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ABSTRACT

Stochastic Simulation of Lagrangian Particle Transport in Turbulent Flows

Guangyuan Sun
Department of Chemical Engineering, BYU

Doctor of Philosophy

This dissertation presents the development and validation of the One Dimensional Turbu-
lence (ODT) multiphase model in the Lagrangian reference frame. ODT is a stochastic model that
captures the full range of length and time scales and provides statistical information on fine-scale
turbulent-particle mixing and transport at low computational cost. The flow evolution is governed
by a deterministic solution of the viscous processes and a stochastic representation of advection
through stochastic domain mapping processes.

The three algorithms for Lagrangian particle transport are presented within the context of
the ODT approach. The Type-I and -C models consider the particle-eddy interaction as instan-
taneous and continuous change of the particle position and velocity, respectively. The Type-IC
model combines the features of the Type-I and -C models. The models are applied to the multi-
phase flows in the homogeneous decaying turbulence and turbulent round jet. Particle dispersion,
dispersion coefficients, and velocity statistics are predicted and compared with experimental data.
The models accurately reproduces the experimental data sets and capture particle inertial effects
and trajectory crossing effect. A new adjustable particle parameter is introduced into the ODT
model, and sensitivity analysis is performed to facilitate parameter estimation and selection.

A novel algorithm of the two-way momentum coupling between the particle and carrier
phases is developed in the ODT multiphase model. Momentum exchange between the phases is
accounted for through particle source terms in the viscous diffusion. The source term is imple-
mented in eddy events through a new kernel transformation and an iterative procedure is required
for eddy selection. This model is applied to a particle-laden turbulent jet flow, and simulation
results are compared with experimental measurements. The effect of particle addition on the ve-
locities of the gas phase is investigated. The development of particle velocity and particle number
distribution are illustrated. The simulation results indicate that the model qualitatively captures the
turbulent modulation with the presence of difference particle classes with different solid loadings.

The model is then extended to simulate temperature evolution of the particles in a non-
isothermal hot jet, in which heat transfer between the particles and gas is considered. The flow
is bounded by a wall on the one side of the domain. The simulations are performed over a range
of particle inertia and thermal relaxation time scales and different initial particle locations. The
present study investigates the post-blast-phase mixing between the particles, the environment that
is intended to heat them up, and the ambient environment that dilutes the jet flow. The results
indicate that the model can qualitatively predict the important particle statistics in jet flame.

Keywords: One Dimensional Turbulence, Lagrangian particle transport, particle-eddy interaction
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CHAPTER 1. INTRODUCTION

1.1 Motivation of the work

In the field of fluid mechanics, turbulent multiphase flows can be used to refer to any tur-

bulent fluid flow consisting of more than one phase or component flowing simultaneously in the

mixture, having some levels of phase separation at a scale well above the molecular level. Multi-

phase flows can be classified into many different forms according to the state of the different phases

or components. Gas-particle flows, identified as gas-solid or gas-droplet flows, are considered with

the motion of suspended solid or droplet in the gas phase. The functional problems involving tur-

bulent gas-particle flows exist in a broad range of industrial applications, human body system and

natural environments that human beings live. Examples of common turbulent gas-particle flows

based upon the classifications are listed below.

Gas-solid flows:

• Pneumatic transport, dust collectors, fluidized bed mixing, solid propellant rockets, combus-

tion of pulverized coal, spray drying, spray casting

• Natural sand blasting, volcanoes, avalanches

• Biological aerosols, dust particles, smoke (finely soot particles), rain droplets, mist formation

Gas-droplet flows:

• Industrial heat exchangers, boiling water and pressurized water nuclear reactors, chemical

desalination systems, internal combustion engines, liquid propellant rockets

• Natural ocean waves

• Biological blood flow
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The above examples are intended to cover an overview of the broad range of applications of the

turbulent gas-particle fluid system. These application examples also clearly reflect the extensive

challenges that exist when such flows are constantly being dealt with.

The complex nature of particle-laden flows in contrast to single-phase flows originates be-

cause of the existence of dynamically changing interfaces, significant discontinuities of the fluid

properties and complicated flow field near the interface. When gas phase becomes turbulent, in-

teractions between the turbulent eddies and the interfacial structures and exchanges between the

phases introduce additional complexities to the flow phenomena.

A popular theme throughout the study of turbulent particle-laden flows is the requirement

to model and predict the detailed behavior of such flows and to investigate the physical insight of

the phenomena involved. Regarding the limited scaling that can be realized in laboratory models,

a reliable computational model, which should be thoroughly verified and validated through the

availability of experimental data, is essential for the confident extrapolation to the scale of the

actual multi-phase flow system.

One famous traditional approach to model particle transport is the Reynolds-averaged

Navier-Stokes (RANS) equations. It is known that the accurate prediction of particle transport

is strongly dependent on a realistic description of the time-dependent velocity field encountered

along particle trajectories. But the RANS approach can not accurately predict the properties of

the Eulerian turbulence field [6]. On the basis of the current availability of modern computational

power and speed, direct numerical simulation (DNS) is becoming more possible to solve directly

the transport equations governing the conservation of mass, momentum and energy for each of the

phases and to compute every detail of the multi-phase flow, the motion of all the fluid around every

particle and droplet, and the position of every interface. However, such comprehensive treatment is

still restricted to low Reynolds number and a limited amount of particles and droplets. An alterna-

tive that is not restricted in the range of Reynolds number as DNS is large eddy simulation (LES).

Although the LES approach has higher computational cost than RANS, it has the advantage that

allows a more accurate and natural accounting of particle-turbulence interactions at an affordable

numerical cost. The prediction of the small-scale velocity field in the LES computation depends

on the statistical performance of a subgrid-scale (SGS) model that sometimes is undesirable for

the particles of small inertial relaxation time scale.
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Therefore, during the past four decades, scientists have explored for numerical methods of

turbulent multiphase flow that can meet the following requirements of (1) simplicity and minimal

empiricism; (2) high computational efficiency and low cost; (3) accurate description of relevant

physics of interest; (4) wide range of flow applications. As a suitable alternative, one dimensional

turbulence (ODT) model has been developed as a stochastic modeling approach that captures the

full range of length and time scales, and thus the details of molecular mixing. ODT has been

proven to be a successful model of many different kinds of shear-dominated nonreacting [7–9] and

reacting flows [10–16].

This work is part of a large effort to develop a computationally efficient multiphase model

compared with the current existing numerical methods. The model is able to capture enough of

the relevant physics of turbulent multiphase flows, especially the fine scales of particle-turbulence

interactions, and also to quantitatively predict particle behavior in different flow configurations of

practical interest.

1.2 Scope of the work

This study aims at the development and validation of a computationally affordable model

to investigate the dispersive transport of the particles in turbulent multiphase flows. Of specific

focus is the detailed numerical description of particle-turbulence interactions in different flow con-

figurations. As a pioneer exploration, Schmidt [17] came up with a novel idea to incorporate

particle-turbulence interaction into the existing ODT single-phase model. He validated the ap-

proach in the nonreacting turbulent channel flow that is coupled with a representation of particles

by a drag law with one-way coupling (only the fluid can affect the particles). Although some fun-

damental physics behind ODT multiphase model is still worthy of further exploration, his work

gives the author the enlightenment to further develop the comprehensive ODT multiphase models

in this dissertation.

The contribution of this work is summarized as follows:

• An instantaneous particle-turbulence interaction approach originally proposed by John Schmidt

[17] is implemented in the current ODT turbulence model and validated in the simulation of
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particle dispersion in homogeneous decaying turbulence configuration. The fundamental

understanding of ODT multiphase physics is given in detail.

• Two new particle-turbulence interaction approaches are developed and implemented in this

work. One applies a continuous interaction mechanism, and the other combines the instanta-

neous and continuous features of particle-turbulence interaction. These two are validated in

the simulation of particle dispersion in a turbulent jet flow. The distinction between different

ODT multiphase approaches are demonstrated for future extension to other flow configura-

tions.

• A mechanism of relative motion between the particle and turbulent eddies is built into con-

tinuous interaction approach. This allows more accurate predictions of particle behavior.

• The two-way momentum coupling mechanism is proposed and implemented in this work

and validated in a turbulent particle-laden jet flow. This allows momentum transfer between

the gas and particles in the ODT multiphase model.

• The ODT study of particle temperature in a hot ethylene jet flow is performed in wall-

bounded configuration. The work in this particular configuration reveals much relevant

physics of interest that is not studied elsewhere and has practical attractions for biomedi-

cal field.

1.3 Outline of the dissertation

The dissertation consists of the formulation and validation of new variants of the ODT

multiphase model that are applied to different sets of turbulent particle-gas flow problems.

Chapter 2 provides the background information on common turbulence models, the cate-

gory of particle-turbulence interaction, and particle behavior in different turbulent flow of interest.

Chapter 3 presents a comprehensive introduction of three ODT multiphase interaction

models and illustrates the comparisons between them. That is, (1) instantaneous Type-I model,

(2) continuous Type-C model, and (3) combined Type-IC model. Two-way momentum coupling

mechanism and multiphase heat transfer are also presented.
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Chapter 4 investigates particle dispersion using Type-I model in homogeneous decaying

turbulence configurations. The model is validated by the comparison to experimental data of par-

ticle dispersion for a range of intrinsic particle time scales and body forces. Particle dispersion,

velocity, and integral time scale results are presented. The work presented in this chapter has been

published in Physics of Fluid [5].

Chapter 5 compares the simulations of particle-gas interactions using three models (Type-

I, -C, and -IC) in the jet flow configuration. The flow statistics of the above models are validated

by comparison to experimental measurements. The differences between the particle motions pre-

dicted by different models are discussed. The work presented in this chapter has been submitted to

Physics of Fluid for review.

Chapter 6 applies two-way momentum coupling mechanism in Type-I model for a tempo-

rally developing turbulent particle-laden planar jet and compares the model prediction with exper-

imental measurements. The turbulence modulation by particle addition is investigated, in which

gas mean velocities, gas velocity variance modulated by particles, particle velocity, and particle

distributions are presented. The study presented in this chapter is being prepared for publication.

Chapter 7 predicts particle temperature histories in the nonisothermal ethylene jet flow.

The particle positions, particle temperature, and gas environment temperature felt by the particles

are predicted by Type-I model for the particles of varying inertia and thermal relaxation time scale.

Chapter 8 presents the conclusions drawn from the present work as well as some recom-

mendations proposed for future work to be done on the subject of ODT multiphase flows.
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CHAPTER 2. BACKGROUND

This chapter first gives an overview to the most common turbulence models. Turbulent

particle-laden flows of interest are then described, followed by the introduction of the ODT model

adopted in the present work.

2.1 Turbulent models

The most important advances of computational techniques to investigate turbulence ap-

peared in the 1970s and 80s. The first of these was large-eddy simulation (LES) as proposed by

Deardorff [18] in 1970. This was rapidly followed by the first direct numerical simulation (DNS)

by Orszag and Patterson [19] in 1972, and the introduction of a wide range of Reynolds-averaged

Navier-Stokes (RANS) approaches beginning with Launder et al. [20, 21].

DNS [22] requires no modeling, and simply exploits numerical analysis to construct an ef-

ficient implementation of an appropriate Navier-Stokes solution procedure. No physical assump-

tions need be made beyond those already embodied in the Navier-Stokes equations themselves.

However, because of the extremely wide range of length and time scales, reflected in the magni-

tude of the Reynolds number (Re), it is not yet possible to perform such calculations if Re is at

all large. The total computational cost scales as Re3 for DNS calculations. It is often pointed out

that at the current rate of improvement in computing hardware, DNS is hardly acceptable from a

practical standpoint in commercial applications.

Due to high computational cost, DNS in particle-laden modeling is limited to small-scale

(low Re), canonical turbulent flows with dilute dispersed phase [23,24]. DNS is a standard numer-

ical measurement to which other turbulence models can be compared, particularly in multiphase

flows [25,26]. Because the data of those flows are too hard to get from direct measurements, or the

multi-physics effects involved are so complicated that one cannot see if the results are the measures

of certain desired phenomenon.
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RANS [27, 28] is a good alternative to DNS, even recently. The Reynolds decomposition

of U (x, t) is

U (x, t) = Ū (x)+U
0
(x, t) ,

where U (x) is the time-averaged velocity and U
0
(x, t) is the fluctuating velocity. In RANS, the

information about turbulent fluctuations is contained in the time averaged Reynolds stresses of the

form UiUj. These are obtained as an outcome of a turbulence model that links Reynolds stresses to

mean flow quantities (e.g., k� e model), or solves modeled transport equations for each Reynolds

stress component. In these models, computational cost is nearly independent of Re, and, in fact,

many of such methods work well at very high Re. However, it is difficult for RANS to model some

flows, e.g., recirculating, and near-wall flows, since there is no turbulence closure model adequate

for all the flow configurations.

Any particle-laden RANS simulations would be starting with average particle velocities

[29]. However, accurate prediction of particle transport is strongly dependent upon providing

a realistic description of the time-dependent, three dimensional velocity field encountered along

particle trajectories [30]. Thus, the deficiencies in the prediction of turbulence field will in turn

adversely impact prediction of dispersed phase transport. In order to overcome this, additional

modeling is required for RANS applications of multiphase flows to describe individual particle

behavior [4].

LES [31] involves a spatial filtering operation, a temporal filtering operation, or both. The

LES decomposition is given by

U (x, t) = eU (x, t)+U
0
(x, t) ,

eU (x, t) =
ZZ

U
⇣

r, t
0
⌘

G
⇣

x� r, t � t
0
⌘

dt
0
dr,

where G is the kernel of the filter, Ũ is termed the resolved-scale velocity, U
0
is termed the subgrid-

scale or unresolved velocity component, and r is distance difference. LES requires modeling of

part of the inertial subrange and dissipation scales. The amount of required modeling is set by

the amount of resolution that can be afforded, and the total computational cost will scale around

Re2. LES solves the large flow scales like DNS, but models the effect of the small scales with
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a subgrid-scale (SGS) model. LES is largely a research tool but was also being applied to some

industrial applications, and hence be seen as an intermediate between RANS and DNS [32].

LES is very attractive method available for particle-laden multiphase turbulent flows since

it provides the optimum means of capturing the unsteady physical features in the flows. The ac-

curacy and the reliability of LES predictions are, however, dependent on several factors such as

the accurate modeling of the SGS phase interactions and the correct representation of the ini-

tial/boundary conditions for all phases [33, 34]. The importance of the SGS closure needs to be

emphasized, because using a filtered velocity field alone to advance the particles can lead to serious

inaccuracies [35]. Meanwhile, gross errors in the prediction of the particle drag force may result

from the negligence of the SGS velocity fluctuation in LES [36].

2.2 Particle transport in turbulent flow

2.2.1 Fluid reference frame and fluid-particle interaction categories

The simulations of particle dispersion can be classified based on the type of fluid reference

frame, Eulerian or Lagrangian [37]. In Eulerian models, the reference frame is stationary, and

defined in terms of spatial location and time. These models treat the particles as a continuum

phase similar to the fluid phase, which is often popular when the particle loading is high, e.g., in

the fluidized-bed combustion systems. In the Lagrangian reference frame, individual particles are

tracked when they pass through fixed differential control volumes. The instantaneous positions of

the particles can be considered as a function of the location from where the particle originated and

the time elapsed. The Lagrangian frame is a natural way to treat particles as a discrete phase in

dilute flows.

Particle interactions and concentrations are important factors to account for in particle dis-

persion studies [17, 38, 39]. When the addition of the particles is at low volume fraction, the

assumption is made that the properties of the turbulent flow field are not modified by the presence

of the particle cloud. Such dilute particle-laden flows are governed predominantly by the surface

interaction and body forces acting on the particles. This is termed as one-way coupling. Other-

wise, problems of turbulence modification by particles arise when particles are present in large

enough concentrations such that the loss or gain of momentum and energy to the turbulence pro-
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vided by the particles is no longer negligible, that is, two-way coupling. The current study mainly

focuses on momentum transfer between the particle and gas phase in the application of two-way

coupling. A four-way coupling formulation arises when both the particle-particle and particle-fluid

interactions are included. In the sufficiently dense particle-laden flows, the collisions between the

particles significantly alter the movement of the particles in the gas phase.

2.2.2 Particle behavior in homogeneous isotropic turbulence

Turbulent flows are referred to as homogeneous and isotropic when it is assumed that (1)

statistical properties remain invariant with the change of position, which implies, for example, that

U 02 (x) = U 02 (x+ r) for any possible vector r within the domain of flow field; (2) rotation and

reflection are not important and can be neglected which implies that, U 02 =V 02 =W 02 throughout

the flow field.

In these flows, the dispersion of particles in turbulent flows has received a lot of theoretical

and experimental attention. The Lagrangian time scale of the fluid velocity seen by a particle,

te, or interaction time, is the most important parameter determining the eddy-particle interaction

time and thus the diffusivity of the particles. During the interaction, a particle may or may not

remain trapped inside an eddy for the eddy lifetime. This phenomenon is called the crossing

trajectories effect in the literature. Theoretical investigations made by Yudine [40] and Csanady

[41] demonstrated the crossing trajectories effect for particles settling under gravity and proposed

expressions for te. Hinze [42] attempted to describe particle dispersion, and assumed te to be the

same as the Lagrangian time scale of fluid tL, thus leading to the result that the diffusivity of the

particles is equal to that of fluid particles. Reeks [43] found that te may initially decrease with

increasing particle relaxation time though it eventually rises and approaches the particle relaxation

time. Squires and Eaton [44] performed DNS of particle-laden isotropic turbulence, but did not

recognize the role of te in the dispersion of the particles. Wang and Stock [45] and Pozorski and

Minier [46] noticed the importance of the deviation of te from tL and suggested approximate forms

for te. He et al. [47] and Jung et al. [48] provided te as a function of the Stokes number in their

DNS of particle-laden isotropic turbulence.

Another phenomenon of great interest is the inertia effect, that is, the reduction of root

mean square (RMS) fluctuation of particle velocities. Maxey and Riley [49] studied small spherical

10



particles subject to a Stokes drag force in a two-dimensional incompressible, steady, periodic flow

field with a single length scale, and in homogeneous turbulence generated by random Fourier

modes with a limited range of scales. Their work had shown that the inertia effect of particles

produces a bias in the particle trajectories. The particles were found to tend to accumulate along

isolated paths. This preferential accumulation has been confirmed by the results of full direct

numerical simulation developed by Squires and Eaton [44]. Fung et al. [50] studied the average

settling velocity of a small spherical particles under gravity through a Gaussian random velocity

field generated by a von Karman energy spectrum. The particles were subjected to the effects of

linear or nonlinear drag forces, inertia, and gravity. It was shown that the effect of drag nonlinearity

is a function of the particle to fluid density ratio rp/r and of the ratio of particle relaxation time to

the Kolmogorov timescale of the fluid tp/tk.

Almost all experimental studies use grids in wind tunnels that have a large mean velocity

to create nearly homogeneous isotropic turbulence conditions [2, 3]. Snyder and Lumley [2] used

ten cameras placed successively in a vertical tunnel to observe that as the particle relaxation time

increases, its diffusion timescale and consequently its diffusion coefficient decreases. Wells and

Stock [3] investigated the particle motions in a horizontal tunnel, where the body force of the

particles can be altered by an electric field. They were thus able to isolate the inertia effect and

settling velocity, which gives rise to the crossing trajectory effect. There are a few computations of

turbulent diffusion to simulate these experiments, e.g., Squires and Eaton [44], Yeh and Lei [51],

Lu [52], Pozorski and Minier [46], Lightstone and Raithby [53], Hennick and Lightstone [54],

Reynolds and Lacono [55], among others.

2.2.3 Particle behavior in turbulent jet

In a round jet, the fluid steadily flows through the nozzle of diameter d to produce a flat-

topped velocity profile. The jet from the nozzle flows into an ambient fluid. The flow is statistically

stationary and axisymmetric. Hence, statistics depends on the axial and radial coordinates x and r,

and are independent of the time and the circumferential coordinate q .

Experimental and numerical studies of particle-laden round jets have been reported in the

past. The pioneering researchers, Yuu et al. [34,56,57] performed a series of studies on gas-particle

turbulent round jets. Yuu et al. [57] conducted DNS to simulate gas and particle motions at a low
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Reynolds number (Re = 1700). Turbulence characteristics (air and particle mean velocity, turbu-

lent intensity, Reynolds stress and auto-correlation) had good agreement with their experimental

data. Their latter work investigated the effect of particles on the subgrid-scale turbulence using

LES of a round jet with Re = 104. They found that the particles reduce the subgrid-scale turbu-

lence when the particle size is smaller than the grid size. When the product of the gas-particle

relative velocity and particle concentration gradient is large, the particles increase the subgrid-

scale turbulence. Chung and Troutt [58] numerically investigated the particle dispersion in an

axisymmetric jet by the vortex method. They proposed that particle dynamics in the near field of

a round jet are controlled by large-scale structures and particle dispersion depended strongly on

the Stokes number, which is in agreement with experimental results of Longmire and Eaton [59].

Sbrizzai et al. [60] used LES to simulate a confined turbulent round jet. For particles characterized

by St < 1, they found that particle clustering occurred not only by the action of azimuthal vor-

ticity, but also the action of the streamwise vorticity field was important. Hansell et al. [61] used

the vortex dynamics method for the calculation of turbulent round jet with vaporizing particles

of varying sizes and pressure. They reported that the three-dimensional simulation did not show

significantly different behaviors of particle dispersion from the axisymmetric code under the thin

vortex assumption. They further demonstrated that the dispersion of particles simulated by the full

equation was underestimated typically by 25% by the simple approximation of only the drag force

employed in the particle equation, and the errors increased with increasing particle size.

The variations of particle properties, such as particle size and particle material density,

particle mass loading ratios, and flow parameters, can lead a turbulence modulation in different

ways [62–64]. The studies compared the turbulence intensities modulated by the particle-laden jets

with those in particle-free turbulent jets. They found that the gas turbulence intensities decrease

in the two-phase jets. The measurements of Tsuji et al. [65] demonstrated that the magnitude

of particle effects on the gas flow is less with large particles than with small particles with the

same loading ratio, and a delay in the decrease of the centerline air velocity and a reduction in

the jet width are observed. Sheen et al. [66] used polystyrene particles of different sizes and mass

loading ratios in their experiments and found that the axial gas-phase turbulence intensities of two-

phase flow are higher than those of single-phase flows in the near-fields, while they are always

lower in the far-fields. Modarress et al. [67] stated that the presence of particles reduces both the
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gas-phase fluctuating velocity and the Reynolds shear stress, and the reduction is proportional to

the particle mass loading ratio in a two-phase round jet. The physics of turbulence modulations

by particles have been investigated by the researchers [68–70]. It is thought that the reduction

of turbulent intensities in two-phase flows is mainly induced by turbulence energy transfers from

eddies to particles while the increase of turbulent intensities is mostly by infused energy from

particle wakes to background turbulence. Some other physical mechanisms, such as the dissipation

model and velocity gradient model, were also proposed by Yarin and Hetsroni [71], and Kenning

and Crowe [70], respectively. Although these physical models are able to describe the effects of

particles on the turbulence modulation, they are still not fully validated.

2.3 One dimensional turbulence model

The one-dimensional turbulence (ODT) model, developed by Kerstein [7] in 1999, simu-

lates the evolution of fluid velocity and properties along a one-dimensional line of sight through

a three-dimensional turbulent flow by completely resolving the full range of length scales and the

finest time scales along this line. ODT was developed as an outgrowth of the linear-eddy model

(LEM). In both of the models, turbulent stirring and molecular diffusion are treated separately.

Different from other common turbulent models introduced in Sec. 2.1, turbulent advection is de-

scribed by stochastic process rather than using an equation of transport evolution. In LEM, the

time and length scales of eddies are sampled randomly from a predefined eddy distribution func-

tion. There is no provision for feedback of local flow properties to the random process governing

subsequent events [7]. In contrast, the ODT model has the advantage to capture this feedback in

that the formulation of the eddy distribution function is not predetermined and can reflect the local

kinetic energy production mechanisms.

There are two different formulations of ODT. The temporal formulation manipulates the

time evolution of fluid velocities and properties on the 1-D domain with the domain being treated

as a closed system. The spatial formulation casts in a form that obeys the spatially developing flow

conservation laws. The domain in this form evolves in the streamwise direction, and each realiza-

tion of the spatial formulation can be interpreted as an instantaneous snapshot of the flow. In either

formulation of ODT, the diffusive advancement uses a Lagrangian control volume formulation in

such a way that the total mass flux is constant and the momentum is conserved in any given cell.
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The turbulent advection is incorporated through instantaneous mapping rearrangement events and

kernel transformations along the 1-D domain. The triplet mapping event imitates the rotational

folding features of the eddy in a turbulent flow field. This procedure takes a line segment, shrinks

it to a third of its original length, and places three copies of it on the original domain. The middle

copy is reversed to ensure that properties remain continuous. The kernel transformation is included

to describe the energy transfers between the velocity components.

The distinguishing features of ODT are its scope, simplicity, minimal empiricism, and

capability to incorporate complex molecular processes (variable transport properties, chemical re-

actions, etc.) without introducing additional approximations [7]. The simplified low dimensional

formulation of the ODT model makes itself computationally affordable and applies to problems

of practical interest. The ODT model implemented for this work resolves full range of length and

time scales of multiphase flows along the 1-D domain with detailed particle transport, flow modu-

lation and particle-fluid interaction. More details of the ODT model used for the current study are

given in the subsequent chapters.
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CHAPTER 3. COMPUTATIONAL METHODOLOGY AND APPROACH

One-dimensional turbulence (ODT) is a numerical method to generate realizations of stochas-

tic problems on a one-dimensional domain [7]. ODT is applied in flow configurations such as ho-

mogeneous turbulent flow, shear-driven flow (channels, jets), and buoyancy-driven flow (plumes),

etc. The one-dimensional domain is formulated in the direction of primary gradients and the gov-

erning equations of mass, momentum, energy, and species are solved in the conservation form. We

refer to the ODT-aligned direction as the y coordinate, and the streamwise direction as the x co-

ordinate. The Cartesian coordination system is used in this project, which is consistent with most

ODT applications. However, the model has been extended to cylindrical coordinate as well [13],

where the ODT line aligns in the radial direction, and the axial velocity component represents the

direction of turbulent stress. ODT has been proven to be a successful model of many different

kinds of shear-dominated nonreacting [7–9] and reacting flows [10–16]. But until now there are

only limited studies that extend ODT model to the multiphase [4,72]. In this chapter, a comprehen-

sive introduction of various ODT multiphase interaction models is presented, and the comparisons

between them are illustrated. The author hopes to establish a physically sound basis for the various

ODT multiphase implementations that allow a clear distinction in comparing different approaches

and will also provide more useful details of model implementation in future applications.

The remainder of this chapter is organized as follows: Sec. 3.1 summarizes the governing

equations solved and important modeling concepts including the triplet map transformation and

eddy selection, etc., which exist in the literature and are used in the current implementation of the

ODT model. Sec. 3.2 introduces the formulations of three different particle-turbulence interaction

models, and illustrates the differences between them. Two-way momentum coupling, as one of the

important concepts in the multiphase field, is addressed in Sec. 3.2. Sec. 3.3 presents heat transfer

between the particles and gas phase.
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3.1 Governing equations for ODT

The ODT model consists of two main mechanisms: diffusive advancement and eddy events.

The diffusive evolution on the 1D domain is governed by truncated transport equations (described

below) that omit the nonlinear advective terms, which are modeled by the eddy events. These

diffusive equations dissipate velocity fluctuations and kinetic energy, though this process is only

significant at diffusive scales, and the eddy events model the cascade of fluctuations to the dissi-

pative scales. The three-dimensional advection involves a vortex-stretching process that transfers

the fluctuations to higher wave numbers and is costly to predict. To describe the turbulent advec-

tive terms, ODT introduces the concept of the so-called “triplet map” that transfers fluctuations to

higher wave numbers during eddy events. The rate of this transfer by eddy events is determined

through a stochastic sampling of the evolving velocity field through a measure of the shear energy

that is a function of the location on the domain and the eddy length scale (wavenumber). There are

two approaches to evolve the ODT domain: (1) temporal ODT is evolved on the (y, t) plane, and

(2) spatial ODT is evolved on the (y,x) plane. Even in predicting spatially developing flows, most

ODT simulations have been conducted using temporal evolution assuming a Lagrangian evolution

of the flow domain to map results to the spatial evolution [11]. A thorough description of the ODT

model formulation used in this work is provided in [16]. The interested reader could refer to it for

details.

3.1.1 Diffusive advancement

Temporal formulation

In the Lagrangian frame of reference, choosing (t,y) as independent variables, the govern-

ing equations are derived from the Reynolds transport theorem and advanced in time along the

ODT line [16]. Since there is no mass source term, no non-convection flux and uniform properties

inside the grid control volumes in one dimension, the continuity equation is given by

d
dt

Z
rdy = 0. (3.1)
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A discretized equation applied on the grid cells for the above continuity equation is

r4y = constant, (3.2)

where the density r is calculated from an equation of state and is constant if the flow is nonreacting.

The diffusive advancement evolves scalar equations of momentum, species and energy using a

conservative finite volume method written here for a given cell:

dU
dt

=� 1
r4y

(tx,e � tx,w)+
Sp,u

r4y
, (3.3)

dV
dt

=� 1
r4y

(ty,e � ty,w)�
1
r

dP
dx

+
Sp,v

r4y
, (3.4)

dW
dt

=� 1
r4y

(tz,e � tz,w)+
Sp,w

r4y
, (3.5)

dYk

dt
=� 1

r4y
( je � jw)+ ṁ000

k , (3.6)

dh
dt

=� 1
r4y

(qe �qw)+
1
r

dP
dt

. (3.7)

In these equations, x is the streamwise direction, y is the ODT-aligned direction and z is the

spanwise direction. U , V , and W are the velocities in the streamwise, ODT-aligned, and spanwise

directions, respectively. Y is mass fraction of chemical species. h is local ethalpy. t is the viscous

stress, j is the mass diffusion flux, ṁ000
k is a reaction source term and q is the heat flux. The

subscripts e and w represent east and west faces of control volumes. P is the pressure. Sp,u, Sp,v,

and Sp,w are the gas-phase momentum source terms obtained from the particles in three directions

for two-way coupling, respectively, or are negligible when there is no turbulent modulation induced

by particles (one-way coupling). The subscript k refers to the species k. The stress tensors of three

velocity components are represented as

ti =�µ dUi

dy
, (3.8)
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where µ is dynamic viscosity and i represents the direction component. Fick’s law is used to define

the diffusion flux of the species k,

jk =�
rYkDd,k

Xk

dXk

dy
=�rDd,k

dYk

dy
�

rDd,kYk

Mw

dMw

dy
, (3.9)

where Mw is the mean molecular weight, and Dd,k and Xk are the diffusion coefficient and mole

fraction, respectively. The general vector form of heat flux due to conduction, species diffusion

flux and radiation flux is given by

q =�l dT
dx

+Â
k

hk jk +qrad, (3.10)

where l is thermal conductivity, hk is the species enthalpy, qrad is the radiative flux, and T is the

temperature.

Spatial formulation

Unlike the temporal formulation, the spatial formulation models turbulent flows that are

two-dimensional in nature. The diffusive-reactive system is advanced as if the flow were steady,

but instantaneous rearrangements occur due to the eddy events. The spatial evolution applies basic

boundary layer assumptions and is parabolic in nature, in which a marching method is used. The

constraint for continuity across the Lagrangian grid is constant mass flux rU4x= constant, unlike

constant mass r4x = constant in temporal evolution. The governing equations of momentum,

species and energy are given by

dU
dx

=� 1
rU4y

(tx,e � tx,w) , (3.11)

dV
dx

=� 1
rU4y

(ty,e � ty,w)�
1

rU
∂P
∂x

, (3.12)

dW
dx

=� 1
rU4y

(tz,e � tz,w) , (3.13)
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dYk

dx
=� 1

rU
( je � jw)+

ṁ000
k

U
, (3.14)

dh
dx

=� 1
rU4y

(qe �qw)+
1

rU
dP
dt

. (3.15)

3.1.2 Eddy events

Triplet map transformation

Turbulence is characterized by a three-dimensional vortex stretching process that is mod-

eled in ODT through a representative sequence of eddy events as introduced at the beginning of

this section. This model has two key components, the triplet-map representation of the length-scale

cascade and the model for the rate of triplet maps. Turbulent eddies are sampled randomly from

the domain as a function of the eddy location, represented by its left bound, y0, and by its length,

l, with the triplet map occurring over the region [y0,y0 + l] for the given sample. The triplet map

spatially compresses the fluid property profiles within [y0,y0 + l] by a factor of three. The original

profiles are replaced with three copies of the compressed profiles, with the middle copy spatially

inverted. This mapping is described by

f (y) = y0 +

8
>>>>>>>><

>>>>>>>>:

3(y� y0) if y0  y  y0 +1/3l,

2l �3(y� y0) if y0 +1/3l  y  y0 +2/3l,

3(y� y0)�2l if y0 +2/3l  y  y0 + l,

y� y0 otherwise.

(3.16)

where f (y) and y are the original fluid location and the post-triplet-map location, respectively. The

fluid outside [y0,y0 + l] is unaffected.

The triplet map is measure preserving and all integral properties (e.g., mass, momentum,

and energy) or moments thereof are constant during a triplet map. Specifically, the kinetic en-

ergy is conserved, which is a desirable property because eddy events physically model the inviscid

advection process. During the triplet map, kernel transformations are introduced that redistribute

energy among the velocity components [73]. The transformations are meant to model the velocity
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randomization and so-called return to isotropy effect in turbulent flows. The kernel can be consid-

ered as a wave function that adds or subtracts energy from the eddy based on the amplitude of the

wave. An eddy event maps the velocity component i as follows:

Ui (y)�!Ui ( f (y))+ ciK (y) , (3.17)

where the kernel K (y) ⌘ y � f (y) is the displacement induced by the triplet map and can be

integrated to zero over the eddy interval. ci is kernel coefficient of K (y). However, this form

merely obeys the conservation condition for the case of constant density. To ensure momentum

conservation during an eddy event with variable density, the additional kernel donated as J (y) =

|K (y)| is introduced into the formulation [9]:

Ui (y)�!Ui ( f (y))+ ciK (y)+biJ (y) , (3.18)

where bi is kernel coefficient of J (y).

Eddy selection

The procedure to sample and accept an eddy follows that described in [16]. The rate den-

sity (per location and per eddy length) for eddy occurrence at location y0 and length l is denoted

le(y0, l, t) and is dimensionally t�1
e l�2 where te is an eddy time scale given in Eq. 3.22. The

eddies are sampled from a presumed distribution

P0(y0, l) = g(y0) f (l). (3.19)

The eddy location distribution, g(y0), is taken to be uniform over the domain while the eddy size

distribution is assumed to be

f (l) = Al exp(�2l̃/l), (3.20)

where l̃ is the most probable eddy size and Al is the PDF normalization constant. The eddies are

sampled from the distributions g(y0) and f (l) in a Bernoulli trial with a sampling period of Dts, and

the eddy time scale te is computed as described below. Given this sampled eddy, the acceptance
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probability for the eddy is

Pa =
le(y0, l, t)Dts

P0(y0, l)
=

Dts
tel2 f (l)g(y0)

. (3.21)

Sampled eddies are accepted if a trial random number is less than the acceptance probability. For

sufficient statistical sampling, it is important that Dts is small enough so that Pa ⌧ 1 for all sampled

eddies, and the algorithm ensures this.

The eddy time scale te is obtained using a measure of the available energy at wavelength

l. In the present work (without buoyant or other forms of energy), te is computed using scaling

arguments to relate to the available kinetic energy, which is given by Ekin = r
�
U2

K +V 2
K +W 2

K
�
,

1
te

=C

s
2

rl2 (Ekin �ZEvp), (3.22)

where r is constant density for nonreacting cases. In the reacting flows with variable density,

additional contributions are present [9]. To obtain Ekin the velocities are integrated across the

kernel function K (y) as

UK =
1
l2

Z y0+1

y0
U( f (y))K(y)dy. (3.23)

In Eq. 3.22, Evp is included as a viscous penalty to restrict unphysically small eddies, which is

defined below,

Evp = rn/l. (3.24)

where n is kinematic viscosity of the fluid.

Beyond the basic elements of Eq. 3.23 as a measure of velocity fluctuations, the form of

Eq. 3.23 is not fixed, and other forms have been used [7]. This leads to the introduction of C,

a constant of proportionality between the kinetic energy formed from Eq. 3.23 and the eddy time

scale in Eq. 3.22, that directly scales the probability of an eddy occurring as per Eq. 3.21. Similarly,

a constant of proportionality, Z, is introduced for the viscous energy dissipation factor, Evp. C plays

an important role in the rate for the turbulent cascade, and flow evolution is sensitive to it. Z is

provided more as a numerical expedient to reduce the occurrence of sub-Kolmogorov scale eddies;

these small eddies affect transport less than the viscous evolution in Eq. 3.13-3.15. A maximum
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value of Z will exist above which there will be an unphysical buildup of fluctuations above the

Kolmogorov scale that is visible in spectra (not shown here).

Eddy events may result in the occurrence of unphysically large eddies that adversely affect

the overall mixing. There are several mechanisms of large eddy suppression that have been devel-

oped [8, 9, 11, 12]. The method favored for jet flows is an elapsed time method in which the eddy

time scale te can be compared with the simulation elapsed time t; eddy events are allowed only

when t � bte, where b is a model parameter.

3.2 Lagrangian formulation for particles

The velocity and trajectory of particles are described by a Lagrangian approach in this

study. Like the ODT treatment of the continuous fluid phase, the action of turbulent eddies is han-

dled in a special manner, referred to here as the particle-eddy interaction (PEI), as compared with

diffusive processes characterized by the standard approaches described in Sec. 3.2.1. The triplet

map is implemented as an instantaneous process, and the action of the triplet map on the particle

can be treated either as an instantaneous process or continuous process as observed in the flow evo-

lution coordinate. The motion of the particles is traced as they interact with a random succession

of turbulent eddy motions, each of which represents a Type-I (referred to as “instantaneous”) or

Type-C (referred to as “continuous”) or Type-IC (referred to as “instantaneous and continuous”)

interaction between the particle and triplet map. In the Type-I model, the PEI is represented as an

instantaneous change of the particle position and velocity in the same manner that the triplet-map

itself is an instantaneous event. In the Type-C model, the PEI occurs during the flow evolution

by mapping the equivalent triplet-map space-time influence to the flow evolution. In the Type-IC

model, the particles undergo the Type-I PEI when they are in the eddy region at the time of the

eddy occurrence, and experience the Type-C PEI if they are initially outside the eddy, but move

into the eddy region during the flow evolution. Mean dispersive transport properties of particles

are obtained by averaging over a statistically significant number of particle trajectories. Schmidt

proposed several particle models that are similar in nature to the ones here and implemented one

(Type-I) to study particle behavior in a different context [4, 26]. A version of the Type-C model

was used by Punati [72]. In this section, we summarize the implementation of the models, and

more importantly, discuss and compare different types of PEI.
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A particle-eddy interaction occurs when both the particle and the triplet map occupy the

same space-time. To predict the interaction, a finite temporal interval and spatially cubic region,

consistent with turbulence isotropy, is assumed for each eddy based on the eddy time and length

scale, te and l. This spatial-temporal region is referred to as the eddy “box”. Within the eddy box,

the particle evolves in the x, y and z dimensions as described in the following subsection, and the

PEI ends when the particle leaves the idealized eddy box or when the eddy lifetime has passed.

The eddy lifetime,

te = bpte (y, l; t) , (3.25)

is related to the eddy time scale, te(y, l; t), which represents the rate of eddy occurrence, but these

quantities should not be expected to be equal; the proportionality between these times is repre-

sented by the parameter bp.

In many flows, the particles typically leave the box at the end of the eddy lifetime, te, but if

there is significant relative motion between particles and eddies, the particles will depart spatially.

This latter spatial crossing of the eddy boundary is referred to in the literature as the crossing

trajectory effect [41]. This use of an eddy length and lifetime to predict the eddy influence on the

particles is common to the stochastic approaches. In the ODT model, the fluid evolution results in

a full spectrum of eddy scales as opposed to only predicting integral scale eddies. The selection of

the eddy lifetime in the ODT formulation is equivalent to the selection of te, and a proportionality

appears there between the integral turbulent time scale evaluated from, for example, the turbulent

kinetic energy and its dissipation rate. In approaches we will refer to as discontinuous random

walk an eddy velocity fluctuation is selected to act for an eddy lifetime [56, 74, 75]. Another

class of models referred to as continuous random walk approaches sampled fluctuating velocity

increments [30, 76, 77].

3.2.1 Governing equations

The particle trajectory can be determined by solving its equation of motion. The full ex-

pression for the motion of a spherical particle that accounts for all the types of forces is given

23



below [1, 37],

mp
Up,i

dt
= 3pµdp f (Ug,i �Up,i)| {z }

steady-state drag force

+ mpgi|{z}
body force-gravity

+KBd2
p
p

prµ
Z t

t0

d
dt (Ug,i �Up,i)p

t � t 0
dt 0

| {z }
Bassett force

+Kmrp
p
6

d3
p

d
dt

(Ug,i �Up,i)
| {z }

virtual mass force

+
p
8

rd3
pwpei jkn1, j

�
Ug,k �Up,k

�

| {z }
Magnus force

+1.61
p

µrd2
pgi jk

�
Ug, j �Up, j

�
n2,k
p

Ug,i| {z }
Saffman force

�r p
6

d3
pgi

| {z }
buoyancy

,

(3.26)

where mp, rp, dp, wp and g are the mass, density, diameter, angular velocity and gravitational

acceleration of the particle, respectively. Ug, µ and r are the velocity, viscosity and density of

the fluid, respectively. The subscripts i, j, and k represent the scalar components in the x, y, and

z directions. n1, j is a unit vector in the j direction of the particle angular momentum vector for

Magnus force. n2,k is a unit vector in the direction of the gradient of gas phase in the k direction

component. The third-order tensors ei jk and gi jk are defined as,

ei jk ⌘

8
>>>>><

>>>>>:

1 for i jk = 123, 231, or 312

�1 for i jk = 132, 213, or 321

0 otherwise

(3.27)

and

gi jk ⌘

8
><

>:

1 for i jk = 123, 231, 312, ... (non-repeated indices)

0 for i jk = 121, 322, 221, ... (repeated indices).
(3.28)
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Table 3.1: Contribution of different forces in the equation of particle motion (Eq. 3.26) [1].

Force Relative contribution
Steady state drag force 0.93

Body force-gravity 0.05
Bassett force 0.001

Virtual mass force 0.01
Magnus force < 0.0001
Saffman force < 0.0001

Buoyancy 0.001

Table 3.1 compares the inertial contribution of different forces in Eq. 3.26 [1]. The steady-

state drag force due to viscous drag contributes to over 90% of the inertial force, which is linear

with the relative velocity between the gas phase and particle. Particle gravity has the second largest

contribution to the inertial force. The Bassett force accounts for unsteady drag force due to particle

acceleration with respect to the fluid that involves an empirical constant KB of the order 6. It only

contributes about 0.1% of total inertial force and can be neglected as the flow approaches steady

state. The virtual mass force results from the difference in the acceleration between the fluid and the

particle and has an overall contribution of less than 1%. The Magnus force results when a rotating

particle is subjected to a nonrotating fluid, and can be ignored as it contributes less than 0.1% of the

total inertial force. The Saffman force is a lift force of particles caused by the velocity gradient and

is entirely negligible for most applications because it has an estimated 10�6% contribution to the

total inertial force. The buoyancy is not considered in this work because the ratio of the material

density of particle to fluid is high: 200-2000. The fluid is a dilute two-phase flow here so that the

interaction between particles is neglected.

Under the above conditions, the particle momentum equation can be greatly simplified in

which all other forces are negligible other than the drag force and the gravity. In the Lagrangian

framework, the simplified momentum equation of a single spherical particle can be written in the

form of
dUp,i

dt
=�

Up,i �Ug,i

tp
f +gi, (3.29)
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The response time tp of a particle with mass mp and density rp in the fluid of viscosity µ is based

on Stokes flow, given by

tp =
mpCc

3pdpµ
. (3.30)

Clift et al. [78] suggested that for particle slip-velocity Reynolds number Rep < 200, which is true

for most practical dilute flow systems, the nonlinear correction factor f needs to be added,

f = 1+0.15Re0.687
p , (3.31)

where Rep = r
���
�!
Vp �

�!
Vg

���dp/µ . Also the Cunningham slip factor Cc with mean free path of fluid

lg is

Cc = 1+
lg

rp


1.257+0.4exp

✓
�1.1

rp

lg

◆�
. (3.32)

In the two-way coupled implementation, the momentum coupling term of the fluid evolu-

tion introduced by the particles for a given i component is defined as

Sp,i =�Â
n

mp,nNp
dUp,n,i

dt
=�Â

n
mp,nNp

✓
Ugi �Up,n,i

tp,n
fn +gi

◆
, (3.33)

where the subscript n represents the particle n that introduces momentum change of gas phase.

To decrease computational cost and make the simulation efficient, a computational-effect particle

representation is applied in the simulations with high particle loading in which two-way coupling

is included. Each particle in these ODT simulations is a pseudo particle that is used to represent

certain number of “real” particles with identical properties. That is, each representative particle

stands for Np “real” particles. Np has the unit of #
m2 in the one dimensional domain.

There are two important limits of particle inertia considered in the two-phase flow model.

Small particles with vanishing Stokes number (zero tp) are termed tracer particles. Tracer particles

always follow the fluid around them in the process of both diffusion and eddy events, and, therefore,

their velocities in the x, y and z directions are equal to fluid velocities. On the contrary, large

particles with infinite Stokes number (huge tp) are termed ballistic particles, and the fluid does

not influence them. Particles between these limits are termed inertial particles. Figure 3.1 shows a

schematic of the trajectories of tracer and ballistic particles during eddy events.
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Figure 3.1: Trajectories of a tracer particle (left) and a ballistic particle (right) in the y direction
(ODT-aligned direction) evolve with real time; dashed lines represent the particle trajectories;
solid vertical lines represent eddy events; the small domain between two small horizontal lines at
the occurrence of eddy events represents the location of fluid surrounding the particle. (Adapted
from John Schmidt [4]).

3.2.2 Type-I particle-eddy interaction

The interaction between a particle and an eddy event is defined as both the particle and

the triplet map occupying the same space-time. It is noted that the particle-eddy interaction is

instantaneous in real time or advancement time t, which is referred to as Type-I particle-eddy

interaction. However, to capture the interaction, a finite temporal interval and cubic spatial region

of each eddy is assumed based on its own time and length scale. The interaction between particles

and an eddy evolves in three directions governed by the x, y and z components of the Stokes’ law.

The interaction has the same length scale in all three directions, consistent with turbulence isotropy.

The particle-eddy interaction ends when the particle leaves the idealized eddy or when the eddy

lifetime has passed, whichever comes first. A new temporal coordinate is needed which is called

the interaction time coordinate, q , which describes how long the particle interacts with the eddy.

When qixn > te, the interaction ceases even if the particles are still in the eddy box, where qixn is

interaction time between the particles and eddy. When qixn  te, the particles exit the eddy box by

reaching the boundaries of the box. Simply speaking, the particle-eddy interaction is instantaneous
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Figure 3.2: Schematic diagram of the particle-eddy interactions in the interaction and real time co-
ordinates. The figure also illustrates the need to treat the so-called double counting effect. Dashed
lines represent the trajectories of ballistic particle; rectangular box and vertical line represent eddy
events; small domain between two small horizontal lines at the occurrence of eddy event represents
the location of surrounding fluid of the particle. (Adapted from John Schmidt [4].)

in real time coordinate t while it exists for finite time in interaction time coordinate q . Figure 3.2

shows the eddy effect in the interaction time coordinate (left) and real time coordinate (right) in

the y direction. Eddy velocities in the x, y and z directions are defined to describe the drag force

between the particle and the eddy and to obtain new positions and velocities of particles after the

interaction,

Ue =Ug, (3.34)

Ve =
4YT M

te
, (3.35)

We =Wg. (3.36)

Eddy velocities Ue and We are the local fluid velocities at PEI location in the x and z directions,

respectively. The eddy velocity Ve in the y direction is the turnover velocity of a fluid parcel

containing the particles during the triplet map. 4YT M is the displacement of a notional Lagrangian

fluid particle by the triplet map at the particle location.
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As shown in Fig. 3.3 of the triplet mapping operation, there are three distinct displacements

of a given fluid element that correspond to its three subdivisions. Unlike the fluid elements, the

particles cannot be subdivided, which requires the determination of which of three distinct fluid

displacements to use in Eq. 3.35. There are two distinct ways to make this determination. One is

to use the discrete implementation of the triplet map to assign a unique displacement of the fluid

that contains the particles. A disadvantage of this approach is that the first and last fluid cells of the

eddy subdivisions are not moved that make 4YT M = 0 in Eq. 3.35. Neglecting small displacement

near eddy endpoints has a disproportionate impact near walls, where these small displacements can

be the dominant mechanism [17]. This undesired affect could be minimized by using high spatial

resolution, but that significantly increases computational costs.

Another more cost-effective approach is a random selection procedure. In the infinitely

high-resolution case, all the flow properties including particle distribution are statistically uniform

at the fine scale. Any location class of particles is equally distributed among the eddy fluid cells

that correspond to three distinct field subdivisions of given fluid element. This indicates that a

given particle can be statistically localized to any of the three pre-mapped subdivisions with equal

probabilities. Therefore, a random selection of one of the three fluid parcels for the particle envi-

ronment is used in this work. The procedure is illustrated in Fig. 3.3 by the open and filled circles

that denote the notional Lagrangian fluid elements. The notional fluid elements are positioned on

the triplet map on the region of the discretized ODT domain. The letters a, b, and c represent the

values of fluid profiles in the given cells and serve to identify the cells. After the triplet map, the

original profile (a,b,c) becomes (a,b,c;c,b,a;a,b,c). The original scalar profile is compressed

spatially by a factor of three, and a copy is placed on the first and last third of the eddy domain,

whereas the profile is spatially inverted for the middle third. The notional Lagrangian fluid element

in the third, second, or first third subdivision of the cell will be mapped to a random one of the

three post-mapped locations of the same fluid property. This is shown in the figure as the open

circle in the cell b, and is moved to the cell b1 (though it could have been cell b2 or b3), whereas

the filled circle is in the cell c, and is mapped to the cell c2 (though it could have been cell c1 or

c3).
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Figure 3.3: Triplet map implemented on the gas phase; jagged lines indicate eddy edges; solid
lines are cell boundaries; dash lines are the 1/3 and 2/3 fraction location of the cell before the
mapping.

Particle-eddy interaction in line direction

The y-direction (or ODT-aligned direction) drag law of particles in the interaction time

coordinate q is
dVp

dq
=�

(Vp �Ve)

tp
f +gy. (3.37)

Notice that eddy events are instantaneous in real time coordinate t. Therefore, the equation of

particle motion in t during the diffusive evolution of the flow is

dVp

dt
=�

Vp

tp
f +gy, (3.38)

The boundary, ye, of the eddy box in the y direction is

y0  ye  y0 + l. (3.39)

Here, l is characteristic length of the eddy; and subscript 0 denotes the initial position of the

particles.

Schmidt [4] found that since the particle transport is implemented instantaneously, but the

momentum equation of particles is integrated for the interaction time, the concurrent diffusive ad-

vancement would result in a double integration effect. To elaborate this effect, consider a particle

that has infinitely large inertia. The particle will not be affected by the eddy. However, as Fig. 3.2
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Figure 3.4: New position and velocity of the particle under the coordinate of interaction time (left)
and real time (right) after the particle-eddy interaction. (Adapted from John Schmidt [4].)

shows, the double integration effect will produce the shift of the particle velocity and position,

which violates physical behavior. To avoid this, the particle velocity V new
p and position ynew

p re-

sulting from the particle-eddy interaction are computed by taking the difference of the integration

solution of the momentum equation with and without the eddy velocity (Fig. 3.4). That is,

V new
p =4Vp =V i

p (qixn)�V n
p (qixn) , (3.40)

ynew
p = yold

p +4yp = yold
p + yi

p (qixn)� yn
p (qixn) , (3.41)

where superscript i and n indicate with and without the effect of the eddy, respectively and qixn is

interaction time.

Particle-eddy interactions in offline directions

The particle drag law(s) in the streamwise and spanwise directions are

dUp

dq
=�

(Up �Ue)

tp
f +gx, (3.42)
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dWp

dq
=�

(Wp �We)

tp
f +gz. (3.43)

Here, the boundaries of the eddy box in the x and z direction are given by:

x0 +Ueq � l
2
 xe  x0 +Ueq +

l
2
, (3.44)

z0 +Weq � l
2
 we  w0 +Weq +

l
2
, (3.45)

where x0 and z0 are the initial positions of particles at the beginning of PEI (0 in the current

implementation).

3.2.3 Type-C particle-eddy interaction

The Type-I PEI model described above leads to an instantaneous displacement and velocity

change of the particles at the moment of the occurrence of the triplet map. The Type-C particle-

eddy interaction model differs from the Type-I model in that the PEI occurs continuously during

the continuous diffusive process. While the eddies occur instantaneously, the effect of the eddies

on the particles is implemented over a finite duration during the diffusive advancement. As in the

Type-I interaction, each eddy is modeled with a cubical eddy box that exists spatially over the

domain [y0,y0+ l] and temporally over the eddy lifetime te. Unlike the Type-I eddy, the interaction

is not implemented instantaneously, but rather the eddy velocity is mapped to a spatial-temporal

eddy box that starts at and continues after the eddy event. Each eddy box is advected in the off-line

directions with a velocity equal to the average fluid velocity in the box at the occurrence time of

the eddy. The crossing-trajectory effect is captured as the particles move relative to the eddy.

The line-directed eddy velocity is taken as ±(2l/
p

27)/(bpte) based on the root mean

square displacement of fluid particles in an eddy due to a triplet map [9], and the sign is random-

ized. In the eddy space-time map, it often happens that eddy boxes will overlap. In this case, the

line-directed velocity component for a given particle consists of the sum of velocities for each eddy

box in which the particle is located. The off-line fluid velocities are taken as the local gas velocity

on the line as before.

A significant drawback to the Type-C interaction is that it does not obey the tracer-particle

limit. The fluid is mapped instantaneously to new locations during an eddy event, but the particles
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respond to this fluid motion over a finite time during the diffusive advancement. This may not be

statistically important in particle dispersion studies, but in applications such as combustion, where

particle temperature-history effects are important, the correct tracer-limiting behavior is important.

Another potentially important difference is an apparent time shift. The result of an eddy triplet

map is observed at the time of the triplet map in the Type-I eddies while there is a delay of time

bpte for the same net effect to be observed with the Type-C eddies. The two models are compared

below.

3.2.4 Instantaneous and continuous particle-eddy interaction

In this section, the fundamental difference between the Type-I and Type-C particle interac-

tion implemented in this study is discussed. In a Type-I interaction, the particle has an instanta-

neous displacement in ODT-aligned direction when it interacts with an eddy. That is, the particle

goes through discontinuous displacement due to the eddy interaction, and then the interaction will

expire immediately because eddy event implementation is instantaneous. It turns out that each

particle can interact with only one eddy during every Type-I interaction. In contrast to the Type-I

interactions, there is no instantaneous displacement of particle motion in the Type-C interaction.

In the Type-I interaction, although an eddy event is still instantaneous, the eddy effect on particles

is allowed to exist in interaction time coordinate for the eddy duration. In this sense, the Type-C

interaction results in a “delay” in the particle dispersion as Fig. 3.5 shows. In the Type-C interac-

tion, the particle has continuous interactions with eddies no matter when and where it enters the

same space and time region as the eddy has. It is quite likely that one particle can feel the effects

of multiple eddies simultaneously. Implementation of the Type-C interactions in ODT requires

keeping track of the positions of all eddies from the time each eddy is born until that individual

eddy’s duration has expired. In the Type-I PEI model, the particles are less likely to interact with

the eddy event when the line velocity becomes larger. Assume that the velocity component in the

line direction reaches the infinite limit; there is no way that the particle has a chance to enter the

eddy because particle trajectories and the triplet maps are parallel lines in the space-time plane

y� t. This is not a problem for many typical flows in which the particles move with similar or

smaller velocities than the fluid. In contrast, the Type-C PEI model “extends” the eddies in the real

time coordinate and thus allows the particles to interact with eddies when they occupy the same
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Figure 3.5: Type-I vs. Type-C particle-eddy interaction. Shadow boxes represent eddy effect over
spatial domain [y0,y0+L] and temporal period bpte; single solid lines represent particle trajectory;
dash line represents particle “interaction” trajectory due to particle velocity history in the Type-I
interaction [5].

spatial-temporal coordinate. The Type-C interaction is advantageous for cases in which particles

move very quickly in the line direction. Examples of such flow might include shock-driven turbu-

lence or buoyancy dominated flows where particles may move in a line direction corresponding to

strong density gradients driving the mixing process. The particles are able to interact with an eddy

in several different ways:

1. The particles could enter the eddy box in line direction at the time the eddy is born;

2. The particles could enter the eddy box through the offline edges;

3. If the eddy is still active, the particle could re-enter the eddy through all the edges of the box.

In the implementation of the Type-C interactions, a new scheme is proposed to allow eddy boxes

to move in the x, y, and z directions that is similar to the idea of the Type-I interaction in this sense.

That is, only the relative motion of particle and eddy box in all directions is recorded until either

the particle crosses out of the box or eddy lifetime ends. This is very important for the Type-C

interaction to accurately capture the effect of crossing trajectories.
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The box velocity in the x (and z) direction has been described in the Type-I interaction

as evolving at the local fluid velocity while it was described as the bulk (eddy-averaged) velocity

for the Type-C eddies. Schmidt used the latter for all simulations [4, 25, 26]. While there is some

appeal in using an eddy-average velocity, there are inconsistencies that arise in certain cases. These

are most readily observed in the case of tracer particles. Particles that exist in fluid elements with

velocities differing from the eddy-average velocity can cross out of the eddy even though they

remain associated with fluid elements. This results in a shorter eddy interaction time and less

dispersion than that of the actual fluid elements. Naturally, this breaks the coincidence of fluid and

tracer particles in the Type-I interactions. This early crossing effect is severe for tracer particles

because we find that the parameter bp is relatively small leading to significantly reduced tracer

dispersion when the eddy-average box velocity is used. It is possible to alter model coefficients

to recover the appropriate particle dispersion, but differences will remain between the fluid and

tracer evolution, and we find that the dependence of the dispersion on the Stokes number (or

particle Froude number) is not correct. For the Type-C eddies, the particles do not match the tracer

limit and the sensitivity to the local versus eddy-averaged velocity is less significant. Further, the

application of the local velocity is more complicated for the Type-C eddies since it evolves in time.

For these reasons, the simpler eddy-averaged velocity is employed for the Type-C interactions.

3.2.5 Type-IC particle-eddy interaction

In order to overcome the violation of tracer limit of the Type-C model, another alternative

interaction model is introduced here, which is referred to as Type-IC particle-eddy interaction.

Similarly, in this case, the eddy is allowed to exist in real time for the duration of the eddy lifetime.

However, any particle that enters and interact with the eddy in an instantaneous Type-I way and

is not allowed to interact with the same eddy in a continuous Type-C way even if the particle

leaves the eddy interaction box and comes back into the box by one of the sides of eddy box.

This is because the Type-I interaction already takes into account the entire lifetime of the eddy.

Conversely a particle which first enters an eddy interaction box from one of the sides may not

undergo a Type-I interaction with the eddy, therefore is able to interact with that eddy in a Type-C

manner as long as the particle is in the interaction box and may interact with that same eddy as

many times as it re-enters the box. It is worth noting that the Type-IC interaction model is able to
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Figure 3.6: Type-IC particle-eddy interaction in two different fluid contexts.

match the tracer particle limit because in order to have a Type-C interaction a particle must enter

an eddy interaction box from either of the sides, and a tracer or gas particle can not do so.

Figure 3.6 shows two possible particle trajectories in the Type-IC particle-eddy interaction

context. In Fig. 3.6 (left) the particle first interacts with eddy 1 and 2 sequentially in the Type-I

way (I1 and I2). Then it enters eddy 3 through the bottom side of the eddy box and experiences

a Type-C interaction (C3). Although the particle reenters eddy 1 twice and eddy 2 once, it does

not undergo any Type-C interaction with them because the Type-I interaction with eddy 1 and

eddy 2 have already been taken into account at the beginning. In Fig. 3.6 (right) the particle has a

Type-C interaction with eddy 1 (C1) and changes the direction to interact with eddy 2 in a Type-I

interaction (I2). Then it re-enter eddy 3 to experience Type-C interactions twice (C3 and C5) due

to direction change by the Type-C interaction with eddy 3 (C4).

3.2.6 Two-way momentum coupling

As introduced in Sec. 2.2.1, the evolution of the particle phase in a turbulent gas phase

is commonly classified into three categories, one-way coupling, two-way coupling, and four-way
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coupling. In the current work, the two-way momentum coupling is implemented in that the volume

fraction of the dispersed phase is high enough that the mean flow of the particles can induce

turbulent motion in the fluid. This section gives detailed information of the implementation of

two-way momentum coupling in diffusive advancement and turbulent advective mixing.

Diffusive advancement

The diffusive advancement of the fluid evolves scalar equations of momentum using a con-

servative finite volume method shown in Eq. 3.3-3.5, where Sp,u, Sp,v and Sp,w are particle source

terms for the gas phase in the streamwise, ODT-aligned, and spanwise direction, respectively, as

defined in Eq. 3.33. If the particles have the Type-C or Type-IC interactions with the eddies, Ugi

are gas velocities due to the cumulative effect of active eddies; if the interactions are Type-I, Ugi

are local instantaneous gas velocities.

Turbulent mixing (constant density)

In this section, we describe the implementation needed for the stochastic eddy events in

constant-density flows with two-way momentum coupling between the particles and the fluid

phase. In the single phase flows with constant density, one kernel function is added to the post

triplet-map velocities to allow for energy redistributions among velocity components as shown in

Eq. 3.17. Here with the momentum interactions between the phases, an additional kernel function

is required to account for momentum transfer between the phases. More details are given below.

The triplet map itself is measure preserving. To ensure the conservation of kinetic energy

and momentum, the triplet map can be augmented by the kernel transformation introduced in

Sec. 3.1.2 when applied to the momentum field. For single phase flow with constant density,

only one kernel function is enough to enforce the conservation of momentum and kinetic energy

(Eq. 3.17). However, in two-way coupling implementation, only one kernel function cannot keep

the momentum conserved because
R

rK(y)dy = 0 and
R

r(Vi �V
0
i )dy 6= 0 due to particle source

term. Thus, the triplet map operation of velocity components is shown as below,

Vi (y)!V
0
i ( f (y))+ ciK (y)+biJ (y) , (3.46)
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where K(y) is the K kernel function as in the one-way coupling, and J(y) is the J kernel function

defined as |K(y)|. As common notations denote, primed quantities represent ones following the

triplet map and double primed quantities represent ones following the triplet map and kernel func-

tions. The variables y and f (y) are dropped for the simplicity in the following derivation. For

momentum conservation,
R

rVidy =
R

rV
00
i dy, thereby

R
rVidy =

R
(rV

0
i +rcK +rbJ)dy. Given

that
R

rK = 0,

bi =

R
r(Vi �V

0
i )dy

R
rJdy

=
4Mpi

r
R

Jdy
, (3.47)

where 4Mpi is the summation of all the momentum sources of the particles in given direction i,

4Mpi = Âmpk(V new
ipk �V old

ipk ). (3.48)

mpk is the mass of the kth particle that has interaction with the eddy, and V old
ipk and V new

ipk are the

velocity of the kth particle before and after the interaction with the eddy, respectively.

The constant ci is used to redistribute the energy between the three directions. When the

flow in one direction loses energy, two other directions will gain the energy from this loss. Once

bi is obtained from Eq. 3.47, the constant ci is computed in such a way that the flow in given

direction i distributes the maximum energy to two other directions. The change of eddy energy in

given direction i is

4Ei =
1
2

Z
r
⇣

V
0
i + ciK +biJ

⌘2
�V 2

i

�
dy (3.49)

=
1
2

r
Z h

K2c2
i +
⇣

2biKJ+2V
0
i K
⌘

ci +
⇣

b2
i J2 +2V

0
i biJ+V

02
i �V 2

i

⌘i
dy (3.50)

=
1
2

rl3KKc2
i +
�
rbil3KJ +rl2ViK

�
ci +(

1
2

rb2
i l3JJ +rbil2ViJ +4ET M) (3.51)

=P0 ⇤ c2
i +P1,i ⇤ ci +P2,i, (3.52)

with the new variables defined below,

KJ =
1
l3

Z
KJdy, (3.53)

KK =
1
l3

Z
K2dy =

1
l3

Z
J2dy = JJ, (3.54)
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ViK =
1
l2

Z
V

0
i Kdy, (3.55)

ViJ =
1
l2

Z
V

0
i Jdy, (3.56)

4ET M =
1
2

r
Z ⇣

V
02
i �V 2

i

⌘
dy, (3.57)

P0 =
1
2

rl3KK, (3.58)

P1,i = rbil3KJ +rl2ViK, (3.59)

P2,i =
1
2

rb2
i l3JJ +rbil2ViJ +V

02
i �V 2

i . (3.60)

The maximum removable energy from the given component i, Qi, is the minimum value of 4Ei

that has the quadratic form in ci. Eq. 3.52 is differentiated with respect to ci, set to zero, solved for

eci at the parabola minimum, and then eci is inserted into Eq. 3.52 to give

Qi =�
 

P2,i �
P2

1,i

4P0

!
. (3.61)

So the change of eddy energy in given direction i can be calculated from the summation of energy

loss from the direction i, Qi, and energy gain from the directions j and k, Q j and Qk,

4Ei =�aQi +
a
2

Q j +
a
2

Qk, (3.62)

where a is the coefficient of energy distribution. Then the value of 4Ei is inserted into Eq. 3.52

to compute ci, that is,

ci =
1

2P0
(�P1,i ±

q
P2

1,i �4P0 ⇤ (P2,i �4Ei)). (3.63)

Turbulent mixing (variable density)

For the reacting flow, the density of the flow is no longer constant. Here the derivation is

made by analogy to the case of constant density. Two kernel functions are added to post-triplet-map

39



velocity components that are defined in the same way as in the constant density case,

Vi (y)!V
0
i ( f (y))+ ciK (y)+biJ (y) . (3.64)

Firstly, the equations of b coefficients are derived from momentum conservation. Given that
R

rK 6= 0 due to variable density, the integral form of momentum conservation is,

Z
rVidy =

Z
(rV

0
i +rciK +rbiJ)dy, (3.65)

and then rearranged with the insertion of momentum source term of particles, 4Mpi, defined in

Eq. 3.48 to give

bi =

R
r(Vi �V

0
i )dy�

R
cirKdy

R
rJdy

=
4Mpi � cirK

rJ
, (3.66)

where

rK =
1
l2

Z
rKdy, (3.67)

rJ =
1
l2

Z
rJdy. (3.68)

Equation 3.66 is inserted into the following expression of the change of eddy energy in given

direction i,

4Ei =
1
2

Z
r
⇣

V
0
i + ciK +biJ

⌘2
�V 2

i

�
dy (3.69)

=c2
i ⇤ (

1
2

l3rKK +
1
2

l3 r2
K

r2
J

rJJ � l3 rK

rJ
rKJ)+ ci ⇤ (�l34MpirKrJJ

r2
J

+ l
4MpirKJ

rJ
+VirK � l2 rK

rJ
VirJ)+(

1
2l

rJJ
4M2

pi

r2
J

+ l
4Mpi

rJ
VirJ +4ET M) (3.70)

=P0 ⇤ c2
i +P1,i ⇤ ci +P2,i, (3.71)

where the new variables are defined as

rKK =
1
l3

Z
rKKdy =

1
l3

Z
rJJdy = rJJ, (3.72)

rKJ =
1
l3

Z
rKJdy, (3.73)
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VirK =
1
l2

Z
rViKdy, (3.74)

VirJ =
1
l2

Z
rViJdy, (3.75)

4ET M =
1
2

Z
r
⇣

V
02
i �V 2

i

⌘
dy, (3.76)

P0 =
1
2

l3rKK +
1
2

l3 r2
K

r2
J

rJJ � l3 rK

rJ
rKJ, (3.77)

P1,i =�l34MpirKrJJ

r2
J

+ l
4MpirKJ

rJ
+VirK � l2 rK

rJ
VirJ, (3.78)

P2,i =
1
2l

rJJ
4M2

pi

r2
J

+ l
4Mpi

rJ
VirJ +4ET M. (3.79)

The rest of the derivation is similar to the case of constant density. The maximum removable

energy from the given component i, Qi, is the minimum value of 4Ei that is parabolic minimum

of Eq. 3.71,

Qi =�(P2,i �
P2

1,i

4P0
). (3.80)

The change of eddy energy in given direction i can be calculated from the summation of energy

loss from the direction i, Qi, and energy gain from the directions j and k, Q j and Qk,

4Ei =�aQi +
a
2

Q j +
a
2

Qk, (3.81)

Then the value of 4Ei is inserted into Eq. 3.71 to compute ci, that is,

ci =
1

2P0
(�P1,i ±

q
P2

1,i �4P0 ⇤ (P2,i �4Ei)). (3.82)

Eddy sampling

In the ODT model, each sampled eddy event is characterized by the time scale te, the

position y0, and the size l, which is influenced by the instantaneous flow field. In other words, ODT

accounts for the mutual interaction between the eddy rate distribution and the flow evolution. As

defined in Eq. 3.22, the eddy time scale, te, can be calculated from local kinetic energy and the eddy

length. During particle-eddy interaction in the two-way coupled flows, the presence of particles
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changes the turbulent kinetic energy and thereby eddy time scale through the particle source term,

4Epi in Eq. 3.48. Particle source terms are calculated based on the interaction time of the particles

with the eddy, qixn, that is, the minimum of crossing time of particles out of the interaction and eddy

lifetime, te. Therefore, in the implementation of two-way momentum coupling, eddy sampling and

selection and particle-eddy interactions depend on each other. A necessary iteration procedure is

required to determine eddy selection coupled with the influence of the particles. Here are the steps

in detail:

1. Sample the size and position of the eddy;

2. Do triplet-map motion of eddy and calculate time scale of eddy based on one-way coupling

as an initial guess;

3. Particles interact with the eddy, and thus particle source terms can be calculated;

4. Use particle source terms obtained in step 3 to calculate new time scale of eddy based on

two-way coupling;

5. Repeat step 3 and 4 until the solution of eddy time scale is converged;

6. Decide whether the eddy is accepted using the converged solution of eddy time scale in step

5.

3.3 Temperature evolution of particles

In recent years, novel energetic materials (e.g., nano-aluminum particles [79]) with both

thermal and chemical bio-agent kill mechanisms are being investigated for civilian and commercial

applications. Reducing collateral effects using these novel materials requires accurate simulation

of the chemical species and reactions followed by turbulent mixing with bio-agents and plume

spread. Recent simulation models describe some of the mechanistic phenomena [80–83]; however,

there is still a lack of understanding across the field as to how agent-defeat materials perform in

turbulent conditions with elevated temperature and other environmental conditions. Little attention

has been paid to developing fluid dynamic models for clumped units of the spores (micron-sized

particles) in various turbulent flows, and bio-agent heating/burning in the environmental conditions
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following detonation (temperature, pressure, and corrosive atmospheres). Basic knowledge of

the response of chemical agents and agent simulants to blast loading and high-temperature post-

detonation environments are also inadequate. Furthermore, predicting where and when the flame

products are hot enough to neutralize agents requires the models of detonation-induced instabilities

leading to turbulent mixing. Uncertainty quantification in current mixed-grid models, when various

scales and grid sizes are combined, remains a challenge.

As an integral part of this work, the ODT multiphase model is extended to the nonisother-

mal flows to evaluate the temperature history and probabilities of biological and chemical agent

particles escaping from a blast environment, getting intimately mixed with hot detonation gas,

interacting with the flame product, being distributed by turbulent instabilities, and surviving and

escaping to the ambient environment.

The temperature of each particle is computed along its trajectory assuming that each par-

ticle is nonreactive and has a uniform temperature. Under such assumptions, the energy balance

takes the following form:
dTp

dt
=�

Tp �Tg

tH
, (3.83)

where Tp and Tg are the instantaneous temperatures of the particle and of the fluid seen, respec-

tively, and tH is the particle thermal relaxation time, defined by tH = (mpcp)/
�
pd2

php
�
, which is

either constant or varies as a function of Rep, depending on the particle Nusselt number expression

used to estimate the particle-to-fluid heat transfer coefficient hp. cp is particle specific heat.
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CHAPTER 4. PARTICLE DISPERSION IN HOMOGENEOUS TURBULENCE

Lagrangian particle dispersion is studied using the one-dimensional turbulence (ODT)

model in homogeneous decaying turbulence configurations. The ODT model has been widely and

successfully applied to a number of reacting and nonreacting flow configurations, but only limited

application has been made to multiphase flows. A version of the particle implementation and inter-

action with the stochastic and instantaneous ODT eddy events (Type-I particle model) is presented

in this chapter. The model is characterized by comparison to experimental data of particle disper-

sion for a range of intrinsic particle time scales and body forces. Particle dispersion, velocity, and

integral time scale results are presented. The particle implementation introduces a single model

parameter bp, and sensitivity to this parameter and behavior of the model are discussed. The nu-

merical results are analyzed to investigate the particle inertial and trajectory crossing effects. These

results serve as a validation case of the multiphase implementations of ODT for extensions to other

flow configurations. This chapter appears in much the same form as the paper published on Physics

of Fluid by G. Sun et al [5].

4.1 Introduction

The motion and dispersion of particles in turbulent flow has important applications in many

areas of engineering [37,84]. As an example, turbulent reacting flows like those found in combus-

tion often interact with particles in the form of droplets that might be a source of fuel, a source of

fire suppressant or a hazardous material to be incinerated. Particles are dispersed throughout the

flow field by the action of turbulence, and the extent of that dispersion is an important factor in

designing effective systems.

One of the earliest predictive models for particle dispersion was developed by Einstein to

describe Brownian motion through a distribution of displacements at a rate given by thermal en-

ergy [85,86]. Taylor related turbulent fluid particle dispersion to the velocity fluctuations and their
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degree of correlation over time [87], while Batchelor extended this to multidimensional disper-

sion [88]. These concepts were directly extensible to particle dispersion, Dp, where rather than

the fluid velocities and their Lagrangian autocorrelation time, the particle velocities and particle

autocorrelation time are appropriate

hD2
pi= 2

Z t

0

Z t 0

0
Vp(0)Vp(t)dtdt 0. (4.1)

The particle velocities evolve according to the forcing introduced by the fluid drag, body

forces, and other forces as appropriate (such as the Saffman lift force in velocity gradients [49,

89]). A challenge arises then because the fluid velocity at the particle location is required, and

this fluid velocity is often solved only in an averaged or filtered sense due to the cost of direct

numerical simulations (DNS). There are a number of approaches to modeling the instantaneous

fluid velocities. The general approach involves the determination of statistical moments for the

fluid velocity, the assumption of a distribution of fluid velocities from those moments that act

over a given time scale (referred to as an eddy-interaction time), and the deterministic evolution

of the particle forced by the given fluid velocity for a sequence of eddy-interaction times [37, 74,

75]. These approaches have found significant success, and their incorporation within large-eddy

simulations (LES), where large scale anisotropy is resolved, leads to further improvement.

Here an alternate approach is presented. Rather than carry out a separate determination of

the fluid moments and a sampling of expected fluid velocities, the particle evolution is integrated

with a reduced dimension stochastic approach to evolve the flow field. This approach is referred

to as the one-dimensional turbulence (ODT) model [7–9, 16]. Within the context of ODT fluid

velocities and any associated scalars are fully resolved in a single dimension. Molecular processes

like viscous dissipation evolve through a deterministic process along that single dimension, while

the nonlinear turbulent cascade is modeled through a remapping procedure that reproduces key

aspects of turbulent flows [90]. By carrying out a fully resolved temporal flow evolution in a single

spatial dimension, the one-dimensional spectrum of velocity and scalar fluctuations is available and

associated with a given physical location. A particle associated with that same physical location

would then accelerate according to the velocity at that point and the appropriate drag law. While

the present work focuses on the evolution of the particles in conjunction with the fluid velocity
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field, additional value will come through the joint evolution of the more complete fluid state, for

example including a temperature field and its correlation with the velocity evolution.

The present work focuses on the process of particle dispersion within the ODT context.

In this, it draws on the previous work of Schmidt and coworkers where the original Lagrangian

particle tracking models within the ODT context were developed [4, 26].

Applications here focus on characteristics of ODT particle dispersion of finite Stokes num-

ber particles in homogeneous turbulence as experimentally manifest in grid-generated turbulence

[2,3]. ODT has previously been evaluated in a wide range of fluid mixing applications that demon-

strate its capability to predict fluid particle dispersion in analogy to scalar mixing [10, 11, 90–92].

There are two phenomena of interest related to finite-Stokes number particles. First, inertial par-

ticles will have some slip relative to the fluid since they respond more gradually to accelerations.

This leads to reduced particle fluctuations relative to the fluid [2, 41]. Second, particles acted on

by body forces will have a finite mean velocity that tends to reduce the autocorrelation time as

observed by particles in what Yudine [40] referred to as the “effect of crossing trajectories.” This

arises because the particles continuously change their fluid environment and are not acted upon for

as long as a given eddy lifetime. It is shown here that the ODT particle dispersion model captures

both of these phenomena through comparison with measurements in Sec. 4.3 and through analy-

sis of the model itself in Sec. 4.4. First, we review the ODT model and describe the approach to

coupling particle evolution with the ODT model in Sec. 4.2.

4.2 Model formulation

This section summarizes the ODT model and its implementation, along with the Lagrangian

particle models applied and developed. In the following discussion y is the line direction, x is the

streamwise flow direction (when relevant, as in grid turbulence), and z is a spanwise direction. The

ODT line is generally aligned with the direction of mean shear (cross-stream, as in jets), although

in the grid turbulence studied here it is along one of the directions transverse to the flow.

47



4.2.1 ODT model description

The ODT model has been described in detail in Sec. 3.1 of Chapter 3. A brief summary

and description of the model implemented in this study is provided in this section and parallels the

discussion in [16]. ODT is a stochastic model for turbulent flows that solves the unsteady, one-

dimensional transport equations (diffusion equations) for mass, momentum, and optionally other

scalars, such as energy and chemical species. Because the model is one-dimensional, turbulent

advection cannot be computed directly. Instead, effects of turbulent advection are modeled by a

stochastic mapping processes called eddy events that are implemented as so-called triplet maps,

which rearrange fluid in the domain in a manner consistent with turbulent scaling laws. These eddy

events are performed concurrently with the solution of the diffusion equations.

Eddy events are parameterized by the eddy location y0, eddy size l and corresponding eddy

timescale te that depends on y0 and l. The size, location, and frequency of eddies occur stochas-

tically on the domain as described below. Each eddy event is implemented as a triplet map that

consists of replacing each scalar in the eddy region with three copies of the scalar, each compressed

spatially by a factor of three and lined up along the eddy region, with the central copy spatially

inverted. The triplet map is consistent with the behavior of a canonical turbulent eddy in that it

is continuous, conservative of all quantities (measure preserving), increases scalar gradients, and

decreases length scales locally (by the factor-of-three compression). This compression is facil-

itated in the current implementation by the use of an automatically adapted computational grid,

with assumed piecewise-constant scalar profiles in each grid control volume. An adaptive grid is

convenient, but not necessary, as several discrete implementations have been used (including the

original implementation of the model [7]). The adaptive formulation avoids the need for a discrete

transport correction [93], and eddy sizes are not limited to multiples of three times the grid spacing.

In the present implementation, grid cells are split where the edges of the eddy intersect the cell.

The specification of eddies is dependent on the spatially evolving momentum fields. Eddies

are more likely in regions of high shear, and shear is locally increased by triplet maps, resulting in

an eddy cascade. The diffusive advancement of the velocity fields smoothens the flow with viscous

dissipation concentrated at the smallest scales.

The solution evolution procedure is as follows. Beginning with the initial condition, a

candidate eddy is sampled from the joint PDF function P0(y0, l) in Eq. 3.19, and the occurrence
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time is sampled as a Poisson process with mean rate 1/Dts. The eddy is accepted or rejected with

probability Pa given in Eq. 3.21. If rejected, the process is repeated, keeping track of cumulative

sampled time ts,c. If accepted, the eddy is implemented, and the diffusion process is solved for a

time duration equal to ts,c. (Diffusive advancement is also performed to advance the solution in

the event that no eddies occur within a small factor of the characteristic grid diffusion timescale.)

Further details of the eddy selection procedure, along with the form of P0(y0, l) are given in the

chapter 3.

The time Dts is initialized as 0.1Pa Dy2
/nn, where n is the number of grid points, n is

the kinematic viscosity, Dy is the average grid spacing, and Pa is a specified average acceptance

probability (here set to 0.02). The diffusive timescale Dy2
/n at the grid cell size approximates

lower bound on an eddy timescale, and the factor 1/n reflects the proportionality of the total rate to

the domain size. The sampling time Dts is dynamically adjusted during the simulation to maintain

the specified Pa.

In the vector formulation of ODT (three velocity components evolved), pressure scrambling

and return-to-isotropy effects are modeled by adjusting the triplet mapped velocities by adding a

term ciK(y), where subscript i denotes the velocity component, and ci is given by [8]

ci =
l2

R y0+l
y0

K(y)2dy

 
�UK,i + sgn(UK,i)

s
1
3 Â

i
U2

K,i

!
. (4.2)

Here, a large eddy suppression mechanism [9–11] is incorporated, in which the criteria

applied is

l  b ⇥L0(t/t0)a, (4.3)

where L0(t/t0)a is the time-evolving integral scale, with experimental [2] L0 = 2.8 cm and t0 =

0.159 s (x/M = 41). Parameter a = 0.45 is adjusted to fit the experimental measurements, and b

is an adjustable parameter.

The diffusive advancement portion of the simulation consists in solving three components

of the momentum equations (velocity equations). The vector formulation [8] of ODT solves three

components of the velocity in order to account for return-to-isotropy effects. They are also impor-

tant in the particle model discussed below. These velocities are primarily used in specifying the
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eddy event frequencies, and are solved as scalar momentum equations in the diffusive advance-

ment, but otherwise do not act as advecting velocities (except as detailed in Sec. 4.2.2). Advection

is modeled with the eddy events.

The solution is evolved on a finite-volume computational grid. A Lagrangian formulation

is applied and grid cells are allowed to expand and contract with the flow (which does not occur

in the incompressible simulations presented here). The mass balance in this formulation reduces

to rDy = constant for any given grid cell. The momentum equations discretized for a given grid

cell are given by Eq. 3.3 through 3.5. The equations are normally solved using the explicit Euler

method for efficiency, but the second order Modified Midpoint method [94] is also implemented

for comparison. Spatial derivatives are evaluated using second order (on uniform grids) central

differences.

Mesh adaption is applied during implementation of eddy events, and before and after dif-

fusive advancement. Grid positions are based on a uniform scalar arc length profile between cells

with limitations on the minimum allowed cell size (to avoid unphysically small cells by merging

with a neighbor), and a constraint on the relative sizes between two adjacent cells. The reader can

see the study in [16] for more details.

4.2.2 Lagrangian particle model

The description and implementation of the Lagrangian particle model is summarized in

Sec. 3.2 of Chapter 3. The Type-I particle model is used in the study of this chapter. The brief

description of model implementation is provided in this section.

For relatively small particles in dilute flows, the following drag law describing the particle

motion is used for coordinate direction i:

dUp,i

dt
=� 1

tp
(Up,i �Ug,i)+gi. (4.4)

Here, gi is the acceleration associated with any body force, tp = rpd2
p/18µ f , and f = 1+0.15Re0.687

p ,

where Rep = rgdp|~Vg �~Vp|/µ . Subscript p refers to particles and subscript g refers to the fluid.

This chapter focuses on fundamental understanding of the behavior of individual particles assum-

ing one-way coupling that ignores the effect of particles on the fluid phase.
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Particles interact with the fluid during the instantaneous eddy events that account for tur-

bulent advection and during the diffusive advancement. During diffusive advancement the particle

drag law is integrated (velocity and position) along with the fluid equations. The fluid velocity in

Eq. (4.4) is the local ODT velocity component in the off-line directions, but is zero in the line-

direction (for incompressible flows) since the advection in this direction is treated through the eddy

events and continuity implies zero advecting velocity on the one-dimensional ODT line.

The primary advection mechanism through which dispersion is modeled within the context

of ODT is through particle-eddy interactions (PEI). An eddy (triplet map) results in fluid displace-

ment and the PEI consists of computing the particle velocity and displacement in response to this

fluid displacement during the eddy event. Eddy events occur instantaneously, and in the Type-I

model the PEI is also implemented instantaneously. However, to compute the PEI, integration is

performed in a so-called PEI time coordinate q .

In the PEI time coordinate q , each eddy is conceptualized as a cubical eddy box (though

extents in different directions could be varied). In other words, an eddy exists in a defined three-

dimensional space for a defined duration. The velocity and the relative motion of the particle and

the eddy box are tracked to allow the prediction of the crossing-trajectory effect. The particle is

assumed initially to be in the center of the box in the off-line directions (x, z), and at its initial

location in the line-direction (y). The eddy box is stationary in the line-direction as per continuity,

but moves in the off-line directions with velocity components equal to the fluid velocity compo-

nents at the initial location of the particle in the box. An alternative for the off-line box velocities

is to use the average of the local ODT velocity components [17]. However, this may result in

particles crossing out of the eddy box in the tracer-particle limit (which should not happen) due to

the difference in the particle and eddy box velocities.

The particle can interact with an eddy over the minimum of two durations: (1) the duration

of the eddy, or (2) the time over which the particle remains within the conceptual eddy box. The

eddy duration is related to the eddy rate, Eq. 3.22, but it is not strictly the inverse of the eddy rate te.

Rather, the eddy rate is only proportional to a local measure of the velocity fluctuations, Ekin, over

the eddy length l. To account for the well-known eddy-crossing phenomenon, a measure of this

eddy duration is required. For models of the random walk class in the context of k-e modeling, this

time scale is of the form
p

3/2C3/4
µ k/e and the eddy length scale is similarly modeled [37, 74, 75]
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as C3/4
µ k3/2/e . In those models, a proportionality constant is determined through calibration with

experimental data, and a similar approach is required in relating the eddy rate to the eddy duration

in ODT. This relation is taken as bpte and the PEI time qixn will equal the smaller of bpte or the

time qc at which the particle exits the eddy box. Here, bp is an adjustable parameter discussed in

detail in Sec. 4.4.

The eddy exit time qc is computed by integrating the drag law given in Eq. 4.4 and solving

for the exit time (assuming the particle is not captured by the eddy, in which case qixn = bpte). This

is done in all three directions, and the minimum time is taken. The solution to Eq. 4.4, assuming

constant f in tp, and using dyp,i/dt =Vp,i, is given by

Vp,i =Vg,i + tpgi � (tpgi +Vg,i �Vp0,i)e�qixn/tp , (4.5)

yp,i =yp0,i +Vg,iqixn + tpgiqixn� (4.6)

tp(tpgi + vg,i �Vp0,i)(1� e�qixn/tp),

where Vp0,i, and yp0,i are the initial particle velocity and location, respectively.

Given the interaction time qixn, the line-directed particle position yp and velocity Vp are

computed by integrating a modified version of the particle drag law for time qixn. Because the

drag law is also integrated during the diffusive advancement in the simulation time coordinate, it

is important that the PEI only alters the eddy position and velocity due to the eddy contribution.

This is done by taking the difference of the particle velocity computed in Eq. 4.5 and the particle

velocity using the same equation with the gas velocity set equal to zero. The same is done for the

particle position. The resulting triplet map-induced changes are

DVp =Vg(1� e�qixn/tp), (4.7)

Dyp =Vgqixn �Vgtp(1� e�qixn/tp), (4.8)

and the post triplet map state is Vp =Vp0+DVp, yp = yp0+Dyp. In these equations, the gas velocity

is taken as 4YT M/bpte, where 4YT M is the local fluid particle displacement defined by the triplet

map.
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During the PEI, the x and z velocity components (u and w) are used only to compute qc

and hence qixn, but the particle velocity in those off-line directions is not modified during the PEI

process because these particles evolve during diffusive advancement over the full simulation time

under the influence of the locally evolving ODT fluid velocity in those directions. As particles

are confined to the ODT line, there are no advective displacements of particles in the x and z

directions. However, since the particles and fluid retain velocity components in these directions,

these components may be integrated to study, e.g., streamwise particle dispersion.

Figure 4.1 (a) shows the size, location, and occurrence time of eddies in a typical ODT

realization of grid-generated turbulence [2,3]. The instantaneous eddies are denoted by horizontal

line segments. The extent of the eddies in the PEI time coordinate q is depicted in Fig. 4.1 (b),

though this does not show the full eddy-box size, and the motion of the eddy boxes as has been

described.

The Type-I formulation described has the important and desired effect of satisfying the

tracer (tp ! 0) and ballistic (tp ! •) limits. In the tracer limit, the final particle position matches

the fluid particle position induced by the triplet map since Dyp = vgqixn =4YT M for qixn = bpte and

Vg =4YT M/(bpte). In the tracer limit, the particle velocity after the eddy is Vg =4YT M/(bpte)

(the ODT-aligned eddy velocity component), but relaxes instantaneously to the zero gas veloc-

ity during the subsequent diffusive advancement. In the ballistic limit, the particle velocity and

position are unchanged by the eddy. Inertial particles show intermediate behavior.

4.3 Results

In this section model predictions are presented, first at the level of properties that can be

derived directly from the model and then through comparison with available literature results.

4.3.1 Grid-generated turbulence

The particle dispersion model is compared to the experimental decaying grid turbulence

results of Snyder and Lumley [2] and Wells and Stock [3]. Snyder and Lumley studied the particle

motion in a vertical wind tunnel, in which four particle types were used: hollow glass (HG), corn

pollen (CP), solid glass (SG), and copper (Cu). The HG particles are similar to fluid particles due
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Figure 4.1: Maps of eddy sizes, locations, and occurrence times for a typical ODT realization for
decaying homogeneous turbulence. Plot (a) shows instantaneous eddy locations; plot (b) illustrates
eddy box extents for the particle eddy interactions (PEI) in the PEI time coordinate q .
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Table 4.1: Particle properties of Snyder and Lumley [2].

hollow glass corn pollen solid glass
diameter (µm) 46.5 87 87
density (kg/m3) 260 1000 2500
tp f = rpd2

p/18µ (ms) 1.7 23 58

Table 4.2: Particle properties of Wells and Stock [3].

diameter density tp f terminal particle
(µm) (kg/m3) (ms) velocity(cm/s) acceleration(m/s2)

5 2475 0.192 5.86 305.2
17.06 888.5
20.91 1089.1
23.65 1231.8

57 2420 24.4 0 0
25.8 10.6
54.5 22.3
108 44.3

to the small particle timescale compared to the Kolmogorov scale. Since the behavior of the solid

glass is nearly identical to the copper, results are presented for the HG, CP, and SG particles. Wells

and Stock [3] studied glass beads of two sizes in a horizontal wind tunnel, where the particle body

force was altered by means of an electric field. Both experimental wind tunnels were operated

under similar conditions with grid spacing M = 2.54 cm and a mean velocity U0 = 6.55 m/s. The

particle properties are listed in Tables 4.1 and 4.2.

The ODT simulations are conducted using a 0.508 m (20M) domain width. The initial

velocity profile is taken as a sine wave (as done by Kerstein [7]): U(y,0) =U0 sin(2py/M), where

U0 =U
p

2S/(1�S) gives a u variance in the grid-plane equal to the variance in a uniform profile

with u = 0 for a grid-blocked area fraction S, and u = U/(1� S) for an open area fraction 1� S.

The V and W velocity components are initially zero. The ODT parameters are C = 5.2, Z = 10,

and b = 2.4. Also, for the large-eddy suppression mechanism t0 = 0.159 and L0 = 0.028, taken
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Figure 4.2: Normalized RMS streamwise velocity fluctuations: predictions and experiments of
Snyder and Lumley [2] (SL), and Wells and Stock [3] (WS) on log (a) and linear (b) scales. The
WS shifted data are Wells and Stock measurements shifted 15M to the right.

from Snyder and Lumley [2]. Simulations were performed using 2048 ODT realizations each with

a single particle of a given type initially located in the center of the domain.

Figure 4.2 shows the decay of the streamwise root mean square (RMS) velocity compared

to the experimental data. Both the measurements and predictions follow a power-law decay with

an exponent of -1.2.
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Figure 4.3: Comparison of ODT and experimental particle dispersion of Snyder and Lumley [2].

The gas decay curve in Fig. 4.2 can be matched by ODT using no large eddy suppres-

sion (with a different C parameter), but the resulting particle dispersion is incorrect due to the

occurrence of unphysically large eddies causing disproportionate particle dispersion. Without sup-

pression, such large eddies may occur even though the evolution time is less than the time for such

a displacement to occur. b was selected together with C so that the gas decay curve is matched,

and the dispersion of fluid particles approaches that of the hollow glass dispersion, presented be-

low. The Wells and Stock tunnel has a similar decay rate but lower turbulent intensity at a given

location; their data agree with Snyder and Lumley when shifted 15M to the right [95] as shown in

Fig. 4.2.

4.3.2 Particle dispersion

The ODT model mean square dispersion D2
p (where Dp is the RMS particle displacement)

predictions with bp = 0.05 are shown with experimental measurements from Snyder and Lumley

for the three particle types in Fig. 4.3. The reference position for dispersion of a given particle

is consistent with the first experimental camera, which was located at x/M = 68. The greatest

dispersion is obtained by the hollow glass, with dispersion decreasing for the corn pollen and solid

glass. The dispersion trend in Fig. 4.3 is consistent with eddy trajectory crossing being the factor
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Figure 4.4: Comparison of ODT and Wells and Stock [3] particle dispersion for 57 µm particles
for four terminal velocities shown in the legend in units of (cm/s).

that limits dispersion: particles with larger tp and larger settling velocities Vd are less affected by

eddies.

To better understand the role of the settling velocity and the crossing trajectory effect, Wells

and Stock measured dispersion as a function of Vd by using charged particles and varying the

electric field strength. Figure 4.4 shows that in ODT particles also disperse less as particle settling

velocity, Vd = tpg, (where g is the resulting electric field acceleration), increases in agreement with

the trajectory-crossing theory [41] and measurements (Wells and Stock). Wells and Stock did not

specify the reference position in their published results, and in this study, the particle dispersion

is referenced to x/M = 15. As the results for the 57 µm particles in Fig. 4.4 show, the crossing-

trajectories effect significantly influences dispersion with the different particle terminal settling

velocities considered.

Figure 4.5 compares the evolution of eddy time scale bpte with bp = 0.05 to different

particle relaxation time scales tp. The plotted evolution time is relative to the particle dispersion

reference location (time zero). The eddy time scale is roughly lognormally distributed, varying

over orders of magnitude as expected, and particles in ODT experience the full spectrum of time

scales. Other characteristics of lognormally distributed variables are that the mean is larger than the

most typical value and that the RMS is comparable to the mean value, both of which are plotted in
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Figure 4.5: Scatter plot of eddy time scales with the corresponding mean and RMS along with
particle time scales. Time zero is the dispersion reference time. Eddy information is collected
from 10 representative realizations.

Fig. 4.5. The Snyder and Lumley particle time scales, tp are plotted as horizontal lines in Fig. 4.5.

It is seen that a large number of eddies have time scales, bpte, smaller than the particle time scales.

Initially, most eddies are small and the corn pollen and solid glass particle timescales are greater

than the mean eddy timescales. At positive times the corn pollen and solid glass particles have

particle time scales similar to the eddy timescales, though the eddy timescales are generally above

the corn pollen timescale, while for the solid glass the mean eddy timescale transitions from above

to below the solid glass timescale at around 0.2 s. Conversely, the hollow glass timescale is much

smaller than the eddy timescales at positive times.

Particle inertial effect and the crossing trajectory effect are the two most significant features

in understanding particle dispersion for configurations studied here. The dispersion coefficient rel-

ative to that of a fluid tracer is plotted in Fig. 4.6 as a function of a dimensionless particle settling

velocity analogous to a particle Froude number. The velocity fluctuation used in the normalization

is u0 = 0.1 m/s. The particle terminal settling velocity is normalized by the fluid RMS velocity

fluctuations so that this normalization is equivalent to a normalized particle time constant if the

body forces are all equal. The review of Loth [84] shows similar results of finite tp dispersion co-

efficients normalized by the tracer dispersion coefficient. For given fixed gravity shown in Fig. 4.6

(a), g = Vd/u0 = gtp/u0 is varied by varying tp. In that figure, small light particles disperse at
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similar rates to fluid elements, and large heavy particles disperse much less as expected. Figure 4.6

(b) shows results varying the terminal velocity through the externally imposed electric field, for the

two particle sizes (separated by the vertical dotted line) measured by Wells and Stock. When the

terminal velocity, Vd , approaches zero, the crossing trajectory effect becomes trivial and particles

remain trapped inside an eddy and behave like fluid particles. However, as Vd increases, particle

traversal of the eddy takes over the interaction and reduces particle dispersion. ODT predictions in

those plots are shown for multiple values of the parameter bp with the chosen value of bp = 0.05

matching the data well. Further discussion of the effect of bp is given in Sec. 4.4. Experimental

results are also shown in Fig. 4.6 for comparison.

4.3.3 Derived statistics

While the Type-I particle-eddy interaction model provides instantaneous displacements as

in the Einsteinian approach, it is possible to determine the particle velocity statistics that lead to

those displacements. This velocity profile is termed the particle velocity history Vph, and is com-

puted by modifying the particle velocity computed during the continuous diffusive advancement

to account for the advection. For a given PEI, the particle velocity profile for a time qixn before the

eddy occurrence time teo is modified so that the particle displacement due to the resulting velocity

history is what results from the instantaneous triplet map. That is,

Vph(t) =

8
><

>:

Vp +Vg(1� e�(teo�t)/tp) if teo �qixn  t  teo,

Vp otherwise.

This effectively maps the advective velocity in the Type-I PEI time coordinate to the real coordinate

so that particle velocity statistics may be computed. Note that Vph does not affect the actual particle

evolution during the simulation but is computed for comparison of ODT results with traditional

velocity-fluctuation and correlation-time models.

Given these particle velocity histories, particle velocity statistics are computed for the con-

ditions of the comparisons in the following discussion. Since the velocity fluctuations decay as

shown in Fig. 4.2, statistics are taken 0.2 s after the particle injection reference point (x/M = 68).

To smooth the velocity statistics, we take advantage of the fact that the inverse particle kinetic
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Figure 4.6: Normalized particle dispersion versus normalized particle terminal velocity for various
bp (shown in the legends). Plot (a) shows simulation results versus g where g is varied by varying
tp (with Vd = gtp), and compares to measurements of Snyder and Lumley [2]. Plot (b) shows
results versus g where g is varied by varying particle acceleration for two particle sizes (5 µm, and
57 µm to the left and right, respectively, of the vertical dotted line), compared to measurements of
Wells and Stock [3].
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Figure 4.7: Particle velocity fluctuation as a function of particle Stokes number.

energy decay (1/V 2
ph) is essentially linear with respect to the fluid evolution time, and we compute

a linear fit over the simulation time 0.2±0.1 s and interpolate to the statistic of interest at 0.2 s.

The particle velocity fluctuations normalized by the fluid tracer velocity fluctuations are

plotted in Fig. 4.7 as a function of the particle Stokes number, St = tp/(bpte) where bpte = 0.053

is the average eddy time scale at 0.2 s plotted in Fig. 4.5. The fluid tracer velocity fluctuations are

computed similarly to the particles by fluid element displacements by triplet maps. The experi-

mental data [2] is also shown normalized by the reported gas turbulence velocities. As expected,

particles with larger Stokes numbers experience reduced fluctuations. This is a direct consequence

of the dependence of the ratio qixn/tp appearing in Eq. 4.7, but two effects contribute to this. Larger

tp or larger Stokes number particles have a reduced response to rapid turbulence fluctuations; that

is, the particles act as a low-pass filter because of the ratio of fluid to particle time scales. Also,

larger tp particles have larger terminal velocities under the influence of body forces leading to a

reduction in qixn/tp through the crossing trajectory effect. These effects will be further discussed

in Sec. 4.4.

The particle velocity histories can also be used to determine the particle Lagrangian integral

time scale, or the autocorrelation time. These results have been computed and will be shown as

a function of both tp and bp in the Sec. 4.4. The product of this particle time scale and the

62



velocity fluctuations in Fig. 4.7 gives the dispersion coefficient following Taylor’s approach. Here

we note that the derived particle velocity history statistics suggest that reduced dispersion at larger

tp (Fig. 4.6) can be attributed more to variations in the particle velocity fluctuations (Fig. 4.7) than

the integral time scale given the bp selected here for the ODT model. This will be described further

below.

4.4 Discussion

The implementation of particles into ODT introduces a single parameter, bp, that relates the

turbulence characteristics to the particle-eddy interaction time by scaling the turbulent time scales.

This type of parameter is common to other particle-turbulence interaction models [37, 74, 75]. To

allow the model to match the tracer particle limit, bp plays an additional role in the context of ODT

since the triplet-map driven fluid velocities are determined by Vg =4YT M/(bpte). In this section

we discuss the variation in predictions associated with different values of bp.

In Fig. 4.6 the predictions of relative particle dispersion coefficients for several values of

bp were given. In the regime where crossing trajectory effects are important (large particle Stokes

or Froude numbers), larger bp results in reduced dispersion. This arises because of the influence

that bp has on the interaction time qixn together with the eddy velocity Vg.

The total displacement associated with an eddy is determined by the combination of the dis-

placement during the eddy event given by Eq. 4.8 and the resulting drift during a deceleration when

the particle leaves the eddy with the velocity increment given by Eq. 4.7, Vg(1� exp(�qixn/tp)).

For Vp0,i = 0 and a post-eddy relaxation time much greater than tp the total displacement per eddy

is qixn4YT M/(bpte) (here deterministic displacement due to body forces is not counted). When

eddy-crossing is not occurring (qc > bpte), the interaction time is simply bpte and the displacement

per eddy reduces to 4YT M. This is appropriately equivalent to the fluid dispersion and corresponds

to the horizontal asymptote in Fig. 4.6.

Eddy crossing is typically associated with a body-force driven settling velocity. Assuming

the particle has reached its terminal velocity, the expected crossing time is qc ⇡ l/(2gtp) where the

factor of two assumes the eddy length to be crossed is l/2 on average. With this as the interaction

time, when qc < bpte the displacement per eddy is l4YT M/(2gbptetp) leading to the reduced

dispersion in this limit seen in Fig. 4.6.
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To better understand the ODT dispersion predictions, it is instructive to identify the scaling

present in the model. The particle dispersion coefficient may be written as Dp = Dy2
PEI/DtPEI ,

where DyPEI is the particle displacement associated with an eddy and DtPEI is the time between

eddy interactions. Taking DyPEI = l4YT M/(2gbptetp), and DtPEI = te gives

Dp =

✓
l4YT M

2gbptetp

◆2 1
te
, (4.9)

that is, Dp ⇠ 1/t2
p in the trajectory-crossing dominated regime. This result is consistent with

Fig. 4.6 (a), where the slope of all the simulation curves on the log-log plot is -2 at large tp.

In the high drift velocity trajectory crossing limit, the rate of eddy interactions is more

appropriately 1/qixn. This yields Dp ⇠ 1/tp, and gives Dp essentially the same as that presented

by Csanady [41] in the trajectory crossing limit. The 1/t2
p dependence of Dp in the Type-I model

is a consequence of the ODT eddy rate determining the frequency of dispersion events instead of

being dominated by the motion of particles from one eddy to another, which would give the rate

1/qixn = 2gtp/l. In cases of high trajectory crossing, a rigorous and physically consistent treatment

of the fluid-particle interactions would be to use the spatial formulation of ODT in which the ODT

line is advanced in the streamwise direction from one spatial location (perpendicular to the ODT

line) to another using boundary layer-type equations [16]. In advancing the ODT line, particles or

fluid parcels with higher streamwise velocities have lower implied residence times. Nevertheless,

the ODT captures the dispersion well for the range of particles studied here.

Besides scaling the eddy interaction time, the parameter bp also directly influences the

particle velocity by scaling the eddy velocity Vg = 4YT M/(bpte) in Eqs. 4.5 through 4.8. These

dual effects complicate the effect of bp on the particle velocity. Figure 4.8 shows the particle kinetic

energy normalized by that of the tracer particles as a function of bp. Results are shown with and

without gravitational body forces. Values are computed at 0.2 s as in Fig. 4.7. Particles are known

to act as a low-pass filter [41], following to a lesser degree those motions where qixn ⌧ tp. This

suggests that for small fluid time scales corresponding to small qixn = bpte (or small bp) particle

fluctuations will be reduced with respect to fluid tracer fluctuations. This behavior is observed in

Fig. 4.8, where the kinetic energy ratio is small for small bp and rises toward unity with increasing

bp in the no-gravity simulations.
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Figure 4.8: Prediction of turbulent kinetic energy of particles in the study of Snyder and Lumley [2]
with and without gravitational body forces.

With gravity effects included, similar behavior occurs at small bp, where the eddy time

(bpte) is small so that increasing bp increases the interaction time, and hence the kinetic energy

ratio. Trajectory crossing is minimal for the smallest bp, but as bp further increases trajectory

crossing occurs, which limits the interaction time to qixn = qc = l/2gtp even as the eddy time (bpte)

increases. Particles interacting with these longer fluid time scales will see reduced fluctuations

because of the reduced interaction time leading to the decay in V 2
p /V 2

tracer for corn pollen and solid

glass particles observed in Fig. 4.8 for large bp. bp also affects the point where qc = l/(2gtp) <

bpte. The peak in the curves (indicating the transition to trajectory crossing) moves to smaller

bb for larger tp particles. Note that trajectory crossing is minimal for the HG particles, and the

HG curves with and without gravity effects are essentially the same. For bp = 0.05 v2
p/v2

tracer is

significantly reduced for the corn pollen and solid glass as shown in Fig. 4.7.

In the approach of Taylor to fluid and particle dispersion, the product of the velocity fluc-

tuations and the autocorrelation time determine the dispersion. In Fig. 4.9 we plot the Lagrangian

particle integral time scale defined from the integral of the particle velocity autocorrelation, com-

puted using Vph, at the dispersion reference time. Figure 4.9 (a) shows predictions plotted versus

bp for hollow glass, corn pollen, and solid glass particles, both with and without body forces. Fig-

ure 4.9 (b) shows similar predictions for the autocorrelation versus tp for several values of bp. In
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Figure 4.9: Prediction of particle autocorrelation integral time scale as a function of bp with and
without body forces (a), and as a function of tp for hollow glass, corn pollen, and solid glass
particles with and without body forces at several bp (b).
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the regime where experimental measurements are made, analysis of those measurements suggest

that the trajectory crossing effect plays a strong role in reducing the autocorrelation time as the

particle time constant increases. Here we show that this behavior depends on the value selected for

bp in ODT particle dispersion.

It is helpful to first refer to the autocorrelation time in the absence of body forces (Fig. 4.9

(a) no-g results). In that case, trajectory crossing is minimal, and it is seen that the autocorrelation

time increases with tp due to the increased inertia of the particles. Due to the discrete nature of

the eddy velocities, when bp is small this effect is strong: the relative change in the autocorrelation

time is dominated by this inertial effect for small bp. This is true even when body forces are

present. Without body forces, Fig. 4.9 (a), when bp is large, the discrete changes in the eddy

velocity are smaller and the fractional change in the interaction time bpte with bp is smaller so the

relative effects are not as large and the integral timescale changes more slowly with bp.

With body forces present, at small bp trajectory crossing is still not significant. In this case,

Fig. 4.9 (b) with bp = 0.001 shows a clear increase in the autocorrelation time with increasing

tp due to the inertial effect. At high bp, the eddy duration bpte is longer and trajectory crossing

may occur when, as noted previously, qc < bpte. As tp increases for large bp (e.g. bp = 0.5), the

terminal velocity increases, resulting in a shorter interaction time as particles transition from one

eddy to another; this causes the observed reduced autocorrelation and integral time scale.

The crossing trajectory dependence on bp and tp is highlighted in Fig. 4.10 (a), which

shows the fraction of all eddy interactions that result in particles crossing out of the eddy before

the eddy is complete (before bpte). This data is computed for times between 0 and 0.5 relative to

the dispersion reference time. In smaller time windows the curve shapes are the same, but slightly

shifted as the eddy sizes change relative to the particle timescales (see Fig. 4.5). At low bp, almost

no eddy crossings occur for any particle tp. At the highest bp, particles with tp > 0.005 s nearly

always cross the eddies. bp = 0.05 is strongly transitional, and accounts for the relatively little

change in the integral time scale for that bp in Fig. 4.9 (b). That is, as tp increases, there is an

approximate cancellation between the inertial effect tending to increase the integral time scale, and

the increasing trajectory crossing tending to decrease the integral time scale.

Figure 4.10 (b) shows the crossing fraction versus the quantity Rpei,ec = 2gte(bptp)/l,

which is the ratio of the maximum particle-eddy interaction time bpte to the eddy crossing time
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Figure 4.10: Fraction of particle eddy interactions that result in particle crossing before the eddy
duration bpte, for several values of bp.

at the terminal velocity, qc = l/(2gtp), given previously. When the crossing fraction is plotted

versus this ratio, the predicted crossing fraction versus time ratio collapses onto a single curve.

Here, te = 0.95 s and l = 4.1 mm are taken as the average values in time interval from 0 to 0.5 s.

Note that the crossing fraction begins to increase sharply when the time ratio is unity, with nearly

all particles crossing eddies when the time ratio exceeds ten. Similar to the crossing fraction, the

dispersion coefficients shown in Fig. 4.6 (a) depend on the ratio Rpei,ec and collapse to a single
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curve when Dp/Ds plotted versus this ratio. In Fig. 4.6 the abcsissa g = tpg/u0 is equivalent to

Rpei,ec if u0 is taken as l/2bpte.

4.5 Conclusions

A Lagrangian particle model, termed a Type-I model, has been implemented and tested

using the one-dimensional turbulence model in decaying homogeneous turbulence configurations.

ODT has been widely and successfully applied to a number of nonreacting and reacting flows, but

only a few studies of multi-phase flows with Lagrangian particles have been attempted. The Type-I

model has the advantage of matching the tracer and ballistic particle limits, as well as predicting

dispersion for intermediately-sized inertial particles. A single model parameter bp is introduced in

relating the particle interactions to the stochastic ODT eddy events that model turbulent advection.

Results were compared to the experiments of Snyder and Lumely [2], and Wells and Stock [3]

for a range of particle time constants and body forces. Particle dispersion, dispersion coefficients,

velocity statistics, and integral time scales were presented. The ODT model generally performs

well and is able to capture the particle inertial effects as well as the trajectory crossing effect. The

model parameter bp scales the eddy time and the eddy gas velocity. The sensitivity of results to

this model parameter were presented. The optimal value of bp was found to be 0.05 in the present

study. The particle model was limited to one-way coupling: that is particles affected by the fluid,

but not vice-versa. The model has been extended to two-way coupling during both eddy events

and gas diffusion processes, allowing for higher particle loadings as will be reported in Chapter 6.

The results presented here represent an important validation case for the ODT model from which

extensions to other configurations such as jets and reacting flows may be performed.
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CHAPTER 5. PARTICLE DISPERSION IN JET FLOW

ODT (one-dimensional turbulence) simulations of particle-carrier gas interactions are per-

formed in the jet flow configuration. The particles with different diameters are injected onto the

centerline of a turbulent air jet. Their radial dispersion and axial velocities are obtained as func-

tions of axial position. The time and length scales of the jet are varied through the control of the jet

exit velocity and nozzle diameter. Dispersion data at long times of flight for the nozzle diameter

(7mm), particle diameters (60 and 90 µm) and Reynolds numbers (10,000 to 30,000) are analyzed

to obtain the Lagrangian particle dispersivity. The above flow statistics of the ODT particle model

are compared to experimental measurements. It is shown that the particle tracking method is ca-

pable of yielding Lagrangian prediction of the dispersive transport of particles in a round jet. In

this chapter, three particle models (Type-I, -C, and -IC) introduced in Chapter 3 are presented to

examine the details of particle dispersion and particle-eddy interaction in jet flow. These results

appear in much the same form as the recent paper submitted to Physics of Fluid by G. Sun et al in

2015.

5.1 Introduction

Particle and droplet dispersion in turbulent jet flows is an essential part of many important

industrial processes. Typical examples include the dispersion of liquid fuel droplets in gas com-

bustors and the mixing of coal particles by the input jets of coal-fired power plants. The dispersion

of the particles largely determines the efficiency and the stability of these processes.

Many computational studies on gas-particle turbulent round jets have been performed. Di-

rect numerical simulations (DNS) have been used to study gas-particle jets at low Reynolds num-

bers [24, 96]. However, DNS for a high Reynolds number flow is not computationally efficient.

Therefore, simulation approaches are required that do not resolve all flow scales in three dimen-

sions. Many gas-particle flows have been studied in which the subgrid-scale turbulence is cal-
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culated using large eddy simulation (LES) [34, 97]. Those LES provide good means to capture

unsteady physical features in the turbulence. The accuracy and the reliability of LES predictions

depend on several factors, such as the accurate modeling of the subgrid-scale phase interactions.

A promising alternative approach is the one-dimensional turbulence (ODT) model, which

is able to resolve the full range of length scales on a one-dimensional domain that is evolved at

the finest time scales [7, 8]. ODT has been applied in flow configurations such as homogeneous

turbulent flow, shear-driven flow (channels, jets), and buoyancy-driven flow (plumes), etc. It has

been proven to be a successful model of many different kinds of shear-dominated nonreacting [7–9]

and reacting flows [10–12, 14, 16, 72].

John Schmidt et al. extended ODT model to the prediction of particle velocity statistics in

turbulent channel flow [4]. In Chapter 3, one version of the ODT multiphase interaction model us-

ing an instantaneous (referred to as Type-I) particle-eddy interaction (PEI) model was presented to

investigate particle transport and crossing trajectory effects in homogeneous turbulence [5]. Here,

as an extension of the study, two new PEI models are used in the present ODT multiphase model

to analyze the behavior of individual particles in round jets at high Reynolds numbers (Re). One of

the models applies continuous PEI (referred to as Type-C) and the other combines instantaneous

and continuous interaction features (referred to as Type-IC).

The remainder of this chapter is organized as follow: first, some details of of the model used

are presented for the present work followed by a detailed discussion of the prediction results of

Type-I, -C and -IC models, including the experimental validations. Finally, the paper is completed

by a summary and some concluding remarks.

5.2 Numerical description

The transverse y-direction, which is the direction of the main significant gradients, is con-

sidered here as the ODT domain. The parameter values used in this chapter are 16 and 50 for C and

Z, respectively. The elapsed time method for large eddy suppression is incorporated with b = 0.4.

The same set of equations described in Sec. 3.1.1 are solved with the transformation procedure of

turbulent advection described in Sec. 3.1.2. In the jet flow, the particle motion is determined by the

drag force and gravity, which are expressed in Eq. 3.29. The particle-eddy interactions of Type-I,

-C, and -IC are described in detail in Sec. 3.2.2, 3.2.3, and 3.2.5.
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5.3 Turbulent jet configuration

5.3.1 Experimental details

In this chapter the turbulent dispersion of particles in shear-dominated turbulent flows is

studied. Measurements of particle dispersion in round turbulent jets was studied by Kennedy and

Moody [98]. These measurements span a range of Reynolds and Stokes, which were obtained by

varying the jet velocity, nozzle diameter, and particle diameter. Reynolds numbers based on the jet

velocity (air) range from 10,000 to 30,000. Fully developed turbulent flow conditions at the nozzle

exit are used. Hexadecane droplets with number average diameters of 60 and 90 µm are used for

the study. Mean particle density is 4990 kg/m3. Monodisperse particles were generated in the

experiments with a size uncertainty of ±2 µm [98]. The air used in the jet is at room temperature

and pressure and thus the particles are essentially non-vaporizing. The particle loading is small

with more than 1000 droplet diameters separating particles so that particles do not alter the fluid

velocity, nor do they modulate the turbulence; this was verified by the measurements of Kennedy

et al [98].

5.3.2 Simulation details

The ODT simulations are carried out in a temporally evolving planar shear layer configu-

ration. This configuration has characteristics similar to those of a spatially evolving round jet [99].

To compare the temporal evolution with the spatial experimental measurements, a convective ve-

locity, Um(t), is required to transform the evolution time (t) to the streamwise spatial coordinate

(x), which is obtained from the ratio of the momentum flux, Ṁ, to the mass flux, ṁ,

Um(t)�U• =
Ṁ
ṁ

=

R •
�• r(u(y, t)�U•)2dy
R •
�• r(u(y, t)�U•)dy

, (5.1)

where U• is axial velocity of gas phase far from the jet (0 in this study) [11]. In particular, the

Reynolds number is constant since the length scale increases in proportion to the velocity fluctu-

ation decay. The similarity scaling of temporal turbulent planar and round jets is illustrated by

constant-density momentum scaling [100]. It suggests that the temporal planar jet is comparable

to spatial round jet in that both exhibit a constant Reynolds number as the flow evolves.
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Table 5.1: Initial conditions of gas phase and particle phase (60 and 90 µm) and particle Stokes
number in the 7mm jet.

Re = 10,000 Re = 20,000 Re = 30,000
Ug0 21.5 m/s 43 m/s 64.5 m/s
Up0 (60 µm) 17.5 m/s 30 m/s 46 m/s
St (60 µm) 26 53 77
Up0 (90 µm) 15 m/s 32 m/s 51.5 m/s
St (90 µm) 61 122 178

The initial gas velocity conditions for the turbulent planar jet, Ug0, are given in Table 5.1 as

a function of the Reynolds number and the jet exit diameter, D. The streamwise velocity at the inlet

is specified using the following hyperbolic tangent function to smoothly transition the velocity in

the radial direction and is shown schematically in Fig. 5.1,

Ug(y) =
A
2

✓
1+ tanh

✓
y�L1

wl

◆✓
1� 1

2

✓
1+ tanh

✓
y�L2

wl

◆◆◆◆
, (5.2)

where A is the velocity amplitude, wl is the transition boundary layer width, and L1 and L2 are the

middle position of the transitions. Particles with different diameters are injected into the centerline

of the jets. The simulation domain width is 40D and the ODT model evolves for 0.11 s for all

the cases; this is approximately 70 x/D. The initial temporal resolution is 0.2 µs, the initial

spatial resolution is 50 µm, and an adaptive meshing algorithm is used, which refines the mesh

as fluctuations cascade to smaller length scales and reduces resolution as these fluctuations are

dissipated. The initial conditions for the dispersed phase are given in Table 5.1, in which the

initial particle axial velocity along the centerline is extrapolated from experimental results. The

results reported here are collected over 512 ODT realizations, which is enough to provide stationary

statistics.
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Figure 5.1: Schematic of the tanh profile used to specify the initial streamwise velocity profile.

5.4 Results and discussion

5.4.1 Jet evolution

In order to compare particle results between our ODT results and experimental data, it

is first necessary to compare the gas-phase flow characteristics. The ODT-predicted streamwise

velocity evolution at the centerline is compared with experimental measurements in Fig. 5.2. The

mean axial velocities, Uc, are normalized by the jet exit velocity Ug0; the turbulence intensities,

Ucrms, are normalized by Uc; and the position is normalized by the jet exit diameter D. The decay

of Uc and the asymptotic level of Ucrms are typical of free turbulent jets. Overall, the numerical

results agree well with experimental data. The ODT exhibits a Reynolds number similarity while

the measurements exhibit some Reynolds number dependence as shown in the figure. This may be

indicative of some differences in the development of turbulence and boundary layers within the jet

nozzle; we have not attempted to correct for this in the ODT simulations.
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Figure 5.2: Normalized mean axial velocity (a) and turbulence intensity (b) along the jet centerline.
Lines represent ODT predictions. Experimental measurements are represented by Cross points
(Re = 10,000), square points (Re = 20,000), circular points (Re = 30,000).
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5.4.2 Particle phase

The results of particle transport are presented in this section, specifically, ODT and experi-

mental results for a turbulent multiphase round jet are compared. A detailed analysis is conducted

to assess the performance of the three ODT multiphase interaction models described in Sec. 3.2.

In this chapter, the bp value used in the jet flow for all the interaction models is 0.08.

The particles have instantaneous displacements during the Type-I interaction with the ed-

dies. The dispersion of particles is predicted for nonzero gravity (g = 9.8m/s2) as a function of

normalized axial location x/D. Figure 5.3 compares the dispersion data for ODT cases of 60 µm

and 90 µm particles to experimental measurements for Re = 10,000, 20,000 and 30,000 using

Type-I interaction model. The particle dispersion increases with the jet evolution. Heavy particles

disperse less, which ODT Type-I interaction model provides good qualitative predictions to. In the

upstream part of jet (x/D = 0� 30), the particles are scarcely affected by the fluid flow, due to a

lack of large eddy structure. As the large eddies that account for the bulk of the spreading appear

later, the particles are transported away from the center of the jet, resulting in non-uniform particle

dispersion patterns. The particle movement in the jet is strongly influenced by the size of eddies

and consequently the response time of the particles. The representative eddy map of the flow field

is shown in Fig. 5.4(a). The particles in the low Re case have high dispersions because they travel

slowly through the jet and thereby interact with more eddies due to low initial velocities of par-

ticles. This is related to the crossing trajectory effect, that arises when the particle are not acted

upon for as long as a given eddy lifetime [5, 37, 40]. The difference of the dispersions of 60 and

90 µm particles is greater in the low Re jet compared to the high Re jet at a given axial location.

The Stokes number of the large particles is big so that it takes a long time to adjust to the flow and

hence leads to less dispersion. As shown in Table 5.1, the particles of given size have high Stokes

number in high Re jet, and their dispersion is small. Table 5.1 also shows that for two particle

sizes, their relative difference in Stokes number is nearly the same in the different jets. However,

this similarity does not result in the similarity in the dispersion as noted above. This is because in

spite of similar relative difference, the magnitude of the particle Stokes number is large in the high

Re jet that leads to less overall dispersion. Thus, less difference in the dispersion of two particles

exists in the faster jet.
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Figure 5.3: Type-I dispersion of 60 µm and 90 µm particles in the 7mm jet with Re = 10,000,
20,000 and 30,000.

Figure 5.5 shows the mean axial velocity along the centerline of particles of two sizes in

the three different Re jet at different axial positions. Overall, there is a good agreement between

numerical and experimental results. Initially the particles are injected at a lower velocity than

the fluid. At the nozzle exit the particles tend to accelerate to catch up to the air and then their

velocity decreases due to momentum exchange as the particles relax to the decaying gas velocity.

The differences between ODT and experimental results are due to the combination of modeling

deviation and the uncertainty in the inlet gas conditions related to turbulence development. Another

possible reason is that in the experiment, the particles might be injected early and have equilibrated

with the fluid before they reach the nozzle exit. If so, the extrapolated initial particle velocities used

in the simulations are likely to introduce some deviation.
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Figure 5.4: Maps of eddy sizes, locations, and occurrence times for representative ODT realiza-
tions for jet flow. Plot (a) shows instantaneous eddy locations for a Type-I interaction; plot (b)
shows eddy “box” extents for a Type-C interaction.
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Figure 5.5: Type-I mean streamwise velocities of 60 µm and 90 µm particles in the 7mm jet.

In generally, the particle dispersion is largely determined by the inertial response time of

the particles, which is measured by the Stokes number. The particles of small Stokes number

(St < 1) are carried by the fluid around the flow field. Since small particles respond quickly to

the change of fluid motions, they can follow the fluid closely, which lead to particle dispersion

patterns closely resembling the fluid eddy structures. In other words, particles with very small

Stokes numbers are in a quasi-equilibrium with the fluid, as were the hollow glass particles studied

in the previous homogeneous turbulence case in Chapter 4 [5]. In contrast, particles with moderate

Stokes number (e.g. 60 µm and 90 µm particles in current study) tend to move around the eddy

edges because of the effects of flow field strain. For the high Stokes number case (St > 100, not

shown here), the general dispersion pattern is similar to that of the medium Stokes number cases.

However, since the particles are so slow to respond and follow the fluid motion, even the motion
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of large eddy structures does not disturb the particles. Consequently, the particles could even cross

the eddy regions due to their large inertia.

The particles interact with the eddies in the continuous way in the Type-C model. The

eddies in the Type-C interactions are not instantaneous, but exists for the finite time as shown

in Fig. 5.4(b). The overlapping regions of eddy boxes in the figure suggest the possibility of

particle interactions with multiple active eddies simultaneously. Figure 5.6 shows the comparison

of the particle dispersion predicted by the Type-C interaction model to experimental measurement,

in which the model provides decent quantitative prediction in the jet of Re = 10,000, 20,000,

and 30,000. It is important to note that the Type-C model is shown to be able to predict the

moderate and high Stokes particles (e.g. 90 µm particles in Re = 20,000 and 30,000 jet); however,

it underpredicts the dispersion of small Stokes particles (e.g. 60 µm particles and even 90 µm

particles in Re = 10,000 jet) due to “real-time” interaction as described in Sec. 3.2. The numerical

results of axial velocities of the particles simulated by the Type-C model shown in Fig. 5.7 and are

similar to Fig. 5.5 within a 5% difference.

Here we go beyond the experiment and further examine the Type-C interactions. Fig-

ure 5.8 compares the dispersion of tracer fluid particles to “quasi” tracer particle in the case of

Re = 30,000. The “quasi” tracer particle is defined to have the same properties as hollow glass

particle in previous homogeneous turbulence study in Chapter 4 [5]. It turns out that the Type-C

model underpredicts the tracer limit because of the “delayed” dispersive motion of small Stokes

particles in contrast to tracer or fluid particle. Figure 5.9 shows the comparison of the Type-I and

Type-C interaction models for the dispersion of 60 µm and 90 µm particles in the Re = 10,000 jet.

The Type-I model gives higher prediction to particle dispersion than the Type-C interaction in that

the interactions merely occur at the birth of the eddies and disperse the particles, thus enabling

the particles to move earlier. This is consistent with the interaction nature introduced in Fig. 3.5.

The large particles tend to keep their velocity and therefore their dispersions are independent of

PEI type during the early stage of jet evolution in which the eddy time scales te are small. With

the increase of te to the order of magnitude of the inertial response time of large particles, the

large particles show different dispersive behaviors in the two different interaction models. In con-

trast, the small particles adjust to local jet velocities quickly, which leads to significantly different

dispersions since they are inserted in the jet.
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Figure 5.6: Type-C dispersion of 60 µm and 90 µm particles in the 7mm jet with Re = 10,000,
20,000 and 30,000.

As described in Sec. 3.2, the Type-IC is considered to be the most robust PEI model in that

it not only allows the particles to interact with multiple eddies at the same time but also matches

the tracer limit. Figure 5.10 shows the comparison between experimental and simulation values

of particle dispersion in the 7mm jet using the Type-IC model that reproduces the experimental

results. The prediction of particle axial velocities by the Type-IC model will not be shown here

because its comparison to experimental measurements is within 5% difference of the results of

the Type-I model, shown in Fig. 5.5. The similarity between the Type-I and Type-IC models

is due to the relatively low line-directed particle velocity. The line directed particle velocity is

due to the turbulent advection, precluding strong transverse eddy trajectory crossing effects. The

tracer dispersion is also well predicted by the Type-IC model with the combined instantaneous and
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Figure 5.7: Type-C mean streamwise velocities of 60 µm and 90 µm particles in the 7mm jet.

continuous interactions. This is shown in Fig. 5.11, where the comparison of the radial dispersion

of “quasi” tracer particles and tracer particles in the 7mm jet for Re = 10,000 are plotted. This

comparison represents a validation of the correct model behavior.

The ODT simulation results for particle dispersion predicted by three PEI models are pre-

sented in Lagrangian form in Fig. 5.12, 5.13 and 5.14. For the short times-of-flight, the particle dis-

persion behaves as a quadratic function; it becomes linear with time for long times-of-flight [101].

Similar to the previous Eulerian predictions, small particles respond to the fluid quickly and reach

high velocities in shorter times than large particles, thereby dispersing faster in the jet flow of given

Re. The Type-I and Type-IC models give similar reasonable predictions, while the Type-C model

underpredicts the turbulent dispersions of the Re = 10,000 and 20,000 cases because of the poor

prediction of the low Stokes particles. It can be observed that at low Re number, the exit velocities
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the Type-C model in the 7mm jet and Re = 30,000.
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Figure 5.10: Type-IC dispersion of 60 µm and 90 µm particles in the 7mm jet with Re = 10,000,
20,000 and Re = 30,000.

of the particles are relatively low, whereas in the high Re jet, the particles experience the short

quadratic region and behave like the ballistic-limit due to high local Stokes number even if the

velocities of the surrounding gas phase drops. Lagrangian particle dispersivity, DL, can be defined

as

DL =
1
2

dD2
p

dt
=

1
2

d
dt
hDp(t)Dp(t)i, (5.3)

where Dp is the radial particle displacement. The particle dispersivity is estimated in the linear

portion of the Lagrangian dispersion curves by using a least-squares fit. Table 5.2 compares ODT

simulation results of DL to the values reported in Kennedy’s study [98] at Re= 20,000 and 30,000.

DL increases with increasing Reynolds number. Taylor’s theory [101] shows that the mean-square

dispersion of fluid particle in a stationary homogeneous turbulence is a quadratic function of evo-
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Figure 5.11: Comparison of Lagrangian dispersion of tracer particle and “quasi” tracer predicted
by the Type-IC model in the 7mm jet and Re = 30,000.

Table 5.2: Particle dispersivity (60 µm and 90 µm) in the 7mm jet.

Re Exp Type-I Type-C Type-IC
60 µm 20,000 0.0079 0.0067 0.0039 0.0069

30,000 0.010 0.0095 0.0053 0.0111
90 µm 20,000 0.0066 0.0037 0.0068

30,000 0.0106 0.0063 0.0103

lution time and behaves linear with time for long times-of-flight. Batchelor [102] analyzed the

transport of the fluid particle in the shear flow and showed that the dispersion increases linearly

with time and the diffusivity keeps constant. However, a Stokes number particle is not expected to

have the similar behavior as a fluid particle due to its finite inertia. As discussed before, the Stokes

number of inertial particles determined whether they respond to the fluctuations of the surrounding

flows. The particle would eventually tend to respond to all the velocity fluctuation of the gas phase

when the local particle Stokes number is O(1). Both ODT simulations and experimental measure-

ments suggest that the 60 µm and 90 µm particles have the apparent linear region after about 0.02

and 0.03 seconds, respectively, since then they achieve a Stokes number of O(1).
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Figure 5.12: Lagrangian dispersion of 60 µm and 90 µm particles predicted by the Type-I model in
the 7mm jet.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0  0.02  0.04  0.06

60 µm

Re = 10000

D
p

2
 /
 (

m
m

2
)

time / (s)

 0

 50

 100

 150

 200

 250

 300

 350

 400

90 µm

Re = 10000

D
p

2
 /

 (
m

m
2
)

ODT
EXP

0 0.02 0.04 0.06

60 µm

Re = 20000

time / (s)

0 0.02 0.04 0.06

60 µm

Re = 30000

time / (s)

90 µm

Re = 20000

90 µm

Re = 30000

Figure 5.13: Lagrangian dispersion of 60 µm and 90 µm particles predicted by the Type-C model
in the 7mm jet.
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Figure 5.14: Lagrangian dispersion of 60 µm and 90 µm particles predicted by the Type-IC model
in the 7mm jet.

5.4.3 Parameter sensitivity analysis

Previous studies [11, 16] of parameter sensitivity of ODT parameters C, Z and b have

formed the basis for parameter selection. In order to investigate the crossing trajectory effect of

the particles in the homogeneous turbulence, we conducted parameter analysis of bp that relates

the turbulence characteristics to the particle-eddy interaction time [5].

In this section, the sensitivity analysis is performed to establish a common basis on which

bp can be estimated for particle behavior in shear flow. The analysis is important to guide the future

developments and extended applications of the ODT multiphase models. The particle parameter

bp determines the magnitude of the particle-eddy interaction in the ODT turbulence. High values

of bp lead to possibly high interaction time by increasing the maximum interaction time scale bpte

and reducing the eddy velocity, 4YT M/(bpte), felt by the particles during interactions. On the

other hand, when bp is low, the particles are more likely to interact with “fast” eddies for shorter

times. Thus, two competing interaction effects on the particles are controlled by bp simultaneously.
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Figure 5.15, 5.16 and 5.17 show bp sensitivity on the dispersions of 60 µm and 90 µm

particles in the 7mm jet for Re = 10,000, 20,000 and 30,000 predicted by the Type-I, -C and -IC

interaction models. Five bp values are chosen, that is, 0.02, 0.04, 0.06, 0.08 and 0.1, which are in

similar range to ones used in the homogeneous turbulence study in Chapter 4 [5]. Apparently, the

simulations using bp = 0.08 give the best predictions to experimental data. The ODT parameters

values are C = 16, Z = 50 and b = 0.4 for all the ODT simulations, each of which consists of 512

realizations.

All eighteen cases show the same bp sensitivity on particle dispersion in the shear flow.

The particle dispersion decreases as bp increases. That suggests that even though the eddy time

scale te = bpte increases, the crossing trajectory effect plays a role in limiting the interaction time

Tixn = l/2gtp, that is less than te. However, because of their short relaxation times, the small light

particles easily adapt to the fluid fluctuations and tend to interact with the eddies for a longer time.

It turns out that their dispersions are not largly subject to the crossing trajectory effect. Therefore,

altough the crossing trajectory effect is still dominant in the particle-eddy interactions, the large bp

enhances the overall interaction time for small particles. In contrast to the large heavy particles, the

dispersion of the small light particles reduces less with the increase of bp. For the given particle

size, the particle dispersions in the high Re case tend to decrease faster when the value of bp

becomes larger. This is attribute to the fact that fast fluid helps the particles cross out the eddies

early.

In order to illustrate the comparison of the bp sensitivity in a direct way, a spreading pa-

rameter Sb at given x/D is defined as

Sb (bp,1,bp,2) =
Dp,bp,1 �Dp,bp,2

Dp,bp,3

/
bp,2 �bp,1

bp,3
, (5.4)

where Dp represents the particle dispersion, and bp,3 is the average value of bp,1 and bp,2. Large

Sb indicates high sensitivity of particle dispersion to bp. Figure 5.18 shows S(0.02,0.1) spreading

at x/D = 50 as a function of Re for three different interaction models. The dispersion is more

sensitive to bp in that the crossing trajectory effect is important. The similar effect has been

observed in the previous study of multiphase homogeneous turbulence in Chapter 4 as well [5].

In addition, the findings of the bp effect on particle disperison discussed in the last paragraph are
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Figure 5.15: bp sensitivity on the Type-I dispersion of 60 µm and 90 µm particles in the 7mm jet
with Re = 10,000, 20,000 and 30,000. Square symbols represent experimental measurements.
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Figure 5.17: bp sensitivity on the Type-IC dispersion of 60 µm and 90 µm particles in the 7mm jet
with Re = 10,000, 20,000 and 30,000. Square symbols represent experimental measurements.

clearly observable in the figure. That is, the dispersion of the small light particles in the slow shear

flow is less sensitive to bp. The Type-C interaction model is shown to be more sensitive to bp

than the two other models. This is because the Type-C model allows the particles to interact with

multiple eddies simultaneously that leads to more trajectory crossings.

5.5 Conclusions

This chapter has been concerned with the development of ODT multiphase models (Type-

I, -C, and -IC) to predict the transport of individual particle in a turbulent round jet flow. The

challenge in this work is to properly account for the particle-eddy interaction.

The ODT multiphase model uses a Lagrangian framework to solve the trajectory equations

of a particle as it interacts with a succession of discrete turbulent eddies. The Lagrangian frame-

work treats the particles as distinct entities within the fluid phase. The Type-I PEI model uses

instantaneous particle-eddy interactions and provides good predictions to particle dispersion, but

could not allow the particles to interact with multiple eddies at the same time. The Type-C PEI
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model resolves the above drawback of the Type-I PEI model by using continuous PEI(s) for the

finite evolution time. However, it is not able to capture tracer limit and therefore only accurately

predicts the high Stokes number particles. The Type-IC PEI model combines the features of the

Type-I and -C PEI models, which is considered as the most robust PEI model among the three.

The models have been validated for a range of characteristic particle response times and jet

exit velocities. The particle dispersion in Lagrangian form is initially quadratic for short times-of-

flight; the function becomes linear for long times-of-flight as the particle Stokes number becomes

O(1) and the particles behave more like tracer particles. The only model parameter bp introduced

in the models is used to scale the interaction time and fluid velocities felt by particles during

the interactions. Apparently, even though the eddy time scale te = bpte increases, the crossing

trajectory effect plays a role in limiting the interaction time Tixn = l/2gtp, that is less than te.
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CHAPTER 6. TURBULENT PARTICLE-LADEN JETS

6.1 Introduction

The effect of particles on fluid-phase turbulence is known as turbulence modulation. The

extent of turbulence modulation is influenced strongly by particle concentration. In the previous

two chapters, the dynamics of the single particle is investigated in homogeneous turbulence and jet

flow. Those flow scenarios have extremely dilute particle volume fraction (< 10�5), and, therefore,

the turbulence modulation is weak and can be neglected (one-way coupling in Sec. 2.2.1). On

the opposite limit of very dense particle volume fraction near the state of the fluidized bed, fluid

turbulence is attenuated by large viscous force associated with Reynolds number based on the inter-

particle spacing (four-way coupling in Sec. 2.2.1). As the current implementation of ODT model

does not consider the inter-particle collision, this very dense gas-solid flow is not in the scope of

this study. In the intermediate range of particle volume fraction (> 10�5) (two-way coupling in

Sec. 2.2.1), turbulence modulation is very important. The addition of particles in the intermediate

range can either enhance or reduce the gas turbulence, affecting the overall flow behavior of gas-

solid flow.

The main objective of the present study in this chapter is to perform Lagrangian ODT mul-

tiphase simulations for a temporally developing turbulent particle-laden planar jet and to compare

the model prediction with experimental measurements [103]. This work uses the Type-I particle

interaction model to compare directly with experimental data for the turbulent particle-laden jet

and also demonstrates the richness of numerical data the model can provide.

This chapter is organized as follows. Section 6.2 presents some details of the model used

for the present work followed by the description of the computational configuration in Section

6.3. Then in Section 6.4, the model’s capability is evaluated to predict the important statistics of

the turbulent particle-laden jet. The profiles of mean velocities, velocity variance modulated by

particles, particle velocities, and particle distributions are presented.
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6.2 Numerical description

The temporally developing ODT model for gas-solid flows, as formulated, solves the con-

servation equation set of Eqs. 3.3-3.5. Sp,u, Sp,v, and Sp,w are the gas-phase momentum source

terms from particles in three directions for two-way coupling, respectively, which are defined in

Eq. 3.33. To ensure conservation of momentum and kinetic energy, the triplet map is implemented

by two kernel functions, K(y) and J(y) when applied to the scalar fields in the two-way coupling

implementation. For the nonreacting flow of constant density, a detailed implementation of kernel

transformation of a triplet map is described in Sec. 3.2.6. The values of ODT parameters in the

present work are 16, 50 and 0.4 for C, Z and b , respectively, which are consistent with the param-

eters used in Chapter 5. The particle parameter, bp, is 0.08 that is the value used in the study of

particle dispersion in the nonreacting jet flow in Chapter 5. The particle motion is determined by

the drag force and gravity, which can be expressed in Eq. 3.29.

6.3 Computational configuration

The experimental study has been performed on turbulent particle-laden flows in coaxial

jet configuration by Budilarto [103]. Reynolds number corresponding to the total flow rate of the

gas-phase is 8,400 for all experimental investigations. Fully developed turbulent flow conditions

at the nozzle exit are used. The centerline velocity of the single-phase flow, U0, is 11.7m/s and

used to normalize the velocity data. The nozzle diameter, D, is 0.56 inchs and is used to normalize

the distances. The fluid gas used here is air at room temperature.

Glass bead particles of number average diameter of 25 and 70 µm are used for the study,

and the mean particle density is 2,500kg/m3. Solid loadings of the particles, SL, are set at 0.25,

0.5 and 1.0 and the particles are distributed in the monodisperse suspension. Simulation initial

conditions for monodisperse suspensions of 25 and 70 µm particles are listed in Table 6.1. Here

Up0 is initial particle velocity, np is the number of particles in the simulation, and Np is the number

of particles represented by each pseudo particle introduced in Eq. 3.33.
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Table 6.1: Simulation initialization details of particle properties in the gas solid jet.

diameter (µm) solid loading rp (kg/m3) Up0 (m/s) np Np

25 0.5 2,500 11.326 430 1,000,000
1.0 2,500 11.205 425 2,000,000

70 0.25 2,500 9.728 456 25,000
0.5 2,500 9.664 453 50,000
1.0 2,500 9.474 433 100,000

6.4 Results and discussion

The ODT simulations in the study are performed for a planar jet configuration, whereas the

experimental data considered here are collected from a round jet configuration. As mentioned in

the previous chapter, the temporal planar jet is comparable to the spatial round jet when both have

the same constant Reynolds number, which is illustrated by constant-density momentum similarity

scaling [100]. To compare the temporal simulation results with the spatial experimental data,

the evolution transformation is necessary and given in Eq. 5.1. The transverse or line- (y) and

streamwise (x) directions in the planar jet correspond to the radial (r) and axial (x) direction in the

spatial round jet, respectively. The velocity and location data presented below are normalized by

the initial gas velocity, Ug0, and jet diameter, D, respectively. The experimental measurements are

denoted as EXP whereas the results generated from ODT simulations are denoted as ODT. This

type of nomenclature is used in the following discussion and related plots. Statistics from all the

simulations here are collected over 512 realizations.

6.4.1 Single phase flow

Considering the comparison between the ODT results and the experimental data, it is vitally

important first to do some direct comparisons to validate the single-phase ODT code. As mentioned

before, the same ODT parameters as in Chapter 5 are used in this study for the consistency.

The streamwise evolution of the mean axial velocity and turbulence intensity along the

jet centerline is shown in Fig. 6.1. Overall, the numerical results agree well with experimental

data. For the single-phase unladen jet, there are two development regions in the flow evolution.
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Figure 6.1: Normalized mean axial velocity (a) and turbulence intensity (b) of single phase flow
along the jet centerline.
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In the initial region of x/D < 5, the mean axial velocity along the centerline tends to decrease

at a relatively slow rate and the turbulent intensity in the axial direction increase from 5% up to

13%. The region is known as the potential core region. The second flow region begins to develop

a significant decaying rate of mean centerline axial velocity. Most of the eddies occur in the shear

layer and mix the ambient fluid of low velocity into the jet to affect the jet decay. The turbulence

intensity along the centerline decreases and then is almost constant at the level of 10% in the

far-fields.

Figure 6.2 compares the radial profiles of the gas mean velocity normalized by the initial

jet velocity at streamwise locations of x = 5D, 10D, and 15D. As the jet decays and spreads, the

mean velocity profiles change and become flat as shown in both the simulation and experiment.

Eventually, the jet develops to the region of self-similarity (x/D > 30), in which the profiles of

normalized mean axial velocity plotted against y/y1/2 collapse onto a single curve. y1/2 is half of

the jet width, which is defined as

U
�
x,y1/2

�
=

1
2

Ug0. (6.1)

The numerical results in this study are not in the self-similarity region. Compared to the exper-

imental data, the model overpredicts the velocities close to the jet center that is also observed in

Fig. 6.3(a), and underpredicts the velocities around the nozzle edge.

6.4.2 Particle-laden flow

Jet evolution

Figure 6.3(a) shows the comparison of the radial profiles of axial mean gas velocity Uc

modulated by the presence of 70 µm particles at different solid loadings: 0.25, 0.5 and 1.0. Beyond

the initial flattening region (x/D > 5), the addition of particles results in a reduction in the decaying

rate of the mean gas velocity near the nozzle exit around the jet center. The particles lag behind the

fluid and have higher mean velocities than the gas phase beyond x = 5D. Therefore, the particles

transfer their momentum through the interface drag force to the fluid and lead to the observed

modulation in Uc. Also, the modulation in Uc becomes more pronounced with increasing solid

loadings. This phenomenon is likely due to the increase in the number of particles added into the
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Figure 6.2: Radial profiles of gas mean velocity normalized by initial jet velocity at different
streamwise locations x = 5D, 10D and 15D.
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Figure 6.3: Streamwise development of axial mean gas velocity along the centerline with different
particle solid loading.

99



 0
 2
 4
 6
 8

 10
 12
 14
 16

-3 -2 -1  0  1  2  3

x/
D

y/D

single phase
SL = 0.25

SL = 0.5
SL = 1.0

Figure 6.4: Streamwise evolution of jet width with different solid loadings SL = 0.25, 0.5 and 1.0.

flow, which interact with the gas phase. Figure 6.3(b) shows the radial profiles of Uc with the

presence of 25 µm particles at different solid loadings. Similar to the jet flow laden by the 70 µm

particles, the reduction of Uc due to the addition of particles becomes more pronounced as the solid

loading of the 25 µm particles increases.

Figure 6.4 shows the ODT predictions of jet widths of particle-laden jets with different

solid loadings of 70 µm particles. Generally, the addition of the particles tends to make the overall

jet flow denser and harder to spread towards the sides. In the view of the distribution of particle

number density (discuss later in Fig. 6.12), a high percentage of the particles appear in the jet center

for the high solid loading case. More particle-turbulence interactions in the center of the jet lead to

less dispersion of the fluid parcels away from the jet. So as the figure shows, the particle-laden jets

become narrower with the presence of more particles. For the planar jet, the characteristic velocity

Ṽ (t) and characteristic width W̃ (t) are assumed at time t. Then the global momentum conservation

of the jet implies the constant ṼW̃ , hence Ṽ ⇠ 1/W̃ . It turns out that the narrow jet width leads to

a steep radial velocity profile. This is consistent with ODT predictions of the radial profiles of Ur

with different solid loadings in Fig. 6.5. The above simple scaling analysis is introduced in [99].

The turbulence modulation by the addition of the 70 µm particles with different solid load-

ings is shown by centerline development of axial RMS velocity Ucrms in Fig. 6.6(a). The particle
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Figure 6.5: Radial profiles of gas mean velocity normalized by initial jet velocity with different
solid loadings SL = 0.25, 0.5 and 1.0 of 70 µm particles at streamwise location x = 10D.

addition reduces the peak value of Ucrms and moves the streamwise location corresponding to the

maximum Ucrms further away from the nozzle exit. The downward movement of Ucrms indicates

that the presence of particles dampens the turbulent development of the gas phase. The Ucrms re-

duction along the jet centerline occurs because the particles dissipate the turbulent kinetic energy

of the gas phase as turbulent eddies transport them via PEIs. It is also observed in Fig. 6.6 that

the gas RMS velocities are dampened more as the solid loading increases. This is because more

particles interact with the gas as the solid loading increases. Figure 6.6 also shows that with in-

creasing solid loading the streamwise location of the maximum Ucrms moves further downstream

that is followed by a reduction in the decaying rate of Ucrms. This is related to the narrowing of

the jet width in the particle-laden jet (Fig. 6.4) which leads to a steep radial profile in Ur (Fig. 6.5)

and thus an increase in the shear strain of gas phase. The increase in the shear strain promotes

an increase in the production rate of turbulent kinetic energy that reduces the decaying rate of

the RMS velocities. The effect of energy production dominates beyond x/D > 6 because there

is no significant difference of jet width for different solid loading cases when x/D < 6 as shown

in Fig. 6.4. The downstream shift of the maximum Ucrms is attribute to a more pronouced energy

dissipation effect of high solid loading in the early stage. Again, the jet width for different solid
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Figure 6.6: Streamwise development of axial RMS gas velocity along the centerline with different
particle solid loading.
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loading cases is almost the same at x/D < 6, indicating the effect of energy production is similar in

this region. However, due to the dissipation of more energy by more particles, the turbulence takes

longer to develop to the same intensity in the jet flow of high solid loading. In sum, two competing

mechanisms govern the turbulence modulation in a particle-laden jet flow. First, the turbulence is

suppressed by the energy dissipation effect of particle addition on gas-phase turbulence, which is

dominant in the early development of the turbulent flow. Secondly, the turbulence is promoted due

to the modification of the shear strain that tends to produce the kinetic energy, which is dominant

in the late evolution of the turbulence.

Figure 6.6(b) shows the streamwise development of axial RMS gas velocity along the cen-

terline of the jet flow laden by the 25 µm particles. The turbulence modulation in the particle-laden

jet with 25 µm particles follows the trend as that with 70 µm particles shown in Fig. 6.6(a).

Particle evolution

Figure 6.7 displays the centerline development of the axial mean velocities, Upc, for 70 µm

and 25 µm particles with different solid loadings. Both experimental measurements and simulation

results show that there are two development regions in terms of the mean relative velocity between

the particle and gas phases.

The locations of the first region are about x < 6D and x < 5D of the flow field laden by

70 µm and 25 µm particles, respectively. In these regions, the particles’ velocities are lower than

the gas velocities, and the gas accelerates the particle velocity that leads to a decrease in the mean

axial velocity of gas phase as shown in Fig. 6.3. The relative velocity between particles and gas

at the nozzle inlet determines the length of the first development region. Small particles have

the smaller relative mean velocity to the gas phase in this study and also respond to turbulence

fluctuation faster than large particles. Thus, the length of this region for the small particles is

shorter than for the larger particles.

The second development regions are located at x > 6D and x > 5D for the flow with the

addition of 70 µm and 25 µm particles. In these regions, the mean axial particle velocity is higher

than the mean gas velocity, and the particles start to accelerate the gas velocity via PEIs. This

leads to the reduction of the decaying rate of axial gas mean velocity, and also the decaying of

the particle mean velocity. Figure 6.7 shows that the decaying rate of mean particle velocity along
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Figure 6.7: Mean axial centerline particle velocity at different streamwise locations.

the jet centerline depends on the particle size and solid loading. For the same particle size (for

example, 70 µm particles in Fig. 6.7(a) - 6.7(c)), increasing solid loading results in a high transfer

rate of the momentum from the particle phase to the gas fluid as discussed in Fig. 6.3(a). The fast

momentum transfer between two phases leads to a strong reduction of the decaying rate of mean

gas velocity. This suggests that an increase in solid loading would reduce the mean relative velocity

between two phases, thereby reducing the decaying rate of the particles. Thus, both the gas and

particle velocities increase with increasing solid loading, as the interaction between two phases is

two-way. Comparison of Fig. 6.7(b) and Fig. 6.7(d) reveals that for the same solid loading, the

mean velocity of the small particles decreases much faster than the large particles. This is because

the small particles have shorter relaxation time than the large particles. The simulation overpredicts
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the mean axial particle velocities in the second region that are consistent with the overpredicted

mean axial gas velocities observed in Fig. 6.3.
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Figure 6.8: Radial profiles of mean particle velocity for 70 µm particle and SL = 0.25 at different
streamwise locations x = 5D, 10D and 15D.

Figures 6.8, 6.9, and 6.10 show the radial profiles of mean axial velocity, Upr, for the

70 µm particles with different solid loadings of 0.25, 0.5, and 1.0 at streamwise locations of 5D,
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Figure 6.9: Radial profiles of mean particle velocity for 70 µm particle and SL = 0.5 at different
streamwise locations x = 5D, 10D and 15D.
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Figure 6.10: Radial profiles of mean particle velocity for 70 µm particle and SL = 1.0 at different
streamwise locations x = 5D, 10D and 15D.
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10D, and 15D. Initially, the particles have a flat profile of mean axial velocity at the nozzle in-

let. As the particles move downstream, the flat profile of Upr along the radial direction become

nonuniform. This indicates that the particles tend to mix with the ambient gas of lower velocity

at y/D > 0.5 when they disperse towards the nozzle edges. The simulations provide good predic-

tions to particle velocity profiles in the nozzle (y/D < 0.5) and at a further axial location from the

nozzle exit (x/D > 10). However, the simulations do not predict enough radial dispersion of the

large particles at the early stage of the development.

The radial profiles of the mean axial velocity, Upr, of the 25 µm particles of solid loading

of 0.5 at x = 5D, 10D, and 15D are presented in Fig. 6.11. Similar to the development of the 70 µm

particles, the flat profiles of Upr is lost as the particles move further from the nozzle exit. It is

also observed that the Upr profiles are more similar to the radial profiles of mean axial gas velocity

shown in Fig. 6.2, because the 25 µm particles are more responsive to the gas behavior.

Figure 6.12 shows the radial profiles of particle number density normalized by initial par-

ticle distribution for 70 µm particle and SL = 0.25, 0.5, and 1.0 at different streamwise locations

x = 5D, 10D, and 15D. As the jet evolves, the particles tend to disperse away from the center of the

jet and the particle distribution of number density widens. Interestingly, a bimodal distribution of

particle number density is observed for all the particle solid loadings. The two peaks of particles

distribution are located at shear layers (x/D = �0.5 and 0.5) where strong turbulent diffusivity

promotes the entrainment of more particles. With high solid loading, a high percentage of the

particles are accumulated in the center of the jet. In the flow of high solid loading, more particles

interact with the jet and dissipate the kinetic energy of turbulence, thereby reducing the turbulence

intensity Ucrms as presented in Fig. 6.6. Thus, the turbulence suppression due to high solid loading

leads to the reduction of the dispersion of the particles. Figure 6.13 compares the radial profiles of

particle number density normalized by initial particle distribution for 25 µm and 70 µm particles of

the same solid loading of 0.5 at streamwise locations x = 5D and 15D. For smaller particles, wider

distribution of particle number density implies higher dispersion than larger particles.

The bimodal distribution of particle number density observed in this study is an interest-

ing dispersion pattern, which has been named the “preferential concentration” or “clustering” ef-

fect [24,44,97]. The nonuniformity of the particle number distribution is a function of the particle

inertial time scale. It is worth noting that the effect of turbulence on the particle distribution is not
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Figure 6.11: Radial profiles of mean particle velocity for 25 µm particle and SL = 0.5 at different
streamwise locations x = 5D, 10D and 15D.
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Figure 6.12: Radial profiles of normalized particle number density for 70 µm particle and SL =
0.25, 0.5 and 1.0 at different streamwise locations x = 5D, 10D and 15D.
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Figure 6.13: Normalized particle number density over the simulation domain for 25 µm and 70 µm
particles of solid loading of 0.5 at streamwise locations x = 5D and 15D.

a monotonic function of the particle time scale. For decreasing values of the particle time constant

the particles behave more as fluid elements, and therefore, exhibit a decreasing tendency for pref-

erential concentration due to the continuity constraint of fluid particles. This has been verified in

a testing case in which the fluid tracer particles and “quasi-tracer” particles of fairly small inertia

are initialized at the same locations in the jet flow. As the jet evolves, the particle number density

of quasi-tracer and real tracer predicted have good agreement, both of which show no preferential

accumulation. Once the particle time scale increases to large enough value, the particles also ex-

hibit less tendency for preferential concentration because they would not be capable of responding

to the surrounding fluid velocity. For the intermediate sized particles, such as those studied here,

the particles become temporarily “trapped” within the successive eddies in the regions of shear

layers and lead to the peak in the particle radial distribution. This implies that the turbulence may

inhibit, rather than enhance, the mixing of particles. These findings are consistent with previous

experimental measurements and computational research [24, 44, 59, 97, 104]. Experimental mea-

surements of particle dispersion in free shear layers have shown that the particle concentration field

is well correlated with the large-scale vortical structures [59]. Maxey [104] and Squires [44] used

asymptotic methods and DNS to demonstrate that the effect of inertia was to cause dense particles

to accumulate in regions of low vorticity and high strain rate. Recent DNS [24] and LES [97]
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simulations of particle-laden jet flow illustrate that for only the particles of certain intermediate

Stokes number, it is possible that particles exhibits the clustering behavior in the regions of high

turbulence intensity and have the more effective preferential concentration effect on the dispersion

statistics compared to small and large Stokes number particles. Interestingly, the referenced DNS

and LES simulations show the bimodal shape of particle number density distribution in the radial

direction as presented in Fig. 6.12 and 6.13.

6.4.3 Parameter sensitivity analysis

In the current implementation, bp is the only new adjustable parameter introduced into the

original ODT model. It relates the turbulence characteristics to the particle-eddy interaction time

by scaling the turbulent time scales and observed fluid velocity by the particles through Eq. 3.25

and 3.35. High bp leads to possibly high interaction time by increasing the maximum interaction

timescale bpte and reducing the eddy moving velocity, 4YT M/(bpte), felt by the particles during

the interactions. Apparently, there are two competing effects associated with bp on particle disper-

sion. The fundamental physical details on bp have been discussed in the previous chapters. The

values of bp used in this section are 0.04, 0.06, and 0.08, in which 0.08 is used in ODT simutlions

in previous sections.

Figure 6.14 compares the radial profiles of the number distribution of 70 µm particles nor-

malized by initial particle distribution with solid loading of 0.25 and 0.5 at the streamwise loca-

tions x = 10D and 15D using different bp. Low bp leads to a wider distribution of particle number

density. This is attributed to larger particle dispersion as low bp increases the eddy velocity experi-

enced by the particles. This greater dispersion with low bp is consistent with the effect of bp on the

dispersion of single particle observed in Sec. 5.4.3 of Chapter 5. The various bp change the two

peaks of particle number density in the bimodal distribution, whereas the particle distribution at

the center of the jet is nearly independent of bp. More particles are entrained in the region of shear

layers, that is, y =�0.5D and 0.5D where there are more eddy occurrences and a higher turbulent

intensity. Therefore, bp plays has a significant effect on the particle dispersion in the region of

shear layers.

Figure 6.15(a) and 6.15(b) show the mean axial gas velocity Uc normalized by initial mean

gas velocity Ug0 along the centerline with the presence of 70 µm particles with different bp. For low
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Figure 6.14: Radial profiles of normalized particle number density for 70 µm particles at stream-
wise location x = 10D (top) and 15D (bottom) with different bp.

bp, there is a reduction of the decaying rate of mean axial gas velocity along the jet centerline. Low

bp allows the particles to undergo high eddy velocity that accelerate the particles. Beyond x = 6D,

the particles have a higher velocity than the gas phase, and they start to transfer the momentum to

the gas. This momentum transfer is promoted by the acceleration of particle velocity due to low

bp, which leads to a reduction of the decaying rate of Uc.

The comparison of the RMS axial gas velocity Ucrms normalized by initial mean gas veloc-

ity Ug0 along the centerline with the presence of 70 µm particles with different bp is displayed in

Fig. 6.15(c) and 6.15(d). The addition of the particles with low bp has a more pronounced effect of

reducing the peak value of Ucrms. As Fig. 6.15 shows, the particles have large dispersion and wide

radial distribution of particle number density at low bp. Large particle dispersion due to low bp

leads to the dissipation of more turbulent kinetic energy of the gas phase by the particles via PEI.
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Figure 6.15: Mean (top) and RMS (bottom) axial gas velocity along centerline with the presence
of 70 µm particles with different bp.

6.5 Conclusions

In this chapter, the ODT multiphase model is extended to simulate a turbulent particle-

laden jet in a temporally evolving planar configuration. A two-way momentum coupling mech-

anism is implemented to allow the gas motion to be modulated by the particles. Momentum

transfer between the phases is accounted for through source terms from the particles in the dif-

fusion equations. To couple with eddy motions, the source term is also implemented in the kernel

transformation and an iterative procedure for eddy selection.

The ODT simulations for the single-phase flow and particle-laden jet flow compare well

with experimental data. The same ODT parameters and particle parameter are used for consistency

with the study of single particle dynamics in the jet flow in Chapter 5. The simulation results of
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single-phase flow suggests that the ODT model can qualitatively predict the typical fluid behavior

of jet flow. For the simulations of the particle-laden jet, two different particle sizes and three

different solid loadings are considered. The effect of particle addition on mean and RMS axial

velocity of the gas phase is investigated. The development of particle velocity in the axial and

radial directions and particle number distribution are illustrated. The simulation results compared

to the experimental data show that the model qualitatively captures the flow modulation with the

presence of difference particle classes with different solid loadings. Lastly, a parameter study

is performed to investigate the effect of the only adjustable particle parameter bp on two-way

coupling jet flow.

115



CHAPTER 7. STATISTICS OF PARTICLE TEMPERATURE HISTORIES

7.1 Introduction

The spores produced by certain bacteria are known to pose severe threats to human health

and safety. Neutralization of these biological agents has been a vital component of many threat

reduction scenarios. Past experimental investigations suggest that the spore neutralization can be

achieved by heating and chemical corrosion, both of which can be effectively used in multiple

bio-agent defeat scenarios. The chemical process that involves water vaporization and structural

corrosion of particles is not the scope of interest in this study. The present study addresses the

post-blast-phase mixing between biological agent particles, the environment that is intended to

neutralize them, and the ambient environment that dilutes the jet flow. The investigation of bio-

logical neutralization using experimental methods is challenging, and in some cases not feasible

due to the destructive nature of the environment. When experimental investigations are not viable,

numerical simulation is necessary to analyze the multiphase flow dynamics.

In the previous chapters, the ODT multiphase model was shown to accurately predict

particle-fluid interactions in the isothermal jet flow, especially on the fine scales. In this chapter,

the ODT model is used to investigate particle temperature histories in a non-isothermal ethylene jet

flow. The high-temperature jet interacts with the particles of varying inertia and thermal relaxation

time scales, tp and tH , which are initially outside the jet. The jet flow is bounded on one side by

a wall. This particular configuration, on one hand, has practical interests, i.e., the neutralizaion of

biological agents by a thermal and chemical environment of high temperature. On the other hand,

the configuration includes much relevant physics that is not studied elsewhere and there are no

experimental measurements of such particle heating available. Thus, this highlights the need for

the methods to investigate this type of flows as provided by the current ODT multiphase model.

The work in this chapter has been included as part of a technical report for this project [105].
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Table 7.1: Particle properties in ethylene jet.

case # 1 2 3 4
density (kg/m3) 972 97.2 9.72 0.972
diameter (µm) 100 100 100 100

tp (ms) 30 3 0.3 0.03
tH (ms) 30 3 0.3 0.03

7.2 Computational configuration

In carrying out the simulation of non-isothermal jet flow with the ODT model, the density

changes associated with the turbulent mixing result in dilatational velocity changes [16]. Due to

heat release, the convection velocity along the line occurs through the flow dilatation. Simulation

grid cells are either expanded or contracted as required by continuity. The jet Reynolds number

and time scale based on the initial velocity and thickness is 225,000 and 5⇥10�4 s, respectively.

The jet is taken to be the products of a stoichiometric ethylene flame, and its initial temperature

is roughly 2300 K with an ambient temperature of 300 K. As such, heat release is minor, being

associated only with chemical relaxations of the mixture towards the local equilibrium state.

Since there are no particular experiments to compare to, particle time scales are selected

based on the estimation of particle heating time scales for single spores that are on the order of

10�4 s [106]. Here it is assumed that the particles have no internal temperature gradient due to the

small particle size. Particle time scales in this chapter vary from the approximate time scales for

a single spore (3⇥ 10�5 s) up to three orders of magnitude larger. As described above, the fluid

time scale has been selected so that small particles essentially follow the gas-phase flow while the

largest particles significantly lag behind the gas phase. Since the wide range of relevant particle-

flow time scales is covered in this study, it is desirable to extend the results to other parameter

regimes with suitable normalization in the future. Table 7.1 shows the particle properties used in

the study.

The schematic configuration of the jet flow is shown in Fig. 7.1. The flow is bounded by

a wall on the left side of the domain while it is open on the right side of the domain. Four parti-

cles are located in the region between the left side of jet and the wall, and four other particles are
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Figure 7.1: Schematic plot of hot jet configuration interacting with eight particles.

placed on the opposite side of the jet where the flow is unbounded. The initial particle locations,

yp0, are 0.02, 0.04, 0.06, 0.08, 0.27, 0.29, 0.31, and 0.33 m. The initial jet location is extended

from 0.1 to 0.25 m. To better denote particle position relative to the jet, the simulation results use

the initial particle positions expressed in terms of the jet radius, R. Thus, the particles on the wall

side and open side have negative (left) and positive (right) initial position, respectively. That is,

yp0 = �2.07R, �1.80R, �1.53R, �1.27R, +1.27R, +1.53R, +1.80R, and +2.07R. The particles

and fluid flow starting from a given location can disperse in either direction leading to converging

or non-converging paths as shown in Fig. 7.1. A particle initially closer to the high-temperature

jet would be expected to experience more interactions with the jet flow. The instantaneous Type-I

particle interaction model with one-way coupling is used with the one-way momentum and en-

ergy transfers from the gas phase to the particle phase. Statistical data are collected from 1024

realizations of the ODT simulations.
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7.3 Results and discussion

7.3.1 Jet evolution

In common free shear flows the dilatation velocity is nominally centered on the jet, equiv-

alent to matching pressure gradients on each end of the domain. However, in the wall-bounded

jet flow, the wall boundary condition fixes the fluid velocity at the left wall so that dilatational

velocities tend to increase with increasing distance from the wall. For the present simulation, this

becomes significant in the early mixing period where the fast initial mixing leads to rapid dilata-

tion and velocity change. When the jets are reacting flow, the dilatation is very strong, and this

dilatational velocity is found to have an effect on the turbulent mixing and fluid dilution.

The high-temperature jet has low density so that the mixing results in a narrowing of the jet

in a mass-weighted sense that shows less dispersion in terms of temperature than a jet without the

strong density variation; this is a consequence of the differences in the density between the jet and

the surrounding ambient air. Also, it is noteworthy that the jet carries less momentum and kinetic

energy per volume than a jet at ambient temperatures. In Fig. 7.2, the average temperature field is

depicted as it evolves over the duration of the simulation. The jet flow is rapidly mixed in the early

evolution when the time scales are shortest. The turbulence time scale is initialized to 5⇥ 10�4

s based on the initial jet velocity and thickness and is expected to increase in time after an initial

transient so that for most of the duration shown here, the time scale is expected to be comparable

to, though several times less than, the evolution time.

Figure 7.2 also shows the trajectories of the average particle position in time. Only the tra-

jectories of the nearest and furthest particles to the jet on each side are plotted for clarity because

the other particles are bounded in the middle (shown in Sec. 7.3.2). Particle positions are discussed

in detail below, but the trajectories here are a consequence of dilatation and inhomogeneous tur-

bulence that leads to inhomogeneous dispersion. The density difference described above will be

significant in interpreting the results and is further discussed here. The hot jet is initially seven

times less dense than the ambient air. While the initial width of hot jet exceeds the thickness of the

wall-side ambient region, the mass of air in the wall-side region is five times greater than the mass

of air in the hot jet. As consequence, the mixing of the hot gases into the ambient air results in
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Figure 7.2: Gas temperature contours across the time-space domain simulated by the ODT model
and the trajectories of the nearest and furthest particles to the jet on each side (tp = tH = 0.03 ms.

substantial and rapid cooling, and the hot jet is gradually diluted as it mixes with successive pairs

of particles on each side of the jet.

To further describe the flow field interacting with the particles, the turbulent kinetic energy

and its dissipation rate are computed from the statistics of the ODT velocity field. Based on these,

the values of the integral time scales and the turbulent diffusivity can be obtained and their contour

plots of time evolution are shown in Fig. 7.3. These provide a qualitative overview of the flow field

evolution. The integral time scale is initially small as seen in Fig. 7.3, but it increases as turbulent

mixing occurs so that the relevant integral time scales for most of the evolution (10�2.5 �10�1.5 s)

are a few times less than the evolution time. This is between the time scales of two larger particles

(tp = tH = 3 ms and tp = tH = 30 ms). The spatial variation of the turbulent diffusivity across

the domain is also shown in Fig. 7.3 for different evolution times. The inhomogeneity in the

turbulent diffusivity plays a significant role in interpreting the results below. Fluid elements in the

regions of higher turbulent diffusivity will be more strongly dispersed, and the particle following

the fluid elements should be similarly affected and dispersed strongly. There are two turbulent

effects related to the dispersion. First, during the development of the jet, there is a strong separation
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Figure 7.3: Contour plots for the integral time scale (left) and turbulent diffusivity (right) estimated
from the turbulent kinetic energy and dissipation rate.

between the turbulent jet region with strong dispersion and the surrounding region with essentially

no dispersion. Second, in the later evolution, the characteristics of a boundary layer flow essentially

increases turbulent diffusivity farther from the wall associated with greater length scales.

7.3.2 Particle evolution

Figure 7.4 presents a series of instantaneous profiles from a single-realization simulation

of the particle time scale tp = tH = 0.03 ms. The results of typical particle trajectories exhibit

instantaneous motion characteristic of the Type-I particle interaction in the ODT model. The tem-

perature field felt by the particles and the particle temperature are also shown. These temperature

profiles exhibit how the particle response lags behind the high frequency temperature fluctuations,

which is particularly clear in Fig. 7.4(c) where the temperature of gas and particle are overlaid on

each other. Since multiphase ODT is a stochastic model, single realizations have limited meaning,

and the ensemble of these simulations are used to compute statistical properties of the two phases

in turbulent flow.
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Figure 7.4: Instantaneous profiles of particle evolution (single realization).

The particles are initially located either on the “wall side (Left)” or “open side (Right)” of

the jet. This nomenclature will be used in the following discussion and plots. As introduced above,

four particles are evenly distributed on each side of the jet.

Figure 7.5 shows the trajectories of the particles of different time scales on the “wall side

(Left)” and “open side (Right)” of the jet overlaid on the temperature field across the ODT do-

main. Here, only the nearest and furthest particles to the jet are depicted for legible representation.

Generally, the particles are pushed away from the wall because of the gas dilatation in the early

evolution while the particles are drawn back into the jet later due to the mixing. Also, the parti-

cles with small inertial time scale, tp, are more likely to be affected by the turbulent field. More

quantitative analysis of the evolution of these particles is discussed next.
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(a) tp = tH = 0.03 ms (b) tp = tH = 0.3 ms

(c) tp = tH = 3 ms (d) tp = tH = 30 ms

Figure 7.5: Trajectories of the nearest and furthest particles to the jet on each side overlaid on the
mean gas temperature contours across the time-space domain simulated by the ODT model.

Particle position

The average positions of wall-side particles are shown in Fig. 7.6(a). The initial delay of

particle dispersion appears before the jet interacts with the particles and the particles further from

the jet delay longer. As the jet mixes with the successive particles, the particles near the mixing

regions of high intensity have higher dispersion rates. The average particle positions also show

that the particles tend to be entrained into the center of the jet where the turbulent intensity is high.

This phenomenon results from the spatially inhomogeneous characteristic of the turbulence along

the ODT domain shown in Fig. 7.3. These inhomogeneities in the turbulence lead to inhomoge-

neous particle dispersion. Once the jet interacts with the particles, the gradient of the turbulent

diffusivity drives the particles towards the center of the jet. It is also noteworthy that the dilated

and inhomogeneous turbulence causes an uncommon result, that is, heavy particles have large dis-

persion. This is attributed to the fact that these heavy particles disperse in the flow region of low

turbulence intensity as indicated by their dispersion trajectories in Fig. 7.5. Initially the particles
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(b) Open side. Initial particle position yp0 = +2.07R (blue), +1.80R
(red), +1.53R (cyan), and +1.27R (black).

Figure 7.6: Average particle positions. Solid lines represent tp = tH = 30 ms; dash lines represent
tp = tH = 0.03 ms.
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gain the momentum from the dilatation of flow field and disperse away from the jet. Later on the

jet starts to interact with the particles and tends to move them to the jet center. In terms of the long

inertial relaxation time, the heavy particles adapt to these interactions with the jet slower than the

light particles, and therefore, disperse less towards the jet center.

The average position of open-side particles are shown in Fig. 7.6(b). As evident in their

initial average dispersion behavior, the particles on the right side of the jet are pushed away from the

jet field until they interact with the jet. This is because the wall position is fixed, and the dilatation

effect on open-side increases away from the wall. The particles initially move toward the outside

of jet center due to the dilatation. The particles have strong mixing from the jet on the right side.

This tends to broaden the “tail” of the particle distribution towards the jet, which causes the mean

of the particle distribution (the mean location) to bend inwards the jet center. This occurs since the

particles begin as enssentially a delta function (a single location) with mixing concentrated on one

side of that location. The mixing then draws the particle inward, which broadens the distribution

tail and moves the mean particle locations inward towards the jet.

Figure 7.6(b) also shows that the heavy particles behave differently from the light particles.

During the early mixing that leads to rapid dilatation, the nearest heavy particles (black solid

line) to the jet lag behind the light particles (black dash line), and, therefore, are entrained to

experience more interactions and mixed into the jet. However, later on, as the jet expands, other

large particles (other solid lines) start to interact with the hot jet and tend to disperse toward the

jet center during the late flow evolution. In summary, the nearest heavy particles mix more rapidly

than the light particles because initially they exist in the flow region of high turbulent intensity;

the farther heavy particles experience a delayed mixing interaction with the jet that is attributed to

their initial positions beyond the majority of the turbulent jet region.

Gas temperature observed by particles

In order to predict the particle temperature, Tp, it is very important to investigate the temper-

ature environment, Tg, of the gas phase to which the particles are exposed. Because of the thermal

relaxation time, tH in Eq. 3.83, the particle temperature lags behind the observed gas temperature,

as shown in Fig. 7.4.
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(a) Wall side. Initial particle position yp0 =�2.07R (blue), �1.80R (red),
�1.53R (cyan), and �1.27R (black).
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Figure 7.7: Average gas temperature environment experienced by particles. Solid lines represent
tp = tH = 30 ms; dash lines represent tp = tH = 0.03 ms.
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The development of the temperature environment shows certain characteristics that are

common to all the particles. The particles investigated here find themselves initially at ambient

temperature. As the jet mixes with the surrounding air, the particles are entrained and heated by a

hot gas environment. The highest temperatures undergone by the particles tend to be reached in the

early stage because the hot jet is subsequently diluted so that the maximum temperature significant

reduces.

The average gas temperatures observed by wall-side particles are plotted in Fig. 7.7(a).

The average temperature is calculated by statistically collecting the environmental temperature

experienced by each particle over its history. As expected, the particles near the jet are entrained

into the jet earlier and experience higher temperatures. For the particles on the wall-side of the jet,

there is little difference in the temperature environment observed by heavy and light particles. This

is because heavy particles mix well with the jet and have a similar dispersion rate as light particles

in the early period of jet evolution. Further downstream, the temperature gradient across the jet

becomes smaller as the jet is cooled via turbulent mixing.

Figure 7.7(b) shows the mean gas temperature observed by open-side particles of different

initial positions and different time scales. In contrast to the wall-side particles, there are significant

differences in observed gas temperature for the heavy and small particles on the open side of the

jet. The heavy particles nearest to the jet center (black solid line) lag the fluid elements and thus lag

the dilatation of the jet, and are entrained in the jet first. So, compared to the light particles initial-

ized at the same position (black dashed line), the heavy particles experience the high-temperature

environment of the jet in the early stage of the jet evolution. For the other heavy particles (other

solid lines), their delayed mixing with the hot jet lead to less interaction with the hot gas phase.

Particle temperature

The previous two subsections have addressed the particle dispersion and the temperature

fields associated with the particles. In this section, the time evolution of particle temperature is

investigated, which can be obtained by integration of Eq. 3.83.

Figure 7.8 shows the average temperatures of the wall-side and open-side particles. The

particles near the jet region are entrained into the jet earlier, and, therefore, undergo the interac-

tions with the gases of high temperature and are heated up rapidly. While the particle temperature
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(a) Wall side. Initial particle position yp0 =�2.07R (blue), �1.80R (red),
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Figure 7.8: Average particle temperature. Solid lines represent tp = tH = 30 ms; dash lines repre-
sent tp = tH = 0.03 ms.
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lags behind the gas temperature of high fluctuations as shown in Fig. 7.4, both temperatures sta-

tistically look quite similar. For the particles of small tp and tH (dashed lines), their temperature

follows the observed temperature of the gas environment as seen in Sec. 7.3.2. For the particles

with a time scale relatively large compared to the turbulence time scales, the particle temperature

significantly lags behind the gas temperature as shown with solid lines in Fig. 7.8. Take the light

and heavy particles initially positioned at �1.27R as an example. The light particles and the gas

environmental temperature reach the maximum temperature of 850K at the same time of 0.01 s. In

contrast, the heavy particles are heated up to the maximum temperature of 650K at 0.03 s that lag

behind the evolution of their surrounding gas temperature which reach the maximum temeprature

of 850K at 0.01 s. These comparisons are shown in Figs. 7.7 and 7.8.

Another primary objective of the study in this chapter is to develop the capability to help

understand the statistical probability that the particles exposed to the elevated gas temperature envi-

ronment are neutralized. Although the deactivation mechanism is not clear so far, the experimental

work to study the effects on spores in a high-temperature gas environment provide evidence of the

deactivation [106]. The present work does not try to include any chemical effect associated with

the neutralization. Instead, the statistics of the maximum particle temperature are obtained as a

representative measure of neutralization.

The probability distributions of the maximum temperature of the particles of different initial

positions and different time scales are shown in Fig. 7.9. The heavy particles (dark blue distribu-

tion) reach relatively reduced maximum temperature because they tend to move away from the

region of high temperature as shown with solid lines in Fig. 7.6. As an exception, the particles

of the largest tp = tH = 30 ms on the open-side of the jet reach a high maximum temperature as

well. Because when they are mixed with hot gases in the early evolution, these particles experience

much more interactions with the jet than other heavy particles initialized with different locations.

The light particles near the jet center (the blue distribution in the rightmost panel on the top row

and the leftmost panel on the bottom row) have wide distributions, as they are more likely to move

around and gradually spread the distribution away from the hot region. It is also seen that heavy

particles far away from the jet on the open-side (dark blue distribution in the two rightmost panels

on bottom row) have little opportunity to interact with the hot jet, most of which stay near ambient

temperature during the entire evolution.
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Figure 7.9: Maximum temperature PDF of particles. Particle time scales are represented by small-
est tp = tH = 0.03 ms, small tp = tH = 0.3 ms, medium tp = tH = 3 ms, and large tp = tH = 30
ms.

7.4 Conclusions

In this chapter, the ODT multiphase model is extended to a nonisothermal hot jet configu-

ration. This study is first of its kind where the turbulent jet is bounded by the wall on one side that

includes the physics of interest and practical applications (e.g. neutralization of biological spores

achieved by heating of post-detonation combustion). The present study focused on evaluating the

model’s ability to capture important statistics of the temperature history of the particles involving

the jet evolution. Four simulation cases of the particles of different tp and tH are considered in

this study, each of which has eight different initial particle positions yp0 outside the jet region. The

largest particle class significantly lags behind the flow evolution, while the intermediate and small

particle classes do not follow the high fluctuations of jet flow but do follow the evolution of the

average gas velocity and temperature.

The simulations are performed using one-way momentum and energy coupling. It is ob-

served that for the particles near the hot jet, they respond less to the dilatation effect and are

entrained into the jet and heated rapidly. However, the particles farther away from the jet follow
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the inertial trajectories that delay the interactions with the jet. Interestingly, the dilatation and in-

homogeneous nature of the turbulence lead to an uncommon result of large dispersion of heavy

particles. The highest temperature experienced by the particles is reached in the early stage of the

jet evolution. The light particles near the jet region are able to reach the high temperature and have

the wide distribution of the maximum temperature. The results presented here indicate that the

model can qualitatively predict the important particle statistics in the jet.
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CHAPTER 8. SUMMARY AND RECOMMENDATIONS

This chapter summarizes the work presented in the dissertation and recommends the future

work that can be continued based on the present work.

8.1 Summary of results

The comprehensive ODT multiphase model is developed and validated in different flow

configurations to understand the particles dynamics in turbulent flow. The ODT multiphase models

are formulated in a Lagrangian reference frame that is common for particle trajectory models. One

of the unique advantages of the model is that it resolves the full range of time and length scales,

with detailed particle transport as well as particle-turbulence interactions in the flow evolution.

This work tends to form a sound physical and numerical basis for model formulations and provides

an improved numerical understanding of the interactions between particles and a turbulent fluid

phase. The following paragraphs highlight the main findings of the projects discussed in this

dissertation. A more detailed summary can be found at the end of each chapter.

In the ODT formulation of the gas phase, the turbulent advection is implemented by in-

stantaneous events of scalar rearrangement through eddy triplet maps. Intuitively, an instantaneous

(Type-I) multiphase interaction approach originally proposed in [17] is implemented in the current

ODT model (Chapter 4). The essential nature of the particle-eddy interaction is best understood

under simplified conditions. With a detailed numerical description of particle interactions with the

turbulence, the model is used to simulate the particle behavior in homogeneous decaying turbu-

lence. Particle dispersion, dispersion coefficients, velocity statistics, and integral time scales are

presented. The ODT model generally performs well and is able to capture two most important

fundamental phenomena of the particles, namely, inertial effects and the trajectory crossing effect.

In the current implementation, the adjustable particle parameter, bp, is the only new one introduced

into the ODT model. The model parameter bp scales the eddy time and the eddy gas velocity. The
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sensitivity of results to this model parameter is presented. The optimal value of bp is 0.05 in the

homogeneous decaying turbulence.

Two new variants of the multiphase interaction model (continuous Type-C and combined

Type-IC) are developed in this work (Chapter 5). The model differences are investigated by com-

paring three different approaches in the predictions of particle transport in a turbulent round jet

flow. The models have been validated for a range of characteristic particle response times and jet

Reynolds numbers. The Type-I model provides good predictions to particle dispersion, but does

not allow the particles to interact with multiple eddies simultaneously. The Type-C model resolves

the above drawback of the Type-I model by allowing continuous particle-eddy interactions for the

finite evolution time. However, Type-C model is not able to match the tracer limit and therefore

only accurately predicts the high Stokes number particles. The Type-IC model combines the fea-

tures of the Type-I and -C models, which is considered as the most robust PEI model among the

three. The optimal value of bp is found to be 0.08 in the jet flow.

A two-way momentum coupling mechanism is proposed and implemented to allow the gas

motion to be modulated by the particles (Chapter 6). Momentum transfer between the phases is

accounted for through source terms from the particles in the diffusion equations. To couple with

eddy motions, the source term is implemented in a new kernel transformation and an iterative

procedure for eddy selection. The two-way coupling mechanism extends the application scope of

the ODT multiphase model to the turbulent particle-laden flows. In this work, the methodology

is validated in a turbulent particle-laden jet in a temporally evolving planar configuration. The

turbulence modulation effect of particle addition on the mean and RMS axial velocity of the gas

phase is investigated. The development of particle velocity in the axial and radial directions and

particle number distribution are illustrated. The simulation results compared to the experimental

data show that the model qualitatively captures the flow modulation with the presence of different

particle classes with different solid loadings.

The temperature evolution of the particles along their trajectories is simulated in a hot jet

(Chapter 7). This study is the first of its kind where the turbulent jet is bounded by the wall on

one side that includes the physics of interest and practical attractions in civilian and commercial

fields. The present study addresses the post-blast-phase mixing between biological agent particles,

the environment that is intended to neutralize them, and the ambient environment that dilutes the
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jet flow. The results presented here suggest that the model can qualitatively predict the important

particle statistics in jet flames.

8.2 Recommendation for future work

The ODT multiphase models apply the relatively simple representations of the interplay

between the diffusion and turbulent advection for the evolution of the particle and gas phases. The

ability of the current models to capture a number of important features of turbulent multiphase

flows makes them valuable tools for understanding particle-turbulence interactions. The following

recommendations are now suggested for future efforts towards making the models more useful in

the multiphase fields.

• The current models simulate the particle dispersion in temporal form, and the space-time

mapping is made [11] to compare the results with spatial data. The ODT equations of the

spatial formulation are mentioned in Chapter 3 and can be used to develop the formulation

of spatially evolving particles for the direct comparison. Extension of the particle models to

the spatial ODT formulation should be straightforward.

• In the simulations of turbulent jet flow, the initial conditions are specified using a hyperbolic

tangent function. However, in the real experimental systems, the turbulence has been fully

developed at the nozzle exit. The initial conditions can affect the mixing and evolution of the

particles in the near and far fields. Using the conditions that best represent the experimental

data are recommended for more accurate simulation predictions.

• For the present work, the ODT multiphase models are developed and implemented in the

Cartesian coordinates. ODT has been formulated in cylindrical coordinates [13], where

the ODT line is oriented in the radial direction, and the axial velocity is the critical one

that drives the turbulence in the model. Hence, the author recommends to implement the

particle model in cylindrical coordinates for consistent modeling, especially in round jets.

This would allow the model to apply for more interesting validation cases including reactive

particle-laden round jet flames and plumes. Our research group has recently completed a

cylindrical ans spatial ODT formulation, though particles have not yet been implemented
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into the model. However, the methods described in this dissertation can be carried over

directly to the cylindrical coordinate system with very minor modifications.

• As demonstrated in Chapter 6, the two-way momentum coupling mechanism has been de-

veloped in the Type-I model and validated in a particle-laden jet flow. The author has im-

plemented the two-way momentum coupling mechanism in the two other ODT multiphase

models (Type-C and -IC). A similar validation case as that shown in Chapter 6 could be

undertaken to compare the performance of the three ODT multiphase models in turbulent

particle-laden flows.
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