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ABSTRACT

Airborne Collision Detection and Avoidance for Small UAS Sense and Avoid Systems

Laith Rasmi Sahawneh
Department of Electrical and Computer Engineering, BYU

Doctor of Philosophy

The increasing demand to integrate unmanned aircraft systems (UAS) into the na-
tional airspace is motivated by the rapid growth of the UAS industry, especially small UAS
weighing less than 55 pounds. Their use however has been limited by the Federal Aviation
Administration regulations due to collision risk they pose, safety and regulatory concerns.
Therefore, before civil aviation authorities can approve routine UAS flight operations, UAS
must be equipped with sense-and-avoid technology comparable to the see-and-avoid require-
ments for manned aircraft.

The sense-and-avoid problem includes several important aspects including regulatory
and system-level requirements, design specifications and performance standards, intruder
detecting and tracking, collision risk assessment, and finally path planning and collision
avoidance. In this dissertation, our primary focus is on developing an collision detection,
risk assessment and avoidance framework that is computationally affordable and suitable
to run on-board small UAS. To begin with, we address the minimum sensing range for the
sense-and-avoid (SAA) system. We present an approximate close form analytical solution to
compute the minimum sensing range to safely avoid an imminent collision. The approach
is then demonstrated using a radar sensor prototype that achieves the required minimum
sensing range.

In the area of collision risk assessment and collision prediction, we present two ap-
proaches to estimate the collision risk of an encounter scenario. The first is a deterministic
approach similar to those been developed for Traffic Alert and Collision Avoidance (TCAS)
in manned aviation. We extend the approach to account for uncertainties of state esti-
mates by deriving an analytic expression to propagate the error variance using Taylor series
approximation. To address unanticipated intruders maneuvers, we propose an innovative
probabilistic approach to quantify likely intruder trajectories and estimate the probability
of collision risk using the uncorrelated encounter model (UEM) developed by MIT Lincoln
Laboratory. We evaluate the proposed approach using Monte Carlo simulations and compare
the performance with linearly extrapolated collision detection logic.

For the path planning and collision avoidance part, we present multiple reactive path
planning algorithms. We first propose a collision avoidance algorithm based on a simulated
chain that responds to a virtual force field produced by encountering intruders. The key
feature of the proposed approach is to model the future motion of both the intruder and the
ownship using a chain of waypoints that are equally spaced in time. This timing information
is used to continuously re-plan paths that minimize the probability of collision. Second, we
present an innovative collision avoidance logic using an ownship centered coordinate system.
The technique builds a graph in the local-level frame and uses the Dijkstra’s algorithm to find



the least cost path. An advantage of this approach is that collision avoidance is inherently
a local phenomenon and can be more naturally represented in the local coordinates than
the global coordinates. Finally, we propose a two step path planner for ground-based SAA
systems. In the first step, an initial suboptimal path is generated using A∗ search. In the
second step, using the A∗ solution as an initial condition, a chain of unit masses connected
by springs and dampers evolves in a simulated force field. The chain is described by a set
of ordinary differential equations that is driven by virtual forces to find the steady-state
equilibrium. The simulation results show that the proposed approach produces collision-free
plans while minimizing the path length.

To move towards a deployable system, we apply collision detection and avoidance
techniques to a variety of simulation and sensor modalities including camera, radar and
ADS-B along with suitable tracking schemes.

Keywords: unmanned aircraft system, small UAS, sense and avoid, minimum sensing range,
airborne collision detection and avoidance, collision detection, collision risk assessment, col-
lision avoidance, conflict detection, conflict avoidance, path planning.
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Chapter 1. Introduction

Flying alone! Nothing gives such a sense of mastery over time over mechanism, mastery

indeed over space, time, and life itself, as this.

-Cecil Day Lewis

In the CBS’s ”60 Minutes” prime-time interview on December 2013, Amazon CEO Jeff

Bezos unveiled an ambitious future delivery service called Amazon Prime Air. The service

will allow customers to choose small unmanned rotorcraft to deliver their packages. It would

be able to carry objects of up to 5 lb within a 10 mile radius of an Amazon distribution

center. “I know this looks like science fiction, it is not,” Bezos said. Bezos added that the

”Prime Air” project that Amazon is working on in its research and development labs will

take years to advance the technology, yet the service also have to comply with the aviation

rules for unmanned aircraft, which the aviation regulatory body is planning to have in the

near future.

Daily we hear similar stories of people, scholars, companies and manufacturers who

are building or operating a wide-range of flying robots and trying to use them in various

applications. The increasing demand to integrate unmanned aircraft systems (UAS) into

the national airspace system (NAS) is motivated by the rapid growth of the UAS industry,

especially small UAS weighing less than 55 pounds. The majority of the efforts have focused

on integrating medium or larger UAS into the controlled airspace. However, most of the

potential UAS applications, few examples are shown in Figure 1.1, including recreational

activities, goods delivery, agriculture, wildfire monitoring, and infrastructure surveillance,

are well suited to small UAS. Small UAS are particularly attractive, and their use is likely

to grow more quickly in civil and commercial operations because of their versatility and

relatively low initial cost and operating expense.
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(a) Raven monitors crops. Photograph courtesy of
c© AeroVironment, Inc.

(b) Prime Air is a conceptual UAS-based de-
livery system currently under development by
Amazon. Photograph courtesy of c© Ama-
zon.com, Inc, used with permission.

(c) Puma AE supports fire-monitoring. Photograph
courtesy of c© AeroVironment, Inc.

Figure 1.1: Examples of a potential small UAS applications.

A report compiled by the US Department of Transportation on UAS service demands

estimates that by the year 2035 there will be approximately 70,000 UAS operated by federal,

state, and local departments and agencies [5]. In the private sector, the ever growing number

of UAS applications includes a wide variety of industries and tasks such as smoke stack

inspection, cinematography, crop dusting, oil exploration, and news and traffic reporting.

The demand for UAS operations is manifest by the over 1800 exemptions granted in one year

to allow UAS operations under Section 333 of the H.R. 658 Federal Aviation Administration

(FAA) Modernization and Reform Act of 2012 [4].

While UAS operations have increased as a result of the Section 333 exemptions ap-

proved since September of 2014, the overall realized benefit of UAS operations is still a small

fraction of the demand. Additionally Section 333 exemptions are not a long-term solution

to supporting UAS in the NAS. In laying the foundation for a long-term solution for UAS

in the NAS, the FAA has mandated that UAS be capable of an equivalent level of safety

(ELOS) to the see-and-avoid mandate for manned aircraft [44, 55]. As a result, similar to
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a pilot’s ability to visually scan the surrounding airspace for possible intruding aircraft and

take action to avoid a collision, a UAS must be capable of monitoring and avoiding other

manned or unmanned aircraft in its vicinity. Currently, UAS face limitations on their access

into the national airspace because they do not have the ability to sense and avoid other

air traffic. This sense-and-avoid (SAA) mandate is the capability of a UAS to remain well

clear and avoid collisions with other air traffic [49]. The need for a robust SAA system is

evident from the expected congested future airspace and is considerably crucial to assure

safe airspace operations and minimize the impact to current airspace users.

On the other hand, while manned aviation is well established, regulations for un-

manned aviation are still being developed since UAS technology is still immature and the

FAA is adopting a cautious approach. Efforts to regulate and certify UAS have been driven

by a rapid growth in technology and also potential UAS markets in military, civilian and

public domains [28, 36]. Until acceptable SAA systems are available, the FAA has limited

UAS access to the NAS by requiring a certificate of authorization (COA) under Section 333

exemption to fly. This lengthy and cumbersome process is further complicated in that UAS

range across a much broader spectrum of sizes and performance capabilities [35]. In an effort

to improve the FAA’s rules regarding UAS in the NAS, multiple frameworks for the regula-

tion and certification of UAS have been developed [28]. To date the FAA has not adopted a

framework, but with the passage of H.R. 658 the FAA is taking the steps to establish clear

guidelines to allow UAS access to the NAS in near future [4, 6].

As the design of any SAA system must meet the FAA requirements and regulations,

an extensive amount of work has been done to study and understand the current manned

aviation regulations as a guide to aid in the development and design of SAA for unmanned

aircraft. In the United States the aviation regulations, collectively known as Federal Avi-

ation Regulation (FAR), are codified in the Code of Federal Regulations (CFR), Title 14,

Chapter I. The CFR along with supplementary material like advisory circulares, technical

standards orders and manuals such as the Aeronautical Information Manual (AIM) issued by

the FAA, define appropriate standards, procedures, and practices to ensure that operators

and manufactures are able to establish a minimum level of safety and reliability required for

civil aviation [12,36]. Foremost among aviation regulations are parts for airspace categories
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Figure 1.2: The sense-and-avoid system architecture that is assumed throughout this disser-
tation.

and classes [CFR § 71 − 73] and general operating and flight rules [CFR § 91], the right-of-

way rules operations [CFR §91.113], aircraft speed [CFR §91.117], minimum safe altitudes

[CFR §91.119] and visual flight rules (VFR) [CFR §91.151 − 161] to name a few, have a

crucial impact on the design and development of SAA system. Appendix A provides more

specific details about manned and up-to-date unmanned aviation regulations.

Typically, a complete functional sense and avoid system is comprised of sensors and

associated trackers, collision detection, and collision avoidance as depicted in Figure 1.2.

In this work, however, our main focus is on collision detection and avoidance algorithms.

The main role of the first sub-function is to detect any intruders and track their motion.

The block labeled sensors in Figure 1.2 process the raw signal and passes it to the intruder

estimator. In the block labeled intruders state estimation the intruder state measurements

are processed to generate the intruder position and velocity estimates. The block labeled

intruder maneuver model rely on the intruder state estimates and a kinematic model of an

aircraft to project the motion of the detected intruder forward in time to identify possible

conflicts or collisions. Not every aircraft that is observed by the sensing system, however,

presents a conflict or collision threat. Therefore the block labeled collision detection and

risk assessment refers to the collision detection algorithm that determines whether or not
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an approaching intruder aircraft is on a collision course. If a collision threat is detected, the

intruder position and velocity estimates and an activation flag are passed into the collision

avoidance block in Figure 1.2. Once the avoidance logic has been activated a new collision-

free path is generated. In any encounter scenario that occurs, the UAS’s avoidance maneuver

must conform to the standard flight rules followed by manned aircraft. If UAS are to be

integrated seamlessly alongside piloted aircraft, they must react to collision threats in the

same way as a human pilot. Additionally, a collision avoidance system should only maneuver

to avoid other aircraft when a collision threat exists. Unnecessary course changes limit

flight efficiency and may also confuse other airspace users. It might in addition result in

conflict with other air traffic. The output of the collision avoidance block is a revised set

of waypoints that is free of collision risks. The new set of waypoints is then passed to

the ownship unmanned aircraft block. The ownship unmanned aircraft block in this work

refers to a generic system architecture of an unmanned aircraft that is typically composed

of a path planner, path manager, path follower, and autopilot. A path planner produces

straight-line or Dubins paths between waypoints, and a path manager is required to switch

between waypoints. Then, the path follower produces commands to the low-level autopilot,

which controls the ownship. For further analysis on ownship unmanned aircraft we refer the

interested reader to [16].

The primary focus of this work is to develop a collision detection, risk assessment

and avoidance framework for unmanned aircraft. The design, however, will be specifically

tailored for small UAS operating in class G airspace. The proposed approach presented in

this work will consider encounter scenarios such as the one depicted in Figure. 1.3, where

the ownship encounters multiple intruders. We assume that there exists a sensing system

that provides an estimate of the intruder’s track. In such situations, the collision detection

algorithm is responsible to determine the likelihood of future collisions with the detected

intruders. It provides an alert threshold above which the avoidance is initiated to plan a

proper evasive maneuver.
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Figure 1.3: Encounter geometry scenario.

1.1 System Level Requirements

The main concern of the air traffic management system for manned aviation is safety,

which is typically measured by the number of incidents that happen when the distance be-

tween aircraft becomes closer than a predefined safe distance to one another. This safety

distance is quantified by means of a minimum allowed horizontal and vertical spacing [105].

The design of an SAA system for UAS should also address regulatory requirements, and

performance and reliability standards. Initial efforts to address performance, design, con-

struction, and reliability requirements of an SAA system for UAS are all discussed in the TR

F2411-07, standard document produced by ASTM international [3]. An excellent review of

existing regulations, standards, recommended practices, along with suggestions and recom-

mendation for SAA requirements to facilitate the UAS integration into the NAS system are

discussed in [11,36,106]. Geyer et al. address specific design parameters required by the SAA

system such as sensor angular resolution, field of view, minimum time, and sensing range

needed to prevent a collision assuming a 2D head-on encounter geometry [51]. The formulas

proposed by Geyer et al. are based on a head-on collision scenario between two aircraft and

are an approximation that is suitable for use as a heuristic to choose the right sensor and
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its minimum detection range. This approximation is not suitable for short distances and

close velocities [51]. Boskovic et al. derive radar-based sensor and tracking requirements

combining worst-case 2D flight head-on collision scenarios and exhaustive Monte Carlo Sim-

ulations [20]. Melnyk et al. propose a framework that consists of a target level of safety

(TLS) approach using an event tree format to develop specific SAA effectiveness standards

linking UAS characteristics and operating environments to midair collision risk quantified

by a fatality rate. [90].

collision volume

500

200 UASft

ft

Figure 1.4: Collision volume.

In this dissertation our focus, however, is on determining the minimum required

sensing range to help users to choose the right sensor for the UAS or to design the sensor

to achieve the required minimum detection range if intended to be used for SAA systems.

Another important requirement of the SAA system is the definition of a collision. Generally,

a collision occurs when two aircraft or more come within the minimum allowed distance

between each other. The current manned aviation regulations has no explicit values for

the safe distance, however it is generally understood that the minimum safe distance is

required to be at least 500 ft to 0.5 nautical miles (nmi) [3, 11]. For example, the near

midair collision (NMAC) defined in the aeronautical information manual as proximity of less

than 500 ft between two or more aircraft, or if the pilot decides to report the encounter

as an NMAC [126]. Since the potential UAS and intruder aircraft cover a wide range of

vehicle sizes, airframes, weights, designs, etc, the choice of a fixed volume is a substitute for

the actual dimensions of the intruder. As shown in Figure 1.4, the collision volume or the

protection zone is a virtual fixed volume boundary around the aircraft and the general choice
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for this volume is a cylinder of radius ds and height hs centered at the current location of the

UAS. A common requirement includes a horizontal distance of 500 ft and a vertical range

of 200 ft [31, 49, 77]. The collision is defined as an incident that occurs when two aircraft

pass less than 500 ft horizontally and 100 ft vertically. As a result of this requirement, the

detection and collision avoidance must be done at a range that is sufficient to allow the

SAA system to initiate a track of the detected intruder, detect a collision, plan an avoidance

path, and to actually execute a maneuver with sufficient time that results in the minimum

required safe distance to the intruder. According to [1], the estimate of the time required

for a manned aircraft to consistently avoid mid air collisions, ranges from 5 s to 12.5 s. This

time duration does not include the actual time required to perform a maneuver initiated by

the collision avoidance system. The estimate is for two jet aircraft with a closing speed of

about 492 m/s [1].

1.2 Literature Review

We divide our survey of the literature into three main sections. In the first section we

review the sensing technologies used for the SAA systems. In the second and third sections,

we review the collision avoidance and detection approaches.

1.2.1 Sensing Technology

For small UAS weighing less than 55 lb, the algorithms and hardware necessary

for SAA can make up a notable portion of the available size, weight, and power (SWaP) re-

sources. As discussed earlier in this chapter, one means of compliance for UAS to gain routine

access into airspace is the ability see and avoid. There are two main approaches to meet with

this requirement: airborne or ground-based sensors and algorithms. Sensors carried on board

the UAS sensors provide a dynamic surveillance capability for the UAS through its mission,

and will enable a fully autonomous sense and avoid system. The Airborne is the only solution

to provide wide and dynamic surveillance sense-and-avoid capability, which is not achievable

by ground-based SAA. The Ground-based systems provide support for unmanned aircraft

within limited geographic and airspace regions. Currently, radar, electrooptical/infrared
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cameras, and light detection and ranging (Lidar) are examples of sensors used to detect

noncooperative traffic. Noncooperative traffic means that no information about conflicting

traffic is communicated or transmitted to the aircraft from the conflicting intruders or from

air traffic control. Alternatively, the automatic dependent surveillance-broadcast (ADS-B),

traffic collision-avoidance system (TCAS), and airborne collision avoidance system (ACAS

X), are examples of systems for detecting cooperative intruders.

Radar is one sensor that is widely used for air-to-air detection in manned aircraft.

Among many possible sensor modalities that can be used for UAS sense-and-avoid system,

radar makes a reasonable choice [20,23,118], in particular to detect non-cooperative intrud-

ers. One of the primary strengths of radar is the ability to detect all objects regardless

of cooperative sensor equipage or functionality. In applying radar to small UAS, SWaP

constraints impose restrictions on the hardware that result in significant trade offs between

radar range, bearing accuracy, and field of view. Recent progress in radar technology and

advancement in integrated circuit fabrication makes small, lightweight, low power radar

sensors feasible for small UAS sense and avoid systems. Long range radar sensors require

higher transmit power and consequently become a greater drain on the UAS power budget,

or higher antenna directivity, which means a larger antenna size and narrower angular field

of view. At a set transmit power, improving the range requires a narrower beam, which also

improves the bearing accuracy. Narrowing the beam, however, reduces the field of view and

consequently requires additional antennas or a method to steer the beam. A limitation of

radar is that the signal strength of the return is dependent on the material properties of the

intruder aircraft, the frequency used, and the angle at which the aircraft is observed [33].

This is represented in a radar cross section (RCS) profile that is specific to each aircraft and

varies as a function of angle. Demonstrated hardware that falls within the SWaP limitations

of small UAS is not currently suited to support a feasible set of range, bearing accuracy, and

field of view requirements [84].

Optical sensors such as cameras are also candidate sensors for SAA on small UAS.

Similar to radar, vision-based intruder detection methods do not require cooperative com-

munication from intruders. Flight testing of visual methods has achieved intruder detection

at 0.54 nmi from a small UAS [71]. Ground-based testing has resulted in detection up 4.3
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nmi [37]. The flight tested range of 0.54 nmi is promising, but not sufficient to provide

enough avoidance time for high-speed intruders. Even with sufficient range, visual methods

inherently have low range accuracy. Adverse weather conditions such as fog, clouds, pre-

cipitation, and sun glare can reduce overall visibility and significantly limit visual intruder

detection. While recent developments have improved visual intruder detection, such methods

are not yet suitable for SAA implementation on small UAS.

Infrared (IR) cameras have the added advantage that they can be used at night [33].

However, both optical and IR sensors are subject to signal degradation due to weather,

and both have difficulty determining range and velocity in high speed collision detection

scenarios. Lidar is an extremely powerful imaging modality and is used extensively for

mapping because it gives very precise range and angle measurements. Unfortunately, robust

Lidar systems are generally too large to be integrated on small UAS and also suffer some of

the same weather degradation as optical sensors [33].

Automatic Dependent Surveillance-Broadcast (ADS-B) is a cooperative sensor that

is a promising option for SAA on small UAS. It has been demonstrated in small UAS flight

testing to have an omni-directional range of 20 nmi [95], and due to the fact that the coop-

erative information is shared over radio waves it is relatively unaffected by adverse weather

conditions. An omni-directional antenna and low-power requirements for both transmit and

receive hardware contribute to the promising characteristics of ADS-B. Two drawbacks of

ADS-B are its dependence on global positioning system (GPS) information and its funda-

mentally cooperative nature. While GPS coverage of the national airspace is very good,

there are areas where GPS information can become degraded such as narrow valleys or

urban canyons. Furthermore, the cooperative aspect of ADS-B requires widespread adop-

tion of ADS-B technology to ensure detect-and-avoid reliability. While the Federal Aviation

Administration does not yet require all aircraft to be equipped with ADS-B transponders,

the 2020 mandate requiring all aircraft in A, B, C, and some E class airspace to equip

with ADS-B [43] is a significant step. ADS-B is rapidly becoming a major tool in the air

traffic management system. In 2010 the FAA issued a final rule for the implementation

of ADS-B on manned aircraft [43]. This ruling mandated ADS-B Out in key parts of the

NAS. The FAA Modernization and Reform Act of 2012 further directed the FAA to make
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plans for the adoption of ADS-B In technology [4]. Valuable research has been done in

developing and testing ADS-B technology. The MITRE Corporation provided initial de-

velopment and testing of research-grade ADS-B hardware and demonstrated its ability to

transmit up to 20 nmi [95]. The University of North Dakota (UND) extended this research

by demonstrating an ADS-B-based collision avoidance system for a small-to-medium sized

UAS with a large, commercial-grade ADS-B transceiver [86, 87]. R3 Engineering developed

a commercially-available ADS-B-based collision avoidance system and tested it on a Tiger

Shark UAS [32]. These research contributions paved the way for the application of small,

commercially-available ADS-B on small UAS. As a result of the level of adoption, prior foun-

dational research, and capability of ADS-B technology, ADS-B is an attractive sensor for

detect and avoid efforts on UAS.

TCAS and ACAS X are aircraft collision avoidance systems that are based on a

secondary surveillance radar transponders to provide advice to the pilot on proximity traffic

and potential conflicts. Unlike primary radar sensors that measure range and azimuth angle

of objects by passively processing the signal reflected from the aircraft body, the secondary

surveillance radar interrogates aircraft equipped with transponders, that replies to each

interrogation by transmitting a response containing encoded data including identification

and altitude. Applying TCAS and ACAS X to small UAS is discussed in section 1.2.3.

1.2.2 Collision Detection and Risk Assessment Methods

Airborne collision detection is a difficult problem due to inherent noise, errors in

prediction and modeling the dynamics of intruder aircraft. Moreover, on-board limited com-

putational resources, fast closing speeds and unanticipated maneuvers make it very chal-

lenging to detect collision without creating too many false alarms. A number of conflict and

collision detection methods have been suggested in the context of air traffic management,

mobile robotics, and autonomous control. Recent surveys on this topic include Kuchar &

Yang [68], Albaker & Rahim [10], and Angelov [11]. As shown in Figure 1.5, these differ-

ent methods can be classified under four fundamental approaches: deterministic or straight

line, worst case, probabilistic, and flight plan sharing. Many of these methods stress the

deterministic approach, where a single trajectory of the intruder is predicted using straight
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line extrapolation. This is a reasonable approach when there is a perfect knowledge of the

states of the detected intruder. However in practice, the uncertainty free model could lead

to erroneous prediction of collision threat particulary when solving the problem over a short

time horizon. The term “conflict” is normally used in the context of manned aviation air

traffic management and alerting systems. Conflict detection usually implies a multi-layer

approach to detect loss of well clear, or minimum separation, defined as an event where two

or more aircraft come within 3-5 nautical miles (nmi) over time horizons on the order of

half a minute or more [56, 102]. On the other hand, “collision” is used when detection is

required for close proximity encounters over time horizons of seconds [11]. While many of

these techniques may be applicable to either conflict or collision detection, an appropriate

scaling in design parameters, assumptions, and thresholds is required.

(d) (a) (b) (c) 

Figure 1.5: Most approaches to collision prediction stress the straight-line (nominal) ap-
proach (a), others use worst case (b), probabilistic (c) or flight plan sharing if aircraft are
equipped to communicate with each other (d).

Less research has been dedicated to collision detection for UAS, mainly because this

problem is relatively new in comparison with manned aviation air traffic management. Re-

gardless, there is a growing body of research in sense and avoid for UAS, motivated by the

need to integrate UAS into the national airspace, and in particular to establish separation

standards, risk assessment, and collision detection metrics [7, 24, 51, 123, 129]. The work by

Temizer et al. proposed a comprehensive collision alerting and avoidance scheme for dif-

ferent sensor modalities, including radar. The problem is formulated as a Markov decision

process (MDP) and a partially observable Markov decision process (POMDP) to account

for sensor uncertainties. A generic MDP/POMDP solver can be used to generate avoidance
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strategies that optimize a cost function that includes minimizing probability of an air col-

lision event [123]. Our work is similar in providing analysis of multiple components of an

aircraft alerting system, however we focus on the collision detection functionality. The cur-

rent paper contributes to this body of work by introducing a feasible framework for sensing,

tracking, and collision detection that can be integrated on-board small UAS. A continuous

focus of this dissertation is to develop an innovative approach to quantify likely intruder

future trajectories and evaluate the collision risk for a pair of aircraft flying at the same

altitude in close proximity. The proposed approach builds upon the reachability set concept

and the statistical data contained in the uncorrelated encounter model (UEM) developed by

MIT Lincoln Laboratory [61]. The main role of encounter models is to generate statistically

representative traffic encounters to explore and evaluate the robustness and performance

of a collision avoidance system. However, other ways to utilize these data sets have been

suggested in the literature. For example, Jackson et al. used sampling methods to generate

trajectories up to a future time of interest from the MIT LL UEM data set to increase the

fidelity of the reachability set boundary of the intruder [58]. Reachable sets of all possible

positions of a moving object have been extensively studied, due to their importance in mobile

robotics [29, 40,46,93].

The purpose of computing the collision risk is to have an alert threshold value above

which the collision avoidance system is triggered to initiate an evasive maneuver to avoid an

imminent collision with the detected intruding aircraft. There are a number of approaches

to evaluate the future collision risk of an encounter situation. Most of these approaches

can either be classified as geometric or probabilistic, where each approach has different

techniques to deal with errors. In the geometric approach, the collision risk is described

based on the geometric relationship between aircraft. Aircraft trajectory predictions are

based on linear projections of current aircraft states such that the uncertainty of the predicted

trajectory is translated into areas around the predicted trajectory referred as to safe zones.

Linear projections can be computationally efficient and prediction errors are negligible over

short time horizons [25, 50] or assumed known when flight plans are communicated [98].

On the other hand, probabilistic methods estimate the probability of collision based on a

probabilistic model of future intruder dynamics. This event probability is then compared to a
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certain threshold above which the aircraft is deemed to be in collision. These probabilities can

be estimated using approximate analytical solution [102], numerical approximation [73,127],

or Monte Carlo methods [58, 78, 81]. The expected utility is another approach used to

develop a risk alerting system that accounts for future changes in alerts and the responses to

them [26]. In general, the probabilistic approaches are computationally intensive but suffer

less from false alarms than geometric approaches.

1.2.3 Collision Avoidance Methods

Once a collision threat has been detected, the collision avoidance system must select

the proper evasive maneuver observing the manned aviation right-of-way rules. The essential

requirement for the collision avoidance system is to perform the avoidance maneuver in such

a way that the distance at the closest point of approach (CPA) to the intruder is equal

or greater than a minimum required miss distance. Additionally, the initiated maneuver

must be compatible with the performance of the ownship and once the conflict is resolved

the collision avoidance/path planner system should return the ownship to the original flight

path or to a newly assigned flight plan.

The subject of path planning is very broad and has been the focus of a significant body

of research especially in the field of autonomous planning and robotics. Essentially there are

two different approaches to path planning: deliberative motion planning, where explicit paths

are computed based on a priori knowledge of the environment, and reactive path planning,

which uses behavioral approaches to react to sensor information [16]. Reactive path planing

is well suited for dynamic environments, particulary airborne collision avoidance, where

sensor information is incomplete and uncertain. Additionally, the collision event occurs

over a relatively short time horizon which requires a planing method that promptly plan an

avoidance maneuver using limited computation power.

Collision avoidance is a fundamental part of path planning that involves the compu-

tation of an optimal collision-free path from a start point to a goal point while optimizing

an objective function or performance metrics. A robust collision avoidance logic considers

the kinematics constraints of the host vehicle, the dynamics of the intruders motion, and

the uncertainty in the intruder’s states estimate. Similar to collision detection, airborne
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collision avoidance has gained considerable attention, and various methods and approaches

have been suggested in the literature. Kuchar and Yang [68] conducted a detailed survey

of conflict detection and resolution methods. Albaker and Rahim [9] provide a thorough

survey of collision avoidance approaches for UAS. In addition, Angelov et al. presents a

literature survey of collision avoidance approaches for sense and avoid for UAS applica-

tions [11]. The most common collision avoidance methods are geometric-based guidance

methods [17, 21, 45, 48, 57, 110, 121, 130], potential field methods [72, 120], sampling-based

methods [59,74] and cell decomposition techniques.

Geometric approacher to collision avoidance are straightforward and intuitive. They

lend themselves to fast analytical solutions based on the kinematics of the aircraft and

the geometry of the encounter scenario. The approach utilizes the geometric relationship

between the ownship and the intruder along with intuitive reasoning [11,130]. Generally, this

approach assumes a straight-line projection to determine whether the ownship will penetrate

a circular protected zone of an intruder such that the collision avoidance can be achieved by

changing the velocity vector assuming a constant speed model. An optimal geometric based

avoidance algorithm is proposed in [17]. It is optimal in the sense that it minimizes the

velocity vector changes resulting in minimal deviation from nominal trajectory. Typically,

geometric approaches do not account for uncertainty in intruder flight plans and noisy sensor

information.

The potential fields method is another popular approach for collision avoidance in

robotics. A typical potential field works by exerting virtual forces on the aircraft, usually

an attractive force from the goal and repelling forces from nearby air traffic. Argyle et

al. present a path planner based on a simulated chain of unit masses placed in a force

field. This planner tries to find paths that go through maxima of an underlying bounded

differentiable reward function [13]. Bortoff presents a method for modeling a UAS path

using a series of point masses connected by springs and dampers. This algorithm generates a

stealthy path through a set of enemy radar sites of known locations [19]. McLain and Beard

present a trajectory planning strategy suitable for coordinated timing for multiple UAS.

The paths to the target are modeled using a physical analogy of a chain [88]. Generally, the

approach is very simple to describe and easy to implement. However, this approach has some
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fundamental issues [64]. One of these issues is that it is a greedy strategy that is subject

to local minima. However, heuristic developments to escape the local minima traps is also

proposed in the literature [75]. Another problem is that typical potential fields approaches

do not account for obstacle dynamics variability or uncertainly in observation or control.

Sampling-based methods like Probability Road Maps (PRM) [59] and Rapidly-exploring

Random Trees (RRTs) [74] have shown considerable success for obstacle avoidance and path

planning, especially for ground robots. They often require significant computation time

for replanning paths making them unsuitable for reactive avoidance. Recent extensions to

the basic RRT algorithm, however show promising results for uncertain environments and

nontrivial dynamics [65, 82, 83]. Cell decomposition is another widely used path planning

approach that partitions the free area of the configuration space into cells, which are then

connected to generate a graph [92]. Generally, cell decomposition techniques are considered

to be global path planners that require a priori knowledge of the environment. A feasible

path is found from the start node to the goal node by searching the connectivity graph using

search algorithms, like A∗ or Dijkstra’s algorithm [38].

Traffic Alert and Collision Avoidance System (TCAS) is the primary certified and

mandated cooperative collision avoidance system and is used by many manned aircraft with

operating transponders. TCAS system was designed for pilot-in-the-loop control and as-

sumes a delay to allow the pilot to respond. In addition to traffic alerts, TCAS issues

vertical rate resolution advisories to pilots who are then responsible for maneuvering the air-

craft. TCAS is currently limited to large aircraft capable of supporting its hardware, power

requirements, and maneuverability demands required by the avoidance advisory logic [62]. In

applying TCAS to UAS, the Multi-Sensor Integrated Conflict Avoidance (MuSICA) system

demonstrated promising results by using a comprehensive sensor suite that utilized TCAS

for UAS SAA [23]. The proposed MuSICA system was tested using Simulink desktop sim-

ulations and hardware-in-the-loop simulation. Additionally, a limited number of flight tests

were conducted using a Learjet as a UAS surrogate. These efforts, however, were focused on

the sensor data integration portion of the SAA system and concluded that more testing is

required for further confirmation. Other studies uncovered issues and areas of concern when

applying TCAS to UAS including inherited delay in TCAS logic, limited vertical maneu-
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verability, and coordination with existing TCAS-equipped manned aircraft [136]. Although

TCAS remains a candidate solution for larger-size UAS like the RQ-4A Global Hawk, it

is not presently suitable for small UAS because of the complexity of SAA and the limited

SWaP capabilities of small UAS [70,123].

Another important advancement in SAA is the development of Airborne Collision

Avoidance System X (ACAS X). The ACAS X system is currently undergoing testing and

evaluation is designed to replace TCAS and support the future air traffic system. It addresses

many of the design limitations of TCAS and leverage additional surveillance sources. ACAS

Xu is envisioned for UAS implementation and proof-of-concept trials have already taken

place. It is designed to use ADS-B messages for passive surveillance and coordination with

TCAS-equipped aircraft. ACAS Xu is designed to accept additional surveillance sources such

as radar or electro-optical (EO) sensors to track noncooperative traffic. Current research

efforts focus on large aircraft and general aviation, while UAS applications remain longer

term research. Similar to TCAS, the ACAS X system is aimed at close-range conflicts

between 15 and 48 seconds with vertical advisory resolution. It is obviously desirable to have

long-range conflict detection and resolution so that close-range conflicts can be prevented.

Moreover, climbing or descending may not be the best collision avoidance approach for small

UAS operating at lower altitudes [15].

1.3 Summary of Contributions

In this dissertation we make several contributions to the sense-and-avoid problem as

summarized below:

• We derive a close form analytical solution to compute the minimum sensing range

required for the SAA system. The existing approaches require extensive Monte Carlo

Simulations. To the best of the author’s knowledge, there is only one other approach

that derives a formula that is suitable for use as a heuristic to determine the minimum

sensing range [51]. Our proposed approach provides convenient equations that can be

used by both sense-and-avoid logic or sensors processing algorithm. We demonstrate
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the feasibility of this approach by describing a radar sensor prototype that achieves

the required minimum sensing range.

• We develop two collision detection and risk assessment approaches based on determinis-

tic and probabilistic framework. In the deterministic-based approach, we derive several

evaluation metrics including time to closest point of approach and distance at closest

point of approach and horizontal and vertical entry and exit time into the collision

volume. We used these metric to design a collision detection algorithm to evaluate an

encounter scenario and decide whether or not there exists a future collision. To account

for uncertainties in state estimates of the intruder we derive an analytic expressions to

propagate the error variance using a first-order Taylor series approximation. A contri-

bution of this dissertation is the derivation of the most used and cited formula for the

error propagation, σ2
f

≈ ∑

(∂f(x)
∂x

)2σ2
x
. We did not find the full derivation of this formula

in the literature. Therefore, to better understand the assumptions and limitations of

this equation we derive it. The derivation is presented in Appendix B. To account

for maneuvers other than a straight-line flight path, we develop a probabilistic-based

framework using the reachable set concept and the statistical data contained in the

uncorrelated encounter model developed by MIT Lincoln Laboratory. The proposed

collision detection approach has the advantage that the locus of states within the reach-

able sets with respect to the detected intruder are only computed once, which makes it

attractive and feasible for real-time SAA on-board small UAS. The computational bur-

den is expected to be much less than existing algorithms that require running Monte

Carlo approximations in near real time or performing an extensive sampling from the

probability distribution of intruder estimated states or probabilistic encounter models.

• We develop two reactive collision avoidance algorithms suitable for airborne-based

sense-and-avoid systems. The first techniques is chain-based collision avoidance, which

is an application of the potential fields methods. The basic idea is to model the

future motion of the aircraft using a chain of waypoints, where the waypoints can

dynamically move as if they were particles in a force field. We further explore the

chain-based approach using the analogy of a spring-damper system. The algorithm
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is further extended to account for multiple intruders in various encounter scenarios.

It is also extended to account for uncertainties in the state estimates of the detected

intruders. The approach is extended to 3D path planning, where the chain consists

of unit masses connected by springs and dampers evolves in a simulated force field.

The chain is initialized first with a suboptimal path generated using A∗ search. One

main advantage of this approach is that it can trade-off a collision free path versus path

length. We also develop a collision avoidance logic using a translated coordinate system.

The technique builds graph in the local-level frame and use Dijkstra’s algorithm to

find the path with the least cost. An advantage of this approach is that collision

avoidance is inherently a local phenomenon and can be more naturally represented

in local coordinates than global coordinates. This technique eliminates the need to

translate the sensor’s measurements from local coordinates to global coordinates, which

saves the computation cost and removes the error introduced by the transformation.

• To further evaluate the performance and explore the limitations of the proposed colli-

sion detection and avoidance approaches, we apply the proposed approaches to several

senors modalities using different tracking and estimation schemes. First, we evaluate

the close-loop system of the chain-based collision avoidance system using camera sensor

model and passive ranging tracker and collision detection system developed by Utopia-

Compression. The performance is examined using Monte Carlo simulations as detailed

in Chapter 5. We demonstrate a complete, proof-of-concept sense-and-avoid solution

for small unmanned aircraft including ADS-B-based multi-target tracking and esti-

mation, deterministic-based collision detection approach and the local-level avoidance

strategy assuming that both the intruder and ownship are equipped with ADS-B. Tak-

ing advantage of the long-range detection offered by the ADS-B system, the proposed

approach is extended used to detect conflict events over the range of 5 to 10 nmi, and

consequently provide self-separation of the host ownship. Additionally, as part of the

C-UAS sense-and-avoid project we collaborate with Communications and Sensors Lab

BYU. We have added a realistic radar model along with an estimator whose process

and measurement equations are formulated in the so-called modified polar coordinates
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(MPC) that appropriately handles polar measurements. We analyze the radar sen-

sor, the tracker and collision detection by comparing the proposed collision detection

approach with a linear extrapolation method using simulated encounters generated

from the MIT LL UEM. The performance is quantified in terms of the probability of

detection and the probability of false alarm using Monte Carlo based simulations.

• To address ground-based SAA system, we develop a two-step path planner approach

based on the A∗ search and simulated chain of waypoints that is connected by springs

and dampers. A unique strength of this approach is the ability to trade-off a collision-

free path versus path length. We evaluate the performance of the proposed approach in

typical encounter scenarios that include multiple intruders flying at different altitudes

using simulated radar data and R-RANSAC tracking algorithm. We demonstrate the

capability of the proposed collision detection and avoidance approach with flight tests

using X8 multicopter in near real time.

The content of this dissertation is heavily based on our publications. Chapter 2 is

based on [119]. Parts of Chapter 3 have appeared in [116]. Similarly, parts of Chapter 4

and 5 have appeared in [120]. Chapters 6, 7 and 8 is based on [118], [117], and [115].

1.4 Manuscript Organization

The outline of the remainder of this dissertation is as follows. In Chapter 2, we

discuss the minimum sensing range for the SAA system. The developed collision detection

and avoidance techniques are presented in Chapters 3 and 4. Applications of the collision

detection and avoidance approaches using vision, radar and ADS-B sensors are discussed in

Chapters 6, 7 and 8, respectively. Finally, in Chapter 9 we summarize the conclusions of

this dissertation and discuss the possible future directions of this research
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Chapter 2. Minimum Required Sensing Range

A small correction early is better than a large correction late.

-Aviation proverb

In this chapter we present an approximate close form analytical solution to compute

the minimum sensing range required for the SAA system to safely avoid an imminent colli-

sion. The framework is based on worst-case collision encounter geometries for aircraft flying

roughly at the same altitude. We demonstrate that this is a feasible result by describing a

radar sensor prototype that achieves the required minimum sensing range.

2.1 Geometric-Based Approach

The minimum required sensing range arises from the time required for SAA oper-

ations. The minimum time for the SAA system to be able to track the intruder, detect a

collision, plan an avoidance maneuver, and actually fly the maneuver determines the distance

at which the UAS must detect the intruder. In other words, the detection of a collision threat

must be accomplished at a minimum range allowing the ownship to execute the maneuver

with sufficient time that results in the minimum required safe distance from the intruder. A

time sequence for the SAA system, similar to [51], is shown in Figure 2.1.

To compute the sensing range, we first assume an approaching head-on collision en-

counter scenario similar to the 2D encounter geometry depicted in Figure 2.2(a). In this

encounter scenario the intruder is approaching the ownship in a perfect head-on collision.

We also assume that the intruder maintains its direction and speed the entire time of the

encounter and that it does not maneuver. Such a situation may exist when encountering a

non-cooperative intruder. As shown in Figure 2.2(a), the required sensing distance can be
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Figure 2.1: Proposed time sequence of the sense and avoid system.

expressed as

dr = vctc + dm, (2.1)

where vc = vo + vi is the closing speed, tc is the computation time required by the SAA

system algorithms to track the intruder, detect a collision, plan an avoidance maneuver, and

vo and vi are the speed of the ownship and the intruder, respectively. From Figure 2.2(a),

d
m

can be expressed as dm = dO + dI , where dO =
√

d2
s + 2dsRmin

, and dI is the distance

traveled by the intruder from the time instant the ownship initiated the maneuver until the

time to CPA. dI can be expressed as dI = vi

vo
θR

min
, where we have used the fact that the

length of the avoidance path traversed by the ownship must equal the distance traveled by

the intruder to reach the CPA. In other words, t
cpa

= dI

vi
= L

vo
, where t

cpa
is the time to closest

point of approach, L is the length of the ownship’s avoidance path, and R
min

is the minimum

turning radius of the ownship. Solving for the dm gives

dm =
√

d2
s + 2dsRmin

+
vi
vo
θR

min
. (2.2)

Then, substituting Eq. (2.2) in Eq. (2.1) gives the minimum required sensing range

d(h)
r = vctc +

√

d2
s + 2dsRmin +

vi
vo
θR

min
, (2.3)

where the superscript (h) indicates the assumption of the head-on collision encounter sce-

nario. Using θ and R
min

we can express d(h)
r in terms of known parameters ds, tc, vo, vi, and
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maximum banking angle of the ownship. We use the relationship [16]

R
min

=
vo

ψ̇
max

=
v2
o

g tanφ
max

, (2.4)

where ψ̇
max

is the heading rate, φmax is the maximum banking angle, and g is the gravitational

constant. Then, the required sensing range becomes

d(h)
r ≈ vctc +

√

√

√

√d2
s + 2ds

v2
o

g tan(φmax)
+

vivo
g tan(φmax)

arccos(
v2
o

v2
ods + g tan(φmax)

). (2.5)

The approximation in Eq. (2.5) is due to the fact that the value of θ is under approximated

by the relationship θ ≈ R
min

R
min

+ds
. Eq. (2.5) shows that the closing airspeed of the encountering

aircraft, and the maximum bank angle of the ownship affect the required sensing range. In

addition, the allowed minimum safe distance that the ownship is required to maintain to the

intruder, and the computation time also have an equal contribution in the required sensing

range equation.

Another important collision scenario an aircraft may encounter in the airspace is an

overtaking collision scenario. The overtaking geometry is shown in Figure 2.2(b). Similar to

the head-on collision scenario discussed earlier in this section, we assume that the ownship

and the intruder are on a perfect collision course, and the intruder does not alter course but

maintains its direction and speed during the time of the encounter. Although in manned avi-

ation the overtaken aircraft has the right-of-way as stated in the Code of Federal Regulations

(CFR) title 14, (14CFR,§91.113(f)), in the following analysis we will assume a worst-case

scenario in which the overtaking aircraft does not alter course possibly because the pilot

does not see the UAS. Such situations may exist when operating under visual flight rules

where a transponder or a states-reporting device is not required. For instance, a general

aviation aircraft flying in G-class airspace at a speed of 100 m/s encounters a slower speed

small UAS such as a Raven that has a wingspan of 4.5 ft and flies at a maximum airspeed

of 22 m/s. This analysis also implies that the UAS has the sensing capability to detect an

overtaking aircraft. Under this assumption, and in similar situations, it is more convenient,

23



avoidance trajectory 

collision volume

intruder

ownship

ownship

� �

� ≈ arccos
�min�min+��

� = � �min�min
�min

�
��

� �� �
� �� �

(a) The geometry associated with approaching
head-on scenario to estimate the minimum sensing
range.

avoidance 

trajectory �� �� ������ − ��2

� �=� �
� ��� � ≈ arccos �min − ���min

�min − ���
�min� = ��min

� �

�� ������ − ��2 1 2

� �
� �=�

�−� �

� �� �
� �� �

ownship

intruder

intruder

ownship

(b) The geometry associated with overtaking sce-
nario to estimate the minimum sensing range.

Figure 2.2: Encounter geometry to estimate the minimum sensing range.

and possibly safer for the smaller UAS to alter course and give the right-of-way to a larger

and faster aircraft.

As shown in Figure 2.2(b), the ownship is required to execute a maneuver that results

in a minimum safe distance to the intruder by the time both aircraft reach the closest point

of approach. In other words, the length of the avoidance path L = votcpa
should equal the
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distance traversed by the intruder dI = vitcpa
. Then, solving for dI gives

dI =
vi
vo
L, (2.6)

where L = θR
min

. From the geometry shown in Figure 2.2(b), dO can be expressed as

dO =
√

R2
min + (R

min
− ds)2, then solving for dm gives

dm = dI − dO =
vi
vo
θR

min
−
√

2dsRmin
− d2

s. (2.7)

Note that, Eq. (2.7) is only valid for R
min

≥ ds

2
. However, if R

min
= ds then dO = ds, and

θ = arccos(Rmin
−ds

R
min

) equals to 90 deg as shown in Figure 2.3. And, if R
min

= ds

2
then θ equals

180 deg as shown in Figure 2.3. That means the ownship is required to execute a circular arc

path that defines a semi-circle of radius R
min

to result in the minimum safe distance required

by the ownship to maintain the intruder at the closest point of approach. Additionally, when

R
min

= ds

2
, dO equals zero which is an unreasonable solution. Therefore, in this case dO must

be defined to equal ds. However, in practice when R
min

= ds

2
the ownship should execute a

circular arc followed by a straight line path as shown in Figure 2.3. In addition, R
min

< ds

2

suggests that the ownship is too slow to avoid an overtaking scenario. Possible solutions

to that are either to increase the ownship speed or to reduce the minimum required safe

distance.

���
���� ��

intruder intruder

intruder intruder

����

���� = �� ���� = ��
2

Figure 2.3: Overtaking scenario, R
min

= ds, and R
min

= ds

2
.
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From the geometry depicted in Figure 2.2(b), the sensing range is then given by

d(o)
r = vitc + dm − votc ,

= v̄ctc +
vi
vo
θR

min
−
√

2dsRmin − d2
s,

(2.8)

where the superscript (o) indicates an overtaking collision scenario, and v̄c is defined as

v̄c = vi − vo. Using the minimum turning radius relationship in Eq. (2.4) and θ ≈ R
min

−ds

R
min

,

the minimum required sensing range for an overtaking scenario becomes

d(o)
r ≈ vctc +

vi
vo
g tan(φmax) arccos(

v2
o

v2
ods + g tan(φmax)

) −
√

√

√

√2ds(
v2
o

g tan(φmax)
) − d2

s. (2.9)

Since d(h)
r > d(o)

r because the closing speed in the head-on scenario is always larger than the

closing speed in the overtaking scenario i.e. vc > v̄c, then we have that dr
min

= d(h)
r is the

minimum required sensing range given that the ownship avoids a collision by initiating a

turn maneuver. We still, however, need to know the minimum required sensing range for the

overtaking scenario in the case when the ownship uses a separate rear looking sensor. Since

Eqs 2.5 and 2.9 under approximate the minimum required sensing range, compensation can

be made by selecting a non zero design parameter δr > 0 such that the minimum required

sensing range becomes

d̄r
min

= (1 + δr)dr
min

. (2.10)

2.2 Results

In the following sections we first provide a numerical analysis of the proposed ap-

proach to design the minimum required sensing range using various UAS and manned aircraft

models, and second we demonstrate the feasibility of using radar sensor for SAA systems

by briefly describing a prototype radar sensor that achieve the required minimum sensing

range.
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2.2.1 Numerical Analysis

The analysis results shown in Table 2.1 illustrate the validity of the geometry-based

analytical solution to design the minimum required sensing range for a sense and avoid sys-

tem. We consider Eqs. (2.5), and (2.9) for the worst-case horizontal head-on and overtaking

collision scenarios, respectively. We have assumed that the computation time t
c

is 5 s, ds =

152.4 m (500 ft), and the performance characteristics of aircraft are given in Table 2.1.

Table 2.1: Sensing range required for SAA system. The symbols H and O are abbreviations
for head-on and overtaking collision scenarios, respectively. The numerals marked with

asterisk are our best estimate.

Intruder
Raven 

RQ-11B
ScanEagle Altus II

Cessna 

SkyHawk

Airtractor

AT-802F

Ownship

Sensing range (m)�
m/s

����
deg

H O H O H O H O H O

Raven RQ-11B 22 30* 545 - 729 435 825 581 961 786 1,290 1,282

ScanEagle 41 30* 787 - 999 - 1,111 183 1,267 361 1,646 792

Altus II 51 30* 912 - 1,130 - 1,245 - 1,406 219 1,797 646

Cessna SkyHawk 65 -

Air Tractor AT-802F 99 -

It is an obvious conclusion from these results, that an SAA-equipped UAS will require

a sensor to provide higher sensing range with increasing speed of encountering aircraft. For

instance, if the Raven RQ-11B is required to fly in a specific portion of the airspace in which

it expects to encounter a similar type of Raven, ScanEagle and Altus II, then the Raven is

required to be equipped with a sensor that is capable of providing a minimum sensing range

of 825 m. If a slack parameter of δr = 0.25 is used, then the required sensing range becomes

d̄r
min

= 1.031 km. However, if any of the aircraft shown in Table 2.1 might be encountered,

then a sensor with a minimum range of 1.29 km is required. If a slack parameter of δr = 0.25

is used, then the required sensing range becomes d̄r
min

= 1.613 km. To demonstrate the

validation of the minimum required sensing range computed in Table 2.1, we simulate an

encounter scenario similar to the encounter geometry shown in Figure 2.4. The ownship with

dynamic characteristics similar to Raven RQ-11B starts at position (0,0) with initial heading

of 0 degrees to the y-axis and moving with constant speed of 22 m/s. The intruder starts at
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Figure 2.4: Simulation results using ownship dynamic model similar to Raven RQ-11B and
intruder similar to Airtractor AT-802F.

position (0, 1613) with 180 deg heading with respect to the y-axis and moving at a speed of 99

m/s. The ownship keeps moves on the same path for 5 s, and then a turn maneuver followed

by a straight path to avoid the collision as shown in Figure 2.4(a). Figure 2.4(b) shows that

the ownship avoids the intruder and maintains the required minimum safe distance ds to the

intruder given that it detected the intruder at 1.613 km.

2.2.2 Validation Using Prototype Radar Sensor

The proposed radar sensor1 is an integrated system comprised of a radio frequency

transceiver, analog to digital converters, and signal processing. The radar operates in fre-

quency modulated continuous wave (FMCW) mode, which allows it to operate on much less

power than traditional pulsed radar systems. The major system specifications are listed in

Table 8.3. The processing is accomplished using a microZed processor board that features

an on-board field programmable gate array (FPGA) in addition to the central processing

unit (CPU). The FPGA executes the computationally intense radar processing, while the

1The section is jointly written with Jonathan Spencer, Dr. Randal W. Beard and Dr. Karl F. Warnick
as part of a manuscript published in the AIAA Infotech @ Aerospace 2016 [119].
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(a) Four channel phased array antenna. (b) Radar system processing boards.

Figure 2.5: Portable radar system designed for use on-board small UAS. The photos are
courtesy of the BYU Communications and Sensors Lab c©.

operations of collision risk assessment and avoidance path planning are performed on the

CPU, which communicates way-points to an external autopilot unit.

Objects are only visible to the naked eye if they can reflect visible light. In a similar

manner, objects are only visible to a radar if they can reflect radio waves at the frequency of

operation. This ability to reflect radio waves is called the radar cross section (RCS) of the

object and arises from the material and geometric properties of the target. The ability to

detect an intruder depends as much on the properties of the radar system, such as transmitted

power and antenna gain, as it does on the properties of the intruder. The direct dependence

on the system properties and intruder properties is evident in the standard radar equation

for received power Prec given by

Prec =
PtransG

2σ
RCS

λ2

(4π)3r4
, (2.11)

where Ptrans is the transmitted power, G is the gain of both the transmitter and receiver

respectively, σ
RCS

is the radar cross section of the target, λ is the wavelength and r is the

range to the target [111]. RCS is a strong function of both the frequency of operation

and the angle of observation to the target. However, when the size of the target is much
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larger than the wavelength of operation, the calculation can be simplified using geometrical

approximations.

Table 2.2: Radar sensor parameters [119]

Parameter Value Parameter Value

Antenna size 2.25in x 4in x 1in Weight 120 g (0.26 lbs)
Consumed Power 8 watts Approx. Cost of Materials US$1000
Transmitted Power (Ptrans) 5 miliwatts Center Frequency 10.25 GHz
Chirp Period (Tc) 1 ms Chirp Bandwidth 500 MHz
System Noise Figure (F) 8 dB ADC sample rate 1 Msamp/s

The radar system shown in Fig. 2.5 was able to detect human targets with an RCS

of 1 m2 at a range of 150 m using antennas with a measured gain of G = 20. The range at

which the radar system can observe a target can be increased by transmitting more power

or by using antennas with a higher gain. This relationship is evident in Eq. (2.11), however

both options have trade-offs. Transmitting more power will always extend the range of a

radar system, but there are both legal and practical limits to the amount of transmitted

power. At 10 GHz, where this system operates, the legal transmission limit in the USA is

5 watts of radiated power. Even though this is considerably lower than what many military

radars transmit, it still imposes practical limitations for operation on UAS. Power amplifiers

generally have a power added efficiency of approximately 20%, so in order to transmit 5 watts

of power, the system would require at least 25 watts of battery power, which would severely

limit the flight time of smaller aircraft.

Manipulating the antenna configuration of a radar system can also provide the needed

gain to detect far away targets, but this also comes at a cost. Higher gain antennas have,

by definition, smaller beamwidths and are larger in size. When a set of low gain antennas

are used, their beams cover a broad field of view. This can be quite advantageous in a

phased array antenna configuration where the total field of view is dictated by the pattern

of a single element. A phased array system requires no mechanical scanning and can track

multiple targets simultaneously.
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Table 2.3: Antenna gain requirements for detecting intruders of specified RCS. An asterisk
marks intruders for which geometrical approximations were used to estimate RCS. All

other values were found courtesy of [133]

Intruder
Raven 

RQ-11B
ScanEagle Altus II

Cessna 

SkyHawk

Airtractor

AT-802F

Ownship
RCS�2 Payload 

kg

������
watt Required Antenna Gain (G )

Raven RQ-11B 0.032* 0.36 0.4 166 167 68 52 53

ScanEagle 0.1 6 5 99 89 35 25.5 24

Altus II 1* 150 5 132 114 44 31.5 29

Cessna SkyHawk 3.16 - -

Air TractorAT-802F 10* - -

The data in Table 2.1 can also be used to analyze the requirements on the sensor

as well, however the dependence of the sensor on RCS adds another dimension to consider.

Although RCS data is not available for every type of aircraft, the data that is available

correlates quite closely with geometrical approximations for those aircraft. This correlation

justifies the use of geometrical approximations for rough RCS estimates when published data

is not available, and is therefore the approach taken in this work. The specifications listed

in Section 2.2.2 and Eq. (2.11) predict that in order for this radar system to detect a target,

it must receive at least Prec = 1.7×10−15 watts of power. Using the RCS of each aircraft,

we solve Eq. (2.11) for the antenna gain necessary for each aircraft to detect an intruder at

the defined sensing range. If the calculated values for required antenna gain fall within a

realistic range, we can conclude that the system is feasible. We assume that the ScanEagle

and Altus II operate at the maximum transmittable power level of 5 watts because their

payloads are large enough to store the necessary batteries. In like manner, we assume the

Raven transmits only 0.4 watts of power, in an effort to maintain low power requirements

and not limit flight time. The results are shown in Table 2.3.

From these results it is evident that detecting the aircraft with small RCS is far

more difficult than detecting the larger aircraft, despite the fact that they require a much

smaller sensing range. The larger payload sizes of the Altus and the ScanEagle would make

it easier to implement an antenna system, gimballed or otherwise, that would permit the

safe detection of other aircraft. On the other hand, the Raven has an extremely small

payload capacity, and the required values of gain are reasonable enough that a phased array
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system could successfully be implemented on the Raven if antennas were used that could be

attached to the wings. For a four channel phased array system such as the one described in

this chapter, the resulting field of view for the gain specified would be approximately 90 deg

in azimuth by 15 deg in elevation.

2.3 Conclusions

The potential to integrate UAS into the national airspace is highly dependent on

their ability to sense and avoid other air traffic. Based on a worst-case collision encounter

geometry, the minimum sensing distance required to safely execute a collision avoidance

maneuver was calculated. This minimum sensing distance took into account the computation

time involved in target tracking, risk assessment, and path planning in addition to the

actual reaction time required to execute the collision avoidance maneuver. The results listed

in Table 2.1 demonstrate the need for a sensor with a moderate sensing range of 1 to 2

kilometers and high range accuracy. Radar was selected as the primary sensor because

it offers the best performance in non-cooperative scenarios where high range resolution is

needed. An analysis was performed to determine whether this could be accomplished on-

board small UAS, similar to a Raven RQ-11B. A portable radar sensor under development

was used as a benchmark to judge its feasibility for SAA. Our analysis determined that

the antenna properties required to detect intruders at a safe distance were quite reasonable,

especially for the larger UAS. Although the system appeared feasible for a UAS similar to

the Raven, the implementation of a radar system on any aircraft with a smaller payload than

the Raven would be impractical. It was found that the antenna requirements are affected

more by RCS than they are by range. Any radar-based SAA system designed to detect small

RCS intruders at a close range will be powerful enough to detect large RCS intruders from

far away.
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Chapter 3. Collision Detection and Risk Estimation

It is possible to fly without motors, but not without knowledge and skill.

-Wilbur Wright

In this chapter we develop two approaches to estimate the collision risk of an en-

counter scenario. The first is a deterministic-based approach similar to those been devel-

oped for TCAS in manned aviation. The second is a probabilistic-based approach to address

unanticipated intruder maneuvers.

3.1 Deterministic-Based Collision Detection Approach

In this section, we present a collision detection method based on a deterministic ap-

proach, where a single trajectory of the intruder is predicted using straight line extrapolation.

Then, we estimate the collision risk using the time to the CPA and the distance at the CPA

metrics.

3.1.1 Collision Detection Metrics and Logic

We formulate the problem by decoupling the horizontal and vertical state equations.

In the horizontal coordinates, we assume the ownship’s position and velocity are known and

given at time t as p
own

(t) and v
own

(t), respectively. Let the states of the intruder’s position

and velocity be p
int

(t) and v
int

(t). The horizontal positions and velocities of the ownship

and intruder starting at time t = t0 are given by

p
own

= p
own

(t0) + v
own

(t0)t, (3.1)

p
int

= p
int

(t0) + v
int

(t0)t. (3.2)
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Then, the relative position and velocity between aircraft are given by

pr = p
int

(t) − p
own

(t), (3.3)

vr = v
int

(t) − v
own

(t). (3.4)

In this relative coordinate system the ownship is stationary at the center of the frame. The

relative position of the intruder with respect to the ownship is pr and it moves at a relative

velocity of vr. Assuming a constant velocity model, the time evolution of the horizontal

relative position of the intruder with respect to the ownship at time t is given by

pr = pr(t0) + vr(t0)t. (3.5)

Using the Euclidean norm property ‖a ± b‖2 = ‖a‖2+‖b‖2+2a⊤b, the range to the intruder

at any time instant t is given by

r(t) = ‖pr(t0) + vr(t0)t‖ ,

=
√

p⊤
r pr + t2v⊤

r vr + 2tp⊤
r vr.

(3.6)

The rate change of range r(t) with respect to time is given by

ṙ(t) =
d

dt

(
√

‖pr‖2 + t2 ‖vr‖2 + 2tp⊤
r vr

)

,

=
t ‖vr‖2 + p⊤

r vr
‖pr(t)‖

.

(3.7)

A metric that is used to predict the criticality of an encounter situation is the time remaining

to the horizontal closest point of approach between the ownship and the intruder denoted

as t
cpa

. It is defined as the future time instant t at which the range between aircraft is at a

minimum i.e. when ṙ(t) = 0. Assuming both aircraft will continue to fly in a straight line

without acceleration then t
cpa

is given by

t
cpa

= − p⊤
r vr

‖vr‖2 . (3.8)
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Note that t
cpa

in Eq. 3.8 is undefined when ‖vr‖ = 0. This occurs when the velocity vectors

of the ownship and the intruder are identical. Hence, to modify Eq. (3.8), t
cpa

is defined as

t
cpa

,















−p⊤
r vr

‖vr‖2 if ‖vr‖ 6= 0,

0 Otherwise.
(3.9)

Note also that t
cpa

will be zero when the relative position vector pr is perpendicular to

the relative velocity vector vr. That means if the relative velocity is not in the direction

of the relative position then the two aircraft cannot get any closer. The product p⊤
r vr

characterizes whether or not the intruder is horizontally converging, i.e. p⊤
r vr < 0, or

horizontally diverging, i.e. p⊤
r vr > 0. A negative time t

cpa
occurs when p⊤

r vr > 0 meaning

that the aircraft are diverging from each other or that the closest point of approach is past

and the paths are diverging. The horizontal distance between the ownship and the intruder

at the closest point of approach is computed by evaluating the range to the intruder at t
cpa

d
cpa

= r(t
cpa

) =
√

‖pr‖2 + 2t
cpa

p⊤
r vr + t2

cpa
‖vr‖2

=
√

‖pr‖2 + 2t
cpa

p⊤
r vr − t

cpa
p⊤
r vr,

(3.10)

d
cpa

=
√

‖pr‖2 + t
cpa

p⊤
r vr. (3.11)

��
��−�� ����������

Collision 
volume

intruder

Figure 3.1: Entry and exit times into the collision volume in the horizontal plane.

We know that the protected zone is penetrated when the r(t) ≤ ds. As shown in

Figure 3.1, when r(t) ≤ ds then there exist time instants to enter and exit the collision
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volume horizontally. Using Eq. (3.6) we can solve for these times as follows

‖pr‖2 + t2 ‖vr‖2 + 2tp⊤
r vr = d2

s,

t2 ‖vr‖2 + 2tp⊤
r vr + ‖pr‖2 − d2

s = 0.
(3.12)

Eq. (3.12) is a quadratic in t, and the roots of this equation gives us the entry and exit times

into the collision volume given by

t
ext
, t

ent
=















−p⊤
r vr±

√
∆

‖vr‖2 if ‖vr‖ 6= 0 and ∆ ≥ 0,

∞ Otherwise,
(3.13)

where ∆ = (p⊤
r vr)2 − ‖vr‖2 (‖pr‖2 − d2

s) is the discriminant of the quadratic equation. The

discriminant term ∆ characterizes whether or not the horizontal component of the relative

velocity vector penetrates the collision volume i.e. ∆ > 0 or outside the collision volume

i.e. ∆ < 0. The codintion ∆ > 0 suggests that there exist two distinct times, that is the

entry time to the collision volume in the horizontal plane t
ent

, and the exit time t
ext

. When

∆ = 0 then there exists only one solution to Eq (3.13) i.e., the entry time equals the exit

time t
ent

= t
ext

. That occurs when the horizontal component of the relative velocity vector

is tangent to the collision volume.

In the vertical dimension, we also assume that the vertical component of the position

and velocity of the ownship pz
own
, vz

own
are known and the states of the vertical component

of the position and velocity of the intruder be pz
int

and vz
int

, respectively. The vertical

positions and velocities of the ownship and intruder at time t is given by

pz
own

= pz
own

(t0) + vz
own

(t0)t, (3.14)

pz
int

= pz
int

(t0) + vz
int

(t0)t. (3.15)
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Figure 3.2: Entry and exit times into the collision volume in the vertical plane.

Then, the relative vertical position and velocity between aircraft at any time instant t is

given by

prz = pz
int

(t) − pz
own

(t), (3.16)

vrz = vz
int

(t) − vz
own

(t). (3.17)

Assuming a constant vertical speed, the time evolution of the relative vertical position to

the intruder at time t is given by

prz = prz (t0) + vrz (t0)t. (3.18)

The relative altitude to the intruder at time t is defined as

hr ,
∣

∣

∣prz

∣

∣

∣ . (3.19)

The time that satisfies prz = 0 in Eq (3.18) is defined as the time to co-altitude [98, 125].

However, since in the vertical plane the protected zone ranges from −hs/2 to hs/2, we are

interested in the time when the relative altitude between aircraft is equal to hs/2. The
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collision volume is penetrated vertically when prz = ±hs/2. Using Eq. (3.18) the entry and

the exit times into the vertical plane are defined as

t
vent

,



































ǫ1
hs
2

−prz

vrz

if prz >
hs

2
, or prz <

−hs

2
and prz vrz < 0,

0 if prz ∈
[

−hs

2
, hs

2

]

,

∞ Otherwise,

(3.20)

where

ǫ1 =















1 if prz >
hs

2
,

−1 if prz <
−hs

2
,

(3.21)

and

t
vext

,



































ǫ2
hs
2

−prz

vrz

if prz >
hs

2
, or prz <

−hs

2
and prz vrz < 0,

0 if prz >
hs

2
, or prz <

−hs

2
and prz vrz ≥ 0,

ǫ3
hs
2

−prz

vrz

if prz ∈
[

−hs

2
, hs

2

]

,

(3.22)

where

ǫ2 =















−1 if prz >
hs

2
,

1 if prz <
−hs

2
,

(3.23)

and

ǫ3 =



































1 if vrz > 0,

−1 if vrz < 0,

∞ if vrz = 0.

(3.24)

The definition of the entry and the exit times into the vertical plane given in Eqs. (3.20)

and (3.22) cover all the possible cases shown in Figure 3.2. In Figure 3.2 there exist two main

cases, the first is defined when the relative vertical position is outside the collision volume

cylinder or prz >
hs

2
or prz <

−hs

2
. In the first case the intruder is maintaining the relative

38



altitude i.e., vrz = 0, diverging or converging towards the top or bottom of the collision

volume cylinder. Similar to the horizontal case, the product prz vrz determines whether the

intruder is vertically converging i.e. prz vrz < 0, or diverging i.e. prz vrz > 0. The second

when the relative vertical position of the intruder is within ±hs/2. In the second case the

relative vertical position is inside the collision volume cylinder. The intruder is maintaining

the relative altitude or diverging outside the cylinder. In the later case we have assumed

that the intruder is in or entered the collision volume cylinder at t
vent

= 0. Additionally,

the definitions of the exit and entry time in Eqs. (3.20) and (3.22) avoids a negative sign.

Similar to the horizontal plane, a negative entry time occurs when prz vrz > 0 meaning

that the aircraft are vertically diverging from each other or have already vertically entered

and exited the collision volume cylinder. Also, a negative exit time occurs when the relative

vertical position is inside the collision volume cylinder and vrz 6= 0 meaning that the intruder

has already entered the collision volume cylinder.

Algorithm 1: Collision detection algorithm
1: for each detected intruder do
2: if ‖pr‖ < dth or (p⊤

r vr < 0 and t
cpa

≤ τ
th

) then
3: if hr < hth/2 or (przvrz < 0 and t

vent
≤ τ

th
) then

4: if d
cpa

≤ ds and t
vext

≥ t
ent

then
5: Collision is detected.
6: end if
7: end if
8: else
9: No collision is detected.

10: end if
11: end for

To predict whether or not the collision will occur with detected intruders, we use

the collision detection logic given in Algorithm 1. In Algorithm 1, the horizontal distance

threshold dth, the vertical distance threshold hth/2, and the time threshold τ
th

, are design

parameters that define the collision avoidance threshold. The collision avoidance threshold

is a variable boundary around the ownship, larger than the collision volume and depends not

only on distance, but time and other factors [30]. It is designed to give a practical separation
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such that if a collision is predicted then the ownship has adequate time to plan an avoidance

maneuver and to actually fly the maneuver. The design of the collision avoidance threshold

is beyond the scope of this dissertation, we refer the interested reader to [30, 34]. Line 2

checks whether the horizontal range ‖pr‖ to the intruder is less than a horizontal threshold

distance dth, or the intruder is horizontally converging and the time to CPA is below a time

threshold τ
th

. Line 3 checks whether the relative altitude hr is less than the vertical distance

threshold hth/2, or the intruder is vertically converging and the horizontal entry time is

below a time threshold τ
th

. Line 4 checks to see if d
cpa

is less than or equal the horizontal

minimum safe distances ds and the vertical exit time t
vext

is less than or equal the horizontal

entry time t
ent

. If so, then line 5 declares a collision.

3.1.2 Accounting for Uncertainty

Since there will always be an uncertainty associated with these estimates, an addi-

tional provision should be made to account for that. Sampling-based methods such as Monte

Carlo simulations and importance sampling are existing uncertainty propagation approaches.

However, instead of using extensive simulations, an analytic expression can be also used to

propagate the error variance using a Taylor series approximation. This approach to vari-

ance estimation, mostly used in statistical applications has several names in the literature,

including the linearization method, the delta method, and propagation of variance [76]. Let

X ∈ R
n be an n × 1 vector of jointly-Gaussian random variable (r.v.) with mean µX , and

covariance matrix Q ∈ R
n×n. Let Y be a new r.v. that is not measured directly but de-

termined by Y = g(X), where g(·) : Rn → R be a function of X. If g(X) is differentiable,

then up to the first-order Taylor series approximation, Y ≈ g(µX) + ∇g(X − µX), where

∇g(X) ∈ R
n×1 is the gradient vector ∂g

∂X
evaluated at µX . Then, the r.v. Y has mean

µ
Y

≈ g(µX) and variance given by

σ2
Y

≈ (∇g)⊤Q∇g. (3.25)
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If the r.v. in X are uncorrelated, Eq (B.1) simplifies further to

σ2
Y

≈ (∇g)⊤Qd∇g, (3.26)

where Qd = diag([σ2
X1
, σ2

X2
, · · · , σ2

Xn
]). The approximation given by Eq. (B.2) is the most

widely used expression to propagate the statistical error. The full derivation of both Eqs. (B.1)

and (B.2) is presented in Appendix B.

Typically, an estimator such as the Kalman filter is used to provide the state estimates

of the position and velocity of the ownship and the intruder and also an estimate of the

accuracy of these state estimates is also provided and is quantified in an error covariance

matrix. In Algorithm 1 Line 4, we used three quantities d
cpa

, t
ent

, and t
vext

. Each of these

variables is a function of either horizontal or vertical relative position and velocity states.

Using Eq (B.2) we estimate the error uncertainty associated with these variables. Assume

that the error uncertainty of the horizontal position and velocity of the intruder are expressed

by the variances σ2
p

int

and σ2
v

int
, respectively. Assume that the error uncertainty of the

horizontal position and velocity states of the ownship is negligible. To be more specific, we

assume that the uncertainty error of position and velocity components in the NE-plane of

the inertial NED reference frame be σ2
nown

= σ2
eown

≈ 0 and σ2
vnown

= σ2
veown

≈ 0. Assume for

convenience, the north-east components of the horizontal position, (n
int
, e

int
)⊤ and velocity,

(vn
int
, ve

int
)⊤ of the intruder are independent and identically distributed random variables.

Then, the uncertainty error of relative position and velocity can be quantified by the error

covariance matrix Qr = diag([σ2
n

int
, σ2

e
int
, σ2

vn
int
, σ2

ve
int

]). Using Eq. (B.2) the error uncertainty

in t
cpa

is given by

σ2
tcpa

≈ (∇t
cpa

)⊤Qr∇tcpa
, (3.27)
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where ∇t
cpa

= [∂tcpa

∂prx
,
∂tcpa

∂pry
,
∂tcpa

∂vrx
,
∂tcpa

∂vry
]⊤, and where

∂t
cpa

∂p
rx

= − v
rx

‖vr‖2 ,

∂t
cpa

∂p
ry

= − v
ry

‖vr‖2 ,

∂t
cpa

∂v
rx

= −p
rx

‖vr‖ − 2v
rx

(p⊤
r vr)

‖vr‖4 ,

∂t
cpa

∂v
ry

= −p
ry

‖vr‖ − 2v
ry

(p⊤
r vr)

‖vr‖4 .

The error variance in d
cpa

is given by

σ2
dcpa

≈ (∇d
cpa

)⊤Qrd∇dcpa
, (3.28)

where Qrd = diag([σ2
n

int
, σ2

e
int
, σ2

vn
int
, σ2

ve
int
, σ2

tcpa
]), and ∇d

cpa
= [∂dcpa

∂prx
,
∂dcpa

∂dry
,
∂dcpa

∂vrx
,
∂dcpa

∂vry
,
∂dcpa

∂tcpa
]⊤,

where

∂d
cpa

∂p
rx

=
2p

rx
+ v

rx
t
cpa

2
√

d
cpa

∂d
cpa

∂p
ry

=
2p

ry
+ v

ry
t
cpa

2
√

d
cpa

,

∂d
cpa

∂v
rx

=
p

rx
t
cpa

2
√

d
cpa

,

∂d
cpa

∂v
ry

=
p

ry
t
cpa

2
√

d
cpa

,

∂d
cpa

∂t
cpa

=
p⊤
r vr

2
√

d
cpa

.

The error variance associated with the horizontal entry time, t
ent

is given by

σ2
ent

≈ (∇t
ent

)⊤Qr∇tent
, (3.29)
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where ∇t
ent

= [∂tent

∂prx
,
∂tent

∂dry
,
∂tent

∂vrx
,
∂tent

∂vry
]⊤, where

∂t
ent

∂p
rx

=
−v

rx

‖vr‖2 +
v

rx
p⊤
r vr − p

rx
‖vr‖2

‖vr‖2
√

∆
,

∂t
ent

∂p
ry

=
−v

ry

‖vr‖2 − v
ry

p⊤
r vr − p

ry
‖vr‖2

‖vr‖2
√

∆
,

∂t
ent

∂v
rx

=
−p

rx
‖vr‖2 + 2v

rx
p⊤
r vr

‖vr‖4 +

(

p
rx

p⊤
r vr − v

rx

(

‖pr‖2 − d2
s

)

)

‖vr‖2 − 2v
rx

∆

‖vr‖4
√

∆
,

∂t
ent

∂v
ry

=
−p

ry
‖vr‖2 + 2v

ry
p⊤
r vr

‖vr‖4 +

(

−p
ry

p⊤
r vr − v

ry

(

‖pr‖2 − d2
s

)

)

‖vr‖2 − 2v
ry

∆

‖vr‖4
√

∆
,

where ∆ = (p⊤
r vr)2 −‖vr‖2 (‖pr‖2 −d2

s) is the discriminant of the quadratic equation (3.12).

Similarly, under the assumption that the error uncertainty of the relative altitude

and vertical speed is determined by the error variance of the vertical position and speed

estimates of the intruder. Assume the error variance in the vertical component (i.e. the

down component in the NED reference frame) of the position and speed estimates of the

intruder be σ2
d
int

and σ2
vd

int
, respectively, and that the vertical position and velocity of the

intruder are independent and identically distributed random variables, the, the error variance

in t
vext

is given by

σ2
vext

≈
(

∂t
vext

∂prz

)2

σ2
d
int

+
(

∂t
vext

∂vrz

)2

σ2
vd

int
, (3.30)

where

∂t
vext

∂prz
=

−1
vrz

,

∂t
vext

∂vrz
=
prz − vrz − ǫhs/2

v2
rz

,

and where ǫ = {−1, 1} can be determined from Eq. (3.22).

Therefore, Algorithm 1 is modified by Algorithm 2 to account for the uncertainties as-

sociated with d
cpa

, t
ent

, and t
vext

. In Algorithm 2, the parameters m1,m2 are positive integers.
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Algorithm 2: Collision detection algorithm with uncertainty
1: for each detected intruder do
2: if ‖pr‖ < dth or (p⊤

r vr < 0 and t
cpa

≤ τ
th

) then
3: if hr < hs/2 or (przvrz < 0 and t

vent
≤ τ

th
) then

4: if d
cpa

−m1σdcpa
≤ ds and (t

vext
+m2σvext

) ≥ (t
ent

−m2σent
) then

5: Collision is detected.
6: end if
7: end if
8: else
9: No collision is detected.

10: end if
11: end for

The parameters σ
dcpa

, σ
vext

, and σ
ent

are the standard deviation of the distance at closest point

of approach, vertical exit time and horizontal entry time derived from Eqs. (3.28), (3.29),

and (3.30).

�����
�̅���

��−��
ownship

����
Figure 3.3: The probability distribution function (PDF) of the distance at closest point of
approach. The probability of collision is the shaded area under the PDF curve.

The above computation of the variance of distance at closest point of approach,

exit and entry time can be used to predict the probability of collision. Given the mean

and variance of the distance at closest point of approach d̄
cpa

and σ2
dcpa

, respectively. The

probability of a collision can be determined by integrating the area under the probability

distribution function of d
cpa

between the the minimum required safety distance −ds and ds.
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As shown in Figure 3.3, the probability of a collision Pr(Col) is given by

Pr(Col) =
1

σ
dcpa

√
2π

∫ ds

−ds

exp(−(u− d̄
cpa

)2

2σ
dcpa

)du. (3.31)

Using the definition of the error function

erf(w) =
2√
π

∫ u

0
exp(−w2)dw, (3.32)

then, the probability of a collision Pr(Col) is given by

Pr(Col) =
1
2
erf(

ds + d
cpa√

2σ
dcpa

) +
1
2
erf(

ds − d
cpa√

2σ
dcpa

). (3.33)

3.2 Probabilistic-Based Collision Detection Approach

In this section, we introduce the probabilistic-based approach to detect a collision and

estimate the collision risk. We have obtained an analytical discrete-time approximation of

the reachable sets over look-ahead time window using Dubins kinematic model of an aircraft

flying at a constant altitude. Similar to [58], we have used reachable sets to predict the

intruder’s trajectory rather than predicting the ownship’s ability to determine the collision

free space. Alternatively, rather than sampling, we infer a probability distribution from the

transition probabilities contained in the MIT LL UEM and project it over a finite look-ahead

time horizon. Then we infer a probability distribution over the discretized reachability region

to quantify likely intruder trajectories to compute collision risk.

3.2.1 Maneuver Prediction Model

For ease of exposition, we will restrict the attention to the 2D case since the gen-

eralization to 3D is straight forward. Let p
int

= (x, y)⊤ ∈ R
2 denotes the position of the

intruder. The motion of the intruder is described by the Dubins kinematic model of the

aircraft flying in the 2D plane with constant speed and subject to an upper bound on the
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curvature of its path [39]. The kinematics motion model is given by

ẋ = v cosψ(t), (3.34)

ẏ = v sinψ(t), (3.35)

ψ̇ = u, (3.36)

where v is the intruder speed and u ∈ Su where Su , {u : |u| ≤ ū} is the set of possible turn

rate inputs. The system of differential equations (3.34)-(3.36) can be represented as

ẇ = f(w, u), |u| ≤ ū (3.37)

where w , (x, y, ψ)⊤ is the system states and u is the system input. The reachable set is

the set of states that are accessible at time τ from the initial state w0.

Definition 1. Let ŵ(τ, t0, w0, u(·)) be the solution of the system ẇ = f(w, u) at τ ≥ t0

given the initial condition w(t0) = w0, with input u(·) where u(τ) ∈ Su. The reachable set

is therefore defined as

R(τ, t0,w0) , {ξ ∈ R
n|∃ input u(·) such that ŵ(τ, t0, w0, u(·)) = ξ}.
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Figure 3.4: Representations of reachable sets level curves in a)continuous time; and b) a
discrete-time approximation.
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The reachable sets R(τ, t0,w0) for increasing values of τ ≥ t0 are shown in Fig-

ure 3.4(a), where level curves of the reachable sets Rrd(τ, t0,w0) are generated using Eqs. (3.34)-

(3.36) with w0 = (0, 0, 0)⊤, Su = [−8, 8] deg/s, and v = 10 m/s over τ = [0, 30] s. To obtain a

discrete-time approximation, we quantize the input as Sud
= {−ū,−ū+δu, · · · ,−ū+mδu, ū}

where δu = 2ū
m

and m is the quantization level. Integrating Eq. (3.36) gives

ψ(t) = ψ(t0) +
∫ t

t0
u(τ)dτ. (3.38)

Letting t = (k+ 1)Ts and t0 = kTs, where Ts is the sampling time and assuming that u(·) is

constant between sample times, we get

ψ((k + 1)Ts) = ψ(kTs) + u(kTs)
∫ (k+1)Ts

kTs

dτ. (3.39)

Adopting the notation ξk , ξ(kTs), the discrete-time solution of Eq. (3) is given by

ψk+1 = ψk + Tsuk. (3.40)

Then, integrating Eq. (3.34) assuming that v is a constant gives

xk+1 = xk + v
∫ (k+1)Ts

kTs

cos
(

ψk + uk

∫ τ

kTs

dτ1

)

dτ

= xk + v
∫ (k+1)Ts

kTs

cos
(

ψk + uk(τ − kTs)
)

dτ.

Letting λ = ψk + uk(τ − kTs), then dτ = dλ/uk. Making the change of variables in the

integral gives

xk+1 = xk +
v

uk
(sin(ψk + Tsuk) − sin(ψk)) .

Using the trigonometric identity 2 cos(a) sin(b) = sin(a+ b) − sin(a− b), then discrete-time

solution of Eq. (3.34) becomes

xk+1 = xk +
2v
uk

sin(
Tsuk

2
) cos(ψk +

Tsuk
2

). (3.41)
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Following similar steps, the discrete-time solution of Eq. (3.35) is given as

yk+1 = yk +
2v
uk

sin(
Tsuk

2
) sin(ψk +

Tsuk
2

). (3.42)

However, implementing both Equations (3.42) and (3.41) requires a divide by zero when

uk = 0. Using sinc(x) , sin(πx)
πx

, the discrete-time solution of Eqs. (3.34)-(3.36) is given as

xk+1 = xk + Tsv sinc(
Tsuk
2π

) cos(ψk +
Tsuk

2
), (3.43)

yk+1 = yk + Tsv sinc(
Tsuk
2π

) sin(ψk +
Tsuk

2
), (3.44)

ψk+1 = ψk + Tsuk. (3.45)

The reachable set for the discrete dynamics with quantized input is defined as follows.

Definition 2. Let ŵd(ℓ, t0, w0, ud(·)) be the solution of the system wk+1 = fd(wk, uk) at time

t = t0 + ℓTs, where ℓ = 1, 2, · · · , L is the discrete look-ahead index, starting from the initial

condition w(t0) = w0 and with input ud(·) where ud(t0 + kTs) ∈ Sud
. The definition of the

reachable set at time ℓ, given the initial state w0 at the initial time t0 is

R(ℓ, t0,w0) , {ξ ∈ R
n| ∃ input ud(·) such that ŵd(ℓ, t0, w0, ud(·)) = ξ}.

Note that the size of the discretized input set Sud
is m + 1, which implies that the

cardinality of the discrete-time reachable set Rd(ℓ, t0,w0) is (m + 1)ℓ states. To manage

the exponential growth of the size of Rd(ℓ, t0,w0) observe that aircraft tend to maneuver

slowly, and that the most likely future trajectory, at least over the near term, is to hold the

current airspeed and turn rate. Therefore, we will limit the reachable set to those states

that can be reached with constant input trajectories ud(ℓ1) = ud(ℓ2) for all ℓ1, ℓ2 = 1, . . . , L.

We denote this set as Rrd(ℓ, t0,w0) and note that its cardinality is (m + 1). Figure 3.4(b)

shows the reduced discrete reachable set with a fixed number of configurations along each

level curve, where the discrete-time approximation, Rrd(ℓ, t0,w0) is generated with δu = 16
m

deg/s, m = 100, and Ts = 1 s for ℓ = 1, 2, · · · , 30.
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Having determined the region of accessibility of the intruder over a look-ahead win-

dow, the question becomes: What is the probability that the intruder will reach a specific

configuration point within the reachability region? To answer this question we use the tran-

sition probabilities contained in the MIT LL UEM. The MIT LL UEM is a high fidelity

probabilistic airspace encounter model based on actual radar data collected from more than

120 radar sites across the United States and is statistically representative of the behavior of

aircraft maneuvering in close proximity to each other. The MIT LL UEM is based on the

use of Bayesian networks to represent relationships between the airspace class A, altitude

layer L, speed v, acceleration v̇, turn rate ψ̇, and climb rate ḣ. The airspace class A is

divided into four values (class B, C, D and O) where O represent other airspace class such

as class G. Altitude layer is also divided into four layers, 500-1200, 1200 − 3000, 3000-5000

and 5000-18000 feet above the ground level. The continuous variables, such as the turn

rate ψ̇, is quantized into seven bins symmetric about zero, [-8, -6], [-6, -4.5], [-4.5, -1.5],

[-1.5, 1.5], [1.5, 4.5], [4.5, 6] and [6, 8] degree/s from which a specific value is then sampled

uniformly [61, 63]. Consider a collision encounter where the ownship and the intruder are

� �̇� �∈ ℝ�
� = �̇�-�̇� �̇�

Radar/

Estimator Intruder states 

estimate 

�̇�~�(�,�)
Partition & 
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Figure 3.5: The state probability vector, p ˙̂
ψ
(t) can be obtained through partitioning and

normalizing p ˙̂
ψ
( ˙̂
ψ) over the discrete bins of ψ̇

flying in a specific airspace class and altitude layer. Let r̂(t), v̂(t), and ˙̂
ψ(t) be the ownship’s

estimates of the intruder’s position, speed and turn rate, respectively. Then these estimates

determine where to look in the transition probability tables of the MIT LL UEM. We can

extract from these tables the probabilities of each possible candidate of ψ̇(t + Ts) jointly

conditioned on A, L, v̂(t) and ˙̂
ψ(t). These transition probabilities can be represented by a

one-time step transition probability matrix Mtrans ∈ R
b×b, where b is the number of the turn
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rate discrete bins defined in the MIT LL UEM. Assuming that the estimated turn rate, ˙̂
ψ(t)

is normally distributed with ˙̂
ψ ∼ N (µ, σ) and the associated probability density function

(pdf) is p ˙̂
ψ
( ˙̂
ψ). Suppose that the pdf of the turn rate estimate can be represented by a

discrete state probability vector p ˙̂
ψ
(t) ∈ R

1×b. As shown in Figure 3.5, the state probability

vector p ˙̂
ψ
(t) at the current time t can be obtained by partitioning and normalizing p ˙̂

ψ
( ˙̂
ψ)

over the turn rate range ψ̇ ∈ [−ψ̇c, ψ̇c]. Now, we would like to propagate p ˙̂
ψ
( ˙̂
ψ) over the

time horizon [t, t+ ℓTs] using the one-step transition probability Mtrans. However, the MIT

LL UEM transition distribution table projects the transition probabilities one time step into

future while our approach requires the knowledge of the probability distribution over the

entire time horizon. A possible solution is to employ the concept of the n-steps transition

probability matrix of a discrete Markov random process. The probability distribution of

a discrete Markov process after n≥ 1 transitions is completely determined by the one-step

transition probability matrix and the initial state probability vector. Similarly, the proba-

bility distribution of ˙̂
ψ or the state probability vector p ˙̂

ψ
(t) propagated ℓ time steps into the

future can be given by

p ˙̂
ψ
(t+ ℓTs) = p ˙̂

ψ
(t)M ℓ

trans. (3.46)

Let Ptran ∈ R
b×L be the matrix of all the state probability vectors p ˙̂

ψ
(τd), defined as

Ptran , [p⊤
˙̂
ψ

(t+ Ts),p⊤
˙̂
ψ

(t+ 2Ts), . . . ,p⊤
˙̂
ψ

(t+ LTs)]⊤. (3.47)

The b quantization intervals for ψ̇ define b wedges in the reachability set. As shown in

Figure 3.6(a) we will denote these wedges by Wi, i = 1, . . . , b. The current model does not

account for the uncertainty associated with the intruder’s position, velocity and heading

estimates. However, we have assumed that the reachable sets are determined based on the

current estimate of position, velocity and heading estimates of the intruder provided by the

radar/tracker which represent the mean of their respective distribution.
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3.2.2 Collision Risk Estimation

The purpose of computing the collision risk is to have an alert threshold value above

which the collision avoidance system is triggered to initiate an evasive maneuver to avoid an

imminent collision with the detected intruding aircraft. There are a number of approaches

to evaluate the future collision risk of an encounter situation. Most of these approaches can

either be classified as geometric or probabilistic, where each approach has different techniques

to deal with errors. In the geometric approach, the collision risk is described based on the

geometric relationship between aircraft. Aircraft trajectory predictions are based on linear

projections of current aircraft states such that the uncertainty of the predicted trajectory

is translated into areas around the predicted trajectory referred as to safe zones. Linear

projections can be computationally efficient and prediction errors are negligible over short

time horizons [25, 50] or assumed known when flight plans are communicated [98]. On

the other hand, the probabilistic methods estimate the probability of collision based on a

probabilistic model of future intruder dynamics. This event probability is then compared to a

certain threshold above which the aircraft is deemed to be in collision. These probabilities can

be estimated using approximate analytical solution [102], numerical approximation [73,127],

or Monte Carlo methods [58, 78, 81]. The expected utility is another approach used to

develop a risk alerting system that accounts for future changes in alerts and the responses to

them [26]. In general, the probabilistic approaches are computationally intensive but suffer

less from false alarms than geometric approaches. Our work is similar to the threshold-based

probabilistic methods. However, rather than making simplifying assumptions in order to

derive an analytical solution or performing a computationally expensive sampling to account

for all possible states, our approach presents a tradeoff that accounts for likely intruder

trajectories with a computational scheme that can be handled by limited resources available

on small UAS.

Let p
own

(t) be the position of the ownship and let p̂
int

(t) be the estimated position

of the intruder at the current time t. The protected zone of the ownship is a virtual region
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centered on the ownship, usually represented by a circular disk with radius dsafe, defined as

Bds
(p

own
(t)) =

{

d ∈ R
2 :
∥

∥

∥p
own

(t) − d
∥

∥

∥ ≤ ds
}

.

The encounter situation is said to generate a collision if the intruder enters Bds
. The collision

risk is the largest probability of a collision event over the look ahead window τ ∈ [t, t+ ℓTs].

The probability of collision at step ℓ = 1, . . . , L is computed as

Pcol(ℓ, t) =
⋃

w∈Rd(ℓ,t,ŵ(t))

I
[

w ∈ Bds
(p

own
(t+ ℓTs))

]

P
({

p̂
int

(t+ ℓTs) = w
})

, (3.48)

where I[·] is the indicator function, and P
({

p̂
int

(t+ ℓTs) = w
})

is the probability of the

event that the actual future state of the intruder at time t + ℓTs will be w. In this section,

the future predicted position of the ownship is given given by

p
own

(t+ ℓTs) = p
own

(t) + ℓTsvown
(t)(cosψ

own
(t), sinψ

own
(t))⊤,

where p
own

(t), v
own

(t), and ψ
own

(t) are the current position, speed, and course of the ownship.
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Figure 3.6: a) There are b-wedges in the reachability set; and b) collision risk is continuously
updated after every new measurement.

As indicated in Figure 3.6, the probability of collision at step ℓ given in Eq. (3.48) is

the number of states belonging to the intersection between the reachable set Rd(ℓ, t, p̂int
(t))
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and the safe zone Bds
(p

own
(t + ℓTs)) relative to the total number of states in the relative

wedges, weighted by the corresponding transition probabilities in the ℓth column of Ptran. If

we use the notation |A| to denote the cardinality of the discrete set A, then we have

Pcol(ℓ, t) =
b
∑

i=1

∣

∣

∣Rrd(ℓ, t, p̂int
(t))

⋂Bds
(p

own
(t+ ℓTs))

⋂

Wi

∣

∣

∣

∣

∣

∣Rrd(ℓ, t, p̂int
(t))

⋂

Wi

∣

∣

∣

Ptran(ℓ, i). (3.49)

To account for the fact that there are many paths to each location, and that the input

trajectory for the intruder may not have been constant, we modify Equation (3.49) to include

several fronts of the reachable set as

Pcol(ℓ, t) =
1

2L + 1

ℓ+L
∑

m=ℓ−L

b
∑

i=1

∣

∣

∣Rrd(m, t, p̂int
(t))

⋂Bdsafe
(p

own
(t+ ℓTs))

⋂

Wi

∣

∣

∣

∣

∣

∣Rrd(m, t, p̂int
(t))

⋂

Wi

∣

∣

∣

Ptran(m, i),

(3.50)

where L is the size of the window of level curves inside the safe zone at time step ℓ.

To maximize the safety of the system, the maximum collision risk estimate is evaluated over

the look ahead window ℓ ∈ [1, L] as

Pcol(t) = max
ℓ∈[1,L]

Pcol(ℓ, t). (3.51)

Generally, the collision risk involves extracting some measure of how the current encounter

situation is critical compared to a threshold CD. If the threshold is exceeded i.e. Pcol(t) ≥ CD,

then the collision detection logic issues an alert to declare that the detected intruder is on a

collision course. As shown in Figure 3.6(b), the collision risk is evaluated regularly, that is,

after every new measurement the state estimates of the intruder and the locus of reachable

configurations is updated with respect to the new estimated location and orientation of the

intruder. In addition, the transition probability assignment is updated over the course of the

collision encounter depending on the estimated air class, altitude level, speed, acceleration,

and heading rate variations of the intruder. The collision risk is continuously evaluated after

every measurement update using Eq. (3.51).
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3.3 Assessment and Validation Measure

The objective of this assessment and validation is to provide a quantifiable perfor-

mance measure in terms of the traditional detection metrics of probability of detection Pd

and probability of false alarm Pfa. A Monte Carlo simulation is used to generate the system

operating characteristic (SOC) curve which quantifies false alarm rates and correct detec-

tion rates. If N is the number of performed simulations, among which there are E true

collision encounters for a specific decision threshold CD, and the proposed collision detection

algorithm detects M collision encounters, among which Ẽ encounters are the true collision

events, then the correct detection rate Pcd and false alarm rate Pfa are given by

Pcd =
Ẽ
E , (3.52)

Pfa =
M − Ẽ
N − E . (3.53)

By varying CD for different sizes of intruder aircraft, we obtain Pcd and Pfa as a function of

CD. Plotting Pcd versus Pfa as CD varies gives us the SOC that determines the performance

of the detection logic and also can be used to select a decision threshold that yields the

optimal Pcd and Pfa

3.4 Performance Evaluation Using Monte Carlo Simulations

To validate the collision detection algorithm, we create a simulation environment with

4 degree-of-freedom aircraft models for both the ownship and intruder. We assume that both

the ownship and intruder are flying at the same altitude. To generate realistic encounter

scenarios that are representative of what is observed in the national airspace, we sample flight

trajectories from the MIT LL UEM. The encounter scenarios are assumed to take place in

class G airspace within 500-1200 ft altitude layer. The initial airspeed of the intruder varies

over (0, 31] m/s based on the type of the intruder used in the simulation. In addition, the

control variables v̇ and ψ̇ vary from -2 to 2 m/s2 and −8 to 8 degree/s, respectively while

the climb rate ḣ is set to 0 m/s. To construct the encounter geometry we follow an approach

suggested by M.J. Kochenderfer et al. [61]. We assume a virtual encounter circle centered
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on the ownship. The radius of the encounter circle is set to denc = 500 m. The ownship

is initialized at the center of the encounter circle p
own

(t0) = (0, 0) and follows a straight

line path. However, at each Monte Carlo run the intruder is randomly initialized on the

perimeter of the encounter circle. The bearing angle of the intruder relative to the ownship

is drawn from a uniform distribution over [0, 2π] and the heading of the intruder is randomly

drawn from a uniform distribution over [0, 2π] while the ownship heading is set to 0 degree.

Monte Carlo based simulations are used to test the performance of the detection algorithm.

Additive zero mean white noise is introduced on the intruder states to model what a sensor

and detection/tracking system would actually deliver to the sense-and-avoid system. The

following 1σ values are assumed for the states of interest:

σx = σy = 5 m, σv = 1.5 m/s, σψ = 1.2 deg/s.

`
ownship

�
����

intruder ����
�������� − ���� �����

��
Protected zone

Encounter 

Circle 

Figure 3.7: The encounter geometry used for Monte Carlo simulations.

The simulated encounters are similar to the planner geometry shown in Figure 3.7.

Monte Carlo based simulations are used to test the performance of the detection algo-

rithm.The procedure of the Monte Carlo simulations consists of the following steps.

1. The trajectories of both the ownship and intruder are generated over a 30 s time horizon

where the sample time is set to 0.1 s.
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2. At each run, the intruder is initialized on the perimeter of the encounter circle, with a

random heading that ensures that the intruder is penetrating the encounter region at

the first time instant.

3. For each Monte Carlo simulation trial, execute the collision detection algorithm. A

collision threat is declared as soon as the collision risk measure Pcol(t) exceeds the

threshold CD. The definition of collision threat detection accounts for the fact that a

collision may be detected before it is too late to take an action. In these simulation, a

collision threat alert is considered valid if it is declared at least 10 s before the collision

would actually occur.

4. We compute the probability of false alarm and the probability of correct detection for

each collision threshold value and plot the system operating characteristic curve, Pcd

versus Pfa. A thousand Monte Carlo simulation runs are conducted for each collision

threshold value.
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Figure 3.8: The SOC curve parametrized by the threshold. The data tip (0.107, 0.7882)
corresponds to the “optimal” threshold point.
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The estimates of the probability of false alarm and the probability of correct detection

are obtained by 1000 Monte Carlo simulations for each threshold CD value. The system

operating characteristic (SOC) curve for the proposed collision detection and risk estimation

is shown in Figure 3.8. An ideal collision detection algorithm would operate at the point

Pfa = 0 and Pcd = 1 i.e. all collision threats are detected and there are no false alarms.

Unfortunately, any real scheme cannot operate at such a point due to the uncertainty in the

intruder state estimates. However, the closer the SOC curve is to the point (0, 1) the better

the performance will be. Therefore, the “optimal” compromise between correct detection and

false alarm rates corresponds to the point on the SOC curve that has a minimum distance

to the ideal operating point (0, 1).

3.5 Conclusions

We have developed in this chapter a deterministic-based collision detection approach

using the time and distance to closest point of approach metrics. We extend the approach

to account for uncertainties in the intruder state estimates by deriving analytic expressions

to propagate the error variance using a Taylor series approximation.

To address unanticipated intruder maneuvers, we have also developed a probabilistic

based collision detection and risk estimation approach that is computationally feasible for

small UAS. The computational burden is expected to be much less than existing methods

that require running Monte Carlo approximations in near real time or performing exten-

sive sampling from a probabilistic encounter model. That makes the proposed approach a

tractable solution in particular for small and mini UAS. The proposed collision approach has

the advantage that the locus of states within the reachable sets with respect to the detected

intruder are only computed once, which makes it attractive and feasible for real-time SAA

on board small UAS. However, the orientation and translation of the constructed reachable

sets with respect to the intruder may need to be updated every time a new measurement is

received.
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Chapter 4. Collision Avoidance System

All the calculations show it can’t work. There’s only one thing to do: make it work.

-Pierre Georges Latécoère, early French aviation entrepreneur.

In this chapter, we present multiple avoidance path techniques suitable for small UAS

sense-and-avoid systems. We first propose a feasible collision avoidance based on a virtual

chain placed in a virtual force field. Second, we present an innovative collision avoidance

logic using a local coordinate system centered at the ownship.

4.1 Chain-Based Collision Avoidance

The chain-based concept was initially presented in [13] to plan a path using a series

of connected waypoints. The waypoints serve as the links of a simulated chain. Since the

path is represented using waypoints that are a fixed distance apart, it is easy to determine

roughly where the UAS will be at any given time. This timing information can be used to

prevent collisions and spread out paths when creating plans to avoid multiple UAS [13].

The method for finding a path that safely avoids intruder aircraft is based on the work

of [13, 22, 88]. Similarly, we model the chain as a collection of unit-mass points constrained

to the 2-D plane. Letting zi = (xi, yi)⊤ ∈ R
2, i = 1, 2, ..., N be the position of the ith point

or node in the chain, the N -link chain is represented by

c =
[

z⊤
1 , z

⊤
2 , . . . , z

⊤
N

]⊤
.
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If the point masses are unconstrained, then by Newton’s second law of motion, the uncon-

strained dynamics equation describing the entire chain motion is given by

c̈ = F, (4.1)

where F is the sum of applied forces, which consists of constrained and unconstrained forces.

The unconstrained forces applied to the chain are composed of two forces: the first pushes

the chain towards the ownship target, while the second repels the ownship from the intruder

observing the right-of-way rules.

Potential  

Collision Site 

The 1st link serves as a waypoint and  is 

not allowed to move 

9 10 

Original path 

Avoidance path 

1 2 

Ownship 

UAS 

Intruder  

Aircraft/UAS 

Examples of repulsive forces acting on 

node 9 and 10 of ownship due to node 8, 

9 and 10 of the intruder.  

10 

Figure 4.1: Representation of repulsive forces between chains.

To push the chain in the desired direction it is placed in a force-field that is generated

using the gradient of a bounded differential reward function. To create a force that causes the

chain of the ownship to avoid the intruder, first we assume that the position of the ith element

in the intruder chain is known. As depicted in Figure 4.1 let cO =
[

z⊤
O1, z⊤

O2, . . . , z
⊤
ON

]⊤
be

the N-link chain associated with the ownship, and let cI =
[

z⊤
I1, z⊤

I2, . . . , z
⊤
IN

]⊤
be the N-

link chain associated with the intruder. Note that while both chains have the same number

of links the desired distance between each link does not need to be the same for both the

ownship and the intruder but should be proportional to speed, so that both chains are

associated with a fixed look ahead time T. This implies that each UAS will fly through the

ith node in its chain at approximately the same time. Let dOI(m,n) be the vector from the
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nth node of the intruder aircraft to the mth node of the ownship UAS, defined as

dOI(m,n) = zOm − zIn (4.2)

and

d̂OI(m,n) =
dOI(m,n)

‖dOI(m,n)‖. (4.3)

Where ‖ · ‖ is the standard Euclidean norm. As shown in Figure 4.1, the repulsive force

acting on node m of the ownship UAS due to node n of the intruder aircraft is defined as

frp(m,n) =



































d̂OI(m,n)γrp1e
(−γrp2‖dOI(m,n)‖) if |m− n| < k and

‖ dOI(m,n) ‖< dmax

0 Otherwise,

(4.4)

where γrp1, γrp2 are nonnegative constants, dmax is the greatest distance over which nodes can

influence each other, and k is a positive integer that determines the time dependence of the

interactions. As we have no control over the intruder’s chain, the ownship’s path is pushed

away from the intruder’s path while the intruder’s path is not influenced by the ownship’s

path.

Merging all of the repulsive forces acting on the chain of the ownship by the chain of

the intruder, we obtain

FrpOI =
[

F⊤
rpOI(1), F⊤

rpOI(2), · · · , F⊤
rpOI(N)

]⊤
. (4.5)

Where

FrpOI(m) =
N
∑

n=1

frp(m,n), (4.6)

is the sum of all the forces acting on the mth node of the ownship by all the nodes of the

intruder.

To be consistent with the kinematics of fixed wing aircraft, we introduce a straight-

ening force that prevents the chain from violating the minimum turn radius of the UAS.

Similar to [13], the applied force on any link that causes a turn is designed to ensure that
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Figure 4.2: θmax, the maximum allowable turn angle to approximate a circle using a discrete
chain.
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Figure 4.3: The straightening force applied to link N is designed to ensure that |θN | < θmax.

|θi| < θmax. As shown in Figure 4.2, θmax is selected to ensure that

θmax <
L

rmin
, (4.7)

and as Figure 4.3 shows, θi is the angle between di1 and di2, defined as

θi = arccos(di1.di2),

where di1 = zN−1 − zN−2 and di2 = zN−2 − zN−3, then the straightening force is defined as

fst(i) =
µi(di1)⊥

1 + exp(k(θmax − θi))
, (4.8)

where i = 1, 2, . . . , N , µi = (N + 1 − i) is the upper limit of the straightening force for node

i, k is a positive constant that define how closely the logistic function approximates a step

function and (di1)⊥ is the orthogonal complement of di1.
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Define Fst ,
[

f⊤
st(1), f⊤

st(2), . . . , f⊤
st(N)

]⊤
to be the vector of all straightening forces

applied to the chain and let Frw be the reward force that is responsible for pushing the chain

in the desired direction. Then the total unconstrained force F of system (4.1) is given by

F = Frw + FrpOI + Fst. (4.9)

In addition, we want the motion of the link to be constrained by the kinematics of

the chain, so that the distance between adjacent links is fixed as shown by Figure 4.4. Let

L be the desired length of each link in the chain. These constraints can be written as

‖ z2 − z1 ‖2 = L2

‖ z3 − z2 ‖2 = L2

...

‖ zN − zN−1 ‖2 = L2,

or alternatively as

φ(c) ,





















‖ z2 − z1 ‖2 −L2

‖ z3 − z2 ‖2 −L2

...

‖ zN − zN−1 ‖2 −L2





















= 0. (4.10)

Differentiating the constraints once with respect to time results in the velocity con-

straint

ψ(c) ,





















2(z2 − z1)⊤(ż2 − ż1)

2(z3 − z2)⊤(ż3 − ż2)
...

2(zN − zN−1)⊤(żN − żN−1)





















= 0. (4.11)

Differentiating once more results in the acceleration constraint, which can be written

in matrix notation as

A(c)c̈ = b(ċ), (4.12)
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Figure 4.4: N-links chain.

where

A(c) ,























(z2 − z1)⊤ 0 · · · 0

−(z3 − z2)⊤ (z3 − z2)⊤ · · · 0
...

. . .
...

0 · · · −(zN−2 − zN−1)⊤ (zN−2 − zN−1)⊤

0 · · · 0 −(zN − zN−1)⊤























, (4.13)

and

b(ċ) , −





















(ż2 − ż1)⊤(ż2 − ż1)

(ż3 − ż2)⊤(ż3 − ż2)
...

(żN − żN−1)⊤(żN − żN−1)





















. (4.14)

Using Gauss’s principal developed in [124], the equation of motion of system (4.1) subject

to constraints (4.12) is given by

c̈ = F + A+(c)(b(ċ) − A(c)F), (4.15)

where A+ is the pseudo-inverse of A [124]. As shown in [88], when solving equations

of this type numerical error may cause the constraints φ(c) and ψ(c) to drift from zero.

Therefore, adding two additional terms forces the constrained accelerations to descend along

the gradient of the constraints until they are no longer violated. Accordingly, Eq. (4.15) is

modified as

c̈ = F + A+(c)(b(ċ) − A(c)F) − γp
∂φ⊤

∂c
φ− γv

∂ψ⊤

∂c
ψ, (4.16)
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where γp and γv are positive constants. A damping term is added to reduce oscillations and

by combining the unconstrained force terms of eq. (4.9), eq. (4.15) becomes

c̈ = Frw + FrpOI + Fst + A+(c)(b(ċ) − A(c)F)

− γp
∂φ⊤

∂c
φ− γv

∂ψ⊤

∂c
ψ + γdċ.

(4.17)

Similar to [13], when using the chain to avoid collisions in real-time, the first link

serves as waypoint for the UAS to follow, and is not allowed to move. When the UAS

nears the end of the first link, the link is removed from the chain and a new link is added

to the end with the same direction as the last link in the chain. The first link that then

comprise the beginning of the chain is fixed as the new waypoint, so that the UAS always

has an unchanging waypoint to follow while the remainder of the chain continuously adapts

to changing virtual forces.

This discontinuity in motion can be eliminated by further introducing additional

constraints. In the following, we develop dynamic equations for a one-link chain and then

generalize our findings for an arbitrary N-links. Figure 4.5 depicts the one-link chain system.

The one-link chain is modeled as two point masses m1 and m2, with unit mass, connected

to each other by a weightless rod. Let the two masses whose position in the 2-dimensional

space specified by their Cartesian coordinate zi = (xi, yi)⊤ ∈ R
2, i = 1, 2. The system is

subject to the following constraints:

1. The motion of the one-link chain to be constrained by the kinematics of a chain such

that the distance between the two masses, m1 and m2 is constrained to be a fixed

quantity. Let us say that the distance between the pair of masses of constant length,

L. Now, the two masses can not move independently of each other; for at any instant

of time the distance between them is fixed and equal to L. This constraint can be

written as

‖z2 − z1‖2 = L2. (4.18)

2. Let Vm1 = (Vm1x
, Vm1y

)⊤ ∈ R
2 and Vm2 = (Vm2x

, Vm2y
)⊤ ∈ R

2 be the velocity of mass

m1 and m2, respectively. And let r2/1 = z2 − z1 ∈ R
2 be the position vector directed
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from m1 to m2, or equivalently the position of m2 with respect to m1. The velocity

Vm1 is constrained to be always directed towards m2, then the constraint equation

would be expressed as

Vm1 × r2/1 = 0 ⇔ ż1 × r2/1 = 0, (4.19)

where × denotes the cross product operator of two vectors.

3. The weightless rod is pined at m1 such that the rotated motion of the rod is constrained

by

|θ1| ≤ θmax, (4.20)
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X
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��
Figure 4.5: One-link chain system.

If the one-link chain is unconstrained, then the dynamic equations describing its motion are

z̈1 = f1,

z̈2 = f2,

where f1, f2 ∈ R
2 are the applied or the impressed forces acting on m1 and m2, respectively.

Alternatively, defining c , (z⊤
1 , z

⊤
2 )⊤ ∈ R

2 and Fa , (f⊤
1 , f

⊤
2 )⊤ ∈ R

2 gives

c̈ = Fa. (4.21)
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However, the dynamic equation defined in system (4.21) is subject to the set of constraints

described by Eqs. (4.18)-(4.20). Thus, the constrained equation of motion for the one-link

chain system becomes

c̈ = Fa + Fc, (4.22)

where the additional term Fc =
∑n
i=1 Fc

i , n = 3 is the sum of the additional forces on the

one-link system caused by the fact that they have to satisfy the constraint Eqs. (4.18)-(4.20),

and Fc
i is the constrained force due to the constraint i. The main objective at this step is

to determine c̈ of the constrained system at each instant of time t, in the presence of the

specified constraints, and to compute the constrained forces vector Fc that engender motion

that is satisfied with the constraints. Before to proceed further, we will assume that the

applied force Fa acting on the system is known and that the position and the velocities

of the two masses at the initial time instant satisfy the constraints (4.18)- (4.20). We will

assume also that the constrained force, Fc
3 caused by constraint described in Eq. (4.20) can

be designed beforehand to be compatible with this constraint. Both unit masses, m1 and

m2 are common to the same body, so their velocities are related by

Vm1 = Vm2 − ω × r2/1, (4.23)

where ω is the angular velocity of the weightless rod about m1. The position vector r2/1 can

be expressed in terms of the generalized coordinates as

r2/1 = L cos θ1î+ L sin θ1ĵ. (4.24)

Substitution of Eq. (4.24) into (4.23) results

ż1 = (ẋ2 + θ̇1L sin θ)̂i+ (ẏ2 + θ̇1L cos θ1)ĵ. (4.25)

Also, substitution of Eqs. (4.24) and (4.25) into (4.19) leads to an equivalent expression of

constraint (4.19)

sin θ1ẋ2 − cos θ1ẏ2 + Lθ̇1 = 0. (4.26)
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Differentiating both constraints Eqs. (4.18) and (4.26) twice with respect to time results

(z2 − z1)⊤(z̈2 − z̈1) = −(ż2 − ż1)⊤(ż2 − ż1) (4.27)

and

sin θ1ẍ2 − cos θ1ÿ2 + Lθ̈1 = −(cos θ1ẋ2θ̇1 + sin θ1ẏ2θ̇1). (4.28)

Combine Eqs. (4.27) and (4.28), involving the accelerations, in matrix form A(c)c̈ = b(c, ċ)

as




−(z2 − z1)⊤ (z2 − z1)⊤ 0

0 Rθ1
L















z̈1

z̈2

θ̈











=−





(ż2 − ż1)⊤(ż2 − ż1)

cos θ1ẋ2θ̇1 + sin θ1ẏ2θ̇1



, (4.29)

where Rθ1 ,

[

sin θ1 − cos θ1

]

.

The constraints Eq. 4.29 can be generalized for N-links as

A(c) ,









































−(z2 − z1)⊤ (z2 − z1)⊤ 0 · · · 0 0 0 · · · 0

0 −(z3 − z2)⊤ (z3 − z2)⊤ · · · 0 0 0 · · · 0
...

. . . · · ·
... 0 0 · · · 0

0 0 · · · −(zN − zN−1)⊤ (zN − zN−1)⊤ 0 0 · · · 0

0 Rθ1
0 · · · 0 L 0 · · · 0

0 0 Rθ2
· · · 0 0 L · · · 0

...
. . . · · ·

... 0 0 · · · 0

0 0 · · · RθN−1
0 0 · · · L









































,

(4.30)

and

b(ċ) , −



















































(ż2 − ż1)⊤(ż2 − ż1)

(ż3 − ż2)⊤(ż3 − ż2)
...

(żN − żN−1)⊤(żN − żN−1)

(cos θ1ẋ2θ̇1 + sin θ1ẏ2θ̇1)

(cos θ1ẋ3θ̇2 + sin θ2ẏ3θ̇2)
...

(cos θN−1ẋN θ̇N−1 + sin θN−1ẏN θ̇N−1)



















































, (4.31)
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Then, using Gauss’s principal the equation of motion of system (4.22) subject to constraints

A(c)c̈ = b(c, ċ) is given by

ẍ = F + A+(x)(b(ẋ) − A(x)F), (4.32)

where A+ is the pseudo-inverse of A. Similar to Eq. (4.9) F = Frw + FrpOI + Fst. Unlike

Eq. (4.4), the equation of motion of system (4.32) solves the problem discontinuity in motion.

4.1.1 Chain-Based Collision Avoidance with Uncertainties

The collision avoidance algorithm presented in section 4.1 does not consider uncertain-

ties associated with estimates of the intruder’s states. In this section we develop a collision

avoidance algorithm that takes into account the uncertainties of the estimates. We will as-

sume that the estimated states of the intruder aircraft include both position and velocity.

We also assume that an estimate of the accuracy of these state estimates is also provided

and is quantified in an error covariance matrix. To take into account the associated uncer-

tainty with these estimates, a statistical distance is defined in lieu of the normal Euclidean

distance computed between the intruder’s chain nodes and the ownship’s chain nodes. A

Kalman Filter (KF) stage is introduced to the collision avoidance algorithm to receive the

states estimate (position & velocity) and covariance at each time step from the ‘sense’ stage.

The KF then propagates the state estimates and covariance N -steps into future, where N

is the number of chain nodes, shown with solid red line in Figure 4.6. The intruder’s chain

nodes at (t = T1, t = T2 . . . t = TN) represents an N -step position prediction of the intruder

aircraft. At the next time step (t = T1), collision avoidance algorithm receives a new state

estimate and covariance to update the the predicted intruder’s location at (t = T1) and

propagates the intruder’s chain nodes at (t = T2, t = T3 . . . t = TN+1), shown with dashed

green line. The N -link intruder chain is represented as

cI(k) = [z⊤
I1(k + 1|k), z⊤

I2(k + 2|k), . . . , z⊤
IN(k +N |k)]⊤,
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where k is the time index, (·)(k) indicates the value of the state at time k and (·)(k+N |k) is

the predicted value of the state at time k +N given observations at time k. The associated

covariance that represents the prediction uncertainty of each node is given by

QI(k) = [QI1(k + 1|k), QI2(k + 2|k), . . . , QIN(k +N |k)]⊤,

Intruder  

aircraft 

Original Path 

Potential 

Collision  

Site 

Ownship  

UAV 

Avoidance Path 

Propagated intruder’s chain 

nodes 

Position 

estimate 

uncertainty  

Propagated uncertainty  

Figure 4.6: Intruder’s chain Propagation.

Definition. The statistical distance or Mahalanobis distance between two points

x = (x1, . . . , xp)T and y = (y1, . . . , yp)T in the p-dimensional space Rp is defined as

dM(x, y) =
√

(x− y)⊤Q−1(x− y), (4.33)

where Q is the covariance matrix that represents the measurement uncertainty of both

variables x and y [52,85]. dM(x, 0) = ‖x‖M =
√

x⊤Q−1x is the Mahalanobis-norm (M-norm)

of x.

The distance ‖dOI(m,n)‖M is then defined as

‖dOI(m,n)‖M =
√

(

zOm−zIn(k+n|k)

)⊤

Q−1
In

(k+n|k)

(

zOm−zIn(k+n|k)

)

. (4.34)
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To account for uncertainty in the estimate of the intruder’s states, the repelling force

given by Eq. (4.4) is replaced by

frp(m,n) =



































d̂OI(m,n)γrp1e
(−γrp2‖dOI(m,n)‖M) if |m− n| < k and

‖dOI(m,n)‖ < dmax

0 Otherwise.

(4.35)

4.2 Local-Level Collision Avoidance

If the collision-detection metrics are derived from the relative position and velocity

vectors between conflicting aircraft, then it is convenient to develop collision avoidance logic

using a relative coordinate system. In this relative coordinate system, the ownship is fixed

at the center of the coordinate system, and the intruder is located at a relative position

pr and moves with a relative velocity vr with respect to the ownship. An advantage of

this approach is that collision avoidance is inherently a local phenomenon and can be more

naturally represented in the local coordinates than the global coordinates.
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Figure 4.7: Local-level reference frame.

We call this translated coordinate system the local-level frame because the environ-

ment is mapped to the unrolled, unpitched local coordinates where the ownship is stationary

at the center. The local-level reference frame is depicted in Figure 4.7, where the origin of

the local-level frame is the current position of the ownship. In this configuration the x-axis
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points out the nose of the unpitched airframe, the y-axis points points out the right wing of

the unrolled airframe, and the z-axis points down forming a right handed coordinate system.

The local-level coordinates also provides a convenient method for defining a collision between

two aircraft. In the following discussion, we assume that the collision volume is a cylinder

of radius ds and height hs centered at the current location of the intruder. If the origin of

the local-level frame penetrates the collision volume around the intruder, a collision is said

to have occurred.
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Figure 4.8: Discretized local-level reference workspace. The three concentric circles represent
three maneuvers points.

As shown in Figure 4.8, the detection region is divided into concentric circles that

represent maneuvers points at increasing range from the ownship. The radius of the outmost

circle represents the sensor detection range. Let the region in the space covered by the sensor

be called the workspace. Then, we discretize the workspace and construct a weighted graph

where the edges represent potential maneuvers, and the weights represent the collision risk

and maneuver cost. The workspace is discretized by using a cylindrical grid, and the ownship

is commanded to move along the edges of the grid. The result is a directed weighted graph

that can be described by the tuple G(N , E , C), where N is a finite nonempty set of nodes,
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and E is a collection of ordered pairs of distinct nodes from N such that each pair of nodes

in E is called a directed edge or link, and C is the cost associated with traversing each edge.

The path is then constructed from a sequence of non repeated nodes (n1,n2, · · · ,nN)

such that each consecutive pair (ni,ni+1) is an edges in G. As depicted in Figure 4.9, we

let Ll, l = 1, 2, · · · ,m be the lth level curve of the concentric circles. Let r be the radius of

the innermost circle and the detection range, dr be the radius of the outermost circle such

that dr = mr. Let us assume that the level curves are equally partitioned or discretized by

a number of nodes such that any node on the lth level curve, Ll connects to k nodes in the

next level curve in the forward direction, i.e. along the positive direction of the heading axis

as shown in Figure 4.8. Additionally, we assume that only nodes along the positive direction

of the heading axis x = 0 connects to nodes in the vertical plane. This assumption allows

the aircraft to climb or descend by connecting to nodes in the vertical plane as shown in

Figure 4.8. Using the notation |A| to denote the cardinality of the discrete set A, let the

first level curve of the innermost circle be discretized into |L1| = k+2 nodes including nodes

in the vertical plane. Then, number of nodes in the lth level curve is given by

|Ll| =















k + 2 if l = 1,

2 |Ll−1| + 2l + 1 if l = 2, 3, · · · ,m,

where the total number of nodes is |N | =
∑m
l=1 |Ll|. Assuming that the start node is located

at the origin of the local-level coordinates and given that k = 3, i.e. allowing the ownship to

move straight, right or left, then the total number of nodes in the graph including the start

and destination node is given by

|N | =
(m+1
∑

l=1

2l + 2l − 3
)

+ 1.

Assuming that the ownship travels between the nodes with constant velocity and

climb rate, the location of the ith node at the lth level curve, ni,l in the horizontal plane of

the graph is given by

ni,l = [lr sinψLl

j , lr cosψLl

j , 0]⊤,
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Figure 4.9: Nodes location in the local-level reference frame.

where ψlj = jψd

2(l−1) , and j = {− |Ll|−1
2

,− |Ll|−1
2

+ 1, · · · , |Ll|−1
2

− 1, |Ll|−1
2

}. In the vertical plane

the location of nodes is nj̄,l = [0, 0,±j̄lhd]⊤, where j̄ = {1, 2, · · · , l}.

As shown in Figure 4.9, ψd, and hd are the allowed heading, and altitude change at

each step. For example, if ψd = π/4, hd = 50 m, r = 500 m, k = 3 and |L1| = 5, then we have

j = {−1, 0, 1}, j̄ = {−1, 1}, ψ1
j = {−π/4, 0,−π/4}, and the locations of nodes at L1 in the

horizontal plane are {(−500 sin π/4, 500 cosπ/4, 0)⊤, (0, 500, 0)⊤, (500 sin π/4, 500 cosπ/4, 0)⊤},

and in the vertical plane are {(0, 0, 50)⊤, (0, 0,−50)⊤}. The nodes on the graph can be

thought of as predicted locations of the ownship over a look-ahead time window.

In assigning a cost to each edge in the resulting graph, it is important to note that

the main priority of an ownship under distress is to maneuver to avoid predicted collisions.

The cost associated with traveling along an edge is a function of the edge length and the

collision risk. The cost associated with the length of the edge e
i,i+1

that connects between

the consecutive pair nodes (ni,ni+1) is simply the Euclidean distance between the nodes ni

and ni+1, expressed as

CL(e
i,i+1

) = ‖ni+1 − ni‖ . (4.36)

The collision cost for traveling along an edge is determined if at any future time

instant the future position of the ownship along that edge is inside the collision volume.

An exact collision cost computation would involve the integration of the cost along the

edge. A simpler approach involves calculating the collision risk cost at several locations
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along the edge taking into account the predicated locations of the intruder over look-ahead

time window. Assuming a constant velocity model, a linear extrapolation of the current

position and velocity of the detected intruders is computed at evenly spaced time instants

over the look-ahead time window. The look-ahead time interval is then discretized into

several discrete time instants. At each discrete time instant all candidate locations of the

ownship along each edge is checked to determine whether it is or will be inside the collision

volumes that are centered around the propagated locations of the intruders. For this work,

the collision risk cost is calculated at three points along each edge in G. If vo is the speed

of the ownship, then the distance along an edge is given by voT where T = r/vo. The three

points are computed as

p1 = ni + voTs
ni+1 − ni

‖ni+1 − ni‖
, (4.37)

p2 = p1 + voTs
ni+1 − ni

‖ni+1 − ni‖
, (4.38)

p3 = p2 + voTs
ni+1 − ni

‖ni+1 − ni‖
, (4.39)

where Ts = T/3. Let the relative horizontal and vertical position of the intruder with respect

to the ownship at the current time t be pr(t), and prz (t), respectively. Define the collision

volume as

C(pr(t)) = {d ∈ R
2 : ‖pr(t) − d‖ ≤ ds andh ∈ R :

∣

∣

∣prz − h
∣

∣

∣ ≤ hs/2}.

For the ease of exposition, we let pr
3D

(t), vr
3D

(t) be the 3D relative position and

velocity of the intruder with respect to the ownship in the relative coordinate system. The

risk of a collision event is computed over the look-ahead time window τ ∈ [t, t + mT ]. The

predicted locations of each detected intruder over time horizon T at three discrete time
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samples Ts are

pr
3D

(t+ (1 + 3(l − 1))Ts) = pr
3D

(t) + vr
3D

(t)(1 + 3(l − 1))Ts, (4.40)

pr
3D

(t+ (2 + 3(l − 1))Ts) = pr
3D

(t) + vr
3D

(t)(2 + 3(l − 1))Ts, (4.41)

pr
3D

(t+ (3 + 3(l − 1))Ts) = pr
3D

(t) + vr
3D

(t)(3 + 3(l − 1))Ts. (4.42)

In Eqs. (4.40)- (4.42), if e
i,i+1

is the current edge being evaluated then the node ni+1 deter-

mines the value of l. In other words, if ni+1 ∈ L1 then we have l = 1. For example, if we

are to compute the three points along the edge e1,2 in Eqs (4.37)- (4.39) then n2 ∈ L1 and

l = 1. Using the definition of the binary cost function the collision risk cost associated with

the e
i,i+1

edge with respect to each detected intruder is given by the expression

C
col

(int, e
i,i+1

) =















∞ if any of p1,p2, or p3 ∈ C(pr
3D

(t+ (ℓ+ 3(l − 1))Ts)),

0 otherwise,
(4.43)

where ℓ = {1, 2, 3}. The collision risk assigned to any edge that leads to a collision in

Eq. (4.43) is ∞ or the maximum allowable cost, thus basically eliminating that edge and the

path passing through it. The total collision risk associated with the ith edge with regards

to all intruders is given by

C
col

(e
i,i+1

) =
M
∑

int=1

C
col

(int, e
i,i+1

), (4.44)

where M is the number of detected intruders.

Figure 4.11 shows snap shots of the propagated locations of a detected intruder over

a look-ahead time window. Figures 4.11(a) and 4.11(b) show the candidate locations of the

ownship at three points along each edge over the first time interval T both in horizontal

and vertical plane. Clearly, there is no intersection between these points and the predicted

locations of the intruder over the same interval. The cost assigned to these edges is zero

according to Eq (4.44). Next, all candidate locations of the ownship along each edge over

the second time interval 2T are investigated. As shown in Figure 4.11(c), edges e2,7 , e2,8 and
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Figure 4.10: Local-level map. In this example we have k = 3 and l = 3. The total number
of nodes is 39.

e2,9 intersect with the predicted intruder location at time t + 4TS and t + 5TS, respectively.

Similarly, edges e3,15 and e3,16 in the horizontal plane intersect with the predicted intruder

location at time t+4TS as shown in Figure 4.11(d). Accordingly, the maximum allowable cost

will be assigned to these edges, hence eliminating these edges and the path passing through

them. As shown in Figure 4.11(e) and 4.11(f), all the candidate locations of the ownship over

the time interval 3T do not intersect with the predicted locations of the intruder. Therefore,

by the time the ownship will reach these edges the intruder will be leaving the map and

consequently a cost of zero is assigned to edges belongs to the third level curve L3.

To provide an increased level of robustness, an additional cost is used to penalize

edges close to the collision volume even if they are not within the collision volume. At

each discrete time instant the distances from the propagated locations of the intruders to all

candidate locations of the ownship are computed at that time instant. The cost of collision

threat along each edge is then the sum of the reciprocal of the associated distances to each

intruder.

C
th

(int, e
i,i+1

) =
1
d1

+
1
d2

+
1
d3

. (4.45)
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Figure 4.11: Example illustrating the steps to compute the collision risk. In this example
we have k = 3 and l = 3.
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where d1, d2, and d3 are given by

d1 =
∥

∥

∥p1 − pr
3D

(t+ (1 + 3(l − 1))Ts)
∥

∥

∥ ,

d2 =
∥

∥

∥p2 − pr
3D

(t+ (2 + 3(l − 1))Ts)
∥

∥

∥ ,

d3 =
∥

∥

∥p3 − pr
3D

(t+ (3 + 3(l − 1))Ts)
∥

∥

∥ ,

and the total collision risk cost associated with the ith edge with regards to all intruders is

given by

C
th

(e
i,i+1

) =
M
∑

int=1

C
th

(int, e
i,i+1

). (4.46)

For example, the edges e1,2 , e1,3 , e1,4 , e1,5 and e1,6 shown in in Figure 4.11(a) are not

intersecting with the predicated locations of the intruder over the first time interval, yet

they will be penalized based on their distances to the predicated locations of the intruder

according to Eq (4.46). Note that edge e1,2 will have greater cost as it is the closest to the

intruder among other candidate edges.

Another objective of a path planning algorithm is to minimize the deviation from

the original path i.e. the path the ownship was following before it detected a collision.

Generally, the path is defined as an ordered sequence of waypoints W = W1,W2, · · · .Wf ,

where Wi = (wn,i, we,i, wd,i)⊤ ∈ R
3 is the north-east-down location of the ith waypoint in

a globally known NED reference frame. The transformation from the global frame to the

local-level frame is given by

Wb
i = Rb

g(ψo)Wi,

where

Rb
g(ψo) =















cosψo sinψo 0

− sinψo cosψo 0

0 0 1















where ψo is the heading angle of the ownship. Let Ws be the location of the ownship at

the current time t and Wf ∈ W be the next waypoint in the local-level frame. Assuming a

straight-line segment between the waypoints Ws and Wf , then any point on this segment

can be described as L(̺) = (1 − ̺)Ws + ̺Wf where ̺ ∈ [0, 1], and the minimum distance
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between an arbitrary node ni in G can be expressed by [16]

D(Ws,Wf , ni) ,



































D(̺∗), if ̺∗ ∈ [0, 1],

‖ni − Ws‖ , if ̺∗ < 0,

‖ni − Wf‖ , if ̺∗ > 1,

(4.47)

where

D(̺∗) =

√

√

√

√

√

√‖ni − Ws‖2 −

(

(Ws − ni)⊤(Ws − Wf )
)2

‖Ws − Wf‖2 ,

and

̺∗ =
(Ws − ni)⊤(Ws − Wf )

‖Ws − Wf‖2 .

Then, the cost that penalize the deviation of an edge in G from the nominal path is given by

C
dev

(e
i,i+1

) = D(Ws,Wf , ni). (4.48)

An additional cost can be also added to favor edges in the horizontal plane over those

in the vertical plane. Since the positive direction of the y-axis in the local-level frame is the

right-wing direction, it is convenient to define right and left maneuvers as the positive and

the negative directions along the right-wing direction axis, respectively. Then, a cost can be

added to penalize edges that violate right-of-way rules. Let ~ei , ni+1 − ni be the direction

vector of the edge e
i,i+1

in G, where ni , (xi, yi, zi)⊤ ∈ R
3 is the location of ith node in the

local-level reference frame. Let the direction vector ~ei be expressed as ~ei = (eix , eiyeiz)⊤ ∈ R
3.

We define E , (eix , L,R, eiz)⊤ ∈ R
4, where eix and eiz are the x and the z components of

~ei. The y-component of ~ei is decomposed into two components left L and right R which are

defined by

L,R ,















L = eiy , R = 0 if eiy ≤ 0,

L = 0, R = eiy if eiy > 0.
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We define the maneuvering design matrix to be J = diag([0, cL, cR, cz]), then the maneuvering

cost associated with each edge Q is given by

Cm(e
i,i+1

) =
√

E⊤JE, (4.49)

The cost cz allows the designer to penalize vertical maneuvering. Similarly, cL, and cR allows

the designer to place more or less cost on the left or right edges. Multiple values of these

cost parameters may be saved in look-up table, and the collision avoidance algorithm picks

the appropriate value based on the geometry of the encounter.

The total cost for traveling along an edge comes from the weighted sum of all different

costs given as

C(e
i,i+1

) = CL(e
i,i+1

) + C
col

(e
i,i+1

) + k1Cth
(e

i,i+1
) + k2Cdev

(e
i,i+1

) + k3Cm(e
i,i+1

), (4.50)

where k1, k2 and k3 are positive real numbers and design parameters. These parameters

allow the designer to place weight on collision risk or deviation from path or maneuvering

preferences depending on the encounter scenario. Once the cost is assigned to each edge in

G, then a graph-search method such as Dijkstra’s algorithm can be used to find the least cost

path from the start point to the destination point. Dijkstra’s algorithm solves the problem

of shortest path in a directed graph in polynomial time given that there are not any negative

weights assigned to the edges. The main idea in Dijkstra’s algorithm is to generate the nodes

in order of increasing value of the cost to reach them. It starts by assigning some initial

values for the distances from the start node and to every other node in the graph. It operates

in steps, where at each step the algorithm updates the cost values of the edges. At each step,

the least cost from one node to another node is determined and saved such that all nodes that

can be reached from the start node are labeled with cost from the start node. The algorithm

stops either when the node set is empty or when every node is examined exactly once. A

naive implementation of Dijkstra’s algorithm runs in a total time complexity of O(|N |2).
However, with suitable data structure implementation, the overall time complexity can be

reduced to O(|E| + |N | log2 |N |) [75].
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The output of the local-level collision avoidance algorithm generates a waypoint avoid-

ance path that consists of an ordered sequence of waypoints Wc = Wc1,Wc2, · · · ,Wci. These

waypoints are basically nodes in the discretized local-level graph selected by the Dijkstra

search. Then, the avoidance waypoint are transformed from the local-level frame to the the

global reference frame and added to the original waypoints path W . Next, a path manager

is required to follow the waypoints path. One possible approach is to transition when the

ownship enters a ball around the waypoint Wi, or a better strategy is to use the half-plane

switching criteria that is not sensitive to tracking error [16]. In addition, a smooth transition

between the waypoints is required to make the generated path flyable by the ownship. This

can be achieved by implementing the fillet maneuver or using Dubins paths. For further

analysis on path manager, switching between waypoints and smoothing paths, we refer the

interested reader to [16].

A key feature of the proposed approach is that the future motion of the ownship is

constrained to follow nodes on the map that are spaced by a constant time. Since the path

is represented using waypoints that are at fixed time instants, it is easy to determine roughly

where the ownship will be at any given time. This timing information is used when assigning

cost to edges to better plan paths and prevent collisions.
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Figure 4.12: Top view: the radius of the collision volume cylinder is increased to account for
the uncertainty in the 2D plane.

To account for the uncertainty error in the relative position estimates, we consider

the following simple and intuitive solution. We assume that an estimate of the accuracy

of the states is provided and is quantified as σn, σe and σd. As illustrated in examples in
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Figure 4.13: Side view: the height of the collision volume cylinder is increased to account
for the uncertainty of the down component of the relative position.

Figures 4.12 and 4.13, we enlarge the radius and the height of the collision volume as follows

d̂s = ds + σ,

ĥs = hs + 2σd,

where σ = max(σn, σe). Then, when cost is assigned to edges we consider the following

collision volume

C(pr(t)) = {d ∈ R
2 : ‖pr(t) − d‖ ≤ d̂s andh ∈ R :

∣

∣

∣prz − h
∣

∣

∣ ≤ ĥs/2}.

4.3 Conclusions

In this chapter, we have presented two reactive collision avoidance algorithms suitable

for unmanned aircraft SAA systems. We have proposed a collision avoidance algorithm

based on a simulated chain that responds to a virtual force field produced by encountering

intruders. The key feature of the proposed approach is to model the future motion of both

the intruder and the ownship using a chain of waypoints that are equally spaced in time. We

have also developed a collision avoidance logic using an ownship centered coordinate system.

The technique builds graph in the local-level frame and use DijkstraŠs algorithm to find the

path with the least cost. Both algorithms account for multiple intruders in various encounter

scenarios, and uncertainties in the state estimates of the detected intruders.
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Chapter 5. Airborne Vision-Based Sense-and-Avoid System

Never fly the A model of anything.

-World War II Pilot Officer Edward Thompson of 433 (RCAF) Squadron.

In this chapter, we examine the closed-loop performance of the chain-based collision

avoidance approach presented in Chapter 4 Section 4.1, and the passive ranging tracker and

collision detection system developed by UtopiaCompression. The tracker and the collision

detection system system is based on UtopiaCompression’s unique technology – Monocular

Maneuverless PAssive Ranging System (M2PARS) for detecting imminent collisions using

passive imaging sensors alone.

5.1 Airborne Camera Sensor Model

Range estimation of the intruder using only a passive sensor can be formulated as a

bearing-only tracking problem. The conditions of unobservability of the intruder aircraft in

a bearing-only tracking problem have been extensively studied since the late 1970’s [8,54,80,

99,104]. This body of research has established that the intruder aircraft state is observable,

in general, only if the order of the ownship dynamics is greater than the intruder dynamics.

For an intruder moving with constant velocity, this implies that the sensor dynamics must

involve an acceleration component. With the growing use of UAS in recent years, such a

“maneuver-based” approach has been proposed as a solution to the EO based SAA problem

for UAS: upon detecting an intruder, the UAS maneuvers in order to triangulate and resolve

the position of the intruder [101]. However, a maneuver-based approach is undesirable in

many ways. It may lead to waste of fuel, loss in mission performance, and is in general bad

airmanship.
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Figure 5.1: Airborne vision based sense and avoid structure diagram.

As depicted in Figure 5.1, the sense and avoid system consists of a camera sensor

model, passive ranging module, and the chain-based collision avoidance algorithm. The

sensing model assumes 640 × 480 camera resolution, 48 deg camera field-of-view and frame

rate at 30 frame per second. The M2PARS estimates intruder’s range and range rate with

monocular passive sensors and without ownship maneuver. It makes use of multiple image

features to estimate the intruder’s state, including position and velocity. An estimate of the

accuracy of these state estimates is also generated and is quantified in an error covariance

matrix. Using the state estimate information and the current position and velocity state of

the ownship, the M2PARS estimates the time to the closest point of approach and distance

at closest point of approach. If a collision threat is detected, the intruder position and

velocity estimates and an activation flag are passed to the collision avoidance algorithm.

The avoidance logic plans an evasive maneuver and passes revised waypoints that are free

from collision risk to the ownship’s path manager.
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5.2 Collision Detection Logic

In this section1, we discuss a simple collision detection logic similar to that presented

in [47]. To be more specific, let the estimates of the intruder’s position and velocity at

time t be p
int

(t) and v
int

(t), respectively. Assume that the ownship’s position and velocity

from inertial navigation system are known as p
own

(t) and v
own

(t). Using Eq (3.3), we further

calculate the relative position and velocity between intruder and ownship as pr(t) and vr(t).

Assume that the intruder moves with a constant velocity. Using pr(t) and vr(t), we predict

the distance between the intruder and the ownship at time t+ τ as

d(t+ τ) = ‖pr(t) + vr(t)τ‖ . (5.1)

Algorithm 3: Collision detection algo-

rithm
1: if ∃τ ∈ (0, T ] such that

d(t+ τ) < (1 + δ) × ds then

2: collision detected

3: else

4: no collision detected at time t

5: end if

Define ds as the safe distance be-

tween intruder and ownship. That is, a colli-

sion occurs whenever the true range between

intruder and ownship is less than ds. A

non-collision encounter means that the true

range between intruder and ownship is al-

ways greater than ds. To predict whether

the collision will occur, we use the sim-

ple collision detection logic given in Algo-

rithm 3.

In Algorithm 3, the parameters δ and

T are positive real numbers and design parameters for the collision decision rule. The

parameter T is the length of the prediction horizon. At any given time t, we check whether

the intruder range is below the safe distance scaled by a factor of δ anytime within the

next T seconds. Since there is always uncertainty associated with the estimates and the

future maneuver of the intruder, we choose a non-zero δ to compensate for this uncertainty.

We tune δ such that a desired correct detection rate and false alarm rate are achieved in
1The section is jointly written with Sharath Avadhanam, He Bai, Randal W. Beard as part of a paper

published in the AIAA Guidance, Navigation and Control Conference [120].
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simulation. To facilitate such tuning, we can perform Monte-Carlo simulations and plot the

system operative characteristics curve by varying δ. By varying δ, we generate different Pcd

and Pfa and plot them as the SOC curve. One can expect that as δ increases, both Pcd and

Pfa will increase. Therefore, there exists a tradeoff between high Pcd and low Pfa. In the

aircraft collision detection, we would like to detect all potential collisions, if possible. Thus,

some false alarms will be expected. Monte Carlo simulations with constant velocity intruders

have shown that we can achieve 95% Pcd with 2% Pfa using the M2PARS and Algorithm 3. 1

5.3 Simulation Results

In order to test the performance of the chain-based collision avoidance algorithm,

we developed a simulation environment with four-degree-of-freedom aircraft model for both

the ownship and the intruder. We integrate the collision avoidance logic with the M2PARS

module as shown in Figure 5.1. The minimum safe distance is set to 30 meters. A 10-

link chain is chosen for the chain-based collision avoidance logic. As shown in Figure 5.2, a

collision incident occurs when the the distance at closet point of approach is less than or equal

the minimum safe distance i.e d
cpa

≤ ds. We first test two typical collision encounter scenarios

namely, approaching head-on and converging scenario. The initial encounter geometry of

both scenarios are shown in Figure 5.3. As shown in Figure 5.3(a), the ownship starts at the

origin of North-East coordinates system and follows a straight-line path, which is composed

of line segments between predefined waypoints. The speed and the initial heading of the

ownship are set to 13 m/s and 0 deg, respectively. The heading angle is measured from the

North axis. The intruder is initialized at location (500, 0) with speed and heading of 15 m/s

and 180 deg, respectively. If collision avoidance is not planned the d
cpa

is 0 m. Ideally both

the ownship and the intruder should alter course to the right according the the right-of-

way rules. However, we have implemented the worst case scenario where the intruder keeps

moving in the same direction and does not plan an avoidance maneuver. Therefore, once

the potential collision is detected by the M2PARS algorithm, the ownship plans a collision

avoidance path as shown in Figure 5.3(c).

1We refer interested readers to http://www.utopiacompression.com/technologies/imminent_

collision_detection.php
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Figure 5.2: Collision volume definition.

The converging scenario is shown in Figure 5.3(b). Similar to the head-on scenario,

the ownship initially starts from the origin in the inertial frame and follows a straight-line

path with speed of 13 m/s and initial heading of 0 deg. The intruder is located at (260, 225)

and follows a straight-line path. The speed and heading of the intruder are set to 15 m/s and

-94 deg, respectively. It is also assumed that the camera is rotated towards the right covering

approximately 50 deg in azimuth in the inertial frame. The d
cpa

, if the collision avoidance

algorithm is not initiated, is 8.20 m. The avoidance path is shown in Figure 5.3(d).

We consider the miss distance or the distance at the closest point of approach and

the maximum deviation from the original path to measure the performance of the collision

avoidance algorithm. As shown in Figures 5.3(e) and 5.3(f) the miss distance is 32.2 m and

58.11 m in the head-on and converging scenarios, respectively. Both are greater than the

minimum safe distance. The maximum deviation is defined as the ownship’s maximum de-

viated distance from its original path. As shown in Figures 5.3(e) and 5.3(f), the maximum

deviation distance is 38.01 m and 22.32 m in the head-on and converging scenarios, respec-

tively. In both scenarios once the collision is cleared the collision avoidance logic returns the

ownship back to its nominal path.

We next use Monte Carlo simulation to investigate the level of performance that can

be gained by using the chain based collision avoidance algorithm as the initial range to

the intruder, initial bearing to the intruder and speed of the intruder varies provided that
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(a) Encounter geometry of the head-on scenario.
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(b) Encounter geometry of the converging sce-
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Figure 5.3: Results of the chain based collision avoidance algorithm.
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the uncertainty of the intruder position and velocity estimates also change. Generally, any

performance metric needs to take into account the competing objectives of collision avoidance

logic, for instance preventing an imminent collision and minimizing deviation from flight-

plan.

Table 5.1: Set values of the Monte Carlo simulations parameters.

Parameter Set value

Initial range to the intruder [30, 150, 270, 390, 510, 630]
Speed of intruder [13, 16, 19, 22, 25, 28]
Bearing angles, converging scenario [20, 30, 40, 50, 60, 70]
Bearing angles, head-on scenario [65, 75, 85, 95, 105, 115]

In all Monte Carlo simulations, we have assumed that the ownship starts from the

origin of the North-East coordinates system and follows a straight-line path, with a 0 deg

initial heading angle and a speed of 13 m/s. As shown in Table 5.1 , we defined a set

of values for each one of the three chosen encounter geometry parameters, namely initial

range to the intruder, initial bearing to the intruder and speed of the intruder. In these

simulations bearing angle is measured counter-clockwise from the inertial East axis. The

Monte Carlo simulation starts with one of the three aforementioned parameters fixed for

each value from the set, while other parameters are drawn from a uniform distribution

derived from their nominal moments. At each given value from the set a hundred Monte

Carlo trials is repeated for each pair of the uncertainty where each trial runs the simulated

collision avoidance scenario for 45 seconds. The four pairs of uncertainty associated with

position and velocity estimates of the intruder are shown in Table 5.2. The covariance matrix

used in the Monte Carlo simulation using each pair of position and velocity is derived as

Q =







Qp 0

0 Qv





 , Qp =







σ2
pn σpnσpe

σpnσpe σ2
pe





 Qv =







σ2
vn σvnσve

σvnσve σ2
ve





 ,

The Monte Carlo routine simulate a 1000 trials for each value in the set. Similarly, the

Monte Carlo simulation is then repeated for each value of the next parameter’s set having
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the other parameters drawn from a uniform distribution. Both the approaching head-on and

converging scenarios were simulated the same way.

Table 5.2: 1σ values assumed for position and velocity estimates of the intruder.

Covariance Pairs Index [σpn, σpe] [σvn, σve]

1 [0, 0] [0, 0]
2 [17.32, 1.71] [2.45, 0.18]
3 [34.66, 3.42] [4.91, 0.35]
4 [51.99, 5.12] [7.36, 0.53]

Figures 5.4 shows the results of the distance at the closest point of approach averaged

over 1000 Monte Carlo trials. The results are measured for various values of initial range,

speed and bearing of the intruder given that intruder states estimates are defined according

to uncertainty levels shown in Table 5.2. Clearly as shown in Figures 5.4(a) and 5.4(b), the

ownship is able to avoid collisions and maintain the minimum safe distance as initial range to

the intruder increases. This result reinforces our discussion in Chapter 2, where the ownship

requires a minimum distance to the intruder to be able to avoid a collision. In the head-on

scenario the chances of avoiding a collision decreases as the speed of the encounter intruder

increases as shown in Figure 5.4(c). In the converging scenario, it is almost the opposite,

as the speed of the intruder increases the chances of avoiding the collision increases. This

is because the specific nature of the encounter geometry. Figures 5.4(e) and 5.4(f) shows

that relative angle to the intruder is not as critical of a parameter as the range and speed

of the intruder. In almost all initial bearing angles the ownship was able to avoid collisions.

Additionally, in all cases the collision avoidance performs better when the error levels of the

position and velocity estimates decrease.

Another important aspect of evaluating the performance of the proposed approach

is its ability to run in real time. To assess this capability, we have measured the time it

requires to execute one cycle of the collision avoidance algorithm. Figure 5.5 shows that in

all experiments the run time of the avoidance algorithm does not exceed 0.2 s. In Chapter 2,

we have assumed the computation time of the sense and avoid system is 5 s. Therefore,
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as range to the in-
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Figure 5.4: Monte Carlo simulations to evaluate the chain-based collision avoidance algo-
rithm. The mean is marked by the asterisk, the median is marked by the line in the box,
while the box defines the 25th and 75th percentiles
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Figure 5.5: Monte Carlo simulations to evaluate execution time for one cycle of the chain-
based algorithm. The mean is marked by the asterisk, while the box defines the 25th and
75th percentiles.
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running the collision avoidance system with 0.2 s results in a time window of 4.8 s to detect,

track and evaluate the collision encounter. The 4.8 s may be more than what is needed. In

that case we may relax the assumption on the computation time. Requiring less time for the

SAA computation decreases the minimum required sensing range, and thus allows additional

sensors with lower detection range.

5.4 Conclusions

To examine the proposed chain-based collision avoidance algorithm we combined the

electro-optical (EO) based Monocular Maneuverless PAssive Ranging System (M2PARS)

technology developed by UtopiaCompression Corporation for detecting imminent collisions

using passive imaging sensors and simulated the integrated model to predesigned encounter

geometry scenarios in the Matlab/Simulink environment. The Monte Carlo simulation re-

sults shows an acceptable performance level for the integrated system measured by miss

distance and run time. The algorithm was implemented using Matlab on an Intel i7 proces-

sor. We expect that implementing these algorithms in a compiled language, such as C or

C++, will show that real-time execution is feasible using low-cost computational hardware.
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Chapter 6. Airborne Radar-Based Collision Detection and Risk
Estimation

One learns by doing a thing; for though you think you know it, you have no certainty until

you try.

-Sophocles

In Chapter 3 we evaluate the probabilistic-based collision detection method using

additive zero mean white noise on the intruder states to model what actually a sensor and

tracker system would deliver to the sense-and-avoid system. In this chapter, however, rather

than simply adding artificial measurement noise, we develop a sensor model along with an

estimator whose process and measurement equations are formulated in the so-called modified

polar coordinates (MPC) that appropriately handles polar measurements [8,41]. The sensor

model incorporates a realistic model for a radar that closely matches the specifications and

performance of a physical radar systems that is currently under development. We analyze

the radar sensor, the tracker and collision detection by comparing the proposed collision

detection approach with a linear extrapolation method using simulated encounters generated

from the MIT LL UEM.

6.1 Airborne Radar Sensor Model

The proposed radar model1 implements a monopulse configuration with a single trans-

mit antenna and two receive antennas fixed on a rotating gimbal. All antennas are modeled

with a sinc radiation pattern. The two receive antennas have a 3 dB beamwidth of 20 deg and

1The section is jointly written with James Mackie, Jonathan Spencer, Dr. Randal W. Beard and Dr.
Karl F. Warnick as part of a journal manuscript published in the Journal of Aerospace Information Systems
(JAIS) [118].
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are offset ±10 deg from the transmit antenna. The transmit antenna has a 3 dB beamwidth

of 40 deg and is angled at the monopulse system boresight, or the gimbal angle θgim. A

monopulse system can be gimbaled in order to scan a broader area than the beamwidth

of the antennas. In order to optimally cover the entire 360 deg field of regard (FOR), our

system used two monopulse radar configurations with one at each end of the aircraft. This

configuration is shown in Figure 6.1 (a) and (b). With radar, there is generally a trade-off
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Figure 6.1: a) Two radar units on-board the ownship, each is sweeping back and forth to
cover 180 deg; and b) Radar configuration geometry.

between tracking and searching capabilities. The nature of the problem being solved in this

paper requires a search mode radar that will scan the entire FOR. However, when monopulse

tracking methods are applied, an angular accuracy much finer than the antenna beamwidth

can be obtained [111]. In order to integrate monopulse into the radar search mechanism,

the radar system scans across the entire FOR at a series of discrete look angles and averages

several radar returns at each angle. When a target is detected at one of the look angles, the

monopulse method is applied to fine tune the initial detection angle, θgim. The angular cor-

rection, or off-boresight angle θ
OBA

, is determined by comparing the sum and the difference

of the two receive antenna amplitudes, Rx1 and Rx2, and is given by

θ
OBA

≈ θ3dB(Rx1 −Rx2)
km(Rx1 +Rx2)

, (6.1)
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Table 6.1: Simulated FMCW radar parameters

Parameter Value Parameter Value
Transmitted Power (Ptrans) 1 W Center Frequency 10.25 GHz
Chirp Period (Tc) 1 ms Chirp Bandwidth 50 MHz
Transmitter Antenna Gain (Gt) 14.83 dB TX Antenna Beamwidth 40 deg Azimuth
Receiver Antenna Gain (Gr) 17.57 dB RX Antenna Beamwidth 20 deg Azimuth
Gimbal rotation rate 360 deg/s TX and RX Beamwidth 40 deg Elevation
System Noise Figure (F) 6.02 dB FFT Noise Bandwidth Bnoise 1 kHz

where θ3dB is the 3 dB beamwidth of the antenna, and km is a linearity factor with a value

between 1 and 2 [111]. The bearing from the North to the intruder is given by

β = θgim + θ
OBA

+ ψ
own

(6.2)

where ψown is the heading of the ownship.

The monopulse method drastically improves the initial angle estimate provided by the

gimbal angle in a way that is computationally inexpensive and relatively cheap to implement

in hardware. The angular resolution can be further improved by switching the radar to

track mode and pointing the gimbal at the predicted angle and iterating through successive

monopulse approximations and gimbal adjustments until the off-boresight angle is zero and

the boresight angle of the gimbal is equal to the angle of the target. However, since this

problem necessitates a search mode radar, the gimbal continues rotating and the slight

angular error introduced by using a single monopulse iteration is accounted for in the Kalman

Filter used to track the radar returns. Using Eq (2.11), the power received by each antenna

as a function of angle and range is given by

Prec(θ, r) =
PtransG

t(θ)Gr(θ)σ
RCS

λ2

(4π)3r4
, (6.3)

where Gt(θ) and Gr(θ) are the gains of the transmitter and receiver respectively. The angle θ

used in Eq. (6.3) is the off-boresight angle from each antenna individually and should not be

confused with the off-boresight angle of the combined monopulse system. The signal-to-noise
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ratio (SNR) for our model is given by

SNR =
Prec

Pnoise,thermal + Pnoise,system + Pnoise,clutter
≈ Prec
Pnoise,thermalF

. (6.4)

Our model uses the standard approximation where system, thermal, and clutter noise sources

are lumped into a single value that multiplies the thermal noise with a noise figure F for

the system that approximates the contribution from system noise and clutter. We use the

standard equation for thermal receiver noise given by

Pnoise,thermal = kBT0Bnoise, (6.5)

where kB is the Boltzmann constant, T0 is standard temperature 290 K, and Bnoise is the

bandwidth of the Fast Fourier Transform (FFT) bin over which the noise is observed. To

produce the simulated radar returns we create a time-domain signal with amplitude given

by Eq. (6.3) as a function of the true range and bearing to the intruder with respect to the

gimbal pointing angle. Noise is added as given by Eq. (6.4) and the resulting signal is passed

through an FFT to produce realistic radar range compressed data that undergoes monopulse

processing to generate a bearing estimate. Using Eq. (6.4), the radar parameters listed in

Tabel 6.1 result in approximately 10 dB of SNR for 0.1 m2 RCS at a range of 800 m.

6.2 States Estimation

The problem of estimating the time evolution of the position, velocity and accelera-

tion of an intruder from sequential sensor measurements has been previously addressed in

the literature [14, 122]. The measurements provided by the radar sensor i.e. range, bearing

(azimuth), elevation, and possibly the range rate are polar in nature; while the intruder

dynamics are best expressed in rectangular coordinates. Since practical estimators, such as

least squares and Kalman filters, operate under assumptions of linearity, there is a prob-

lem in directly applying the Kalman filter to measurements that are nonlinear in the state.

The approximation residuals which result from linearization can accumulate and, unless pre-

ventive measures are taken, may cause the estimator to diverge from the intruder’s true
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state [18,91]. On the other hand, the EKF is one of the most popular approaches to handle

nonlinear measurements. It performs implicit coordinate transformation by linearizing the

measurement model through a Taylor series expansion. However, it was shown that trans-

forming a zero-mean measurement error from polar to rectangular coordinates generates a

bias error [112]. As a consequence, debiased filtering techniques were proposed and validity

limits on the applicability of the EKF were derived [79, 134]. In this paper, we adopted an

alternative approach in which the state and measurement equations are formulated in the

so-called modified polar coordinates (MPC). The resulting EKF has been shown to be stable

and an asymptotically unbiased estimator [8,41]. Consider the scenario shown in Figure 6.1

(b), where both the intruder and the ownship are flying at the same fixed altitude. Let

the state vector x represent the Cartesian coordinates of the relative position and velocity

between the intruder and the ownship at time t where

x =
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Let y denote the modified polar coordinate state vector, given as

y , [β̇(t), ṙ(t)/r(t), β(t), 1/r(t)]⊤, (6.7)

where r(t) =
√

p2
x(t) + p2

y(t) and β(t) = atan2(px(t), py(t)) are the range and bearing to the

intruder provided by the radar sensor at time t, respectively. It is shown in [8, 41], that the

time evolution of the state vector y is given by
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Since in modified polar coordinates the state propagation model is nonlinear and the mea-

surement update model is linear, the continuous-discrete EKF is a good choice for this

application [16]. The continuous-discrete EKF assumes that the process evolution and mea-

surement equations have the form

ẏ = f(y(t)) + ξ, (6.9)

z[n] = Cy[n] + η[n] (6.10)

where z[n] = z(tn) is the nth sample of z. In this specific implementation we have C =

[02×2
... I2×2]. The signals ξ and η are the process and measurement noise, respectively and are

zero-mean Guassian random processes with known covariance matrices. While the process

noise covariance is a tuning parameter, the covariance matrix of the measurement noise

are determined by the noise properties of the radar [14, 53, 135]. A one-to-one nonlinear

transformation which maps the MPC state vector y(t) into its rectangular counterpart x(t)

is given by

x(t) = fx[y(t)] =
1
y4
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Using Eq. (6.6), and given that the states of the ownship are known, the position, speed and

heading of the intruder can be estimated as

nint(t) = x1(t) + nown(t), (6.12)

eint(t) = x2(t) + eint(t), (6.13)

v
int

(t) =

√

(

x3(t) + vnown(t)
)2

+
(

x4(t) + veown(t)
)2

, (6.14)

ψ
int

(t) = atan2
(

x3(t) + vnown(t), x4(t) + veown(t)
)

. (6.15)
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6.3 Simulation Results

To show the performance of the sensor and estimator, we simulate a simple case

scenario similar to the planner geometry shown in Figure 6.1(b) The ownship starts at

position (0,0) with initial heading of 0 deg and moving with constant speed of 15 m/s. The

intruder starts at position (-300, 800) with 180 deg with respect to the Y-axis (North) and

moving at speed of 20 m/s. The path of the ownship, and the actual and estimated path

of the intruder are shown in Figure 6.2 (a). The noise variance of the simulated range and

bearing measurements are σr = 0.87 m and σβ = 2.72 deg, when RCS=1 m2. The aircraft

dynamics are simulated using a simplified model that captures the flight characteristics of

an autopilot controlled UAS. The actual and estimated heading, velocity components, and

speed states of the intruder are shown in Figure 6.2(b), Figure 6.3(a) and (b), respectively.

For further analysis on initialization, design and performance of an MPC EKF, we refer the

interested reader to [8, 41].
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Figure 6.2: Actual and estimated track (a) and (b) heading.

To validate the performance of the radar sensor model, the estimation scheme, and

the collision detection algorithm presented in Chapter 3, Section 3.2, we create a simulation

environment with 4 degree-of-freedom aircraft models for both the ownship and intruder. We

use the assessment and validation metrics and follow the Monte Carlo simulations scheme

discussed in Chapter 3, Section 3.3. Similarly, we sample flight trajectories from the MIT

LL UEM. The encounter scenarios are assumed to take place in class G airspace flying within
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Figure 6.3: Actual and estimated velocity components (a) and (b) speed.

an altitude layer of 500-1200 ft. The initial airspeed of the intruder varies over (0, 65] m/s

based on the type of the intruder used in the simulation. In addition, the control variables

v̇ and ψ̇ vary from -2 to 2 m/s2 and −8 to 8 deg/s, respectively while the climb rate ḣ is

set to 0 m/s. We assume a virtual encounter circle centered on the ownship. The radius of

the encounter circle is set to denc = 800 m. The ownship is initialized at the center of the

encounter circle p
own

(t0) = (0, 0) and follows a straight line path. However, for each Monte

Carlo run the intruder is randomly initialized on the perimeter of the encounter circle. The

bearing angle of the intruder relative to the ownship is drawn from a uniform distribution

over [0, 2π] and the heading of the intruder is randomly drawn from a uniform distribution

over [0, 2π] while the ownship heading is set to 0 deg. The simulated encounters are similar

to the planner geometry shown in Figure 3.7. The radar parameters used in simulation are

listed in Table 6.1. The trajectories of both the ownship and intruder are generated over a

45 s time horizon where the sample time is set to 0.1 s.

We repeated the Monte Carlo simulation procedure for small, medium, and large

sized intruder aircraft. We define a large intruder aircraft as having a wingspan greater than

15 ft, similar to a Cessna aircraft. We define a medium size intruder as having a 10-15 ft

wingspan similar to that of a ScanEagle, and a small intruder UAS as having a wingspan

less than 10 ft, similar to a Zagi. The intruder aircraft are assumed to have RCS sizes of

0.1, 1, and 10 m2 for small, medium, and large aircraft, respectively [96]. Although RCS

can have variations in angle and time due to moving parts, we used constant values for
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Figure 6.4: The Pcd and Pfa versus different threshold values examined for different intruder
types.

simulated RCS. This approach is justified because of the temporal integration inherent in

FMCW radar as well as significant averaging applied in post processing. Any small RCS

variations in time will average to a relatively constant value. Thus, constant values are used

for simulated RCS in order to simplify the model, yet maintain proof of concept. The authors

note that while these RCS values are approximate, the performance of the system over such

a wide range (20 dB) of RCS fluctuation demonstrates its efficacy. Commercial aircraft will

generally have RCS values much larger than 10 m2 and small UAS will have RCS close to

0.1 m2 [96]. To be consistent we use identical path trajectory profiles sampled from MIT

LL UEM for the different sized intruder aircraft. The SOC curves for the three different

intruder aircraft obtained by Monte Carlo simulation are shown in Figure 6.4. Although

smaller size intruders like the Zagi have a lower RCS value that causes the radar/tracker to

produce poor estimates, the low speeds of this aircraft allow an adequate amount of time for

the tracker to converge, thus helping the collision detection algorithm to perform better.

Finally, we compare the performance achieved by our proposed approach with a

simplified scheme where the future position of the intruder is projected by propagating the

current position along a straight in the direction of the current heading. This comparison

is conducted by repeating the Monte Carlo procedure applying similar geometric and flight

path profiles for the ownship and the intruder, and using the same parameters for the radar

sensor and estimator. The SOC results shown in Figure 6.5 indicate that our algorithm
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Figure 6.5: SOC curves for the proposed approach (solid line) and simple linear extrapolation
(dashed line).

outperforms the linear extrapolation approach. However, since the comparison results show

that the difference in performance is not huge, the computationally simple approach of linear

extrapolation might be efficiently used along with the probabilistic approach in a multi-tiered

collision detection system.

6.4 Conclusions

We have introduced in this chapter a radar sensor model, the estimation scheme, and

probabilistic based collision detection and risk estimation approach that is computationally

feasible for small UAS. The computational burden is expected to be much less than existing

algorithms that require running Monte Carlo approximations in near real time or perform-

ing an extensive sampling from the probability distribution of intruder estimated states or

probabilistic encounter models. That makes the proposed approach a tractable solution in

particular for small and mini UAS. The average simulation time required to execute one
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cycle of our collision detection code is 0.00355 seconds using Matlab on an Intel i7 processor.

This small run time motivates the application of this algorithm to multiple intruder scenar-

ios. This small run time motivates the application of this algorithm to multiple intruder

scenarios. We introduced a realistic radar model which could be built and implemented

on-board small UAS. Although several standards have suggested that the necessary field of

regard for a sense and avoid system should be 220 deg or 240 deg in the azimuthal plane,

our simulations and analysis have extended this to a full 360 deg to account for overtaking

scenarios.
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Chapter 7. ADS-B Based Sense and Avoid Systems

What is chiefly needed is skill rather than machinery.

-Wilbur Wright

In this chapter1 we present a complete, proof-of-concept sense-and-avoid solution

for small unmanned aircraft including reliable intruder sensing, multi-target tracking and

estimation, conflict/collision detection, and self-separation/collision avoidance using ADS-B

as the primary detection mechanism. As shown in Figure 7.1, the ADS-B Out transmissions

are received by a dual-link ADS-B In receiver. This receiver decodes the raw signal and passes

it to the intruder tracker/estimator. In the estimator, the intruder state measurements are

processed to have a coherent set of units and then passed through a Kalman filter. After

Kalman filtering, the intruder position and velocity estimates are projected forward in time

to identify possible conflicts or collisions. If either a conflict or collision threat is detected,

the intruder position and velocity estimates and an activation flag are passed into the self-

separation/collision avoidance algorithm. Once either the conflict or collision level of the

avoidance logic has been activated a new conflict and collision-free path is generated. In the

case of long-range intruders that pose a conflict risk, the ownship takes less aggressive action

due to the longer allowable reaction time. For short-range collision risks the ownship plans a

more aggressive action to quickly reduce the possibility of a collision. The ultimate output of

the SAA system is a revised set of ownship waypoints that is free from conflict and collision

risks. The system shown in Figure 7.1 is viable for both fixed-wing and multirotor aircraft,

and could reasonably be extended for larger UAS outside of the small UAS definition.

1This chapter is jointly written with Matthew O. Duffield, Randal W. Beard, Timothy W. McLain as part
of the journal manuscript accepted for publication in the Air Traffic Control Quarterly: An International
Journal of Engineering and Operation [117].
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Figure 7.1: Proposed sense-and-avoid system structure diagram [117].

The purpose of this chapter is to explore the technical aspects of ADS-B as a detec-

tion mechanism for sense-and-avoid on small unmanned aircraft and to demonstrate con-

flict/collision detection and self-separation/collision avoidance methods that take advantage

of ADS-B characteristics. It is important to note that prior to full implementation, ADS-B

technologies and the proposed conflict/collision avoidance methods require additional valida-

tion in terms of expanded simulations and testing. Additional consideration must be given

to the economic, safety, operational, and policy challenges that an ADS-B-based system

poses. The discussion, simulations, and results presented in this chapter focus primarily on

the technical aspects of ADS-B-based SAA. For the methods and simulations presented, we

assume that the intruder aircraft are equipped with ADS-B Out, in other words the abil-

ity to transmit their cooperative information. The small UAS ownship is assumed to have

ADS-B Out and dual-link ADS-B In. Thus it is capable of both transmitting its cooperative
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information and receiving the cooperative information from all other aircraft. Consequently

the responsibility of conflict detection, self-separation assurance, collision detection, and col-

lision avoidance lies entirely on the small UAS ownship. Although these assumptions do not

exactly match the requirements of the FAA 2020 mandate, they do represent a condition

where full integration of UAS into the NAS would be possible. Thus in addition to present-

ing an SAA system for small UAS, we submit that a complete ADS-B equipage mandate

could meet the technical requirements of the wide demand for significantly increased UAS

operations in the NAS.

7.1 ADS-B Sensor

This section1 provides a brief description of the ADS-B sensor, error characteristics,

and its capability and limitations as an SAA sensor. Further analysis on the ADS-B associ-

ated regulations as they relate to sense and avoid, the statistical characterization of ADS-B

error, message elements, airspace class and power requirements, and other related issues can

be found in [117].

7.1.1 Error Characterization

ADS-B is a cooperative sensor that supports the exchange of a wide variety of in-

formation over long ranges. Typically, the information exchanged includes aircraft state in-

formation, state error estimates, aircraft identifiers, and aircraft operating indicators. This

exchange occurs approximately once per second [27]. To exchange this information, two sets

of hardware are necessary, ADS-B In and ADS-B Out. As the names suggest, ADS-B In

allows for information to be received, and ADS-B Out supports the broadcasting of informa-

tion. The hardware performing these two functions can be sold separately or as a single unit.

In addition to the In or Out capability of ADS-B hardware, ADS-B transmissions can occur

over two different frequencies, 1090 MHz and 978 MHz [43]. ADS-B Out hardware is specific

to one of these two frequencies. The airspace class in which an aircraft will operate dictates

1This section is primarily written by Matthew O. Duffield and Timothy W. McLain as part of the journal
manuscript published in the Air Traffic Control Quarterly: An International Journal of Engineering and
Operation [117].
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the required frequency. ADS-B In hardware also is specific to a particular frequency, but

dual-link hardware that is capable of receiving transmissions on both frequencies is becoming

increasingly common.

Table 7.1: Required set of message elements for ADS-B Out [117].

State Elements Identification Elements Error Elements Other Elements

Latitude Mode 3/A Transponder Code NACp Emitter Category
Longitude Call Sign NACv Emergency Code
Barometric Altitude IDENT NIC TCAS II equipped
Geometric Altitude ICAO 24-bit address SDA TCAS II Advisory
Velocity Length and Width SIL ADS-B In Equipped

Table 7.1 shows a list of the message elements exchanged by ADS-B. While a detailed

explanation of each of the identification elements listed in Table 7.1 is beyond the scope of

this dissertation, it is useful to note that each of these elements provides a unique identifier

for the aircraft. The state elements transmitted are the latitude and longitude, barometric

altitude, geometric altitude, and velocity. The error messages reported are Navigation Accu-

racy Category for Position (NACp), the Navigation Accuracy Category for Velocity (NACv),

Navigation Integrity Category (NIC), Source Integrity Level (SIL), and System Design As-

surance (SDA). In addition to the error metrics outlined in Table 7.1, ADS-B is subject to

several additional sources of error namely latency error, resolution error, and message success

rate (MSR) error. These additional sources of error, along with those previously defined in

Table 7.1, play a role in defining an error characterization for ADS-B.

The NACp, NACv, NIC, SIL, SDA, latency error, resolution error, and MSR error

provide a basis from which to derive an error characterization to model ADS-B. Given the

NACp and NACv, the horizontal position and velocity can be modeled as a Rayleigh random

process. From the Rayleigh process, the 95% bound on both the position and velocity error

can be used to derive the variance for a Gauss-Markov process with zero-mean Gaussian noise

for the North and East position and velocity [94, 103]. Based on values of NACp=303.8 ft

and NACv=19.4 kn, the horizontal North and East position error can be modeled as a zero-

mean Gaussian distribution with a standard deviation of 124 ft, and the North and East
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velocity can be modeled as a zero-mean Gaussian distribution with a standard deviation of

8 kn. Correlation of errors in the position are accounted for by a Gauss-Markov model [16].

In the particular case of ADS-B where σx = σy = 124 ft, the variance of the Gaussian noise

in the Gauss-Markov process can be estimated to be 5.28 ft [94].

FAA regulations require that ADS-B pressure altitude reporting equipment must

report an altitude that is within 125 ft of the true altitude with 95% confidence [42, 44]. If

the pressure altitude error, Apres, is modeled as a zero-mean Gaussian random variable, it

can then be shown that the standard deviation of this error is σApres = 75.9 ft. For geometric

altitude, the error is typically less than 147.6 ft with 95% certainty [108, 109]. Assuming

that the geometric altitude error Ageo is a zero-mean Gaussian random variable, it can be

shown that σAgeo = 89.8 ft. In addition to the noise of the pressure sensors, the encoding of

barometric altitude has a resolution of 25 ft and geometric altitude has a resolution of 45 ft.

This resolution introduces some additional error.

The error in the ADS-B reported vertical velocity varies with increasing vertical rate.

For vertical rates between ±500 ft/min, the vertical rate tolerance is ±46 ft/min. For rates

outside that range, the tolerance is 5% of the vertical rate [107,114]. Given the assumption

that these tolerances are 95% bounds, it can be shown that the standard deviation of the

climb rate is 27.96 ft/min for vertical rates of ±500 ft/min. Additionally the vertical rate

error is effected by the resolution of the ADS-B message encoding which is 64 ft/min.

The loss of a valid ADS-B signal can be modeled using SIL, SDA, and MSR error.

FAA regulations stipulate that position measurements outside the reported NIC can only be

transmitted once per 107 transmissions. The SDA requirements permit values outside the

NIC with a probability of 10−5. MSR error requirements allow for a 10% or 15% message

loss rate. These probabilities of erroneous or lost messages provide a method with which to

model ADS-B signal dropout.

The error characteristics detailed above make it possible to model the error in ADS-B

reported horizontal position, altitude, horizontal velocity, and vertical velocity. This results

in a method capable of simulating ADS-B messages. It also provides a basis for estimating

ADS-B messages and developing conflict detection, collision detection, separation assurance

and collision avoidance methods.
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7.1.2 Significance of ADS-B as SAA Sensor

The characteristics and requirements of ADS-B make it a capable sensor for SAA on

small UAS in the National Airspace System. One key aspect of ADS-B that makes it feasible

for use on small UAS is the availability of ADS-B receivers the meet the (SWaP) constraints

of a small UAS. The Clarity ADS-B receiver provides a dual-link ADS-B receiver that is 2.5×
2.5× 1.5 in, weighs 0.344 lb, and consumes 2.4 Watts of power. Freeflight Systems has also

recently introduced the RANGR RXD which is a dual-link ADS-B receiver. While slightly

larger at 5× 5.75× 1.7 in, it still weighs less than one pound and consumes approximately

2.4 Watts of power. These hardware options both provide a suitable ADS-B In solution for

small UAS.

Another key advantage of ADS-B is the long range at which information is avail-

able. While there is a significant amount of variation in the range of ADS-B signals, the

shortest expected range is 10 nmi. Flight tests of ADS-B units suitable for small UAS have

demonstrated reliable ranges of up to 80 nmi [95]. Additionally the long range of ADS-B is

advantageous in that the quality of information transmitted over ADS-B does not degrade

with range. Thus the accuracy of ADS-B is not dependent on the size, power, or range of

the transmitter and receiver units. This is a significant advantage over radar and optical

sensors, and makes path planning for conflict detection and separation assurance at long

ranges.

ADS-B is a very capable sensor for SAA on small UAS, but it is not without limita-

tions. One notable limitation of ADS-B is that it is a cooperative technology. This means

that to have visibility of other aircraft they also must be equipped with ADS-B. Given the

FAA mandate that only some aircraft need to be ADS-B compliant, there certainly will be

aircraft in lower altitudes that are not ADS-B equipped. While these lower altitudes are

prime locations for small UAS operations, the capability of ADS-B presented in this paper

provides motivation to implement an ADS-B equipage requirement for all aircraft.

Another limitation of ADS-B is that it is heavily dependent on line-of-sight availability

of GPS and ADS-B transmissions. Without GPS information, ADS-B transponders are

unable to transmit usable position information. Air-to-air ADS-B transmissions also require

line-of-sight visibility for reliable exchange of information. Bandwidth constraints of ADS-B
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can also be a limitation. Due to the fact that all ADS-B Out-capable aircraft must transmit

a message at least once per second on the same nominal frequency, the ADS-B protocol

specifies a multiple access scheme. While the scheme is different for the 978 MHz frequency

and 1090 MHz frequency, all multiple access schemes have a finite number of transmitters

that they can support. Particularly applicable to small UAS are the limitations of the

time-division multiple access (TDMA) scheme used for the 978 MHz frequency.

The cost of ADS-B equipage may pose a limitation. Certified ADS-B Out hardware

costs typically range from $1,500 to $25,000 USD. ADS-B In hardware costs range from $400

to $3,000. While these costs are not necessarily prohibitive, they are significant especially for

many of the small-to-medium-sized companies that plan to use UAS for commercial purposes.

For ADS-B to be a fully viable, hardware costs need to decrease. As the FAA 2020 mandate

approaches, an increasing number of companies are producing ADS-B hardware, and the

cost of hardware is trending downward.

Ultimately the message elements, airspace and range requirements, hardware avail-

ability, and error characteristics of ADS-B make it a viable sensor for sense and avoid on small

UAS in the NAS. While there are limitations to ADS-B sensors, development of promising

solutions is reducing the impact of those limitations. As an SAA sensor, ADS-B offers all

the information necessary to detect conflicts, maintain separation, and detect and prevent

collisions.

7.2 Conflict/Collision Detection

The goal of conflict/collision detection is to identify intruder aircraft and determine

the collision risk that they pose to the ownship. To do this, it is necessary to track and esti-

mate the intruder states and extrapolate those states forward in time to identify possible fu-

ture conflicts/collisions. In this section, we address the key components of a conflict/collision

detection algorithm.
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7.2.1 ADS-B Signal Processing

Estimation1 using the ADS-B messages is capable of mitigating some of the error

in the transmitted measurements. The primary goal of estimation is to account for missed

measurements that result from signal drop out or frequency congestion. Additionally, by

filtering and estimating ADS-B measurements, it is possible to account for grossly erroneous

measurements such as would be occasionally permitted through the SIL and SDA proba-

bilities, smooth measurement noise that is typical of any real sensor, and estimating the

transmitting aircraft state at a rate greater than the 1 Hz measurement rate [67]. Due to the

fact that ADS-B messages contain an aircraft identifier such as the call sign or International

Civil Aviation Organization (ICAO) address, there is no need for data association methods.

This greatly simplifies the tracking task.

We use a Kalman filter to process ADS-B In tracks. The Kalman filter is an opti-

mal linear estimator that is computationally efficient. The prediction model in our imple-

mentation is a constant-jerk model capable of accounting for high maneuverability of the

intruders [89]. While it is not expected that fixed-wing aircraft will maneuver aggressively,

more aggressive maneuvers such as would be characteristic of a rotor-craft or small UAS

must also be accounted for in the model. The states of the filter are position North, position

East, altitude, velocity North, velocity East, climb rate, acceleration North, acceleration

East, vertical acceleration, jerk North, jerk East, and vertical jerk. The measurements used

to update the estimator states are the position North, position East, altitude, and climb

rate. Recorded ADS-B data sets from the NAS have revealed that on rare occasions the

North and East velocities are transmitted in reverse order resulting in an apparent velocity

that is perpendicular to the actual direction of travel of the transmitting aircraft. Updating

the Kalman filter with only a subset of measurements mitigates this problem and results in

equally accurate estimation after a brief transient estimation period of several measurements.

Each transmitting aircraft broadcasts an ADS-B message approximately once per

second; however, the broadcasts can occur at any point within a given second. Thus the

1This subsection is primarily written by Matthew O. Duffield, and Timothy W. McLain as part of the
journal manuscript published in the Air Traffic Control Quarterly: An International Journal of Engineering
and Operation [117].

112



Kalman filter must run at a higher rate than 1 Hz to account for the different times at which

a transmission may be received. Our Kalman filter implementation runs at 10 Hz, where

received ADS-B messages are assigned to the nearest discrete time-step.

A set of measurement gates is necessary to account for message dropout and grossly

erroneous measurements. If at a given time step there is no measurement, only the Kalman

filter prediction step is instantiated. The measurement update step occurs only when there

is a valid measurement. The validity of the horizontal position and altitude measurements

is determined separately due to the fact that in ADS-B messages the horizontal position

and altitude can be updated at different times. A horizontal position is determined to be

valid if it is confirmed to be a new position and if the innovation falls within a Mahalinobis

distance bound of 5σ. An altitude/climb rate measurement is valid only if it falls with in a

Mahalinobis distance bound of 5σ.

Each track is initialized using the first measurement from a given transmitting aircraft.

The initial track covariance is initialized using the error levels given by the reported NACp

and NACv and the error characterization described earlier. At each time step, the track

covariance is monitored to ensure that the track is still valid. If the covariance of the track

grows such that the position uncertainty in the track is greater than the NIC bound, then

the track is determined to be invalid. Should another measurement from that aircraft be

received, the track would be re-initialized.

The Kalman filter is capable of overcoming ADS-B message drop out and rejecting

grossly erroneous measurements. Additionally it smooths the ADS-B signal and provides

estimates of transmitting aircraft at a much faster rate than the 1 Hz measurement update

rate. This ultimately allows for more accurate and more timely conflict/collision detection

and resolution.

7.2.2 Conflict/Collision Risk Assessment

As discussed in Chapter 1, the collision volume or the protection zone is a virtual

fixed-volume-based boundary. The common choice for this volume is a cylinder of 500 ft in

radius and ±100 ft. As depicted in Figure 7.2 the collision volume threshold or the well clear

boundary is a variable boundary around the ownship, larger than the collision volume and
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depends not only on distance, but time, and maneuverability [31, 49]. It is designed to give

a practical buffer such that if a collision is predicted then the ownship has adequate time to

plan an avoidance maneuver and to actually fly the maneuver. The design of the collision

avoidance threshold is beyond the scope of this dissertation. We refer the interested reader

to [30,34]. A self-separation volume is added to the airspace volumes to provide a minimum

practical separation distance between the UAS and any intruder, and to compensate for

unexpected maneuvers by the intruders as shown in Figure 7.2 [30]. In the current Air

Traffic Management System, a conflict is defined when an aircraft encounter happen with

3-5 nautical miles of one another horizontally and within 2000 ft above an altitude level of

29,000 ft and 1000 feet below the 29,000 ft level.

The self-separation volume is typically much larger than the collision volume but it

may vary in size with operational area and airspace class. A conflict occurs when another air-

craft penetrates the self-separation volume. The self-separation threshold is then defined as

the threshold boundary at which the UAS performs a maneuver to prevent an intruder from

penetrating the self-separation volume. Hence, the addition of the self-separation volume

provides a performance goal that is analogous to the collision volume.

Collision volume

��ℎ�
���

Collision Avoidance 

Threshold

Self-Separation Volume

Self Separation Threshold

Self-separation 

(Conflict 

Avoidance)

Collision 

Avoidance

“Well Clear boundary”

ℎ��

Figure 7.2: Definition of the SAA airspace volumes and thresholds.

The encounter geometry is evaluated in the relative coordinate frame where the rela-

tive motion of the aircraft is analyzed by investigating the dynamics of the intruder aircraft
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with respect to the ownship. The proposed conflict/collision detection framework is based

on evaluating both near-term threats that need immediate action and long-term conflicts

that can be smoothly resolved so that they will not become a close proximity threat.

Algorithm 4: Conflict detection algorithm
1: for each detected intruder do
2: if ‖pr‖ < dss

th
or (p⊤

r vr < 0 and t
cpa

≤ τss
th

) then
3: if hr < hss

th
/2 or (przvrz < 0 and t

vent
≤ τss

th
) then

4: if d
cpa

≤ dss and tssvext
≥ tssent

then
5: Conflict is detected.
6: end if
7: end if
8: else
9: No conflict is detected.

10: end if
11: end for

To predict whether or not a collision will occur, we use the collision logic given

in Algorithm 1. The proposed collision detection approach constructs a virtual volume

surrounding the ownship UAS, that, when penetrated by the intruder, declares a collision.

The logic in Algorithm 1 can be easily modified to detect conflicts by changing the horizontal

and vertical safe distances to be the radius and the height of the self-separation volume to

satisfy the well clear boundary. The conflict detection logic given in Algorithm 4. In detecting

conflicts, we adopt the well clear candidate selected by the Sense and Avoid Research Panel

(SARP) for recommendation to the sense and avoid stakeholders upon extensive analysis [34].

The candidate well clear boundary is defined by a truncated cylinder that consists of a

modified τ value of 35 s with distance of 4000 ft in the horizontal plane, and a vertical

distance from the ownship of 700 ft. The design parameters dss
th

, hss
th

, and τss
th

determine

the boundaries of the self-separation threshold volume and how early an the system should

be alerted. In computing the horizontal entry time, tssent
and the vertical exit time, tssvext

into the self-separation volume in Algorithm 4, the variables ds and hs/2 in Eqs. (3.12)

and (3.22) are substituted with the radius and height of the self-separation volume dss and

hss, respectively.
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Algorithm 5: Conflict detection algorithm with uncertainty
1: for each detected intruder do
2: if ‖pr‖ < dss

th
or (p⊤

r vr < 0 and t
cpa

≤ τss
th

) then
3: if hr < hss

th
/2 or (przvrz < 0 and t

vent
≤ τss

th
) then

4: if d
cpa

−m1σdcpa
≤ dss and (tssvext

+m2σssvext
) ≥ (tssent

−m2σssent
) then

5: Conflict is detected.
6: end if
7: end if
8: else
9: No conflict is detected.

10: end if
11: end for

Since there will always be uncertainty associated with intruder state estimates, an

additional provision should be made to account for it. Therefore, Algorithm 2 is used to

detect collisions, and Algorithm 4 is modified by Algorithm 5 to account for the uncertainties

in the state estimates. In Algorithm 5, the parameters m1,m2 are positive integers. The

parameters σ
dcpa

, σ
ssvext

, and σ
ssent

are the standard deviation of the distance at closest point

of approach, vertical exit time and horizontal entry time into the self-separation volume. If

we assume, for convenience, that aircraft in conflict use the same type of ADS-B sensor and

that they are observing mostly the same GPS satellites, then both aircraft will experience the

same position and velocity error accuracy. In addition, if we assume that the NE components

of the GPS horizontal position and velocity measurements are independent random variables,

then the error variances of the horizontal position and velocity measurements, denoted as σp

and σv respectively, are the same for both aircraft. It can be shown that the variance of the

distance at CPA is σ2
dcpa

= 2σ2
p + 2t

cpa
σ2
v [66].

7.3 Self-Separation/Collision Avoidance

Since the collision-detection metrics are derived from the relative position and velocity

vectors between conflicting aircraft, it is convenient to develop collision avoidance logic using

a local coordinate system. We have used the local-level collision avoidance approach discussed

in Chapter 4 to plan avoidance maneuvers when encountering intruder at close proximity.

To handle conflicts at long-range, the resolution algorithm should plan smooth maneuvers.
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(a) Top view:Local-level frame for collision avoid-
ance, with dr =1000 m, three levels and 39 nodes
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Figure 7.3: Local-level reference frame in collision avoidance and self-separation.

This can be achieved by increasing the resolution of the discretized map or by using smooth

path parameterizations like Dubins paths.

As shown in Figure 7.3(a), the increased resolution of the local-level reference frame

is obtained at the detection range of 18.5 km offered by the ADS-B sensor. The map is

discretized into five level curves with 151 nodes. Similar to the collision avoidance method,

the cost of edges is assigned according to Eq (4.50) and Dijkstra’s algorithm is also used to

find least cost path from the start point to the destination point.

7.4 Monte Carlo Simulation Results

To validate the performance of the presented ADS-B sensor model, estimation scheme,

conflict/collision detection, and self-separation/avoidance approaches, we conducted two sep-

arate sets of Monte Carlo simulations to address encounter scenarios over short and long

ranges. We developed a simulation environment with a six-degree-of-freedom aircraft model

for both the ownship and the intruders. The state estimates of the intruders are provided

by the ADS-B sensor, while we assume a perfect knowledge of the ownship states. To avoid

simulating encounters that are unlikely to result in a collision or loss of self-separation, we fo-
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cus on encounters that occur in an encounter circle centered on the ownship. The encounter

geometry is constructed using an approach similar to that suggested by [61]. As shown in

Figure 7.4, the encounter circles used for simulating short and long range encounter scenarios

have radii of 1.62 nmi and 10 nmi respectively. For both sets of Monte Carlo simulations, the

ownship is initialized at the center of the encounter circle and follows a straight-line waypoint

path. The ownship initial heading is zero, and the initial airspeed is set to 80 kn, which is

similar to the maximum airspeed of the ScanEagle UAS. At the beginning of each simula-

tion, the first intruder is initialized at one of 20 evenly spaced points on the perimeter of the

encounter circle, while other intruders are initialized by sampling a uniform distribution over

the remaining points. In addition, the intruders are initialized with random headings that

are required to penetrate the encounter region at the initial time. The speed of the intruders

is randomly drawn from a uniform distribution over [39, 250] kn. The 39 kn lower bound is

approximately the minimum airspeed of a small UAS, and the 250 kn upper bound is the

maximum allowed airspeed of an aircraft flying below 10,000 ft above MSL. Most potential

applications of small UAS will likely operate below 10,000 ft. For the short-range encounter

scenarios, 1000 Monte Carlo runs are conducted at each discrete point on the encounter cir-

cle. In the long-range encounter scenarios, 100 Monte Carlo simulation runs are conducted

for each discrete point on the encounter circle. In both sets of experiments, the Monte Carlo

simulations are repeated to include multiple intruder scenarios.

We have implemented the conflict/collision detection method given by Algorithms 2

and 5. In the long-range simulations, the threshold boundary value that defines a conflict is

τth = 45 s with a distance threshold of dth = 5 nmi in the horizontal plane and hth = 1000 ft in

the vertical plane. To define loss of separation, we consider a well clear boundary defined by

τ = 35 s with distance thresholds of 4000 ft in the horizontal plane and 700 ft in the vertical

plane [34]. In the short-range simulations, the well clear boundary serves as the threshold

boundary so that the collision detection algorithm activates the collision avoidance planner

once the well clear boundary is penetrated. This ensures that collision avoidance is triggered

when the self-separation mode fails to maintain the well clear distance from the intruding

aircraft. Our choice of collision volume is a truncated cylinder of radius 500 ft and height of
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Figure 7.4: Encounter geometries: Short and long range encounter scenarios have radii of
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Figure 7.5: Example of a collision avoidance encounter scenario.

200 ft. The design parameters used in Algorithm 2 and 5 are

m1 = m2 = 1,

σp = 124 ft, and σv = 8 kn,

σprz
= 75.9 ft, and σvrz

= 27.96 ft/min.
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In each Monte Carlo simulation we have also implemented the conflict/collision de-

tection algorithm in Algorithms 1 and 4 to produce the intruder truth tracks needed to cal-

culate the true number of conflict and collision events. The number of true conflict/collision

detections is compared to the number of conflict/collision detections that are predicted us-

ing Algorithms 2 and 5, which is based on the track estimates of the intruders. We have

also recorded the number of collisions and loss of separation incidents for each encounter

scenario given that the self-separation/collision avoidance algorithm will be activated once

an intruder crosses the self-separation/collision avoidance threshold boundary. We have

implemented the local-level frame path planner approach presented previously in the Self-

Separation and Collision Avoidance section. The local-level frame map is discretized into

three levels with 38 nodes for the collision avoidance algorithm and five levels with 150 nodes

for the self-separation algorithm. An example of a collision avoidance scenario with 5 in-

truders is shown in Figure 7.5. The correct detections, missed detections, and false alarms

for both the conflict and collision scenarios are shown in Figures 7.6 and 7.7.
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Figure 7.6 shows results from the long-range self-separation assurance simulations,

and Figure 7.7 contains results from the short-range tests for collision avoidance. In each

figure five metrics are presented for the different numbers of intruders considered. Conflict

Detection True refers to the number of collisions detected using truth information for each

of the intruders. Missed Detections refers to the number of collisions detected using intruder

truth information that were not detected using estimated intruder information. Conflict

Detection Correct describes the number of conflicts detected using estimated information

that were also detected using truth information. The relationship between Conflict Detection

True, Missed Detections, and Conflict Detection Correct can be expressed as CDTrue = MD +

CDCorrect . False Alarms is the number of collisions detected using estimated information that

were not detected using truth information. Finally, Loss of Self-Separation and Collisions

are the number of instances that the well clear or collision volumes were penetrated by an

intruder.

As shown in Figures 7.6 and 7.7, both conflict and collision detection algorithms

are able to correctly detect conflict and collision events with a small number of missed
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Figure 7.8: Statistical Convergence of Monte Carlo Simulation.

detections and few false alarms. The increasing number of conflict and collision incidents

with the increasing number of intruders is expected since greater numbers of intruders in

the encounter circle result in a higher probability of a conflict or collision with the ownship.

Figure 7.8 shows the statistical convergence of the Monte Carlo simulations which indicates

a sufficient number of simulation runs.

Table 7.2: Conflict Detection Algorithm: Probability of correct detection, probability of
false alarm, and safety ratio.

Scenario Pcd Pfa Safety Ratio

1 intruder 1.000 0.00051 0.000
2 intruders 1.000 0.00153 0.000
3 intruders 0.990 0.00068 0.010
4 intruders 1.000 0.00089 0.000
5 intruders 1.000 0.00082 0.000
10 intruders 1.000 0.00041 0.000
20 intruders 0.989 0.00206 0.011

The performance of the proposed conflict/collision detection approach is quantified

using the probability of correct detection Pcd and the probability of false alarm Pfa [69,118].
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Table 7.3: Collision Detection Algorithm: Probability of correct detection, probability of
false alarm, and safety ratio.

Scenario Pcd Pfa Safety Ratio

1 intruder 0.998 0.00214 0.002
2 intruders 0.994 0.00209 0.006
3 intruders 0.997 0.00211 0.003
4 intruders 0.994 0.00206 0.006
5 intruders 0.991 0.00225 0.009
10 intruders 0.995 0.00181 0.005
20 intruders 0.993 0.00115 0.007

We further quantify the system performance by computing the safety ratio [69]

Safety ratio =
1 − Pcd
1 − Pfa

.

The Pcd and Pfa results for both collision and conflict detection are shown in Tables 7.2

and 7.3. An ideal conflict/collision detection algorithm would result in Pfa = 0 and Pcd = 1,

with all conflicts/collisions threats correctly detected and no false alarms. This corresponds

to the theoretical ideal point (Pfa, Pcd) =(0,1) in signal detection theory. Unfortunately,

due to uncertainty in the intruder state estimates, this ideal is not achievable. The closer

the value of (Pfa, Pcd) to the point (0,1), however, the better the detection performance. In

addition, a safety ratio of 0 indicates that the detection system provides perfect protection

from loss of separation/collision incidents. A safety ratio of 1, however, indicates that the

detection system provides no additional protection from loss of separation/collision incidents.

The results shown in Tables 7.2 and 7.3 demonstrate that our approach produces results near

the ideal operation point (Pfa, Pcd) =(0,1) with a safety ratio that is near zero.

The conflict/collision detection algorithm can be also evaluated by measuring the

time delay between a conflict/collision event that has been detected using the intruder truth

information, and the time instant at which the proposed conflict/collision detection algorithm

is able to detect the same event using estimated intruder information. Ideally, the time delay

should be zero. Due to the errors in the state estimates of the intruders, however, this cannot

be always achieved. The average of the maximum, the 95th percentile, and the maximum of
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Table 7.4: Conflict Detection Algorithm: Event detection time delay.

Scenario Average max. 95th Max.
time delay (s) percentile time delay (s)

1 intruder 1.389 11.280 12.9
2 intruders 1.308 8.900 13.7
3 intruders 1.370 8.160 24.9
4 intruders 1.444 6.255 36.9
5 intruders 1.148 5.200 18.9
10 intruders 1.848 4.770 16.9
20 intruders 1.387 7.200 17.4

Table 7.5: Collision Detection Algorithm: Event detection time delay.

Scenario Average max. 95th Max.
time delay (s) percentile time delay (s)

1 intruder 2.010 9.990 18.2
2 intruders 2.348 9.900 31.9
3 intruders 2.219 9.900 35.9
4 intruders 2.354 10.245 31.9
5 intruders 2.190 9.900 28.5
10 intruders 2.141 10.10 31.9
20 intruders 1.956 9.900 63.9

simulation time delays is shown in Tables 7.4 and 7.5. If we assume, an ownship UAS similar

flying with maximum airspeed of 80 kn encounters an intruder with a maximum airspeed

of 240 kn, then the time to loss of separation is 105.5 s given 10 nmi detection range [117].

Then from Table 7.5, the average of the maximum time delay to detect a conflict for all of

the seven different scenarios is 1.128 s which leaves the ownship with about 104.372 s to plan

and fly an avoidance maneuver. Even with the maximum time delay recorded (36.9 s), the

ownship still has about 68.6 s to plan and execute an avoidance maneuver.

Another important aspect of evaluating the performance of the proposed approach is

its ability to run in real time. The SAA system must be able to process the measurement

information provided by the sensor, provide estimates of the current states of the intruders,

assess the encounter risk, and plan an avoidance path, while leaving ample time to avoid
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Table 7.6: Conflict Detection: Execution time for one cycle of estimator, and conflict
detection, and self-separation algorithms.

Scenario Average max. 95th Max.
computation time (s) percentile computation time (s)

1 intruder 0.218 0.292 0.363
2 intruders 0.387 0.523 0.649
3 intruders 0.519 0.627 0.645
4 intruders 0.521 1.022 2.131
5 intruders 0.578 0.930 2.403
10 intruders 0.613 0.900 0.929
20 intruders 1.116 1.411 20.572

Table 7.7: Collision Detection: Execution time for one cycle of estimator, and collision
detection, and avoidance algorithms.

Scenario Average max. 95th Max.
computation time (s) percentile computation time (s)

1 intruder 0.108 0.198 0.386
2 intruders 0.108 0.329 0.392
3 intruders 0.072 0.079 0.140
4 intruders 0.014 0.026 0.734
5 intruders 0.019 0.042 0.878
10 intruders 0.071 0.093 0.289
20 intruders 0.126 0.233 0.979

the intruder and ensure that the constraint on the minimum required safe distance from

the intruder is not violated. To demonstrate this capability, we have recorded the time

required to execute these processes from the point the measurements are provided to the

estimator until a new waypoint command is generated by the path planner and is ready to

be delivered to the ownship autopilot. The average, 95th percentile, and the maximum time

required to execute one cycle of the estimation, the conflict/collision detection, and the self-

separation/collision avoidance algorithm are shown in Tables 7.6 and 7.7. The algorithms

were run using Matlab on an Intel i7 processor. The ADS-B estimator provides estimates

at a sample rate of 0.1 s. To process all of the estimator data, the other algorithms should

operate at the same sample rate. Table 7.6 shows that the average of the maximum run time
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to execute the estimator, conflict detection, and the self-separation algorithms for all of the

seven different scenarios is 0.565 s, and the maximum recorded run time is 20.572 s. Similarly,

in Table 7.7 the average of the maximum run time of the estimator, collision detection, and

avoidance algorithms for all of the seven different scenarios is 0.074 s, while the maximum

recorded run time is 0.979 s. Although the recorded run times are larger than the 0.1 s,

these algorithms are running near real time in Matlab. We expect that implementing these

algorithms in a compiled language, such as C or C++, will show that real-time execution is

feasible using low-cost computational hardware.

In these experiments, the collision volume is large (500 ft radius, 200 ft height) com-

pared to the size of the ownship aircraft. If the collision volume was reduced to more closely

reflect the aircraft size, the number of collisions detected drops even further. For example,

Figure 7.7 shows a total number of 10 collisions out of the 1928 potential collisions detected

using intruder truth information for the five intruder scenario case. If the collision volume

is reduced to a third of the original size, then the number of collisions decreases to only one.

If the collision volume is further reduced to a cylinder of radius 10 ft, approximating the

wingspan of a small UAS, and height of 3 ft, we record zero collisions. From this we can

conclude that none of these collision incidents were actual collisions, but only a violation of

the surrounding collision volume.

7.5 Conclusions

We have introduced in this chapter an ADS-B-based collision detection and avoidance

approach that is technically and computationally feasible for small UAS. Taking advantage

of the long-range detection offered by the ADS-B system, the proposed approach is used to

detect conflict events over the range of 5 to 10 nmi, and consequently provide self-separation

of the host ownship.

The results from Monte Carlo simulations show that the proposed system supports

a high level of safety. In the 14,000 executed self-separation simulations, separation was

fully maintained up to 10 intruders. For the 140,000 collision scenarios, the number of

collision-volume violations was 39, with no actual physical collisions. The run-time results

also indicate that the estimation scheme, detection method, and avoidance logic are capable
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of running in near real time in Matlab. Considering the increase in computational efficiency

that would result from a compiled-code implementation of the algorithm, real-time execution

can be easily achieved.

A key result of this work is that it demonstrates that mandating ADS-B Out equipage

for all aircraft could play a significant role in the safe integration of UAS into the NAS.

While economic, policy, and operational aspects still must be considered, the theoretical

basis and positive simulation results presented here demonstrate the technical feasibility of

the proposed system. While the FAA 2020 mandate for ADS-B includes only some aircraft,

requiring all aircraft to have ADS-B Out could create a suitable environment for implemen-

tation of ADS-B-based SAA. Ultimately, the combination of complete ADS-B equipage and

SAA systems like the one presented here would be a major step toward allowing UAS to

safely operate in the NAS with manned aircraft.

Ultimately, any proposed SAA system needs to coordinate with existing cooperative

systems such as TCAS if required to fly alongside TCAS-equipped aircraft. Fortunately,

ACAS X is the likely long-term replacement for TCAS, and its surveillance architecture is

designed to support surveillance based on GPS data that significantly simplifies development

and interoperability with ADS-B equipped UAS.
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Chapter 8. Ground-Based Radar SAA for Small UAS

To most people, the sky is the limit. To those who love aviation, the sky is home.

- anon

In this chapter, we present a collision detection and avoidance approach for ground-

based SAA systems. We first evaluate the performance of the proposed approach assuming

an generic sensor that provides complete and perfect knowledge of the environment. Second,

we propose a portable and low-cost ground-based radar system and we use the recursive

random sample consensus (R-RANSAC) tracking algorithm to test the performance of the

collision detection and avoidance algorithms both in simulation and flight tests. Figure 8.1

depicts a broad application scenario which is used to motivate the work of this chapter. A

typical mission requires the ownship to fly from point A to point D and return back to point

A. In this work, however, we only consider planing a collision-free path between points B

and C.

UAS

…

A

B C

D

intrudersownship

Figure 8.1: An example of a typical mission for small UAS.
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8.1 Introduction

Generally, the most suitable SAA configuration depends on the dynamic character-

istics, SWaP, payload of the UAS airframe, and the nature of the mission. In this chapter,

we present a ground-based sense-and-avoid system as an alternative option to the airborne

SAA system. As discussed in Chapter 1, the hardware and algorithms necessary for small

UAS sense-and-avoid system make up a large portion of the available size, weight, and power

resources. Scaling sensors down to small UAS sizes often requires compromises in range, field

of view, measurement accuracy, or processing speed. Such compromises reduce the overall

capability of the SAA system, and consequently, decrease the assurance of safety. In addi-

tion, carrying sensors on board reduces the UAS payload capability. The ground-based SAA

system provide an alternative means of complying with the FAA sense-and-avoid regulations.

A ground-based SAA system consist of a ground control station that includes all sensors,

communication, processing and logic.

Ground sensors, primarily radars, are an alternative to supporting small UAS oper-

ations, which do not require modifications to the UAS airframe, and are not restricted by

SWaP constraints. A ground-based SAA system, however, may consists of several sensors

like the mobile aircraft tracking system (MATS) [133]. The MATS consists of a 2D primary

radar, which provides range and azimuth information about targets, an ADS-B receiver and

a transponding interrogator. The primary radar of the MATS has a peak output power of

25 kW and provides two modes of instrumented range: 54 nmi with resolution of 180 m or

27 nmi with resolution of 45 m. The performance of the MATS was examined as part of the

Smart Skies project using a specially equipped Cessna 172R. The main function of MATS is

to detect and track intruding aircraft and provide this information to the UAS pilot located

at the ground control station. In other words, the MATS system provides the sense element

while the pilot evaluates the risk and performs the avoidance function if needed. Another

example is the modern Thales Star 2000 air traffic control (ATC) radar that has a peak

output power of 28 kW and provides a coverage of 100 nautical miles with resolution of 230

m. Similar to MATS it provides only range and azimuth information about targets. Not

providing the elevation information means that there is no altitude information, which is

an essential part of navigation. The MATS and Star 200 system assume low density traffic
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where 2D information is sufficient and another cooperative sensor provides the altitude in-

formation to supplement the radar data [11]. The sense-and-avoid display system (SAVDS)

which uses the Sentinel AN/MPQ-64 air defense radar is a ground-based SAA system that

is capable of providing 3D information about targets. It has a peak output power of 23 kW

and provides a coverage of 40 nmi with resolution of 150 m [11]. In general, traffic control

radar and high-tech military radars tend to be very expensive. For example, the cost guide

of the terminal maneuvering area radar is 8 million US dollars [2]. A drawback to using the

ground-based radar as an SAA system is that it may be difficult to provide a static coverage

volume that is larger than the operating range of the UAS. Also, using ground-based radar

introduces the issue of maintaining a reliable, and efficient data link between the ground

control station and the ownship. In addition, local terrain may also reduce the surveillance

volume, and introduce noise in the measured information.

Operation volume

Surveillance volume

UAS

intruder

Ground-based Radar 

SAA station

Protection zone

Figure 8.2: Surveillance and operating volumes associated with the ground-based radar SAA
system.

Figure 8.2 shows the typical operating volumes associated with a ground-based SAA

system. In this configuration, the ground radar detects air traffic in a fixed volume of

airspace called the surveillance volume. The ownship flies in a volume of airspace referred

as the operation volume. The size and geometry of the operation volume is dependent on

the surveillance volume, minimum detection range, and other dynamics characteristics of

the UAS, like the minimum turning radius. The size of the operation volume should depend

on (1) the minimum required detection range to be able to detect and track the intruder,
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(2) the time required to evaluate the encounter scenario, (3) the time required to plan an

avoidance maneuver if required, and (4) the time required to take an evasive action.

Ownship UAS

Tracking and Estimation 

(R-RANSAC)

Collision Detection

Collision Avoidance

Radar Data Processing

Ground Control Station

Intruder position and 

velocity estimates

Collision Flag

Ownship Position and 

Velocity States

Avoidance Waypoints

Radio Antenna

Range, azimuth and 

elevation angles 

measurements 

Phased Array Antenna 

intruder

Figure 8.3: Ground-based radar sense-and-avoid system structure diagram.

As shown in Figure 8.3, radar returns from all of the targets are received by a phased

array antenna. The radar data is processed to produce ranges and relative bearing angles

to all targets. In the tracking step, the target’s measurements are processed using the

R-RANSAC algorithm [100] to estimate the state estimates of potential intruders, and to

distinguish the ownship. After the R-RANSAC filtering, the intruder position and velocity

estimates are projected forward in time to identify possible collisions. If a collision threat

is detected, the intruder position and velocity estimates and an activation flag are passed

into the collision avoidance algorithm. Once the collision level of the avoidance logic has

been activated, a new collision-free path is generated. To evaluate encounter situations we

use a deterministic approach that computes distance at the closest point of approach. For

collision avoidance, we propose a two step collision avoidance algorithm. In the first step,

an initial suboptimal path is generated using A∗ search. In the second step, a simulated
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chain of unit masses connected by springs and dampers evolves in a simulated force field.

The chain is described by a set of ordinary differential equations that is driven by virtual

forces to find the steady-state equilibrium. The ultimate output of the SAA system is a

revised set of ownship waypoints that are transmitted to the ownship. The system shown

in Figure 8.3 is a complete SAA system for small UAS. It is viable for both fixed wing and

multirotor aircraft, and could reasonably be extended for larger UAS outside of the small

UAS definition.

8.2 Collision Detection

In this section we propose a simple collision detection logic that evaluates intruders

at close proximity based on the geometric relationship between aircraft. In the geometric

approach, aircraft trajectory predictions are based on linear projections of current aircraft

states forward in time to identify possible future collisions. Linear projections can be compu-

tationally efficient and prediction errors are negligible over short time horizons. We assume

that there exists a sensor and tracking system that provides the intruders states. We also

assume that detected intruders fly at a constant velocity, constant altitude, and follow a

straight line path during the entire encounter scenario. Our approach is based on evaluating

near-term threats that need immediate action. The proposed collision detection approach

constructs a virtual volume surrounding the ownship that, when penetrated by an intruder,

declares a collision. The general choice for this volume is a truncated cylinder of radius ds

and height hs centered at the current location of the UAS. The current manned regulations

have no explicit values for the collision volume, however ds= 500 ft and hs= 200 ft are

generally used in the literature [11].

The encounter geometry is evaluated in the relative coordinate frame where the rel-

ative motion of the aircraft is analyzed by investigating the dynamics of the intruder with

respect to the ownship. In this relative reference frame, the ownship is stationary and the in-

truder’s location and velocity is determined by the relative position and velocity states. To be

more specific, let the jth intruder’s position and velocity in the inertial NED reference frame

at time t be p
intj

(t) = (n
intj
, e

intj
, d

intj
)⊤ and v

intj
(t) = (vn

intj
, ve

intj
, vd

intj
)⊤, respectively.

Assume that the ownship’s position and velocity are known as p
own

(t) = (n
own
, e

own
, d

own
)⊤
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and v
own

(t) = (vn
own
, ve

own
, vd

own
)⊤. Let p∗

intj
(t) = (n

intj
, e

intj
)⊤ and v∗

intj
(t) = (vn

intj
, ve

intj
)⊤

be the projection of the jth intruder’s position and velocity onto the NE-plane. Similarly, we

let p
own

(t) = (n
own
, e

own
)⊤ and v

own
(t) = (vn

own
, ve

own
)⊤ be the projection of the ownship’s po-

sition and velocity onto the NE-plane. The relative horizontal position and velocity between

the jth intruder and the ownship is defined as

prj
= p∗

intj
(t) − p

own
(t), (8.1)

vrj
= v∗

intj
(t) − v

own
(t). (8.2)

We further calculate the relative altitude between the jth intruder and the ownship as

hrj
= d

intj
− d

own
. (8.3)

Assume that the intruder moves with a constant velocity. Using pr and vr, we predict the

time remaining to the closest point of approach (CPA) between the jth intruder and the

ownship as

t
cpaj

,



















−p⊤
rj

vrj

‖vrj ‖2 if
∥

∥

∥vrj

∥

∥

∥ 6= 0,

0 Otherwise.
(8.4)

The horizontal distance, or the slant range, at the CPA between the jth intruder and the

ownship is given by

d
cpaj

=
√

∥

∥

∥prj

∥

∥

∥

2
+ t

cpaj
p⊤
rj

vrj
. (8.5)

To predict whether or not the collision will occur for each intruder within the sen-

sor coverage range, we use the simple collision detection logic listed in Algorithm 6. In

Algorithm 6, the horizontal distance threshold dth and the time threshold τ
th

are design pa-

rameters that define the collision avoidance threshold. The collision avoidance threshold is

a variable boundary around the ownship, larger than the collision volume and depends not

only on distance, but time and other factors [30]. It is designed to give a practical separation
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Algorithm 6: Collision detection algorithm
1: for each intruder within sensor coverage range do
2: if ‖pr‖ < dth or (p⊤

r vr < 0 and t
cpa

≤ τ
th

) then
3: if d

cpa
< ds and |hr| < hs/2 then

4: Collision detected.
5: else
6: No collision detected.
7: end if
8: end if
9: end for

such that if a collision is predicted then the ownship has adequate time to plan an avoidance

maneuver and to actually fly the maneuver. The design of the collision avoidance threshold

is beyond the scope of this dissertation. We refer the interested reader to [30,34]. Line 2 in

Algorithm 6 checks whether the horizontal range ‖pr‖ to the intruder is less than a horizon-

tal threshold distance dth, or the intruder is converging and the time to CPA is below a time

threshold τ
th

. The product p⊤
r vr characterize whether or not the intruder is horizontally

converging, i.e., p⊤
r vr < 0, or horizontally diverging i.e. p⊤

r vr > 0. Line 3 checks to see if

d
cpa

and the relative altitude hr are below horizontal and vertical minimum safe distances ds

and hs/2, respectively. If so, then line 4 declares a collision.

8.3 Two-Step Path Planning

The subject of path planning is very broad and has been the focus of a significant

body of research especially in the field of autonomous planning and robotics. Search based

methods are very popular path planning algorithms in robotics. This can be attributed to

the relative ease of implementation and to the early establishment of dynamic graph-based

search methods. The A∗ algorithm is a widely used graph-based search. It uses a best-first

search to find the minimum-cost path between the initial node and one or more possible

goal nodes. The A∗ search uses an admissible heuristic estimate of the cost to get from

the initial node to the final node to narrow the search. The A∗ algorithm is proven to

be complete subject to the resolution of the grid employed and will always find a solution

if one exists [75]. A drawback of A∗ search is that it is a static algorithm, which means
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that when the workspace changes the previous path is no longer valid and the A∗ algorithm

must replan from scratch. The potential fields algorithm is another popular approach for

collision avoidance in robotics. In Chapter 4 we proposes a 2D collision avoidance method

for a SAA system using a physical analogy of a simulated chain placed in a simulated force

field. The collision avoidance algorithm tries to find the proper evasive maneuver observing

the specified right-of-way rules. Bortoff presents a method for modeling a UAS path using

a series of point masses connected by springs and dampers. This algorithm generates a

stealthy path through a set of enemy radar sites of known locations [19]. McLain and Beard

present a trajectory planning strategy suitable for coordinated timing for multiple UAS. The

paths to the target are modeled using a physical analogy of a chain [88].

Once a collision threat has been detected, the collision avoidance system must select

the proper evasive maneuver. The essential requirement for the collision avoidance algorithm

is to perform the avoidance maneuver in such a way that the distance at the closest point

of approach to the intruder is equal to, or greater than a minimum required safe distance.

We propose a reactive path planning technique over look-ahead horizons within the sensor’s

coverage range. The basic idea is to model the future motion of the ownship using a waypoint

path where the waypoints can dynamically move as if they were particles in a force field.

The path planning approach taken in this work is carried out in two steps. In the first

step, an initial suboptimal path is generated using A∗ search. In the second step, a chain of

unit masses connected by springs and dampers evolves in a simulated force field, using the

A∗ solution as an initial condition. The chain is described by a set of ordinary differential

equations that is driven by virtual forces to find the steady-state equilibrium. Assuming

a constant velocity model, it is relatively simple to determine roughly where the ownship

will be at any given time. This timing information can be used to prevent collisions when

creating plans to avoid intruders. In the following sections, we address the key components

of the proposed approach.
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8.3.1 Graph Search

In this section1 we will give a brief description of how to use the A∗ algorithm to

generate an initial path. Full implementation details of A∗ search is beyond the scope of this

dissertation. We refer the interested reader to [75]. The region between points B and C as

shown in Figure 8.1 is represented by a grid of regularly sized cells, where the locations of

the start and the final points, the ownship, and the intruders are known. Let the indices of

the grid cells be labeled by i = (i, j, k) where i is the North index, j is the East index, and

k is the altitude index. Note that these indices are positive integers. The index of the start

point is ii and the index of the goal point is if . Unlike many path planning methods that

use A∗ search, the nodes of the graph must take into account timing information. A node on

the graph is uniquely defined by its position index, i, and the time of arrival of the ownship

at that position, t, and will be denoted as w = (i, t).

Let wa be the current node that A∗ is evaluating, with the position indices ia, and ja,

altitude index ka, and arrival time ta. The algorithm determines which possible positions,

ib, jb, and kb that the vehicle can travel to and determines the time it will arrive at these

positions tb = ta + ∆tia,ib
, where ∆tia,ib

is the travel time from position ia to ib. In our

current implementation, the possible positions are the ones towards the goal position while

the altitude is constant or moving straight and changing altitude. For example, assume that

the goal is north of the current node and that the South West corner of the map is i = 0,

j = 0. In this case the possible positions are

ib∈









































ia + 1

ja − 1

ka















,















ia + 1

ja

ka















,















ia + 1

ja + 1

ka















,















ia + 1

ja

ka − 1















,















ia + 1

ja

ka + 1









































.

Note that any possible position index that exceeds the bounds of the workspace is

thrown out. For each possible node wb, it then calculates the true cost, g (wb), to travel to

1This section is jointly written with Matthew Argyle and Randal W. Beard as part of conference
manuscript for possible publication in the 2016 American Control Conference (ACC) [115].
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Figure 8.4: An example of costs associated with A∗ search in a 2D grid.

wb by traveling through wa where

g (wb) = g (wa) + cd (ia, ib) + ct(wb,pintj
) + cn + cr, (8.6)

where cd is the cost for traveling from position ia to ib given by

cd (ia, ib) = kdist

√

(ib − ia)
2 + (jb − ja)

2 + kalt |kb − ka| ,

and kdist and kalt are positive scaling parameters. To compute the cost of the intruder’s

threat ct, we let pi = (ni, ej, dk)⊤ ∈ R
3 be the North-East-Down mapping of the grid cell i

in the inertial NED reference frame. Assuming a constant velocity model, we let p
intj

(t, ℓ)

denote the jth intruder’s predicted location at future time step ℓ defined as

p
intj

(t, ℓ) = p
intj

(t, ℓ− 1) + tbvintj
,

where for example, p
intj

(t, 0) is the current location of the jth intruder. Then ci is given by

ct

(

wb,pintj

)

=



































k
max

, if pib
∈ C(t, tb),

ǫk
max

, if pib
∈ C̄(t, tb),

0, Otherwise,
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where k
max

is the maximum allowable penalty cost, ǫ < 1 is a positive constant, C(t, tb) =

{D ∈ R
2, H ∈ R :

∥

∥

∥

∥

p∗
intj

(t, tb) − D
∥

∥

∥

∥

≤ ds, and
∣

∣

∣d
intj

−H
∣

∣

∣ ≤ hs/2} represent the collision

volume centered on the intruder projected at time tb, and C̄(t, tb) = {D ∈ R
2, H ∈ R :

∥

∥

∥

∥

p∗
intj

(t, tb) − D
∥

∥

∥

∥

≤ ̺ds, and
∣

∣

∣d
intj

−H
∣

∣

∣ ≤ ̺hs/2} represent a larger collision volume to pe-

nalize nodes that are close to the intruders. The design parameter ̺ > 1 determines the

volume of C̄, and cn is the cost of deviation from the nominal path. Assuming that the

path is defined as an ordered sequence of waypoints W = W1,W2, · · · .Wf , and at the time

of detecting a collision the ownship was following the path segment (Wa,Wb), then using

Eq. 4.47, cn is given by

cn = D(Wa,Wb,wb).

The last term in Eq. 8.6 accounts for collisions that may happen when the ownship moves

from the current node to the possible node wb. In other words, if we assume that wb is the

current node that A∗ is evaluating, then cr is the cost that measures the risk of collision if

the ownship will be traveling along the edge (wa,wb). Let the velocity vector in the direction

of node wb from node wa be vab = v
own

p
ib

−p
ia

‖p
ib

−p
ia‖ , where v

own
is the speed of the ownship,

then cr is given by

cr =















kr

dcpa
, if Algorithm 6 detects a collision,

0, Otherwise,

where kr is a positive real number and design parameter, and pr, vr, and hr are given by

pr = p∗
intj

(ta) − p∗
ib
,

vr = v∗
intj

(ta) − v∗
ab,

hr = d
intj

− dkb
,

where p∗
ib

and v∗
ab are the projection of pib

and vab onto the NE-plane, and dkb
is the height

of node wb in the inertial NED reference frame.
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Finally, the estimated cost from node wb to position if is

e(wb) = cd (ib, if ) .

The total search cost is then f(wb) = g(wb) + e(wb). The nodes wb are then added to

the OPEN list and the next node is evaluated. The A∗ algorithm ends after evaluating all

possible nodes without finding a solution, or when it evaluates a node where ia = if .

8.3.2 Chain Based Potential Field

Once an initial path has been generated by the A∗ algorithm as shown in Fig-

ures 8.5(a), and 8.5(c), it is superimposed by a chain of unit masses that are connected

to one another by springs and dampers as shown in Figure 8.5. One end of the chain is

connected to the ownship’s current location while the other is attached to the goal. The

chain is employed for two reasons. The first is to smooth the initial path generated by the

A∗ algorithm, and the second is to dynamically react to changes in the environment. Let

ni = (ni, ei, di)⊤ ∈ R
3, i = 1, 2, 3, ..., l be the North-East-Down location of the ith node

in the inertial NED reference frame. An (l − 1)-link chain of waypoints is represented by

c =
[

n⊤
1 ,n

⊤
2 ,n

⊤
3 , . . . ,n

⊤
l

]⊤
, where the node ni is the future planned location of the ownship.

If vo is the speed of the ownship, then the time required by the ownship to fly between nodes

is approximately ti ≈ ‖ni−ni−1‖
vo

. The approximation is due to the fact that the ownship may

also follow a circular arc or a fillet maneuver to switch between waypoints. The steady-state

equilibrium of the chain system is driven by virtual forces. The springs exert a contractive

force, and act to reduce the length of the chain, and the dampers tend to reduce the system

oscillation, and remove the kinetic energy stored by the unit masses. Second, the future pre-

dicted locations of the intruders at time step ℓ exert a repulsive force applied to the nodes

of the ownship’s chain associated with time step ℓ. To be consistent with the kinematics of

a fixed-wing aircraft, we introduce a horizontal and vertical straightening force to prevent

the ownship when following the chain’s nodes. The dynamic equation describing the entire

chain motion is given by

c̈ = F, (8.7)
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where F is the sum of the applied forces. F is given by

F =
l−1
∑

i=2

(

Fsi
+ Fdi

+ kshFsthi
+ ksvFstvi

+ k
N
∑

j=1

µ
i,j

Frp(ni,pintj
(t, i))

)

, (8.8)

where k is a positive design parameter that represents a tradeoff between repelling from

intruders and path length, ksh and ksv are also positive design parameter that represents a

tradeoff between repelling from intruders and maintaining aircraft kinematics constraints.

The idea is to appropriately weight the forces acting on the system to converge to the

optimal path by minimizing the system potential energy. Let Fsi
, Fdi

Fsthi
, and Fstvi

be the

spring restoring force, the damping force, and the horizontal and the vertical straightening

force acting on the ith node, respectively. Define N as the number of intruders detected

by the sensor, and Frp(ni,pintj
(t, i)) as the repelling force acting on the ith node from

the jth intruder at future time step ℓ, and its direction is determined by the unit vector

µ
i,j

= (ni − p
intj

(t, i))/
∥

∥

∥

∥

ni − p
intj

(t, i)
∥

∥

∥

∥

. As expressed by Eq. (8.8), the state and end nodes

of the chain do not change, while the remainder of the chain continuously adapts to changing

environmental conditions. The spring restoring force and the damping force in Eq. (8.8) are

defined as

Fsi
= κ(ni+1 − ni) − κ(ni − ni−1),

Fdi
= b(ṅi+1 − ṅi) − b(ṅi − ṅi−1),

where κ is the spring constant, and b is the damping constant.

To guarantee that the turn radius constraint is not violated, the horizontal straight-

ening force Fsthi
is designed to ensure that |θi| ≤ θ

max
, where θ

max
is the maximum allowable

angle that can be formed between adjacent links as shown in Figure 8.6. As depicted in

Figure 8.7, the unit vectors ui, and ui−1 are defined as

ui = (ni − ni−1)/(‖ni − ni−1‖),

ui−1 = (ni−1 − ni−2)/(‖ni−1 − ni−2‖ .
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Figure 8.5: The chain-based collision avoidance initialized by the A∗ algorithm.

Letting u∗
i , Pui be the projection of ui onto the NE-plane, where P = [1 0 0

... 0 1 0
... 0 0 0]

is the projection matrix, then θi = arccos((u∗
i )

⊤u∗
i−1) is the angle between u∗

i and u∗
i−1. As

depicted in Figure 8.7, Fsthi
acting on node ni, is expressed as

Fsthi
=

(u∗
i )

⊥

1 + exp(λ(θmax − θi))
,
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where λ is a positive constant that determines how closely the logistic function approximates

a step function and (u∗
i )

⊥ is the orthogonal complement of u∗
i defined as

(u∗
i )

⊥ =


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where θ∗ , arccos(
(u∗

i −u∗

i−1)⊤(u∗

i )⊥

‖u∗

i
−u∗

i−1‖‖u∗

i
)⊥‖).

In addition, to preventing abrupt altitude changes between chain nodes, the vertical

straightening force Fstvi
is designed to ensure that |γi| ≤ γ

max
, where γi is the angle between

ui and its projection u∗
i on the NE-plane, γ

max
= arcsin ( ḣmax

vg
) is the maximum allowable

flight path angle, ḣ is the climbing rate, and vg is the ownship ground speed [16]. Then, Fstvi

acting on node ni is given by

Fstvi
=

(ui)⊥

1 + exp(λ(γ
max

− γi))
.

As shown in Figure 8.7, let (ui)⊥ = (u⊥
ni
, u⊥

ei
, u⊥

di
)⊤ ∈ R

3 be the unique orthogonal comple-

ment of ui such that u⊥
zi

= cos(γ), u⊤
i (ui)⊥ = 0, and if ui × (ui)⊥ = âi + bĵ + ck̂, then

c = 0 i.e the resultant vector of the cross product is parallel to the NE-plane. Letting

ui = (uni
, uei

, udi
)⊤ ∈ R

3, then the required orthogonal complement (ui)⊥ is given by

u⊥
ni

=
uni

uei

u⊥
ei
,

u⊥
ei

=
uei
udi

u2
ni

+ u2
ei

u⊥
di
,

u⊥
di

= −‖ui‖∗

‖ui‖
sgn udi

.

Finally, the repelling force acting on the ith link is defined as

Frp(ni,pintj
(t, i)) =



















































f
max

, if d(t, ℓ) ≤ ds, and h(t, ℓ) ≤ hs

2

max
(

ρ
h
f

max
, ρ

v
f

max

)

, if ds < d(ti) ≤ δ1ds, and hs

2
< h(t, ℓ) ≤ δ2

hs

2

ρ
h
f

max
, if ds < d(ti) ≤ δ1ds, andh(t, ℓ) ≤ hs

2

0, Otherwise,

where f
max

is the maximum allowable repelling force, δ1 > 1, and δ2 > 1 are positive constants,

and ρ
h
,

−(d(t,ℓ)−ds)
d(t,ℓ)−δ1ds

+ 1, and ρ
v
,

−(h(t,ℓ)−hs/2)
h(t,ℓ)−δ2hs/2

+ 1. Since the collision volume is defined as

a truncated cylinder of radius ds and height hs, the distance from the chain nodes to the
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intruders are decomposed into a horizonal distance d(t, ℓ), and an altitude distance h(t, ℓ).

Let n∗
i = (ni, ei)⊤ be the projection of the ith node location onto the NE-plane, then the

horizonal distance between the ith node and the jth intruder is given by

d(t, ℓ) =
∥

∥

∥

∥

n∗
i − p∗

intj
(t, ℓ)

∥

∥

∥

∥

,

where p∗
intj

(t, ℓ) = p∗
intj

(t, ℓ − 1) + tiv
∗
intj

. The altitude difference between the ith node and

the jth intruder is given by

h(t, ℓ) =
∣

∣

∣di − d
intj

(t, ℓ)
∣

∣

∣ .

Once the system has converged, the path is defined as an ordered sequence of the waypoints

W = {n0,n1,n2, · · · .nl} given by the steady-state mass locations connected by straight line

segments. Next, a path manager is required to follow the waypoint path. One possible

approach is to transition waypoints when the ownship enters a ball around the waypoint ni.

A better strategy is to use the half-plane switching criteria that is not sensitive to tracking

error [16]. In addition, a smooth transition between the waypoints is required to make the

generated path flyable by the ownship. This can be achieved by implementing the fillet

maneuver or using the so-called Dubins paths. For further analysis on the path manager,

switching between waypoints, and smoothing paths we refer the interested reader to [16].

8.4 Simulation Results with Perfect Sensing

To demonstrate the performance of the proposed collision detection and avoidance al-

gorithm, we developed a simulation environment with a five-degree-of-freedom aircraft model

for both the ownship and the intruders. We assume a ground-based sensor configuration that

provides a complete and perfect knowledge of the intruders’ number and state. The encounter

geometry is constructed using typical collision encounters that include multiple intruders fly-

ing at different altitudes, approaching head-on, converging, and overtaking scenarios. In all

encounter scenarios the ownship initially starts at point B located at (0, 0, 120)⊤ in NED

coordinates system, with an initial heading of 0 degrees measured from North and follows a
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straight line path at constant speed of 20 m/s to reach point C located at (0, 1000, 120)⊤ as

shown in Figures 8.8, 8.11, and 8.14. In the following simulations, our choice of the collision

volume is a cylinder of radius, ds=153 m (500 ft) and height, hs =62 m (200 ft) centered on

each of the intruders.
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Figure 8.8: Encounter scenario number 1.
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Figure 8.9: Avoidance path followed by the ownship in encounter scenario number 1.

In each encounter scenario the intruders are following a straight line path at a constant

velocity and altitude. Figure 8.8 shows the side view of the first encounter scenario. It

consists of two intruders: one is approaching head-on and the other is converging from the

right. The speed and the altitude of both intruders is 20 m/s and 120 m, respectively.

Figure 8.9 shows the avoidance path generated by the proposed algorithm, and Figure 8.10

shows the results of the horizontal range and relative altitude to both intruders. The results

shows that no collision incidents occurs. The second encounter geometry consists of three
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Figure 8.10: Horizontal range and relative altitude to intruders.
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Figure 8.11: Encounter scenario number 2.

intruders: two of the intruders are flying at a fixed altitude of 120 m while the third intruder

is at an altitude of 40 m as shown in Figure 8.11. In the second scenario, the speed of

all the intruders is 20 m/s. The encounter geometry of the third scenario consists of four

intruders: the first intruder is approaching head-on, the second intruder is overtaking the

ownship while the third and the fourth are converging from the right and left, respectively

as shown in Figure 8.14. In the third scenario, the first and the second intruders are flying

at a fixed altitude of 120 m while the third and the fourth intruders are flying at 80 m and

40 m, respectively. The speed of the overtaking intruder is 40 m/s while the speed of the

others is 20 m/s.
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Figure 8.12: Avoidance path followed by the ownship in encounter scenario number 2.
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Figure 8.13: Horizontal range and relative altitude to intruders.

Figures 8.12 and 8.15 shows the planned avoidance path in encounter scenarios 2 and

3. The horizontal range and relative altitude to intruders is shown in Figures 8.13 and 8.16.

The results shows that the avoidance path maneuvers the ownship safely without colliding.

Another important aspect to evaluate the performance of the proposed algorithm is its ability

to reduce the length of the avoidance path while avoiding the intruders. This is important

because it reduces the amount of deviation from the original path, and ultimately the flight

Table 8.1: Length of the avoidance path.

Scenario Initial path Avoidance
number length (m) path length (m)

1 1000 1222.2
2 1000 1258.5
3 1000 1044.6
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Figure 8.14: Encounter scenario number 3.
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Figure 8.15: Avoidance path followed by the ownship in encounter scenario number 3.

time which is of critical importance for small UAS with limited power resources. Table 8.1

shows that the length of the avoidance paths is fairly acceptable compared to the initial path

length. We have also recorded the time required to execute the collision avoidance algorithm.

The proposed collision avoidance algorithm was run using Matlab on an Intel i7 processor. It

Table 8.2: Collision avoidance algorithm run time.

Scenario A∗ run time chain max. run chain average run
number (one cycle)(s) time (s) time (s)

1 1.147 0.328 0.328
2 4.050 1.157 1.157
3 6.379 1.007 0.799
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Figure 8.16: Horizontal range and relative altitude to intruders.

executes the A∗ algorithm once to initialize the chain, while the chain based algorithm may

be executed several times. This is because following the avoidance path may result in another

pop-up collision threat. This situation requires the collision avoidance method to execute

the chain algorithm to respond to the pop-up collision threat. Table 8.2 shows that the time

required to execute one cycle of the A∗ algorithm, and the maximum time and average time

required to run the chain algorithm. The results show that A∗ algorithm requires a larger

amount of time compared to the chain algorithm, however, the current implementation of

the A∗ and the chain algorithm, are coded in Matlab and were not optimized for run times.

Significant speed increases could be achieved by optimizing the code and by porting it to

C/C++.

8.5 Simulation and Flight Test Results with Radar

This1 section describes the development of a low SWaP phased array radar designed

specifically for small UAS sense-and-avoid system. In this section, we present a complete

sense-and-avoid solution for small UAS including reliable ground-based radar intruder sens-

ing, tracking and estimation, collision detection, and collision avoidance.

1This section is jointly written with Jared Wikle, Jonathan Spencer, Michael Boren, Kaleo Roberts,
Randal Beard, Timothy McLain and Karl Warnick as part of journal manuscript for possible publication.
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8.5.1 Ground-Based Radar Model

Air traffic control radars use large ground based systems that can detect targets

approaching from up to 400 kilometers away [128]. These radar systems achieve a long

detection range by using large, high gain antennas to focus the radar energy into beamwidths

ranging from 2 to 5 deg. The antennas are placed on large mechanical gimbals that rotate

the antenna to scan the narrow beam. Since most aircraft fly at predictable altitudes, these

systems scan over a relatively narrow set of angles vertically, while providing 360 deg of

horizontal coverage. Although the large antennas and high transmitted power permit long-

range detection, the system has a doughnut shaped detection pattern that is blind to targets

directly overhead. These systems also avoid scanning too close to the horizon in order to

avoid ground clutter reflections from man-made structures.

In recent years, miniaturized radar systems have shown promise as on-board SAA

sensors for UAS. There currently exist solutions that meet the SWaP constraints of small

UAS and achieve the field of view requirements for fixed wing flight [97]. As the field of

view of these radar systems expand to meet the needs of more general multirotor systems,

they will provide an attractive alternative to ATC radar for localized collision avoidance.

An improved ground-based sensor could also resolve the current blind spots of ATC radar.

Although miniature scale versions of current ATC radar exist, they are not viable for small

UAS because they provide only 2D sensing where UAS sensing requires three-dimensional

spacial localization of small targets. Gimballed radar systems not only have blind spot

issues overhead, but their update rate is very slow: on the order of a few seconds [11]. For

long range radar systems, this is not an issue since their detection range is long enough to

compensate for a slow update rate, but for short range radar systems, aircraft could travel

most of the way through the field of view in a single update interval. A solution to resolve

the issues of a mechanically steered antenna would be to replace it with an electronically

steered array (ESA) of antennas. An ESA or phased array antenna has the same narrow

beam and high resolution as a mechanically steered antenna, but it can be steered with a

wider field of view and a much higher update rate.

A potential solution for ground based SAA for UAS would be to create a planar phased

array radar with a wide field of view angled directly at the sky as shown in Fig. 8.17(a). This
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(a) Single 2D Phased Array (b) Radar Network Cells

Figure 8.17: UAS surveillance using planar phased arrays

would create a 3D hemispherical bubble where the radar can detect targets and guarantee

safe flight within the bubble. The update rate for a phased array radar that implements

digital beamforming is the pulse rate of the system, on the order of milliseconds. As a result,

such a system can provide high resolution in range, elevation angle, azimuth angle, and time.

These 3D phased array systems have a wide field of view that covers the full extent of UAS

flight paths, and can implement filtering methods to remove background reflections from the

environment.

In order to expand the coverage of the radar along the ground, multiple radar systems

could be arranged into a grid similar to the current cell phone antenna network. This

configuration, shown in Fig. 8.17(b), is designed to establish coverage over a wide area while

maintaining low radiated power and ensuring that a single antenna is not overwhelmed with

traffic. Since UAS only need to know about nearby air traffic, this cellular radar sensor

network also provides an efficient solution to manage the volume of data produced by air

traffic monitoring. A maneuvering aircraft will communicate only with nearby radar sensors

to obtain local air traffic information rather than being required to communicate with a

central source that transmits global air traffic. This type of a system is scalable depending

on the amount of air traffic expected. In rural areas, the cells could be very large or the

system could just use on-board sensors for collision avoidance since low volume of intruding
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traffic is expected. In densely populated urban environments where a lot of traffic is expected

cells could be made smaller to ensure adequate coverage and load balancing.

A step in developing a 3D sensor is the 2D line array radar system that is introduced

in Section 2.2.2, which could be used interchangeably as the primary sensor on board the

aircraft or as a ground based sensor. The key design parameters are listed in Table 8.3. The

design parameters were driven primarily for its use as an onboard sensor for small UAS. The

main design constraints were to minimize SWaP and to provide a reasonably large field of

view of approximately 120 deg horizontally and 30 deg vertically.

Table 8.3: Radar sensor parameters

Parameter Value Parameter Value

Weight 120 g (0.26 lbs) Size 2.25in x 4in x 1in
Consumed Power 15 watts Transmitted Power (Ptrans) 2 watts
Center Frequency 10.25 GHz Radio Frequency Bandwidth 500 MHz
Sweep Duration (Tc) 2 ms Intermediate Frequency Bandwidth 1 MHz
System Noise Figure (F) 8 dB Antenna Elevation Beamwidth 18 deg
Antenna Gain 12 dB Antenna Azimuth Beamwidth 110 deg
Array Steerable Range 110 deg Number of Receive Elements 4
Peak Channel Coupling approx. -20dB Synthesized Azimuth Beamwidth 25 deg

8.5.2 States Estimation and Tracking

The requirement of tracking multiple intruders using ground-based radar motivates

the use of the the R-RANSAC algorithm [100]. One of the advantages of the R-RANSAC

algorithm is its modularity and applicability to a wide range of tracking scenarios. It has

the ability to track multiple targets in clutter without requiring a prior knowledge of the

number of existing targets. While not a cure-all, the R-RANSAC algorithm is robust to

clutter and intermittent measurements, simple to implement, and computationally efficient,

and fully autonomous while maintaining accuracy.

In this section, we briefly introduce the R-RANSAC algorithm. The full mathemat-

ical framework and implementation of R-RANSAC algorithm is beyond the scope of this

dissertation, we refer the interested reader to [100]. Let the state vector x[k] represent the
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Cartesian coordinates of the detected target in the inertial NED reference frame at time

step k

x[k] =
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(8.9)

where n[k], e[k], and d[k] and vn[k], ve[k] and vd[k] are the North-East-Down position and

velocity of the target. Let r, α and ε be the range, azimuth and elevation measurement

provided by the radar at time step k, respectively. These measurements include all aircraft

in the field of view of the radar, i.e. the intruders and the ownship. Let the measurement

vector h[k] given by

h[k] =















r[k]

α[k]

ε[k]















, (8.10)

where

r[k] =
√

(x1 − n
rd

)2 + (x2 − e
rd

)2 + (x3 − d
rd

)2,

α[k] = tan−1

(

x2 − e
rd

x1 − n
rd

)

,

ε[k] = sin−1





x3 − d
rd

√

(x1 − n
rd

)2 + (x2 − e
rd

)2 + (x3 − d
rd

)2



, (8.11)

where (n
rd
, e

rd
, d

rd
)⊤ is the North-East-Down location of the ground-based radar station.

153



The R-RANSAC algorithm implements a linear Kalman filter that assumes the pro-

cess and measurement equations can be modeled according to

x[k] = Ax[k − 1] + ξ[k],

y[k] = Cx[k] + η[k]. (8.12)

As shown in Eq. (8.11), the range, azimuth, and elevation measurements are nonlinear in

the states. To simplify the processing we perform a nonlinear transformation of the range,

azimuth, and elevation into orth-East-Down position, as

n = r cos(α) cos(ε) + n
rd
,

e = r sin(α) cos(ε) + e
rd
,

d = r sin(ε) + dradar. (8.13)

Since tracking, estimation and path planning is conducted on ground, the R-RANSAC algo-

rithm is modified to distinguish ownship from the intruders. This modification is required

because the radar sensor provides measurements of all detected aircraft with its surveillance

range. That implies a reliable communication link between the ownship and the ground

control station.

8.5.3 Simulation Results

To demonstrate the performance of the proposed ground-based radar sensor model,

the R-RANSAC estimation scheme, and the collision detection and avoidance algorithm, we

developed a simulation environment with a six-degree-of-freedom aircraft model for both the

ownship and the intruders. The encounter geometry is constructed using typical collision

encounters that includes multiple intruders flying at different altitudes, approaching head-on,

converging, and overtaking scenarios.

In the first encounter scenario the ownship starts at (−400, 0,−200)⊤ in NED coor-

dinates system, with an initial heading of 0 deg measured from North and follows a straight

line path at constant speed of 13 m/s to reach waypoint located at (500, 0,−200)⊤ as shown
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in Figure 8.18. The radar system is located at (0, 0, 0)⊤ and uses a simulated transmit power

of 5 kW. In the following simulations, our choice of the collision volume is a cylinder of

radius, ds= 153 m (500 ft) and height, hs = 61 m (200 ft) centered on each of the intruders.

All aircraft are assumed to have a simulated radar cross section of 0.1 m2.
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Figure 8.18: Encounter geometry of scenario number 1.
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Figure 8.19: The avoidance path of the ownship.

In each encounter scenario the intruders are following a straight line path at a constant

velocity and altitude. Figure 8.8 shows the first encounter scenario. It consists of two

intruders: one is approaching head-on and the other is converging from the right. The speed

of the intruders is 17 m/s and 15 m/s, respectively. The altitude of both intruders is 200 m.

If no collision avoidance is planned, the d
cpa

with respect to the first and second intruders
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(b) side view of the ownship’s avoidance path.

Figure 8.20: Avoidance path followed by the ownship in encounter scenario number 1.
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Figure 8.21: Radar measurements: range, azimuth and elevation.

is approx. 78.2 m and 10.5 m, respectively. Since, all aircraft are flying at same altitude

and the d
cpa

is less than the horizontal safety distance ds, then these encounters will lead to

a collision. Figures 8.19, 8.20(a) and 8.20(b) shows the intruder paths and the avoidance

path planned by the ownship. Figure 8.21 shows the range, azimuth and elevation to all

aircraft measured by the radar system. These figures predict that the principal signal decay
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(b) side view of the radar measurements in the
NED inertial frame.

Figure 8.22: Aircraft’s paths with radar measurements in encounter scenario number 1.
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Figure 8.23: R-RANSAC tracks: position estimates of aircraft.

happens at low elevation angles as the aircraft enter and exit the antenna beam. Despite the

noise in the elevation angle data, range and azimuth measurements maintain a high degree

of accuracy until the aircraft exits the radar sensing volume at about 600 m. The aircraft

with radar measurements in the NED inertial frame is shown in Figure 8.22. Figure 8.22(a)

shows that the North and East coordinates constructed from radar measurements have a
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Figure 8.24: Relative range and altitude to intruders.

high degree of accuracy, whereas Figure 8.22(b) shows that the altitude has a lower degree

of accuracy because of noisy elevation measurements. The state estimates of position are

shown in Figure 8.23. Figure 8.23 shows that R-RANSAC is able to track all aircraft and

distinguish the ownship from the intruders. From the figures we see that R-RANSAC takes

about 10 seconds for good models to appear. This is due to the initial noisy radar elevation

measurements, the sample rate at which R-RANSAC is running, and the underlying R-

RANSAC design parameters. Both intruder tracks die slightly after we stop receiving radar

measurements, due to the aircraft being outside the visible field of view of the radar; however,

the ownship’s track never dies. We also see that the estimates become more noisy at about 55

seconds due to the noisy elevation measurements that start occurring as the aircraft leave the

field of view of the radar. Figure 8.24 shows the results of the relative range and altitude to

both intruders. The results shows that no collision incidents occurs. The collision avoidance

path increases the d
cpa

to 226.6 m and 266.2 m with respect to the first and second intruders.

In the second encounter geometry, the ownship initially starts at (−300, 0,−200)⊤ in

NED coordinates system, with an initial heading of 0 deg measured from North and follows a

straight line path at constant speed of 13 m/s to reach a waypoint located at (500, 0,−200)⊤

as shown in Figures 8.25. This encounter scenario consists of four intruders flying at speed
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of 16 m/s, 14 m/s, 13 m/s and 17 m/s, respectively. The intruder are flying at constant

altitude of 250 m, 150 m, 220 m, and 200 m as shown in Figures 8.25.
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Figure 8.25: Encounter scenario number 2.
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Figure 8.26: The avoidance path of the ownship.

Figures 8.26, 8.27(a) and 8.27(b) shows the planned avoidance path in the second

encounter scenario. The d
cpa

with respect to the four intruders is approx. 79.9 m, 240.3 m, 0

m and 40 m. Since all aircraft are flying at different altitudes, there will be a collision with the

third and fourth intruder. The ownship, however, should plan an avoidance maneuver that

does not lead into a collision with the remaining aircraft. Figures 8.26, 8.27(a) and 8.27(b)

shows the intruder paths and the avoidance path planned by the ownship. Figures 8.28

and 8.29 demonstrate similar results as Figures 8.21 and 8.22. The addition of more intruders

does not significantly degrade the radar’s ability to detect multiple targets. Figure 8.29(a)

demonstrate that the aircraft remain well resolved , even when in close proximity. Figure 8.30
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(b) side view of the ownship’s avoidance path.

Figure 8.27: Avoidance path followed by the ownship in encounter scenario number 1.
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Figure 8.28: Radar measurements: range, azimuth and elevation.

shows similar results to those in the first scenario, in which we notice that the R-RANSAC

algorithm is able to track multiple intruders. Figure 8.31 shows the results of the relative

range and altitude to all intruders. The results shows that the avoidance path maneuvers

the ownship safely without colliding. In Figure 8.31, the avoidance planner makes sure that

when the relative horizontal range is less than ds, the relative altitude is greater than hs. For

example, the relative range to the third intruder over time interval [39, 54.9] s is between
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Figure 8.29: Aircraft’s paths constructed using radar measurements in encounter scenario
number 1.
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Figure 8.30: R-RANSAC tracks: position estimates of aircraft.

151.7 and 152.9 meters, however, over the same time interval the relative altitude is between

48.65 and 68.54 meters which is above the vertical safe distance hs.

Another important aspect to evaluate the performance of the proposed algorithm is

its ability to reduce the length of the avoidance path while avoiding the intruders. This is

important because it reduces the amount of deviation from the original path, and ultimately
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Figure 8.31: Relative range and altitude to intruders.

Table 8.4: Length of the avoidance path.

Scenario Initial path Avoidance
number length (m) path length (m)

1 900 1564.2
2 800 1334.6

the flight time which is of critical importance for the small UAS with limited power resources.

Table 8.4 shows that the length of the avoidance paths is fairly acceptable compared to the

initial path length. We have also recorded the time required to execute the radar mea-

surements processing logic T1, the R-RANSAC estimator T2, collision detection T3, and

Table 8.5: Ground-based radar SAA algorithms run time.

Scenario 1 2

Time (s) average max. average max.

T1 0.2123 0.2926 0.3325 0.3899
T2 0.0075 0.0948 0.0102 0.0856
T3 0.00019 0.0012 0.00022 0.00071
T4 0.0527 0.2870 0.0484 0.2985
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avoidance algorithm T4. Table 8.5 shows that the average and maximum time required to

execute one cycle of these processes. These algorithms are running near real time in Matlab

on an Intel i7 processor. The results show that the SAA algorithms requires at maximum a

time of less than 1 second, however, the current implementation is coded in Matlab and was

not optimized for run time. Significant speed increases could be achieved by optimizing the

code and by porting it to C++.

8.5.4 Flight Test Results

Ground Control 

Station with Radar 

ownship intruder

100 m

5m 18 deg. ≈

Figure 8.32: Sketch of the encounter geometry of flight test (not to scale).

To further examine the performance of the collision detection and avoidance algo-

rithms, we conducted flight tests using 3D Robotics X8 multicopter for both the ownship

and the intruder. An explanatory sketch of the flight experiments is depicted in Figure 8.32.

In these experiments, we used simulated radar return measurements and simulated intruder

telemetry states. The radar and the intruder dynamic model along with the R-RANSAC

algorithm, and the collision detection and avoidance algorithms are running in Matlab on

Lenovo Intel core i5 processor. The experimental setup is depicted in Figure 8.33. The

telemetry of the ownship including position and velocity states and the avoidance waypoints

are communicated between the ground-station laptop and the X8 multicopter ownship us-

ing the 915 MHz 3DR telemetry radio set. The flight tests are conducted over a region of

100×100 square meters, hence our choice of the collision volume is a scaled-down circular

163



ownship intruder

Ground Control Station

W
ay

p
o

in
t 

co
m

m
an

d

3DR Telemetry 

Radio 915 MHz

O
w

n
sh

ip
 T

elem
etry

Intruder dynamic model

Intruder position and 

velocity states

Tracking and Estimation 

(R-RANSAC)

Collision Detection

Collision Avoidance

Radar Model

Intruder position and 

velocity estimates

Collision Flag

Range, azimuth angles 

measurements 

Matlab

Avoidance Waypoints 

Radio Set 915MHz

Figure 8.33: The ground-based radar SAA experiment structure diagram.

disk of radius ds= 10 m. The collision detection and avoidance is limited to 2D path plan-

ning. Both the ownship and the intruder maintain a constant altitude of approximately 5 m

above the ground.
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Figure 8.34: Encounter geometry of ground-based SAA flight test number 1.

In the first flight test we use a recursive implementation of depth-first search (DFS)

algorithm [60]. Initially our focus was on testing the communication between different soft-

ware and hardware pieces, and making sure that we are able to communicate with the X8
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Figure 8.35: The depth-first search avoidance path of flight test number 1.
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Figure 8.36: The avoidance path of the ownship and the radar measurements in the NED
inertial frame of the aircraft of flight test number 1.

multicopter ownship and overwrite the initial mission waypoints with new avoidance way-

points. Therefore, as a first step we have used the DFS algorithm because it is simple and

relatively easy to implement. The region is divided into a 7×7 grid. The cost for traveling

between nodes on the grid is computed using Eq. (8.6). The geometry of the encounter

scenario is shown in Figure 8.34. The ownship starts at (0, 0,−5)⊤ in NED coordinates sys-

tem, with an initial heading of 0 deg measured from North and follows a straight line path

at constant speed of 1 m/s to reach waypoint located at (100, 0,−5)⊤. The intruder start

location is (100, 1,−5)⊤, with an initial heading of 180 deg measured from North and follows
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Figure 8.37: Relative range to the intruder of flight test number 1.
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Figure 8.38: First set of snap shots of the ownship performing collision avoidance in encounter
scenario number 1.

a straight line path at constant speed of 1 m/s as shown in Figure 8.34. This encounter

is a collision scenario with t
cpa

= 50 s and d
cpa

= 1 m. The result of the depth-first search
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algorithm is shown in Figure 8.35. The avoidance path followed by the ownship is shown in

Figure 8.36. Figure 8.36 shows the the R-RANSAC tracks and the radar measurement trans-

formed into the NED reference frame. Figure 8.37 shows the relative range to the intruder

aircraft. The results shows that no collision incidents occurs. The collision avoidance path

increases the d
cpa

to 16.11 m which is considered safe with respect to the defined minimum

safe distance, ds = 10 m. A snap shots at several time instants of the ownship performing

collision avoidance in encounter scenario number 1 are shown in Figures 8.38 and 8.39.

ownship
intruder

(a) Snap shot at t=1.10 s.

ownship

intruder

(b) Snap shot at t=1.35 s.
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(c) Snap shot at t=1.50 s.
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(d) Snap shot at t=1.58 s.

Figure 8.39: Second set of snap shots of the ownship performing collision avoidance in
encounter scenario number 1.

In the second flight test we use the same setup geometry and structure depicted in

Figures 8.32 and 8.33. We implement the A∗ and the chain based collision avoidance ap-

proach. Similar to the first experiment, we use simulated radar measurements and simulated

intruder telemetry states. The region is divided into an 11×11 grid. The cost for traveling

between nodes on the grid is computed using Eq. (8.6) and (8.8). The geometry of the

encounter scenario is shown in Figure 8.40. The ownship starts at (0, 0,−5)⊤ in NED coor-
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Figure 8.40: Encounter geometry of ground-based SAA flight test number 2.
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Figure 8.41: The A∗ initial search and the chain-based avoidance path of flight test number
2.

dinates system, with an initial heading of 0 deg measured from North and follows a straight

line path at constant speed of 1 m/s to reach waypoint located at (100, 0,−5)⊤. The in-

truder start location is (100, 1,−5)⊤, with an initial heading of 180 deg measured from North

and follows a straight line path at constant speed of 1 m/s as shown in Figure 8.40. This

encounter is a collision scenario with t
cpa

= 50 s and d
cpa

= 1 m. The result of the A∗ initial

search and the chain-based avoidance path are shown in Figure 8.41. The chain-based path

smooth out the initial path provided by the A∗ search. The avoidance path followed by
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Figure 8.42: The avoidance path of the ownship and the radar measurements in the NED
inertial frame of the aircraft of flight test number 2.
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Figure 8.43: Relative range to the intruder of flight test number 2.

the ownship is shown in Figure 8.42. Figure 8.42 shows the the R-RANSAC tracks and the

radar measurement transformed into the NED reference frame. Figure 8.43 shows the rela-

tive range to the intruder aircraft. The results shows that no collision incidents occurs. The

collision avoidance path increases the d
cpa

to 17.78 m which is considered safe with respect

to ds = 10 m.
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8.6 Conclusions

The proposed approach can trade-off a collision-free path versus path length. One of

the advantages of our approach is that timing information is specifically embedded in the

future path representation of the vehicle, thus allowing the ownship to cross the physical

path of the intruder as long as the crossings are well separated in time. It is also flexible,

in that it can easily accommodate dynamic environment. A unique strength of this ap-

proach is the ability to use the dynamic chain analogy to smooth the path into a flyable

shape while maintaining a safe distance from intruders. We evaluate the performance of

the proposed collision detection and avoidance approach in typical encounter scenarios that

include multiple intruders flying at different altitudes using simulated radar data and the

R-RANSAC tracking algorithm. We demonstrate with flight tests using an X8 multicopter

the capability of the proposed collision detection and avoidance approach to detect imminent

collisions and plan avoidance paths in near real time. The proposed algorithms are running

in near real time in Matlab. We expect that implementing these algorithms in a compiled

language, such as C or C++, will show that real-time execution is feasible using hardware.

The proposed architecture of the ground-based SAA system shown in Figure 8.3 assumes

that all the sense-and-avoid tasks are computed on the ground, and that the telemetry and

commands are communicated to the ownship. The proposed tracking, collision detection,

and avoidance algorithms, however, are also viable for airborne solutions. In other words,

the sensor measurements are processed on the ground and communicated to the ownship.
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Chapter 9. Conclusion and Future Directions

I think and think for months and years. Ninety-nine times, the conclusion is false. The

hundredth time I am right.

- Albert Einstein

In this dissertation, we have presented collision detection and avoidance techniques

that further the development of an airborne sense-and-avoid systems for small unmanned

aircraft systems. A key result in this work is developing collision detection and avoidance

algorithms that are sensor independent. Another, important aspect of this work is the run-

time of the proposed approaches. These approaches have been evaluated using different

sensors modalities and applied for both airborne and ground-based SAA system. The run-

time results indicates that the proposed collision detection and avoidance algorithms are

capable of running in real time.

We have derived a close form analytical solution to compute the minimum sens-

ing range required for the SAA system. We have developed two collision detection and

risk assessment approaches based on deterministic and probabilistic framework. In the

deterministic-based approach, we design a collision detection algorithm that evaluate an

encounter based on distance at the CPA and time to the CPA. We account for uncertainties

in the state estimates of the intruder by deriving an analytic expressions to propagate the

error variance using a first-order Taylor series approximation. To better understand the as-

sumptions and limitations of the error variance equation we derived it. The full derivation is

presented in Appendix B. To address unanticipated intruder’s maneuvers, we have developed

a probabilistic-based collision detection framework using the concept of the reachability set

and the transition probabilities contained in the UEM developed by MIT Lincoln Labora-

tory. For the collision avoidance part, we have proposed a collision avoidance algorithm
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based on a simulated chain of waypoints that responds to a virtual force field produced by

the encountering intruders. We have also developed a collision avoidance logic using an own-

ship centered coordinate system. The technique builds graph in the local-level frame and

use DijkstraŠs algorithm to find the path with the least cost. Both algorithms account for

multiple intruders in various encounter scenarios, and for uncertainties in the state estimates

of the detected intruders.

We have implemented the proposed approaches using several sensors modalities in-

cluding camera, radar and ADS-B with suitable tracking and estimation schemes. We have

evaluated the performance of the proposed approaches with UEM LL MIT, and typical

designed encounter scenarios using Monte Carlo Simulations.

To address ground-based radar SAA system for small UAS, we have developed two-

step path planner approach based on the A∗ search algorithm and a chain of unit masses

connected by springs and dampers. We have evaluated the performance of the proposed

approach in typical encounter scenarios using simulated radar data and the R-RANSAC

tracking algorithm. In addition, the A∗ search and the chain-based collision avoidance algo-

rithm have been demonstrated in flight tests using an X8 multicopter platform. Finally, we

conclude this dissertation with a summary of several avenues for potential future research

building on what has been presented here.

9.1 Future Works

There are number of prospective research topics that may extend from this work.

In Chapter 2 we present a close form solution to calculate the minimum detection range

required for sense-and-avoid system. The approach is based on a geometric approximation

of the point at which the velocity vector of the intruder is tangent to the collision volume.

The geometry in Figure 2.2 is used to approximate the angle θ. The tangent point can be

better determined if using the closest point of approach, i.e., the point at which the rate of

change of the relative range between aircraft is zero.

In Chapter 3, the current implementation of probabilistic-based collision detection

algorithm generates the reachable set using the current estimate of the intruder’s position

and velocity. As shown in Figure 9.1, the start point of the reachable set is the center of the
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Figure 9.1: Top view of the 2D probability distribution function of uncorrelated position
estimates.

ellipse that represent the 2D probability distribution of the position estimates. To improve

the computation of the reachable set, the estimate of the intruder’s turn rate can be used to

reduce the size of the reachability set, and hence speedup the computation and decrease false

alarms. For example, assume that the SAA system detects an intruder that is following a

straight-line path. Initially, the collision detection algorithm builds the reachability set using

the turn rates candidates ψ̇ ∈ [−8, 8] deg/s. Observing turn rate estimates, in addition to

the position and velocity estimates, can used to reduce the size of the turn rate candidates

interval to ψ̇ ∈ [−2, 2] deg/s or ψ̇ ∈ [−1, 1] deg/s, and hence the size of the reachability

region. In addition, extending the work to 3D and non level flight case is an important step

forward for real-time implementation where altitude rate variations exists.

��
Collision volume

Collision Avoidance 

Threshold

���

Figure 9.2: Well clear boundary and collision volume centered on current location of the
ownship.
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Through out this dissertation we used a cylindrical collision volume with radius of

500 ft and 200 ft. In Chapter 7, we adopted the well clear candidate selected by the Sense

and Avoid Research Panel (SARP) [34]. The well clear boundary or the collision avoidance

threshold is defined by a truncated cylinder that consists of a modified τ value of 35 s with

distance of 4000 ft in the horizontal plane, and a vertical distance from the ownship of 700 ft.

The question becomes: What is the optimal ratio between the size of collision volume and

the size of the well clear boundary? The optimality can be defined based on minimizing

the probability of near-mid air collisions (NMAC) given the size ratio between the collision

volume and well clear boundary. In other words, if there exists a probability of collision ̺,

that need not to be exceeded, then what is the optimal size of the well clear volume (WCV)

with respect to the size of the collision volume such that the SAA system should satisfy

Pr(NMAC|WCV) ≤ ̺.
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Figure 9.3: Hardware-in-the-loop simulation functional block diagram of sense and avoid
system.
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An important step forward to move towards a deployable airborne SAA system is to

test and evaluate the performance of the close-loop of sensor, tracker, collision detection,

and collision avoidance using hardware-in-the-loop simulation (HILS). Figure 9.3, shows an

example of a functional block diagram of HILS for radar-based sense-and-avoid system. The

same concept can be applied to different sensors. This step allows a better understanding of

the behavior of the sense-and-avoid system when there exists an actual pieces of hardware.

This step is fairly required to fine tune the estimator, and collision detection and avoidance

algorithms. Also, it helps to better measure time-delays and account for them.

In Chapters 5, 6, and 7, we have used Monte Carlo simulations to evaluate the perfor-

mance of one or more functions of the sense-and-avoid system. In these evaluation routines,

we have either designed the encounter scenarios geometry or used the UEM developed by

Lincoln Laboratory. Practically, the deployment of any SAA system requires a lengthy and

comprehensive development process followed by a rigorous certification process. This work

along with others, however, lay the initial technical foundation which require further analysis

including using higher fidelity models of encounter airspace, representative number of sim-

ulations, and hardware-in-the-loop simulation. Unlike existing collision avoidance systems,

an encounter model cannot be constructed solely from observed data, as UAS are not yet

integrated in the NAS and good data does not exists. That will require, however, building

encounter models similar to those developed to support the evaluation and certification of

TCAS. Flight tests can play a role as part of the evaluation, however, this is not sufficient

simply because system reliability and safety assessment cannot be determined by a few flight

tests.

175



Appendix A. Manned Aviation Regulations

Aviation regulations, collectively known as Federal Aviation Regulation (FAR), are

codified in the Code of Federal Regulations (CFR), Title 14, Chapter I. The FAR consists of

several sections related to airworthiness certification (21-39), maintenance (43), aircraft reg-

istration and marking (45-49), pilot certification (61-67), airspace classes (71-77), operating

rules (91-99) and special classes of vehicles (101-105). The CFR along with supplementary

material like handbooks, orders, advisory circulares and technical standards orders issued by

FAA, define appropriate standards, procedures, and practices to ensure that manufactures

and operators are able to establish a minimum level of safety and reliability required for civil

operations [36].

A.1 Airspace Categories and Classes

The airspace is defined as the portion of the atmosphere controlled by a country

above its territory, including its territorial waters or, more generally, any specific three-

dimensional portion of the atmosphere [131]. According to CFR, Title 14, part 71-73 and

the Aeronautical Information Manual the national airspace is divided into two categories and

four types based on the complexity or density of aircraft movements, proximity to airports,

altitude, the nature of the operations conducted within the airspace, the level of safety

required, and the national and public interest:

1. Regulatory that includes airspace class A, B, C, D and E, restricted and prohibited

areas.

2. Non regulatory which include airspace class G, military operations areas (MOAs),

warning areas, alert areas, and controlled firing areas.
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While classes are mutually exclusive, categories can be defined within any class as

needed. Categories typically used to provide additional information to pilots about hazards

activities common to the airspace. There are four types within these two categories:

1. Controlled airspace,

2. Uncontrolled airspace,

3. Special use airspace and

4. Other airspace.

Airspace Classes A through E, ordered from more restrictive to less restrictive, corresponds

to controlled airspace, however when overlapping airspace designations apply to the same

airspace, the operating rules associated with the more restrictive airspace designation apply

[CFR §71.9].

• Airspace class A: Generally most aircraft that fly above 18,000 ft above mean sea

level (MSL) are capable of Instrument Flight Rules (IFR). Airspace class A was de-

signed from 18,000 ft (FL180) above mean sea level (MSL) up to and including 60,000

ft (FL600). Unless otherwise authorized as per the [CFR §71.33] and the [CFR §91.167]

through the [CFR §91.193] all persons must operate their aircraft under IFR and an air-

craft needs to receive Air Traffic Control (ATC) clearance before entering Visual Flight

Rules (VFR) weather minimums. There are also requirements for communication and

transponder equipment. Ultralight vehicles and parachute jumps are prohibited with-

out prior ATC permission.

• Airspace class B: Generally, the airspace from the surface to 10,000 ft MSL surround-

ing the busiest airports in terms of IFR operations or passengers. About 37 airports in

the US are considered a Class B airspace. The configuration of each Class B airspace

area is individually tailored and consists of a surface area and two or more layers

(some Class B airspace areas resemble upside-down wedding cakes), and is designed to

contain all published instrument procedures once an aircraft enters the airspace, see

the [CFR §91.131]. An ATC clearance is required from the facility controlling that
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area for all aircraft to operate in the area, and all aircraft that are so cleared receive

separation services within the airspace. Aircraft must be equipped for all operations

with an operable two-way radio capable of communicating with ATC on appropriate

frequencies for that area and an operable radar beacon transponder with automatic

altitude reporting equipment.

• Airspace class C: It extends airspace surrounding airports that have an operational

control tower, but lack sufficient traffic to be considered Class B. About 123 Airports

in the US are considered a Class C airspace. Class C has a mandatory requirement to

communicate with the ATC before entering and to maintain the communication while

within the class. The airspace usually consists of a 5 nmi radius core surface area that

extends from the surface to 4,000 ft above ground level (AGL), and a 10 nmi radius

shelf area that extends no lower than 1,200 ft up to 4,000 ft AGL. Aircraft should be

equipped with a two-way radio and, unless otherwise authorized by ATC, an operable

radar beacon transponder with automatic altitude reporting equipment, see the [AIM

3-2-4 (a)].

• Airspace class D: It extends from the surface to 2,500 ft AGL surrounding those air-

ports that have an operational control tower, but lack sufficient traffic to be considered

Class C. All pilots operating in Class D are required to communicate with the tower,

regardless of weather conditions. When arriving, departing, or passing through Class

D airspace, communications must also be established with the tower. When the tower

is not operating but weather information is available, the airspace reverts to surface

based Class E. If weather information is not available, the airspace reverts to Class G.

• Airspace class E: Generally, if the airspace is not class A, class B, class C, or class

D, and it is controlled airspace, it is class E airspace [AIM 3-2-6 (a)]. In other words,

it corresponds to the rest of controlled airspace. Class E extends from 14,500 ft up to

class A boundary as well as the airspace above 60,000 ft [CFR §71.71]. Near airports,

Class E may extend down to the surface and in the proximity of federal airways, and

it extends from 700 or 1,200 ft AGL. Although no specific equipment is required, the

pilot must establish two-way radio communication with the ATC when near airports.

178



No ATC clearance is required and flight can be VFR or IFR and no separation services

are provided to VFR aircraft.

• Airspace class G: It corresponds to the uncontrolled airspace. In other words, any

airspace that has not been designated as class A, B, C, D, or E airspace is class G.

This class extends from the surface to 1200 ft AGL in all areas that are not designated

by another classes and can extends above 1200 ft AGL in unpopulated areas. Since

airspace class G is defined with respect to AGL, it rises and falls with the contours

of the earth. Rules governing VFR flight have been adopted to assist the pilot in

meeting the responsibility to see and avoid other aircraft. Minimum flight visibility

and distance from clouds required for VFR flight are contained in [14 CFR §91.155].

Figure A.1: The US national airspace classes.

A.2 General Operation and Flight Rules

Code of Federal Aviation, Title 14, part 91 has established right-of-way rules, aircraft

speed, minimum safe altitudes, equipment, instrument, and certificate requirements, main-
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tenance, preventive maintenance, special flight operations i.e. aerobatic flight, flight test

areas, etc. Federal regulations do not permit pilots to fly below 10,000 ft or in proximity

of airspace Class B, C, and D at speed exceeding 250 knots. It is not allowed for aircraft

to operate close to another aircraft in a way that creates a collision hazard. The pilot as

well must contribute to collision avoidance by being alert to “see and avoid” other aircraft

[CFR §91.111]. The following is a summary of few flight rules that may be helpful in the

design of sense-and-avoid system for small UAS.

• Right-of-way rules – Except water operations: When an aircraft has the right-of-

way, the another aircraft shall give way to that aircraft and may not pass over, under,

or ahead of it unless well clear [CFR §91.113]. The right-of-way rules are summarized

as follows:

– The aircraft that is in distress has right of way over all other air traffic.

– Landing aircraft or aircraft on final approach to land have the right of way over

other aircraft in flight or operating on the surface. Two or more aircraft are

landing then the aircraft at the lower altitude has the right of way.

– Aircraft being overtaken has the right of way. Overtaking aircraft shall alter

course to the right to pass well clear.

– In the approach head-on scenario, each aircraft shall alter course to the right to

pass well clear.

– The converging scenario has the following classification

1. When aircraft of the same category then the aircraft to the other’s right has

the right of way.

2. If the aircraft are of different categories then the following applies:

(a) A balloon has the right-of-way over any other category of aircraft.

(b) A glider has the right-of-way over an airship, powered parachute, weight-

shift-control aircraft, airplane, or rotorcraft.

(c) An airship has the right-of-way over a powered parachute, weight-shift-

control aircraft, airplane, or rotorcraft.
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(d) Aircraft towing or refueling other aircraft has the right of way over all

other engine-driven aircraft.

• Aircraft speed: The minimum safe airspeed defined by the [CFR; §91.117] is 250

knots (288 mph) for any particular aircraft operating below 10,000 ft MSL. However,

the minimum safe airspeed is 200 knots (230 mph) for any aircraft operating at or

below 2,500 ft above the surface within 4 nmi of the primary airport of a Class C or

Class D airspace area. Regarding Class B, [CFR §91.117] indicates that no person

may operate an aircraft in the airspace underlying a Class B airspace designated for

an airport or in a VFR corridor designated through Class B airspace at an indicated

airspeed of more than 200 knots (230 mph).

• Minimum safe altitudes: According to [CFR §91.199] the minimum safe altitudes

are categorized as follows:

– Over congested areas: Any person operate an aircraft shall maintain an altitude

of 1,000 ft above the highest obstacle within a horizontal radius of 2,000 ft of the

aircraft.

– Non-congested areas: Minimum of 500 ft AGL shall be maintained (except over

open water or sparsely populated areas).

– Anywhere else: any person operate an aircraft should maintain an altitude such

that if the engine fails, an emergency landing may be executed without undue

hazard to persons or property on the surface.

The CFR Title 14, Section 91 defines two types of flight rules, namely visual flight rules and

instrument flight rules, which apply to all aircraft except unmanned rockets, unmanned free

balloons, moored balloons, and ultralights. The following sections is a brief of both flight

rules.

A.2.1 Visual Flight Rules (VFR)

In general, VFR are set of regulations under which a pilot operates an aircraft by

controlling the aircraft’s attitude and navigating to avoid obstacles and other aircraft. Ta-
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Table A.1: Weather Minimums for VFR operations, see the [CFR §91.155], [36].

Airspace Class
Visibility Distance from Clouds (ft)

(miles1) Above Below Horizontal

Class A N/A Not Applicable

Class B 3 Clear of Clouds

Class C 3 1000 500 2000

Class D 3 1000 500 2000

Class E (< 10, 000 ft) 3 1000 500 2000

Class E (>= 10, 000 ft) 5 1000 500 1 mile1

Class G (day, <= 1, 200 ft) 1 1000 500 2000

Class G (day, < 10, 000 ft) 1 1000 500 2000

Class G (night, < 10, 000 ft) 3 1000 500 2000

Class G (>= 10, 000 ft) 5 1000 500 1 mile1

1: statute mile or land mile most commonly 5,280 ft as distinguished from the nautical mile, about 6,076.1 ft.

ble A.1 summarized the minimum visibility range and distance from clouds, known as the

weather minimums as defined by the [CFR §91.155]. The VFR pilot is responsible for

proper navigation separation from all other aircraft and required to see and avoid obstacles

and other aircraft although they may be provided by advisory ATC service when flying in

certain airspace classes. A VFR aircraft may be required to have a transponder in certain

airspace classes. Flying under VFR conditions require the operator to make sure that the

aircraft has sufficient fuel (considering wind and forecast weather conditions) to reach its

destination, with a reserve to allow an additional 30 minutes of flight during the day and 45

minutes at night. Moreover, the [CFR §91.153] requires each person filing a VFR flight plan

to include aircraft and pilot identification data, the point and proposed time of departure,

the proposed route, cruising altitude, and true airspeed at that altitude.

There are additional flight rules categorized under VFR as special VFR (SVFR) and

night VFR. The [CFR §91.157 defines relaxed weather minimums that are allowed under

SVFR, making it a special case of operating under visual flight rules. Night VFR operations

are not permitted in most countries; night flying is conducted by IFR. However, in the US,

night VFR is allowed if and only if the airplane is equipped with functioning instruments
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required for IFR operations and with electric landing lights required for night operations as

per [CFR §91.205(d)].

A.2.2 Instrument Flight Rules (IFR)

Flying under IFR is also subject to the same restriction requirements in terms of

fuel and should receive ATC clearance before flying. The IFR aircraft is required to select

an operational and properly maintained radio navigation system to enable the aircraft to

determine its position and stay on course by receiving radio signals transmitted by a network

of fixed ground radio beacons. According to the [CFR §91.183], the IFR pilot is required

to maintain appropriate communication frequency and report to ATC when it reaches pre-

determined points, encounters unforecasted weather conditions, or any other problem that

may affect flight safety.

A.3 UAS Rules and Regulations

The UAS access into the NAS is restricted by safety issues and these concerns are

working against a rapid integration. The FAA has highlighted these concerns which are

also shared by other NAS stakeholders including the Aircraft Owners and Pilots Association

(AOAP) which insists that all sizes of UAS should be governed by the same rules that apply

to manned aircraft. The AOAP is also against the use of restricted airspace to segregate

UAS operations, as this will require pilots to circumnavigate the airspace, thus raising their

expenses [36, 132].

The first efforts towards the UAS regulation took place as early as 1991, at which

the time the FAA issued a notice for proposed rule making and formed an industry support

group. In 2001, New Mexico State University published the first version of a document known

as “High Altitude Long Endurance (HALE) UAV Certification and Regulatory Road-map”

with the goal of finding a common language for discussion between the FAA, industry, and

others for establishing regulations for airworthiness and flight standards that will allow safe

operation of HALE UAS in the NAS [36]. Among different programs sponsored by NASA,

FAA, DoD, and other stakeholders, the FAA seems to have adopted a cautious approach,
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mainly because UAS technology is still under development and cannot considered mature.

Their belief is that the process of UAS airworthiness certification is challenged by technical

problems like sense and avoid systems and communication issues with ground stations, the

ATC, and other aircraft [113].

Before October 2003, obtaining a Certificate of Authorization (COA) for UAS oper-

ations in the NAS has been limited to military operations based on agreements between the

DoD and the FAA. After this date, the FAA has allowed non-military operations, mainly

for proof-of-concept demonstrations. In September, 2005, the FAA issued “AFS-400 UAS

Policy 05-01” which provided guidance on issuing COAs in which it was clarified that COA

applications would not be available for civil UAS. This policy requires:

1. Observers to ensure that the UAS complies with the right-of-way rules and sense and

avoid requirements outlined in the [CFR §91].

2. A safety analysis indicating that the risk of a mid-air-collision is extremely improbable.

The policy also requires pilot and observer minimum qualification and as well as operations

guidelines. However, the FAA issued an updated guidance document titled “Interim Oper-

ational Approval Guidance 08-01”, on March 2008 that replaced AFS-400. This document

indicates that all UAS operators must at minimum comply with the CFR part 61 and 91.

Although a “Sense and Avoid” requirement is still considered important, the presence of

observers is no longer mandatory provided that other risk mitigation measures are proposed

and validated through appropriate safety studies [36].

In March 2012, the FAA created a new UAS Integration office, headed by a single

executive, which brings together specialists from the aviation safety and air traffic organi-

zations. By July, the agency will request proposals to manage test sites with final decision

making in December. The FAA has been working for several years to implement the provi-

sions of Section 333 of the FAA Modernization and Reform Act of 2012 and move forward

with UAS integration before proposing a small UAS rule. Several companies film production

have approached the FAA and are also considering filing exemption requests. While UAS

operations have increased as a result of the Section 333 exemptions approved since Septem-

ber of 2014, the overall realized benefit of UAS operations is still a small fraction of the
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demand. Additionally Section 333 exemptions are not a long-term solution to supporting

UAS in the National Airspace System. In laying the foundation for a long-term solution for

UAS in the NAS, the Federal Aviation Administration has mandated that UAS be capable

of an equivalent level of safety to the see-and-avoid mandate for manned aircraft [44,55].
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Appendix B. Derivation of Statistical Error Propagation

Definition 3. Let X ∈ R
n be an n × 1 vector of jointly-Gaussian random variable (r.v.)

with mean µX , and covariance matrix Q ∈ R
n×n. Let Y be a new r.v. that is not measured

directly but determined by Y = g(X), where g(·) : Rn → R be a function of X. If g(X) is

differentiable, and up to the first-order Taylor series approximation, Y ≈ g(µX) + ∇g(X −
µX), where ∇g(X) ∈ R

n×1 is the gradient vector ∂g
∂X

evaluated at µX . Then, the r.v. Y has

mean µ
Y

≈ g(µX) and variance given by

σ2
Y

≈ (∇g)⊤Q∇g. (B.1)

If the r.v. in X are uncorrelated, Eq (B.1) simplifies further to

σ2
Y

≈ (∇g)⊤Qd∇g, (B.2)

where Qd = diag([σ2
X1
, σ2

X2
, · · · , σ2

Xn
]).

Derivation: The Taylor series expansion of Y = g(X) expanded about the mean

X̄i , E[Xi] where i = 1, 2, · · · , n, and E[ ] denotes the expectation operator, is given by

Y = g(X̄) +
n
∑

i=1

∂g(X)
∂Xi

(Xi − X̄i) +
1
2!

n
∑

i=1

n
∑

j=1

∂2g(X)
∂Xi∂Xj

(Xi − X̄i)(Xj − X̄j) +H.O.T, (B.3)

where H.O.T stands for high order terms. The partial derivatives are evaluated at the mean

Xi = X̄i. If the second and the higher order terms are neglected in Eq. (B.3), then it reduces

to the first order Taylor series approximation

Y ≈ g(X̄) +
n
∑

i=1

∂g(X)
∂Xi

(Xi − X̄i). (B.4)
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The mean estimate of the output Y is defined by Ȳ = E[Y ]. The mean estimate of the

output Ȳ is approximated using the first order Taylor series expansion given in Eq. (B.4) as

Ȳ = E
[

g(X)
]

,

≈ E
[

g(X̄)
]

+ E
[ n
∑

i=1

∂g(X)
∂Xi

(Xi − X̄i)
]

,

≈ g(X̄),

(B.5)

where the expectation of the first central moment E[(Xi−X̄i)] is zero. Subtracting Eq. (B.5)

from Eq. (B.4) gives

Y − Ȳ ≈
n
∑

i=1

∂g(X)
∂Xi

(Xi − X̄i). (B.6)

Squaring and taking the expectation of Eq. (B.6) gives

E[(Y − Ȳ )2] ≈ E
[( n
∑

i=1

∂g(X)
∂Xi

(Xi − X̄i)
)2]

,

σ2
Y

≈
n
∑

i=1

(

∂g(X)
∂Xi

)2

E
[

(Xi − X̄i)2
]

+

2
n
∑

j=i+1

∂g(X)
∂Xi

∂g(X)
∂Xj

E
[

(Xi − X̄i)(Xj − X̄j)
]

,

σ2
Y

≈
n
∑

i=1

(

(

∂g(X)
∂Xi

)2

σ2
Xi

+ 2
n
∑

j=i+1

∂g(X)
∂Xi

∂g(X)
∂Xj

σ2
XiXj

)

,

(B.7)

where σ2
Y

and σ2
Xi

are the variances in the output Y and the measurements Xi, respectively,

and the σ2
XiXj

term is the covariance between Xi and Xj, i 6= j. We can further simplify

Eq (B.7) by assuming that Xi are independent random variables, then the covariance term

σ2
XiXj

= 0, and Eq (B.7) reduces to

σ2
Y

≈
n
∑

i=1

(

∂g(X)
∂Xi

)2

σ2
Xi
. (B.8)
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