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abstract

Alternating Direction Implicit Method with Adaptive Grids for Modeling Chemotaxis in
Dictyostelium discoideum

Christopher F. Loomis
Department of Mathematics, BYU

Master of Science

Dictyostelium discoideum (Dd) is a model organism, studied for reasons from cell move-
ment to chemotaxis to human disease control. Creating a computer model of the life cycle of
Dd has garnered great interest, one part of which is the Aggregation Stage, where thousands
of amoeba gather together to form a slug. Chemotaxis is the mechanism through which
this is accomplished. This thesis develops two- and three-dimensional alternating direction
implicit code which solves the diffusion equation on an adaptive grid. The calculated values
for both two and three dimensions are checked against the actual solution and error results
are provided. Comparisons are made between the coarse grid with refinement case and a fine
grid without refinement case. Also, a non-negativity condition for two dimensions is derived
to give a bound on the three major parameters: the diffusion coefficient and the spatial and
time discretizations.

Keywords: Dictyostelium discoideum, Numerical Methods, ADI, Adaptive Grids, Non-negativity
condition
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Chapter 1. Introduction

Dictyostelium discoideum (Dd) is a commonly studied slime mold; it has been named

a model organism by the National Institutes of Health for the large number of things we

can learn from it, including cell differentiation, chemotaxis and thermotaxis, programmed

cell death, and DNA repair. Its life-cycle is divided into four parts, generally known as the

Vegetative Stage, the Aggregation Stage, the Migration Stage, and the Culmination Stage.

In the Aggregation Stage, thousands of Dd come together to form a slug, and the major

process that guides this aggregation is chemotaxis – orientation or movement of an organism

or cell in relation to chemical agents [14].

Chemotaxis is important to study because it helps us understand inflammation, arthritis,

asthma, lymphocyte trafficking, and axon guidance in human bodies better. When tissue

becomes inflamed, it releases chemotactic factors into the bloodstream. Neutrophils, a type

of white blood cell, make contact with endothelial receptors attached to the inflamed tissue,

which then cause the neutrophils to exit the bloodstream and enter the tissue. Similarly, in

patients with rheumatoid and osteoarthritis, neutrophils are called into action. When the

joint becomes inflamed, components of the surrounding synovial fluid attract the neutrophils

to the irritated tissue [11]. In a similar way, neutrophils and eosinophils are used to ease

inflamed tissue in the lungs of asthma sufferers, and they are guided by chemotaxins to the

offending tissue [29].

Information processing work done in the brain is performed by an intricate network of

connections between nerve cells, or neurons. The average adult human brain has over a tril-

lion neurons, each connected to around a thousand other cells. This fascinating and essential

part of the nervous system starts growing during embryonic development. A neuron will ex-

tend an axon to migrate to its synaptic target in the embryonic environment. Observations

of this process show that axons approach their target regions in a very conventional and

directed manner, with few errors along the way. It is quite amazing, as the distance most
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axons travel is more than a thousand times their own diameter. The key to the axon hitting

its target is chemotaxis, both in the form of chemoattractants and chemorepellants, to make

sure it arrives at the target site without hitting something else first [25].

The end goal, of which this is a part, is to create a computer model of the full life cycle

of Dd. To accomplish this, code must be assembled for each of the different life stages of

the slime mold. To advance the progress of this model, a program is needed to predict

chemical concentration around the thousands of Dd as they pulse, in order to find the paths

in which the Dd would naturally move. This thesis creates the necessary program, which

solves the three-dimensional diffusion equation on an adaptive grid and that will allow us to

diffuse throughout the grid the cyclic adenosine monophosphate (cAMP) that is used in the

signalling process of chemotaxis.

In working with the numerics of the given physical problem,

ut = b(∇2u) = b(uxx + uyy), (1.1)

there is deserved concern that with such high concentrations of cAMP diffusing over small

steps, there may be problems with high derivatives that could affect the accuracy of the

numeric solution. One way to relieve this problem is to use an adaptive grid. Then, by

altering the discretization of the grid, the calculations can have a predetermined precision

and we can increase the efficiency of the work by getting values closer to the true ones.

Instead of using the common method of mesh refinement, which involves creating a new

mesh to mimic the area where more accuracy is desired, we work with single points being

added to the grid. While other common methods create new domains with finer mesh sizes

to get better precision, this method allows us to save on required computer memory. We

won’t be creating multiple grids to accommodate for the many extra grids that would be

necessary, and in calculation times, as we would not be making calculations over the new

grids.

This thesis is the culmination of creating and testing the desired code. In both two and
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three dimensions, an adaptive grid of predetermined size was created, over which the diffusion

equation can be solved with a given number of point sources. Four different mesh sizes were

used to determine the efficiency of the scheme and both the two- and three-dimensional

schemes were found to be second-order accurate in space. A non-negativity condition was

found for the two-dimensional scheme and checked to make sure it was accurate.

The biological background of Dd and its life cycle, as well as chemotaxis are discussed in

Chapter 2. The numerical methods used in the program are laid out in Chapter 3. In Chapter

4 the two- and three-dimensional algorithms are discussed. Results for both algorithms are

given in Chapter 5, a brief overview of the separate modules that make up the algorithms

are found in Chapter 6, and the code is listed in the Appendices.

Chapter 2. Biological Overview

Dictyostelium discoideum (Dd) is a cellular slime mold and a social amoeba that belongs

to a group of life forms that can exist as single cells or multi-cellular organisms. They are

found in a wide range of soil habitats containing decaying organic matter. They tend to live

in the leaf litter of tropical to temperate forests, where they find bacteria to eat in ample

supply [21]. Figure 2.1 shows the life cycle of Dd with approximate times, according to

Gaudet, et al [9]. While this cycle could start at any point in the process, the standard

practice is to begin with the unicellular amoebae and moves to the fruiting body. Section

“A” represents the Vegetative Stage; “B” through “E” shows the Aggregation Stage; “F”

and “G” are the Migration Stage; and “H” through “J” is the Culmination Stage. Each of

these stages will be discussed in detail over the following four sections.

2.1 Vegetative Stage

As long as Dd has an adequate supply of bacteria on which to feed, it can live as

undifferentiated, single cells, able to divide indefinitely by mitosis every 4 to 10 hours. The

3



Figure 2.1: The Life Cycle of Dictyostelium discoideum [9]

cells intermittently monitor the amount of available food relative to their cell density by

emitting a glycoprotein called prestarvation factor (PSF). When the ratio of PSF to food

crosses a certain threshold, the cell recognizes its developmental phase of life is over and stops

multiplying. The cell then initiates the expression of genes that are required for aggregation

[21] [28].

Upon recognizing that their food source is dwindling, the cell will start to produce cer-

tain glycoproteins that will lead to aggregation. The prominent players in this group are

cAMP-dependent protein kinase (PKA) and conditioned medium factor (CMF). CMF and

PSF both stimulate gene expression and both signals make possible cAMP signalling by

inducting genes involved in cAMP synthesis and detection. Among the newly activated

genes are those that induce production of adenylate cyclase A, which synthesizes cAMP,

cAMP receptors (the cARs) which detect extracellular cAMP, and the extracellular cAMP
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phosphodiesterase which hydrolyzes cAMP. These proteins, along with PKA and an intra-

cellular cAMP phosphodiesterase with response regulator, form a biochemical network that

will create the emissions of cAMP [21].

As these proteins begin to function inside the cells, one or more starving cells will emit a

pulse of cAMP. The cAMP signal is relayed by cells nearby and the mold transitions to the

Aggregation Stage.

2.2 Aggregation Stage

As the waves of cAMP begin rolling through the environment, individual cells react to

it. They move toward the pulse, and the signal is amplified as they emit cAMP pulses

themselves. The cluster of cells which spontaneously produce cAMP in a periodic fashion

will become the “aggregation center”; chemotaxis and the relaying of the signal cause the

rapid aggregation of up to 100,000 cells [21] [28]. Each of the cells has transmembrane

cAMP receptors which exist in one of two states: active or inactive, determining whether

the receptors can bind with extracellular cAMP, which stimulates the synthesis of cAMP in

the interior of the cell, or not. The internal cAMP is secreted by the cell, and thus is carried

back to the external cAMP receptor and stimulates it again, as well as surrounding cells [28].

After repetition of this process and extended exposure to high cAMP concentrations, the

receptor will switch from active to inactive. This slows down the production of internal cAMP

and ends the pulse, and the external cAMP begins to decay as it is not being replenished

[18].

Dd movement toward the aggregation center is guided by the pulses of cAMP each cell

detects [18]. The cells react to the pulses by moving toward the highest gradient of chemical.

Cells around them do the same thing, so, naturally, there are a large number of cells moving

in the same direction. As pulses continue, the Dd form streams and then rivers as they move

toward the aggregation center as can be seen in Figure 2.2. Analysis has indicated that the

collection into streams is reinforced and stabilized by the relaying of the cAMP signal [5].
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The amoeba meet near the aggregation center and form a mound.

Figure 2.2: Aggregating cells [27]

2.3 Migration Stage

Research has shown that as the mound forms, the cells begin to differentiate themselves

[21]. In Figure 2.3, the prestalk and prespore zones are recognizable from the tipped mound

stage. This diagram represents the different subdivisions of the multicellular organism at the

migratory slug stage. The subdivisions remain in the same relative positions and proportions

until culmination.

Cell differentiation is controlled by extracellular cAMP acting on cARs to induce prespore

differentiation in aggregates and by intracellular cAMP acting on PKA. On the other hand, a

secreted polyketide called differentiation inducing factor I (DIF-1) has been shown to induce

prestalk differentiation and stalk maturation in the presence of a PKA activator.

As the cells aggregate, they begin to form multicellular mounds. The upper part of the

mound continues to send out pulses of cAMP and is pushed upward by the movement of cells

6



Figure 2.3: Subdivisions of the multicellular organism [9]

underneath it. Eventually the mound of cells topples over to become a pseudoplasmodium,

more commonly termed a slug. Guided by light and heat, the slug begins its migration,

generally toward the top layer of the soil [21], where it will find ample amounts of bacteria.

2.4 Culmination Stage

As the slug finds a new food source and this phase nears its end, cells near the tip of the

slug begin to produce large quantities of cellulose that aid the slug in standing erect [15],

and a “Mexican hat” forms. The anterior prestalk cells will slide down the middle of the

cellulose tube, eventually forming the stalk. In the meantime, posterior prespore cells slide

up the outside of the tube. After a six- to eight-hour process, the cells have created the

desired fruiting body. Once the spores are mature, they will be dispersed, and the whole life

cycle begins anew.

Chapter 3. Numerical Methods
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This chapter will give a brief overview of the numerical methods used in this thesis, as

well as how we used and/ or adapted them to the study of the diffusion equation.

3.1 Thomas Algorithm

The Thomas algorithm is an efficient way to solve equations with a tridiagonal matrices.

Developed by British mathematician Llewellyn Thomas around 1949, the algorithm is a

version of Gaussian elimination used on a tridiagonal matrix. The method is to take a

tridiagonal matrix equation,

b1 c1 0 ... ... 0

a2 b2 c2 0 ... 0

0 a3 b3 c3 0 ...

... ... ... ... ... ...

0 ... 0 an−1 bn−1 cn−1

0 0 ... 0 an bn


×



x1

x2

x3

...

xn−1

xn


=



d1

d2

d3

...

dn−1

dn


,

and use the first equation to solve for x1 in terms of x2, that is x1 =
d1 − c1x2

b1
. Then

substitute that expression for x1 into the second equation and solve for x2 in terms of x3,

and so on, down to the last equation. Next, substitute an expression for xn−1 in terms of xn

into the equation; at that point, there will be one equation with one variable and thus one

can solve for xn.

Turning around, there is now an equation for xn−1 in terms of xn, and since xn is known,

so one can find xn−1. In this way, it is possible move back up the list of equations for xi in

terms of xi+1 and solve each one for xi.

There are some restrictions in using the Thomas algorithm. For each equation, there

is division by the lead coefficient, so obviously, there cannot be a zero there. Also, in

order for the algorithm to be stable, it is necessary for |bi| < |ai| + |ci| for all i. With the

discretizations of the domain used in this thesis, these two requirements are met and so the

Thomas algorithm is used freely.
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3.2 Numerical Methods for Solving the Diffusion Equation

Considering Equation 1.1, there are numerous methods of solving the partial differential

equation (PDE) over the desired domain. For instance, one could use the forward-time

central-space method, where u(x, y, n) = unxy refers to the value at entry [x, y] at time step

n:
un+1
xy − unxy

k
= b

unx−1y − 2unxy + unx+1y

h2
+ b

unxy−1 − 2unxy + unxy+1

h2
, (3.1)

where k and h are the time and space steps, respectively, and b is the diffusion coefficient for

all directions. For an m×m matrix and using Dirichlet boundary conditions, we let both x

and y run from 2 to m−1 so as to leave the boundary values equal to zero. If we let r =
k

h2
,

then this equation simplifies to:

un+1
xy = (1− 4br)unxy + br(unx−1y + unx+1y + unxy−1 + unxy+1), (3.2)

which is first-order accurate in time and conditionally stable when solving the diffusion

equation [20]. The difficulty with this method is that its conditional stability might produce

issues when applied to an adaptive grid, as the stability ratio could grow too big, inducing

instability1.

Another common method of solving the diffusion equation is the Crank-Nicolson method,

developed by John Crank and Phyllis Nicolson circa 1947. For the diffusion equation specifi-

cally, it is numerically stable. Based on the trapezoidal rule, it gives second-order convergence

in time. Its discretized form, with diffusion coefficient b, r =
k

2h2
, and both sides centered

1In mathematics, numerical stability addresses the stability of solutions of differential equations and of
trajectories of dynamical systems under small perturbations of initial conditions. In other words, numerical
stability ensures that small perturbations in the input, i.e., round-off or truncation errors, cause only small
perturbations in the output. This tells us that, although we see error as compared to the actual solution,
these errors do not grow as time progresses, but shrink. Stability is a key component in assuring that a
scheme converges properly. Unconditional stability means that no matter the discretizations in time and
space, the scheme is stable. The schemes used in this thesis have been shown to be unconditionally stable
[4] [24].
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on time step n+
1

2
, is:

(1 + 4br)un+1
xy − un+1

x+1y − u
n+1
x−1y − u

n+1
xy+1 − u

n+1
xy−1 = (1− 4br)unxy + unx+1y + unx−1y + unxy+1 + unxy−1

The problem with Crank-Nicolson comes when we move to higher dimensions. The system of band-

diagonal equations in higher dimensions, as compared to the tridiagonal ones in one dimension,

would be very costly to solve via direct methods, making this method undesirable for use with

Equation 1.1.

The alternating-direction implicit method (ADI) is a finite difference method of solving PDEs

in higher dimensions, be they parabolic, hyperbolic, or elliptical. The ADI method was developed

in the 1950’s to simplify the issues involved with these two methods. The ADI method is also

more successful in higher dimensions because it is an operator-splitting method, meaning that it

takes a multi-dimensional operator and “splits” it into one-dimensional components. We detail the

development of ADI here to demonstrate these points.

3.3 Alternating Direction Implicit Method

We consider Equation 1.1 on a square grid. Let A1 and A2 be linear operators such that

A1u = uxx and A2u = uyy. There is a nice substitution into Equation 1.1 to make ut = bA1u+bA2u,

which we can solve using the methods for simple, one-dimensional problems.

Adopting an idea taken from the Crank-Nicolson scheme, that of centering the difference scheme

about t = (n+ 1
2)k, we can examine the Taylor series for ut = bA1u+ bA2u:

un+1 − un

k
=
b

2
(A1u

n+1 +A1u
n) +

b

2
(A2u

n+1 +A2u
n) +O(k2). (3.3)

Solving for the un+1 terms, we get

(I − bk

2
A1 −

bk

2
A2)u

n+1 = (I +
bk

2
A1 +

bk

2
A2)u

n +O(k3). (3.4)

The matrix on the left-hand side of this equation would generally be costly to invert, and thus
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the Crank-Nicolson method would be less effective. We note that:

(1± x)(1± y) = 1± x± y + xy. (3.5)

We use this fact to work with both sides of Equation 3.4. Altering Equation 3.4 by adding

(bk)2

4 A1A2u
n+1 to both sides and adding and subtracting (bk)2

4 A1A2u
n on the right side in order to

use Equation 3.5. This will complete the square on both sides. The result is

(I − bk

2
A1 −

bk

2
A2 +

(bk)2

4
A1A2)u

n+1 =(I +
bk

2
A1 +

bk

2
A2 +

(bk)2

4
A1A2)u

n

+
(bk)2

4
A1A2(u

n+1 − un) +O(k3).

Now, we can factor the two sides, which results in:

(I − bk

2
A1)(I −

bk

2
A2)u

n+1 =(I +
bk

2
A1)(I +

bk

2
A2)u

n

+
(bk)2

4
A1A2(u

n+1 − un) +O(k3).

Since we know un+1 = un + O(k), the k2 factor makes the second term on the right side on the

order of k3, the order of existing errors on that side, and thus the equation becomes:

(I − bk

2
A1)(I −

bk

2
A2)u

n+1 =(I +
bk

2
A1)(I +

bk

2
A2)u

n +O(k3).

Discretizing this equation creates a convenient method for solving successive time steps. In the

case where A1 = uxx and A2 = uyy, the matrices of the form I − k
2Ai will be tridiagonal matrices,

conveniently solved with the Thomas algorithm (Section 3.1). Let A1h and A2h be second-order

approximations to A1 and A2, respectively. Then:

(I − bk

2
A1h)(I − bk

2
A2h)un+1 =(I +

bk

2
A1h)(I +

bk

2
A2h)un +O(k3) +O(kh2).

It is from this equation that the general two-dimensional discretized ADI scheme for the diffusion
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equation is derived:

(I − bk

2
A1h)(I − bk

2
A2h)vn+1 = (I +

bk

2
A1h)(I +

bk

2
A2h)vn. (3.6)

3.4 The Peaceman-Rachford Algorithm

Now that we have Equation 3.6, we would like to split this two-dimensional problem into two

one-dimensional problems that could be solved by moving implicitly in each direction or dimension.

This is the origin of the name alternating direction implicit method. There are a number of ADI

methods from which to choose, all using Aih to represent the second order difference over the given

point in a specific direction, i = 1 for the x-direction and i = 2 for y. Thus, for the point (x, y),

A1h = ux+1y − 2uxy + ux−1y will be used in approximating the second derivative over the point in

the x-direction. Using r =
k

h2
where k is the time discretization and h is the spatial discretization,

a method attributed to Jim Douglas, Jr., circa 1956 was:

[
1− bk

2

(
1− 1

6r

)(
A1h +A2h

)]
vn+1 =

[
1 +

bk

2

(
1 +

1

6r

)(
A1h +A2h

)
+

(bk)2

6r
A1hA2h

]
vn,

which may be solved by a sequence of intermediate solutions β
(1)
n+1, β

(2)
n+1 ≡ vn+1 using:

[
1− bk

2

(
1− 1

6r

)
A1h

]
β
(1)
n+1 =

[
1 +

bk

2

(
1 +

1

6r

)
A1h + bkA2h

)
+

(bk)2

6r
A1hA2h

]
vn,

and [
1− bk

2

(
1− 1

6r

)
A2h

]
β
(2)
n+1 = β

(1)
n+1 −

bk

2

(
1− 1

6r

)
A2hvn.

This takes advantage of solving only tridiagonal systems of equations [8].

Another method developed by Douglas and Henry H. Rachford, Jr., around 1955 made use of

an intermediate solution, v̂n+
1
2 [7]:

A1hv̂
n+ 1

2 +A2hv
n =

v̂n+
1
2 − vn

k
,
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and

A1hv
n+1 = A2hv

n +
vn+1 − v̂n+

1
2

k
.

The method chosen for the two-dimensional code used in this thesis was developed by the

aforementioned Rachford and Donald W. Peaceman, in the mid-1950’s [17]:

(
I − bk

2
A1h

)
ṽn+

1
2 =

(
I +

bk

2
A2h

)
vn, (3.7)

(
I − bk

2
A2h

)
vn+1 =

(
I +

bk

2
A1h

)
ṽn+

1
2 . (3.8)

To show equivalence to Equation 3.6, we start with the left-hand side of Equation 3.6 and use

Equations 3.8 and then 3.7, with A1h and A2h the opposite-directional second-order approximations,

to see:

(
I − bk

2
A1h

)(
I − bk

2
A2h

)
vn+1 =

(
I − bk

2
A1h

)(
I +

bk

2
A1h

)
ṽn+

1
2

=
(
I +

bk

2
A1h

)(
I − bk

2
A1h

)
ṽn+

1
2

=
(
I +

bk

2
A1h

)(
I +

bk

2
A2h

)
vn.

Here, note that the variable ṽn+
1
2 should not be thought of as an actual approximation of u(x, y, n)

at any time, n, but as a temporary variable in the calculation of vn+1. Also, note that the Peaceman-

Rachford method is unconditionally stable [24].

Implementing the Peaceman-Rachford algorithm means utilizing Equations 3.7 and 3.8 to cal-

culate vn+1 from vn. The general difference equations corresponding to Equations 3.7 and 3.8 are,

respectively,

− br

2
ṽ
n+ 1

2
x−1y + (1 + br)ṽ

n+ 1
2

xy − br

2
ṽ
n+ 1

2
x+1y =

br

2
vnxy−1 + (1− br)vnxy +

br

2
vnxy+1, (3.9)

− br

2
vn+1
xy−1 + (1 + br)vn+1

xy −
br

2
vn+1
xy+1 =

br

2
ṽ
n+ 1

2
x−1y + (1− br)ṽn+

1
2

xy +
br

2
ṽ
n+ 1

2
x+1y. (3.10)

for x = 2, ...,m− 1, and for y = 2, ...,m− 1 with diffusion coefficient b and the constant r = k
h2 .

The system of equations for Equation 3.9 consists of m − 2 tridiagonal systems of equations,
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one for each value of y. We use the Thomas algorithm to solve them. Having calculated ṽn+
1
2 ,

we move to the next stage. Similarly, the system of equations for Equation 3.10 consists of m− 2

tridiagonal systems of equations, one for each value of x, and again, we use the Thomas algorithm

to solve them and construct vn+1. To do this, two-dimensional arrays for v and ṽn+
1
2 are needed, as

well as vectors for a, b, c, and the d values. These vectors are the input for the Thomas algorithm;

a, b, and c are the coefficients of the x − 1, x, and x + 1 terms of ṽn+
1
2 on the left-hand side of

Equation 3.9, respectively, while d is generated by the known values on the right-hand side. The

arrays hold all of the coefficients as x runs from 2 to m − 1. The Thomas algorithm takes these

vectors and returns a row or column for ṽn+
1
2 or vn+1, whichever is being solved.

3.5 Three-dimensional Generalized Douglas Scheme

Peaceman, Rachford, and Douglas, were the driving force in working on numerically solving

two-dimensional PDE’s in the 1950’s. These methods were all extended to three-dimensional PDE’s

later that decade. In [26] we find a valuable comparison of nine of the most popular methods of

solving PDE’s in three-dimensions, of which Jules finds the Douglas method the best by the criteria

used. They were compared with regards to relative accuracy, ease of programming, computation

time, and core storage requirements [31]. One major reason for switching from Peaceman-Rachford

is the fact that it is only conditionally stable for n > 2 dimensions, while the Douglas method is

unconditionally stable. Specifically, the modified Douglas method developed by [4] Weizhong Dai

is unconditionally stable and second order accurate in space if we choose our parameters carefully.

The involved equations use the following designations:

1)
(
A1h +A2h +A3h

)
is used to approximate

∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2
where:

2) A1huxyz =
1

h2
(
ux+1yz − 2uxyz + ux−1yz

)
,

3) A2huxyz =
1

h2
(
uxy+1z − 2uxyz + uxy−1z

)
,

4) A3huxyz =
1

h2
(
uxyz+1 − 2uxyz + uxyz−1

)
.

Similar to the two-dimensional case, where we split the algorithm into half-time steps, we divide

the algorithm into third-time steps here, one for each dimension. As referenced in the paper and
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using the above designations, Li and Hong [4] wrote the Douglas alternating-direction implicit

scheme as follows:

(
1− br

2
A1h

)
u
n+ 1

3
xyz − unxyz = br

(
A1h +A2h +A3h

)
unxyz, (3.11)

u
n+ 2

3
xyz − u

n+ 1
3

xyz =
br

2
A2h

(
u
n+ 2

3
xyz − unxyz

)
, (3.12)

un+1
xyz − u

n+ 2
3

xyz =
br

2
A3h

(
un+1
xyz − unxyz

)
, (3.13)

where r = k
h2 and b is the diffusion coefficient. As written, the scheme has slow convergence when

r is large. Since a refinement will be necessary, we would like to be able to reduce h without losing

speed of convergence. In [4] a modified Douglas scheme for three dimensions using a new parameter

ε is introduced. When ε = 0, the scheme becomes the original Douglas 3-D scheme. With r = k
h2

as before and diffusion coefficient b, the three-dimensional scheme, with ε introduced, is:

(
1− br − brε

2
A1h

)(
u
n+ 1

3
xyz − unxyz

)
= br

(
A1h +A2h +A3h

)
unxyz + b3(6ε+ 2ε3)(A1hA2hA3h

)
unxyz

(3.14)

u
n+ 2

3
xyz − u

n+ 1
3

xyz =
br − brε

2
A2h

(
u
n+ 2

3
xyz − unxyz

)
(3.15)

un+1
xyz − u

n+ 2
3

xyz =
br − brε

2
A3h

(
un+1
xyz − unxyz

)
(3.16)

The general discretized equation for Equation 3.14 is quite tedious to expand because of the

last term, and thus the three equations will be omitted in this part. They can be found in the code

in the FirstKnown module. For a brief overview, see Section 6.21, or find the full code in Appendix

B.10. We do note that the left-hand side of each equation is identical-looking when solved for the

next third time step, and the previous iteration is used to update the next step.

3.6 Adaptive Grid Methods

Adaptive grid methods have been around since the 1970’s and used in conjunction with different

types of problems [1]. Adaptive techniques have been used in problems of adaptive quadrature

routines [6], variable-step variable-order ODE integrators [22], or the general process of picking a
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mesh size, solving on the mesh, adapting the mesh, resolving, and then repeating [12]. One of the

first to use adaptive mesh refinement using finite difference was Joseph Oliger in 1979 [16], and his

work was continued and expanded by Martha Berger and others in the early 1980’s [1].

Programmers found out early on that refining the whole grid at once was costly in wall-clock

time and memory. Localized mesh refinement advanced to creating a separate mesh that would

mimic part of the original mesh, only with a finer discretization in both time and space. This

process of creating new, finer meshes could be repeated any arbitrary number of times until the

desired accuracy was achieved. The procedure for solving over each mesh would be systematic. If

the refined mesh’s discretization were half of the original mesh’s discretization, then the algorithm

would run twice as many times on the finer mesh using half of the time step, so that the time over

which it was run would be equal on the coarser and finer meshes. The points on the coarser meshes

would be updated with the values calculated on the finer meshes to provide better accuracy. Once

a mesh was no longer needed, it could be discarded easily; in this way, computer memory would

only be filled with required information. The number of calculations would be minimized to those

necessary to achieve the desired accuracy.

Other ways of developing optimal grids were developed in the 1980’s and 1990’s, including

variational grid generation techniques [2] [3] [23]. These techniques seek to improve on the Euler-

Lagrange formulation of making an optimum grid on an irregular geometry. The adaptive direct

variational grid generation approach seeks to control three properties of the grid: grid spacing, grid

cell areas, and grid orthogonality. These properties are derived from the discrete geometry. Using

a reference grid, one which is more simple than the physical grid but has the same properties, one

can use the discrete geometry on the reference grid to create a grid with the desired properties on

the irregular geometry.

In this thesis, the general procedure of mesh refinement has been used and modified so that

specific points are added into the current mesh to improve accuracy around troublesome areas with

high derivatives (see Section 4.5). The mesh was created as a grid with active and inactive points;

the active ones are points initially used, while the inactive ones are places that can be used in

refinement. Therefore, the matrix used was created with this idea in mind. The plan was to start

off with a sparse matrix where every fourth point would be considered active, while the three in
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between would be unused unless it were necessary to refine there. It would require little extra

memory and many fewer calculations than if extra matrices had been created to hold additional

meshes. We use a pointer matrix that shows at any given point what the adjacent point is in any

direction, to allowing points to be inserted relatively easily. A value is given to the new point by

interpolating over the two nearby points, and we continue with the same algorithm as before. In

Theorem 2.1 [13] of their paper, Mai and Wu showed that the accuracy when using such refinement

is of first order in space. Thus, the accuracy of the scheme described here is of first order in space

instead of second.

Figure 3.1: The Grid Surrounding a Central Point with No Refinement

For the adaptive grid, we had to make a decision about the term (A1A2A3

)
unxyz in Equation

3.14. The operator utilizes the given point and its closest neighbor in all twenty-six directions, i.e.,

up and down, left and right, forward and backward, and all of the possible combinations. Think of

it as three 3× 3 squares of nine points as shown in the Figure 3.1, with the the point [x, y, z] = 14

in the center. On a static grid, this operator would give us little problem; imagine taking three

movements – a positive movement in the x-direction toward 15, in the y-direction toward 11, and

in the z-direction toward 5. No matter in which order they were done, one would always end up at
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Figure 3.2: The Grid Surrounding a Central Point with Refinement Point 28

the point labelled 3.

But on a refined grid, the order in which we discretized might affect the outcome when acting

on a given point, depending on whether there were refined points nearby. Imagine there were a

refined point (28) between 3 and 12, as in Figure 3.2. Because of the refinement, starting at 14,

moving positively in the x-direction towards 15, then positively in the y-direction towards 12, and

lastly positively in the z-direction would land one on point 28. But doing the same three things in

a different order ends differently. Again starting at 14, moving positively in the y-direction towards

11, then positively in the z-direction towards 2 and positively in the x-direction would end up on

3. The refined point there makes a difference, but it only becomes a problem based on the order of

the movements, which comes from the order of discretization. We chose to discretize it in the order

listed, by z, then y, and then x. Any order of discretization would present the same problems.

Chapter 4. Two-Dimensional Algorithm

18



This chapter will give an overview of the two-dimensional code and summarize what each func-

tion inside the program does. For actual code, see Section A. We then briefly discuss transitioning

from two dimensions to three.

4.1 Overview of the Program

The two-dimensional program consists of six basic parts: initializing variables, pulsing, moving,

diffusing, refining, and coarsening. Diffusion is done using the Peaceman-Rachford method. At

times within the diffusion function, situations arise that do not fit well with the P-R method, that

require extra work to diffuse correctly. At those times, we call on two other functions that deal

with individual points, or pairs of points that are isolated from other active points.

4.2 Initialization of Major Variables

The program (Project) starts by initializing some important values, including the time and

space discretizations, as well as the diffusion coefficient. It takes as an input, n, the number of

initial active points along one side of the matrix. It calculates the matrix size m (for an m ×m

matrix) by adding three points in between each point, which will be potential refinement points,

if necessary. Then the standard square matrix v is created, initialized with zeros. When working

with the matrix, it was easiest to treat is as Cartesian coordinates.

Next, the pointer matrix PT is initialized by setting six values for each initial grid point:

1) the x-coordinate of the point to the right,

2) the distance to that point,

3) the x-coordinate of the point to the left,

4) the y-coordinate of the point above,

5) the distance to that point,

6) the y-coordinate of the point below.

Values are also set for one to three for the left and right boundary points, and values four

through six for the lower and upper boundary points. Thus, along any row or column, when

refined grid points are activated, they will always be between two defined points.
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Lastly, the starting location(s) for the cell(s), or point sources, inside the matrix are initialized

in the p× 2 matrix Loc, where p is the number of point sources.

The solution algorithm proceeds via the following series of steps: the cell moves, pulses at ap-

propriate intervals, and repeats. In between, the cAMP is diffused, refinement is done, if necessary,

and coarsening is also performed at intervals, if necessary.

4.3 Initializing a Pulse

A point source with value one is allowed to diffuse for twenty time steps using the actual

analytical solution,

u(x, y, t) =
1

4πbkt
exp

(
−
(
(x− x0)2 + (y − y0)2

)
h2

· 1

4bkt

)
, (4.1)

where [x0, y0] is the location of the pulse, b is the diffusion coefficient, h is the spatial discretization,

and k is the time discretization. Then, as the initial conditions for the pulse, this analytic solution is

inserted the values in the matrix around the location of the point source, truncated past the radius

1.1

h
. If pulsing successive times, the pulses after the first would add to the chemical at the points

around the point source. This allows us to measure the accuracy of the program by initializing a

pulse, diffusing the chemical for a number of time steps using our scheme, and checking the values

we calculated against the actual solution at the proper time. Accurate error calculations can then

be made by checking the difference between calculated and actual values point by point throughout

the matrix.

4.4 Chemical Diffusion

The equation used to diffuse cAMP is

ut = b(uxx + uyy) + g(t), (4.2)

where ut is the derivative with respect to time, b is the diffusion coefficient, uxx and uyy are the

second derivatives in the x and y directions, respectively, and g(t) is the time-dependent pulse
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function.

Figure 4.1: Labelling of Distances from the Center Point

We discretize the equation thusly, with k as the time step and hi as the distance between the

two points whose values being subtracted, as shown in Diagram 4.1. For h3 and h6, the averages

of h1 and h2, and h4 and h5, respectively, are used:

ut = b(uxx + uyy) + g(t), (4.3)

vn+1
xy − vnxy

k
= b
( vnx+1y − vnxy

h1
−
vnxy − vnx−1y

h2
h3

+

vnxy+1 − vnxy
h4

−
vnxy − vnxy−1

h5
h6

)
+ g(t), (4.4)

vn+1
xy = vnxy + bk

( vnx+1y − vnxy
h1

−
vnxy − vnx−1y

h2
h3

+

vnxy+1 − vnxy
h4

−
vnxy − vnxy−1

h5
h6

)
+ kg(t). (4.5)

We take as input the v matrix and use the Peaceman-Rachford ADI method to solve for the

next time step. We note that r =
k

h2
for Equations 4.6 and 4.7 and see that:

− br

2
ṽ
n+ 1

2
x−1y + (1 + br)ṽ

n+ 1
2

xy − br

2
ṽ
n+ 1

2
x+1y =

br

2
vnxy−1 + (1− br)vnxy +

br

2
vnxy+1 + kg(t), (4.6)

− br

2
vn+1
xy−1 + (1 + dµ)vn+1

xy −
br

2
vn+1
xy+1 =

br

2
ṽ
n+ 1

2
x−1y + (1− br)ṽn+

1
2

xy +
br

2
ṽ
n+ 1

2
x+1y. (4.7)

These are the equations generated. We let x and y run from 2 through m − 1. We’ve had to

modify Equations 4.6 and 4.7 slightly to account for the adaptive grid, the main difference being
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that r is not constant but based on the two points over which the derivative is being calculated.

The modified equations are below:

− bk

2h2h3
ṽ
n+ 1

2
x−1y+(1 +

bk(h1 + h2)

h1h2h3
)ṽ

n+ 1
2

xy − bk

2h1h3
ṽ
n+ 1

2
x+1y

=
bk

2h5h6
vnxy−1 + (1− bk(h4 + h5)

h4h5h6
)vnxy +

bk

2h4h6
vnxy+1 + kg(t), (4.8)

− bk

2h5h6
vn+1
xy−1+(1 +

bk(h4 + h5)

h4h5h6
)vn+1

xy −
bk

2h4h6
vn+1
xy+1

=
bk

2h2h3
ṽ
n+ 1

2
x−1y + (1− bk(h1 + h2)

h1h2h3
)ṽ

n+ 1
2

xy +
bk

2h1h3
ṽ
n+ 1

2
x+1y. (4.9)

Here, the intermediate matrix ṽn+
1
2 is where we store the calculations after the first half time-

step, which is used to solve for v at the next time step. These equations lend naturally to setting

up a tridiagonal matrix on the left-hand side that can be used with the Thomas algorithm to solve

the system of equations. This algorithm can be used both when calculating ṽ from the current v,

and also when calculating the new v from ṽ.

Now, how one time step looks in terms of the Diffuse function is shown. Let us assume we

are working in a row, i.e., in the x−direction (although the algorithm works the same for the y-

direction). We calculate first derivatives along the whole row. The forward derivative is calculated

by finding the difference between the adjacent point forward along the row and the current point

and then dividing by the distance between the two points. The backward derivative is similarly

found, taking the current point value minus the value of the next point backward along the row

and dividing by the distance between them.

Next, we set up the four vectors (a, b, c, know) used by the Thomas algorithm. The first three

arrays are set up with the coefficients from Equation 4.8 or 4.9, depending on whether we’re solving

for ṽ or v. The a and c matrices are the coefficients of the first and third terms on the left-hand

side of the equation, respectively, and b is assigned the coefficient of the middle term. The know

vector is the calculated right-hand side. To set these up, let x and y run from 2 through m−1. The

second derivative at each point is calculated as the difference of the two first derivatives, divided

by the average of the distances used in the first derivatives. The second derivative is used as part

of the know vector, added to the current concentration at that point. We set up the coefficients in
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each matrix to coordinate with each second derivative calculated.

Then the Thomas algorithm is used to solve the system of equations generated, and reinsert

the calculated values of the solution into the correct matrix, be it ṽ or v, whichever is being solved

for. This is repeated along all rows of vn first to find ṽ, then along the columns of ṽ to find vn+1

for the following time step. This is one iteration of the Diffuse function.

4.5 Refining the Grid

After each pulse or each time step the chemical is diffused as above, and a check is done to see

if the grid needs refinement. To do so, run through each row and column of the matrix to check

to see if the derivative between any two consecutive points in use is above a defined tolerance. If

it is, the unused point half-way in between the two points is activated, as shown in Figure 4.2 in

columns 5 and 93.

Figure 4.2: Examples of Refining the Grid

There is a restriction placed on this process. Obviously, if the two points are right next to

each other, maximal refinement has been reached and a new point cannot be activated between

them. But two points that are “too far” away from each other should not be considered, as are

[i+ 2, 5] and [i+ 2, 93] in Figure 4.2, points that are farther away from each other than the original

discretization (h) between two active points in the matrix. This prohibits an increase in the error

of the scheme by introducing a large spatial discretization.

So refinement is done by travelling along a row or column and checking the absolute value of

the derivative between each pair of consecutive points that meet the above distance requirement. If
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the derivative is above the predetermined tolerance, the following actions are performed. Assume

for this example that the movement is down column 5, and the points are where the above occurs,

namely [i, 5] and [i+4, 5]. First, a point halfway between the two points is established and initialized

in the pointer matrix. For its chemical value in the matrix, it is assigned the average of the two

identified points, so vi+2,5 =
vi,5 + vi+4,5

2
. Next, the new pointers are established for the three

points within the column, the two identified points, and the new point. Also, the point is inserted

into row i+2 of the pointer matrix, finding the closest points to the right and left of it, and inserting

it between them. In this case, they would both be the boundary points, as the refinement in column

93 would not yet have occurred and there are no other active points in the row. Last, all of the

distances for the five points involved are adjusted - the four distances for the center point and the

forward or backward distance for the other four points according to their location with respect to

the center point. After finishing, the point after the refined point in the pointer matrix would be

checked, in this case [i+ 4, 5], and it would be checked with the next point down the column.

4.6 Coarsening the grid

After every 10 time steps, the matrix is checked to see if coarsening is needed. As refining

adds points to the grid, coarsening removes refined points that have become unnecessary as the

simulation develops across the grid.

As with methods of refining a mesh, there are numerous ways of coarsening, also. One could

look at the squares created by four of the original active points. If the removal of a refined point

inside a square didn’t change the average value of all points in the square, it could be removed.

This idea could also be extended to refined points inside of smaller squares, or to a norm over the

whole domain.

In this program, the grid is combed one row or column at a time and checked to see if the

current point were a refined point. Then, if the derivatives in all directions from the refined point

are below a defined tolerance, the refined point is removed. In doing so, the value in the matrix at

the refined point is set to 0 and the pointer matrix adjusted to skip over the removed point in both

the x and y directions.
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4.7 Isolated Single Points

Figure 4.3: Single Isolated Point

Because we are refining by adding single points, a situation is sometimes created where in a

row (or column) designated for refined points, there only appears one refined point in use, so the

adjacent points according to the pointer matrix are the boundaries in one direction, and the two

points that caused it to be created in the other. Another situation is where we have other points in

the row, but they are too far away, i.e., farther away from each other than the original discretization

of two points, to calculate together. The above diagram shows what either situation might look

like, the point in question being [i+ 2, 5]. Here, the six exterior points are original points. In row

i+ 2, there is only one point; this might be because it is the only one in the row, or there might be

another that is too far away to use in the calculation. Diffusing across the points in column 5 is no

problem, but the other direction is troublesome. The ADI scheme is to be used to calculate values

for the three points in row i + 2 centered around the point in column 5, using the three points

seen in column 5 (i, i + 2, and i + 4). The issue is that there are not three active points nearby,

in the row, in which to insert the calculated values. This is because the boundary values are not

changing, nor are new points being created around the isolated one.
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Figure 4.4: Single Isolated Point with Shadow Points

Thus, we modify our approach so that we are only solving for the one point in use, namely

ṽ
n+ 1

2
xy . To do this, we take a = c = −dµ

2
and b± = (1± dµ) with subscripts differentiating direction

to get:

a1ṽ
n+ 1

2
x−1y + b+1 ṽ

n+ 1
2

xy + c1ṽ
n+ 1

2
x+1y = a0v

n
xy−1 + b−0 v

n
xy + c0v

n
xy+1, (4.10)

and solve it for ṽ
n+ 1

2
xy . To do so, we calculate the right side as we normally do. We have the

distances between those points, so we use them to calculate the coefficients of the right side. Next,

we multiply the coefficients by the values at those points to get the known value. Then we estimate

w = ṽ
n+ 1

2
x−1y and z = ṽ

n+ 1
2

x+1y using the closest rows and columns around the current point in the v

matrix. In Figure 4.3, we would take w = 1
2

(
vni,1+vni+4,1

)
and z = 1

2

(
vni,9+vni+4,9

)
, creating a shadow

point in the front and back. Then we multiply the shadow points by the correct coefficients, and

move them to the other side. Dividing by b+1 , we have:

ṽ
n+ 1

2
xy =

a0v
n
xy−1 + b−0 v

n
xy + c0v

n
xy+1 − a1w − c1z

b+1
. (4.11)

In this way we can figure out the value of a single, isolated point at the next half-time step.
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4.8 Isolated Pairs of Points

Figure 4.5: A Pair of Isolated Points with Shadow Points

As above, there are also times when refining the grid creates the problem of having two points

(vi+2,5 and vi+2,9), close enough together to pair up but isolated from any others by distance, or

they may be the only ones in that row as in Figure 4.5. As in Section 4.7, we will create shadow

points – one (z) ahead of the front point (vi+2,9), and one (w) behind the trailing point (vi+2,5).

We will differentiate between the two with superscript 1 for the new point, and 0 for the current

point. In this situation, we are solving for two points, so we use the system of equations:

a1w
1 + b1v

1
i+2,5 + c1v

1
i+2,9 = a1v

0
i,5 + b1v

0
i+2,5 + c1v

0
i+4,5,

= a1v
0
i,5 + b1x

0 + c1v
0
i+4,5,

a2v
1
i+2,5 + b2v

1
i+2,9 + c2z

1 = a2v
0
i,9 + b2v

0
i+2,9 + c2v

0
i+4,9,

= a2v
0
i,9 + b2y

0 + c2v
0
i+4,9.

So, w1 = 1
2

(
v0i,1 + v0i+4,1

)
and z1 = 1

2

(
v0i,13 + v0i+4,13

)
are approximated and moved over to the

right-hand side to make:

b1v
1
i+2,5 + c1v

1
i+2,9 = a1v

0
i,5 + b1x

0 + c1v
0
i+4,5 − a1w1,

a2v
1
i+2,5 + b2v

1
i+2,9 = a2v

0
i,9 + b2y

0 + c2v
0
i+4,9 − c2z1.

27



Here elimination can be used by multiplying the first equation by −a2 and the second by b1. This

yields:

−a2b1v1i+2,5 − a2c1v1i+2,9 = −a2
(
a1v

0
i,5 + b1v

0
i+2,5 + c1v

0
i+4,5 − a1w1

)
,

a2b1v
1
i+2,5 + b1b2v

1
i+2,9 = b1

(
a2v

0
i,9 + b2v

0
i+2,9 + c2v

0
i+4,9 − c2z1

)
.

Adding them together makes:

(
b1b2 − a2c1

)
y1 = −a2

(
a1v

0
i,5 + b1x

0 + c1v
0
i+4,5 − a1w1

)
+ b1

(
a2v

0
i,9 + b2y

0 + c2v
0
i+4,9 − c2z1

)
,

y1 =
−a2

(
a1v

0
i,5 + b1x

0 + c1v
0
i+4,5 − a1w1

)
+ b1

(
a2v

0
i,9 + b2y

0 + c2v
0
i+4,9 − c2z1

)
b1b2 − a2c1

,

leaving an expression for y1 using the current values and shadow points. Using this new value for

y1, one can back-substitute and solve for x1. This is how an isolated pair of points is treated.

4.9 Making the Cell Move

The goal was to make an adaptive model for diffusion, so simplistic cell motion rules were used

to test the scheme. A random number was used to pick a positive or negative direction, although

the chance that 0 shows up has measure zero. Then a different randomly generated number is used

as the number of spaces moved in the direction previously chosen, but with two stipulations that

are checked before moving. It is checked to make sure that the cells are not moving onto the border

of the matrix, and, if so, it is stoped on the row or column before the border. Also, it is checked to

make sure that the cells are on a valid point, i.e., a point in use in the matrix. If it is set to move

to an unused point, it is shifted to the closest active point. This process is repeated for each cell in

the matrix, with newly generated random numbers each time the function is called.

4.10 Transitioning to Three Dimensions

Getting to a three-dimensional adaptive algorithm was a lot of work. It started in a class,

working with two-dimensional ADI in a homework problem. From there, having chosen to do this
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as a thesis project, we started into three-dimensional ADI on a static grid.

The lengthy task of discretizing the three equations from Dai’s [4] scheme was done. Over the

course of a month or so, code was created that put into practice the discretization. Visualizing

in three dimensions how the diffusion scheme worked took some time, and the result was thinking

about it in standard x−, y−, and z−coordinates.

After the code was suitably accurate for the task given, the need was for a way to keep track

of points in the adaptive part. Starting in one dimension, points could be easily added and the

points behind and in front stored in a 3× 1 array. Two dimensions became more difficult because

the easiest method was to keep a nice square array; so adding points in the middle of what started

as a square array would cause lopsidedness, or cause an increase in the dimensions of the array and

move values around with every point added. The decision came to use a sparse matrix, considering

every fourth point to be active initially and the three in-between to be points used for refinement.

Using a pointer matrix, a point could just be “activated” by inserting it in the pointer matrix and

giving it a value in the chemical matrix.

In the two-dimensional version, there were situations that one naturally doesn’t see in one

dimension. Here, the first one encountered was the problem of isolated single points or pairs of

points. Adjustments had to be made to check and account for these anomalies. Once the code was

running smoothly and accurately, three dimensions were attempted.

One of the major decisions in moving to three dimensions was choosing matrix sizes. In two di-

mensions, sizes could be chosen for the domain with little thought for computer limitations, despite

the sometimes very large three-dimensional pointer matrix. In three dimensions, considerations had

to be made about the size of the matrix and the size of the now four-dimensional pointer matrix.

Using the same matrix sizes from the two-dimensional code would not work. For the larger ones,

the computer would not even initialize the pointer matrix. So a second look had to be taken at our

domain size and a reconsideration of how large it should be.

The other major decision came with the (A1A2A3)uxyz term and deciding how to work with it.

With no reason any specific order would work better than another, it was decided to do it in the

order presented. It became a new module for the three dimensional code.

In terms of modules, there wasn’t much difference between the two-dimensional and three-
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dimensional programs. The new equation to solve is

ut = b(uxx + uyy + uzz) + g(t). (4.12)

The Pulse function required the three-dimensional analytical solution. Movement required two

more random numbers to determine the direction and distance moved in the z-direction. There

was the obvious necessity to change the Diffuse module as the scheme was changing, as shown

in Section 3.5. The troublesome situations with isolated single or pairs of points occur in three-

dimensions, also, so the functions were expanded to accommodate those situations. Again, the

code is listed in Appendix B.

Chapter 5. Results

In this chapter, the results of checking the calculations of the two- and three-dimensional codes

against the analytic solutions for the appropriate number of dimensions are presented. Next,

the non-negativity condition that depends on the diffusion coefficient and the space and time

discretizations is explored for the two-dimensional ADI scheme used.

5.1 Error Computations for the Two-Dimensional Case

We considered the solution of Equation 1.1 both computationally and analytically. Initial

conditions for the computational solution were set by considering the analytic solution at time

t = 20 seconds within the radius
1.1

h
(h = spatial discretization) from the point source [x0, y0],

while outside the radius all values were set to zero. The initial value at any point [x, y] within the

radius would be:

u(x, y, 20) =
1

4πbk(20)
exp

(
−
(
(x− x0)2 + (y − y0)2

)
h2

1

4bk(20)

)
, (5.1)

with diffusion coefficient b = 0.003 and time and spatial discretizations k = 0.0001 and h, respec-

tively. The computational solution was run for 36 time steps and compared again to the actual

solution at t = 56 and at each active point in the matrix.
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One way to measure the amount of chemical in the domain is to look at the integral of the

concentration. Without refinement, our method to estimate this integral over the square grid was

to take the concentration at each point and multiply it by the area of the average rectangle around

it. The area of the rectangle is found by taking the average horizontal and vertical distances to

neighboring points and finding their product, as in Figure 5.1 below. We start with a concentration

of one for each trial.

Figure 5.1 shows the matrix in blue. The active points are the gray dots; since there is no

refinement, they are equally spaced. The colored squares represent the average rectangle around

each point. These are found by taking the average horizontal and vertical distances to adjacent

points and creating a rectangle centered on the point. The value at the grey point is the average

concentration for the square.

Figure 5.1: Average Areas without Refinement

For each table, h is the spatial discretization; m is the number of points along the edge of the

matrix, where every fourth one starts as active and the three in-between are for refinement; the

error is calculated here by moving through the matrix and summing over the area of the average

rectangle times difference between the analytic solution (act) at that point and the calculated value

(v) at that point, i.e., we find h2 Σx,y|act(x, y)−v(x, y)|; the next two columns are found by taking
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similar sums over the matrix of calculated solutions, and the sum over a matrix with the analytic

solutions, both of which should be close to one for time small enough; the last column displays the

ratio between the consecutive calculated errors. A scheme that is second-order accurate in space

should have ratios of at least four.

h m Error after

t = 36

h2 × Σ(v) h2 × Σ(act) Error

Ratio

0.00125 6401 0.004931584 1.000000000 1.000000000 4.066137

0.00250 3201 0.020052495 1.000000000 1.000000000 4.371305

0.00500 1601 0.087655581 1.000307066 1.000000000 5.603045

0.01000 801 0.491138184 1.409817206 1.005275068 N/A

Table 5.1: Two-dimensional Error without Refinement

Figure 5.2: Average Areas with Refinement

Working with refinement, it was more difficult to analyze the accuracy of the scheme using the

previous method where we looked at average rectangles to ascertain the integral over a given area.

In Figure 5.1, we see that there is no trouble with an average rectangle around the grey points

in use. With refinement, in Figure 5.2, the locations of the refined points (red diamonds) make
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this difficult. There are overlapping rectangles and places where no rectangle covers the space,

making it nearly impossible to create the average rectangles whose areas sum to the area of the

domain. Without extensive and expensive calculations, we cannot create the rectangles without

adding extra area with the overlapping portions of the rectangles. And so instead of looking at

an average area, we treat each point as if it were refined, so that the area around each point is(
h

4

)2

. The results are given in Table 5.2. Again, the third column used the difference between the

calculated and actual solutions at each point. The fourth column used only the calculated solution,

and the fifth the actual solution. The ratios in the sixth column are found the same way as in the

first table. The last column shows how many refined points were activated during the process.

h m Error after

t = 36

(h
4

)2 × Σ(v)
(h

4

)2×Σ(act) Error

Ratio

Points

Added

0.00125 6401 0.004644024 0.995103761 0.998002053 3.567933 13982

0.00250 3201 0.016569566 0.985011465 0.993624912 3.967418 3372

0.00500 1601 0.065738400 0.984324385 0.998403694 5.447710 852

0.01000 801 0.358123717 1.355111014 0.997111294 N/A 216

Table 5.2: Two-dimensional Error with Refinement

The negative consequence of refinement is demonstrated in the Error Ratio column, where we

see that second order accuracy in space is no longer guaranteed as we move from one value of h to

another.

5.2 Refinement Versus a Finer Grid Mesh

One of the things tested using the two-dimensional code was whether the refinement was worth it

or not. Can refinement on a coarser grid adequately replace using a finer mesh? Because refinement

is used at the expense of some accuracy, the finer mesh is more accurate. In run time, though,

refinement is immensely faster.

Error was calculated by looking at the difference between each point of the refined grid and the

corresponding point from the finer mesh. The difference was multiplied by the area of the average
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rectangle of a refined point on the coarser grid, then we summed over all of the points.

Five point sources were used, each pulsing at different times throughout the run-through. The

finer grid had spatial discretization h = 0.00125, while the coarser grid had h = 0.01. In one run,

indicative of the others performed, there were 1080 refined points created during the 36 time steps

taken. The overall error for each point source used was about 0.514. The time comparison was

18.137 seconds versus 670.901 seconds, or a little over 11 minutes, just a hair under 37 times longer

to run.

5.3 Error Computations for the Three-Dimensional Case

We considered the solution of Equation 4.12 both computationally and analytically. Initial

conditions for the computational solution were set by considering the analytic solution at time

t = 100 seconds within the radius 40/h from the point source [x0, y0, z0], while outside the radius

all values were set to zero. Then the initial value at any point [x, y, z] within the radius would be

u(x, y, z, 100) =
1

(4πbk(100))
3
2

exp

(
−
(
(x− x0)2 + (y − y0)2 + (z − z0)2

)
h2

1

4bk(100)

)
, (5.2)

with diffusion coefficient b and time and spatial discretizations k and h, respectively. The com-

putational solution was then run for 36 time steps and compared again to the actual solution at

t = 136 and at each active point in the matrix.

The errors are calculated in a similar manner to the two-dimensional code, moving through the

matrix and finding the volume of the average rectangular prism and multiplying by the value at

the point.
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h m Error after

t=36

h3 × Σ(v) h3 × Σ(act) Error

Ratio

0.00125 401 0.00622260 0.999999999 1.000000000 3.937277

0.00250 201 0.02450010 1.000000000 1.000000000 4.210928

0.00500 101 0.10316816 1.000460634 1.000000000 6.429091

0.00943 53 0.66327744 1.480521019 1.003485248 N/A

Table 5.3: Three-dimensional Error without Refinement, ε = 0.02

h m Error after

t = 36

(h
4

)3 × Σ(v)
(h

4

)3 × Σ(act) Error

Ratio

Points

Added

0.00125 401 0.00611102 0.999814362 0.999330003 3.990098 2440376

0.00250 201 0.02438359 0.999522421 0.992771031 3.876924 278752

0.00500 101 0.09453331 0.997534297 1.000486572 4.768217 40035

0.00943 53 0.45075535 1.450327378 0.999572033 N/A 6683

Table 5.4: Three-dimensional Error with Refinement, ε = 0.02

These first two tables show the difference between the scheme with and without refinement and

ε = 0.02. The next two give error measurements with ε = 0.0002. The parameter ε was varied to

see if the paper [4] was right in claiming that there was improvement in the code if ε were on the

order of k. When not using refinement, this was found to be true.

h m Error after

t = 36

h3 × Σ(v) h3 × Σ(act) Error

Ratio

0.00125 401 0.00605348 0.999999999 1.000000000 4.022268

0.00250 201 0.02434871 1.000000000 1.000000000 4.232553

0.00500 101 0.10305719 1.000460634 1.000000000 6.435854

0.00943 53 0.66326104 1.480521019 1.003485248 N/A

Table 5.5: Three-dimensional Error without Refinement, ε = 0.0002
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h m Error after

t = 36

(h
4

)3 × Σ(v)
(h

4

)3 × Σ(act) Error

Ratio

Points

Added

0.00125 401 0.00624376 0.999810825 0.999278030 3.925679 2440000

0.00250 201 0.02451100 0.999520162 0.992771041 3.860080 278459

0.00500 101 0.09461440 0.997528669 1.000489038 4.764135 39971

0.00943 53 0.45075575 1.450327768 0.999572021 N/A 6678

Table 5.6: Three-dimensional Error with Refinement, ε = 0.0002

5.4 Nonnegativity Condition of the Parameters

If the initial conditions are non-negative, the solution to the diffusion equation should remain

non-negative for all time t. Although the scheme is unconditionally stable, there is a non-negativity

condition that must be met and the desire was to find the bound. A bound on the parameters

used in the computation, namely the diffusion coefficient, the time discretization, and the space

discretization was calculated. To do this, combinations of them were sought that would force the

matrix to have negative values in future time steps.

To start, let r =
k

2h2
. Then the coefficient matrix for the left-hand side of the system of equa-

tions generated by the ADI equations looks like this:



1 + 2br −br 0 ... ... 0

−br 1 + 2br −br 0 ... 0

0 −br 1 + 2br −br 0 ...

0 ... ... ... ... 0

0 ... 0 −br 1 + 2br −br

0 0 ... 0 −br 1 + 2br


.

The initial conditions are a nonnegative chemical value in the middle of the domain, represented

by a seven-by-seven matrix, the nonzero value A in the middle. Then a bound on br is calculated

using the Peaceman-Rachford Algorithm. After the first half-time step, moving along the columns

first, the matrix goes from:

36





0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 A 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0



to
A

2(br)4 + 16(br)3 + 20(br)2 + 8br + 1
×



0 0 (br)4 −2(br)4 + (br)3 (br)4 0 0

0 0 2(br)4 + (br)3 −4(br)4 + (br)2 2(br)4 + (br)3 0 0

0 0 3(br)4 + 4(br)3 + (br)2 −6(br)4 − 5(br)3 + 2(br)2 + br 3(br)4 + 4(br)3 + (br)2 0 0

0 0 4(br)4 + 10(br)3 + 6(br)2 + br −8(br)4 − 16(br)3 − 2(br)2 + 4br + 1 4(br)4 + 10(br)3 + 6(br)2 + br 0 0

0 0 3(br)4 + 4(br)3 + (br)2 −6(br)4 − 5(br)3 + 2(br)2 + br 3(br)4 + 4(br)3 + (br)2 0 0

0 0 2(br)4 + (br)3 −4(br)4 + (br)2 2(br)4 + (br)3 0 0

0 0 (br)4 −2(br)4 + (br)3 (br)4 0 0


.

Because of the symmetry in the above matrix, we note here that the second step of the algorithm

produces a matrix that is symmetric over the middle row and the middle column. Values calculated

along the first row will be the same as those of the last row, and the values calculated from the

front of the first row will be the same as those of the end of the first row, although they would

be in the opposite order. So when looking at the nonnegativity condition, we need only look at

the 4 × 4 matrix in the upper left-hand corner. Thus, we calculate along the rows of the matrix

above and consider the upper corner. For each of the fractions not in the last row or column of

this 4 × 4 matrix, r > 0 is all that is necessary for the values to remain nonnegative. It is only

in the numerators of the fractions in the last row and column that an upper bound is required.

These four distinct values are all multiplied by
A

(2(br)4 + 16(br)3 + 20(br)2 + 8br + 1)2
, which is

a positive number, and they are: −2(br)3(2(br)4 + 8(br)3 − 4br − 1),−2(br)2(2br + 1)(2(br)4 +

8(br)3−4br−1),−2br(2(br)4 +8(br)3−4br−1)(3(br)2 +4br+1), and (2(br)4 +8(br)3−4(br)−1)2.

Note here that the factors 2br + 1 and 3(br)2 + 4br + 1 are always positive when br > 0, so the

concern comes from the other factor they all share: 2(br)4 + 8(br)3− 4(br)− 1. One factor has this

polynomial squared, while the other three also have a −2 on the front. So we consider where this

polynomial is actually negative, while keeping br > 0. The nonnegativity bound on the polynomial

is 0 < br < −1 +
√

3
2 +

√
1
2(3−

√
6) ≈ 0.74939249.
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The bound has been checked using the following parameters: A = 1, b = 0.003, k = 0.0001

and h = .01 with d = 1.48, d = 1.5, and then d = 15, with results shown in Figures 5.3, 5.4, and

5.5, respectively. The lowest value in the matrix is plotted after each time step, with the values

recorded on the y-axis and time along the x-axis. The reasoning behind the first two choices of d

was to check br = .74 and then br = .75, values just on either side of the bound. The first gave no

negative values, while the second gave a negative value on the first time step, but none thereafter.

With d = 15, making br = 7.5, it was easy to see that the negative values would manifest for more

time steps. To check that the scheme was stable, it was important to let it run sufficiently long

to check that the negativity disappeared. This was done and worked correctly. Even though we

started with all nonnegative values in all three cases, the second and third show the necessity for

“sufficiently smooth” [10] [19] [30] conditions at the outset, given any parameter set.

Figure 5.3: Nonnegativity Check - Within the Bound, No Negative Values
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Figure 5.4: Nonnegativity Check - Just Outside the Bound, One Negative Value

Figure 5.5: Nonnegativity Check - Far Outside the Bound, Many Negative Values
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Chapter 6. Description of Code Modules

In this chapter, we will give a brief overview of each of the modules used in the two- and three-

dimensional codes. We will include what is sent in as input to the module and what comes out as

output, as well as a short description of what the module accomplishes.

6.1 Two-Dimensional Code

6.2 Project

The Project module is the main part of the program. Here we initialize all of the variables and

the main matrices. After the initial pulse, for each time step, we move, pulse (if there is to be

continuous pulsing), and diffuse the chemical. We also refine and coarsen at intervals. After the

time steps are finished, we calculate the errors in the matrix and output them.

6.3 Pulse

The Pulse module distributes the pulse around the point source(s). As input, it takes the chemical

matrix, the matrix size, the location matrix, how many point sources there are, and the diffusion

coefficient, and the time and space discretizations, hereafter referred to as the three main constants.

For each point source, it calculates the analytic solution at time t = 20 within the radius
1.1

h
, given

by

u(x, y, 20) =
1

4πbk(20)
exp

(
−
(
(x− x0)2 + (y − y0)2

)
h2

· 1

4bk(20)

)
, (6.1)

and adds it to the points in the chemical matrix. As output, it returns the updated chemical

matrix.

6.4 Move

As input, the Move module takes the chemical matrix, the time t, the location matrix, the size of

the chemical matrix, and the number of point source(s). It uses t to generate some numbers used
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in the directions the point sources move. As output, the updated location matrix is returned.

6.5 Diffuse

Diffuse takes in the chemical matrix, the pointer matrix, the chemical matrix size, and the three

main constants. It utilizes the ADI method and the Thomas algorithm, running along the columns

of vn to create ṽn+
1
2 , then along the rows of ṽn+

1
2 to find vn+1. It returns the updated chemical

matrix.

6.6 Refine

Refine is where we comb through the matrix to check to see if we need to add points. We take in

the chemical and pointer matrices, the size of the chemical matrix and the spatial discretization.

Looking at the derivative across consecutive points in the matrix that are close together, we refine

when the value is above the tolerance. As output, we return the updated chemical and pointer

matrices, as well as two variables used in verifying whether there was a need for refinement or not,

and then how many new points were created.

6.7 Coarsen

In Coarsen, we again take in the chemical and pointer matrices and the size of the chemical matrix.

With them, we check to see if any of the refined points are no longer necessary. As output, we

return the updated chemical and pointer matrices, as well as two variables used in verifying whether

there was a need for coarsening or not, and then how many refined points were removed.

6.8 Tridiagonal Matrix Solver

We utilize the Thomas algorithm to solver the systems of equations generated by the ADI method.

As input, the module takes in the four arrays created in the Diffuse module and solves the system

of equations. It returns an array that will become the new row or column in the next half-time

step.

41



6.9 Isolated Single Point

Here we take in the chemical and pointer matrices, the location of the isolated point, the spacial

discretization, the diffusion coefficients for the x and y directions, and whether we are moving along

a row or column. We calculate the new half-time step value at the isolated point using shadow

points. This value is returned.

6.10 Isolated Pair of Points

Here we also take in the chemical and pointer matrices, the location of the pair of points, the

spacial discretization, the diffusion coefficients for the x and y directions, and whether we are

moving along a row or column. We calculate the new half-time step value for the isolated pair

using shadow points. The new values of the two points are returned as output.

6.11 Three-Dimensional Code

6.12 Project

The Project module is the main part of the program. Here we initialize all of the variables and the

main matrices; because of the added dimension, there is significantly more to initialize. After the

initial pulse, for each time step, we move, pulse (if there is to be continuous pulsing), and diffuse

the chemical. We also refine and coarsen at intervals. After the time steps are finished, we calculate

the errors in the matrix and output them.

6.13 Pulse

The Pulse module distributes the pulse around the point source(s). As input, it takes the chemical

matrix, the matrix size, the location matrix, how many point sources there are, and the three main

constants. For each point source, it calculates the actual solution within the radius
40

h
at time
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t = 100, given by

u(x, y, z, 100) =
1

(4πbk(100))
3
2

exp

(
−
(
(x− x0)2 + (y − y0)2 + (z − z0)2

)
h2

· 1

4bk(100)

)
, (6.2)

and adds it to the points in the chemical matrix. As output, it returns the updated chemical

matrix.

6.14 Move

The Move module is similar to the two-dimensional version in its input and output; the only change

is the added random variable for movement in the z-direction.

6.15 Diffuse

Diffuse takes in the chemical matrix, the pointer matrix, the chemical matrix size, and the three

main constants. The parameter ε is initialized here for use in the module. We utilize the discretized

Dai scheme and the Thomas algorithm, first moving through vn in the x-direction where we use

the FirstKnown module to generate ṽn+
1
3 . Then we move in the y-direction to create ṽn+

2
3 , and

finally in the z-direction to find vn+1. It returns the updated chemical matrix.

6.16 Refine

Refine for three dimensions is also similar to its two-dimensional counterpart; we now check if

refinement is necessary in the z-direction.

6.17 Coarsen

In the three-dimensional version of Coarsen, we now verify the derivatives are below tolerance in

all six directions.
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6.18 Tridiagonal Matrix Solver

This module did not change.

6.19 Isolated Single Point

Here we take in two chemical matrices since we need the matrix with which we are updating; the

pointer matrix; the location of the isolated point; the spacial discretization; two coefficients for the

scheme, rc =
bk

2
(1 + ε) and eps =

(bk)3

8
(6ε+ 2ε3); the diffusion coefficients for the three directions;

and which direction we are moving. We calculate the new third-time step value at the isolated

point using shadow points. This value is returned.

6.20 Isolated Pair of Points

Here we also take in two chemical matrices since we need the matrix with which we are updating;

the pointer matrix; the location of the first of the pair of points; the spacial discretization; the

diffusion coefficients for the x, y, and z directions; two coefficients for the scheme, rc =
bk

2
(1 + ε)

and eps =
(bk)3

8
(6ε + 2ε3); and which direction we are moving. We calculate the new third-time

step value for the isolated pair using shadow points. The new values of the two points are returned

as output.

6.21 First Known Value

FirstKnown is where we calculate the (A1A2A3)vxyz term. As input, it receives the chemical

matrix currently in use, the pointer matrix, the center point to use, the diffusion coefficient for

each direction, and the two coefficients for the scheme, rc =
bk

2
(1 + ε) and eps =

(bk)3

8
(6ε+ 2ε3).

It utilizes the center point and the twenty-six points around it to calculate the desired value, which

is returned as output.
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Appendices
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This appendix contains the actual code used in the two parts of this thesis. The two-dimensional

code is listed first, followed by the three-dimensional code.

Appendix A. Two-dimensional Code

We have separated all of the code into sections, one for each major part of the code.

A.1 Project

% In the making of this mesh, it is most useful for me to think of the mesh

% on a Cartesian set of axes x and y. In that light, the first entry in the

% arrays is the x-coordinate, and the second is y.

clf; close all

p = 1; % Number of point sources

d = 3*10ˆ(-3); % Diffusion coefficient

k = .0001; % How time is discretized

Loc = zeros(p, 2); % Holds point source location(s)

error = zeros(4,1); % Holds the total error using ’average area’

hi = error; % Holds the total error using refined points

m = [6401 3201 1601 801];

h = [.00125 .0025 .005 .01];

for z=1:4

refined = 0; % Keeps count of the number of refined points

coarsened = 0; % Keeps count of the number of coarsened points

v = zeros(m(z),m(z)); % This will hold the concentration of chemical

act = v; % This will hold the actual solutions

Chriserror = v; % This will hold errors at each point

PT = zeros(m(z), m(z), 6); % Holds the number order of cells and

% distances between

% Set up pointers

for x = 1:m(z)

for y = 1:m(z) % Set the fixed grid points’ pointer, x and y
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if mod(x,4)==1 && mod(y,4)==1

PT(x,y,1) = x+4; % What the next node is in the x-direction

PT(x,y,2) = h(z); % The distance to the next node in

% the x-direction

PT(x,y,3) = x-4; % Which node points to it in the x-direction

PT(x,y,4) = y+4; % What the next node is in the y-direction

PT(x,y,5) = h(z); % The distance to the next node in

% the y-direction

PT(x,y,6) = y-4; % Which node points to it in the y-direction

end

end

% Set the boundary points’ pointers

if mod(x,4) ˜= 1

% Set left/bottom boundary pointers

PT(1,x,1)=m(z);

PT(1,x,2)=1;

PT(1,x,3)=-3;

PT(x,1,4)=m(z);

PT(x,1,5)=1;

PT(x,1,6)=-3;

% Set right/top boundary pointers

PT(m(z),x,3)=1;

PT(m(z),x,2)=h(z);

PT(m(z),x,1)=m(z)+4;

PT(x,m(z),6)=1;

PT(x,m(z),5)=h(z);

PT(x,m(z),4)=m(z)+4;

end

end

Loc(1,1) = (m(z)+1)/2;

Loc(1,2) = (m(z)+1)/2;

[v] = Adaptive_Pulse_2_Dex(v, m(z), Loc, p, d, k, h(z));

cref = 0;
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ccoa = 0;

checkcoar = 0;

for t = 1:20

[Loc] = Adaptive_Move_2_D(v, t, Loc, m(z), p);

[v] = Adaptive_Diffuse_2_D(v, PT, k, h(z), m(z), d);

[v, PT, checkref, countr] = Adaptive_Refine_2_D(v, PT, m(z), h(z));

refined = refined + countr;

countc = 0;

if mod(t,10) == 0

[v, PT, checkcoar, countc] = Adaptive_Coarsen_2_D(v, PT, m(z));

end % Coarsen

coarsened = coarsened + countc;

if checkref

cref = 1;

end

if checkcoar

ccoa = 1;

end

end

% Calculate actual solution

num=4*d*k*(t+20);

% ’ptct’ keeps track of how many points are used to find the average

ptct = 0;

% ’actsum’ keeps track of the sum of the actual points

actsum = 0;

% ’vsum’ keeps track of the sum of the points in ’v’

vsum = 0;

voldsum = 0;

ct = 0;

for x=5:4:m(z)-4

ptr = PT(1,x,1);

while ptr < m(z)

act(ptr,x)=1/(num*pi)*exp(-(h(z)/4)ˆ2*(((m(z)+1)/2-x)ˆ2+
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((m(z)+1)/2-ptr)ˆ2)/num);

% Find average horizontal distance to next point, h as default

if ptr - PT(ptr,x,3) < 5

hd1 = PT(PT(ptr,x,3),x,2);

else hd1 = h(z);

end

if PT(ptr,x,1) - ptr < 5

hd2 = PT(ptr,x,2);

else hd2 = h(z);

end

hd=(hd1+hd2)/2;

% Find average vertical distance to next point, h as default

if ptr - PT(ptr,x,6) < 5

vd1 = PT(ptr,PT(ptr,x,6),5);

else vd1 = h(z);

end

if PT(ptr,x,4) - ptr < 5

vd2 = PT(ptr,x,5);

else vd2 = h(z);

end

vd=(vd1+vd2)/2;

% Keep track of the sum of the actual differences at each point

ct = ct + abs(act(ptr,x)-v(ptr,x));

% Count the chemical concentration at each point

actsum = actsum + act(ptr,x);

vsum = vsum + v(ptr,x);

% Find the error using the actual discretization

Chriserror(y,x)=abs(h(z)ˆ2*v(y,x)-h(1)ˆ2*act(y,x));

% Used in the error using an ’average area’

act(ptr,x)=act(ptr,x)*hd*vd;

v(ptr,x) = v(ptr,x)*hd*vd;

% Advance the pointer

ptr=PT(ptr,x,1);
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end % While

end

format long

% Sum the chemical concentration for the actual and calculated solutions

sumact = sum(sum(act))

sumv = sum(sum(tempv))

% Treat all points as the most refined points

intv = vsum * (h(z)/4)ˆ2

intave = actsum * (h(z))ˆ2;

% Calculate errors

error(z) = sum(sum(Chriserror));

hi(z) = ct*(h(z)/4)ˆ2;

% Display if we refined and coarsened

if cref

disp(’refined’);

refined

end

if ccoa

disp(’coarsened’);

coarsened

end

end % Big loop

% Display the errors

error

hi

A.2 Pulse

function [T] = Adaptive_Pulse_2_D(T, m, Loc, p, d, k, h)

% For the pulse function, we distribute the chemical pulse like a tent

% over the grid.

firstcheck = 0;

if isempty(find(T>0,1)) == 1

firstcheck = 1;
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end

t = 20;

num=4*d*k*t;

r = 1.1/h;

for w = 1:p

x0 = Loc(w,1);

y0 = Loc(w,2);

for x=2:m-1

for y=2:m-1

if firstcheck

if mod(x,4)==1 && mod(y,4)==1

if sqrt((x0-x)ˆ2+(y0-y)ˆ2) < r

T(x,y) = 1/(num*pi)*exp(-(h/4)ˆ2

*((x0-x)ˆ2+(y0-y)ˆ2)/num);

end

end

else

if T(x,y)>0

if sqrt((x0-x)ˆ2+(y0-y)ˆ2) < r

T(x,y) = T(x,y) + 1/(num*pi)*exp(-(h/4)ˆ2

*((x0-x)ˆ2+(y0-y)ˆ2)/num);

end

end

end

end

end

end

end % Adaptive_Pulse_2_D

A.3 Move

function [Loc] = Adaptive_Move_2_D(v, t, Loc, m, p)

% Direction will take the time t and use it to come up with a coordinate

% pair (x, y) with x, y in {-1, 0, 1}. The cell will then move in the
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% given direction, e.g., (-1, 1) tells it move up diagonally left.

x = round(cos(t)); % Use t to pick -1, 0, or 1 for the two directions

y = round(sin(x));

% Set the new location(s)

for w = 1:p

% Set x direction

numx = randi(2,1);

if Loc(w,1) + numx*x < 2 % Check for left boundary problems

Loc(w,1) = 2;

else

if Loc(w,1) + numx*x > m-1 % Check for right boundary problems

Loc(w,1) = m-1;

else

Loc(w,1) = Loc(w,1) + numx*x;

end % Right boundary check

end % Left boundary check

% Set y direction

numy = randi(2,1);

if Loc(w,2) + numy*y < 2 % Check for lower boundary problems

Loc(w,2) = 2;

else

if Loc(w,2) + numy*y > m-1 % Check for upper boundary problems

Loc(w,2) = m-1;

else

Loc(w,2) = Loc(w,2) + numy*y;

end % Upper boundary check

end % Lower boundary check

% Check to see if we are on a valid point

if v(Loc(w,1), Loc(w,2)) == 0

if mod(Loc(w,1),4) ˜= 1

if Loc(w,1) < 8 % Check how far left

Loc(w,1) = 5;

else
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if Loc(w,1) > m-6 % Check how far right

Loc(w,1) = m-4;

else Loc(w,1) = floor(Loc(w,1)/4)*4+1;

end

end

end

if mod(Loc(w,2),4) ˜= 1

if Loc(w,2) < 8 % Check how far down

Loc(w,2) = 5;

else

if Loc(w,2) > m-6 % Check how far up

Loc(w,2) = m-4;

else Loc(w,2) = floor(Loc(w,2)/4)*4+1;

end

end

end

end % If on used point loop

end % Cell loop

end % Adaptive_Move_2_D

A.4 Diffuse

function [T] = Adaptive_Diffuse_2_D(v, PT, k, h, m, d)

% Pulse will calculate the chemical concentration for each point in the

% matrix, based on the previous time step. The new matrix will inherently

% be different because we’ll have sources providing more chemical. It uses

% the difference equations from Peaceman and Rachford to solve for the

% next time step.

% As a function, it takes as input the matrix in the current time step and

% solves for the next. It also takes in the space and time discretization

% lengths, and the size of the matrix.

% As output, it returns the matrix after the next time step.

halfkdx = k*d/2;

halfkdy = k*d/2;
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T = zeros(m,m); % To store the new values

vHat = T; % To store the intermediate values

% Calculate vHat along columns of v

for col=2:m-1

% Check to see if we need to do this column by looking at it and

% adjacent columns for nonzero values

if mod(col,4) == 1

nzb = find(v(col-4,:)>0); % Find nonzero terms in column behind

nzc = find(v(col,:)>0); % Find nonzero terms in column

nzf = find(v(col+4,:)>0); % Find nonzero terms in column forward

go = isempty(nzb)==0 | isempty(nzc)==0 | isempty(nzf)==0;

else

nzc = find(v(col,:)>0); % Find nonzero terms in column

go = isempty(nzc)==0;

end

if go % Check to make sure we need to do this column

sder = zeros(m,1); % Store the second derivatives

% Check to see if we are on an original column

if mod(col,4) == 1

% Start where necessary

ptr=PT(col,1,4);

% Stop at the end of the column

max=m;

start = ptr;

% Calculate second derivatives

y=0;

while ptr < max

y=y+1;

forder = (v(PT(col,ptr,1),ptr)-v(col,ptr))

/PT(col,ptr,2);

backder = (v(col,ptr)-v(PT(col,ptr,3),ptr))

/PT(PT(col,ptr,3),ptr,2);

sder(y) = (forder-backder)/((PT(col,ptr,2)
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+PT(PT(col,ptr,3),ptr,2))/2);

ptr = PT(col,ptr,4);

end % While for second derivatives

% Store the known values for the TDM Solver

know = zeros(y,1);

% Store the coefficient matrices a,b,c for the TDM Solver

a = know;

b = a;

c = b;

ptr = start;

y = 0;

while ptr < max

y=y+1;

% Set up distances

h1 = PT(col,ptr,5);

h2 = PT(col,PT(col,ptr,6),5);

h3 = (h1+h2)/2;

% Set up a, b, c, know

a(y)=-halfkdx/(h2*h3);

b(y)=1+halfkdx*(h1+h2)/(h1*h2*h3);

c(y)=-halfkdx/(h1*h3);

know(y)=v(col,ptr)+halfkdy*sder(y);

ptr = PT(col,ptr,4);

end % While for second derivative

% Calculate the values to enter into vHat

temp = Adaptive_TDMsolver_2_D(a,b,c,know);

ptr = start;

for y = 1:length(temp)

vHat(col,ptr) = temp(y);

ptr = PT(col,ptr,4);

end % For loop input

else % We are not on a grid column

ptr = nzc(1);
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max = nzc(length(nzc))+1;

while ptr < max

% ’Counter’ keeps track of how many consecutive points are

% close enough to use together

counter = 1;

% ’On’ is a logical variable that tells when we can’t use

% the next point with the previous ones

on = 1;

% ’Start’ holds where the consecutive points started

start = ptr;

while on

if PT(col,ptr,4) - ptr < 5 && PT(col,ptr,4) < max

counter = counter + 1;

ptr = PT(col,ptr,4);

else

on = 0;

end

end

if counter < 3

if counter == 1

[vHat(col,ptr)] =

Adaptive_Single_Point_2_D(v,PT,col,ptr,h,halfkdx,halfkdy,’c’);

ptr = PT(col,ptr,4);

else

[vHat(col,start),vHat(col,ptr)] =

Adaptive_Two_Points_2_D(v,PT,col,start,ptr,h,halfkdx,halfkdy,’c’);

ptr = PT(col,ptr,4);

end

else

max1 = ptr+1;

ptr = start;

% Calculate second derivatives

y=0;

56



while ptr < max1

y=y+1;

forder = (v(PT(col,ptr,1),ptr)-v(col,ptr))/

PT(col,ptr,2);

backder = (v(col,ptr)-v(PT(col,ptr,3),ptr))

/PT(PT(col,ptr,3),ptr,2);

sder(y) = (forder-backder)

/((PT(col,ptr,2)+PT(PT(col,ptr,3),ptr,2))/2);

ptr = PT(col,ptr,4);

end % While for second derivatives

% Store the known values for the TDM Solver

know = zeros(y,1);

% Store the coefficient matrices a,b,c for

% the TDM Solver

a = know;

b = a;

c = b;

ptr = start;

y = 0;

while ptr < max1

y=y+1;

% Set up distances

h1 = PT(col,ptr,5);

h2 = PT(col,PT(col,ptr,6),5);

h3 = (h1+h2)/2;

% Set up a, b, c, know

a(y)=-halfkdx/(h2*h3);

b(y)=1+halfkdx*(h1+h2)/(h1*h2*h3);

c(y)=-halfkdx/(h1*h3);

know(y)=v(col,ptr)+halfkdy*sder(y);

ptr = PT(col,ptr,4);

end % While for second derivative

% Calculate the values to enter into vHat
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temp = Adaptive_TDMsolver_2_D(a,b,c,know);

ptr = start;

for y = 1:length(temp)

vHat(col,ptr) = temp(y);

ptr = PT(col,ptr,4);

end % For loop input

end % Counter loop

end % While loop on ptr, max

end % Mod = 1

end % isempty check

end % Columns

% Calculate the new v along rows of vHat

for row=2:m-1

% Check to see if we need to do this row by looking at it and

% adjacent rows for nonzero values

if mod(row,4) == 1

nzb = find(vHat(:,row-4)>0); % Find nonzero terms in row below

nzr = find(vHat(:,row)>0); % Find nonzero terms in row

nza = find(vHat(:,row+4)>0); % Find nonzero terms in row above

go = isempty(nzb)==0 | isempty(nzr)==0 | isempty(nza)==0;

else

nzr = find(vHat(:,row)>0); % Find nonzero terms in row

go = isempty(nzr) == 0;

end

if go % Check to make sure we need to do this row

sder = zeros(m,1); % Store the second derivatives

% Check to see if we are on an original column

if mod(row,4) == 1

% Start where necessary

ptr=PT(1,row,1);

% Stop at the end of the row

max = m;

start = ptr;
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% Calculate second derivatives

y=0;

while ptr < max

y=y+1;

forder = (vHat(ptr,PT(ptr,row,4))-vHat(ptr,row))/

PT(ptr,row,5);

backder = (vHat(ptr,row)-vHat(ptr,PT(ptr,row,6)))

/PT(ptr,PT(ptr,row,6),5);

sder(y) = (forder-backder)/

((PT(ptr,row,5)+PT(ptr,PT(ptr,row,6),5))/2);

ptr = PT(ptr,row,1);

end % While for second derivatives

% Store the known values for the TDM Solver

know = zeros(y,1);

% Store the coefficient matrices a,b,c for the TDM Solver

a = know;

b = a;

c = b;

ptr = start;

y = 0;

while ptr < max

y=y+1;

% Set up distances

h1 = PT(ptr,row,2);

h2 = PT(PT(ptr,row,3),row,2);

h3 = (h1+h2)/2;

% Set up a, b, c, know

a(y)=-halfkdy/(h2*h3);

b(y)=1+halfkdy*(h1+h2)/(h1*h2*h3);

c(y)=-halfkdy/(h1*h3);

know(y)=vHat(ptr,row)+halfkdx*sder(y);

ptr = PT(ptr,row,1);

end % While for second derivative
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temp = Adaptive_TDMsolver_2_D(a,b,c,know);

ptr = start;

for y = 1:length(temp)

T(ptr,row) = temp(y);

ptr = PT(ptr,row,1);

end % For loop input

else % We are not on a grid row

% Start at the first nonzero node

ptr = nzr(1);

max = nzr(length(nzr))+1;

while ptr < max

% ’Counter’ keeps track of how many consecutive points are

% close enough to use together

counter = 1;

% ’On’ is a logical variable that tells when we can’t use

% the next point with the previous ones

on = 1;

% ’Start’ holds where the consecutive points started

start = ptr;

while on

if PT(ptr,row,1) - ptr < 5 && PT(ptr,row,1) < max

counter = counter + 1;

ptr = PT(ptr,row,1);

else

on = 0;

end

end

if counter < 3

if counter == 1

[T(ptr,row)]=

Adaptive_Single_Point_2_D(vHat,PT,row,ptr,h,halfkdx,halfkdy,’r’);

ptr = PT(ptr,row,1);

else

60



[T(start,row),T(ptr,row)] =

Adaptive_Two_Points_2_D(vHat,PT,row,start,ptr,h,halfkdx,halfkdy,’r’);

ptr = PT(ptr,row,1);

end

else

max1 = ptr+1;

ptr = start;

% Calculate second derivatives

y=0;

while ptr < max1

y=y+1;

forder =

(vHat(ptr,PT(ptr,row,4))-vHat(ptr,row))/PT(ptr,row,5);

backder = (vHat(ptr,row)-vHat(ptr,PT(ptr,row,6)))

/PT(ptr,PT(ptr,row,6),5);

sder(y) = (forder-backder)

/((PT(ptr,row,5)+PT(ptr,PT(ptr,row,6),5))/2);

ptr = PT(ptr,row,1);

end % While for second derivatives

% Store the known values for the TDM Solver

know = zeros(y,1);

% Store the coefficient matrices a,b,c for

% the TDM Solver

a = know;

b = a;

c = b;

ptr = start;

y = 0;

while ptr < max1

y=y+1;

% Set up distances

h1 = PT(ptr,row,2);

h2 = PT(PT(ptr,row,3),row,2);
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h3 = (h1+h2)/2;

% Set up a, b, c, know

a(y)=-halfkdy/(h2*h3);

b(y)=1+halfkdy*(h1+h2)/(h1*h2*h3);

c(y)=-halfkdy/(h1*h3);

know(y)=vHat(ptr,row)+halfkdx*sder(y);

ptr = PT(ptr,row,1);

end % While for second derivative

% Calculate the values to enter into vHat

temp = Adaptive_TDMsolver_2_D(a,b,c,know);

ptr = start;

for y = 1:length(temp)

T(ptr,row) = temp(y);

ptr = PT(ptr,row,1);

end % For loop input

end % Counter loop

end % While loop on ptr, max

end % Mod = 1

end % isempty check

end % Rows

end % Adaptive_Diffuse_2_D

A.5 Refine

function [T, PT, checker, count] = Adaptive_Refine_2_D(T, PT, m, h)

% We loop through the scheme to find areas that need refinement. We search

% for areas where the secant line through two consecutive points has slope

% higher than some tolerance. If we find one, we add a point between them.

% We find its value by the midpoint of the two values it divides. As we are

% searching using all rows and columns, we do check to make sure the two

% points are within the normal discretization of the grid.

tol = 750; % Tolerance for the secant slope

% ’Checker’ keeps track of whether or not we refined this time through the

% matrix
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checker = 0;

count = 0;

for col = 2:m-1 % Loop along the interior columns of v to check refinement

fp = find(T(col,:)>0); % Find nonzero terms (fp for find positive)

if isempty(fp) == 0 % Check to make sure there is one

ptr = PT(col,fp(1),6); % At which node we start the loop

% Loop on the number of points in use currently for this column

while ptr < fp(length(fp))+1

% Check to see if there’s a close point above to use

% for refinement

above = PT(col,ptr,4)-ptr<5 && PT(col,ptr,4)-ptr>1;

% Check slope of secant above

if abs(T(col,PT(col,ptr,4))-T(col,ptr))/PT(col,ptr,5) > tol

&& above

checker = 1;

count = count + 1;

if mod(PT(col,ptr,4)+ptr,2) == 1

if mod(ptr,4) == 2

L = ptr + 1;

else L = ptr + 2;

end

else

L = (PT(col,ptr,4)+ptr)/2;

end

% Set the value in the matrix for the refined point

T(col,L)=T(col,ptr)+(L-ptr)*(T(col,PT(col,ptr,4))-

T(col,ptr))/(PT(col,ptr,4)-ptr);

% Set the vertical values for the pointer matrix

PT(col,L,4) = PT(col,ptr,4);

PT(col,L,5) = h/4*(PT(col,L,4)-L);

PT(col,L,6) = ptr;

% Insert the new point vertically

PT(col,ptr,4) = L;
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PT(col,ptr,5) = h/4*(L-ptr);

PT(col,PT(col,L,4),6) = L;

% Set all of the horizontal pointers for the new point

left = PT(1,L,1);

if left < col % Check for a nonboundary point to the left

while PT(left,L,1) < col

left = PT(left,L,1);

end

% Set forward point

PT(col,L,1) = PT(left,L,1);

% Set new backward point for that point

PT(PT(col,L,1),L,3) = col;

% Set backwards point

PT(col,L,3) = left;

% Set new forward point and distance for that point

PT(left,L,1) = col;

PT(left,L,2) = h/4*(col-left);

PT(col,L,2) = h/4*(PT(col,L,1) - col);

else

PT(col,L,1) = left;

PT(col,L,2) = h/4*(left-col);

PT(col,L,3) = 1;

PT(left,L,3) = col;

PT(1,L,1) = col;

PT(1,L,2) = h/4*(col-1);

end % There exists a nonboundary point to the left

% Advance the pointer

ptr = PT(col,L,4);

else

% Advance the pointer

ptr = PT(col,ptr,4);

end % If secant slope loop

end % While ptr loop
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end % If isempty loop

end % y loop

for row = 2:m-1 % Loop along the interior rows of v to check for refinement

fp = find(T(:,row)>0); % Find nonzero terms

if isempty(fp) == 0 % Check to make sure there is one

ptr = PT(fp(1),row,3); % At which node we start the loop

% Loop on the number of points in use currently for this column

while ptr < fp(length(fp))+1

% Check to see if there’s a point on the right to use for

% refinement

right = PT(ptr,row,1)-ptr<5 && PT(ptr,row,1)-ptr>1;

% Check slope of secant to the right

if abs(T(PT(ptr,row,1),row)-T(ptr,row))/PT(ptr,row,2) > tol

&& right

checker = 1;

count = count + 1;

if mod(PT(ptr,row,1)+ptr,2) == 1

if mod(ptr,4) == 2

L = ptr + 1;

else L = ptr + 2;

end

else

L = (PT(ptr,row,1)+ptr)/2;

end

% Set the value in the matrix for the refined point

T(L,row) =T(ptr,row)+(L-ptr)*(T(PT(ptr,row,1),row)-

T(ptr,row))/(PT(ptr,row,1)-ptr);

% Set the horizontal values for the pointer matrix

PT(L,row,1) = PT(ptr,row,1);

PT(L,row,2) = h/4*(PT(L,row,1)-L);

PT(L,row,3) = ptr;

% Insert the new point horizontally

PT(ptr,row,1) = L;
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PT(ptr,row,2) = h/4*(L-ptr);

PT(PT(L,row,1),row,3) = L;

below = PT(L,1,4);

if below < row % Check for a nonboundary point below

while PT(L,below,4)<row

below = PT(L,below,4);

end

% Set point above

PT(L,row,4) = PT(L,below,4);

% Set new point below for that point

PT(L,PT(L,row,4),6) = row;

% Set backwards point

PT(L,row,6) = below;

% Set new forward point and distance for that point

PT(L,below,4) = row;

PT(L,below,5) = h/4*(row-below);

PT(L,row,5) = h/4*(PT(L,row,4) - row);

else

PT(L,row,4) = below;

PT(L,row,5) = h/4*(below-row);

PT(L,row,6) = 1;

PT(L,below,6) = row;

PT(L,1,4) = row;

PT(L,1,5) = h/4*(row-1);

end

% Advance the pointer

ptr = PT(L,row,1);

else

% Advance the pointer

ptr = PT(ptr,row,1);

end % If secant slope loop

end % while ptr loop

end% If isempty loop
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end % y loop

end % Adaptive_Refine_2_D

A.6 Coarsen

function [T, PT, checker, ct] = Adaptive_Coarsen_2_D(T, PT, m)

% The coarsen function will be executed every five time steps to see if

% any of the added points can now be removed because they are no longer

% relevant in terms of calculating derivatives. We loop through the added

% points and check to see if the difference between them and the points

% around them fall below a given tolerance level. If so, the points are

% removed, and the pointer array (PT) is modified.

tol = 1; % Tolerance for removing points

checker = 0;

ct = 0;

% Coarsen over the whole matrix along the columns

for col = 2:m-1 % Check all original interior columns

nonzero = find(T(col,:)>0); % Find nonzero terms

if isempty(nonzero)==0

ptr = nonzero(1);

while ptr < m

if mod(col,4)==1 && mod(ptr,4)==1 % Check if it’s a grid point

ptr = PT(col,ptr,4);

else % If it’s not a grid point

% Check the derivative above

if PT(col,ptr,4) - ptr < 5

top = abs(T(col,PT(col,ptr,4))-T(col,ptr))/

PT(col,ptr,5)<tol;

else

top = 1;

end

% Check the derivative below

if ptr - PT(col,ptr,6) < 5

bot = abs(T(col,PT(col,ptr,6))-T(col,ptr))
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/PT(col,PT(col,ptr,6),5)<tol;

else

bot = 1;

end

% Check the derivative to the right

if PT(col,ptr,1) - ptr < 5

right = abs(T(PT(col,ptr,1),ptr)-T(col,ptr))/

PT(col,ptr,2)<tol;

else

right = 1;

end

% Check the derivative to the left

if ptr - PT(col,ptr,3) < 5

left = abs(T(PT(col,ptr,3),ptr)-T(col,ptr))

/PT(PT(col,ptr,3),ptr,2)<tol;

else

left = 1;

end

if top && bot && left && right % If it’s unneeded

checker = 1;

ct = ct + 1;

% Set the point to zero

T(col,ptr) = 0;

% Remove the point horizontally

PT(PT(col,ptr,3),ptr,1) = PT(col,ptr,1);

PT(PT(col,ptr,3),ptr,2) = PT(PT(col,ptr,3),ptr,2) +

PT(col,ptr,2);

PT(PT(col,ptr,1),ptr,3) = PT(col,ptr,3);

%Remove the point vertically

PT(col,PT(col,ptr,6),4) = PT(col,ptr,4);

PT(col,PT(col,ptr,6),5) = PT(col,PT(col,ptr,6),5)+

PT(col,ptr,5);

PT(col,PT(col,ptr,4),6) = PT(col,ptr,6);
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% Erase the information in the pointer matrix

keep = PT(col,ptr,4);

PT(col,ptr,:) = 0;

ptr = keep;

else % If it’s still needed

ptr = PT(col,ptr,4);

end % If unneeded

end % If grid point

end

end

end % Loop on columns

end % Adaptive_Coarsen_2_D

A.7 Thomas Algorithm

function x = Adaptive_TDMsolver_2_D(a,b,c,d)

% a, b, c are the column vectors for the compressed tridiagonal matrix,

% d is the right vector

n = length(d); % n is the number of elements in the array

x = zeros(n,1);

% Modify the first-row coefficients

c(1) = c(1)/ b(1); % Division by zero risk.

d(1) = d(1) / b(1);

for i = 2:n-1

temp = b(i) - a(i) * c(i-1);

c(i) = c(i) / temp;

d(i) = (d(i) - a(i) * d(i-1))/temp;

end % For loop adjusting coefficients

d(n) = (d(n) - a(n) * d(n-1))/(b(n) - a(n) * c(n-1));

% Now back substitute.

x(n) = d(n);

for i = n-1:-1:1

x(i) = d(i) - c(i) * x(i+1);

end % For loop back substitution
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end % function ADI_TDMsolver_2_D

A.8 Isolated Single Point

function [ans] = Adaptive_Single_Point_2_D(T,PT,rowcol,ptr,h,hkdx,hkdy,rc)

% We use this function to calculate the new value at a point when that

% point is isolated on a refined row or column. We cannot use the Thomas

% algorithm due to lack of support. The input matrix may be ’v’ or ’vHat’,

% so we’ll use ’T’ to represent the matrix temporarily in use. We also use

% the pointer matrix, a row or column (depending on the direction we were

% moving in ’Diffuse’, a pointer, the current discretization ’h’, and some

% way to tell which way we were moving.

if rc == ’c’ % If we were diffusing up a column

% Set the columns before and after the current one

before = floor((rowcol-1)/4)*4 + 1;

after = floor((rowcol+2)/4)*4 + 1;

% Set the shadow rows above and below

if mod(ptr,4) == 1

below = ptr - 4;

above = ptr + 4;

else

below = floor((ptr-1)/4)*4 + 1;

above = floor((ptr+2)/4)*4 + 1;

end

% Calculate the second derivative across the current point

rdist = h/4*(PT(rowcol,ptr,1) - rowcol);

rder = (T(PT(rowcol,ptr,1),ptr)-T(rowcol,ptr))/rdist;

ldist = h/4*(rowcol - PT(rowcol,ptr,3));

lder = (T(rowcol,ptr)-T(PT(rowcol,ptr,3),ptr))/ldist;

sd = (rder-lder)/((rdist+ldist)/2);

% Set the shadow point above and its distance from the point

temab = (T(before,above)+T(after,above))/2;

d1 = h/4*(above-ptr);

% Set the shadow point below and its distance from the point
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tembel = (T(before,below)+T(after,below))/2;

d2 = h/4*(ptr-below);

d3 = (d1+d2)/2;

% Set the coefficients for the calculation

a = -hkdx/(d2*d3);

b = 1+hkdx*(d1+d2)/(d1*d2*d3);

c = -hkdx/(d1*d3);

ans = (T(rowcol,ptr)+hkdy*sd - c*temab - a*tembel)/b;

else % We were diffusing along a row

% Set the shadow rows above and below

below = floor((rowcol-1)/4)*4 + 1;

above = floor((rowcol+2)/4)*4 + 1;

% Set the columns before and after the current one

if mod(ptr,4) == 1

before = ptr - 4;

after = ptr + 4;

else

before = floor((ptr-1)/4)*4 + 1;

after = floor((ptr+2)/4)*4 + 1;

end

% Calculate the second derivative across the current point

udist = h/4*(PT(ptr,rowcol,4) - rowcol);

uder = (T(ptr,PT(ptr,rowcol,4))-T(ptr,rowcol))/udist;

ddist = h/4*(rowcol - PT(ptr,rowcol,6));

dder = (T(ptr,rowcol)-T(ptr,PT(ptr,rowcol,6)))/ddist;

sd = (uder-dder)/((udist+ddist)/2);

% Set the shadow point after and its distance from the point

temaf = (T(after,below)+T(after,above))/2;

d1 = h/4*(after-ptr);

% Set the shadow point before and its distance from the point

tembef = (T(before,below)+T(before,above))/2;

d2 = h/4*(ptr-before);

d3 = (d1+d2)/2;
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% Set the coefficients for the calculation

a = -hkdy/(d2*d3);

b = 1+hkdy*(d1+d2)/(d1*d2*d3);

c = -hkdy/(d1*d3);

ans = (T(ptr,rowcol)+hkdx*sd - c*temaf - a*tembef)/b;

end

end % function Adaptive_Single_Point_2_D

A.9 Isolated Pair of Points

function [ans1, ans2] = Adaptive_Two_Points_2_D

(T, PT, rowcol, n1, n2, h, hkdx, hkdy, rc)

% This function calculates new half-points for two isolated points on a row

% or column. We take an input matrix, be it ’v’ or ’vHat’, the pointer

% matrix, a row or column, the two isolated points on that row or column,

% the discretization, and a character input to tell whether we are on a row

% or column.

if rc == ’c’ % We are on a column

% Set the columns before and after the current one

before = floor((rowcol-1)/4)*4 + 1;

after = floor((rowcol+2)/4)*4 + 1;

x = T(rowcol,n1);

y = T(rowcol,n2);

% Set the shadow rows above and below

if mod(n1,4) == 1

below = n1 - 4;

else

below = floor((n1-1)/4)*4 + 1;

end

if mod(n2,4) == 1

above = n2 + 4;

else

above = floor((n2+2)/4)*4 + 1;

end
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% Calculate the two second derivatives

rdist1 = h/4*(PT(rowcol,n1,1) - rowcol);

rder1 = (T(PT(rowcol,n1,1),n1) - x)/rdist1;

ldist1 = h/4*(rowcol - PT(rowcol,n1,3));

lder1 = (x - T(PT(rowcol,n1,3),n1))/ldist1;

sd1 = (rder1-lder1)/((rdist1+ldist1)/2);

rdist2 = h/4*(PT(rowcol,n2,1) - rowcol);

rder2 = (T(PT(rowcol,n2,1),n2) - y)/rdist2;

ldist2 = h/4*(rowcol - PT(rowcol,n2,3));

lder2 = (y - T(PT(rowcol,n2,3),n2))/ldist2;

sd2 = (rder2-lder2)/((rdist2+ldist2)/2);

% Set the shadow point above and its distance from the point

temab = (T(before,above)+T(after,above))/2;

% We’ll use t for the shadow point on top

t1 = h/4*(above-n2);

t2 = PT(rowcol,n1,5);

t3 = (t1+t2)/2;

% Set the shadow point below and its distance from the point

tembel = (T(before,below)+T(after,below))/2;

% We use d for the shadow point down below

d1 = t2;

d2 = h/4*(n1-below);

d3 = (d1+d2)/2;

% Set the coefficients for the calculation

% We use a 1 for the coefficients that would be in

% the first row, 2 for the second

a1 = -hkdx/(d2*d3);

b1 = 1+hkdx*(d1+d2)/(d1*d2*d3);

c1 = -hkdx/(d1*d3);

a2 = -hkdx/(t2*t3);

b2 = 1+hkdx*(t1+t2)/(t1*t2*t3);

c2 = -hkdx/(t1*t3);

ans2 = (a1*a2*tembel-a2*x-a2*hkdy*sd1+b1*y+b1*hkdy*sd2-b1*c2*temab);
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ans2 = ans2/(b1*b2-a2*c1);

ans1 = (x - c1*ans2+hkdy*sd1-a1*tembel)/b1;

else % We are using a row

% Set the rows below and above the current one

below = floor((rowcol-1)/4)*4 + 1;

above = floor((rowcol+2)/4)*4 + 1;

x = T(n1,rowcol);

y = T(n2,rowcol);

% Set the shadow columns before and after

if mod(n1,4) == 1

before = n1 - 4;

else

before = floor((n1-1)/4)*4 + 1;

end

if mod(n2,4) == 1

after = n2 + 4;

else

after = floor((n2+2)/4)*4 + 1;

end

% Calculate the two second derivatives

udist1 = h/4*(PT(n1,rowcol,4) - rowcol);

uder1 = (T(n1,PT(n1,rowcol,4)) - x)/udist1;

ddist1 = h/4*(rowcol - PT(n1,rowcol,6));

dder1 = (x - T(n1,PT(n1,rowcol,6)))/ddist1;

sd1 = (uder1-dder1)/((udist1+ddist1)/2);

udist2 = h/4*(PT(n2,rowcol,4) - rowcol);

uder2 = (T(n2,PT(n2,rowcol,4)) - y)/udist2;

ddist2 = h/4*(rowcol - PT(n2,rowcol,6));

dder2 = (y - T(n2,PT(n2,rowcol,6)))/ddist2;

sd2 = (uder2-dder2)/((udist2+ddist2)/2);

% Set the shadow point after and its distance from the point

temaf = (T(after,below)+T(after,above))/2;

% We’ll use t for the shadow point on top
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t1 = h/4*(after-n2);

t2 = PT(n1,rowcol,2);

t3 = (t1+t2)/2;

% Set the shadow point before and its distance from the point

tembef = (T(before,below)+T(before,above))/2;

% We use d for the shadow point down below

d1 = t2;

d2 = h/4*(n1-before);

d3 = (d1+d2)/2;

% Set the coefficients for the calculation

% We use a 1 for the coefficients that would be in

% the first row of the LHS matrix, 2 for the second row

a1 = -hkdy/(d2*d3);

b1 = 1+hkdy*(d1+d2)/(d1*d2*d3);

c1 = -hkdy/(d1*d3);

a2 = -hkdy/(t2*t3);

b2 = 1+hkdy*(t1+t2)/(t1*t2*t3);

c2 = -hkdy/(t1*t3);

ans2 = (a1*a2*tembef-a2*x-a2*hkdx*sd1+b1*y+b1*hkdx*sd2-b1*c2*temaf);

ans2 = ans2/(b1*b2-a2*c1);

ans1 = (x - c1*ans2+hkdx*sd1-a1*tembef)/b1;

end % function Adaptive_Two_Points_2_D

Appendix B. Three-Dimensional Code

The three-dimensional code is also separated into sections, one for each major part of the program.

B.1 Project

% In the making of this mesh, it is most useful for me to think of the mesh

% on a Cartesian set of axes in x, y, and z. In that light, the first entry

% in the arrays is the x-coordinate, the second is y, and the third is z.
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clf; close all

p = 1; % Number of point sources

d = 3*10ˆ(-3);

k = .0001; % How time is discretized

Loc = zeros(p, 3); % Holds point source location(s)

error = zeros(4,1);

m = [401 201 101 53];

h = [.00125 .0025 .005 .0096153846153846177];

for a=1:4

refined = 0;

coarsened = 0;

v = zeros(m(a),m(a),m(a)); % This will hold the concentration of chemical

tempv = v;

Chriserror = v;

act = v;

PT = zeros(m(a),m(a),m(a),9); % Holds the number order of cells

% and distances between

% Set up pointers

for x = 1:m(a)

for y = 1:m(a) % Set the fixed grid points’ pointer, x, y, and z

for z = 1:m(a)

if mod(x,4)==1 && mod(y,4)==1 && mod(z,4)==1

PT(x,y,z,1) = x+4; % What the next node is in

% the x-direction

PT(x,y,z,2) = h(a); % The distance to the next node

% in the x-direction

PT(x,y,z,3) = x-4; % Which node points to it in

% the x-direction

PT(x,y,z,4) = y+4; % What the next node is in

% the y-direction

PT(x,y,z,5) = h(a); % The distance to the next node

% in the y-direction

PT(x,y,z,6) = y-4; % Which node points to it in
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% the y-direction

PT(x,y,z,7) = z+4; % What the next node is in

% the z-direction

PT(x,y,z,8) = h(a); % The distance to the next node

% in the z-direction

PT(x,y,z,9) = z-4; % Which node points to it in

% the z-direction

end

end

% Set nonboundary, nongrid point pointers

if x>1 && (mod(x,4) ˜= 1 || mod(y,4) ˜= 1)

% In x-y plane

PT(x,y,1,1) = x+1;

PT(x,y,1,2) = h(a)/4;

PT(x,y,1,3) = x-1;

PT(x,y,1,4) = y+1;

PT(x,y,1,5) = h(a)/4;

PT(x,y,1,6) = y-1;

PT(x,y,1,7) = m(a);

PT(x,y,1,8) = h(a)/4*(m(a)-1);

PT(x,y,1,9) = -3;

PT(x,y,m(a),1) = x+1;

PT(x,y,m(a),2) = h(a)/4;

PT(x,y,m(a),3) = x-1;

PT(x,y,m(a),4) = y+1;

PT(x,y,m(a),5) = h(a)/4;

PT(x,y,m(a),6) = y-1;

PT(x,y,m(a),7) = m(a)+4;

PT(x,y,m(a),8) = h(a);

PT(x,y,m(a),9) = 1;

% In x-z plane

PT(x,1,y,1) = x+1;

PT(x,1,y,2) = h(a)/4;
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PT(x,1,y,3) = x-1;

PT(x,1,y,4) = m(a);

PT(x,1,y,5) = h(a)/4*(m(a)-1);

PT(x,1,y,6) = -3;

PT(x,1,y,7) = y+1;

PT(x,1,y,8) = h(a)/4;

PT(x,1,y,9) = y-1;

PT(x,m(a),y,1) = x+1;

PT(x,m(a),y,2) = h(a)/4;

PT(x,m(a),y,3) = x-1;

PT(x,m(a),y,4) = m(a)+4;

PT(x,m(a),y,5) = h(a);

PT(x,m(a),y,6) = 1;

PT(x,m(a),y,7) = y+1;

PT(x,m(a),y,8) = h(a)/4;

PT(x,m(a),y,9) = y-1;

% In y-z plane

PT(1,x,y,1) = m(a);

PT(1,x,y,2) = h(a)/4*(m(a)-1);

PT(1,x,y,3) = -3;

PT(1,x,y,4) = x+1;

PT(1,x,y,5) = h(a)/4;

PT(1,x,y,6) = x-1;

PT(1,x,y,7) = y+1;

PT(1,x,y,8) = h(a)/4;

PT(1,x,y,9) = y-1;

PT(m(a),x,y,1) = m(a)+4;

PT(m(a),x,y,2) = h(a);

PT(m(a),x,y,3) = 1;

PT(m(a),x,y,4) = x+1;

PT(m(a),x,y,5) = h(a)/4;

PT(m(a),x,y,6) = x-1;

PT(m(a),x,y,7) = y+1;
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PT(m(a),x,y,8) = h(a)/4;

PT(m(a),x,y,9) = y-1;

end

end

% Set the boundary points’ pointers

if mod(x,4) ˜= 1

% Along x-axis

PT(x,1,1,4)=m(a);

PT(x,1,1,5)=1;

PT(x,1,1,6)=-3;

PT(x,1,1,7)=m(a);

PT(x,1,1,8)=1;

PT(x,1,1,9)=-3;

% Along y-axis

PT(1,x,1,1)=m(a);

PT(1,x,1,2)=1;

PT(1,x,1,3)=-3;

PT(1,x,1,7)=m(a);

PT(1,x,1,8)=1;

PT(1,x,1,9)=-3;

% Along z-axis

PT(1,1,x,1)=m(a);

PT(1,1,x,2)=1;

PT(1,1,x,3)=-3;

PT(1,1,x,4)=m(a);

PT(1,1,x,5)=1;

PT(1,1,x,6)=-3;

% Parallel to x-axis, y=1, z=max

PT(x,1,m(a),4)=m(a);

PT(x,1,m(a),5)=1;

PT(x,1,m(a),6)=-3;

PT(x,1,m(a),7)=m(a)+4;

PT(x,1,m(a),8)=h(a);
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PT(x,1,m(a),9)=1;

% Parallel to x-axis, y=max, z=1

PT(x,m(a),1,4)=m(a)+4;

PT(x,m(a),1,5)=h(a);

PT(x,m(a),1,6)=1;

PT(x,m(a),1,7)=m(a);

PT(x,m(a),1,8)=1;

PT(x,m(a),1,9)=-3;

% Parallel to x-axis, y=max, z=max

PT(x,m(a),m(a),4)=m(a)+4;

PT(x,m(a),m(a),5)=h(a);

PT(x,m(a),m(a),6)=1;

PT(x,m(a),m(a),7)=m(a)+4;

PT(x,m(a),m(a),8)=h(a);

PT(x,m(a),m(a),9)=1;

% Parallel to y-axis, x=1, z=max

PT(1,x,m(a),1)=m(a);

PT(1,x,m(a),2)=1;

PT(1,x,m(a),3)=-3;

PT(1,x,m(a),7)=m(a)+4;

PT(1,x,m(a),8)=h(a);

PT(1,x,m(a),9)=1;

% Parallel to y-axis, x=max, z=1

PT(m(a),x,1,1)=m(a)+4;

PT(m(a),x,1,2)=h(a);

PT(m(a),x,1,3)=1;

PT(m(a),x,1,7)=m(a);

PT(m(a),x,1,8)=1;

PT(m(a),x,1,9)=-3;

% Parallel to y-axis, x=max, z=max

PT(m(a),x,m(a),1)=m(a)+4;

PT(m(a),x,m(a),2)=h(a);

PT(m(a),x,m(a),3)=1;
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PT(m(a),x,m(a),7)=m(a)+4;

PT(m(a),x,m(a),8)=h(a);

PT(m(a),x,m(a),9)=1;

% Parallel to z-axis, x=1, y=max

PT(1,m(a),x,1)=m(a);

PT(1,m(a),x,2)=1;

PT(1,m(a),x,3)=-3;

PT(1,m(a),x,4)=m(a)+4;

PT(1,m(a),x,5)=h(a);

PT(1,m(a),x,6)=1;

% Parallel to z-axis, x=max, y=1

PT(m(a),1,x,1)=m(a)+4;

PT(m(a),1,x,2)=h(a);

PT(m(a),1,x,3)=1;

PT(m(a),1,x,4)=m(a);

PT(m(a),1,x,5)=1;

PT(m(a),1,x,6)=-3;

% Parallel to z-axis, x=max, y=max

PT(m(a),m(a),x,1)=m(a)+4;

PT(m(a),m(a),x,2)=h(a);

PT(m(a),m(a),x,3)=1;

PT(m(a),m(a),x,4)=m(a)+4;

PT(m(a),m(a),x,5)=h(a);

PT(m(a),m(a),x,6)=1;

end

end

Loc(1,1) = (m(a)+1)/2-2;

Loc(1,2) = (m(a)+1)/2-2;

Loc(1,3) = (m(a)+1)/2-2;

[v] = ADI_Adap_3_D_Pulse(v, m(a), Loc, p, d, k, h(a));

cref = 0;

ccoa = 0;

checkcoar = 0;
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first = 0;

for t = 1:24

[Loc] = ADI_Adap_3_D_Move(v, t, Loc, m(a), p);

[v] = ADI_Adap_3_D_Diffuse(v, PT, k, h(a), m(a), d);

[v, PT, checkref, countr] = ADI_Adap_3_D_Refine(v, PT, m(a), h(a));

refined = refined + countr;

countc = 0;

if mod(t,10) == 0

[v, PT, checkcoar, countc] = ADI_Adap_3_D_Coarsen(v, PT, m(a));

end % Coarsen

coarsened = coarsened + countc;

if checkref

cref = 1;

end

if checkcoar

ccoa = 1;

end

end

% Calculate actual solution

num2=4*d*k*(t+100);

num1=(num2)ˆ(-3/2);

pinum=piˆ(-3/2);

x0 = (m(a)+1)/2-2;

y0 = (m(a)+1)/2-2;

z0 = (m(a)+1)/2-2;

% ’ptct’ keeps track of how many points are used to find the average

ptct = 0;

% ’actsum’ keeps track of the sum of the actual points

actsum = 0;

% ’vsum’ keeps track of the sum of the points in ’v’

vsum = 0;

ct = 0;

for x=5:4:m(a)-4
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for y=5:4:m(a)-4

ptr=PT(x,y,1,7);

while ptr < m(a)

act(x,y,ptr)=(num1*pinum)*exp(-(h(a)/4)ˆ2*

((x0-x)ˆ2+(y0-y)ˆ2+(z0-ptr)ˆ2)/num2);

% Find average distance to next point in the x-direction,

% h as default

if PT(x,y,ptr,1) - x < 5

h1 = PT(x,y,ptr,2);

else h1 = h(a);

end

if x - PT(x,y,ptr,3) < 5

h2 = PT(PT(x,y,ptr,3),y,ptr,2);

else h2 = h(a);

end

h3=(h1+h2)/2;

% Find average distance to next point in the x-direction,

% h as default

if PT(x,y,ptr,4) - y < 5

d1 = PT(x,y,ptr,5);

else d1 = h(a);

end

if y - PT(x,y,ptr,6) < 5

d2 = PT(x,PT(x,y,ptr,6),ptr,5);

else d2 = h(a);

end

d3=(d1+d2)/2;

% Find average distance to next point in the z-direction,

% h as default

if PT(x,y,ptr,7) - ptr < 5

m1 = PT(x,y,ptr,8);

else m1 = h(a);

end
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if ptr - PT(x,y,ptr,9) < 5

m2 = PT(x,y,PT(x,y,ptr,9),8);

else m2 = h(a);

end

m3=(m1+m2)/2;

ptct = ptct + 1;

ct = ct + abs(act(x,y,ptr)-v(x,y,ptr));

actsum = actsum + act(x,y,ptr);

vsum = vsum + v(x,y,ptr);

tempv(x,y,ptr) = v(x,y,ptr)*h3*d3*m3;

act(x,y,ptr)=act(x,y,ptr)*h3*d3*m3;

Chriserror(x,y,ptr)=abs(tempv(x,y,ptr)-act(x,y,ptr));

ptr=PT(x,y,ptr,7);

end % While

end

end

format long

sumact = sum(sum(sum(act)))

sumv = sum(sum(sum(tempv)))

vave = vsum * h(a)ˆ3

actave = actsum * h(a)ˆ3

error(a) = h(a)ˆ3*(sum(sum(sum(Chriserror))));

hi = h(a)ˆ3*ct

if cref

disp(’refined’);

refined

end

if ccoa

disp(’coarsened’);

coarsened

end

end % Big loop

% error
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B.2 Pulse

function [T] = ADI_Adap_3_D_Pulse(T, m, Loc, p, d, k, h)

% For the pulse function, we distribute the chemical pulse using the actual

% solution over the grid.

firstcheck = 0;

if isempty(find(T>0,1)) == 1

firstcheck = 1;

end

t = 100;

num2=4*d*k*t;

num1=(num2)ˆ(-3/2);

pinum=piˆ(-3/2);

r = 40/h;

for w = 1:p

x0 = Loc(w,1);

y0 = Loc(w,2);

z0 = Loc(w,3);

for x=2:m-1

for y=2:m-1

for z=2:m-1

if firstcheck

if mod(x,4)==1 && mod(y,4)==1 && mod(z,4)==1

if sqrt((x0-x)ˆ2+(y0-y)ˆ2+(z0-z)ˆ2) < r

T(x,y,z) = (num1*pinum)*

exp(-(h/4)ˆ2*((x0-x)ˆ2+(y0-y)ˆ2+(z0-z)ˆ2)/num2);

end

end

else

if T(x,y,z)>0

if sqrt((x0-x)ˆ2+(y0-y)ˆ2+(z0-z)ˆ2) < r

T(x,y,z) = T(x,y,z) +

(num1*pinum)*exp(-(h/4)ˆ2*((x0-x)ˆ2+(y0-y)ˆ2+(z0-z)ˆ2)/num2);
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end

end

end

end

end

end

end

end % ADI_Adap_3_D_Pulse

B.3 Move

function [Loc] = ADI_Adap_3_D_Move(v, t, Loc, m, p)

% Direction will take the time t and use it to come up with a coordinate

% pair (x, y) with x, y in {-1, 0, 1}. The cell will then move in the

% given direction, e.g., (-1, 1) tells it move up diagonally left.

x = round(cos(t)); % Use t to pick -1, 0, or 1 for the two directions

y = round(sin(x));

z = round(cos(y));

% Set the new location(s)

for a = 1:p

% Set x direction

numx = randi(5,1);

if Loc(a,1) + numx*x < 2 % Check for left boundary problems

Loc(a,1) = 2;

else

if Loc(a,1) + numx*x > m-1 % Check for right boundary problems

Loc(a,1) = m-1;

else

Loc(a,1) = Loc(a,1) + numx*x;

end % Right boundary check

end % Left boundary check

% Set y direction

numy = randi(5,1);

if Loc(a,2) + numy*y < 2 % Check for front boundary problems
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Loc(a,2) = 2;

else

if Loc(a,2) + numy*y > m-1 % Check for back boundary problems

Loc(a,2) = m-1;

else

Loc(a,2) = Loc(a,2) + numy*y;

end % Front boundary check

end % Back boundary check

% Set z direction

numz = randi(5,1);

if Loc(a,3) + numz*z < 2 % Check for upper boundary problems

Loc(a,3) = 2;

else

if Loc(a,3) + numz*z > m-1 % Check for lower boundary problems

Loc(a,3) = m-1;

else

Loc(a,3) = Loc(a,3) + numz*z;

end % Upper boundary check

end % Lower boundary check

% Check to see if we are on a valid point

if v(Loc(a,1), Loc(a,2), Loc(a,3)) == 0

if mod(Loc(a,1),4) ˜= 1

if Loc(a,1) < 8 % Check how far left

Loc(a,1) = 5;

else

if Loc(a,1) > m-6 % Check how far right

Loc(a,1) = m-4;

else Loc(a,1) = floor(Loc(a,1)/4)*4+1;

end

end

end

if mod(Loc(a,2),4) ˜= 1

if Loc(a,2) < 8 % Check how far front
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Loc(a,2) = 5;

else

if Loc(a,2) > m-6 % Check how far back

Loc(a,2) = m-4;

else Loc(a,2) = floor(Loc(a,2)/4)*4+1;

end

end

end

if mod(Loc(a,3),4) ˜= 1

if Loc(a,3) < 8 % Check how far up

Loc(a,3) = 5;

else

if Loc(a,3) > m-6 % Check how far down

Loc(a,3) = m-4;

else Loc(a,3) = floor(Loc(a,3)/4)*4+1;

end

end

end

end % If on used point loop

end % Cell loop

end % ADI_Adap_3_D_Move

B.4 Diffuse

function [T] = ADI_Adap_3_D_Diffuse(v, PT, k, h, m, d)

% Pulse will calculate the chemical concentration for each point in the

% matrix, based on the previous time step. The new matrix will inherently

% be different because we’ll have sources providing more chemical. It uses

% the difference equations from Peaceman and Rachford to solve for the next

% time step.

% As a function, it takes as input the matrix in the current time step and

% solves for the next. It also takes in the space and time discretization

% lengths, and the size of the matrix.

% As output, it returns the matrix after the next time step.
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epsilon = 0.02;

rx = k*d;

ry = k*d;

rz = k*d;

halfkdx = rx/2;

halfkdy = ry/2;

halfkdz = rz/2;

rCx = halfkdx * (1 + epsilon);

rCy = halfkdy * (1 + epsilon);

rCz = halfkdz * (1 + epsilon);

epsC = (6 * epsilon + 2 * epsilonˆ3) * rx*ry*rz/8;

vHat1 = zeros(m,m,m); % To store the intermediate values in the first third

vHat2 = vHat1; % To store the intermediate values in the second third

T = vHat2; % To store the values in the next time step

% Calculate vHat1 from v for the first third

for z = 2:m-1

for y = 2:m-1

% Check to see if we need to do this row by looking at it and

% the 26 possible points around it

if mod(z,4) == 1 && mod(y,4) == 1

go = 1;

else

nzx = find(v(:,y,z)>0); % Find nonzero terms in x-direction

go = isempty(nzx)==0;

end

if go % Check to make sure we need to do this row

% ’know1’ is the RHS vector for the first third

know1 = zeros(m,1);

% Check to see if we are on an original row

if mod(y,4) == 1 && mod(z,4) == 1

% Start where necessary and hold that place in ’start’

ptr=PT(1,y,z,1);

start = ptr;
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% Stop at the end of the column

max=m;

% Store the coefficient matrices a,b,c for the TDM Solver

a = zeros(m,1);

b = a;

c = b;

% Calculate second derivatives

ctr=0;

while ptr < max

ctr=ctr+1;

% Set up distances

h1 = PT(ptr,y,z,2);

h2 = PT(PT(ptr,y,z,3),y,z,2);

h3 = (h1+h2)/2;

% Set up a, b, c, know1

a(ctr)=-rCx/(h2*h3);

b(ctr)=1+rCx*(h1+h2)/(h1*h2*h3);

c(ctr)=-rCx/(h1*h3);

know1(ctr) =

ADI_Adap_3_D_FirstKnown(v,PT,ptr,y,z,rx,ry,rz,rCx,epsC);

ptr = PT(ptr,y,z,1);

end % While for know1

a = a(1:ctr);

b = b(1:ctr);

c = c(1:ctr);

know1 = know1(1:ctr);

% Calculate the values to enter into vHat

[temp] = ADI_Adap_3_D_TDMsolver(a,b,c,know1);

ptr = start;

for ctr = 1:length(temp)

vHat1(ptr,y,z) = temp(ctr);

ptr = PT(ptr,y,z,1);

end % For loop input
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else % We are not on a grid column

ptr = nzx(1);

max = nzx(length(nzx))+1;

while ptr < max

% ’Counter’ keeps track of how many consecutive points

% are close enough to use together

counter = 1;

% ’On’ is a logical variable that tells when we can’t

% use the next point with the previous ones. If ’on’

% is true, we keep going.

on = 1;

% ’Start’ holds where the consecutive points started

start = ptr;

while on

if PT(ptr,y,z,1) - ptr < 5 && PT(ptr,y,z,1) < max

counter = counter + 1;

ptr = PT(ptr,y,z,1);

else

on = 0;

end

end

if counter < 3

if counter == 1

[vHat1(ptr,y,z)] =

ADI_Adap_3_D_Single_Point(v,v,PT,ptr,y,z,h,rCx,epsC,rx,ry,rz,’x’);

ptr = PT(ptr,y,z,1);

else

[vHat1(start,y,z),vHat1(ptr,y,z)] =

ADI_Adap_3_D_Two_Points(v,v,PT,start,y,z,h,rx,ry,rz,rCx,epsC,’x’);

ptr = PT(ptr,y,z,1);

end

else

max1 = ptr+1;
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ptr = start;

% Store the coefficient matrices a,b,c for

% the TDM Solver

a = zeros(m,1);

b = a;

c = b;

% Calculate second derivatives

ctr=0;

while ptr < max1

ctr=ctr+1;

% Set up distances

h1 = PT(ptr,y,z,2);

h2 = PT(PT(ptr,y,z,3),y,z,2);

h3 = (h1+h2)/2;

% Set up a, b, c, know1

a(ctr)=-rCx/(h2*h3);

b(ctr)=1+rCx*(h1+h2)/(h1*h2*h3);

c(ctr)=-rCx/(h1*h3);

know1(ctr) =

ADI_Adap_3_D_FirstKnown(v,PT,ptr,y,z,rx,ry,rz,rCx,epsC);

ptr = PT(ptr,y,z,1);

end % While for second derivatives

a = a(1:ctr);

b = b(1:ctr);

c = c(1:ctr);

know1 = know1(1:ctr);

% Calculate the values to enter into vHat1

[temp] = ADI_Adap_3_D_TDMsolver(a,b,c,know1);

ptr = start;

for ctr = 1:length(temp)

vHat1(ptr,y,z) = temp(ctr);

ptr = PT(ptr,y,z,1);

end % For loop input
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end % Counter loop

end % While loop on ptr, max

end % Mod = 1

end % isempty check

end % y loop

end % z loop

% Calculate vHat2 from vHat1 for the second third

for z = 2:m-1

for x = 2:m-1

% Check to see if we need to do this row by looking at it and

% the 26 possible points around it

if mod(x,4) == 1 && mod(z,4) == 1

go = 1;

else

nzy = find(vHat1(x,:,z)>0); % Find nonzero terms

% in x-direction

go = isempty(nzy)==0;

end

if go % Check to make sure we need to do this row

% ’know2’ is the RHS vector for the second third

know2 = zeros(m,1);

% Check to see if we are on an original row

if mod(x,4) == 1 && mod(z,4) == 1

% Start where necessary and hold that place in ’start’

ptr=PT(x,1,z,4);

start = ptr;

% Stop at the end of the column

max=m;

% Store the coefficient matrices a,b,c for the TDM Solver

a = zeros(m,1);

b = a;

c = b;

% Calculate a,b,c,know2
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ctr=0;

while ptr < max

ctr=ctr+1;

% Set up distances

d1 = PT(x,ptr,z,5);

d2 = PT(x,PT(x,ptr,z,6),z,5);

d3 = (d1+d2)/2;

% Set up a, b, c, know2

a(ctr)=-rCy/(d2*d3);

b(ctr)=1+rCy*(d1+d2)/(d1*d2*d3);

c(ctr)=-rCy/(d1*d3);

know2(ctr) = vHat1(x,ptr,z)+c(ctr)*v(x,PT(x,ptr,z,4),z)

+...(b(ctr)-1)*v(x,ptr,z)+a(ctr)*v(x,PT(x,ptr,z,6),z);

ptr = PT(x,ptr,z,4);

end % While for second derivatives

a = a(1:ctr);

b = b(1:ctr);

c = c(1:ctr);

know2 = know2(1:ctr);

% Calculate the values to enter into vHat

[temp] = ADI_Adap_3_D_TDMsolver(a,b,c,know2);

ptr = start;

for ctr = 1:length(temp)

vHat2(x,ptr,z) = temp(ctr);

ptr = PT(x,ptr,z,4);

end % For loop input

else % We are not on a grid column

ptr = nzy(1);

max = nzy(length(nzy))+1;

while ptr < max

% ’Counter’ keeps track of how many consecutive points

% are close enough to use together

counter = 1;
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% ’On’ is a logical variable that tells when we can’t

% use the next point with the previous ones. If ’on’

% is true, we keep going.

on = 1;

% ’Start’ holds where the consecutive points started

start = ptr;

while on

if PT(x,ptr,z,4) - ptr < 5 && PT(x,ptr,z,4) < max

counter = counter + 1;

ptr = PT(x,ptr,z,4);

else

on = 0;

end

end

if counter < 3

if counter == 1

[vHat2(x,ptr,z)] = ADI_Adap_3_D_Single_Point

(vHat1,v,PT,x,ptr,z,h,rCy,epsC,rx,ry,rz,’y’);

ptr = PT(x,ptr,z,4);

else

[vHat2(x,start,z),vHat2(x,ptr,z)] =

ADI_Adap_3_D_Two_Points

(vHat1,v,PT,x,start,z,h,rx,ry,rz,rCy,epsC,’y’);

ptr = PT(x,ptr,z,4);

end

else

max1 = ptr+1;

ptr = start;

% Store the coefficient matrices a,b,c for

% the TDM Solver

a = zeros(m,1);

b = a;

c = b;
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% Calculate second derivatives

ctr=0;

while ptr < max1

ctr=ctr+1;

% Set up distances

d1 = PT(x,ptr,z,5);

d2 = PT(x,PT(x,ptr,z,6),z,5);

d3 = (d1+d2)/2;

% Set up a, b, c, know2

a(ctr)=-rCy/(d2*d3);

b(ctr)=1+rCy*(d1+d2)/(d1*d2*d3);

c(ctr)=-rCy/(d1*d3);

know2(ctr) = vHat1(x,ptr,z)+...

c(ctr)*v(x,PT(x,ptr,z,4),z)+...

(b(ctr)-1)*v(x,ptr,z)+a(ctr)*v(x,PT(x,ptr,z,6),z);

ptr = PT(x,ptr,z,4);

end % While for second derivatives

a = a(1:ctr);

b = b(1:ctr);

c = c(1:ctr);

know2 = know2(1:ctr);

% Calculate the values to enter into vHat2

[temp] = ADI_Adap_3_D_TDMsolver(a,b,c,know2);

ptr = start;

for ctr = 1:length(temp)

vHat2(x,ptr,z) = temp(ctr);

ptr = PT(x,ptr,z,4);

end % For loop input

end % Counter loop

end % While loop on ptr, max

end % Mod = 1

end % isempty check

end % x loop
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end % z loop

% Calculate T from vHat2 for the last third

for x = 2:m-1

for y = 2:m-1

% Check to see if we need to do this row by looking at it and

% the 26 possible points around it

if mod(x,4) == 1 && mod(y,4) == 1

go = 1;

else

nzz = find(vHat2(x,y,:)>0);% Find nonzero terms in x-direction

go = isempty(nzz)==0;

end

if go % Check to make sure we need to do this row

% ’know3’ is the RHS vector for the last third

know3 = zeros(m,1);

% Check to see if we are on an original row

if mod(x,4) == 1 && mod(y,4) == 1

% Start where necessary and hold that place in ’start’

ptr=PT(x,y,1,7);

start = ptr;

% Stop at the end of the column

max=m;

% Store the coefficient matrices a,b,c for the TDM Solver

a = zeros(m,1);

b = a;

c = b;

% Calculate second derivatives

ctr=0;

while ptr < max

ctr=ctr+1;

% Set up distances

m1 = PT(x,y,ptr,8);

m2 = PT(x,y,PT(x,y,ptr,9),8);
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m3 = (m1+m2)/2;

% Set up a, b, c, know3

a(ctr)=-rCz/(m2*m3);

b(ctr)=1+rCz*(m1+m2)/(m1*m2*m3);

c(ctr)=-rCz/(m1*m3);

know3(ctr)=vHat2(x,y,ptr)+c(ctr)*v(x,y,PT(x,y,ptr,7))+...

(b(ctr)-1)*v(x,y,ptr)+a(ctr)*v(x,y,PT(x,y,ptr,9));

ptr = PT(x,y,ptr,7);

end % While for second derivatives

a = a(1:ctr);

b = b(1:ctr);

c = c(1:ctr);

know3 = know3(1:ctr);

% Calculate the values to enter into T

[temp] = ADI_Adap_3_D_TDMsolver(a,b,c,know3);

ptr = start;

for ctr = 1:length(temp)

T(x,y,ptr) = temp(ctr);

ptr = PT(x,y,ptr,7);

end % For loop input

else % We are not on a grid column

ptr = nzz(1);

max = nzz(length(nzz))+1;

while ptr < max

% ’Counter’ keeps track of how many consecutive points

% are close enough to use together

counter = 1;

% ’On’ is a logical variable that tells when we can’t

% use the next point with the previous ones. If ’on’

% is true, we keep going.

on = 1;

% ’Start’ holds where the consecutive points started

start = ptr;
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while on

if PT(x,y,ptr,7) - ptr < 5 && PT(x,y,ptr,7) < max

counter = counter + 1;

ptr = PT(x,y,ptr,7);

else

on = 0;

end

end

if counter < 3

if counter == 1

[T(x,y,ptr)]=ADI_Adap_3_D_Single_Point

(vHat2,v,PT,x,y,ptr,h,rCz,epsC,rx,ry,rz,’z’);

ptr = PT(x,y,ptr,7);

else

[T(x,y,start),T(x,y,ptr)]=ADI_Adap_3_D_Two_Points

(vHat2,v,PT,x,y,start,h,rx,ry,rz,rCz,epsC,’z’);

ptr = PT(x,y,ptr,7);

end

else

max1 = ptr+1;

ptr = start;

% Calculate second derivatives

ctr=0;

% Store the coefficient matrices a,b,c for

% the TDM Solver

a = zeros(m,1);

b = a;

c = b;

while ptr < max1

ctr=ctr+1;

% Set up distances

m1 = PT(x,y,ptr,8);

m2 = PT(x,y,PT(x,y,ptr,9),8);
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m3 = (m1+m2)/2;

% Set up a, b, c, know

a(ctr)=-rCz/(m2*m3);

b(ctr)=1+rCz*(m1+m2)/(m1*m2*m3);

c(ctr)=-rCz/(m1*m3);

know3(ctr) = vHat2(x,y,ptr)+...

c(ctr)*v(x,y,PT(x,y,ptr,7))+...

(b(ctr)-1)*v(x,y,ptr)+a(ctr)*v(x,y,PT(x,y,ptr,9));

ptr = PT(x,y,ptr,7);

end % While for second derivatives

a = a(1:ctr);

b = b(1:ctr);

c = c(1:ctr);

know3 = know3(1:ctr);

% Calculate the values to enter into vHat

[temp] = ADI_Adap_3_D_TDMsolver(a,b,c,know3);

ptr = start;

for ctr = 1:length(temp)

T(x,y,ptr) = temp(ctr);

ptr = PT(x,y,ptr,7);

end % For loop input

end % Counter loop

end % While loop on ptr, max

end % Mod = 1

end % isempty check

end % y loop

end % x loop

end % ADI_Adap_3_D_Diffuse

B.5 Refine

function [T, PT, checker, count] = ADI_Adap_3_D_Refine(T, PT, m, h)

% We loop through the scheme to find areas that need refinement. We search

% for areas where the secant line through two consecutive points has slope
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% higher than some tolerance. If we find one, we add a point between them.

% We find its value by the midpoint of the two values it divides. As we are

% searching using all rows and columns, we do check to make sure the two

% points are within the normal discretization of the grid.

tol = 750; % Tolerance for the secant slope

% ’Checker’ keeps track of whether or not we refined this time through the

% matrix

checker = 0;

count = 0;

% Refine in the x-direction first

for y = 2:m-1 % Loop along the interior of v to check refinement

for z = 2:m-1

fp = find(T(:,y,z)>0); % Find nonzero terms (fp for find positive)

if isempty(fp) == 0 % Check to make sure there is one

ptr = PT(fp(1),y,z,3); % At which node we start the loop

% Loop on the number of points in use currently for this row

while ptr < fp(length(fp))+1

% Check to see if there’s a close point above to use

% for refinement

next = PT(ptr,y,z,1)-ptr<5 && PT(ptr,y,z,1)-ptr>1;

% Check slope of secant above

if abs(T(PT(ptr,y,z,1),y,z)-T(ptr,y,z))/PT(ptr,y,z,2) > tol

&& next

checker = 1;

count = count + 1;

if mod(PT(ptr,y,z,1)+ptr,2) == 1

if mod(ptr,4) == 2

L = ptr + 1;

else L = ptr + 2;

end

else

L = (PT(ptr,y,z,1)+ptr)/2;

end
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% Set the value in the matrix for the refined point

T(L,y,z) =T(ptr,y,z)+(L-ptr)*(T(PT(ptr,y,z,1),y,z)-

T(ptr,y,z))/(PT(ptr,y,z,1)-ptr);

% Set the horizontal values for the pointer matrix

PT(L,y,z,1) = PT(ptr,y,z,1);

PT(L,y,z,2) = h/4*(PT(L,y,z,1)-L);

PT(L,y,z,3) = ptr;

% Insert the new point horizontally

PT(ptr,y,z,1) = L;

PT(ptr,y,z,2) = h/4*(L-ptr);

PT(PT(L,y,z,1),y,z,3) = L;

% Set all of the pointers in the y-direction

left = PT(L,1,z,4);

if left < y % Check for a nonboundary point in

% the y-direction

while PT(L,left,z,4) < y

left = PT(L,left,z,4);

end

% Set forward point

PT(L,y,z,4) = PT(L,left,z,4);

% Set new backward point for that point

PT(L,PT(L,left,z,4),z,6) = y;

% Set backwards point

PT(L,y,z,6) = left;

% Set new forward point and distance for that point

PT(L,left,z,4) = y;

PT(L,left,z,5) = h/4*(y-left);

PT(L,y,z,5) = h/4*(PT(L,y,z,4) - y);

else

PT(L,y,z,4) = left;

PT(L,y,z,5) = h/4*(left-y);

PT(L,y,z,6) = 1;

PT(L,left,z,6) = y;
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PT(L,1,z,4) = y;

PT(L,1,z,5) = h/4*(y-1);

end % There exists a nonboundary point to the left

% Set all of the pointers in the z-direction

below = PT(L,y,1,7);

if below < z % Check for a nonboundary point in

% the z-direction

while PT(L,y,below,7) < z

below = PT(L,y,below,7);

end

% Set point up

PT(L,y,z,7) = PT(L,y,below,7);

% Set new downward point for that point

PT(L,y,PT(L,y,below,7),9) = z;

% Set downward point

PT(L,y,z,9) = below;

% Set new upward point and distance for that point

PT(L,y,below,7) = z;

PT(L,y,below,8) = h/4*(z-below);

PT(L,y,z,8) = h/4*(PT(L,y,z,7) - z);

else

PT(L,y,z,7) = below;

PT(L,y,z,8) = h/4*(below-z);

PT(L,y,z,9) = 1;

PT(L,y,below,9) = z;

PT(L,y,1,7) = z;

PT(L,y,1,8) = h/4*(z-1);

end % There exists a nonboundary point below

% Advance the pointer

ptr = PT(L,y,z,1);

else

% Advance the pointer

ptr = PT(ptr,y,z,1);
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end % If secant slope loop

end % While ptr loop

end % If isempty loop

end % z loop

end % y loop

% Refine in the y-direction next

for x = 2:m-1 % Loop along the interior of v to check refinement

for z = 2:m-1

fp = find(T(x,:,z)>0); % Find nonzero terms (fp for find positive)

if isempty(fp) == 0 % Check to make sure there is one

ptr = PT(x,fp(1),z,6); % At which node we start the loop

% Loop on the number of points in use currently for this row

while ptr < fp(length(fp))+1

% Check to see if there’s a close point above to use

% for refinement

next = PT(x,ptr,z,4)-ptr<5 && PT(x,ptr,z,4)-ptr>1;

% Check slope of secant above

if abs(T(x,PT(x,ptr,z,4),z)-T(x,ptr,z))/PT(x,ptr,z,5) > tol

&& next

checker = 1;

count = count + 1;

if mod(PT(x,ptr,z,4)+ptr,2) == 1

if mod(ptr,4) == 2

L = ptr + 1;

else L = ptr + 2;

end

else

L = (PT(x,ptr,z,4)+ptr)/2;

end

% Set the value in the matrix for the refined point

T(x,L,z) =T(x,ptr,z)+(L-ptr)*(T(x,PT(x,ptr,z,4),z)-

T(x,ptr,z))/(PT(x,ptr,z,4)-ptr);

% Set the vertical values for the pointer matrix
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PT(x,L,z,4) = PT(x,ptr,z,4);

PT(x,L,z,5) = h/4*(PT(x,L,z,4)-L);

PT(x,L,z,6) = ptr;

% Insert the new point vertically

PT(x,ptr,z,4) = L;

PT(x,ptr,z,5) = h/4*(L-ptr);

PT(x,PT(x,L,z,4),z,6) = L;

% Set all of the pointers in the x-direction

left = PT(1,L,z,1);

if left < x % Check for a nonboundary point in

% the x-direction

while PT(left,L,z,1) < x

left = PT(left,L,z,1);

end

% Set forward point

PT(x,L,z,1) = PT(left,L,z,1);

% Set new backward point for that point

PT(PT(left,L,z,1),L,z,3) = x;

% Set backwards point

PT(x,L,z,3) = left;

% Set new forward point and distance for that point

PT(left,L,z,1) = x;

PT(left,L,z,2) = h/4*(x-left);

PT(x,L,z,2) = h/4*(PT(x,L,z,1) - x);

else

PT(x,L,z,1) = left;

PT(x,L,z,2) = h/4*(left-x);

PT(x,L,z,3) = 1;

PT(left,L,z,3) = x;

PT(1,L,z,1) = x;

PT(1,L,z,2) = h/4*(x-1);

end % There exists a nonboundary point

% Set all of the pointers in the z-direction
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below = PT(x,L,1,7);

if below < z % Check for a nonboundary point below

while PT(x,L,below,7) < z

below = PT(x,L,below,7);

end

% Set point up

PT(x,L,z,7) = PT(x,L,below,7);

% Set new downward point for that point

PT(x,L,PT(x,L,below,7),9) = z;

% Set downward point

PT(x,L,z,9) = below;

% Set new upward point and distance for that point

PT(x,L,below,7) = z;

PT(x,L,below,8) = h/4*(z-below);

PT(x,L,z,8) = h/4*(PT(x,L,z,7) - z);

else

PT(x,L,z,7) = below;

PT(x,L,z,8) = h/4*(below-z);

PT(x,L,z,9) = 1;

PT(x,L,below,9) = z;

PT(x,L,1,7) = z;

PT(x,L,1,8) = h/4*(z-1);

end % There exists a nonboundary point below

% Advance the pointer

ptr = PT(x,L,z,4);

else

% Advance the pointer

ptr = PT(x,ptr,z,4);

end % If secant slope loop

end % While ptr loop

end % If isempty loop

end % z loop

end % x loop
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% Refine in the z-direction last

for x = 2:m-1 % Loop along the interior of v to check refinement

for y = 2:m-1

fp = find(T(x,y,:)>0); % Find nonzero terms (fp for find positive)

if isempty(fp) == 0 % Check to make sure there is one

ptr = PT(x,y,fp(1),9); % At which node we start the loop

% Loop on the number of points in use currently for this row

while ptr < fp(length(fp))+1

% Check to see if there’s a close point above to use

% for refinement

next = PT(x,y,ptr,7)-ptr<5 && PT(x,y,ptr,7)-ptr>1;

% Check slope of secant above

if abs(T(x,y,PT(x,y,ptr,7))-T(x,y,ptr))/PT(x,y,ptr,8)>tol

&& next

checker = 1;

count = count + 1;

if mod(PT(x,y,ptr,7)+ptr,2) == 1

if mod(ptr,4) == 2

L = ptr + 1;

else L = ptr + 2;

end

else

L = (PT(x,y,ptr,7)+ptr)/2;

end

% Set the value in the matrix for the refined point

T(x,y,L) =T(x,y,ptr)+(L-ptr)*(T(x,y,PT(x,y,ptr,7))-

T(x,y,ptr))/(PT(x,y,ptr,7)-ptr);

% Set the altitudinal values for the pointer matrix

PT(x,y,L,7) = PT(x,y,ptr,7);

PT(x,y,L,8) = h/4*(PT(x,y,L,7)-L);

PT(x,y,L,9) = ptr;

% Insert the new point altitudinally

PT(x,y,ptr,7) = L;
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PT(x,y,ptr,8) = h/4*(L-ptr);

PT(x,y,PT(x,y,L,7),9) = L;

% Set all of the pointers in the x-direction

left = PT(1,y,L,1);

if left < x % Check for a nonboundary point in

% the x-direction

while PT(left,y,L,1) < x

left = PT(left,y,L,1);

end

% Set forward point

PT(x,y,L,1) = PT(left,y,L,1);

% Set new backward point for that point

PT(PT(left,y,L,1),y,L,3) = x;

% Set backwards point

PT(x,y,L,3) = left;

% Set new forward point and distance for that point

PT(left,y,L,1) = x;

PT(left,y,L,2) = h/4*(x-left);

PT(x,y,L,2) = h/4*(PT(x,y,L,1) - x);

else

PT(x,y,L,1) = left;

PT(x,y,L,2) = h/4*(left-x);

PT(x,y,L,3) = 1;

PT(left,y,L,3) = x;

PT(1,y,L,1) = x;

PT(1,y,L,2) = h/4*(x-1);

end % There exists a nonboundary point

% Set all of the pointers in the y-direction

below = PT(x,1,L,4);

if below < y % Check for a nonboundary point in

% the y-direction

while PT(x,below,L,4) < y

below = PT(x,below,L,4);

108



end

% Set point up

PT(x,y,L,4) = PT(x,below,L,4);

% Set new downward point for that point

PT(x,PT(x,below,L,4),L,6) = y;

% Set downward point

PT(x,y,L,6) = below;

% Set new upward point and distance for that point

PT(x,below,L,4) = y;

PT(x,below,L,5) = h/4*(y-below);

PT(x,y,L,5) = h/4*(PT(x,y,L,4) - y);

else

PT(x,y,L,4) = below;

PT(x,y,L,5) = h/4*(below-y);

PT(x,y,L,6) = 1;

PT(x,below,L,6) = y;

PT(x,1,L,4) = y;

PT(x,1,L,5) = h/4*(y-1);

end % There exists a nonboundary point below

% Advance the pointer

ptr = PT(x,y,L,7);

else

% Advance the pointer

ptr = PT(x,y,ptr,7);

end % If secant slope loop

end % While ptr loop

end % If isempty loop

end % z loop

end % y loop

end % ADI_Adap_3_D_Refine

B.6 Coarsen

function [T, PT, checker, ct] = ADI_Adap_3_D_Coarsen(T, PT, m)
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% The coarsen function will be executed every five time steps to see if any

% of the added points can now be removed because they are no longer

% relevant in terms of calculating derivatives. We loop through the added

% points and check to see if the difference between them and the points

% around them fall below a given tolerance level. If so, the points are

% removed, and the pointer array (PT) is modified.

tol = 1; % Tolerance for removing points

checker = 0;

ct = 0;

% Coarsen over the whole matrix along the columns

for x = 2:m-1 % Check all original interior columns

for y = 2:m-1

nonzero = find(T(x,y,:)>0); % Find nonzero terms

if isempty(nonzero)==0

ptr = nonzero(1);

while ptr < m

% Check if it’s a grid point

if mod(x,4)==1 && mod(y,4)==1 && mod(ptr,4)==1

ptr = PT(x,y,ptr,7);

else % If it’s not a grid point

% Check the derivatives in the x-direction

% Forward

if PT(x,y,ptr,1) - ptr < 5

forw = abs(T(PT(x,y,ptr,1),y,ptr)-T(x,y,ptr))

/PT(x,y,ptr,2)<tol;

else

forw = 1;

end

% Backward

if ptr - PT(x,y,ptr,3) < 5

back = abs(T(PT(x,y,ptr,3),y,ptr)-T(x,y,ptr))

/PT(PT(x,y,ptr,3),y,ptr,2)<tol;

else
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back = 1;

end

% Check the derivatives in the y-direction

% Front

if PT(x,y,ptr,4) - ptr < 5

front = abs(T(x,PT(x,y,ptr,4),ptr)-T(x,y,ptr))

/PT(x,y,ptr,5)<tol;

else

front = 1;

end

% Behind

if ptr - PT(x,y,ptr,6) < 5

behind = abs(T(x,PT(x,y,ptr,6),ptr)-T(x,y,ptr))

/PT(x,PT(x,y,ptr,6),ptr,5)<tol;

else

behind = 1;

end

% Check the derivatives in the x-direction

% Upward

if PT(x,y,ptr,7) - ptr < 5

up = abs(T(x,y,PT(x,y,ptr,7))-T(x,y,ptr))

/PT(x,y,ptr,8)<tol;

else

up = 1;

end

% Downward

if ptr - PT(x,y,ptr,9) < 5

down = abs(T(x,y,PT(x,y,ptr,9))-T(x,y,ptr))

/PT(x,y,PT(x,y,ptr,9),8)<tol;

else

down = 1;

end

if forw && back && front && behind && up && down
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% If it’s unneeded

checker = 1;

ct = ct + 1;

% Set the point to zero

T(x,y,ptr) = 0;

% Remove the point in the x-direction

PT(PT(x,y,ptr,3),y,ptr,1) = PT(x,y,ptr,1);

PT(PT(x,y,ptr,3),y,ptr,2) =

PT(PT(x,y,ptr,3),y,ptr,2) + PT(x,y,ptr,2);

PT(PT(x,y,ptr,1),y,ptr,3) = PT(x,y,ptr,3);

% Remove the point in the y-direction

PT(x,PT(x,y,ptr,6),ptr,4) = PT(x,y,ptr,4);

PT(x,PT(x,y,ptr,6),ptr,5) =

PT(x,PT(x,y,ptr,6),ptr,5)+PT(x,y,ptr,5);

PT(x,PT(x,y,ptr,4),ptr,6) = PT(x,y,ptr,6);

% Remove the point in the z-direction

PT(x,y,PT(x,y,ptr,9),7) = PT(x,y,ptr,7);

PT(x,y,PT(x,y,ptr,9),8) =

PT(x,y,PT(x,y,ptr,9),8)+PT(x,y,ptr,8);

PT(x,y,PT(x,y,ptr,7),9) = PT(x,y,ptr,9);

% Erase the information in the pointer matrix

keep = PT(x,y,ptr,7);

PT(x,y,ptr,:) = 0;

ptr = keep;

else % If it’s still needed

ptr = PT(x,y,ptr,7);

end % If unneeded

end % If grid point

end % While loop up the z’s

end % If nonzero

end % y loop

end % x loop
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end % ADI_Adap_3_D_Coarsen

B.7 Thomas Algorithm

function [x] = ADI_Adap_3_D_TDMsolver(a,b,c,d)

% a, b, c are the column vectors for the compressed tridiagonal matrix,

% d is the right vector

n = length(d); % n is the number of elements in the array

x = zeros(n,1);

% Modify the first-row coefficients

c(1) = c(1) / b(1); % Division by zero risk.

d(1) = d(1) / b(1);

for i = 2:n-1

temp = b(i) - a(i) * c(i-1);

c(i) = c(i) / temp;

d(i) = (d(i) - a(i) * d(i-1))/temp;

end % For loop adjusting coefficients

d(n) = (d(n) - a(n) * d(n-1))/(b(n) - a(n) * c(n-1));

% Now back substitute.

x(n) = d(n);

for i = n-1:-1:1

x(i) = d(i) - c(i) * x(i+1);

end % For loop back substitution

end % ADI_Adap_3_D_TDMsolver

B.8 Isolated Single Point

function [answ] = ADI_Adap_3_D_Single_Point

(T1, T2, PT, x, y, z, h, rc, eps, rx, ry, rz, xyz)

% We use this function to calculate the new value at a point when that

% point is isolated on a refined row. We cannot use the Thomas

% algorithm due to lack of support. The input matrix may be ’v’, ’vHat1’

% or ’vHat2’, so we’ll use ’T’ to represent the matrix temporarily in use,

% while ’T2’ (v) is the other matrix we may need to calculate the new point.
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% We also use the pointer matrix, the x, y, and z-coordinates, the current

% discretization ’h’, the ’rCoef’, the ’epsCoef’, ’kd’=k*d (for FirstKnown),

% and some way to tell which way we were moving.

if xyz == ’x’ % If we were diffusing in the x-direction

% Set the x-coordinates before and after the current one

if mod(x,4) == 1

before = x - 4;

after = x + 4;

else

before = floor((x-1)/4)*4 + 1;

after = floor((x+2)/4)*4 + 1;

end

% Set the shadow y- and z-coordinates

if mod(y,4) == 1

yback = y - 4;

yup = y + 4;

else

yback = floor((y-1)/4)*4 + 1;

yup = floor((y+2)/4)*4 + 1;

end

if mod(z,4) == 1

zback = z - 4;

zup = z + 4;

else

zback = floor((z-1)/4)*4 + 1;

zup = floor((z+2)/4)*4 + 1;

end

% Calculate the RHS for the current point

rhs = ADI_Adap_3_D_FirstKnown(T1, PT, x, y, z, rx, ry, rz, rc, eps);

% Set the shadow point forward and its distance from the point

temfor = (T1(after,yup,zback)+T1(after,yup,zup)+T1(after,yback,zback)

+T1(after,yback,zup))/4;

h1 = h/4*(after-x);
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% Set the shadow point below and its distance from the point

tembeh = (T1(before,yup,zback)+T1(before,yup,zup)+

T1(before,yback,zback)+T1(before,yback,zup))/4;

h2 = h/4*(x-before);

h3 = (h1+h2)/2;

% Set the coefficients for the calculation

a = -rc/(h2*h3);

b = 1+rc*(h1+h2)/(h1*h2*h3);

c = -rc/(h1*h3);

answ = (rhs - c*temfor - a*tembeh)/b;

else % We were diffusing along a row

if xyz == ’y’ % If we were diffusing in the y-direction

% Set the y-coordinates before and after the current one

if mod(y,4) == 1

before = y - 4;

after = y + 4;

else

before = floor((y-1)/4)*4 + 1;

after = floor((y+2)/4)*4 + 1;

end

% Set the shadow x- and z-coordinates

if mod(x,4) == 1

xback = x - 4;

xup = x + 4;

else

xback = floor((x-1)/4)*4 + 1;

xup = floor((x+2)/4)*4 + 1;

end

if mod(z,4) == 1

zback = z - 4;

zup = z + 4;

else

zback = floor((z-1)/4)*4 + 1;
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zup = floor((z+2)/4)*4 + 1;

end

% Calculate the RHS for the current point

d1 = PT(x,y,z,5);

d2 = PT(x,PT(x,y,z,6),z,5);

d3 = (d1+d2)/2;

rhs = T1(x,y,z)-rc/(d1*d3)*T2(x,PT(x,y,z,4),z)+rc*(d1+d2)/

(d1*d2*d3)*T2(x,y,z)-rc/(d2*d3)*T2(x,PT(x,y,z,6),z);

% Set the shadow point forward and its distance from the point

temfor = (T1(xup,after,zback)+T1(xup,after,zup)+

T1(xback,after,zback)+T1(xback,after,zup))/4;

d1 = h/4*(after-y);

% Set the shadow point below and its distance from the point

tembeh = (T1(xup,before,zback)+T1(xup,before,zup)+

T1(xback,before,zback)+T1(xback,before,zup))/4;

d2 = h/4*(y-before);

d3 = (d1+d2)/2;

% Set the coefficients for the calculation

a = -rc/(d2*d3);

b = 1+rc*(d1+d2)/(d1*d2*d3);

c = -rc/(d1*d3);

answ = (rhs - c*temfor - a*tembeh)/b;

else % We are diffusing in the z-direction

% Set the z-coordinates before and after the current one

if mod(z,4) == 1

before = z - 4;

after = z + 4;

else

before = floor((z-1)/4)*4 + 1;

after = floor((z+2)/4)*4 + 1;

end

% Set the shadow x- and y-coordinates

if mod(x,4) == 1

116



xback = x - 4;

xup = x + 4;

else

xback = floor((x-1)/4)*4 + 1;

xup = floor((x+2)/4)*4 + 1;

end

if mod(y,4) == 1

yback = y - 4;

yup = y + 4;

else

yback = floor((y-1)/4)*4 + 1;

yup = floor((y+2)/4)*4 + 1;

end

% Calculate the RHS for the current point

m1 = PT(x,y,z,8);

m2 = PT(x,y,PT(x,y,z,9),8);

m3 = (m1+m2)/2;

rhs = T1(x,y,z)-rc/(m1*m3)*T2(x,y,PT(x,y,z,7))+rc*(m1+m2)/

(m1*m2*m3)*T2(x,y,z)-rc/(m2*m3)*T2(x,y,PT(x,y,z,9));

% Set the shadow point forward and its distance from the point

temfor = (T1(xup,yup,after)+T1(xback,yup,after)+

T1(xup,yback,after)+T1(xback,yback,after))/4;

m1 = h/4*(after-z);

% Set the shadow point below and its distance from the point

tembeh = (T1(xup,yup,before)+T1(xback,yup,before)+

T1(xup,yback,before)+T1(xback,yback,before))/4;

m2 = h/4*(z-before);

m3 = (m1+m2)/2;

% Set the coefficients for the calculation

a = -rc/(m2*m3);

b = 1+rc*(m1+m2)/(m1*m2*m3);

c = -rc/(m1*m3);

answ = (rhs - c*temfor - a*tembeh)/b;
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end

end

end % ADI_Adap_3_D_Single_Point

B.9 Isolated Pair of Points

function [ans1, ans2] = ADI_Adap_3_D_Two_Points

(T1, T2, PT, x, y, z, h, rx, ry, rz, rc, eps, xyz)

% This function calculates new third-points for two isolated points on a

% row. We take an input matrix, be it ’v’, ’vHat1’, or ’vHat2’, and a

% second matrix if necessary, the pointer matrix, the coordinates of the

% first of the two points, the current discretization, ’kd’=k*d (for

% FirstKnown), the r-coefficient, the epsilon coefficient, and a character

% input to tell whether we are diffusing along the x-, y-, or z-direction.

if xyz == ’x’ % We are diffusing in the x-direction

% Set the x-coordinates before and after the two points

if mod(x,4) == 1

before = x-4;

else

before = floor((x-1)/4)*4 + 1;

end

num = PT(x,y,z,1);

if mod(num,4) == 1

after = num+4;

else

after = floor((num+2)/4)*4 + 1;

end

% Set the shadow y- and z-coordinates

if mod(y,4) == 1

yback = y - 4;

yup = y + 4;

else

yback = floor((y-1)/4)*4 + 1;

yup = floor((y+2)/4)*4 + 1;
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end

if mod(z,4) == 1

zback = z - 4;

zup = z + 4;

else

zback = floor((z-1)/4)*4 + 1;

zup = floor((z+2)/4)*4 + 1;

end

% Calculate the right-hand side

rhs1 = ADI_Adap_3_D_FirstKnown(T1, PT, x, y, z, rx, ry, rz, rc, eps);

rhs2 = ADI_Adap_3_D_FirstKnown(T1, PT, num, y, z, rx, ry, rz, rc, eps);

% Set the shadow point above and its distance from the point

temab = (T1(after,yup,zup)+T1(after,yup,zback)+T1(after,yback,zup)

+T1(after,yback,zback))/4;

% We’ll use t for the shadow point on top

t1 = h/4*(after-num);

t2 = PT(x,y,z,2);

t3 = (t1+t2)/2;

% Set the shadow point below and its distance from the point

tembel = (T1(before,yup,zup)+T1(before,yup,zback)+T1(before,yback,zup)

+T1(before,yback,zback))/4;

% We use d for the shadow point down below

d1 = t2;

d2 = h/4*(x-before);

d3 = (d1+d2)/2;

% Set the coefficients for the calculation

% We use a 1 for the coefficients that would be in

% the first row, 2 for the second

a1 = -rc/(d2*d3);

b1 = 1+rc*(d1+d2)/(d1*d2*d3);

c1 = -rc/(d1*d3);

a2 = -rc/(t2*t3);

b2 = 1+rc*(t1+t2)/(t1*t2*t3);
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c2 = -rc/(t1*t3)

ans2 = (a1*a2*tembel-a2*rhs1+b1*rhs2-b1*c2*temab);

ans2 = ans2/(b1*b2-a2*c1);

ans1 = (rhs1 - c1*ans2-a1*tembel)/b1;

else

if xyz == ’y’ % We are diffusing in the y-direction

% Set the y-coordinates before and after the two points

if mod(y,4) == 1

before = y-4;

else

before = floor((y-1)/4)*4 + 1;

end

num = PT(x,y,z,4);

if mod(num,4) == 1

after = num+4;

else

after = floor((num+2)/4)*4 + 1;

end

% Set the shadow x- and z-coordinates

if mod(x,4) == 1

xback = x - 4;

xup = x + 4;

else

xback = floor((x-1)/4)*4 + 1;

xup = floor((x+2)/4)*4 + 1;

end

if mod(z,4) == 1

zback = z - 4;

zup = z + 4;

else

zback = floor((z-1)/4)*4 + 1;

zup = floor((z+2)/4)*4 + 1;

end
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% Calculate the right-hand side

t1 = PT(x,num,z,5);

t2 = PT(x,y,z,5);

t3 = (t1+t2)/2;

d1 = t2;

d2 = PT(x,PT(x,y,z,6),z,5);

d3 = (d1+d2)/2;

rhs1 = T1(x,y,z)-rc/(d1*d3)*T2(x,num,z)+rc*(d1+d2)/(d1*d2*d3)*

T2(x,y,z)-rc/(d2*d3)*T2(x,PT(x,y,z,6),z);

rhs2 = T1(x,num,z)-rc/(t1*t3)*T2(x,PT(x,num,z,4),z)+

rc*(t1+t2)/(t1*t2*t3)*T2(x,num,z)-rc/(t2*t3)*T2(x,y,z);

% Set the shadow point above and its distance from the point

temab = (T1(xup,after,zup)+T1(xup,after,zback)+

T1(xback,after,zup)+T1(xback,after,zback))/4;

% We’ll use t for the shadow point on top

t1 = h/4*(after-num);

t2 = PT(x,y,z,5);

t3 = (t1+t2)/2;

% Set the shadow point below and its distance from the point

tembel = (T1(xup,before,zup)+T1(xup,before,zback)+

T1(xback,before,zup)+T1(xback,before,zback))/4;

% We use d for the shadow point down below

d1 = t2;

d2 = h/4*(y-before);

d3 = (d1+d2)/2;

% Set the coefficients for the calculation

% We use a 1 for the coefficients that would be in

% the first row, 2 for the second

a1 = -rc/(d2*d3);

b1 = 1+rc*(d1+d2)/(d1*d2*d3);

c1 = -rc/(d1*d3);

a2 = -rc/(t2*t3);

b2 = 1+rc*(t1+t2)/(t1*t2*t3);
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c2 = -rc/(t1*t3);

ans2 = (a1*a2*tembel-a2*rhs1+b1*rhs2-b1*c2*temab);

ans2 = ans2/(b1*b2-a2*c1);

ans1 = (rhs1 - c1*ans2-a1*tembel)/b1;

else % Diffusing in the z-direction

% Set the z-coordinates before and after the two points

if mod(z,4) == 1

before = z-4;

else

before = floor((z-1)/4)*4 + 1;

end

num = PT(x,y,z,7);

if mod(num,4) == 1

after = num+4;

else

after = floor((num+2)/4)*4 + 1;

end

% Set the shadow x- and y-coordinates

if mod(x,4) == 1

xback = x - 4;

xup = x + 4;

else

xback = floor((x-1)/4)*4 + 1;

xup = floor((x+2)/4)*4 + 1;

end

if mod(y,4) == 1

yback = y - 4;

yup = y + 4;

else

yback = floor((y-1)/4)*4 + 1;

yup = floor((y+2)/4)*4 + 1;

end

% Calculate the right-hand side
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t1 = PT(x,y,num,8);

t2 = PT(x,y,z,8);

t3 = (t1+t2)/2;

d1 = t2;

d2 = PT(x,y,PT(x,y,z,9),8);

d3 = (d1+d2)/2;

rhs1 = T1(x,y,z)-rc/(d1*d3)*T2(x,y,PT(x,y,z,7))+rc*(d1+d2)/

(d1*d2*d3)*T2(x,y,z)-rc/(d2*d3)*T2(x,y,PT(x,y,z,9));

rhs2 = T1(x,y,z)-rc/(t1*t3)*T2(x,y,PT(x,y,z,7))+rc*(t1+t2)/

(t1*t2*t3)*T2(x,y,z)-rc/(t2*t3)*T2(x,y,PT(x,y,z,9));

% Set the shadow point above and its distance from the point

temab = (T1(xup,yup,after)+T1(xback,yup,after)+

T1(xup,yback,after)+T1(xback,yback,after))/4;

% We’ll use t for the shadow point on top

t1 = h/4*(after-num);

t2 = PT(x,y,z,2);

t3 = (t1+t2)/2;

% Set the shadow point below and its distance from the point

tembel = (T1(xup,yup,before)+T1(xback,yup,before)+

T1(xup,yback,before)+T1(xback,yback,before))/4;

% We use d for the shadow point down below

d1 = t2;

d2 = h/4*(z-before);

d3 = (d1+d2)/2;

% Set the coefficients for the calculation

% We use a 1 for the coefficients that would be in

% the first row, 2 for the second

a1 = -rc/(d2*d3);

b1 = 1+rc*(d1+d2)/(d1*d2*d3);

c1 = -rc/(d1*d3);

a2 = -rc/(t2*t3);

b2 = 1+rc*(t1+t2)/(t1*t2*t3);

c2 = -rc/(t1*t3);
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ans2 = (a1*a2*tembel-a2*rhs1+b1*rhs2-b1*c2*temab);

ans2 = ans2/(b1*b2-a2*c1);

ans1 = (rhs1 - c1*ans2-a1*tembel)/b1;

end

end % ADI_Adap_3_D_Two_Points

B.10 First Known Value

function [a] = ADI_Adap_3_D_FirstKnown

(T, PT, x, y, z, rx, ry, rz, rCx, epsC)

% This function determines the known values for the first "third-time step"

% in the algorithm. I set it as a separate function because of all of the

% calculations that need to be made.

% This is the list of distances dictated by the input point. Distances with

% an ’h’ are distances in the x-direction; distances with a ’d’ are in the

% y-direction; and distances with an ’m’ are in the z-direction. Distances

% where the letter is followed by a ’1’ are forward distances; if followed

% by a ’2’, it is a backward distance; and the ’3’ signifies the average of

% the ’1’ and ’2’ distances.

% Distances around the input point

h1 = PT(x,y,z,2);

h2 = PT(PT(x,y,z,3),y,z,2);

h3 = (h1 + h2)/2;

d1 = PT(x,y,z,5);

d2 = PT(x,PT(x,y,z,6),z,5);

d3 = (d1 + d2)/2;

m1 = PT(x,y,z,8);

m2 = PT(x,y,PT(x,y,z,9),8);

m3 = (m1 + m2)/2;

% Distances once we move off of the input point.

% For the refined points, we need to make sure that we move in the proper

% direction, then find distances around those points. These next variables

% will have multiple numbers after them.
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% These numbers come from the subscripts in the discretization, with only

% as many as necessary listed. For subscripts that would normally be a -1,

% we will replace it with N1. All other 1’s are to be considered positive.

% For example, if we are looking at the distance between u_(i+1,j,k-1) and

% u_(i,j,k-1), we would list it as h10N1, it being a forward distance in

% the x-direction, where the addend to ’j’ is zero, and the addend to ’k’

% is negative one.

% Distances for the operator A_2

d11 = PT(x,y,PT(x,y,z,7),5);

d21 = PT(x,PT(x,y,PT(x,y,z,7),6),PT(x,y,z,7),5);

d31 = (d11 + d21)/2;

d10 = PT(x,y,z,5);

d20 = PT(x,PT(x,y,z,6),z,5);

d30 = (d10 + d20)/2;

d1N1 = PT(x,y,PT(x,y,z,9),5);

d2N1 = PT(x,PT(x,y,PT(x,y,z,9),6),PT(x,y,z,9),5);

d3N1 = (d1N1 + d2N1)/2;

% Distances for the operator A_1

h111 = PT(x,PT(x,y,PT(x,y,z,7),4),PT(x,y,z,7),2);

h211 = PT(PT(x,PT(x,y,PT(x,y,z,7),4),PT(x,y,z,7),3),

PT(x,y,PT(x,y,z,7),4),PT(x,y,z,7),2);

h311 = (h111 + h211)/2;

h101 = PT(x,y,PT(x,y,z,7),2);

h201 = PT(PT(x,y,PT(x,y,z,7),3),y,PT(x,y,z,7),2);

h301 = (h101 + h201)/2;

h1N11 = PT(x,PT(x,y,PT(x,y,z,7),6),PT(x,y,z,7),2);

h2N11 = PT(PT(x,PT(x,y,PT(x,y,z,7),6),PT(x,y,z,7),3),

PT(x,y,PT(x,y,z,7),6),PT(x,y,z,7),2);

h3N11 = (h1N11 + h2N11)/2;

h110 = PT(x,PT(x,y,z,4),z,2);

h210 = PT(PT(x,PT(x,y,z,4),z,3),PT(x,y,z,4),z,2);

h310 = (h110 + h210)/2;

h100 = PT(x,y,z,2);
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h200 = PT(PT(x,y,z,3),y,z,2);

h300 = (h100 + h200)/2;

h1N10 = PT(x,PT(x,y,z,6),z,2);

h2N10 = PT(PT(x,PT(x,y,z,6),z,3),PT(x,y,z,6),z,2);

h3N10 = (h1N10 + h2N10)/2;

h11N1 = PT(x,PT(x,y,PT(x,y,z,9),4),PT(x,y,z,9),2);

h21N1 = PT(PT(x,PT(x,y,PT(x,y,z,9),4),PT(x,y,z,9),3),

PT(x,y,PT(x,y,z,9),4),PT(x,y,z,9),2);

h31N1 = (h11N1 + h21N1)/2;

h10N1 = PT(x,y,PT(x,y,z,9),2);

h20N1 = PT(PT(x,y,PT(x,y,z,9),3),y,PT(x,y,z,9),2);

h30N1 = (h10N1 + h20N1)/2;

h1N1N1 = PT(x,PT(x,y,PT(x,y,z,9),6),PT(x,y,z,9),2);

h2N1N1 = PT(PT(x,PT(x,y,PT(x,y,z,9),6),PT(x,y,z,9),3),

PT(x,y,PT(x,y,z,9),6),PT(x,y,z,9),2);

h3N1N1 = (h1N1N1 + h2N1N1)/2;

u000 = T(x,y,z)*(1+(rCx-rx)*(h1+h2)/(h1*h2*h3)-ry*(d1+d2)/(d1*d2*d3)-...

rz*(m1+m2)/(m1*m2*m3)-(h100+h200)*(d10+d20)*(m1+m2)*epsC/...

(h100*h200*h300*d10*d20*d30*m1*m2*m3));

u001 = T(x,y,PT(x,y,z,7))*(rz/(m1*m3)+(h101+h201)*(d11+d21)*epsC/

(h101*h201*h301*d11*d21*d31*m1*m3));

u00N1 = T(x,y,PT(x,y,z,9))*(rz/(m2*m3)+(h10N1+h20N1)*(d1N1+d2N1)*epsC/

(h10N1*h20N1*h30N1*d1N1*d2N1*d3N1*m2*m3));

u010 = T(x,PT(x,y,z,4),z)*(ry/(d1*d3)+(h110+h210)*(m1+m2)*epsC/

(h110*h210*h310*d10*d30*m1*m2*m3));

u011 = -T(x,PT(x,y,PT(x,y,z,7),4),PT(x,y,z,7))*(h111+h211)*epsC/

(h111*h211*h311*d11*d31*m1*m3);

u01N1 = -T(x,PT(x,y,PT(x,y,z,9),4),PT(x,y,z,9))*(h11N1+h21N1)*epsC/

(h11N1*h21N1*h31N1*d1N1*d3N1*m2*m3);

u0N10 = T(x,PT(x,y,z,6),z)*(ry/(d2*d3)+(h1N10+h2N10)*(m1+m2)*epsC/

(h1N10*h2N10*h3N10*d20*d30*m1*m2*m3));

u0N11 = -T(x,PT(x,y,PT(x,y,z,7),6),PT(x,y,z,7))*(h1N11+h2N11)*epsC/

(h1N11*h2N11*h3N11*d21*d31*m1*m3);
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u0N1N1 = -T(x,PT(x,y,PT(x,y,z,9),6),PT(x,y,z,9))*(h1N1N1+h2N1N1)*epsC/

(h1N1N1*h2N1N1*h3N1N1*d2N1*d3N1*m2*m3);

u100 = T(PT(x,y,z,1),y,z)*((-rCx+rx)/(h1*h3)+(m1+m2)*(d10+d20)*epsC/

(h100*h300*d10*d20*d30*m1*m2*m3));

u101 = -T(PT(x,y,PT(x,y,z,7),1),y,PT(x,y,z,7))*(d11+d21)*epsC/

(h101*h301*d11*d21*d31*m1*m3);

u10N1 = -T(PT(x,y,PT(x,y,z,9),1),y,PT(x,y,z,9))*(d1N1+d2N1)*epsC/

(h10N1*h30N1*d1N1*d2N1*d3N1*m2*m3);

u110 = -T(PT(x,PT(x,y,z,4),z,1),PT(x,y,z,4),z)*(m1+m2)*epsC/

(h110*h310*d10*d30*m1*m2*m3);

u111 = T(PT(x,PT(x,y,PT(x,y,z,7),4),PT(x,y,z,7),1),

PT(x,y,PT(x,y,z,7),4),PT(x,y,z,7))*epsC/(h111*h311*d11*d31*m1*m3);

u11N1 = T(PT(x,PT(x,y,PT(x,y,z,9),4),PT(x,y,z,9),1),

PT(x,y,PT(x,y,z,9),4),PT(x,y,z,9))*epsC/(h11N1*h31N1*d1N1*d3N1*m2*m3);

u1N10 = -T(PT(x,PT(x,y,z,6),z,1),PT(x,y,z,6),z)*(m1+m2)*epsC/

(h1N10*h3N10*d20*d30*m1*m2*m3);

u1N11 = T(PT(x,PT(x,y,PT(x,y,z,7),6),PT(x,y,z,7),1),PT(x,y,PT(x,y,z,7),6),

PT(x,y,z,7))*epsC/(h1N11*h3N11*d21*d31*m1*m3);

u1N1N1 = T(PT(x,PT(x,y,PT(x,y,z,9),6),PT(x,y,z,9),1),PT(x,y,PT(x,y,z,9),6),

PT(x,y,z,9))*epsC/(h1N1N1*h3N1N1*d2N1*d3N1*m2*m3);

uN100 = T(PT(x,y,z,3),y,z)*((-rCx+rx)/(h2*h3)+(m1+m2)*(d10+d20)

*epsC/(h200*h300*d10*d20*d30*m1*m2*m3));

uN101 = -T(PT(x,y,PT(x,y,z,7),3),y,PT(x,y,z,7))*(d11+d21)

*epsC/(h201*h301*d11*d21*d31*m1*m3);

uN10N1 = -T(PT(x,y,PT(x,y,z,9),3),y,PT(x,y,z,9))*(d1N1+d2N1)

*epsC/(h20N1*h30N1*d1N1*d2N1*d3N1*m2*m3);

uN110 = -T(PT(x,PT(x,y,z,4),z,3),PT(x,y,z,4),z)*(m1+m2)

*epsC/(h210*h310*d10*d30*m1*m2*m3);

uN111 = T(PT(x,PT(x,y,PT(x,y,z,7),4),PT(x,y,z,7),3),PT(x,y,PT(x,y,z,7),4),

PT(x,y,z,7))*epsC/(h211*h311*d11*d31*m1*m3);

uN11N1 = T(PT(x,PT(x,y,PT(x,y,z,9),4),PT(x,y,z,9),3),PT(x,y,PT(x,y,z,9),4),

PT(x,y,z,9))*epsC/(h21N1*h31N1*d1N1*d3N1*m2*m3);

uN1N10 = -T(PT(x,PT(x,y,z,6),z,3),PT(x,y,z,6),z)*(m1+m2)
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*epsC/(h2N10*h3N10*d20*d30*m1*m2*m3);

uN1N11 = T(PT(x,PT(x,y,PT(x,y,z,7),6),PT(x,y,z,7),3),PT(x,y,PT(x,y,z,7),6),

PT(x,y,z,7))*epsC/(h2N11*h3N11*d21*d31*m1*m3);

uN1N1N1 = T(PT(x,PT(x,y,PT(x,y,z,9),6),PT(x,y,z,9),3),PT(x,y,PT(x,y,z,9),6),

PT(x,y,z,9))*epsC/(h2N1N1*h3N1N1*d2N1*d3N1*m2*m3);

a = u000+u001+u00N1 + u010+u011+u01N1 +

u0N10+u0N11+u0N1N1 + u100+u101+u10N1 +

u110+u111+u11N1 + u1N10+u1N11+u1N1N1 +

uN100+uN101+uN10N1 + uN110+uN111+uN11N1 +

uN1N10+uN1N11+uN1N1N1;

end % ADI_Adap_3_D_FirstKnown
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