receive.

The encoding contains a timestamp timee for every event e in a program. Intuitively,

the timestamp is an integer. The event order is enforced by the Happens-Before (HB) op-

erator, denoted as ≺HB, over two events, e1 and e2 respectively, such that timee1 < timee2

holds. The send and receive operations are encoded as tuples. In particular, a send oper-

ation S = (MS, timeS, eS, valueS), is a four-tuple of variables. MS is the timestamp of the

matching receive; timeS is the timestamp of S; eS is the destination endpoint of a message;
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and valueS is the transmitted value. The values of eS and valueS are fixed from the input

trace. Similarly, a receive operation R = (MR, timeR, eR, valueR, timeWR), is modeled by a

five-tuple of variables. MR is the timestamp of the matching send; timeR is the timestamp

of R; eR is the destination endpoint of a message; valueR is the received value; and timeWR

is the timestamp of the nearest-enclosing wait WR. A nearest-enclosing wait is a wait that

witnesses the completion of a receive by indicating that the message is delivered and that

all the previous receives on the same process issued earlier are completed as well. The value

of eR is fixed from the input trace. Note that only wildcard receive is used in the MCAPI

semantics. Therefore, the encoding for MCAPI does not need to specify the message source

endpoints in sends and receives. The message communication topology is encoded as a set

of match pairs defined in Definition 15.

Definition 15 (Match Pair). A match pair, 〈R, S〉, for a receive R = (MR, timeR, eR, valueR,

timeWR) and a send S = (MS, timeS, eS, valueS), corresponds to the following constraints:

1. MR = timeS ∧MS = timeR

2. eR = eS ∧ valueR = valueS

3. timeS ≺HB timeWR

We define the potential sends for a receive R, denoted as Match(R), as the set of all the

sends that R may potentially match. The encoding rules are given in Figure 3.1: rules (3.1) –

(3.5) encode the program order; rule (3.6) encodes the match pairs; and rules (3.7) and (3.8)

encode the assumptions on control flow and the negated assertion respectively. Assume a

program contains N API calls, the generated SMT encoding contains O(N 2) formulas. The

following sections discuss the extension to MPI semantics and more importantly zero buffer

incompatibility that is not included in the prior work.
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− Sequential sends S and S′ from a common

source to a common destination eS = eS′

timeS ≺HB timeS′ (3.1)

− Sequential receives R and R′, on a common

process, eR = eR′

timeR ≺HB timeR′ (3.2)

−Receive R and its nearest-enclosing wait WR timeR ≺HB timeWR (3.3)

− Sequential order over a nearest-enclosing

wait WR for a receive R and a send S

timeWR ≺HB timeS (3.4)

−Two Sends, S and S′, to a common destination,

eS = eS′ , such that timeS ≺HB timeS′ is enforced

MS ≺HB MS′ (3.5)

−Match pairs for any receive R
∨

S∈Match(R)

〈R, S〉 (3.6)

−Assumption A on control flow A (3.7)

−User provided assertion P ¬P (3.8)

Figure 3.1: SMT encoding for MPI non-deterministic point-to-point communication.

3.3 Extension to MPI

This section discusses the new encoding for MPI deterministic point-to-point communication

and collective communication. To be precise, the encoding needs to add variables srcS and

srcR to the send operation and the receive operation respectively. Intuitively, the variables

srcS and srcR are the source endpoints of messages. As such, a send operation S = (MS,

timeS, eS, srcS, valueS), is now a five-tuple of variables. A receive operation R = (MR, timeR,

eR, srcR, valueR, timeWR), is now a six-tuple of variables. We constrain the variable srcR to

be equal to ∗ for a wildcard receive R. In addition, the match pair defined in Definition 15

adds a new constraint:

srcR = ∗ ∨ srcS = srcR,

indicating that either R is a wildcard receive or the source endpoints are matched for S and

R.

As discussed earlier, collective operations are used to synchronize an MPI program. To be

precise, collective operations such as barriers block the execution of processes until all the
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members in a group are matched. In addition, some type of collective operations such as

broadcast are able to send internal messages amongst its group, and/or to execute global

operations. MPI semantics guarantee that messages generated on behalf of collective oper-

ations are not confused with messages generated by point-to-point operations. Therefore,

the encoding in this paper puts emphasis on how to reason about the synchronization of col-

lective operations as it affects point-to-point communication. The internal message passing

and the execution of global operations by collective communication can be added as SMT

constraints to the encoding. In the following discussion, we take barrier as an example. The

barrier is defined as a group in Definition 16.

Definition 16 (Barrier). The occurrence of a group of barriers, B = {B0, B1, ..., Bn}, is

captured by a single timestamp, timeB, that marks when all the members in the group are

matched.

Even though barriers affect the issuing order of two events, it is hard to determine

whether they prevent a send from matching a receive. As an example, the message “1” in

Figure 3.2 may flow into R even though R is ordered before the barrier and S is ordered after

the barrier. The wait W(&h2) determines the behavior. If the program had issued W(&h2)

before the barrier, R would have to be completed before the barrier, meaning the message is

delivered. The encoding further defines the nearest-enclosing barrier (Definition 17) for this

type of interaction.

Definition 17 (Nearest-Enclosing Barrier). For any process i, a receive R has a nearest-

enclosing barrier B if and only if

1. the nearest-enclosing wait, W, of R is ordered before Bi ∈ B, and

Process 0 Process 1

B(comm) R(from P0, A,&h2)

S(to P1, “1”,&h1) B(comm)

W(&h1) W(&h2)

Figure 3.2: Message Communication with Barriers.
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−Any receive R that has a nearest-enclosing

barrier B and a nearest-enclosing wait WR

timeWR ≺HB timeB (3.9)

−Any barrier B and any operation O ordered

after a member of B

timeB ≺HB timeO (3.10)

Figure 3.3: SMT encoding for MPI collective communication.

2. there does not exist any receive R′ on process i, with a nearest-enclosing wait, W′, such

that 1) W′ is ordered after W; and 2) W′ is ordered before Bi.

Based on the definitions above, the encoding defines two rules for program order in

Figure 3.3. Rule (3.9) only constrains the program order over the nearest-enclosing wait

and the nearest-enclosing barrier for a receive. The order over this receive and the nearest-

enclosing barrier is not constrained. For rule (3.10), a barrier has to happen before any

operation ordered after it.

3.4 Zero Buffer Incompability

This section presents a new zero buffer encoding that is easy to build automatically. The

key insight is to order a send immediately preceding the matching receive in a match pair

captured in Definition 18.

Definition 18 (Match Pair *). A match pair, 〈R, S〉∗, for a receive R = (MR, timeR, eR, srcR,

valueR, timeWR) and a send S = (MS, timeS, eS, srcS, valueS), corresponds to the constraints:

1. MR = timeS ∧MS = timeR

2. eR = eS ∧ valueR = valueS

3. srcR = ∗ ∨ srcS = srcR

4. timeS = timeR − 1

Intuitively, the consecutive order over a send and the matching receive is defined in

the bold rule 4 of Definition 18. Any resolved execution strictly alternates sends and receives.
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− Sequential sends S and S′ from a common

source to any destinations

timeS ≺HB timeS′ (3.1*)

−Match pairs for any receive R
∨

Si∈Match(R)

〈R, Si〉∗ (3.6*)

− Send S and receive R are in

a sequential order on a common process

timeS ≺HB timeR (3.11)

− Send S and barrier B are in

a sequential order on a common process

timeS ≺HB timeB (3.12)

Figure 3.4: SMT encoding for zero buffer semantics.

Definition 19 (Strict Alternation). A set of sends, S, and a set of receives, R, are strictly

alternated if and only if each send in S immediately precedes the matching receive in R and

each receive in R immediately follows the matching send in S.

To further constrain the program order for zero buffer semantics, new rules are added

as shown in Figure 3.4: on each process a send happens before a receive that is issued later

(rule (3.11)); and similarly, on each process a send happens before a barrier that is issued

later (rule (3.12)). In addition, Rule (3.1*) replaces rule (3.1) as zero buffer semantics do not

allow a new send to be issued before the pending send is completed on a common process.

Rule (3.6*) replaces rule (3.6) to enforce strict alternation for every send and its matching

receive.

To check zero buffer incompatibility, the encoding intends to find a feasible strictly

alternating schedule by constraining the over-approximated match relation and the program

order. If no feasible schedule exists, meaning there is no ordering that satisfies the happens-

before relation, the program is zero buffer incompatible, and it deadlocks under zero buffer

semantics; otherwise, zero buffer compatibility is proved. Since this process only relies on the

event ordering, the constraints of user-provided assertions defined in rule (3.8) are removed.

Notice that a program with deadlock may be zero buffer compatible. Intuitively, a

deadlock can be caused by an orphaned send or receive that is never matched, a depen-

53



dency circuit existing in the message communication topology, the improper use of collective

operations, etc.

3.4.1 Correctness

As discussed earlier, the zero buffer encoding only considers schedules that strictly alternate

sends and receives, therefore, it makes the encoding rules intuitive and easy to build auto-

matically. The fundamental insight is that this strict alternation is sufficient to cover all

possible resolutions of message communication. We prove a theorem later that asserts this

insight. Before that, we need to define a few terms.

Definition 20 (Method Invocation). A invocation of a method, M, with a list of specific

values of arguments, (args · · · ), on process P , denoted as P : Mi(args · · · ), is a event that

occurs when M is invoked.

Definition 21 (Method Response). A response of a method, M, with a specific return value,

resp, on process P , denoted as P : Mr(resp), is a event that occurs when M returns.

Based on Definition 20 and Definition 21, an operation is split into two events: in-

vocation and response. The invocation asserts the issuing of an operation with concrete

arguments. We use the notations Si and Ri to represent the set of all the send invocations

and the set of all the receive invocations respectively for an MPI program. The response

asserts the completion of an operation with a concrete return value. We use the notations Sr

and Rr to represent the set of all the send responses and the set of all the receive responses

respectively for an MPI program. A history of an MPI program relies on method invocation

and method response.

Definition 22 (History). For an MPI program, let H be a history with a total order over

method invocations and method responses for a set of send operations, S, a set of receive

operations, R, and a set of barriers, B.

Based on Definition 22, we further define a legal history as follows.
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Definition 23 (Legal History). A history, H, for an MPI program is legal if the total order

over all the events in H is allowed by MPI semantics.

A legal history defined in Definition 23 represents a total order over events for an MPI

program. A legal history only takes care of sends, receives and barriers because only they

matter to message communication. In other words, the events in a legal history can be used

to evaluate how messages may flow in a runtime system. Since the arguments are concrete in

any method invocation and the return value is also concrete in any method response, a legal

history corresponds to a precise resolution of message communication. To find a feasible

message communication for a receive R, one only needs to search through the preceding

events and find a send S that matches the endpoints of R and obeys the non-overtaking

order for all the sends to the common destination endpoint. The legal history asserts that

the total order over all the events is allowed by MPI semantics. In particular, if a legal

history is allowed by zero buffer semantics, we call it a zero-buffer legal history.

To prove the theorem later, we need to compare two legal histories for equivalence.

The equivalence relation relies on the following definitions for projections.

Definition 24 (Projection To Process). A projection of a legal history, H, to a process, P ,

denoted as H|P , is a sequence of all the events on process P in H, such that the order over

any pair of events in H|P is identical as in H.

Definition 25 (Projection To Receive Response). A projection of a legal history, H, to the

receive responses, Rr, denoted as H|Rr , is a sequence of receive responses in H such that the

order over any pair of receive responses in H|Rr is identical as in H.

Based on Definition 24 and Definition 25, a legal history can be further projected

to the receive responses Rr on process P . We use H|Rr,P to represent this projection. The

equivalence relation relies on H|Rr,P .

Definition 26 (Equivalence Relation). Two legal histories for an MPI program, say H and

L respectively, are equivalent, denoted as H ∼ L, if and only if their projections to the receive
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responses Rr on each single process P , H|Rr,P and L|Rr,P respectively, agree on the return

values of Rr.

The following lemma is essential to proving that Definition 26 is a valid equivalence

relation. Definition 27 defines the reachable set of legal histories for an MPI program.

Definition 27 (Reachable Legal Histories). For an MPI program, p, let RS(p) be a set of

all the legal histories that are reachable from p.

Lemma 3 (Validity of Equivalence Relation). The ∼-operator is an equivalence relation

over the set of all legal histories.

Proof. Proof by the definition of equivalence relation. Consider three legal histories, H,L, T

∈ RS(p), for an MPI program, p, the equivalence relation in Definition 26 is reflexive,

symmetric and transitive.

1. H ∼ H. The reflexivity is true because the projection H|Rr,P to the receive responses

Rr on any process P , and the projection itself agree on the return values of Rr.

2. H ∼ L then L ∼ H. The symmetry is also true because H ∼ L and L ∼ H both

indicate that the projections H|Rr,P and L|Rr,P to the receive responses Rr on any

process P agree on the return values of Rr.

3. H ∼ L and L ∼ T then H ∼ T . As for the transitivity, for all the receive responses

Rr on any process P in the MPI program, H ∼ L indicates that the projections H|Rr,P

and L|Rr,P to the receive responses Rr on any process P agree on the return values of

Rr. Further, L ∼ T indicates that L|Rr,P is also identical to T |Rr,P . Therefore, H|Rr,P

is identical to T |Rr,P . Since P is an arbitrary process in the MPI program and Rr do

not change on P , thus H ∼ T is implied.

Based on the reflexivity, symmetry and transitivity, this equivalence relation is able to parti-

tion the reachable set of legal histories, RS(p), and therefore identifies the equivalent classes

among RS(p).
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Based on Lemma 3, we further use E(RS(p)) to represent the equivalent classes for all

the legal histories in RS(p). If an equivalent class includes zero-buffer legal histories, we call

it a zero-buffer available equivalent class. The following theorem states that a representative

exists for each zero-buffer available equivalent class.

Theorem 5. For any MPI program, p, each zero-buffer available equivalent class, E ∈

E(RS(p)), has a representative zero-buffer legal history, T , that strictly alternates the sends,

S, and the receives, R.

Proof. Proof by showing the existence of a zero-buffer legal history for any equivalence

class. First, assume there is a legal history L ∈ E . Second, assume Rr is a set of all

the receive responses. The projection L|Rr is a sequence of receive responses that reflects

how messages are received in L for all the processes. Since the message communication is

precisely resolved in L, each receive in R is matched with a send in S. Based on L and L|Rr ,

a new sequence, T , can be produced by two steps: 1) inserting the corresponding receive

invocation immediately preceding each receive response; and 2) inserting the invocation and

the response of the matching send immediately preceding each receive invocation. Based on

those steps, T strictly alternates S and R. Further, it obeys the conditions in Definition 23:

first, the consecutive order over a send and the matching receive in L still exists in T ;

second, if the matching receive is issued earlier on process P , there is no way to execute

any operation after the receive on process P until it is matched with a send, therefore,

postponing issuing the receive after the matching send does not violate the MPI semantics.

Under zero buffer semantics, it is not possible to order a send and the matching receive

other than the two stated situations above. Notice that T is equivalent to L as they receive

a common sequence of messages on each process. Therefore, for any existing zero-buffer

available equivalent class, the procedure above is able to find a representative zero-buffer

legal history that strictly alternates sends and receives.

57



Given the proof of message communication coverage, the soundness and completeness

only rely on the existing proofs in the prior work. The soundness proof is consistent with the

prior work: 1) the program order is precisely constrained in the encoding; and 2) any match

pair used in a resolved satisfying schedule is valid. The deterministic receive operations

and the collective operations for the new encoding do not violate these properties. To be

precise, the first property still holds because the program order for deterministic receive

operations and collective operations are precisely defined in the new encoding. The second

property is also true because the set of match pairs is given as input, which is not affected

by deterministic receive operations and collective operations.

The completeness proof of the new technique is similar to the prior work that uses

the operational semantics to simulate the encoding during its operation to ensure that the

two make identical conclusions. To prove the new encoding is complete, the operational

semantics are extended to support deterministic receive operations and collective operations.

A simulation of the extended operational semantics is then able to prove that any behavior

of MPI semantics is encoded by the new technique in this paper. Because the soundness

and completeness for the new encoding are both proved, we conclude that the encoding is

correct for MPI semantics.

3.5 Experiment

We compare the performance of our work with two state-of-art MPI verifiers: ISP [49, 58], a

dynamic analyzer, and MOPPER [20], a SAT based tool. We conduct a series of experiments

for five typical benchmark programs that are modified to be single-path. Assertions related

to correct computation are manually inserted into each program. All the results show the

comparison between zero buffer semantics and infinite buffer semantics. The initial program

trace for our approach is generated by running MPICH [39], a public implementation of the

MPI standard. This program trace is encoded symbolically where each variable does not have

a concrete value. A unique instance is generated for each write of a variable in the program
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Table 3.1: Tests on Selected Benchmarks

Test Programs Our Method ISP MOPPER
Name #Procs #Calls Match B Error ZI Mem Time #Runs Time Mem Time

Monte

4 35 24
0 No No† 3.62 0.02s 6 0.25s 6.09 <0.01s
∞ No – 3.42 0.02s 6 0.96s – –

8 75 40K
0 No No† 4.83 0.04s >5K TO 11.28 0.02s
∞ No – 4.34 0.04s >5K TO – –

16 155 2E13
0 No No† 8.97 0.29s >5K TO 24.42 0.08s
∞ No – 7.22 0.15s >5K TO – –

Integrate

8 36 5K
0 Yes No 4.71 0.08s 1 0.15s – – a

∞ Yes – 4.20 0.04s 1 0.16s – –

10 46 362K
0 Yes No 5.39 0.08s 1 0.16s – – a

∞ Yes – 4.76 0.05s 1 0.26s – –

16 76 1E12
0 Yes No 8.79 0.62s 1 0.25s – – a

∞ Yes – 7.50 0.32s 1 0.54s – –

Diffusion2D

4 52 6E9
0 No Yes 5.50 0.04s 90 3.09s 6.10 0.01s
∞ No – 4.80 0.03s 90 32.01s – –

8 108 2E21
0 No Yes 11.94 0.22s >9K TO – TO
∞ No – 8.51 0.12s >9K TO – –

16 228 3E57
0 No Yes 30.68 1.25s >10K TO – TO
∞ No – 30.76 5.11s >10K TO – –

Router

2 34 1
0 No Yes 3.39 0.02s 1 0.04s – – a

∞ No – 3.37 0.02s 60 13.24s – –

4 68 83K
0 No Yes 4.18 0.02s 1 0.04s – –a

∞ No – 3.99 0.03s >10K TO – –

8 136 7E9
0 No Yes 5.17 0.04s 1 0.15s – –a

∞ No – 5.06 0.05s >11K TO – –

Floyd

8 120 4E29
0 No No 13.87 0.15s >20K TO 18.05 0.27s
∞ No – 12.14 0.12s >20K TO – –

16 256 1E58
0 No No 21.58 0.26s >20K TO 67.53 43.08s
∞ No – 17.55 0.21s >20K TO – –

32 528 3E137
0 No No 252.97 439.89s >20K TO 212.30 476.52s
∞ No – 57.91 19.34s >20K TO – –

† MOPPER detects deadlock.
a MOPPER does not launch SAT analysis.

computation (similar to the static single assignment form [12]). Our encoding is resolved by

the SMT solver Z3 [13]. MOPPER also needs an initial program trace with the same input

data. MOPPER launches ISP to automatically generate such a trace. Since MOPPER is

designed for deadlock checking, it does not encode any computation in a program. The results

only show the performance of MOPPER for zero buffer incompatibility. The experiments

are run on a AMD A8 Quad Core processor with 6 GB of memory running Ubuntu 14.04

LTS. We set a time limit of 30 minutes for each test. We abort the verification process if it

does not complete within the time limit.

The results of the comparison are in Table 3.1. The column “Match” records the

approximated number of match possibilities. A program with a large number of match

possibilities has a large degree of message non-determinism. The column “ZI” indicates
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whether the program is zero buffer incompatible or not. The column “Mem” records the

memory cost in megabytes. The “Time” columns for our approach and MOPPER are only

for constraint solving. As a note, our approach and MOPPER both spend less than one

second to generate the trace and the encoding for every benchmark. The column “#Runs”

for ISP is the number of program interleavings that ISP traverses before termination. The

column “Time” for ISP is the running time of dynamic analysis. The meaning of the symbol

“–” is “unavailable”: either the test is not interesting for comparison or the error is detected

in preprocessing.

Monte implements the Monte Carlo method to compute π [8]. It uses one manger

process and multiple worker processes to send messages back and forth. In addition, barrier

operations are used to synchronize the program.

Integrate uses heavy non-determinism in message communication to compute an inte-

gral of the sin function over the interval [0, π] [1]. This benchmark also has a manger-worker

pattern where the root process divides the interval to a certain number of tasks. It then

distributes those tasks to multiple worker processes.

Diffusion2D has an interesting computation pattern that uses barriers to “partition”

the message communication into several sections [1]. A message from a send can be only

received in a common section.

Router is an algorithm to update routing tables for a set of nodes. Each node is in a

ring and communicates only with immediate neighbors to update the tables. The program

ends when all the routing tables are updated.

Floyd implements the Floyd’s all-pairs shortest path algorithm [65]. Each node com-

municates only with the immediate following neighbor.

Note that all the tools are able to correctly check zero buffer incompatibility for the

benchmarks above. Also, our encoding and ISP are both able to correctly check assertion

violations. The results in Table 3.1 show that our encoding with Z3 is highly efficient

compared to ISP. For the benchmark programs such as Diffusion2D and Floyd, where ISP
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does not terminate after traversing a large number of interleavings, our approach returns

under a second in most cases. Even for the benchmark programs where ISP terminates after

traversing only a small subset of all the interleavings, our approach is able to run slightly

faster. Our approach is also faster than MOPPER for the benchmark programs where there

is a large degree of message non-determinism. If the number of match possibilities is low,

our approach runs as fast as MOPPER does. As discussed earlier, a deadlock may be caused

by many ways other than zero buffer incompatibility. The program Monte is zero buffer

compatible, but it contains a deadlock that can be detected by MOPPER. Our solution

was never intended to find such a deadlock. ISP should detect it but does not. For the

programs Integrate and Router, MOPPER does not launch a SAT analysis because the ISP

preprocessor detects the assertion violation or deadlock, and thus, MOPPER aborts the

verification process.

3.6 Related Work

The dynamic analyzer ISP implements the POE algorithm, a Dynamic Partial Order Re-

duction (DPOR) algorithm [19] applied to MPI programs [58]. An extension is the MSPOE

algorithm [49]. It operates by postponing the cooperative operations for message passing in

transit until each process reaches a blocking call. It then determines the potential matches

of send and receive operations in the runtime. In addition to program properties, it is able

to check deadlocks.

Forejt et al. proposed a SAT based approach to detect deadlock in a single-path MPI

program [20]. This solution is correct and efficient for programs with a low degree of message

non-determinism. However, since the size of their encoding is cubic, checking large programs

is time consuming. Similar to our solution, this work requires a match pair set that can be

over-approximated.
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MPI-Spin is integrated into the classic model checker SPIN [24] for verifying MPI

programs [51, 52]. It generates a model of an MPI program and symbolically executes it. It

does not scale to large programs with a large degree of message non-determinism.

Vo et al. used Lamport clocks to update auxiliary information via piggyback messages

[62, 63]. While completeness is abandoned in their analysis, they show the approach is useful

and efficient in practice.

Sharma et al. proposed the first push button model checker for MCAPI – MCC

[48]. It indirectly controls the MCAPI runtime to verify MCAPI programs under zero buffer

semantics. One drawback of this work is that it does not include the ability to analyze infinite

buffer semantics which is known as a common runtime environment in message passing. A

key insight, though, is the direct use of match pairs – couplings for potential sends and

receives.

Elwakil et al. also used SMT techniques to reason about the program behavior in the

MCAPI domain [17, 18]. State-based and order-based encoding techniques are both used.

These techniques fail to reason about the infinite buffer semantics and require a precise

match set which is non-trivial to compute beforehand.

Our prior work encodes an MCAPI execution into an SMT problem for detecting

user-provided assertions [28]. The encoding is sound and complete and is easy to use to

reason about infinite buffer semantics without requiring a precise match set. The work also

provides an algorithm that runs in quadratic time complexity to generate a sufficiently small

over-approximated match set based on the given execution trace.

3.7 Conclusion and Future Work

This paper presents a new algorithm that correctly encodes a single-path MPI program.

This encoding, including the rules for MPI point-to-point communication and MPI collective

communication, is capable of detecting zero buffer incompatibility. It is also adaptable to

checking assertion violations. The key insight in this paper is that the new zero buffer
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encoding considers only the schedules that strictly alternate sends and receives. This strict

alternation strategy makes the encoding intuitive and easy to build automatically, and is

able to cover all the message communication. Experiments indicates that our solution is

correct and more efficient than two state-of-art MPI verifiers.

The encoding is dependent on a single-path MPI program which can be initialized by

an execution trace. Future work will explore using bounded model checking to encode all

the paths of an MPI program. This technique statically unrolls an MPI program and then

verifies it by constraining the semantics into an SMT encoding. Also, future work will explore

using the SMT encoding to check deadlock patterns other than zero buffer incompatibility.
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Chapter 4

An Efficient Approach for Match Pair Approximation in Message

Passing

Asynchronous message passing paradigm is commonly used in high performance com-

puting (HPC). Message non-determinism makes the error detection in message passing pro-

grams very difficult. The prior work uses an over-approximation of the precise match pair

records (each is a pair of a send and a receive that may potentially match in the runtime)

to capture all possible message communication in a concurrent trace program (CTP). The

SMT encoding with such a set of match pairs is able to witness program properties includ-

ing deadlock, message race, and zero-buffer compatibility, but is inefficient because of the

exponential ways of match pair resolution. This paper presents a new algorithm that under-

approximates the match pairs for a CTP iteratively: first sectioning each process in the CTP

such that each potential sender distributes roughly a bounded number of sends to match

the same number of receives in the process, and then approximating the match pairs for the

sends and receives in each section independently by a few simple rules with ranking. The

algorithm runs in quadratic complexity in the number of operations. Novel in the work is

that the algorithm has the flexibility to generate the match pair set with various size based

on the user input. This paper further presents that the precise match pairs for any CTP can

be generated with a bounded input. The experiments over a set of benchmarks show that the

algorithm in this paper drastically reduce the runtime performance of property witnessing

as all the properties are witnessed with a small set of match pairs generated by the new al-
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gorithm. The results also show that the algorithm is able to scale to a program that employs

a high degree of message non-determinism and/or a high degree of deep communication.

4.1 Introduction

Asynchronous message passing is a prevalent programming model in high performance com-

puting (HPC). The idea of message passing is simple at the outset; processes communicate

by sending messages from one to another. It does not take long, however, to realize that

despite the simplicity of the programming model, there is a lot of subtlety in message passing

that can impact program behavior. For example, depending on the library, a programmer

must be aware of such things as message non-determinism (concurrent sends to a process can

arrive in any order), buffering semantics in the runtime (a process may block if the buffer

is full), or broad synchronization operations that message with groups of processes at the

same time (i.e., collective operations). This inherent complexity means that the problems

of determining if a message passing program is free of deadlock, compatible with a given

buffering semantics, or if the message non-determinism affects the correctness of the com-

putation are all NP-complete [20, 25, 26, 28]. Showing any of these properties for an input

program requires a significant runtime for an approach.

Prior work on program correctness in the message passing paradigm can be roughly

grouped into dynamic analysis where an existing runtime is manipulated to explore different

scheduling outcomes [49, 58], model checking where a model of the original program is

analyzed [51, 52], runtime verification where the program execution is observed but not

manipulated [23, 32, 60], and symbolic model checking where a model of the program is

symbolically analyzed with an SMT solver [25, 28]. This paper looks specifically at symbolic

model checking and ways to better leverage the SMT solver in witnessing program properties

for message passing programs.

The most efficient types of encoding for symbolic model checking of message passing

programs, where efficient means they scale to programs with a high degree of message non-
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determinism, rely on the concept of a match pair and a concurrent trace program abstraction

(CTP) [17, 18, 20, 25, 26, 28]. A match pair is a send and receive pair that may be matched

by the run-time in some feasible execution of the program. A CTP is an abstraction of the

program that removes all branching so each process is a sequence of send, receive, and wait

(e.g., a witness to the completion of a send or receive) operations [25, 28]. The abstraction

is constructed by observing the execution of the program in the run time for a given input.

Symbolic model checking gives the SMT solver an encoded CTP with a set of match pairs,

and the solver then tries to select a subset of the given match pairs in such a way that the

CTP deadlocks or violates an assertion.

The size of the input match-pair set directly impacts the cost of the call to the

SMT solver in the symbolic model checking of message passing programs; a large input set

typically means an expensive solver call especially if there is a high-degree of message non-

determinism. The idea in this paper is to reduce the cost of the solver call by reducing the

size of the input match set to each call. Such a reduction cannot, however, be done naively;

any match pair set must be message complete. A message complete match pair set for a

CTP is one that lets the program run to completion (assuming it is free of deadlock).

To reduce the number of match pairs and thereby decrease the cost of verification,

this paper describes an iterative algorithm to successively generate under-approximations of

the true set of match pairs until all match pairs are generated. The under-approximations

retain the message complete property. Such an approach focuses on property witnessing

rather than proofs of correctness as the intent is to witness program properties early in the

iterations before the set of match pairs gets large.

Generally, the algorithm generates the match pairs in two steps. First, each process

is sectioned, where a section contains a sequence of receives in the process and a number of

sends from all the senders that may potentially match these receives. The number of sends

from each sender is roughly bounded by k given as a user input. The sends from each sender

are distributed sequentially. The total number of the sends distributed to the section is equal
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to the number of receives in the same section. Match pairs are then generated for each section

independently. This independent sectioning effectively ignores combinations of match pairs,

that are feasible, but only available when the considered concurrent outstanding sends are

more than the number of receives in the section. The algorithm generates the match pairs

for the sends and receives in each section by a list of simple rules based on ranks [28]. A

rank is a non-negative integer that represents the position of a send or a receive in a specific

sequence in the section.

Given the algorithm for match pair generation, the approach in this paper starts with

k = 1 and increments k to a larger bound such that the number of the divided sections is

changed, because the match pair generation for the new iteration is only meaningful if each

process is sectioned differently. The growth of the size of the match pair set is polynomial as

k increases. The program property is then witnessed with the larger bound k; or the process

repeats.

The paper includes the discussion that the precise match pairs for any CTP can be

generated with a sufficiently large bound k. Experiments further show that the runtime cost

of witnessing properties is dramatically reduced as the properties are witnessed with rela-

tively small values of k creating simple problem instances for the SMT solver. Experiments

also show that the algorithm is able to scale to a program that employs a high degree of

message non-determinism and/or a high degree of deep communication. Deep communica-

tion in this context means that each sender for a receiver issues a long sequence of sends to

the receiver. The contributions include,

• the efficient algorithm that under-approximates the precise match pairs for a CTP,

• the proof that the precise match pairs for any CTP can be generated by the new

algorithm with a sufficiently large bound k, and

• the results from the experiments using a set of benchmarks to demonstrate the im-

proved ability of witnessing program properties.
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p1 p2 p3

r0(from ∗, to p1, w0)

w0(r0)

r1(from ∗, to p1, w1)

w1(r1)

r2(from p2, to p1, w2)

w2(r2)

s5(from p1, to p2)

r3(from ∗, to p1, w3)

w3(r3)

r4(from ∗, to p1, w4)

w4(r4)

s0(from p2, to p1)

s1(from p2, to p1)

r5(from p1, to p2, w5)

w5(r5)

s2(from p2, to p1)

s3(from p3, to p1)

s4(from p3, to p1)

Figure 4.1: A simple concurrent trace program.

The rest of the paper is organized as follows: Sections 2 presents the definition and

semantics of CTP; Section 3 presents the general algorithm in the paper; Section 4 states

that the precise match pairs can be generated; Section 5 gives the experimental results;

Section 6 discusses the related work; and Section 7 is the conclusion and future work.

4.2 Concurrent Trace Program Definition and Semantics

This section explains message communication in a simple CTP consisting of a handful of

operations. Consider the CTP in Figure 4.1 that includes three processes that use non-

blocking send (s) and non-blocking receive (r) for message communication. The nearest-

enclosing wait (w) witnesses the completion of the receive [28]. The completion of any send

or receive, is only confirmed when the send or the receive is matched in the runtime. Note

that if the sender ID for a receive is “∗”, then the receive is wildcard meaning that it may

match a send from any sender.
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Picking up the scenario in Figure 4.1, process p1 receives five messages from any

sender or the specific senders and sends one message to p2; process p2 sends three messages

to p1 and receives a message from p1; and process p3 sends two messages to p1.

A set of match pairs represents a solution to the SMT problem if that set of match

pairs is feasible. Feasible in this context means there exists a program trace allowed by the

runtime that matches according to the solution set. In this example, a feasible program trace

is equation (4.1).

s0 → r0 → w0〈r0 s0〉 → s3 → r1 → w1〈r1 s3〉 → s1 → r2 → w2〈r2 s1〉

→ s5 → r5 → w5〈r5 s5〉 → s4 → r3 → w3〈r3 s4〉 → s2 → r4 → w4〈r4 s2〉
(4.1)

As shown, the feasible trace in equation (4.1) implies a set of match pairs that represents

a solution to the SMT problem from the prior work. The solution for equation (4.1) is

{〈r0 s0〉, 〈r1 s3〉, 〈r2 s1〉, 〈r5 s5〉, 〈r3 s4〉, 〈r4 s2〉}.

Since the message matching is possibility non-deterministic in the presence of wildcard

receives, there exist other feasible executions for the CTP in Figure 4.1 where the receives

are matched in different ways. For example, the receive r0 can be matched with the send

s3 instead of the send s0 if s3 arrives in p1 earlier than s0. As such, the message delivery

for r0 is non-deterministic and it is associated with two potential match pairs. Given the

message non-determinism, the message communication can be resolved in many (and possibly

exponential) ways. Therefore, to capture the behavior in other executions, new match pairs

are needed. For example, another feasible execution is presented in equation (4.2). As shown,

the CTP in Figure 4.1 deadlocks for this trace.

s0 → r0 → w0〈r0 s0〉 → s1 → r1 → w1〈r1 s1〉 → s3 → s4 → (Deadlock) (4.2)

The deadlock occurs because there is no way to match the receives r2 and r5 after the sends

s3 and s4 are issued. The use of the new match pair 〈r1 s1〉 is essential to find the execution
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in equation (4.2) that makes the CTP in Figure 4.1 deadlock. The goal of the new algorithm

in this paper is to generate a reduced set of the precise match pairs that can be used to

finding such a trace with hidden errors.

Given the example in Figure 4.1, the algorithm in this paper would initialize k = 1,

meaning that each sender has roughly one send distributed to a section. The algorithm

sections process p1 with k = 1 in equation (4.3).

section 1 :{r0, r1, s0, s3}, section 2 :{r2, r3, s1, s4}, section 3 :{r4, s2} (4.3)

Since there are two senders for p1, each sender distributes one send to a section to match the

same number of receives. For example, section 1 in equation (4.1) contains the receives r0

and r1, and the sends s0 and s3. The algorithm in this paper then sections process p2 in the

same way. Finally, the match pairs for each section are over-approximated using ranks [28].

Intuitively, a rank is the position of a send or a receive in a list. For example, r0 has the

rank of “0” and r1 has the rank of “1” in the receive list for section 1. Given the ranks, the

match pairs 〈r0 s0〉, 〈r0 s3〉, 〈r1 s0〉, and 〈r1 s3〉 are generated for section 1. The generated

match pairs with k = 1 are sufficient to capture the match solution for the trace in equation

(4.1). Since the match pair 〈r1 s1〉 is not generated with k = 1, the trace in equation (4.2)

is not captured.

The algorithm then increments k to 2 to repeat match pair generation.

section 1 :{r0, r1, r2, r3, s0, s1, s3, s4}, section 2 :{r4, s2} (4.4)

As shown in equation (4.4), the algorithm with k = 2 is able to partition process p1 into two

sections, and section 1 groups the receive r1 and the send s1 at present. As such, the match

pair 〈r1 s1〉 is generated and the deadlock in equation (4.2) is witnessed.
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4.3 Main Algorithm

This section presents how to generate match pairs for a CTP. Intuitively, Algorithm 1 is

called several times for the CTP, once for each process that contains a sequence of receives.

In each call of Algorithm 1, a process is sectioned, where each section contains roughly k

sends from each sender. A sequence of receives in the process is also added to the section

where the number of receives is equal to the number of sends in the same section. The

divided sections consisting of only sends and receives for the process are then input to the

existing algorithm for match pair generation [28].

Algorithm 1 Process Sectioning

1: while |R| > 0 do
2: r ← dequeue(R)
3: if frm(r)= ∗ then
4: let p be such that ∀p′ ∈ ∆ (|S(p)| > 0 ∧ |S(p′)| > 0 ∧Ns(p) ≤ Ns(p

′))
5: else
6: let p be the sender of r
7: end if
8: Ns(p)← Ns(p) + 1
9: s← dequeue(S(p))
10: cur ← cur ∪ {r, s}
11: if ∀p ∈ ∆ (Ns(p) >= k ∨ |S(p)| = 0) ∨ |R| = 0 then
12: secs ← secs ∪ {cur}
13: cur ← ∅
14: for p ∈ ∆ do
15: Ns(p)← 0
16: end for
17: end if
18: end while

4.3.1 Process Sectioning

At a low level, the presentation needs to first explain a few data structures that are essential

to Algorithm 1. R is a list of all the sequential receives in a process. ∆ is a set of IDs of

all the senders {p1, p2, . . .}. The current section cur represents a new program that contains
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only sends and receives. It is initialized to an empty set. The set secs is used to store all

the partitioned sections.

The algorithm also applies a few auxiliary functions. S(p) returns a list of sends for

the sender p. NS(p) returns the count of sends directed to the current section by the sender

p. dequeue(L) removes and returns the first element in the list L. frm(r) returns the

sender ID of the receive r.

Given the data structures and functions, Algorithm 1 runs in several steps:

1. Dequeuing the first receive r from the list R (line 2);

2. Choosing a sender p based on the sender ID of r (line 3 to line 7);

3. Incrementing the count Ns(p) and dequeuing the first send s from the send list of p

(line 8 to line 9);

4. Adding the combination of r and s to the current section cur (line 10);

5. Adding the current section cur to the set secs and then resetting cur and Ns once

Ns(p) is greater or equal to k for each sender p ∈ ∆ or there are no sends in S(p) or

there are no receives in the destination process (line 11 to line 17);

6. Repeating the above steps until R is empty (line 1).

For each receive r, if the sender ID is ∗ indicating r is wildcard, then the algorithm

randomly chooses a sender p that has the minimum count among the senders where each

sender has at least one send at line 4. If r is a deterministic receive, then p is the specific

sender for r at line 6.

The intuition of the condition at line 11 is that each sender must distribute roughly

k sends to the current section unless the receive list R is already empty. The sender may

distribute more than k sends as if more than k deterministic receives that specify the sender

are added to the section. If the total number of sends in the sender is less than k, then all

the sends must be distributed from that sender.
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4.3.2 Match Pair Approximation

Given the partitioned sections in the set secs by Algorithm 1, the match pairs for each

section can be generated independently by the existing algorithm in the prior work [28].

Intuitively, the algorithm checks all the pairs of receives and sends in each section, and

prunes obvious matches that cannot exist in any runtime implementation of the specification

by comparing ranks of sends and receives. A rank of a receive is its position in the list R. A

rank of a send is its position in the send list S(p) from the sender p to the receiver.

The existing algorithm implies the “match over-approximation” property, in that all

the precise match pairs (and maybe some unprecise match pairs) in the section are generated.

Please refer to the prior work [28] for more detail of the algorithm.

4.4 Coverage of Message Communication

According to Algorithm 1, a send and a receive from two different sections are not considered

for matching. For the CTP in Figure 4.1, the match pair 〈r1 s1〉 can not be generated with

k = 1 as the receive r1 and the send s1 are partitioned into two sections. To capture the

missed match pairs for a send and a receive, a possible way is to group them into a single

section with a larger bound k. The match pair 〈r1 s1〉 for the example in Figure 4.1 can be

generated with k ≥ 2. Note that all the precise match pairs for the CTP in Figure 4.1 are

generated with k = 3, where each process is partitioned into a single section.

Definition 28 (Max Bound). For any CTP, there exists a bound k, such that each process

can be partitioned into a single section; this bound k is called the max bound.

The max bound of k can be statically computed. According to Algorithm 1, a section

can be constructed only if each sender reaches the k-bound for send distribution or distributes

all the sends assuming the receive list is not empty. As such, it implies that

k = max({|S(pi)| | pi ∈ sender}), (4.5)
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that is able to group all the sends to a single section in the destination process, where the

function MAX returns the maximum among a set of numbers. It is assumed that the total

number of receives in a process is equal to the total number of sends directed to the process.

Therefore, the process is partitioned into a single section. Further, if the bound k satisfies

that

k = max({kj | pj ∈ P}), (4.6)

where P is a set of all the processes in the CTP and kj is a bound that satisfies equation

(4.5) for process pj, then each process in the CTP is partitioned into a single section. The

bound k that satisfies equation (4.6) is the max bound.

According to the max bound of k and the match over-approximation property of the

existing algorithm [28], the precise match pairs for a CTP can be over-approximated by the

algorithm in this paper.

4.5 Experiments

This section describes a series of experiments over a set of benchmarks to determine (1) the

effectiveness of the algorithm is quickly witnessing properties of the input program, and (2)

how well the algorithm controls the size of the match pair set as the bound k increases.

The benchmark programs are specific to the Message Passing Interface (MPI), a

widely used message passing standard [3] and come from different sources. Three are derived

from actual MPI programs and are used in other works for benchmarking [1, 40, 65].

• Diffu2DNoBa is modified from the program Diffusion 2D, which uses barriers to par-

tition the message communication into several sections [1]. Diffu2DNoBa removes the

barriers from the original program so deadlocks are present in the new program. The

program is also interesting because the messages to any receiver are distributed from

a large set of senders.
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• Pktuse is executed with only 5 processes – each of which has a long sequence of mes-

sages to be sent to the other processes [40]. The program uses wildcard receives only,

therefore has a high degree of message non-determinism.

• Floyd implements the shortest path algorithm for all the pairs of nodes [65]. Each

node communicates only with the immediate following neighbor. The program also

has a large set of senders for each receiver.

The remaining four are synthetic programs created for this study.

• DeepComm is a simple program with one receiver and 4 senders. The program is

designed to have a long sequence of sends in each sender. Also, this scenario issues

only wildcard receives, so that the messages from different senders may race.

• MultiM is an extension to a program in the MCAPI library distribution [28]. The

program adds extra iterations to the original program to generate longer execution

trace. The program uses only wildcard receives and is designed to have an interesting

violation of assertion that only occurs in some possible executions.

• Mismatch is designed to contain a communication deadlock in execution. The pro-

gram interleaves wildcard receives and deterministic receives in the program text. A

deterministic receive may be orphaned in program execution leading to a deadlock as

all the potential sends it need are matched with the preceding wildcard receives.

• MismatchEx is an extension to the program in Figure 4.1 that contains more sends and

receives. Similar to the program in Figure 4.1, a deadlock may occur in deep execution.

These programs are tested for three types of properties: assertion violation, zero

buffer compatibility and deadlock. The deadlock checking relies on a static pattern matcher

to identify potential deadlock scenarios [26]. The experiments here use single pattern match,

and the SMT encoding is to witness the feasibility of that match. The same pattern match

is used for all experiments on any given deadlock example. The initial trace for any input

program is generated by MPICH [39], a public implementation of the MPI standard. The

SMT encoding for each test is generated by the existing rules [25, 28] and is solved by Z3
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Table 4.1: Tests on Selected Benchmarks

Test Programs Performance
Name #P #Calls k #Match Time Speed

A
ss
er
tV

Diff2DNoBad 16 188 3 1,066 87.361s 0.59
DeepComm 5 180 1 240 0.837s 1,647
Pktuse 5 2048 1 1,792 180s >40
MultiM 3 266 1 500 10.892s 295
Floydd 32 528 2 1,928 60.546s 0.48

Z
er
o
C
o
m

Diff2DNoBad 16 188 3 1,066 10.177s 0.53
DeepComm 5 180 1 240 0.875s 291
Pktuse 5 2048 1 1,792 121s >59
MultiM 3 266 1 500 8.312s 366
Mismatch 3 800 1 204 2.904s 3.06
MismatchEx 3 296 1 165 0.579s 876
Floyd 32 528 1 1,928 89.032s 1.02

D
L

Diff2DNoBa 16 188 1 514 3.479s 13.50
Mismatch 3 800 1 204 2.160s 6.61
MismatchEx 3 296 3 328 1.253s 27.23

d The property does not exist for the benchmark.

[13]. The experiments are run on a AMD A8 Quad Core processor with 6 GB of memory

running Ubuntu 14.04 LTS. A time limit of 2 hours is set for each test. The test aborts the

verification process if it does not complete within the time limit.

4.5.1 Effectiveness

The effectiveness of property witnessing are shown in Table 4.1 that divides the tests into

three groups, where each group is the tests for a single type of property. Each group is labeled

in the first column: “AssertionV” means assertion violation; “ZeroCom” means zero buffer

compatibility; and “DL” means deadlock. For each benchmark, k is the minimum value

at which the property is witnessed (if the property exists), or the value at which the over-

approximated match set is generated (if the property does not exist). The column “#M”

is the number of the generated match pairs for k. The column “Time∗k” is the cumulative

sum:
∑k

i=1 Timei, where Timei is the runtime of checking satisfiability with the generated

match pairs for the bound i. The column “Speed” reports the relative speedup over the

running time of simply using the regular over-approximated match pair set: Time(over-

approximated)/Time∗k.
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The results show that each property, if existing for a benchmark, is efficiently wit-

nessed by the SMT encoding with the under-approximated match pairs in the benchmark;

it is not known if such an early detection takes place in general. The tested properties for

all the real programs can be witnessed with k = 1. For example, the assertion violation for

the program Pktuse can be detected with k = 1 where the speedup is greater than 40. Note

that the speedup for the program Pktuse is not a concrete number because the test with the

over-approximated match pairs is time out.

For the tests where the properties do not exist in the benchmarks, the results show

slow down as expected, but the intent of this work is to improve the ability to find witnesses

early rather than to prove correctness. For example, three tests are run for checking the

assertion violation property for the program Diffu2DNoBa, where k is incremented from 1

to 3. The over-approximated match pairs are generated with k = 3 that is the max bound

and can be easily computed.

The tests for all the synthetic programs also show the properties can be witnessed

with a potential for speed up, even if several tests are required to be run beforehand. For

example, the program MismatchEx is designed to contain a deadlock deep in an execution.

The witness is found after k is incremented to 3, where the speed up is more than 27

compared to the runtime with the over-approximated match set for k = 42. The capability

of witnessing properties with a low k-bound is especially helpful for the large programs to

be feasible as the over-approximated match set for such programs is usually too large to be

resolved.

4.5.2 Scalability

To evaluate how the input k impacts the generated match pairs, the presentation discusses

two benchmarks for how the sends are distributed from senders. The benchmarks are outside

the set of programs discussed earlier and are defined based on the template program in

Figure 4.2. The template program is simplified to contain only a receiver pr that issues a
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pr p1 . . . pm

r0(from ∗, to pr, w0)

w0(r0)

r1(from ∗, to pr, w1)

w1(r1)

...

s0(from p1, to pr)

s1(from p1, to pr)

...

... sm0(from pm, to pr)

sm1(from pm, to pr)

...

Figure 4.2: A template concurrent trace prorgam.

sequence of receives, and several senders p1, . . . , pm where each sender issues a fixed number

(|S|) of sends. The number of receives in pr is |S| ×m.
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Figure 4.3: The number of partitioned sections of varying the input k.
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Figure 4.4: The relative growth of the number of match pairs of varying the input k, where
Match1 is the number of the generated match pairs for k = 1.

The first benchmark, WorstT1, is constructed by restricting all the receives in Fig-

ure 4.2 to be wildcard, which implies the worst case of message non-determinism. Also, let

78



m = 4 and |S| = 25 in the program configuration so there are more than one sections parti-

tioned for a set of possible k-bounds. In contrast, the best case of message non-determinism

is a program that only contains deterministic receives. As such, the matches for the best

case program are deterministic.

The second benchmark, WorstT2, is related to the worst case of wide communication.

Wide communication in this context means that the sender only sends one message to the

receiver. The program is constructed by setting |S| = 1 and m = 100. As for the best case

of wide communication, the program has to contain only the deep communication where a

receiver has exactly one sender. The matches for this type of best case are deterministic

because the messages are received in a fixed FIFO order.

Given the two worst-case programs, the presentation discusses how the number of

sections and the number of match pairs grow as k increases for the two programs. The

relationship between the number of sections and k is illustrated in Figure 4.3, and the

relationship between the number of match pairs and k is illustrated in Figure 4.4. Note that

the values of y-axis in Figure 4.4 are computed by dividing the number of match pairs for

any k by the number of match pairs for k = 1.

Figure 4.3 (a) shows that the growth of the number of sections is not linear for

the program WorstT1. As such, incrementing k may not be meaningful if the number of

sections does not change. The approach in this paper only increments k until the number of

sections changes, and then outputs the generated match pairs with k to the SMT encoding.

Since the number of the generated match pairs per section is also non-linear according to the

complexity of the existing algorithm [28], the total number of the match pairs for WorstT1 in

Figure 4.4 (a) has a sharp growth between small values of k, and then grows more gently until

it reaches the bound, which represents the over-approximated match pairs. This observation

demonstrates that the algorithm scales for a small range of k where the generated match set

is small.
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For the program WorstT2, Figure 4.3 (b) shows that the number of sections is always

one as expected because only one section can be partitioned for wide communication. As

such, the total number of match pairs for WorstT2 in Figure 4.4 (b) does not change.

Based on the discussion of message non-determinism and wide communication, the

synthetic programs discussed earlier can be grouped. The programs DeepComm and MultiM

are close to the worst case of message non-determinism as only wildcard receives are employed

in both programs. For the wide communication, no synthetic program is close to the worst

case. Instead, all the programs show a certain degree of deep communication.

The real programs can also be classified for message non-determinism and wide com-

munication. Figure 4.3 and Figure 4.4 further plot the growths for the real programs. The

programs Diff2DNoBa and Floyd uses more wide communication, therefore, their growths

in Figure 4.4 rapidly reach the bound of match pairs. In contrast, the program Pktuse em-

ploys a large degree of deep communication with many wildcard receives. As such, Pktuse in

Figure 4.4 (a) gradually grows to the bound as k increases to 128. Thefore, the presentation

demonstrates that the algorithm is able to scale to a program with a high degree of message

non-determinism and a high degree of deep communication.

4.6 Related Works

There are several works related to match pairs. Sharma et al. proposed the first push

button model checker for MCAPI – MCC [48]. It indirectly controls the MCAPI runtime

to verify MCAPI programs under zero buffer semantics. An obvious drawback of the work

is its inability to analyze infinite buffer semantics which is known as a common runtime

environment in message passing. A key insight, though, is the direct use of match pairs.

A precise SMT encoding technique is proposed for detecting user-provided assertions

for MCAPI programs [28]. The encoding is sound and complete and is easy to use to reason

about infinite buffer semantics without requiring a precise match set. The work also provides

an algorithm that runs in quadratic time complexity to generate a over-approximated match
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set based on the given execution trace. This approach is extended to checking zero buffer

incompatibility for MPI semantics [25].

Elwakil et al. proposed another encoding technique that is applied to MCAPI [17, 18].

The encoding uses a non-obvious way to constrain the happens before relation in a program.

The approach fails for two reasons. First, it does not find out all possible process interleavings

under infinite buffering setting. Second, the foreknowledge assumption about the potential

matches of send and receive operations does not apply for a large complex program execution.

Forejt et al. proposed a SAT based approach to detect deadlock in a single-path MPI

program [20]. The solution is correct and efficient for programs with a low degree of message

non-determinism. However, since the size of the encoding is cubic, checking large programs

is time consuming. The work also requires a match pair set.

There are other solutions for message passing program analysis. The dynamic an-

alyzer ISP implements the POE algorithm, a Dynamic Partial Order Reduction (DPOR)

algorithm [19] applied to MPI programs [58]. An extension is the MSPOE algorithm [49].

It operates by postponing the cooperative operations for message passing in transit until

each process reaches a blocking call, and then determines the potential matches of send and

receive operations in the runtime. A drawback of ISP is that it does not scale for large

programs due to state explosion.

Umpire applies runtime verification for MPI programs [60]. The approach takes one

manger thread and several outfielder threads in an MPI execution. A drawback of the

approach is that it relies on a concrete execution, which may miss the errors in the other

execution trace. The extensions to Umpire is Marmot [32] and MUST [23]. These approaches

are neither sound nor complete for deadlock detection.

MPI-Spin is integrated in the model checker SPIN [24], for verifying MPI programs

[51, 52]. It generates a model of an MPI program and symbolically executes it. It does not

scale to large programs with a large degree of message non-determinism.
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CIVL is a model checker which uses symbolic execution to verify a number of safety

properties of various types of concurrent programs including message passing programs [56,

67].

Vo et al. proposed an approach that uses Lamport clocks to update the auxiliary

information via piggyback messages [62, 63]. While completeness is abandoned in their

analysis, the work is useful and efficient in practice.

4.7 Conclusion and Future Work

This paper presents a new algorithm that generates the match pairs for message passing

programs in the context of a CTP. First, the algorithm sections each process where each

section contains roughly k sends from each sender that may match the same number of

receives in the section. The bound k is a user input. The algorithm then approximates the

match pairs for each section [28]. The key insight of the algorithm in this paper is that the

match pairs for each section are generated independently. This paper presents that all the

precise match pairs for a CTP can be generated with the max bound of k. Experiments

demonstrate that all the properties in the benchmarks can be efficiently witnessed with a

low k-bound. Experiments also show that the algorithm scales to a program that employs a

high degree of message non-determinism and/or a high degree of deep communication.

The algorithm in this paper is restricted to the CTP abstraction that only reveals the

behavior from an execution trace given a concrete input. The program structures that do not

exist in a CTP but are commonly used in any message passing program, such as branches,

loops, functions, are not supported by the algorithm in this paper. Future work will explore

to extend the algorithm in this paper to support these structures. As discussed earlier, the

algorithm in this paper does not scale well to a program with wide communication due to

how a process is sectioned. Future work will consider new ways to section processes so that

programs with various communication types are supported.
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Chapter 5

A Hybrid Approach of Dynamic and Static Analyses for Deadlock

in MPI Programs

The message passing interface (MPI) is a common programming model for distributed

computing. Message race (intended or not) leads to non-determinism making test and debug

in MPI programs very difficult. This paper addresses the NP–complete problem of deadlock

detection in MPI programs in the context of trace programs. The initial trace programs

are preprocessed by executing the program. The solution uses progressively more precise

analyses to generate and then prune a potential set of deadlocks: static matching to identify

deadlock pattern instances; execution of the instances on an abstract machine to reject those

that are provably non-feasible; and finally, if needed, validation of the instances to remove

any remaining that are non-feasible. Novel in the work is the abstract machine based on

counting to efficiently reject many non-feasible instances without exhaustively enumerating

all message races. The paper further defines two deadlock patterns: circular dependency

and orphaned receive. The first pattern relies on simple rules for validation, while the

second requires a higher cost SMT encoding. The paper proves the approach sound and

complete for each pattern and compares the approach with two other deadlock tools on

typical benchmarks. The comparison shows that the new approach scales in the presence

of millions of possible send-receive matches and completes on benchmarks where the other

tools time out. The experiments also show that the two deadlock patterns in the paper cover

all the deadlock cases in benchmarks.
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5.1 Introduction

The Message Passing Interface (MPI) is widely used in high performance computing (HPC).

There are many features supported by MPI 3.1 standard [3]. In a brief summary, one-

sided communication allows remote memory access (RMA) in MPI programs. MPI provides

message passing in a point-to-point way or in a collective way. Hybrid programming with

threads uses multi-threads within a process. Hybrid programming with shared memory

allows a process to allocate shared memory through MPI. Also, MPI can create topology for

processes and connects these processes by neighborhood collectives.

A problem endemic to concurrent programming is deadlock. In the context of this

paper deadlock is defined as “a situation in which each member process of the group is

waiting for some member process to communicate with it, but no member is attempting to

communicate with it” [41]. Determining whether an MPI program deadlocks is NP–Complete

[20]. The possible state-space of a program scales exponentially with respect to the number

of processes executing. Message races, intended or not, can cause non-deterministic behavior

that expands the state-space even further. These problems compounded with the intricacies

of MPI semantics make it incredibly difficult to debug deadlock, even in trivial programs.

There are a few classes of algorithms proposed for deadlock detection. One class

focuses on enumerating the pairs of sends and receives that may potentially match at runtime.

The number of match pairs explodes as more sends and receives are added to the program,

which leads these analyses to scale poorly [20, 49, 58]. Another class of algorithms start

with a set of potential deadlocks that can be efficiently detected, and then to predict real

deadlocks from the set using static analysis. These strategies generally scale much better on

large programs [30, 46, 50]. The general algorithm presented here is inspired by the latter.

This paper targets the central facet of the MPI standard: point-to-point communica-

tion. The paper presents a simple set of communication primitives to semantically model the

MPI point-to-point communication procedures. Memory allocation, access, and datatypes

are not within the scope of this presentation as it is specifically focused on messaging dead-
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lock. Strategies for expanding these analyses to other portions of the MPI standard are

discussed in section 5.9. The approach in this paper applies to MPI programs that do not

decode data, meaning that they do not employ data dependent control flows, and do not

alter their control flows based on which sends a non-deterministic receive matches with. It

is a reasonable assumption since a large class of programs applied to HPC are coded in a

manner that is consistent with the simplification. The approach in this paper then detects

deadlocks in the context of trace programs.

This paper presents a new algorithm that is able to detect feasible deadlock for an

MPI program trace in three steps. Before analysis the input trace must be generated either

by symbolic execution or running the program under instrumentation. The algorithm first

detects the set of deadlock pattern instances by statically traversing the program’s trace. It

then uses an abstract machine to prune provably non-feasible pattern instances from the set

of potential deadlocks. Finally, the algorithm validates whether or not any of the remaining

instances imply a real deadlock by means of an SMT encoding. The approach in this paper

is also adaptable to lock based concurrent programs.

Novel in this paper is an abstract machine that efficiently rejects non-feasible in-

stances by counting the issued sends and receives rather than exhaustively enumerating all

message races. The complexity of the machine is quadratic with respect to the number of

communications.

This paper also defines two distinct patterns of deadlock with their validation meth-

ods: circular dependency and orphaned receive. A circular dependency exists when there is

a cycle among a group of processes where a receive on each member process waits for the

issuing of a send on another member process but never gets a response. This causes the

program to deadlock since there is no ordering to resolve the first program’s dependence

on itself. An orphaned receive pattern consists of a pair of receives on the same process: a

wildcard (a receive that may match a send from any source) and a deterministic receive (a
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receive that only matches a send from a indicated source). The deadlock occurs when the

runtime matches the wildcard receive to the send needed by the deterministic receive.

This paper presents how to detect all the instances for each of the patterns above

by statically traversing the program. We also present how to validate the instances of

the circular dependency pattern by comparing the counts of issued operations, and how to

validate instances of the orphaned receive pattern that requires a higher cost SMT encoding.

The presentation first gives the pattern match algorithm and the validation algorithm for

infinite buffer semantics. The modification to zero buffer semantics is discussed latter.

The paper includes proofs that the general algorithm is sound and complete for the

patterns of circular dependency and orphaned receive. Also, the comparison with two state-

of-art MPI verifiers shows that the new approach scales to large benchmark programs while

other tools time out. The experiments further show that the two deadlock patterns in this

presentation cover all the deadlock cases in benchmark programs.

The contributions are summarized as follows.

• The primary contribution is an abstract machine that is able to efficiently prune prov-

ably non-feasible pattern instances from a set of potential deadlocks;

• The second contribution is the definition of two typical patterns: circular dependency

and orphaned receive, and their validations; and

• The third contribution is the implementation of the algorithm with a comparison to

two state-of-art MPI verifiers over a set of benchmark programs. The comparison

shows that the new approach scales to large benchmark programs while other tools

time out.

The rest of the paper is organized as follows: Section 5.2 introduces the concurrent

trace program for an MPI program; Section 5.3 presents the general algorithm in this presen-

tation, Section 5.4 and 5.5 present the circular dependency pattern and the orphaned receive

pattern with their pattern matching algorithms and their validation algorithms; Section 5.7
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gives the experimental results; Section 5.8 discusses the related work; and Section 5.9 is the

conclusion and future work.

5.2 Concurrent Trace Programs

The presentation only considers non-determinism arising from message races and defines

MPI program semantics in the context of concurrent trace programs (CTP) [64]. The CTP

is initialized by an execution trace generated by the runtime. The syntax is in Figure 5.1.

Lists use white space rather than commas to delineate members, ellipses (. . .) represent zero

or more repetitions, and bold-face font denotes terminals in the language.

5.2.1 Definition

A CTP (ctp) is a list of processes. A process (p) is a list of commands. The commands

(e) are: non-blocking send (s), non-blocking receive (r), wait (w), suspended wait (∗w),

barrier (b), and counted barrier (∗b). The non-terminal x in the grammar is a unique

string identifier ID associated with a receive, a send, a wait, or a suspended wait. The

non-terminals v and y in the grammar are used to denote endpoints.

The receive and send commands include source and destination endpoints for com-

munication. In the case of receive, the source may be ∗ indicating that the receive can match

with any send to the same destination regardless of the source. The ∗ is only valid as the

source of a receive and is not used anywhere else.

A receive also indicates both its unique ID and the unique ID of its nearest-enclosing

wait (i.e., the first wait that witnesses the receive being completed). A suspended wait on a

process indicates that the process is currently blocked at the the wait. The difference of the

two wait commands is only meaningful in the abstract machine in Figure 5.4. Intuitively, the

wait witnesses the completion of a receive on a process by marking it as matched. The wait

is suspended if the next receive on the process for matching identifies a potential deadlock

and can not be completed by the machine semantics.
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ctp ::= (p . . .)

p ::= (e . . . ⊥)

e ::= (s x v v)

| (r x y v x)

| (w x)

| (∗w x)

| (b x)

| (∗b x)

y ::= v

| ∗

v ::= number

pt ::= (x . . .)

x ::= ID

Figure 5.1: The language syntax for the abstract machine in Figure 5.4 – bold face indicates
a terminal.

A barrier b is also associated with an identifier that is unique for its communicator.

The communicator identifies a group of barrier commands and can only be used one time.

A counted barrier is produced when a process arrives at the barrier. Processes block at the

counted barrier until all members of the group have reached the barrier.

A pattern instance (pt) is a list of IDs indicating unique receive commands. Each

process has at most one receive ID in the list. If a process has a receive ID in the list, then the

receive attached to the ID marks a point of execution in the owning process. The intuition

is that if each process is able to arrive at the indicated point of execution in the pattern

instance, then a deadlock is imminent. If such a point of execution is arrived, the wait that

witnesses the receive is suspended, indicating that all the commands preceding the receive

may be scheduled to have the deadlock. All the commands following the receive should

not be in the schedule. The suspended wait is not used anywhere other than identifying

commands preceding a point of execution.
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p0 p1 p2
00 (s s0 0 1)

01 (r r0 ∗ 0 w0)

02 (w w0)

03 (s s1 0 1)

10 (r r1 ∗ 1 w1)

11 (w w1)

12 (r r2 ∗ 1 w2)

13 (w w2)

14 (s s2 1 2)

20 (r r3 1 2 w3)

21 (w w3)

22 (s s3 2 0)

Figure 5.2: A deadlock caused by circular dependency in messages.

5.2.2 Translation from MPI

Translating a program from MPI to a CTP requires the user to define the number of processes

to run and a path condition for each process. The path condition can be determined either

by instrumented runtime execution or symbolic evaluation.

The individual MPI procedures can then be translated from the operations in the

program trace. A blocking send (MPI Send) or recieve (MPI Recv) becomes a send or recieve

followed immediately by a wait. A non-blocking send (MPI Isend) or recieve (MPI Irecv)

must be witnessed by a wait or test [3], which translates to a send or receive with the witness

modeled by a wait. Barriers are translated directly.

5.2.3 Example

Figure 5.2 is an example CTP with line numbers and underlined commands to indicate a

pattern instance. Process p0 sends a message to p1, then receives a message from any source,

and finally sends another message to p1. Process p1 receives two messages from any source

in the receives r1 and r2, and then sends a message to p2. Process p2 receives a message

from p1 and then sends a message to p0. The tuple (r0, r2, r3) is a pattern instance. If each

process is able to arrive at these program points in some feasible execution, then the program

contains the deadlock indicated by the pattern instance, which in this example, is a circular

dependency.
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Algorithm 2 Main Framework

1: PT ← PatternMatch(ctp, M )
2: for pt ∈ PT do
3: (Ns ,Nr , pt ′)←FeasibleCheck(pt , ctp)
4: if pt ′ 6= ∅ then
5: continue.
6: else if ¬Validate(Ns ,Nr , pt) then
7: continue.
8: else report error and exit.
9: end if
10: end for

5.3 Main Framework

Algorithm 2 describes the general structure of the approach in this presentation which con-

sists of three distinct steps: pattern matching (line 1), feasibility checking (line 3), and

validating (line 6). PATTERNMATCH statically generates a set (PT ) of matched pattern

instances in the ctp with the help of an additional input, M , that defines all the potential

match-pairs in the program. M can be generated in quadratic time [28].

FEASIBLECHECK is an abstract machine to prune pattern instances for which it is

possible to prove that no feasible schedule exists. In other words, it is provably not possible

to execute the ctp such that each process associated with a receive ID in the pattern instance

is at that receive. The machine removes matched receive IDs from the pattern instance as

it executes the ctp, so if pt ′ is not empty upon return, the pattern instance is provably not

feasible and the algorithm continues with the next pattern instance (line 5). The algorithm

additionally returns the number of issued sends (Ns) and the number of issued receives

(Nr). These are used in validation depending on the type of the pattern instance: circular

dependency or orphaned receive.

VALIDATE proves a pattern instance feasible, which means that it is a real deadlock

in the ctp. If the deadlock is real, the algorithm reports the error and exits (line 8); otherwise

it continues with the next pattern instance.
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st ::= (ctp Ns Nr Pr Nb pt)

Ns ::= ∅ | (Ns [(v v) → v])

Nr ::= ∅ | (Nr [(v v) → v])

Pr ::= ∅ | (Pr [x → rcv])

rcv ::= ([x v v] . . . )

Nb ::= ∅ | (Nb [x → v])

Figure 5.3: The machine syntax for the abstract machine in Figure 5.4.

FEASIBLECHECK is able to efficiently prune schedules that are provably non-

feasible with predictive analysis using counting and auxiliary data structures to track FIFO

ordering on messages.

Figure 5.4 is a term rewriting system for a syntactic machine (i.e., the machine state

is represented by a string) for FEASIBLECHECK to prove that a pattern instance is not

feasible. Figure 5.3 is the syntax for that machine. The rewrites define how the machine

executes an input ctp and pattern instance pt by evolving the machine state. At a high-level,

the machine can

• Process a send, receive, or barrier from a process by counting the send (Sndi Com-

mand), queuing up the receive on the indicated wait ID (Rcvi Command), or counting

the barrier (Barrier Command 1 ).

• Consume a wait from a process when the associated queue is empty (Wait (Rcvi)

Command 1 )

• Remove a receive ID from the pattern instance and suspend the indicated wait when

the associated receive is next on the queue for the wait (Wait (Rcvi) Command 2 ).

• Remove the next receive from the queue for the indicated wait and update the number

of receives when feasible (Wait (Rcvi) Command 3 ).

• Consume a barrier if all the processes have arrived (Barrier Command 2 ) – communi-

cator groups may only be used once.
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Sndi Command
Ns(vto, vfrm) = vc
Ns(vto, ∗) = vi Ns

′ = Ns[(vto, vfrm) 7→ vc + 1, (vto, ∗) 7→ vi + 1]

((p0 . . . ((s x vfrm vto) e1 . . . ⊥) p2 . . .) Ns Nr Pr Nb pt)→m ((p0 . . . (e1 . . . ⊥) p2 . . .) Ns
′ Nr Pr Nb pt)

Rcvi Command
Pr(xw) = ([x1 vfrm1 vto1] . . .) Pr

′ = Pr[xw 7→ ([x1 vfrm1 vto1] . . . [x0 vfrm0 vto0])]

((p0 . . . ((r x0 vfrm0 vto0 xw) e1 . . . ⊥) p2 . . .) Ns Nr Pr Nb pt)→m ((p0 . . . (e1 . . . ⊥) p2 . . .) Ns Nr Pr
′ Nb pt)

Wait (rcvi) Command 1

Pr(xw) = ()

((p0 . . . ((w xw) e1 . . . ⊥) p2 . . .) Ns Nr Pr Nb pt)→m ((p0 . . . (e1 . . . ⊥) p2 . . .) Ns Nr Pr Nb pt)

Wait (rcvi) Command 2

Pr(xw) = ([x0 vfrm0 vto0] [x1 vfrm1 vto1] . . .)
pt = (xa . . . x0 xb . . .) x0 ∈ pt pt ′ = (xa . . . xb . . .)

((p0 . . . ((w xw) e1 . . . ⊥) p2 . . .) Ns Nr Pr Nb pt)→m ((p0 . . . ((∗w xw) e1 . . . ⊥) p2 . . .) Ns Nr Pr Nb pt ′)

Wait (rcvi) Command 3

Pr(xw) = ([x0 vfrm0 vto0] [x1 vfrm1 vto1] . . .) x0 /∈ pt
Nr(vto0, vfrm0) < Ns(vto0, vfrm0) Nr(vto0, ∗) < Ns(vto0, ∗) Nr(vto0, vfrm0) = vc
Nr
′ = Nr[(vto0, vfrm0) 7→ vc + 1] Pr

′ = Pr[xw 7→ ([x1 vfrm1 vto1] . . .)]

((p0 . . . ((w xw) e1 . . . ⊥) p2 . . .) Ns Nr Pr Nb pt)→m ((p0 . . . ((w xw) e1 . . . ⊥) p2 . . .) Ns Nr
′ Pr

′ Nb pt)

Barrier Command 1
Nb(x0) = vc vc < Nproc Nb

′ = Nb[x0 7→ vc + 1]

((p0 . . . ((b x0) e1 . . . ⊥) p2 . . .) Ns Nr Pr Nb pt)→m ((p0 . . . ((∗b x0) e1 . . . ⊥) p2 . . .) Ns Nr Pr Nb
′ pt)

Barrier Command 2
Nb(x0) = Nproc

((p0 . . . ((∗b x0) e1 . . . ⊥) p2 . . .) Ns Nr Pr Nb pt)→m ((p0 . . . (e1 . . . ⊥) p2 . . .) Ns Nr Pr Nb pt)

Figure 5.4: Machine reductions (→m).

At a lower-level, the machine state (st) is a six-tuple of variables. The first variable ctp defines

the concurrent trace program being analyzed. The set Ns maps a destination endpoint and

a source endpoint to a number that is used to count issued sends. The variable Nr has

the same structure only the number is used to count the number of matched receives. The

variable Pr records the pending receives by mapping the unique identifier of a wait to a

queue of the issued receives rcv . In this queue, the action identifier, the source endpoint and

the destination endpoint are recorded for each receive. The variable Nb maps the unique

identifier of a communicator to a number that is used to count the number of witnessed

barriers.
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The Sndi Command in Figure 5.4 consumes sends in a process. Ns
′ is a new set,

just like the old set Ns, only the new set maps the destination endpoint vto and the source

endpoint vfrm to the number vc+1 where vc is the value in the old set on the same (vto, vfrm)

key. It also maps vto and ∗ to the number vi+1 where vi is the value in the old set on the same

(vto, ∗) key. As mentioned previously, the notation ∗ is a special source endpoint indicating

any source.

The Rcvi Command in Figure 5.4 consumes receives by updating Pr. Similar to the

rule Sndi Command, Pr merely inserts a new record for the receive x0 to the tail of the queue

indexed by the wait that witnesses the completion of x0.

The Wait (Rcvi) Command operates in three ways. If the wait xw maps to an empty

queue in Pr, indicating that no receives need to be completed by xw, then xw is simply

consumed (Wait (Rcvi) Command 1 ).

If the next receive x0 in the queue Pr(xw) is found in pt where the notation ∈ is used

to indicate this condition, then x0 is removed from pt and the wait xw is suspended in a

process by replacing the notation w with ∗w, meaning that x0 in pt is reached and this

process blocks at xw in execution (Wait (Rcvi) Command 2 ).

The last rule for wait (Wait (Rcvi) Command 3 ) checks whether the next receive x0

in the queue Pr(xw) is able to be consumed. The rule is only active if x0 is not in pt . The

rule requires two conditions:

Nr(vto0, vfrm0) < Ns(vto0, vfrm0)

checks whether there are more counted sends than counted receives with common source and

destination endpoints, and

Nr(vto0, ∗) < Ns(vto0, ∗)

checks whether there are more counted sends than counted receives for any preceding wild-

card receives. These conditions indicate that at least one send can be matched with x0. If
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((((s s0 0 1) (r r0 ∗ 0 w0) . . . ⊥) p1 p2) (((mt [(1 0)→ 0]) [(1 ∗)→

0]) . . .) Nr Pr Nb (r0 r2 r3))→m ((((r r0 ∗ 0 w0) . . . ⊥) p1 p2) (((mt [(1 0)→ 1]) [(1 ∗)→

1]) . . .) Nr Pr Nb (r0 r2 r3))

Figure 5.5: An example of machine reduction.

both conditions hold, then Nr is updated with the counted receive, and x0 is removed from

Pr.

The Barrier Command moves the barrier forward by its synchronization rule. It is

assumed that the group of any barrier consists of all the processes in the ctp. If the count

of the witnessed barriers Nb(x0) for a specific communicator x0 is less than the total number

of the processes (Nproc), indicating that the barriers for x0 are not matched, then the barrier

is not consumed. Rather, the barrier is counted by incrementing Nb(x0) and replacing the

notation b with ∗b for the same communicator in the ctp (Barrier Command 1 ).

If Nb(x0) is equal to Nproc indicating that all the barriers for x0 are matched, then

they can be consumed (Barrier Command 2 ).

The machine rewrites the state until no more reduction rules can be applied indicating

that there is no way to further execute the program. The first statement that cannot be

consumed on any process is either the bottom of the process or a blocking command. A

blocking command could be a wait or a barrier. If at the end, there are receive IDs in the

pattern instance, then the pattern instance is provably non-feasible. In such a case, the

machine accepts the program as free of deadlock on the pattern instance; otherwise, the

machine rejects the program as having a deadlock on the pattern instance.

Figure 5.5 is an example of the machine reduction given the CTP in Figure 5.2. The

reduction applies the Sndi Command in Figure 5.4 to consume the send s0 on process p0.

The reduction shows that s0 is removed from the ctp in the state. Also, the count of issued

sends is incremented by one on the keys (1 0) and (1 ∗), respectively.

The soundness for the abstract machine is given in Lemma 4.
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Lemma 4. The machine implmenting FEASIBLECHECK is sound in that it only accepts

programs that do not deadlock on the associated pattern instance (but it may reject some

programs as having a deadlock on that instance when in fact they do not).

Proof. The commands defined in Figure 5.5 must never claim to be able to consume a send,

a receive, or a barrier incorrectly for the machine to be sound.

Some rules are trivial to prove. In precise, Send Command and Receive Command

simply consume a non-blocking send or a non-blocking receive according to the semantics.

The rules also update the associated counts Ns and Pr with correct values. Wait (RCVI)

Command 1 consumes a wait because there is no receives in Pr to be witnessed by the wait.

Wait (RCVI) Command 2 suspends a wait because the next receive that the wait witnesses

is in the pattern instance. The program that reaches all the receives in the pattern instance

may have a deadlock and is rejected by the machine. Barrier Command 1 suspends a barrier

because not all the barriers in the same group are witnessed. Barrier Command 2 consume

a suspended barrier because all the barriers in the same group are witnessed.

Only Wait (RCVI) Command 3 is non-trivial to prove. The rule uses two conditions

Nr(vto0, vfrm0) < Ns(vto0, vfrm0) and Nr(vto0, ∗) < Ns(vto0, ∗) to check if the receive x0 can

be consumed. Note that the messages are received in a FIFO order on any process. If x0

is a wildcard receive on the process vto0, the two conditions are equivalent, both checking if

there exists at least one send that can match x0 after all the preceding wildcard receives on

vto0 are matched. If x0 is a deterministic receive on the process vto0, then the first condition

checks if there is at least one send that can match x0 and all the preceding deterministic

receives with identical source and destination are matched. The second condition checks if

all the preceding wildcard receives on vto0 are matched so that the message FIFO order is

preserved. Both cases imply that x0 can be consumed correctly. Therefore, the soundness of

the machine is proved.

Corollary 1. The machine implementing the function FEASIBLECHECK never miss

counts the number of sends, receives matched and barriers: Nr, Ns and Nb are correct.
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p0 p1 p2
00 (s s0 0 1)

01 (r r0 ∗ 0 w0)

02 (w w0)

03 (s s1 0 1)

10 (r r1 ∗ 1 w1)

11 (w w1)

12 (s s2 1 2)

20 (r r2 1 2 w2)

21 (w w2)

22 (s s3 2 0)

Figure 5.6: No deadlock caused by circular dependency in messages.

Proof. The Sndi Command increments count every time the rule activates and updates both

the counter for the specified endpoints and special counter that records sends that can match

with wildcard receives. The Wait (Rcvi) Command 3 only increments the indicated receive

counter when it is possible to consume the receive and by Lemma 4, the machine only

matches in a way that is sound. The Barrier Command 1 only increments the indicated

barrier counter when the barrier is witnessed. The counters are not incremented in any other

rule. Therefore, nothing is missed, and nothing is double counted.

Corollary 2. Algorithm 2 is sound and complete if and only if the function

PATTERNMATCH is complete (i.e., it gives all pattern instances and possibly more) and

the function VALIDATE is sound and complete (i.e., any deadlock it detects is a real one

and no real deadlocks are rejected).

The presentation further discusses the completeness of the function PATTERN-

MATCH and the soundness and completeness of the function VALIDATE for two distinct

deadlock patterns, circular dependency and orphaned receive.

5.4 Circular Dependency

The circular dependency represents a cycle among a group of processes in a CTP. A deadlock

occurs when a receive on each process in the cycle waits for the issuing of a send on another

member process but never gets a response.
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The circular dependency in Definition 30 is from the definition of lock dependency

[30]. It depends on the sequential relation in Definition 29.

Definition 29. A sequential relation for a process, p, is a three-tuple (p, rc, sl), where the

receive rc and its nearest-enclosing wait are both followed by the send sl on p.

Definition 30. Given a set of sequential relations, D, a circular dependency τ = 〈(p0, r0, s0),

. . . , (pm, rm, sm)〉 is a sequence in D, such that the following properties hold.

1. at least two sequential relations exist in τ ;

2. for all integers i, j ∈ [0,m], pi 6= pj, i.e., the processes p0, p1, . . . , pm are all distinct

objects;

3. for all i ∈ [0,m], j = (i+ 1)%m, the send si can potentially match the receive rj;

In Figure 5.2, the CTP has a circular dependency in messages 〈(p0, r0 , s1 ), (p1, r2 , s2 ),

(p2, r3 , s3 )〉 that may cause the CTP to deadlock. For instance, r0 can never match s3 because

of the dependency. For simplicity, an instance of the circular dependency pattern only records

the receives. For example, (r0 , r2 , r3 ) is an instance of the circular dependency pattern for

the CTP in Figure 5.2. As a note, this section considers only infinite buffer semantics in the

discussion of algorithms and examples. The zero buffer semantics are discussed in section 6.

5.4.1 Pattern Match for Circular Dependency

Algorithm 3 shows the steps for finding all the instances of the circular dependency pattern

in a ctp. As a reminder, M is the set of potential match pairs for the ctp. In general, the

algorithm is part of the function PATTERNMATCH in Algorithm 2. It first maps a ctp to a

graph that consists of a set of vertices V and a set of edges E . It then detects all the cycles

in the graph based on Johnson’s algorithm [29].

The set PT stores the matched pattern instances. The set R stores the witnessed

receives on a process that is represented as a list of operations (e1, e2, . . . , en). The set Rw

stores the receives that are recently witnessed on p.
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Algorithm 3 Finding Circular Dependency

1: PT ← ∅
2: E ← ∅, V ← ∅
3: R ← ∅, Rw ← ∅
4: for (e1, e2, . . . , en) ∈ ctp do
5: for i← 1 to n do
6: if ei is a receive then
7: R = R ∪ {ei}
8: V = V ∪ {ei}
9: for sl ∈ M (ei) do . add match relation
10: E = E ∪ {(sl , ei)}
11: end for
12: end if
13: if ei is a wait then
14: Rw = Rw ∪ R
15: R ← ∅
16: end if
17: if ei is a send then
18: V = V ∪ {ei}
19: for rc ∈ Rw do . add HB relation on rc to ei

20: E = E ∪ {(rc, ei)}
21: end for
22: end if
23: end for
24: R ← ∅, Rw ← ∅
25: end for
26: PT ← Johnson(V , E )
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The function M (rc) = {sl | 〈rc, sl〉 ∈ M } returns all potential sends for the receive.

The algorithm checks each operation ei in p. If ei is a receive, then it is inserted into R at

line 7 and is inserted into V at line 8. Also, for each potentially matched send sl in M (ei),

the relation (sl , ei) is inserted into E at line 10 indicating that a match relation on sl to ei is

an edge in the graph. If ei is a wait, all the receives in R are inserted to Rw at line 14 and R

is set back to an empty set at line 15, indicating that all the receives in R are witnessed by ei .

Definition 29 requires for each sequential relation that the receive and its nearest-enclosing

wait both precede the send on an identical process. Therefore, the happens-before relation (a

partial order over two operations) on a witnessed receive to a following send on an identical

process is considered as an edge in the graph because they can be potentially matched as

a sequential relation. As such, if ei is a send, the algorithm checks each witnessed receive

rc ∈ Rw at line 19, and inserts the happens-before relation (rc, ei) into E at line 20.

Finally, the function JOHNSON implements Johnson’s algorithm to compute all the

cycles in the graph. Since an edge in any computed cycle is either a receive-send happens-

before relation on an identical process, or a send-receive match relation across two processes,

there exists exactly one sequential relation for any process in the cycle. Therefore, each cycle

computed by the function JOHNSON is an instance of the circular dependency pattern.

As discussed earlier, only receives in each cycle are stored to represent an instance in the

set PT . The complexity of program traversal is O(N2), where N is the total number of

operations in the program. The complexity of Johnson’s algorithm is O((|V | + |E|)(c + 1))

≈ O((c + 1)N2), where c is the number of cycles. Therefore, the total complexity of the

algorithm is O((c + 1)N2).

Figure 5.7 shows the graph that is built on the example CTP in Figure 5.2 by

Algorithm 3. In the graph, the vertices include s0, r0, s1, r1, r2, s2, r3, and s3. The

edges include the match relations (s3, r0), (s0, r1), (s1, r2), and (s2, r3), and the happens-

before relations (r0, s1), (r1, s2), (r2, s2), and (r3, s3). As shown in the graph, a cycle
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Figure 5.7: The graph built on the CTP in Figure 5.2 by Algorithm 3.

r0 → s1 → r2 → s2 → r3 → s3 → r0 exists where the receives are stored as an instance of

the circular dependency pattern.

Lemma 5. The pattern match in Algorithm 3 is complete indicating that all possible pattern

instances are detected (it may include some instances that do not have deadlocks).

Proof. The graph built by Algorithm 3 consists of all possible vertices and all possible edges

because the algorithm statically traverses each process from the beginning to the end and

adds an edge once the relation is detected. Also, Johnson’s algorithm is able to compute all

the cycles in the graph. Therefore, all possible instances for the circular dependency pattern

are detected.

5.4.2 Validation for Circular Dependency

If the function FEASIBLECHECK demonstrates that a potentially feasible schedule exists,

the deadlock is further validated by (5.1) for the pattern instance pt.

∀rc ∈ pt(Ns(dest , src) ≤ Nr(dest , src)) (5.1)

where dest is the destination endpoint of the receive rc, and src is the source endpoint

of rc. The formula checks whether there exists a send that may match any receive rc in

pt by comparing the count of issued sends and the count of issued receives. The function

Ns(dest , src) returns the count of issued sends with the destination dest and the source src.
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The function Nr(dest , src) returns the count of issued receives with the destination dest and

the source src. If the formula is satisfied, then the algorithm detects a real deadlock for pt.

If the formula is unsatisfiable for any receive rc in pt, then no real deadlock exists for pt.

The CTP in Figure 5.6 is an example that has no deadlock for the circular dependency

pattern instance. In Figure 5.6, process p0 sends a message to p1, receives a message from

any source, and then sends another message to p1. Process p1 receives a message from any

source, and then sends a message to p2. Process p2 receives a message from p1, and then

sends a message to p0. As shown, the underlined commands represent an instance of the

circular dependency (r0, r1, r2). However, (5.1) is not satisfied because the send s0 matches

the receive r1 and the cycle does not exist any more.

Lemma 6. The validation in (5.1) for an instance of the circular dependency pattern, pt, is

sound and complete indicating that any detected deadlock is a real deadlock and any instance

that does not satisfy (5.1) is a not a real deadlock.

Proof. Since the counts stored in Ns and Nr are correct (Corollary 5.3), (5.1) is able to

correctly check if an instance is a real deadlock or not. If the formula is unsatisfiable for

some receive rc, then rc can be matched and the dependency in the cycle does not exist.

Therefore, pt does not imply a real deadlock. If the formula is satisfied, then no receive in

pt can be matched. Therefore, a real deadlock occurs for pt .

5.5 Orphaned Receive

A deadlock may occur when the runtime matches a wildcard receive with the send needed

by a deterministic receive.

Figure 5.8 is an example CTP that deadlocks for an orphaned receive pattern instance.

The underlined command indicates a pattern instance. Process p0 sends a message to p1,

and then receives two messages from any source and p1 in the receive r0 and r1. Process

p1 receives a message from any source, and then sends a message to p0. Process p2 sends a
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p0 p1 p2

00 (s s0 0 1)

01 (r r0 ∗ 0 w0)

02 (w w0)

03 (r r1 1 0 w1)

04 (w w1)

10 (r r2 ∗ 1 w2)

11 (w w2)

12 (s s1 1 0)

20 (s s2 2 0)

Figure 5.8: A deadlock caused by orphaned receive.

message to p0. A deadlock may occur if the receive r0 is matched with the send s1 making

it unable to match the receive r1 with the send s2 . This CTP shows an instance of the

orphaned receive pattern in Definition 31.

Definition 31. An orphaned receive is a pair (rw , rc) where,

1. rw is a wildcard receive and rc is a deterministic receive that follows rw on an identical

process p;

2. at least two sends from different source endpoints other than p may potentially match

rw ; and

3. among these matched sends, at least one send matches rc.

For simplicity, only the deterministic receive is stored to represent an instance of the

orphaned receive pattern. For example, the CTP in Figure 5.8 has an orphaned receive

pattern instance (r1). As a note, the presentation in this section is only for infinite buffer

semantics. The zero buffer semantics are discussed in section 6.

5.5.1 Pattern Match for Orphaned Receive

Algorithm 4 shows the steps of finding the orphaned receive pattern instances for an input

ctp. The algorithm is part of the function PATTERNMATCH in Algorithm 2. It checks all

the pairs of wildcard/deterministic receives on each process, and then finds all the instances

that satisfy the criteria in Definition 31.
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Algorithm 4 Finding Orphaned Receive

1: PT ← ∅
2: R ← ∅
3: for (e1, e2, . . . , en) ∈ ctp do
4: for i← 1 to n do
5: if ei is a wildcard receive then
6: R = R ∪ {ei}
7: end if
8: if ei is a deterministic receive then
9: for rw ∈ R do
10: if M (ei) ∩M (rw) 6= ∅ ∧ |M (rw)| > 1 then
11: PT = PT ∪ {{ei}}
12: end if
13: end for
14: end if
15: end for
16: R ← ∅
17: end for

The set PT stores the matched pattern instances. The set R stores the witnessed

wildcard receives on the process p that is a list of operations (e1, e2, . . . , en).

The algorithm checks each operation ei in p. If ei is a wildcard receive, then it is

inserted into R indicating that it is witnessed. Definition 31 requires that the wildcard

receive in an orphaned receive pair happens before the deterministic receive in the same pair

on an identical process. Therefore, only a wildcard receive with a following deterministic

receive is able to build an orphaned receive pattern instance. If ei is a deterministic receive,

it checks each wildcard receive rw in R. If the condition at line 10 is also satisfied such that

rw and ei have a common set of potential sends and more than one send can be matched with

rw, a new instance {ei} is added to PT at line 11. R is set back to empty at line 16, indicating

that the algorithm starts at a new process for the pairs of wildcard/deterministic receives.

The complexity of the algorithm is O(N2), where N is the total number of operations in the

ctp.

Lemma 7. The pattern match in Algorithm 4 is complete indicating that all possible pattern

instances are detected (it may include some instances that do not have deadlocks).
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Proof. Algorithm 4 considers all possible pairs of wildcard/deterministic receives on each

process. Also, the deterministic receive cannot be orphaned for any pair that does not

satisfy the condition at line 10. This is because 1) there does not exist any common send

that can potentially match the wildcard receive and the deterministic receive, or 2) there

is no non-deterministic choice for the wildcard receive to be matched with. Therefore, all

possible instances of the orphaned receive pattern are detected.

5.5.2 Validation for Orphaned Receive

Algorithm 5 Validate Orphaned Receive

1: if SAT(Encode(ctps, pt , M )) then
2: report deadlock and exit.
3: end if

The validation in Algorithm 5 is more complicated than the validation for the circular

dependency because it requires a higher cost SMT encoding for the ctps that is generated

by a modification of the abstract machine in Figure 5.4. This modification executes a CTP

just like the old machine, only it updates a new state member ctps , by adding the consumed

operations when executing the machine. The function ENCODE encodes the ctps into an

SMT problem based on the rules in [28]. Further, a new rule is added to the encoding: for

the receive rc in the pattern instance pt,
∨

ri∈M (sl )
〈ri , sl〉 is encoded for any send sl ∈ M (rc)

in ctps . This rule ensures that no send in ctps can match rc. The function SAT is true if

the encoding is satisfiable. The existence of a satisfying assignment of the encoding implies

a real deadlock for pt. If the encoding is unsatisfiable, no deadlock exists for pt.

The CTP in Figure 5.9 is an example that has no deadlock for the orphaned receive

pattern instance. In Figure 5.9, process p0 receives a message from any source, sends a

message to p1, and then receives a message from p1. Process p1 receives a message from any

source, and then sends a message to p0. Process p2 sends a message to p0. As shown, the

pair (r0, r1) satisfies the criteria in Definition 31, therefore, the instance {r1} is matched by

Algorithm 4. However, the encoding generated by the function ENCODE in Algorithm 5 is
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p0 p1 p2

00 (r r0 ∗ 0 w0)

01 (w w0)

02 (s s0 0 1)

03 (r r1 1 0 w1)

04 (w w1)

10 (r r2 ∗ 1 w2)

11 (w w2)

12 (s s1 1 0)

20 (s s2 2 0)

Figure 5.9: No deadlock caused by orphaned receive.

unsatisfiable for the instance {r1} because the receive r0 can not match the send s1 so the

receive r1 is matched eventually.

Lemma 8. The validation method implementing Algorithm 5 for an instance of the orphaned

receive pattern, pt, is sound and complete indicating that any detected deadlock is a real

deadlock and any instance rejected by Algorithm 5 is not a real deadlock.

Proof. The soundness and completeness relies on the correctness proof of the SMT encod-

ing [28]. In general, a satisfying assignment returned by Algorithm 5 represents a feasible

schedule leading to an orphaned receive. Therefore, a real deadlock is detected. If the SMT

encoding is unsatisfiable indicating that no schedules can be resolved for pt, then no real

deadlock may occur.

5.6 Zero Buffer Semantics

The circular dependency and the orphaned receive for infinite buffer semantics are discussed

in section 4 and 5, respectively. The two patterns may also cause a program deadlock under

zero buffer semantics. Notice that the rules in Figure 5.4 are consistent with how messages

communicate under infinite buffer semantics (e.g., a send is issued immediately). The zero

buffer semantics, however, use a different way of message communication. Therefore, a

schedule validated by the function VALIDATE in Algorithm 2 may not be feasible for zero

buffer semantics.
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To check if a program may deadlock for the circular dependency or the orphaned

receive under zero buffer semantics, the zero buffer compatibility [25] should be checked

with two modifications to the validation. First, the function ENCODE in Algorithm 5

is extended to support zero buffer semantics based on the encoding rules in [25]. This

change ensures that a satisfying assignment of the encoding represents a schedule that is

compatible with zero buffer semantics for an orphaned receive pattern instance. Second, the

validation for the circular dependency is modified to use the same SMT encoding to check

the feasibility of a CTP generated by the abstract machine. This is because a deadlock

for a circular dependency pattern instance under zero buffer semantics has a zero buffer

compatible schedule.

5.7 Experiments

The experiments compare the performance of the approach in this presentation with two

state-of-art MPI verifiers MOPPER [20], a SAT based tool, and ISP [49, 58], a dynamic

analyzer.

MOPPER is designed to verify only single-path programs. ISP can be applied to

both single-path programs and programs with branching. Therefore, it is meaningful only

when the benchmarks are single-path. The initial CTP for the approach in this paper is

generated by instrumenting the MPI programs with manually written scripts and executing

the programs by MPICH [39], a public implementation of the MPI standard. The SMT

encoding for the approach in this presentation, if needed, is resolved by the SMT solver Z3

[13]. Similarly, MOPPER launches ISP to automatically generate the initial program trace

as input.

A series of experiments are conducted for a set of single-path programs, including

three small programs [20] that each contains a deadlock, and seven typical benchmark pro-

grams employed by other papers [1, 8, 65]. All the results show the comparison under infinite

buffer semantics. The experiments are run on a AMD A8 Quad Core processor with 6 GB
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Table 5.1: Tests on Selected Benchmarks

Test Programs Our Method ISP MOPPER
Name #Procs #Calls Match Deadlock PT PTR D Time D Time D Time
dlg1 3 8 2 Yes 1 0

√
0.009s

√
0.116s

√
0.001s

dlg5 3 16 12 Yes 1 0
√

0.021s
√

0.118s
√

0.002s

dlg8 3 12 4 Yes 1 0
√

0.019s
√

0.110s
√

0.002s

Monte
4 35 24 No 0 0 0.001s 0.957s 0.015s
8 75 40K k No 0 0 0.002s TO 0.751s
16 155 2E13 No 0 0 0.006s TO TO

Integrate
8 36 5K No 0 0 0.001s >1000s 0.103s
10 46 362K No 0 0 0.002s TO 34.986s
16 76 1E12 No 0 0 0.003s TO TO

Diffusion2D
4 52 6E9 No 0 0 0.003s 32.005s 0.039s
8 108 2E21 No 0 0 0.004s TO TO

Floyd
8 120 4E29 No 0 0 0.004s TO 2.812s
16 256 1E58 No 0 0 0.006s TO 62.467s

GE
8 56 64 No 0 0 0.011s 1.054s 0.042s
16 120 16K No 0 0 0.014s 1.426s 0.098s

Mismatch
3 400 100 Yes 50 49

√
1.609s

√
4.274s

√
2.601s

3 800 2E40 Yes 100 98
√

11.027s
√

514.852s
√

17.892s

Circular 3 252 8E257 Yes 132,651 130,804
√

13.821s TO
√

728.722s

of memory running Ubuntu 14.04 LTS. A time limit of 30 minutes is set for each test. The

test aborts the verification process if it does not complete within the time limit.

The results of the comparison are in Table 5.1. The column “Match” records the

approximated number of match possibilities. A program with a large number of match pos-

sibilities has a large degree of message non-determinism. The column “Deadlock” indicates

the existence of deadlocks. The column “PT” is the number of pattern instances that the

algorithm in this presentation detects. The column “PTR” is the number of pattern in-

stances that are pruned by the approach in this presentation. The column “D” indicates

whether the tool detects a deadlock or not. The “Time” column for the approach in this

presentation is the time of static analysis and constraint solving (if necessary). The “Time”

column of MOPPER is for constraint generation and solving. The column “Time” for ISP

is the running time of dynamic analysis. The notation “TO” means “time out” (exceeding

the time limit set for each test).

The experiments are launched for a set of benchmarks. The small tests include dlg1,

dlg5 and dlg8 that implement simple message communications [20]. Each contains a deadlock

for the orphaned receive pattern.
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The typical benchmarks are tested as well. Monte implements the Monte Carlo

method to compute π [8]. It uses one manager process and multiple worker processes to

send messages back and forth. In addition, barrier operations are used to synchronize the

program.

Integrate uses heavy non-determinism in message communication to compute an inte-

gral of the sin function over the interval [0, π] [1]. This benchmark also has a manager-worker

pattern where the root process divides the interval to a certain number of tasks. It then

distributes those tasks to multiple worker processes.

Diffusion2D has an interesting computation pattern that uses barriers to “partition”

the message communication into several sections [1]. A message from a send can be only

received in a common section.

Floyd implements the shortest path algorithm for all the pairs of nodes [65]. Each

node communicates only with the immediate following neighbor.

GE is a message passing implementation for Gaussian Elimination [65]. Messages are

communicated by issuing several wildcard receives on each node.

Mismatch implements the message communication that contains a set of the orphaned

receive pattern.

Circular implements the message communication that contains a deadlock for the

circular dependency pattern.

The results show that the algorithm in this presentation is more efficient than ISP

and MOPPER. For the small programs (e.g., dlg1 ), all the tools correctly find the deadlocks

and return very fast. For the large benchmark programs that do not have any deadlock

(e.g., Monte), ISP runs much slower than MOPPER and the approach in this presentation.

For instance, it runs out of time when the program size of Monte increases to 8 processes.

MOPPER runs fast when the number of processes is small, however, it may time out with

a large number of processes. The approach in this presentation, however, returns very fast

even with a large number of processes. This is because it does not need to check feasibility
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or validate any pattern instances once it detects no instances are matched. For the large

benchmark programs with deadlocks, the approach in this presentation remains faster than

other tools, even though the higher cost SMT encoding is used this time. Also, the approach

in this paper is able to prune a large number of non-feasible pattern instances. For example,

the program Circular prunes 130,804 non-feasible pattern instances out of 132,651 instances

and detects a real deadlock. Since all the deadlocks in the tests are detected by the approach

in this presentation, it is believed that the two deadlock patterns may cover many deadlock

cases in MPI programs.

5.8 Related Work

The approach in this presentation is inspired by several works. The predictive analysis

collects a single trace and predicts deadlocks in the other traces with the same input [46, 50].

The dependency constructor in the work refines the match pairs that may lead to a deadlock.

The refining strategy uses simple counting rules that inspires the abstract machine in this

presentation. However, the approach in this presentation does not refine the match pairs for

deadlock detection.

Joshi et al. proposed a method that finds real deadlocks for multi-threaded Java pro-

grams by first detecting potential lock dependency cycles with a imprecise dynamic analyzer

and then finding real deadlocks by a random thread scheduler with high probability [30].

The solution scales to large programs. Also, the method detects a number of previously

unknown deadlocks in a set of benchmarks. The refining strategy of the work also inspires

the general algorithm in this presentation, only this presentation intends to prune a set of

potential deadlock instances instead of finding deadlocks from an instance.

A precise SMT encoding technique is proposed for detecting user-provided assertions

for MCAPI programs [28]. The encoding is sound and complete and is easy to use to reason

about infinite buffer semantics without requiring a precise match set. The work also provides

an algorithm that runs in quadratic time complexity to generate a sufficiently small over-
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approximated match set based on the given execution trace. This approach is extended to

checking zero buffer incompatibility for MPI semantics [25]. The technique is also used for

deadlock detection for MPI programs in this presentation.

There are other solutions for message passing program analysis. The dynamic an-

alyzer ISP implements the POE algorithm, a Dynamic Partial Order Reduction (DPOR)

algorithm [19] applied to MPI programs [58]. An extension is the MSPOE algorithm [49]. It

operates by postponing the cooperative operations for message passing in transit until each

process reaches a blocking call. It then determines the potential matches of send and receive

operations in the runtime. The solution is able to detect errors such as assertion violation

and deadlock in an MPI program. A drawback of ISP is that it does not scale for large

programs due to state explosion.

Forejt et al. proposed a SAT based approach to detect deadlock in a single-path MPI

program [20]. The solution is correct and efficient for programs with a low degree of message

non-determinism. However, since the size of the encoding is cubic, checking large programs

is time consuming. The SMT encoding used in this presentation, however, is quadratic.

Similar to the solution in this presentation, the work requires a match pair set.

Umpire is an approach of runtime verification for checking multiple MPI errors such

as deadlock and resource tracking [60]. The error checking is taken by spawning one manger

thread and several outfielder threads in the execution of an MPI program. A drawback of

the approach is that it relies on a concrete execution, which may miss the errors in the other

execution trace. An extension to Umpire is Marmot [32]. The work uses a centralized sever

instead of multiple threads for error checking. Another extension to Umpire is MUST [23].

The structure of MUST allows the users to execute the error checking either in an application

process itself or in extra processes that are used to offload these analyses. However, just like

Umpire and Marmot, the approach is neither sound nor complete for deadlock detection.
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MPI-Spin is integrated in the model checker SPIN [24], for verifying MPI programs

[51, 52]. It generates a model of an MPI program and symbolically executes it. It does not

scale to large programs with a large degree of message non-determinism.

Vo et al. used Lamport clocks to update the auxiliary information via piggyback

messages [62, 63]. While completeness is abandoned in their analysis, they show the work is

useful and efficient in practice.

Sharma et al. proposed the first push button model checker for MCAPI – MCC

[48]. It indirectly controls the MCAPI runtime to verify MCAPI programs under zero buffer

semantics. An obvious drawback of the work is its inability to analyze infinite buffer seman-

tics which is known as a common runtime environment in message passing. A key insight,

though, is the direct use of match pairs – couplings for potential sends and receives.

Elwakil et al. also used SMT techniques to reason about the program behavior in the

MCAPI domain [17, 18]. State-based and order-based encoding techniques are both used.

These techniques fail to reason about the infinite buffer semantics and require a precise

match set which is non-trivial to compute beforehand.

5.9 Conclusion and Future Work

This presentation presents a new algorithm that first detects the potential deadlock pattern

instances and then detects a real deadlock by pruning from these instances. The key insight

in this presentation is the abstract machine that prunes provably non-feasible schedules by

simply counting the issued sends and issued receives. This presentation further defines two

types of deadlock patterns: circular dependency and orphaned receive, and their validation.

The circular dependency uses simple rules for validation. The orphaned receive, however,

requires a higher cost SMT encoding from existing work. This presentation additionally

proves that the algorithm is sound and complete for the circular dependency pattern and

the orphaned receive pattern. Further, the algorithm can be modified to check deadlocks for

these two patterns under zero buffer semantics. Experiments demonstrate that the algorithm
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in this presentation is able to detect all the deadlocks in a typical set of benchmarks and is

more efficient than two state-of-art MPI verifiers.

It is believed that there exist deadlock patterns other than the circular dependency

and the orphaned receive in MPI programs. Future work will define other deadlock patterns

and to detect deadlocks for these patterns. Also, future work will explore how to detect

deadlocks for programs with branching.

The collective semantics in MPI programs include two essential aspects: internal

message communication that is not interrupted by the regular point-to-point communication

and capability of program synchronization. The program synchronization can be defined as

the behavior of barriers in this paper. The message communication in collective operations,

can be modeled by converting them to special point-to-point operations with tags in future

work.

Another promising avenue of research is identifying independently verifiable execution

paths. Many programs contain sections where all schedules must pass through a shared exit

state. This can allow verification algorithm to consider the program as two smaller programs,

greatly increasing efficiency.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

Message passing models are widely used in communication between multi-core devices ap-

plied to high performance computing. Verifying message passing programs is difficult because

of two common problems, message-race and deadlock. Detecting their existence in a message

passing program is NP–complete. Also, the difficulty of verification comes from three factors

that complicate the message passing semantics: asynchronous communication may order the

communication primitives in different ways; barrier synchronization may not block a mes-

sage to move across barriers; and two buffering semantics with different program behaviors

are both allowed by the message passing standards. These factors are defined in two preva-

lent message passing standards: MCAPI and MPI. Therefore, the work in this dissertation

applies to these two standards.

The work in this dissertation uses predictive analysis to check program properties.

The novelty is not predicting the program behavior in a single execution, but expanding

the prediction to a set of executions that arise from the initial execution. The predictive

analysis in this research is accomplished in several steps that are presented in Chapter 2 to

Chapter 5.

Chapter 2 provides an SMT encoding that is able to reason about the precise program

behavior in an MCAPI execution. The novelty of the encoding is the direct use of match

pair to capture the message communication between sends and receives. The work proves
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the NP–completeness of verifying the existence of message-race in message passing programs.

Also, the work gives an algorithm that is able to over-approximate the precise match pairs in

an execution. This encoding uses fewer clauses than the prior SMT/SAT encodings [17, 18].

The precise SMT encoding in Chapter 2 is also expanded to MPI semantics in Chap-

ter 3, including point-to-point communication and barrier. The extended encoding is capable

of detecting zero buffer incompatibility for MPI programs. The key insight is that the en-

coding considers only the schedules that strictly alternate sends and receives. Experiments

indicate that the work is correct and more efficient than two state-of-the-art MPI verifiers,

MOPPER and ISP [20, 49, 57, 59].

The SMT encoding is not going to be scalable. As such, this research gives a heuristic

search in Chapter 4 to efficiently reduce the size of the match set as input to the SMT

encoding, which thereby decreases the verification cost. The novelty of the heuristic search

is process sectioning where sends and receives from different sections can not match. As

such, only a subset of the search space is considered. The match generation algorithm in

Chapter 2 is then applied for each section. Given the reduced match set generated by the

heuristic search, the runtime of the SMT encoding is highly improved compared with that

directly using the precise match set.

In addition to the precise SMT based model checking with heuristic search, Chapter 5

provides another scalable approach that uses static analysis to detect deadlocks in MPI

programs. The work first detects all the potential deadlocks in a program by statically

searching the instances of the pre-defined deadlock patterns. It then prunes the non-feasible

deadlocks by an abstract machine based on counting. Finally, the approach validates each

remaining deadlock precisely. The validated deadlock schedule represents a real deadlock in

the runtime. The work defines two patterns for deadlock: circular dependency and orphaned

receive. Experiments show that the work is more efficient than two MPI verifiers and the

two deadlock patterns cover all the deadlock cases in the benchmarks.
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Given the precise SMT based model checking with heuristic search and the static

analysis, the work in this dissertation is able to verify the existence of message-race and/or

deadlocks in message passing programs.

6.2 Future Work

The immediate step in the future work is to implement the technique in this dissertation so

that it can be used by non-experts. The implementation is able to efficiently detect errors

or to witness the correctness in message passing programs.

A further step is to extend the work to support the full set of the MPI standard.

For example, the tags defined in point-to-point communication may also cause message

non-determinism, and therefore, make the semantics more complex and difficult to reason

about. Extending tags to the technique is helpful to find more hidden errors in message

passing programs. The extension to tags is also useful to model the full set of collective

communication where the messages within collective operations are delivered with special

tags. Also, the MPI standard supports other strategies such as one-sided communication

and hybrid programming with threads. Future work will extend the technique to these areas.

This may require both the new techniques with static analysis, dynamic analysis, and model

checking, etc, and the implementation to support our model.

The technique currently works well for the intermediate abstraction of a message

passing program – concurrent trace program. This abstraction, however, may not capture all

the program behavior from multiple branches, loops, function calls, different data structures

or various concrete inputs, etc. that exist in the original program but are not included in

the abstraction. Future work needs to extend the technique for concurrent trace programs

to real message passing programs. For example, bounded model checking can be used to

unroll loops and to explore all the paths. Also, a match pair has to record a feasible path

where the match pair may occur at runtime.
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Last but not least, the technique has to be improved. The rank based match pair

generation algorithm in this dissertation is able to prune a large number of obvious non-

feasible match pairs, however, it is not precise. Future work will find more precise and efficient

algorithms for match pair generation. It is believed that there exist deadlock patterns other

than the circular dependency and the orphaned receive in message passing programs. Future

work will define other deadlock patterns and detect deadlocks for these patterns. The work

in Chapter 4 gives a feasible direction in verifying message passing programs, where the

program is divided such that small problem instances are solved independently. The future

work will extend this idea to dividing the program into small programs and verifying them

one by one. This strategy may greatly increase efficiency.
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