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abstract

A Mathematical Model of Amoeboid Cell Motion as a
Continuous-Time Markov Process

Lynnae Despain
Department of Mathematics, BYU

Master of Science

Understanding cell motion facilitates the understanding of many biological processes such
as wound healing and cancer growth. Constructing mathematical models that replicate
amoeboid cell motion can help us understand and make predictions about real-world cell
movement. We review a force-based model of cell motion that considers a cell as a nucleus
and several adhesion sites connected to the nucleus by springs. In this model, the cell moves
as the adhesion sites attach to and detach from a substrate. This model is then reformulated
as a random process that tracks the attachment characteristic (attached or detached) of each
adhesion site, the location of each adhesion site, and the centroid of the attached sites. It
is shown that this random process is a continuous-time jump-type Markov process and that
the sub-process that counts the number of attached adhesion sites is also a Markov process
with an attracting invariant distribution. Under certain hypotheses, we derive a formula for
the velocity of the expected location of the centroid.

Keywords: cell motion, Markov process
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Chapter 1. Introduction

Amoeboid cell motion is a crawling type of movement of a single cell that occurs as the

cytoplasm changes shape by protruding and retracting extensions, known as pseudopods.

These pseudopods form via actin polymerization and act as adhesion sites, interacting with

and attaching to the extracellular matrix (ECM). Contraction occurs, causing locomotion

of the cell. Finally, the adhesive bonds release and the pseudopods detach and retract into

the advancing cell body [4]. This type of motion is exhibited by protozoan amoebae, slime

molds such as Dictyostelium discoideum, some human cells such as leukocytes, and some

tumor cells. Understanding cell motion can help us understand complex biological processes

such as wound healing [8], immune response [4], and metastasis [9].

To introduce some mathematical understanding of amoeboid cell motion, we review a

force-based model of a single cell that considers a cell as several adhesion sites connected to

the nucleus by springs. The attachment characteristic of each site (attached or detached) is

determined by random switching terms. When a site attaches, it does so at a location that is

some random perturbation of the location of the cell center. The attached sites exert forces

on the nucleus, causing cell motion.

This force-based model is presented in [3]. Numerical simulations in [3] suggest cell speed

is independent of force and is greatly influenced by the binding dynamics of the cell. We

seek to verify these observations analytically. As such, our primary goal is to find a formula

to predict the expected velocity of the cell under such motion.

Using ideas from the force-based mode, we construct a model of amoeboid cell motion as

a stochastic process. This process considers the attachment characteristic of each adhesion

site, the location of each adhesion site, and the location of the centroid of the attached sites.

We show that, under our formulation, this stochastic process is a continuous-time Markov

process from which we can determine the time derivative of the expected location of the

centroid.

Before formulating and discussing our model, we first look at the projected process of
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counting the number of attached adhesion sites. This projected process is a continuous-time

Markov process, and we examine its transition rate matrix and stationary distribution.

In developing the Continuous-time Centroid Model, we begin by presenting definitions

and introducing notation that will be used throughout this paper. We define several functions

and measures that will be used to construct the transition kernel µ and the rate function

c for our stochastic process. We then construct the corresponding rate kernel α, and show

that our stochastic process is actually a Markov process generated by α.

Next, we formulate the previously discussed projected process in terms of measures and

kernels and rigorously prove that it is a Markov process and that it has an attracting invariant

distribution. Finally, we show that if we begin with an initial distribution for the full Markov

process that when projected gives the invariant distribution for the projected process, then

we have a time-invariant formula for the time derivative of the expected location of the

centroid.

To generalize this result, we consider what happens when the perturbation of an adhesion

site from the centroid is governed by a distribution that is space-dependent. Under these

conditions, we derive a similar result to predict the velocity of the expected location of the

centroid. This allows us to extend our model to more complex biological situations such as

modeling chemotaxis.

Chapter 2. The Differential Equation Model

This section reviews a model of amoeboid cell motion established in [3] that we call

the Differential Equation Model. This model considers the forces involved in amoeboid cell

motion in a simplified manner. We think of a cell as multiple integrin-based adhesion sites

that interact with an external substrate and exert forces on the cell’s nucleus, or the cell

center. In this model, it is as if the adhesion sites are connected to the cell center with

springs. That is, the force an adhesion site exerts on the cell center is proportional to the
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distance between the cell center and the adhesion site.

Because the nucleus is surrounded by cytoplasm, there is a drag force on the cell center.

To model this, we assume the cell center is a sphere moving through a liquid with low

Reynolds number and that the drag is proportional to the velocity of the cell center.

Let x denote the location in RN of the cell center. Suppose there are n adhesion sites.

Let `j denote the rest length of the spring attaching site j to the cell center and let βj denote

the corresponding spring constant. Let ψj(t) be a random variable that takes the values of

0 and 1 to indicate whether or not site j is attached to the substrate at time t. Let tp,j be

the time that site j becomes attached for the pth time. Let vj give the location in RN of

site j. Then

vj(t) = x(t−p,j) + bp,j for t ∈ [tp,j, tp+1,j)

where x(t−p,j) = limt→t−p,j
x(t) and bp,j is a random variable governed by some distribution η

that gives the perturbation of the location of site j from the cell center. Notice, then, that

when site j attaches it does so at a distance ‖bp,j‖ from the cell center. It remains at that

location until the site detaches.

The force-based model uses Newton’s second law of motion: F = ma, where F is the

total force exerted on the cell center, m is the mass of the cell center, and a is the acceleration

of the cell center. However, due to the low Reynolds number, the acceleration term can be

ignored, leaving F = 0. Letting γ denote the drag coefficient, the drag force is γx′. The

total force exerted by the adhesion sites is

n∑
j=1

βj(‖x− vj‖ − `j)
x− vj
‖x− vj‖

ψj

Thus, the equation of motion for the cell center is

γx′ = −
n∑
j=1

βj(‖x− vj‖ − `j)
x− vj
‖x− vj‖

ψj
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If we assume the rest lengths of the springs are zero, this simplifies to

γx′ = −
n∑
j=1

βj(x− vj)ψj

For further analysis and numerical results of the Differential Equation Model, see [3].

Chapter 3. The Continuous-time Centroid Model

The Differential Equation Model can be approximated by tracking the location of the

centroid of the cell, rather than the cell center. Informally, we consider the limit of the

differential equation model as the spring constants βj become large. Under such conditions,

it is expected that the nucleus no longer moves smoothly between positions but rather that

the centroid jumps from position to position. Such a problem was examined in [2] as a

discrete-time Markov process where the time steps were taken to be the event times. We

now formulate this problem as a continuous-time Markov process that also includes inter-

event times and call it the Continuous-time Centroid Model.

In compliance with the differential equation model, we assume that when an adhesion

site attaches, it does so at a location that is some random displacement from the centroid

of the previously attached adhesion sites. For simplicity, we assume that when an adhesion

site detaches it does not change location. Furthermore, at each attachment or detachment

event we consider the movement of the centroid to be instantaneous. We also assume that

attachment and detachment events occur independently of one another and at random and

allow only one attachment or detachment event at a time.

Chapter 4. A Projected Process: Counting Attached Sites

Before discussing the full Continuous-time Centroid Model, we first examine a simpler

process X̂ that counts the number of attached sites. We do so using the familiar context of
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a transition rate matrix and distribution vectors.

To begin, fix a number n ∈ N, where n is the number of adhesion sites. The state space

of X̂ is {0, 1, . . . , n}. Fix two positive constants θa and θd. Assume that the wait time for

a detached site to attach is exponentially distributed with parameter θa and that the wait

time for an attached site to detach is exponentially distributed with parameter θd.

It is a standard result in probability that the minimum of m independent exponentially

distributed random variables is itself an exponentially distributed random variable whose

parameter is the sum of the parameters of the m independent exponential random variables.

Suppose there are i sites attached. The wait time for any detachment to occur is the

minimum of the wait times for each of the attached sites to detach. Since there are i sites

attached, it follows that the wait time for a detachment to occur is exponentially distributed

with parameter iθd. Similarly, there are (n − i) detached sites, so the wait time for an

attachment to occur is exponentially distributed with parameter (n− i)θa.

To simplify this process, we assume it is memoryless. That is, the number of attached

sites at the next event depends only on the number of sites that are currently attached and

not on any information about previous times. This implies that the wait times between

events are exponentially distributed.

Consider a state i ∈ {0, 1, . . . , n}. Since only one attachment or detachment event occurs

at a time, we only allow transitions from state i to state i − 1 or i + 1, corresponding to a

detachment or attachment event, respectively. The generator, or transition rate matrix, Q

for X̂ is the matrix with entries qij given by

qi,i−1 = iθd, qi,i = −((n− i)θa + iθd), qi,i+1 = (n− i)θa,

and qi,j = 0 otherwise.

Let τ1, τ2, . . . be the jump times of X̂. Let Ŷ be the embedded discrete-time Markov

chain, called the jump chain of X̂, given by Ŷk = X̂t for t ∈ [τk, τk+1). Let R = (rij) be the

transition probability matrix for Ŷ , so that the jump chain Ŷ has transition probabilities
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rij. Then the jump probabilities are given by

rij =

 −
qij
qii
, j 6= i

0, j = i

So rij > 0 if j ∈ {i − 1, i + 1} and rij = 0 otherwise. Let r
(k)
ij be the k-step transition

probability for Ŷ . We prove two properties of Ŷ .

Proposition 4.1. The Markov chain Ŷ described above is irreducible.

Proof. If i > j, then

r
(i−j)
ij ≥ ri,i−1ri−1,i−2 . . . rj+1,j > 0

If i < j, then

r
(j−i)
ij ≥ ri,i+1ri+1,i+2 . . . rj−1,j > 0

If i = j 6= n, then

r
(2)
ii ≥ ri,i+1ri+1,i > 0

If i = j = n, then

r
(2)
ii ≥ ri,i−1ri−1,i > 0

So i communicates with j and j communicates with i for all states i, j. Thus, Ŷ is irreducible.

Proposition 4.2. Ŷ is a recurrent Markov chain.

Proof. We show that every state is recurrent for Ŷ . Since the state space S = {0, 1, 2, . . . , n}

is finite, by Corollary 7.2.3 in [7] there is at least one recurrent state. Because Proposition 4.1

gives that Ŷ is irreducible, it then follows by Corollary 7.2.1 of [7] that all the states are

recurrent.
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We show that X̂ has a stationary distribution ζ and that it is attracting, where ζ is as

given in Proposition 4.3.

Proposition 4.3. The distribution vector ζ given by

ζk =
1

(θd + θa)n

(
n

k

)
θn−kd θka, k = 0, 1, . . . , n

is a stationary distribution for X̂. If {pij(t)} are the transition probabilities of X̂, then

pij(t)→ ζj as t→∞.

Proof. For ζ to be a stationary distribution of X̂ it must satisfy ζQ = 0. Let (ζQ)j denote

the jth entry of the row vector ζQ. We find that

(ζQ)j =


−nθaζ0 + θdζ1, if j = 0

(n− (j − 1))θaζj−1 − ((n− j)θa + jθd)ζj + (j + 1)θdζj+1, if 1 ≤ j ≤ n− 1

θaζn−1 − nθdζn, if j = n

So

(ζQ)0 = −nθa
(

1

(θd + θa)n
θnd

)
+ θd

(
n

(θd + θa)n
θn−1
d θa

)
= 0

and

(ζQ)n = θa

(
n

(θd + θa)n
θdθ

n−1
a

)
− nθd

(
1

(θd + θa)n
θna

)
= 0
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For 1 ≤ j ≤ n− 1,

(ζQ)j =
1

(θd + θa)n

[
(n− (j − 1))θa

(
n

j − 1

)
θj−1
a θ

n−(j−1)
d − (n− j)θa

(
n

j

)
θjaθ

n−j
d

−jθd
(
n

j

)
θjaθ

n−j
d + (j + 1)θd

(
n

j + 1

)
θj+1
a θ

n−(j+1)
d

]
=

1

(θd + θa)n

[
n!

(j − 1)!(n− j)!
θjaθ

n−j+1
d − n!

j!(n− j − 1)!
θj+1
a θn−jd

− n!

(n− j)!(j − 1)!
θjaθ

n−j+1
d +

n!

(n− j − 1)!j!
θj+1
a θn−jd

]
= 0

So ζQ = 0 and ζ is a stationary distribution for X̂.

By Propositions 4.1 and 4.2, we know that Ŷ is irreducible and recurrent. Since Ŷ is the

jump chain of X̂, we have that X̂ is an irreducible continuous-time Markov process with a

recurrent jump chain. By Theorem 7.4.5 of [7], the transition probabilities converge to the

stationary probabilities. That is, pij(t)→ ζj as t→∞, and we say that ζ is attracting.

We will revisit the process X̂ in Section 8 and will formulate it in terms of measures

and rate kernels. Under this new construction, results corresponding to Propositions 4.1

and 4.3 are given in Lemma 8.5 and Proposition 8.7, respectively. We will also discuss

the relationship between the transition rate matrix Q and the rate kernel α̂ (to be defined

in Section 5) and the relationship between their corresponding invariant distributions (see

comments following Propositions 8.4 and 8.7).
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Chapter 5. Formulation of the Continuous-time Centroid

Model

We introduce definitions and notations that will be used hereafter. To begin, fix two

numbers n,N ∈ N, where n is the number of adhesion sites and N is the dimension of

the space in which the cell moves. We will consider the adhesion sites as being uniquely

labeled with the integers 0, 1, . . . , n− 1. Fix positive constants θa, θd and a Borel probability

measure η on E := RN such that
∫
E

x dη(x) is well-defined and finite. Assume that the

wait time for a detached adhesion site to attach is exponentially distributed with parameter

θa and the wait time for an attached adhesion site to detach is exponentially distributed

with parameter θd. We choose η such that when a detached adhesion site attaches, its new

location is a perturbation of the old centroid governed by the distribution η.

We will make use of the following definitions and notations:

• For two sets A,B, define AB to be the set of functions from B to A.

• For k ∈ N, define [k] := {0, 1, 2, . . . , k − 1}.

• For ψ ∈ {0, 1}[n], define |ψ| :=
∑

i∈[n] ψ(i). We use ψ to indicate the attachment

characteristic of the cell. So

ψ(i) =

 0, if site i is detached

1, if site i is attached

Since ψ gives the attachment characteristic of the cell, |ψ| gives the number of adhesion

sites that are attached.

• Define a space X :=
{
{0, 1}[n] × E[n+1] :

∑
i∈[n] ψ(i)(v(i)− v(n)) = 0

}
. For v ∈ E[n+1],

v(i) gives the location of site i for i ∈ [n], and v(n) gives the centroid of the attached

adhesion sites. A point (ψ,v) ∈ X describes the attachment characteristic of the cell,
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the location of the adhesion sites, and the location of the centroid. The condition in

the definition of X ensures that v(n) is, in fact, the centroid of the attached sites.

• Endow {0, 1} with the discrete topology, E with the Euclidean topology, {0, 1}[n] ×

E[n+1] with the corresponding product topology, and X with the corresponding subspace

topology.

• Let B(·) denote the Borel σ-algebra of a topological space.

• Given a,b ∈ E and a, b ∈ R, define a function S(a,b,a,b) : E × E → E × E by

S(a,b,a,b)(x,y) := (a(x − a), b(y − b)). This function scales and translates a point in

E × E.

• For each i ∈ [n]:

– Define ri : {0, 1}[n] → [0, 1] by

ri(ψ) :=
θdψ(i) + θa(1− ψ(i))

θd |ψ|+ θa(n− |ψ|)

We will show in Claim 6.1 that ri(ψ) is the probability that the next event involves

site i.

– Define si : {0, 1}[n] → {0, 1}[n] so that si(ψ) agrees with ψ except on {i}. Techni-

cally speaking,

si(ψ) :=
(
ψ \ {(i, ψ(i))}

)
∪ {(i, 1− ψ(i))}

When site i changes state, the overall attachment characteristic of the cell goes

from ψ to si(ψ).

– Define Pi to be the partition of [n + 1] consisting of singletons except for {i, n}.

That is,

Pi :=
{
{j} : j ∈ [n] \ {i}

}
∪ {i, n}

10



So

Pi =
{
{0}, {1}, . . . , {i− 1}, {i+ 1}, . . . , {n− 1}, {i, n}

}
Note that the elements of {i, n} identify the values of v that can change when

site i changes state, namely the location v(i) of site i and the centroid v(n).

– Define Gi : E → E{i} by Gi(y) := {(i,y)}. So Gi(y) is a function that maps

i 7→ y. However, we prefer to think of Gi(y) as the single-element set Gi(y) =

{(i,y)}.

– Define Fi : E × E → E{i,n} by Fi(y1,y2) := {(i,y1), (n,y2)}.

– Given (ψ,v) ∈ {0, 1}[n] × E[n+1], define the measure µ
(ψ,v)
{i} on E{i} by µ

(ψ,v)
{i} :=

δv(i) ◦G−1
i , where δv(i) is the standard point-mass measure on E.

The formula for µ
(ψ,v)
{i} reflects the fact that site i does not move when site j

changes state, j 6= i. We provide further explanation following Claim 6.3

– Define the measure µ
(ψ,v)
{i,n} on E{i,n} by

µ
(ψ,v)
{i,n} :=


(
δv(i) × δv(n)

)
◦ F−1

i , if |ψ| = ψ(i) = 1(
δv(i) × δv(n)

)
◦ S−1

(0,(v(i)−v(n))/(|ψ|−1),1,1) ◦ F
−1
i , if |ψ| > ψ(i) = 1

(η × I) ◦ S−1
(−v(n),−(|ψ|+1)v(n),1,1/(|ψ|+1)) ◦ F

−1
i , if ψ(i) = 0

where I : E×B(E)→ [0, 1] is the inclusion kernel defined by I(x, S) := δx(S), so

(η × I)(A×B) =

∫
A

η(dx)I(x, B) =

∫
A

η(dx)δx(B) =

∫
A∩B

η(dx) = η(A ∩B)

The formula for µ
(ψ,v)
{i,n} reflects the different ways the centroid and the location of

site i change when site i changes state. We expound on this following Claim 6.4.
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• Define µ̃ : X× B
(
{0, 1}[n] × E[n+1]

)
→ R by

µ̃((ψ,v), ·) :=
∑
i∈[n]

(
ri(ψ)δsi(ψ) ××

p∈Pi

µ(ψ,v)
p

)

Note that µ̃((ψ,v), A) is the probability that the configuration at the next event is in

A. We justify this in Remark 6.5.

• Define µ : X×B(X)→ R to be the restriction of µ̃ to X×B(X). Thus, given a starting

configuration x ∈ X, µ(x, A) is the probability that the configuration at the next event

is in A. By restricting µ̃ to X×B(X) we are creating a measure µ that is only concerned

with sets of acceptable configurations, rather than sets of arbitrary configurations.

• Define µ̂ : [n+ 1]× P([n+ 1])→ R by

µ̂(i, ·) :=
θdiδi−1 + θa(n− i)δi+1

θdi+ θa(n− i)

• Define ĉ : [n+ 1]→ (0,∞) by ĉ(i) := θdi+ θa(n− i).

• Define c : X → (0,∞) by c(ψ,v) := ĉ(|ψ|). We discuss c and ĉ further at the end of

Section 6.

• Define α : X× B(X)→ [0,∞) by α((ψ,v), A) := c(ψ,v)µ((ψ,v), A)

• Define α̂ : [n + 1] × P([n + 1]) → [0,∞) by α̂(i, Â) := ĉ(i)µ̂(i, Â). We will discuss α̂

more following Proposition 8.4.

Chapter 6. Properties and Explanations

In this section, we explore some properties of the above defined mappings and measures.

12



Claim 6.1. Suppose the attachment characteristic of a cell is given by ψ ∈ {0, 1}[n]. Then

for i ∈ [n], ri(ψ) is the probability that the next event involves site i.

Proof. Fix i ∈ [n]. Consider the n independent exponentially distributed random variables

ξ0, ξ1, . . . , ξn−1, where ξj is the wait time for site j to change state. By assumption, ξj is

exponentially distributed with parameter λj, where

λj =

 θd, if site j is attached

θa, if site j is detached
=

 θd, if ψ(j) = 1

θa, if ψ(j) = 0
= θdψ(j) + θa(1− ψ(j))

Notice that the wait time ξ for the next event to occur is the minimum of the wait

times for the next event at each site. So ξ = min{ξj : j ∈ [n]}. Because ξ0, ξ1, . . . , ξn−1 are

independent exponential random variables with parameters λ0, λ1, . . . , λn−1, respectively, it

follows that ξ is exponentially distributed with parameter λ :=
∑

j∈[n] λj. (The proof of this

is a standard exercise in probability.) Observe,

λ =
∑
j∈[n]

λj

=
∑
j∈[n]

(θdψ(j) + θa(1− ψ(j)))

= θd
∑
j∈[n]

ψ(j) + θa

(
n−

∑
j∈[n]

ψ(j)
)

= θd |ψ|+ θa(n− |ψ|)

Since i is fixed, let ξ′ := min{ξj : j 6= i}. Then ξ′ is an exponential random variable

with parameter λ′ :=
∑

j∈[n]\{i} λj, or equivalently λ′ = λ − λi. Note that ξ′ and ξi are

independent.

The occurrence that the next event involves site i is {ξ = ξi}. This is the same as

{ξj > ξi : j 6= i}, or equivalently {ξ′ > ξi}. So the probability that the next event involves

site i is P(ξ′ > ξi).
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We have two independent exponential random variables ξ′ and ξi with parameters λ′ and

λi, respectively. It is a standard exercise in probability that

P(ξ′ > ξi) =
λi

λ′ + λi

Since λ = λ′ + λi, this gives

P(ξ′ > ξi) =
λi
λ

=
θdψ(i) + θa(1− ψ(i))

θd |ψ|+ θa(n− |ψ|)
= ri(ψ)

Therefore, ri(ψ) represents the probability that the next event involves site i.

The next claim and the comments following it give the updated configuration if the cell

starts with configuration (ψ,v), more than one adhesion site is attached, site i attached, and

site i detaches.

Claim 6.2. If (ψ,v) ∈ X and |ψ| > ψ(i) = 1, then (si(ψ),v[n] ∪ {(n,v(n) − 1
|ψ|−1

(v(i) −

v(n)))}) ∈ X.

Proof. Since (ψ,v) ∈ X, we have

∑
j∈[n]

ψ(j)(v(j)− v(n)) = 0.

Isolating the ith term gives

∑
j∈[n]\{i}

ψ(j)(v(j)− v(n)) = −(v(i)− v(n))

By the definition of si(ψ) we have

∑
j∈[n]\{i}

ψ(j)(v(j)− v(n)) =
∑
j∈[n]

si(ψ)(j)(v(j)− v(n))
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Notice that there are |ψ| − 1 nonzero values of si(ψ). Thus,

∑
j∈[n]

si(ψ)(j)(v(j)− v(n)) =
∑

j∈[n]\{i}

ψ(j)(v(j)− v(n))

=− (v(i)− v(n))

=− (|ψ| − 1)
v(i)− v(n)

|ψ| − 1

=−
∑
j∈[n]

si(ψ)(j)
(v(i)− v(n))

|ψ| − 1

Therefore, ∑
j∈[n]

si(ψ)(j)

(
v(j)−

(
v(n)− (v(i)− v(n))

|ψ| − 1

))
= 0

So (si(ψ),v[n] ∪ {(n,v(n)− 1
|ψ|−1

(v(i)− v(n)))}) ∈ X.

If (ψ,v) gives the current configuration of the cell, site i is attached, and there is more

than one attached adhesion site, then when site i detaches, the new attachment characteristic

is given by si(ψ) and the locations of all the adhesion sites remain as they were. Suppose the

new configuration is given by (si(ψ),w). Then w|[n] = v|[n]. Since w(n) is the new location

of the centroid, we know that
∑

j∈[n] si(ψ)(j)(w(j) − w(n)) = 0. Since w|[n] = v|[n], this

gives ∑
j∈[n]

si(ψ)(j)(v(j)−w(n)) = 0

Because (si(ψ),v[n] ∪ {(n,v(n)− 1
|ψ|−1

(v(i)− v(n)))}) ∈ X, we know that

∑
j∈[n]

si(ψ)(j)

(
v(j)−

(
v(n)− (v(i)− v(n))

|ψ| − 1

))
= 0
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Thus,

∑
j∈[n]

si(ψ)(j)(v(j)−w(n)) =
∑
j∈[n]

si(ψ)(j)

(
v(j)−

(
v(n)− (v(i)− v(n))

|ψ| − 1

))

Since there are |ψ| − 1 nonzero values of si(ψ) we then get

−(|ψ| − 1)w(n) +
∑
j∈[n]

si(ψ)(j)v(j) = −(|ψ| − 1)

(
v(n)− (v(i)− v(n))

|ψ| − 1

)
+
∑
j∈[n]

si(ψ)(j)v(j)

Solving for w(n) gives

w(n) = v(n)− (v(i)− v(n))

|ψ| − 1

Hence, the new location of the centroid is v(n)− (v(i)−v(n))
|ψ|−1

and the new configuration of the

cell is (si(ψ),v[n] ∪ {(n,v(n)− 1
|ψ|−1

(v(i)− v(n)))}).

Next, we explore the definitions of the measures µ
(ψ,v)
{i} and µ

(ψ,v)
{i,n} .

Claim 6.3. For (ψ,v) ∈ X and i ∈ [n], µ
(ψ,v)
{i} = δv|{i}.

Proof. Recall that µ
(ψ,v)
{i} is a measure on E{i}. For B ∈ B(E{i}) we have

µ
(ψ,v)
{i} (B) =

(
δv(i) ◦G−1

i

)
(B)

= δv(i)

(
G−1
i (B)

)
= δv(i)

(
{y ∈ E : Gi(y) ∈ B}

)
= δv(i)

(
{y ∈ E : {(i,y)} ∈ B}

)
=

 0, if {(i,v(i))} /∈ B

1, if {(i,v(i))} ∈ B

= δv|{i}(B)
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Conceptually, when site j 6= i changes state (from attached to detached or vice versa)

the location of site i should not change. Accordingly, if site j 6= i changes state and site i is

no longer associated with the location v(i), then µ
(ψ,v)
{i} returns a value of 0, indicating that

this is not an acceptable configuration. The measure µ
(ψ,v)
{i} returns a value of 1 when site i

is associated with location v(i), indicating an acceptable location for site i. So the formula

for µ
(ψ,v)
{i} reflects the fact that site i does not move when site j changes state for j 6= i.

Claim 6.4. For (ψ,v) ∈ X and i ∈ [n],

µ
(ψ,v)
{i,n} =


δv|{i,n} , if |ψ| = ψ(i) = 1

δ{(i,v(i)),(n,v(n)−(v(i)−v(n))/(|ψ|−1))}, if |ψ| > ψ(i) = 1

(η × I)
({

(x,y) :
{

(i,x + v(n)),
(
n, y
|ψ|+1

+ v(n)
)}
∈ ·
})

, if ψ(i) = 0

Proof. Let B ∈ B(E{i,n}). There are three cases.

Case 1: |ψ| = ψ(i) = 1. Then

µ
(ψ,v)
{i,n} (B) =

(
δv(i) × δv(n)

)
◦ F−1

i (B)

=
(
δv(i) × δv(n)

) (
F−1
i B

)
=
(
δv(i) × δv(n)

) ({
(y1,y2) ∈ E × E : {(i,y1), (n,y2)} ∈ B

})
=

 1, if {(i,v(i)), (n,v(n))} ∈ B

0, otherwise

= δv|{i,n}(B)

Case 2: |ψ| > ψ(i) = 1. Observe that

S(0,(v(i)−v(n))/(|ψ|−1),1,1)(x,y) =

(
x, y − v(i)− v(n)

|ψ| − 1

)

17



So for |ψ| > ψ(i) = 1,

µ
(ψ,v)
{i,n} (B) =

(
δv(i) × δv(n)

)
◦ S−1

(0,(v(i)−v(n))/(|ψ|−1),1,1) ◦ F
−1
i (B)

=
(
δv(i) × δv(n)

)({
(x,y) :

(
x, y − v(i)− v(n)

|ψ| − 1

)
∈ F−1

i (B)

})
=
(
δv(i) × δv(n)

)({
(x,y) :

{
(i,x),

(
n,y − v(i)− v(n)

|ψ| − 1

)}
∈ B

})

=

 1, if
{

(i,v(i)),
(
n,v(n)− v(i)−v(n)

|ψ|−1

)}
∈ B

0, otherwise

= δ{(i,v(i)),(n,v(n)−(v(i)−v(n))/(|ψ|−1))}(B)

Case 3: ψ(i) = 0. Notice that

S(−v(n),−(|ψ|+1)v(n),1,1/(|ψ|+1))(x,y) =

(
x + v(n),

1

|ψ|+ 1
(y + (|ψ|+ 1)v(n))

)
=

(
x + v(n),

y

|ψ|+ 1
+ v(n)

)

So

µ
(ψ,v)
{i,n} (B) = (η × I) ◦ S−1

(−v(n),−(|ψ|+1)v(n),1,1/(|ψ|+1)) ◦ F
−1
i (B)

= (η × I)

({
(x,y) ∈ E × E :

(
x + v(n),

y

|ψ|+ 1
+ v(n)

)
∈ F−1

i (B)

})
= (η × I)

({
(x,y) ∈ E × E :

{(
i,x + v(n)

)
,
(
n,

y

|ψ|+ 1
+ v(n)

)}
∈ B

})

Suppose (ψ,v) ∈ X is the current configuration of the cell. If site i is the only one

attached, then we are in Case 1. The only possible event involving site i is for site i to

detach. When this happens, the locations of site i and the centroid do not change, so they

are given by v(i) and v(n), respectively. Thus, µ
(ψ,v)
{i,n} = δv|{i,n} indicates whether or not we

have an acceptable configuration.
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If site i is attached but is not the only attached site, then we are in Case 2. When

site i detaches, the attachment characteristic is given by si(ψ). All the adhesion sites re-

main at their current locations, and the new centroid is v(n) − 1
|ψ|−1

(v(i) − v(n)). So the

configuration of the cell is (si(ψ),v[n] ∪ {(n,v(n) − 1
|ψ|−1

(v(i) − v(n)))}). Thus, µ
(ψ,v)
{i,n} =

δ{(i,v(i)),(n,v(n)−(v(i)−v(n))/(|ψ|−1))} indicates whether or not we have an acceptable configura-

tion for this situation.

If site i is detached, then we are in Case 3. In this situation, site i must attach when

it changes state. The possible new locations for site i (and their various likelihoods) are

perturbations of the old centroid that are governed by η. Additionally, the new centroid

moves to accommodate the newly attached site i.

Having explored the definitions of µ
(ψ,v)
{i} and µ

(ψ,v)
{i,n} , we then combine them to form µ̃.

Recall that

µ̃((ψ,v), ·) =
∑
i∈[n]

(
ri(ψ)δsi(ψ) ××

p∈Pi

µ(ψ,v)
p

)

Remark 6.5. For (ψ,v) ∈ X and A ∈ B
(
{0, 1}[n] × E[n+1]

)
, µ̃((ψ,v), A) is the probability

that the configuration at the next event is in A.

For some basic set B ∈ B
(
{0, 1}[n] × E[n+1]

)
given by B = B′ ××p∈Pi

Bp we get from

knowledge of general products that

µ̃((ψ,v), B) =

∑
i∈[n]

(
ri(ψ)δsi(ψ) ××

p∈Pi

µ(ψ,v)
p

)(B′ ××
p∈Pi

Bp

)

=
∑
i∈[n]

(
ri(ψ)δsi(ψ)(B

′)
∏
p∈Pi

µ(ψ,v)
p (Bp)

)

Note that for a given i:

• ri(ψ) is the probability that the next event involves site i

• δsi(ψ)(B
′) returns a value of 1 when si(ψ) ∈ B′ and returns 0 otherwise
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• For p ∈ Pi, the measure µ
(ψ,v)
p (Bp) returns a nonzero value only if the adhesion sites

and the centroid are in an acceptable configuration when site i changes state.

So for a given i, the value ri(ψ)δsi(ψ)(B
′)
∏

p∈Pi µ
(ψ,v)
p (Bp) is the probability that the next

event involves site i and the new configuration is in B. Summing over all i ∈ [n] gives the

probability that the configuration at the next event is in B.

Since a set A ∈ B({0, 1}[n]×E[n+1]) is the union or intersection of basic sets in B({0, 1}[n]×

E[n+1]) and µ̃ is a measure, it follows that µ̃((ψ,v), A) is the probability that the configuration

at the next event is in A.

Recall that µ = µ̃|X×B(X). For a starting configuration x ∈ X and a set A ∈ X × B(X) of

acceptable cell configurations, µ(x, A) is the probability that, starting at x, the configuration

at the next event is in A.

We now turn our attention to the mappings ĉ and c. Recall from the proof of Claim 6.1

that, given the system has configuration (ψ,v) ∈ X, the wait time ξ for the next event to

occur is exponentially distributed with parameter λ = θd |ψ|+ θa(n− |ψ|). So

E(ξ) =
1

λ
=

1

θd |ψ|+ θa(n− |ψ|)
=

1

c(ψ,v)

Thus, c(ψ,v) gives the reciprocal of the expected wait time until the next event, given a

starting configuration x = (ψ,v).

If |ψ| = i then

E(ξ) =
1

θdi+ θa(n− i)
=

1

ĉ(i)

So ĉ(i) gives the reciprocal of the expected wait time until the next event, given that there

are i adhesion sites currently attached.
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Chapter 7. Preliminary Results

The following results will be utilized when proving the results of Section 8. We prove

that many of the maps defined in Section 5 are measurable.

Lemma 7.1. For each i ∈ [n], ri is measurable.

Proof. Fix i ∈ [n]. For ψ ∈ {0, 1}[n] we have

ri(ψ) =
θdψ(i) + θa(1− ψ(i))

θd |ψ|+ θa(n− |ψ|)

Define a map πi : {0, 1}[n] → {0, 1} by πi(ψ) = ψ(i). For open V ⊂ {0, 1}, we have

π−1
i (V ) =



∅, if V = ∅

{0, 1}[n], if V = {0, 1}

{ψ ∈ {0, 1}[n] : ψ(i) = 0}, if V = {0}

{ψ ∈ {0, 1}[n] : ψ(i) = 1}, if V = {1}

Notice that in the last two cases, π−1
i (V ) is a cylinder set in {0, 1}[n], which is open.

Thus, π−1
i (V ) is a measurable set, so πi is measurable.

By construction we have a map |·| defined on {0, 1}[n] by |ψ| =
∑

i∈[n] ψ(i). So |ψ| =∑
i∈[n] πi(ψ). Since the sum of measurable functions are measurable, we know that |·| is

measurable.

We can rewrite ri as

ri =
θdπi + θa(1− πi)
θd |·|+ θa(n− |·|)

So ri is measurable.

Lemma 7.2. For each i ∈ [n], the maps Fi and Gi are measurable.
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Proof. Fix i ∈ [n]. Observe that Ep = P(p×E) for p ∈ Pi. So Gi and Fi are set-valued maps

from E to P({i}×E) and from E×E to P({i, n}×E), respectively, denoted Gi : E  {i}×E

and Fi : E × E  {i, n} × E. For Gi and Fi to be measurable, we require {i} × E and

{i, n} × E to be complete separable metric spaces and

G−1
i (U) := {x ∈ E : Gi(x) ∩ U 6= ∅} ∈ B(E)

F−1
i (V ) := {(x1,x2) ∈ E × E : Fi(x1,x2) ∩ V 6= ∅} ∈ B(E × E)

for every open U ⊂ {i}×E and open V ⊂ {i, n}×E. (See Definition 8.1.1 in [1].) We show

this is the case.

We know that E = RN is a complete separable metric space. Therefore {i} × E is a

complete separable metric space. We show that Gi is measurable.

Let U ⊂ {i}×E be open. Then either U = ∅×U ′ or U = {i}×U ′ for some open U ′ ⊂ E.

If U = ∅ × U ′ = ∅, then G−1
i (U) = G−1

i (∅) = ∅, which is measurable. If U = {i} × U ′, then

G−1
i (U) = {x ∈ E : Gi(x) ∩ U 6= ∅}

= {x ∈ E : {(i,x)} ∩ U 6= ∅}

= {x ∈ E : (i,x) ∈ U}

= {x ∈ E : x ∈ U ′}

= U ′

Since U ′ ∈ B(E), we have that Gi is measurable.

Next we show that Fi is measurable. First note that {i, n}×E = ({i}×E)∪ ({n}×E).

Since both {i}×E and {n}×E are complete separable metric spaces, it follows that {i, n}×E

is a complete separable metric space.

Let V ⊂ {i, n}×E be open. Then V =
⋃∞
j=i Vj×Wj for some open Vj ⊂ {i, n} and open
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Wj ⊂ E. Notice that

F−1
i (V ) = {(x1,x2) ∈ E × E : {(i,x1), (n,x2)} ∩ V 6= ∅}

= {(x1,x2) ∈ E × E : (i,x1), (n,x2) ∈ V }

For x ∈ E, let

Vx = {Wj : (i,x) ∈ Vj ×Wj}

Wx = {Wj : (n,x) ∈ Vj ×Wj}

Let

Vx =
⋃

V ′∈Vx

V ′ and Wx =
⋃

W ′∈Wx

W ′

Then Vx and Wx are open. Let

V ∗ =
⋃
x∈E

Vx and W ∗ =
⋃
x∈E

Wx

So V ∗ and W ∗ are also open. We show that F−1
i (V ) = V ∗ ×W ∗.

Suppose (x1,x2) ∈ V ∗ ×W ∗. Then (i,x1) ∈ Vj ×Wj for some j, and (n,x2) ∈ Vk ×Wk

for some k. So (i,x1), (n,x2) ∈ V . Thus, (x1,x2) ∈ F−1
i (V ), and V ∗ ×W ∗ ⊂ F−1

i (V ).

Now suppose (x1,x2) ∈ F−1
i (V ). Then (i,x1), (n,x2) ∈ V , so (i,x1) ∈ Vj × Wj and

(n,x2) ∈ Vk ×Wk for some j, k. This gives (x1,x2) ∈ V ∗ ×W ∗. So F−1
i ⊂ V ∗ ×W ∗.

We now have that F−1
i = V ∗ ×W ∗. Since V ∗ and W ∗ are open, it follows that F−1

i (V )

is open, so Fi is measurable.

Lemma 7.3. For a,b ∈ E and a, b ∈ R, the map S(a,b,a,b) is measurable.
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Proof. Let a,b ∈ E and a, b ∈ R. Observe that

S−1
(a,b,a,b)(B) = {(x,y) : (a(x− a), b(y − b)) ∈ B}

If a = 0 and b = 0, then

S−1
(a,b,0,0)(B) = {(x,y) : (0,0) ∈ B} =

 ∅, if (0,0) /∈ B

E × E, if (0,0) ∈ B

So S−1
(a,b,0,0)(B) ∈ B(E × E).

Suppose that exactly one of a and b is nonzero. Without loss of generality, suppose

a = 0 and b 6= 0. Then (x,y) ∈ B if and only if (0, 1
b
y + b) ∈ S−1

(a,b,0,b)(B). So S−1
(a,b,0,b)(B)

is a combination of translations and dilations of B. Since translations and dilations of

Borel subsets of Euclidean space are again Borel subsets of Euclidean space, it follows that

S−1
(a,b,0,b)(B) ∈ B(E × E). Similarly, if a 6= 0 and b 6= 0, then (x,y) ∈ B if and only if

( 1
a
x + a, 1

b
y + b) ∈ S−1

(a,b,a,b)(B). Again, S−1
(a,b,a,b)(B) is a combination of translations and

dilations of B, so S−1
(a,b,a,b)(B) ∈ B(E × E). Hence, S(a,b,a,b) is measurable.

Chapter 8. Main Results

In this section, we prove the existence of a continuous-time jump-type Markov process

generated by the rate kernel α. This process is our Continuous-time Centroid Model that

describes cell motion. We also examine the projected process that counts the number of

attached adhesion sites (as in Section 4) and derive results analogous to Propositions 4.1

and 4.3. We end with Theorem 8.9, which gives the time derivative of the expected location

of the centroid.

To construct the desired continuous-time jump-type Markov process X, we start by
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proving that µ is a probability kernel. Using µ, we show that there is a discrete-time Markov

process Y with transition kernel µ. The Markov chain Y will serve as the jump chain for

X. Since µ is a probability kernel, we have that α = cµ is also a kernel. Using the kernel

α, the jump chain Y , and i.i.d. exponentially distributed wait times, we construct X as a

continuous-time jump-type Markov process.

Proposition 8.1. The map µ is a probability kernel from X to X.

Proof. Fix i ∈ [n]. By construction,

ri(ψ) =
θdψ(i) + θa(1− ψ(i))

θd |ψ|+ θa(n− |ψ|)

is clearly nonnegative. By Lemma 7.1 we know that ri is measurable.

Now we show that the map ((ψ,v), A) 7→ ri(ψ)δsi(ψ)(A) is a kernel from X to {0, 1}[n].

Let νi : X× B
(
{0, 1}[n]

)
→ R+ be given by

νi((ψ,v), A) = ri(ψ)δsi(ψ)(A)

Fix (ψ,v) ∈ X. Then ri(ψ) ≥ 0 is constant. Since δsi(ψ) is a measure on B
(
{0, 1}[n]

)
, it

follows that ri(ψ)δsi(ψ) = νi((ψ,v, ·)) is a measure on B
(
{0, 1}[n]

)
.

Now fix A ∈ B
(
{0, 1}[n]

)
. Let Di,A : {0, 1}[n] → R+ be given by Di,A(ψ) = δsi(ψ)(A).

Then Di,A is measurable, and since ri is measurable it follows that riDi,A = νi(·, A) is

measurable.

Since νi((ψ,v, ·)) is a measure on B
(
{0, 1}[n]

)
and νi(·, A) is measurable in x ∈ X, it

follows that νi is a kernel from X to {0, 1}[n]. That is, the map ((ψ,v), A) 7→ ri(ψ)δsi(ψ)(A)

is a kernel from X to {0, 1}[n].

Next we show that each µx
p is a kernel from X to Ep for each i ∈ [n] and p ∈ Pi. From

Lemma 7.2 we know that Gi and Fi are measurable for each i ∈ [n].
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We first show that µx
{i} is a kernel from X to E{i} for each i ∈ [n]. Let gi : X×E → E{i} be

given by gi((ψ,v),x) = Gi(x). Then gi is a measurable function. Define di : X×B(E)→ [0, 1]

by di((ψ,v), B) = δv(i)(B). Then di is a probability kernel from X to E. By Lemma 1.41(ii)

in [5] we then have that

di

(
(ψ,v),

(
gi((ψ,v), ·)

)−1
)

= δv(i) ◦G−1
i

is a kernel from X to E{i}. So µx
{i} is a kernel from X to E{i}.

To show µx
{i,n} is a kernel from X to E{i,n}, we show it in each of the three cases. Let

fi : X×(E×E)→ E{i,n} be given by fi((ψ,v), (x1,x2)) = Fi(x1,x2). Then fi is measurable.

Define di,n : X × B(E × E) → [0, 1] by di,n((ψ,v), B) = (δv(i) × δv(n))(B). Then di,n is a

probability kernel from X to E × E. Again, by Lemma 1.41 in [5] it follows that

di,n

(
(ψ,v),

(
fi((ψ,v), ·)

)−1
)

= (δv(i) × δv(n)) ◦ F−1
i

is a kernel from X to E × E.

We know from Lemma 7.3 that S(a,b,a,b) is measurable for any a,b ∈ E and a, b ∈ R.

Since both Fi and S(0,(v(i)−v(n))/(|ψ|−1),1,1) are measurable, we have that

fi((ψ,v), S(0,(v(i)−v(n))/(|ψ|−1),1,1)(·))

is a measurable mapping. Thus,

δ(i, n)

(
(ψ,v),

(
S−1

(0,v(i)−v(n)
|ψ|−1

,1,1)
◦
(
fi((ψ,v), ·)

)−1
))

= (δv(i) × δv(n)) ◦ S−1

(0,v(i)−v(n)
|ψ|−1

,1,1)
◦ F−1

i

is a kernel from X to E{i,n}.

Recall that η is a Borel probability measure and I is a kernel. This implies η × I is a

kernel. Thus,

(η × I) ◦ S−1

(−v(n),−(|ψ|+1)v(n),1, 1
|ψ|+1)

◦ F−1
i
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is a kernel from X to E{i,n}. Therefore, µx
{i,n} is a kernel from X to E{i,n}.

We now have that µx
p is a kernel from X to Ep for every p ∈ Pi and i ∈ [n]. One more

application of Lemma 1.41 from [5] gives that the map

((ψ,v), A) 7→

(
ri(ψ)δsi(ψ) ××

p∈Pi

µ(ψ,v)
p

)
(A)

is a kernel from X to {0, 1}[n] × E[n+1].

Since sums of kernels are again kernels, it follows that µ̃ given by

((ψ,v), A) 7→
∑
i∈[n]

(
ri(ψ)δsi(ψ) ××

p∈Pi

µ(ψ,v)
p

)
(A)

is a kernel from X to {0, 1}[n] × E[n+1].

Note that X is a Borel subset of {0, 1}[n] × E[n+1]. By construction µ̃(x, ·) is a measure.

Since the restriction of a measure to the measurable subsets of a measurable set is a measure,

it follows that µ(x, ·) = µ̃(x, ·)
∣∣
B(X)

is a measure. Therefore, µ is a kernel from X to X.

It remains to show that µ((ψ,v),X) = 1 for every (ψ,v) ∈ X. Fix (ψ,v) ∈ X and i ∈ [n].

Let λi := δsi(ψ)××p∈Pi
µ

(ψ,v)
p . We proceed by cases to show that λi is a probability measure

on X.

Case 1: If |ψ| = ψ(i) = 1, then si(ψ) = ϕ where ϕ ∈ {0, 1}[n] is identically zero. Also,

λi(·) =

 1, (si(ψ),v) ∈ ·

0, otherwise

So λi = δ(ϕ,v). Since
∑

i∈[n] ϕ(i)(v(i) − v(n)) = 0 we have that (ϕ,v) ∈ X. So λi(X) =

δ(ϕ,v)(X) = 1 and λi is a probability measure on X.

Case 2: If |ψ| > ψ(i) = 1, let w ∈ E[n+1] such that w = v on [n] and

w(n) = v(n)− 1

|ψ| − 1
(v(i)− v(n))
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Then λi = δ(si(ψ),w). Observe,

∑
j∈[n]

si(ψ)(j)(w(j)−w(n)) =
∑

j∈[n]\{i}

ψ(j)

(
v(j)−

(
v(n)− v(i)− v(n)

|ψ| − 1

))
=

∑
j∈[n]\{i}

ψ(j)(v(j)− v(n)) + (v(i)− v(n))

=
∑
j∈[n]

ψ(j)(v(j)− v(n))

= 0

So (si(ψ),w) ∈ X, giving λi(X) = δ(si(ψ),w)(X) = 1. Thus, λi is a probability measure on X.

Case 3: If ψ(i) = 0, we examine (η × I). Since η is a probability measure and I is the

inclusion kernel, we have that η× I is a probability measure on E ×E. We show that η× I

is concentrated on the diagonal of E × E.

For (x,y) ∈ E × E, notice that

(η × I)({(x,y)}) = (η × I)({x} × {y}) = η({x} ∩ {y})

If (η× I)({(x,y)}) 6= 0, it must be that y = x. So single-point sets of nonzero measure must

lie on the diagonal of E × E. For some B ⊂ E × E we have that

(η × I)(B) = (η × I)
( ⋃

(x,y)∈B

{(x,y)}
)
≤

∑
(x,y)∈B

(η × I)({(x,y)})

If B contains no points from the diagonal of E × E, then (η × I)(B) = 0. So η × I is

concentrated on the diagonal of E × E.

Recall that

S−1
(−v(n),−(|ψ|+1)v(n),1,(|ψ|+1)−1) ◦ F

−1(·)

=

{
(x,y) ∈ E × E :

{
(i,x + v(n)),

(
n,

y

|ψ|+ 1
+ v(n)

)}
∈ ·
}
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Let

A :=

{{
(i,x),

(
n,

x + |ψ|v(n)

|ψ|+ 1

)}
: x ∈ E

}
Then

F−1
i (A) =

{
(x,y) : {(i,x), (n,y)} ∈ A

}
=

{
(x,y) : y =

x + |ψ|v(n)

|ψ|+ 1

}
So

S−1(
−v(n),−(|ψ|+1)v(n),1, 1

|ψ|+1

)(F−1
i (A)) =

{
(x,y) :

(
x + v(n),

y + (|ψ|+ 1)v(n)

|ψ|+ 1

)
∈ F−1

i (A)

}
=

{
(x,y) :

y + (|ψ|+ 1)v(n)

|ψ|+ 1
=

x + v(n) + |ψ|v(n)

|ψ|+ 1

}
=

{
(x,y) :

y + (|ψ|+ 1)v(n)

|ψ|+ 1
=

x + (|ψ|+ 1)v(n)

|ψ|+ 1

}
= {(x,y) : y = x}

So S−1
(−v(n),−(|ψ|+1)v(n),1,1/(|ψ|+1))(F

−1
i (A)) is precisely the diagonal of E×E. Since (η×I) is

concentrated on the diagonal of E×E, it follows that (η×I)◦S−1
(−v(n),−(|ψ|+1)v(n),1,1/(|ψ|+1))◦F

−1
i

is concentrated on A. That is, µ
(ψ,v)
{i,n} is concentrated on A when ψ(i) = 0.

Recall that for j 6= i we have µ
(ψ,v)
{j} = δv|{j} . So µ

(ψ,v)
{j} is a point mass measure. So λi is

a product of µ
(ψ,v)
{i,n} and several point mass measures. Therefore, λi is a probability measure

on {0, 1}[n] × E[n+1]. We show that λi is a probability measure on X.

Define a set W by

W =
{
w ∈ E[n+1] : w = v on [n+ 1] \ {i, n} and {(i,w(i)), (n,w(n))} ∈ A

}
where A is the set defined previously. Then w(n) = 1

|ψ|+1
(w(i) + |ψ|w(n)) for w ∈ W .

Since δsi(ψ) is concentrated on si(ψ), µ
(ψ,v)
{j} is concentrated on {(j,v(j)} for j 6= i, and

µ
(ψ,v)
{i,n} is concentrated on A, it follows that λi is concentrated on

{(
si(ψ),w

)
: w ∈ W

}
.
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We show that (si(ψ),w) ∈ X for w ∈ W . Since (ψ,v) ∈ X, we know that

∑
j∈[n]

ψ(j)(v(j)− v(n)) = 0

Additionally, by hypothesis ψ(i) = 0. We show that
∑

j∈[n] si(ψ)(j)(w(j) − w(n)) = 0.

Observe,

∑
j∈[n]

si(ψ)(j)(w(j)−w(n)) = w(i)− w(i) + |ψ|v(n)

|ψ|+ 1
+
∑
j∈[n]

ψ(j)

(
v(j)− w(i) + |ψ|v(n)

|ψ|+ 1

)

=
|ψ|w(i)− |ψ|v(n)

|ψ|+ 1
− |ψ|w(i)

|ψ|+ 1
+
∑
j∈[n]

ψ(j)

(
v(j)− |ψ|v(n)

|ψ|+ 1

)

= −|ψ|v(n)

|ψ|+ 1
+
∑
j∈[n]

ψ(j)

(
v(j)− |ψ|v(n)

|ψ|+ 1

)

=
∑
j∈[n]

ψ(j)

(
v(j)− |ψ|v(n)

|ψ|+ 1
− v(n)

|ψ|+ 1

)
=
∑
j∈[n]

ψ(j) (v(j)− v(n))

= 0

So (si(ψ),w) ∈ X for all w ∈ W . Thus,
{(
si(ψ),w

)
: w ∈ W

}
⊂ X. Since λi is

concentrated on a subset of X, it follows that λi is a probability measure on X.

In all three cases, λi is a probability measure on X. Notice that

ri(ψ)δsi(ψ) ××
p∈Pi

µ(ψ,v)
p = ri(ψ)λi

So

µ((ψ,v), ·) =
∑
i∈[n]

(
ri(ψ)δsi(ψ) ××

p∈Pi

µ(ψ,v)
p

)
=
∑
i∈[n]

ri(ψ)λi
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Since each λi is a probability measure on X and
∑

i∈[n] ri(ψ) = 1 we have

µ((ψ,v),X) =
∑
i∈[n]

ri(ψ)λi(X) =
∑
i∈[n]

ri(ψ) = 1

Since we also know that ri(ψ) ≥ 0 for each i, it follows that µ((ψ,v), ·) is a probability

measure on X. Therefore, µ is a probability kernel from X to X.

As noted previously, since µ is a probability kernel, it follows that α = cµ is a kernel.

Additionally, since µ is a probability kernel, we can use it as the transition kernel for a

discrete-time Markov process.

Proposition 8.2. For any Borel probability measure ρ on X, there is a discrete-time Markov

process Y on X with transition kernel µ such that Y0 is ρ-distributed.

Proof. Since ρ is a measure and µ is a probability kernel from X to X, by Theorem 3.4.1 in

[6] there is a stochastic process Y on X∞ that is measurable with respect to (B(X))∞ and a

probability measure Pρ such that Pρ(B) is the probability of the set {Y ∈ B} and for each

n and Ai ⊂ X we have

Pρ(Y0 ∈ A0, Y1 ∈ A1, . . . , Yn ∈ An)

=

∫
y0∈A0

∫
y1∈A1

. . .

∫
yn−1∈An−1

ρ(dy0)µ(y0, dy1) . . . µ(yn−1, An)

By the Theorem 3.4.1 in [6], we have that Y is actually a discrete-time Markov process

with initial distribution ρ and transition probability kernel µ.

Using α as the rate kernel and Y as the jump chain, we now construct our desired

continuous-time jump-type Markov process X.
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Proposition 8.3. For every Borel probability measure ρ on X, there is a pure jump-type

continuous-time Markov process X on X with rate kernel α such that X0 is ρ-distributed.

If Y is as defined in Proposition 8.2 and (γi) is a sequence of i.i.d. exponential random

variables with mean 1 that are independent of Y , then X can be defined by the formula

Xt = Yk for t ∈ [τk, τk+1), where τk :=
∑k

i=1(γi/c(Yi−1)).

Proof. By Proposition 8.1 we know that µ is a kernel from X to X. Notice that c(ψ,v) =

θd |ψ|+ θa(n− |ψ|) is positive and measurable. Thus, α = cµ is a kernel from X to X.

For each i ∈ [n] we know that si(ψ)(i) 6= ψ(i). So δsi(ψ)({ψ}) = 0. This implies

µ((ψ,v), {(ψ,v)}) = 0, giving α((ψ,v), {(ψ,v)}) = c(ψ,v)µ((ψ,v), {(ψ,v)}) = 0 for all

(ψ,v) ∈ X.

Given a Borel probability measure ρ on X, let Y be as in Proposition 8.2. Let γ = (γk)

be a sequence of i.i.d. exponential random variables with mean 1 such that γ and Y are

independent. That such a sequence exists is a consequence of the Ionescu Tulcea Theorem

(see comment after Theorem 6.17 in [5]).

We show that
∑

k γk/c(Yk−1) = ∞ a.s. Suppose to the contrary that
∑

k γk/c(Yk−1)

converges. Notice that c ≤ n(θd + θa), so c is bounded. Observe,

m∑
k=1

γk = n(θd + θa)
m∑
k=1

γk
n(θd + θa)

≤ n(θd + θa)
m∑
k=1

γk
c(Yk−1)

Since
∑

k γk/c(Yk−1) converges, so does its sequence of partial sums. Thus, the sequence

{
∑m

k=1 γk} is bounded by a convergent sequence and, therefore, converges. This implies that

the partial sums
∑m

k=1 γk are bounded by some M ∈ R+. So

1

m

m∑
k=1

γk ≤
1

m
M → 0 as m→∞

So 1
m

∑m
k=1 γk →∞ as m→ 0.
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Since the γk are i.i.d. with mean 1, the Strong Law of Large Numbers gives

1

m

m∑
k=1

γk → 1 a.s.

a contradiction.

So it must be that
∑

k γk/c(Yk−1) =∞ a.s. The desired result now follows from Theorem

12.18 in [5].

Because of its significance to our final result, we now formulate and examine the projected

process X̂ := π ◦X. Recall that for (ψ,v) ∈ X, π((ψ,v)) = |ψ| gives the number of attached

adhesion sites when the cell has configuration (ψ,v). So X̂ counts the number of attached

adhesion sites at each stage of the process X. This projected process was discussed in Section

4 using a transition rate matrix. Previously, we assumed X̂ is a Markov process, but we now

rigorously prove that this is true under our formulation.

Proposition 8.4. If X is as in Proposition 8.3, then X̂ := π ◦ X is a pure jump-type

continuous-time Markov process with rate kernel α̂ and initial distribution ρ ◦ π−1.

Proof. Recall that π : X→ [n+1] is defined by π(ψ,v) = |ψ|. Since X has initial distribution

ρ, we have that P (X0 ∈ ·) = P ◦X−1
0 = ρ. Then

P (X̂0 ∈ ·) = P ◦ X̂−1
0 = P ◦ (π ◦X0)−1 = P ◦X−1

0 ◦ π−1 = ρ ◦ π−1

So X̂ has initial distribution ρ ◦ π−1.

Let Y be as in Proposition 8.2. Since X is as in Proposition 8.3, we have that Xt = Yk

for t ∈ [τk, τk+1), where τk :=
∑k

i=1 γi/c(Yi−1).

Let Ŷ = π ◦ Y . Notice that

c(ψ,v) = ĉ(|ψ|) = ĉ(π(ψ,v))
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So c(Yk) = ĉ(π(Yk)) = ĉ(Ŷk). So we also have τk =
∑k

i=1 γi/ĉ(Ŷi−1). Additionally, for

t ∈ [τk, τk+1) we get X̂t = π ◦Xt = π ◦ Yk = Ŷk.

Notice that

µ̂(i, {i}) =
θdiδi−1({i}) + θa(n− i)δi+1({i})

θdi+ θa(n− i)
= 0

So α̂(i, {i}) = ĉ(i)µ̂(i, {i}) = 0 for all i ∈ [n+ 1].

From these observations, the desired result will follow from Theorem 12.18 in [5] if Ŷ

is a discrete-time Markov process with transition kernel µ̂. We use Dynkin’s Criterion for

discrete-time Markov processes (see Appendix Theorem A.1) to show this is the case.

Note that π is a continuous surjection. Let z be the zero element of E[n+1] and consider

1[i] ∈ {0, 1}[n]. Define g : [n+ 1]→ X by g(i) := (1[i], z). Then g is continuous and

(π ◦ g)(i) = π(1[i], z) =
∣∣1[i]

∣∣ = i

So g is a continuous right-inverse of π.

Now we must show that µ((ψ,v), π−1(Â)) = µ̂(π((ψ,v)), Â) for all (ψ,v) ∈ X and Â ∈

P([n+ 1]). We first show the result for sets of the form {j}.

Let

J = {ϕ ∈ {0, 1}[n] : (ϕ,w) ∈ X for some w ∈ E[n+1] and |ϕ| = j}

W = {w ∈ E[n+1] : (ϕ,w) ∈ X for some ϕ ∈ {0, 1}[n] with |ϕ| = j}

Then π−1({j}) = J ×W . Notice that for ψ ∈ {0, 1}[n],

δsi(ψ)(J) =

 0, if |si(ψ)| 6= j

1, if |si(ψ)| = j

= δ|si(ψ)|({j})

Since J ×W ⊂ X, we know that×p∈Pi
µ

(ψ,v)
p (W ) = 1 for all i ∈ [n] and (ψ,v) ∈ X. So
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for (ψ,v) ∈ X we have

µ((ψ,v), π−1({j})) =
∑
i∈[n]

(
ri(ψ)δsi(ψ) ××

p∈Pi

µ(ψ,v)
p

)(
π−1({j})

)
=
∑
i∈[n]

ri(ψ)δ|si(ψ)|({j})

=
∑

i∈ψ−1({1})

ri(ψ)δ|si(ψ)|({j}) +
∑

i∈ψ−1({0})

ri(ψ)δ|si(ψ)|({j})

=
∑

i∈ψ−1({1})

ri(ψ)δ|ψ|−1({j}) +
∑

i∈ψ−1({0})

ri(ψ)δ|ψ|+1({j})

=
∑

i∈ψ−1({1})

θd δ|ψ|−1({j})
θd |ψ|+ θa(n− |ψ|)

+
∑

i∈ψ−1({0})

θa δ|ψ|+1({j})
θa |ψ|+ θa(n− |ψ|)

=
θd |ψ| δ|ψ|−1({j}) + θa(n− |ψ|)δ|ψ|+1({j})

θa |ψ|+ θa(n− |ψ|)

= µ̂(|ψ| , {j})

= µ̂(π(ψ,v), {j})

Notice, for k ∈ [n + 1], that δk is additive. This implies µ̂(|ψ| , ·) is additive. That is,

µ̂(|ψ| , Â) =
∑

j∈Â µ̂(|ψ| , {j}) for Â ∈ P([n + 1]). Since µ((ψ,v), ·) is a measure, it is also

additive.

Therefore,

µ((ψ,v), π−1(Â)) = µ
(

(ψ,v), π−1
(⋃

j∈Â
{j}
))

= µ
(

(ψ,v),
⋃

j∈Â
π−1({j})

)
=
∑
j∈Â

µ((ψ,v), π−1({j}))

=
∑
j∈Â

µ̂(π(ψ,v), {j})

= µ̂
(
π(ψ,v),

⋃
j∈Â
{j}
)

= µ̂(π(ψ,v), Â)
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Now by Dynkin’s Criterion we have that µ̂ is a probability kernel and Ŷ is a discrete-time

Markov process with transition kernel µ̂. The desired result then follows from Theorem 12.18

in [5].

In Section 4, we presented X̂ as the Markov process generated by the transition rate

matrix Q. In Proposition 8.4, we generate X̂ using the rate kernel α̂. Since these processes

are the same, we want to know how Q and α̂ are related. Notice that

α̂(i, {j}) =


θdi, if j = i− 1

θa(n− i), if j = i+ 1

0, otherwise

giving α̂(i, {j}) = qij for j 6= i. These correspondences are due to the fact that both α̂ and

Q describe the rate at which X̂ transitions from one state to another.

By construction, Ŷ is the jump chain of X̂. Thus, we can prove analogous results to

those presented in Section 4. Accordingly, the following result corresponds to Proposition

4.1.

Lemma 8.5. A Markov chain with transition kernel µ̂ is irreducible.

Proof. Let Ŵ be a Markov chain with transition kernel µ̂. Then P (Ŵ1 = j|Ŵ0 = i) =

µ̂(i, {j}) for i, j ∈ [n + 1]. Let wij = µ̂(i, {j}) and w
(k)
ij = P (Ŵk = j|Ŵ0 = i). Then Ŵ is

irreducible if for each pair i, j ∈ [n + 1] we have w
(k)
ij > 0 for some k ∈ N. We show this is

the case.

Notice that

wij = µ̂(i, {j}) =



θdi

θdi+ θa(n− i)
, j = i− 1

θa(n− i)
θdi+ θa(n− i)

, j = i+ 1

0, otherwise
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So wij > 0 if j ∈ {i− 1, i+ 1} and wij = 0 otherwise.

Fix i, j ∈ [n + 1]. The Chapman-Kolmogorov relation gives wk+`
ij =

∑
mw

k
imw

`
mj for

k, ` ∈ N. If i > j, then

w
(i−j)
ij ≥ wi,i−1wi−1,i−2 . . . wj+1,j > 0

If i < j, then

w
(j−i)
ij ≥ wi,i+1wi+1,i+2 . . . wj−1,j > 0

If i = j 6= n, then

w
(2)
ii ≥ wi,i+1wi+1,i > 0

If i = j = n, then

w
(2)
ii ≥ wi,i−1wi−1,i > 0

So there is some k ∈ N such that w
(k)
ij > 0. Therefore Ŵ is irreducible.

Since Ŷ has transition kernel µ̂, the preceding result gives that Ŷ is irreducible. The

following result gives the stationary distribution, or invariant measure, for µ̂. This will be

used to derive an invariant measure for X̂.

Lemma 8.6. The measure ω on P([n+ 1]) given by

ω =
∑

k∈[n+1]

((
n− 1

k − 1

)
θk−1
a θn−k+1

d +

(
n− 1

k

)
θkaθ

n−k
d

)
δk

is an invariant measure for µ̂.

Proof. First note that for b < 0 or b > a we take
(
a
b

)
:= 0.

For ω to be an invariant measure for µ̂ we need
∫
µ̂(k,B)ω(dk) = ω(B) for B ∈ P([n+1]).

Letting

ωk =

(
n− 1

k − 1

)
θk−1
a θn−k+1

d +

(
n− 1

k

)
θkaθ

n−k
d
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we can write ω =
∑

k∈[n+1] ωkδk. Then
∫
µ̂(k,B)ω(dk) =

∑n
k=0 ωkµ̂(k,B). Hence, for ω to

be invariant for µ̂ we want to show that ω =
∑n

k=0 ωkµ̂(k, ·). Since ω =
∑n

k=0 ωkδk and

µ̂(k, ·) =
θdkδk−1 + θa(n− k)δk+1

θdk + θa(n− k)

it is sufficient to show that

n∑
k=0

ωkδk =
n∑
k=0

ωk
θdkδk−1 + θa(n− k)δk+1

θdk + (n− k)θa
(8.1)

The coefficient for δ0 on the right of (8.1) is

ω1
θd

θd + (n− 1)θa
= (θnd + (n− 1)θaθ

n−1
d )

θd
θd + (n− 1)θa

= θnd = ω0

which is the coefficient for δ0 on the left.

For 0 < k < n, the coefficient for δk on the right of (8.1) is

ωk−1
(n− k + 1)θa

(k − 1)θd + (n− k + 1)θa
+ ωk+1

(k + 1)θd
(k + 1)θd + (n− k − 1)θa

Observe that

ωk−1
(n− k + 1)θa

(k − 1)θd + (n− k + 1)θa
=

((
n−1
k−2

)
θk−2
a θn−k+2

d +
(
n−1
k−1

)
θk−1
a θn−k+1

d

)
(n− k + 1)θa

(k − 1)θd + (n− k + 1)θa

=
(n− 1)!θk−1

a θn−k+1
d ((k − 1)θd + (n− k + 1)θa) (n− k + 1)

(k − 1)! (n− k + 1)! ((k − 1)θd + (n− k + 1)θa)

=
(n− 1)!

(k − 1)! (n− k)!
θk−1
a θn−k+1

d

=

(
n− 1

k − 1

)
θk−1
a θn−k+1

d
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and

ωk+1
(k + 1)θd

(k + 1)θd + (n− k − 1)θa
=

((
n−1
k

)
θkaθ

n−k
d +

(
n−1
k+1

)
θk+1
a θn−k−1

d

)
(k + 1)θd

(k + 1)θd + (n− k − 1)θa

=
(n− 1)!θkaθ

n−k
d ((k + 1)θd + (n− k − 1)θa) (k + 1)

(k + 1)! (n− k − 1)!((k + 1)θd + (n− k − 1)θa)

=
(n− 1)!

k! (n− k − 1)!
θkaθ

n−k
d

=

(
n− 1

k

)
θkaθ

n−k
d

So for 0 < k < n, the coefficient for δk on the right of (8.1) is

(
n− 1

k − 1

)
θk−1
a θn−k+1

d +

(
n− 1

k

)
θkaθ

n−k
d = ωk

The coefficient on the right of (8.1) for δn is

ωn−1
θa

(n− 1)θd + θa
=

((n− 1)θn−2
a θ2

d + θn−1
a θd)θa

(n− 1)θd + θa

=
θn−1
a θd((n− 1)θd + θa)

(n− 1)θd + θa

= θn−1
a θd

= ωn

So the coefficient for δk on the left side of (8.1) and the coefficient for δk on the right side

of (8.1) are equal for all k ∈ [n+ 1]. Thus, ω is an invariant measure for µ̂.

Using the previous result, we can derive an invariant measure for X̂. The following result

is analogous to Proposition 4.3.
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Proposition 8.7. The unique invariant distribution σ for the rate kernel α̂ is given by

σ :=
1

(θd + θa)n

∑
k∈[n+1]

(
n

k

)
θn−kd θkaδk

If Ẑ is a pure jump-type continuous-time Markov process with rate kernel α̂, then the distri-

bution of Ẑt converges to σ as t→∞, regardless of the distribution of Ẑ0.

Proof. From Lemma 8.6 we know that

ω =
∑

k∈[n+1]

((
n− 1

k − 1

)
θk−1
a θn−k+1

d +

(
n− 1

k

)
θkaθ

n−k
d

)
δk

is an invariant measure for the transition kernel µ̂. Recall that ĉ(k) = kθd + (n− k)θa. We

show that ĉ · σ is invariant for µ̂, where (ĉ · σ)(A) :=
∫
A
ĉ dσ. To do this, we show that ĉ · σ

is proportional to ω. First notice that

(ĉ · σ)(A) =

∫
A

ĉ dσ =

∫
A

ĉ(k)σ(dk) =
∑
k∈A

ĉ(k)σk =
∑

k∈[n+1]

ĉ(k)σk δk

where we take σ =
∑

k∈[n+1] σkδk.

We then have

ĉ(k)σk = (kθd + (n− k)θa)
1

(θa + θd)n

(
n

k

)
θn−kd θka

=
1

(θa + θd)n

((
n

k

)
kθn−k+1

d θka +

(
n

k

)
(n− k)θn−kd θk+1

a

)
=

1

(θa + θd)n

(
n!

(k − 1)!(n− k)!
θn−k+1
d θka +

n!

k!(n− k − 1)!
θn−kd θk+1

a

)
=

nθa
(θa + θd)n

(
(n− 1)!

(k − 1)!(n− k)!
θk−1
a θn−k+1

d +
(n− 1)!

k!(n− k − 1)!
θkaθ

n−k
d

)
=

nθa
(θa + θd)n

((
n− 1

k − 1

)
θk−1
a θn−k+1

d +

(
n− 1

k

)
θkaθ

n−k
d

)
=

nθa
(θa + θd)n

ωk
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So ĉ(k)σk is proportional to ωk, with the same proportionality constant for each k. There-

fore, ĉ·σ is proportional to ω, which implies ĉ·σ is an invariant measure for µ̂. By Proposition

12.23 of [5], σ is an invariant measure for α̂.

Since

σ([n+ 1]) =
1

(θd + θa)n

∑
k∈[n+1]

(
n

k

)
θn−kd θka = 1

we have that σ is actually a probability measure, so σ is an invariant distribution corre-

sponding to the rate kernel α̂.

By Lemma 8.5 we know that µ̂ is irreducible, which implies α̂ is also irreducible. By

Proposition 12.25 in [5], it follows that σ is the unique invariant distribution for α̂, and it is

attracting.

Recall from Proposition 4.3 that the row vector ζ with entries

ζk =
1

(θd + θa)n

(
n

k

)
θn−kd θka, k = 0, 1, . . . , n

is the invariant distribution for the transition matrix Q. We proved in Proposition 8.7 that

σ =
1

(θd + θa)n

∑
k∈[n+1]

(
n

k

)
θn−kd θkaδk

is the invariant distribution for the rate kernel α̂. These are related by

σ({k}) =
1

(θd + θa)n

(
n

k

)
θn−kd θka = ζk

The following result will be used several times in the proof of Theorem 8.9.
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Lemma 8.8. Suppose f : X→ [0,∞] is measurable and x = (ψ,v) ∈ X. Then

∫
X

f(y)µ(x, dy) =
∑

i∈ψ−1({1})

ri(ψ)f(si(ψ),v)

+
∑

i∈ψ−1({0})

ri(ψ)

∫
E

f

(
si(ψ),v|[n+1]\{i,n} ∪

{
(i,x + v(n)),

(
n,

x

|ψ|+ 1
+ v(n)

)})
dη(x)

(8.2)

for |ψ| ≤ 1 and

∫
X

f(y)µ(x, dy) =
∑

i∈ψ−1({1})

ri(ψ)f

(
si(ψ),v|[n] ∪

{(
n,v(n)− v(i)− v(n)

|ψ| − 1

)})

+
∑

i∈ψ−1({0})

ri(ψ)

∫
E

f

(
si(ψ),v|[n+1]\{i,n} ∪

{
(i,x + v(n)),

(
n,

x

|ψ|+ 1
+ v(n)

)})
dη(x)

(8.3)

for |ψ| > 1.

Proof. By definition of µ, for x = (ψ,v) ∈ X we have

∫
X

f(y)µ(x, dy) =

∫
X

f(y)

∑
i∈[n]

ri(ψ)δsi(ψ) ××p∈Pi
µ(ψ,v)
p

 (dy)

=
∑
i∈[n]

ri(ψ)

∫
X

f(y)
(
δsi(ψ) ××p∈Pi

µ(ψ,v)
p

)
(dy)

=
∑
i∈[n]

ri(ψ)

∫
E[n+1]

f(si(ψ),w)
(×p∈Pi

µ(ψ,v)
p

)
(dw)

=
∑
i∈[n]

ri(ψ)

∫
E{i,n}

f(si(ψ),v|[n+1]\{i,n} ∪ z)µ
(ψ,v)
{i,n} (dz) (8.4)

If |ψ| = ψ(i) = 1, then µ
(ψ,v)
{i,n} = δv|{i,n} . So

∫
E{i,n}

f(si(ψ),v|[n+1]\{i,n} ∪ z)µ
(ψ,v)
{i,n} (dz) = f(si(ψ),v) (8.5)
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If |ψ| > ψ(i) = 1, then µ
(ψ,v)
{i,n} = δ{(i,v(i)),(n,v(n)−(v(i)−v(n))/(|ψ|−1))}(z). This gives

∫
E{i,n}

f(si(ψ),v|[n+1]\{i,n} ∪ z)µ
(ψ,v)
{i,n} (dz) = f

(
si(ψ),v|[n] ∪

{(
n,v(n)− v(i)− v(n)

|ψ| − 1

)})
(8.6)

If ψ(i) = 0, then

µ
(ψ,v)
{i,n} = (η × I)

({
(x,y) :

{
(i,x + v(n)),

(
n,

y

|ψ|+ 1
+ v(n)

)}
∈ ·
})

This gives

∫
E{i,n}

f(si(ψ),v|[n+1]\{i,n} ∪ z)µ
(ψ,v)
{i,n} (dz)

=

∫
E×E

f

(
si(ψ),v|[n+1]\{i,n} ∪

{
(i,x + v(n)),

(
n,

y

|ψ|+ 1
+ v(n)

)})
(η × I)(d(x,y))

=

∫
E

η(dx)

∫
E

f

(
si(ψ),v|[n+1]\{i,n} ∪

{
(i,x + v(n)),

(
n,

y

|ψ|+ 1
+ v(n)

)})
I(x, dy)

=

∫
E

η(dx)f

(
si(ψ),v|[n+1]\{i,n} ∪

{
(i,x + v(n)),

(
n,

x

|ψ|+ 1
+ v(n)

)})
=

∫
E

f

(
si(ψ),v|[n+1]\{i,n} ∪

{
(i,x + v(n)),

(
n,

x

|ψ|+ 1
+ v(n)

)})
η(dx) (8.7)

Using equations (8.5) and (8.7), we have that for |ψ| ≤ 1,

∑
i∈[n]

ri(ψ)

∫
E{i,n}

f(si(ψ),v|[n+1]\{i,n} ∪ z)µ
(ψ,v)
{i,n} (dz) =

∑
i∈ψ−1({1})

ri(ψ)f(si(ψ),v)

+
∑

i∈ψ−1({0})

ri(ψ)

∫
E

f

(
si(ψ),v|[n+1]\{i,n} ∪

{
(i,x + v(n)),

(
n,

1

|ψ|+ 1
x + v(n)

)})
η(dx)

(8.8)

Equation (8.2) now follows from equations (8.4) and (8.8). From equations (8.6) and (8.7)
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we find that

∑
i∈[n]

ri(ψ)

∫
E{i,n}

f(si(ψ),v|[n+1]\{i,n} ∪ z)µ
(ψ,v)
{i,n} (dz)

=
∑

i∈ψ−1({1})

ri(ψ)f

(
si(ψ),v|[n] ∪

{(
n,v(n)− v(i)− v(n)

|ψ| − 1

)})

+
∑

i∈ψ−1({0})

ri(ψ)

∫
E

f

(
si(ψ),v|[n+1]\{i,n} ∪

{
(i,x + v(n)),

(
n,

x

|ψ|+ 1
+ v(n)

)})
η(dx)

(8.9)

Combining equations (8.4) and (8.9) gives equation (8.3).

We now proceed to our main result. In it, we prove a formula for the time derivative of

the expected value of the centroid location. That is, we prove a formula that gives the rate

of change of the expected location of the centroid over time.

Theorem 8.9. For each i ∈ [n + 1], let fi : X→ E be defined by fi(ψ,v) := v(i). Let σ be

as in Proposition 8.7 and let ρ be a distribution on X such that σ = ρ ◦ π−1 and such that fi

is ρ-integrable for every i. Let X be as in Proposition 8.3. Let ‖ ·‖ be the ∞-norm in E, and

assume η is supported on {x ∈ E : ‖x‖ ≤ R} for some R > 0. Then for every i ∈ [n + 1]

and t ≥ 0, E(fi(Xt)) is well-defined and finite, and

∂

∂t+
E(fn(Xt)) =

η̄θd
(θd + θa)n

((θd + θa)
n − θnd ), (8.10)

where ∂/∂t+ denotes the right-hand derivative and η̄ :=
∫
E

x dη(x).

Proof. Define g : X → [0,∞) by the formula g(x) = max{‖fi(x)‖ : i ∈ [n + 1]}. Let

x = (ψ,v) ∈ X. We use Lemma 8.8 on 1{y:g(y)−g(x)≤R} to find µ(x, {y : g(y)− g(x) ≤ R}).

44



If |ψ| > 1, then for i ∈ ψ−1({1}), we know that

∑
j∈[n]

si(ψ)(j)

(
v(j)−

(
v(n)− v(i)− v(n)

|ψ| − 1

))
= 0

So

−(|ψ| − 1)

(
v(n)− v(i)− v(n)

|ψ| − 1

)
+
∑
j∈[n]

si(ψ)(j)v(j) = 0

and

v(n)− v(i)− v(n)

|ψ| − 1
=
∑
j∈[n]

si(ψ)(j)

|ψ| − 1
v(j)

Since si(ψ)(j)
|ψ|−1

≥ 0 for each j ∈ [n] and
∑

j∈[n]
si(ψ)(j)
|ψ|−1

= 1, we have that v(n)− v(i)−v(n)
|ψ|−1

is

in the convex hull of {v(j) : j ∈ [n]}. Therefore,

∥∥∥∥v(n)− v(i)− v(n)

|ψ| − 1

∥∥∥∥ ≤ max{‖v(j)‖ : j ∈ [n]}

so that

g

(
si(ψ),v|[n] ∪

{(
n,v(n)− v(i)− v(n)

|ψ| − 1

)})
= max{‖v(j)‖ : j ∈ [n]}

Notice that since x ∈ X, we know that
∑

j∈[n] ψ(j)(v(j)−v(n)) = 0. Isolating v(n) gives

v(n) =
∑

j∈[n]
ψ(j)
|ψ| v(j). This means v(n) is in the convex hull of {v(j) : j ∈ [n]}, giving

‖v(n)‖ ≤ max{‖v(j)‖ : j ∈ [n]}

Thus, if g(x) = ‖v(n)‖, then there is some j0 ∈ [n] such that g(x) = ‖v(j0)‖. Hence,

g
(
si(ψ),v|[n] ∪

{(
n,v(n)− v(i)− v(n)

|ψ| − 1

)})
= g(x)
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so

g
(
si(ψ),v|[n] ∪

{(
n,v(n)− v(i)− v(n)

|ψ| − 1

)})
− g(x) = 0 < R

and

1{y:g(y)−g(x)≤R}

(
si(ψ),v|[n] ∪

{(
n,v(n)− v(i)− v(n)

|ψ| − 1

)})
= 1 (8.11)

If |ψ| ≤ 1, then

g(si(ψ,v)) = max{‖v(j)‖ : j ∈ [n+ 1]} = g(x)

which gives

1{y:g(y)−g(x)≤R}(si(ψ),v) = 1 (8.12)

In either case, for x ∈ E

‖x + v(n)‖ − g(x) ≤ ‖x‖+ ‖v(n)‖ − g(x) ≤ ‖x‖

and ∥∥∥∥ x

|ψ|+ 1
+ v(n)

∥∥∥∥− g(x) ≤
∥∥∥∥ x

|ψ|+ 1

∥∥∥∥+ ‖v(n)‖ − g(x) ≤
∥∥∥∥ x

|ψ|+ 1

∥∥∥∥ ≤ ‖x‖
So

g
(
si(ψ),v|[n+1]\{i,n} ∪

{
(i,x + v(n)),

(
n,

x

|ψ|+ 1
+ v(n)

)})
− g(x) ≤ R

if ‖x‖ ≤ R. Therefore

∫
E

1{y:g(y)−g(x)≤R}

(
si(ψ),v|[n+1]\{i,n} ∪

{
(i,x + v(n)),

(
n,

x

|ψ|+ 1
+ v(n)

)})
η(dx)

≥
∫
E

1{x∈E:‖x‖≤R}η(dx)

Notice that ∫
E

1{x∈E:‖x‖≤R}η(dx) = η({x ∈ E : ‖x‖ ≤ R}) = 1
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Hence,

∫
E

1{y:g(y)−g(x)≤R}

(
si(ψ),v|[n+1]\{i,n}∪

{
(i,x+v(n)),

(
n,

x

|ψ|+ 1
+v(n)

)})
η(dx) ≥ 1 (8.13)

By Lemma 8.8 with 1{y:g(y)−g(x)≤R} and using equations (8.11), (8.12), and (8.13), we find

that

µ(x, {y : g(y)− g(x) ≤ R}) =

∫
y∈X

1{y:g(y)−g(x)≤R}(y)µ(x, dy)

≥
∑

i∈ψ−1({1})

ri(ψ) +
∑

i∈ψ−1({0})

ri(ψ)

=
∑
j∈[n]

ri(ψ)

= 1

However, we know that µ is a probability measure, so µ(x, {y : g(y)− g(x) ≤ R}) ≤ 1. Thus,

µ(x, {y : g(y)− g(x) ≤ R}) = 1 (8.14)

Let Y be as in Proposition 8.2, fix a whole number k, and let λ be the distribution of Yk.

By Proposition 8.2 in [5], the distribution of (Yk, Yk+1) is λ× µ, so equation (8.14) implies

P(g(Yk+1)− g(Yk) ≤ R) = (λ× µ)
(
{(x, y) ∈ X× X : g(y)− g(x) ≤ R}

)
=

∫
x∈X

λ(dx)µ(x, {y : g(y)− g(x) ≤ R})

=

∫
x∈X

λ(dx)

= 1

This means g(Yk+1) ≤ g(Yk) +R almost surely. By induction, it follows that for every whole
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number k

g(Yk) ≤ g(Y0) + kR (8.15)

almost surely.

We now show that E(fi(Xt)) is well-defined and finite for all i ∈ [n + 1] and t ≥ 0. Fix

t ≥ 0. Equation (8.15) implies

E(g(Xt)) =
∞∑
k=0

E(g(Xt)|t ∈ [τk, τk+1))P(t ∈ [τk, τk+1))

=
∞∑
k=0

E(g(Yk)|t ∈ [τk, τk+1))P(t ∈ [τk, τk+1))

≤
∞∑
k=0

E(g(Y0) + kR|t ∈ [τk, τk+1))P(t ∈ [τk, τk+1))

=
∞∑
k=0

E(g(Y0)|t ∈ [τk, τk+1))P(t ∈ [τk, τk+1)) +R
∞∑
k=0

kP(t ∈ [τk, τk+1))

= E(g(Y0)) +R
∞∑
k=0

kP(t ∈ [τk, τk+1))

≤ E(g(Y0)) +R
∞∑
k=0

kP(t ≥ τk)

= E(g(X0)) +R
∞∑
k=0

kP(t ≥ τk) (8.16)

By hypothesis, each fi is ρ-integrable, giving
∫
X
‖fi‖ dρ < ∞ for each i ∈ [n + 1]. Since

X0 is ρ-distributed, we see that

E(g(X0)) =

∫
X

g dρ <∞

since g(x) = max{‖fi(x)‖ : i ∈ [n+ 1]}. Additionally, notice that

c(i) = iθd + (n− i)θa ≤ iθ + (n− i)θ = nθ
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where θ = max{θa, θd}. So

τk =
k∑
j=1

γj
c(Yj−1)

≥
k∑
j=1

γj
nθ

Furthermore, since γ1, . . . , γk are i.i.d. exponential random variables with mean 1, we know

that γj has density function x 7→ e−x. So
∑k

j=1 γj has density function x 7→ e−xxk−1

Γ(k)
= e−xxk−1

(k−1)!
.

Therefore, equation (8.16) implies

E(g(Xt)) ≤ E(g(X0)) +R
∞∑
k=1

kP(t ≥ τk)

= E(g(X0)) +R
∞∑
k=1

kP
(
t ≥ 1

nθ

k∑
j=1

γj
)

= E(g(X0)) +R
∞∑
k=1

k

∫ tnθ

0

e−xxk−1

(k − 1)!
dx

≤ E(g(X0)) +R
∞∑
k=1

k

∫ tnθ

0

xk−1

(k − 1)!
dx

= E(g(X0)) +R
∞∑
k=1

k
(tnθ)k

k!

= E(g(X0)) +R
∞∑
k=1

(tnθ)k

(k − 1)!

= E(g(X0)) +Rtnθ
∞∑
k=0

(tnθ)k

k!

= E(g(X0)) +Rtnθetnθ

<∞

Since E(g(Xt)) <∞ and g(Xt) ≥ fi(Xt), we have E(fi(Xt)) <∞ for all i ∈ [n+ 1]. Varying

t gives that E(fi(Xt)) is well-defined and finite for all i ∈ [n+ 1] and t ≥ 0.

Suppose νt is the distribution of Xt and X̂ is as in Proposition 8.4. Since X0 is ρ-

distributed and σ = ρ ◦ π−1, we have that X̂0 is σ-distributed. By Proposition 8.7, we know

that σ is an invariant distribution for X̂, so it must be that X̂t is also σ-distributed for all

t ≥ 0. Thus, σ = νt ◦ π−1 for all t ≥ 0. We now have that each νt satisfies the hypothesis

for ρ. Since X is time-homogeneous, we could, in essence, restart the process at each time t
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and expect the same behavior. Therefore, (8.10) holds for all t ≥ 0 if it holds when t = 0.

We show this is the case.

Given (i, j) ∈ [n+ 1]× [n+ 1], recall that (Y0, Y1) is (ρ× µ)-distributed. Therefore,

P(π(Y0) = i, π(Y1) = j) = (ρ× µ)(π−1({i})× π−1({j})) =

∫
π−1({i})

ρ(dx)

∫
π−1({j})

µ(x, dy)

(8.17)

If x = (ψ,v) ∈ X, then for ` ∈ [n] and w ∈ E[n+1],

1π−1({j})(s`(ψ),w) = 1{j}(π(s`(ψ),w)) = 1{j}(|s`(ψ)|)

Letting w = v|[n+1]\{i,n} ∪
{

(i,x + v(n)),
(
n, x
|ψ|+1

+ v(n)
)}

for x ∈ E gives

∫
E

1π−1({j})(s`(ψ),w)dη(x) =

∫
E

1{j}(|s`(ψ)|)dη(x) = 1{j}(|s`(ψ)|)η(E) = 1{j}(|s`(ψ)|)

Using Lemma 8.8 with 1π−1({j}) gives

∫
π−1({j})

µ(x, dy) =

∫
X

1π−1({j})(y)µ(x, dy)

=
∑

`∈ψ−1({1})

r`(ψ)1{j}(|s`(ψ)|) +
∑

`∈ψ−1({0})

r`(ψ)1{j}(|s`(ψ)|)

=
∑

`∈ψ−1({1})

r`(ψ)1{j+1}(|ψ|) +
∑

`∈ψ−1({0})

r`(ψ)1{j−1}(|ψ|)

=
∑

`∈ψ−1({1})

θd 1{j+1}(|ψ|)
θd |ψ|+ θa(n− |ψ|)

+
∑

`∈ψ−1({0})

θa 1{j−1}(|ψ|)
θd |ψ|+ θa(n− |ψ|)

=
|ψ| θd 1{j+1}(|ψ|)
θd |ψ|+ θa(n− |ψ|)

+
(n− |ψ|)θa 1{j−1}(|ψ|)
θd |ψ|+ θa(n− |ψ|)

=
(j + 1)θd 1π−1({j+1})(x)

θd(j + 1) + θa(n− (j + 1))
+

(n− (j − 1))θa 1π−1({j−1})(x)

θd(j − 1) + θa(n− (j − 1))
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Since σ = ρ ◦ π−1 it follows that

∫
π−1({i})

ρ(dx)

∫
π−1({j})

µ(x, dy)

=

∫
π−1({i})

(
(j + 1)θd 1π−1({j+1})(x)

θd(j + 1) + θa(n− (j + 1))
+

(n− (j − 1))θa 1π−1({j−1})(x)

θd(j − 1) + θa(n− (j − 1))

)
ρ(dx)

=
(j + 1)θd ρ(π−1({j + 1}) ∩ π−1({i}))

θd(j + 1) + θa(n− (j + 1))
+

(n− (j − 1))θa ρ(π−1({j − 1}) ∩ π−1({i}))
θd(j − 1) + θa(n− (j − 1))

=
(j + 1)θd (ρ ◦ π−1)({j + 1} ∩ {i})

θd(j + 1) + θa(n− (j + 1))
+

(n− (j − 1))θa (ρ ◦ π−1)({j − 1} ∩ {i})
θd(j − 1) + θa(n− (j − 1))

=
(j + 1)θd σ({j + 1} ∩ {i})
θd(j + 1) + θa(n− (j + 1))

+
(n− (j − 1))θa σ({j − 1} ∩ {i})
θd(j − 1) + θa(n− (j − 1))

=



iθd
θdi+ θa(n− i)

σ({i}), if i = j + 1

(n− i)θa
θdi+ θa(n− i)

σ({i}), if i = j − 1

0, otherwise

Combining this with equation (8.17) gives

P(π(Y0) = i, π(Y1) = j) =



iθd
θdi+ θa(n− i)

σ({i}), if i = j + 1

(n− i)θa
θdi+ θa(n− i)

σ({i}), if i = j − 1

0 otherwise

(8.18)

Define h : X×X→ E[n+1] by h(x, y) = fn(y)− fn(x). Letting Ji = {i− 1, i+ 1} ∩ [n+ 1], we

then have that

E(fn(Xt)− fn(X0)) = E(h(X0, Xt))

=
∑

i∈[n+1]

∑
j∈Ji

E(h(X0, Xt)|π(Y0) = i, π(Y1) = j)P(π(Y0) = i, π(Y1) = j)

(8.19)
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Conditioning further gives

E(h(X0, Xt)|π(Y0) = i, π(Y1) = j)

=
∞∑
k=0

E(h(X0, Xt)|π(Y0) = i, π(Y1) = j, t ∈ [τk, τk+1))P(t ∈ [τk, τk+1)|π(Y0) = i, π(Y1) = j)

=
∞∑
k=0

E(h(Y0, Yk)|π(Y0) = i, π(Y1) = j, t ∈ [τk, τk+1))P(t ∈ [τk, τk+1)|π(Y0) = i, π(Y1) = j)

=
∞∑
k=2

E(h(Y0, Yk)|π(Y0) = i, π(Y1) = j, t ∈ [τk, τk+1))P(t ∈ [τk, τk+1)|π(Y0) = i, π(Y1) = j)

+ E(h(Y0, Y1)|π(Y0) = i, π(Y1) = j, t ∈ [τ1, τ2))P(t ∈ [τ1, τ2)|π(Y0) = i, π(Y1) = j) (8.20)

We first compute the last term in equation (8.20) and then estimate the sum preceding it.

By construction, τ1 = γ1
c(Y0)

and τ2 = γ1
c(Y0)

+ γ2
c(Y1)

. If π(Y0) = i and π(Y1) = j, then

c(Y0) = ĉ(π(Y0)) = ĉ(i) and c(Y1) = ĉ(π(Y1)) = ĉ(j). Since Y is independent of γ1, γ2, . . . we

then find that

E(h(Y0, Y1)|π(Y0) = i, π(Y1) = j, t ∈ [τ1, τ2))

= E
(
h(Y0, Y1)|π(Y0) = i, π(Y1) = j,

γ1

c(Y0)
≤ t <

γ1

c(Y0)
+

γ2

c(Y1)

)
= E

(
h(Y0, Y1)|π(Y0) = i, π(Y1) = j,

γ1

ĉ(i)
≤ t <

γ1

ĉ(i)
+

γ2

ĉ(j)

)
= E(h(Y0, Y1)|π(Y0) = i, π(Y1) = j) (8.21)

Because (Y0, Y1) is (ρ× µ)-distributed, we have

E(h(Y0, Y1)|π(Y0) = i, π(Y1) = j)

= (P(π(Y0) = i, π(Y1) = j))−1

∫
π−1({i})×π−1({j})

h(x, y) d(ρ× µ)(x, y)

= (P(π(Y0) = i, π(Y1) = j))−1

∫
π−1({i})

ρ(dx)

∫
π−1({j})

h(x, y)µ(x, dy) (8.22)
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For x = (ψ,v) ∈ X, we know that

0 =
∑
`∈[n]

ψ(`)(v(`)− v(n)) =
∑

`∈ψ−1({1})

(v(`)− v(n))

If |ψ| > 1 then by Lemma 8.8 with h(x, y)1π−1({j}) and by the previous statement,

∫
π−1({j})

h(x, y)µ(x, dy) =

∫
X

h(x, y)1π−1({j})µ(x, dy)

=
∑

`∈ψ−1({1})

r`(ψ)

((
v(n)− v(`)− v(n)

|ψ| − 1

)
− v(n)

)
1{j}(|s`(ψ)|)

+
∑

`∈ψ−1({0})

r`(ψ)

∫
E

(( x

|ψ|+ 1
+ v(n)

)
− v(n)

)
1{j}(|s`(ψ)|) dη(x)

=
∑

`∈ψ−1({1})

r`(ψ)

(
−v(`)− v(n)

|ψ| − 1

)
1{j+1}(|ψ|) +

∑
`∈ψ−1({0})

r`(ψ)
1{j−1}(|ψ|)
|ψ|+ 1

∫
E

x dη(x)

= − θd
θd |ψ|+ θa(n− |ψ|)

1{j+1}(|ψ|)
|ψ| − 1

∑
`∈ψ−1({1})

(v(`)− v(n)) +
∑

`∈ψ−1({0})

r`(ψ)
1{j−1}(|ψ|)
|ψ|+ 1

η̄

= 0 +
(n− |ψ|)θa

θd |ψ|+ θa(n− |ψ|)
1{j−1}(|ψ|)

η̄

|ψ|+ 1

=
(n− π(x))θa

θdπ(x) + θa(n− π(x))
1{j−1}(π(x))

η̄

j

If |ψ| ≤ 1, then

∫
π−1({j})

h(x, y)µ(x, dy) =

∫
X

h(x, y)1π−1({j})µ(x, dy)

=
∑

`∈ψ−1({1})

r`(ψ)((v(n)− v(n))1{j}(|s`(ψ)|)

+
∑

`∈ψ−1({0})

r`(ψ)

∫
E

(( x

|ψ|+ 1
+ v(n)

)
− v(n)

)
1{j}(|s`(ψ)|) dη(x)

=
∑

`∈ψ−1({0})

r`(ψ)
1{j−1}(|ψ|)
|ψ|+ 1

∫
E

x dη(x)

=
(n− |ψ|)θa

θd |ψ|+ θa(n− |ψ|)
1{j−1}(|ψ|)

η̄

|ψ|+ 1

=
(n− π(x))θa

θdπ(x) + θa(n− π(x))
1{j−1}(π(x))

η̄

j
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So ∫
π−1({j})

h(x, y)µ(x, dy) =
(n− π(x))θa

θdπ(x) + θa(n− π(x))
1{j−1}(π(x))

η̄

j
(8.23)

Using equation (8.23), we then find that

∫
π−1({i})

ρ(dx)

∫
π−1({j})

h(x, y)µ(x, dy)

=

∫
π−1({i})

ρ(dx)
(n− π(x))θa

θdπ(x) + θa(n− π(x))
1{j−1}(π(x))

η̄

j

=


ρ(π−1({i})) (n− i)θa

θdi+ θa(n− i)
η̄

i+ 1
, if i = j − 1

0, otherwise

=


σ({i}) (n− i)θa

θdi+ θa(n− i)
η̄

i+ 1
, if i = j − 1

0, otherwise

Plugging this into equation (8.22) and using equation (8.18) gives

E(h(Y0, Y1)|π(Y0) = i, π(Y1) = j)

=


(P(π(Y0) = i, π(Y1) = j))−1σ({i}) (n− i)θa

θdi+ θa(n− i)
η̄

i+ 1
, if i = j − 1

0, if i = j + 1

=


θdi+ θa(n− i)
(n− i)θaσ({i})

σ({i}) (n− i)θa
θdi+ θa(n− i)

η̄

i+ 1
, if j = i+ 1

0, if j = i− 1

=


η̄

i+ 1
, if j = i+ 1

0, if j = i− 1
(8.24)

Combining equations (8.21) and (8.24) gives

E(h(Y0, Y1)|π(Y0) = i, π(Y1) = j, t ∈ [τ1, τ2)) =


η̄

i+ 1
, if j = i+ 1

0, if j = i− 1
(8.25)

Because γ1, γ2, . . . are i.i.d. exponentially distributed with mean 1 and are independent
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of Y , for j = i± 1 we have

P(t ∈ [τ1, τ2)|π(Y0) = i, π(Y1) = j) = P
(

γ1

c(Y0)
≤ t <

γ1

c(Y0)
+

γ2

c(Y1)
|, π(Y0) = i, π(Y1) = j

)
= P

(
γ1

ĉ(i)
≤ t <

γ1

ĉ(i)
+

γ2

ĉ(j)
|π(Y0) = i, π(Y1) = j

)
= P

(
γ1

ĉ(i)
≤ t <

γ1

ĉ(i)
+

γ2

ĉ(j)

)
= P

(
γ1 ≤ tĉ(i), γ2 >

(
t− γ1

ĉ(i)

)
ĉ(j)

)
=

∫ tĉ(i)

0

∫ ∞
(t− x

ĉ(i))ĉ(j)
e−xe−y dy dx

=

∫ tĉ(i)

0

e−tĉ(j)e−(1− ĉ(j)
ĉ(i) )x dx

=
ĉ(i)

ĉ(j)− ĉ(i)
(
e−tĉ(i) − e−tĉ(j)

)
(8.26)

Combining equations (8.25) and (8.26) gives

E(h(Y0, Y1)|π(Y0) = i, π(Y1) = j, t ∈ [τ1, τ2))P(t ∈ [τ1, τ2)|π(Y0) = i, π(Y1) = j)

=


η̄

i+ 1

(
e−tĉ(i) − e−tĉ(i+1)

)
ĉ(i)

ĉ(i+ 1)− ĉ(i)
, if j = i+ 1

0, if j = i− 1

(8.27)

We now proceed to estimate the sum in (8.20). Using equation (8.15), we see that

‖h(Y0, Yk)‖ = ‖fn(Yk)− fn(Y0)‖ ≤ g(Yk) + g(Y0) ≤ 2g(Y0) + kR

This, together with an argument similar to that which showed the finiteness of E(g(Xt)),
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gives

∥∥∥∥∥
∞∑
k=2

E(h(Y0, Yk)|π(Y0) = i, π(Y1) = j, t ∈ [τk, τk+1))P(t ∈ [τk, τk+1)|π(Y0) = i, π(Y1) = j)

∥∥∥∥∥
≤

∞∑
k=2

E(‖h(Y0, Yk)‖|π(Y0) = i, π(Y1) = j, t ∈ [τk, τk+1))P(t ∈ [τk, τk+1)|π(Y0) = i, π(Y1) = j)

≤
∞∑
k=2

E(2g(Y0)|π(Y0) = i, π(Y1) = j, t ∈ [τk, τk+1))P(t ∈ [τk, τk+1)|π(Y0) = i, π(Y1) = j)

+
∞∑
k=2

E(kR|π(Y0) = i, π(Y1) = j, t ∈ [τk, τk+1))P(t ∈ [τk, τk+1)|π(Y0) = i, π(Y1) = j)

≤ 2E(g(Y0)|π(Y0) = i, π(Y1) = j)
∞∑
k=2

P(t ≥ τk|π(Y0) = i, π(Y1) = j)

+R
∞∑
k=2

kP(t ≥ τk|π(Y0) = i, π(Y1) = j)

≤ 2E(g(Y0)|π(Y0) = i, π(Y1) = j)(etnθ − 1− tnθ) +Rtnθ(etnθ − 1) (8.28)

From equations (8.20) and (8.27) we have

∞∑
k=2

E(h(Y0, Yk)|π(Y0) = i, π(Y1) = i+1, t ∈ [τk, τk+1))P(t ∈ [τk, τk+1)|π(Y0) = i, π(Y1) = i+1)

= E(h(X0, Xt)|π(Y0) = i, π(Y1) = i+ 1)− η̄

i+ 1

(e−tĉ(i) − e−tĉ(i+1))ĉ(i)

ĉ(i+ 1)− ĉ(i)

and

∞∑
k=2

E(h(Y0, Yk)|π(Y0) = i, π(Y1) = i−1, t ∈ [τk, τk+1))P(t ∈ [τk, τk+1)|π(Y0) = i, π(Y1) = i−1)

= E(h(X0, Xt)|π(Y0) = i, π(Y1) = i− 1)
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Combining these with equation (8.28) gives

∥∥∥∥E(h(X0, Xt)|π(Y0) = i, π(Y1) = i+ 1)− η̄

i+ 1

e−tĉ(i) − e−tĉ(i+1)

ĉ(i+ 1)− ĉ(i)
ĉ(i)

∥∥∥∥
≤ 2E(g(Y0)|π(Y0) = i, π(Y1) = i+ 1)(etnθ − 1− tnθ) +Rtnθ(etnθ − 1) (8.29)

and

‖E(h(X0, Xt)|π(Y0) = i, π(Y1) = i− 1)‖

≤ 2E(g(Y0)|π(Y0) = i, π(Y1) = i− 1)(etnθ − 1− tnθ) +Rtnθ(etnθ − 1) (8.30)

From equation (8.19) we have

E(h(X0, Xt)) =
n−1∑
i=0

E(h(X0, Xt)|π(Y0) = i, π(Y1) = i+ 1)P(π(Y0) = i, π(Y1) = i+ 1)

+
n∑
i=1

E(h(X0, Xt)|π(Y0) = i, π(Y1) = i− 1)P(π(Y0) = i, π(Y1) = i− 1)

Letting Mi,j = E(g(Y0)|π(Y0) = i, π(Y1) = j) and putting the previous result together with

equations (8.18), (8.29), and (8.30) gives

∥∥∥∥∥E(h(X0, Xt))−
n−1∑
i=0

η̄

i+ 1

(e−tĉ(i) − e−tĉ(i+1))ĉ(i)

ĉ(i+ 1)− ĉ(i)
θa(n− i)σ({i})
θdi+ θa(n− i)

∥∥∥∥∥
≤

n−1∑
i=0

∥∥∥∥E(h(X0, Xt)|π(Y0) = i, π(Y1) = i+ 1)− η̄(e−tĉ(i) − e−tĉ(i+1))ĉ(i)

(i+ 1)(ĉ(i+ 1)− ĉ(i))

∥∥∥∥ θa(n− i)σ({i})
θdi+ θa(n− i)

+
n∑
i=1

‖E(h(X0, Xt)|π(Y0) = i, π(Y1) = i− 1)‖ θdiσ({i})
θdi+ θa(n− i)

≤
n−1∑
i=0

(2Mi,i+1(etnθ − 1− tnθ) +Rtnθ(etnθ − 1))
θa(n− i)σ({i})
θdi+ θa(n− i)

+
n∑
i=1

(2Mi,i−1(etnθ − 1− tnθ) +Rtnθ(etnθ − 1))
θdiσ({i})

θdi+ θa(n− i)

(8.31)
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Notice that Mi,j is independent of t, so

lim
t→0+

(2Mi,i+1(etnθ − 1− tnθ) +Rtnθ(etnθ − 1))
(
θa(n−i)σ({i})
θdi+θa(n−i)

)
t

= 0

and

lim
t→0+

(2Mi,i−1(etnθ − 1− tnθ) +Rtnθ(etnθ − 1))
(

θdiσ({i})
θdi+θa(n−i)

)
t

= 0

This gives

lim
t→0+

1

t

[
n−1∑
i=0

(2Mi,i+1(etnθ − 1− tnθ) +Rtnθ(etnθ − 1))

(
θa(n− i)σ({i})
θdi+ θa(n− i)

)

+
n∑
i=1

(2Mi,i−1(etnθ − 1− tnθ) +Rtnθ(etnθ − 1))

(
θdiσ({i})

θdi+ θa(n− i)

)]
= 0 (8.32)

Additionally,

lim
t→0+

1

t

n−1∑
i=0

η̄

i+ 1

(e−tĉ(i) − e−tĉ(i+1))ĉ(i)

ĉ(i+ 1)− ĉ(i)
θa(n− i)σ({i})
θdi+ θa(n− i)

=
n−1∑
i=0

η̄

i+ 1

(−ĉ(i) + ĉ(i+ 1))ĉ(i)

ĉ(i+ 1)− ĉ(i)
θa(n− i)σ({i})
θdi+ θa(n− i)

=
n−1∑
i=0

η̄

i+ 1
ĉ(i)

θa(n− i)σ({i})
θdi+ θa(n− i)

=
n−1∑
i=0

η̄

i+ 1
(θdi+ θa(n− i))

θa(n− i)
θdi+ θa(n− i)

1

(θd + θa)n

(
n

i

)
θn−id θia

=
n−1∑
i=0

η̄ θa(n− i)
i+ 1

1

(θd + θa)n
n!

i!(n− i)!
θn−id θia

=
n−1∑
i=0

η̄ θd
(θd + θa)n

n!

(i+ 1)!(n− i− 1)!
θn−i−1
d θi+1

a

=
η̄ θd

(θd + θa)n

n−1∑
i=0

(
n

i+ 1

)
θn−i−1
d θi+1

a

=
η̄ θd

(θd + θa)n
((θd + θa)

n − θnd ) (8.33)
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We know from equations (8.31) and (8.32) that

lim
t→0+

1

t

∥∥∥∥∥E(h(X0, Xt))−
n−1∑
i=1

η̄

i+ 1

(e−tĉ(i) − e−tĉ(i+1))ĉ(i)

ĉ(i+ 1)− ĉ(i)
θa(n− i)σ({i})
θdi+ θa(n− i)

∥∥∥∥∥
≤ lim

t→0+

1

t

[
n−1∑
i=0

(2Mi,i+1(etnθ − 1− tnθ) +Rtnθ(etnθ − 1))

(
θa(n− i)σ({i})
θdi+ θa(n− i)

)

+
n∑
i=1

(2Mi,i−1(etnθ − 1− tnθ) +Rtnθ(etnθ − 1))

(
θdiσ({i})

θdi+ θa(n− i)

)]

= 0

Combining this with equation (8.33) and using h(X0, Xt) = E(fn(Xt)− fn(X0)) gives

lim
t→0+

∥∥∥∥E(fn(Xt)− fn(X0))

t
− η̄ θd

(θd + θa)n
((θd + θa)

n − θnd )

∥∥∥∥ = 0

Thus,

lim
t→0+

E(fn(Xt))− E(fn(X0))

t
=

η̄ θd
(θd + θa)n

((θd + θa)
n − θnd )

which implies

∂

∂t+
E(fn(X0)) =

η̄ θd
(θd + θa)n

((θd + θa)
n − θnd )

Theorem 8.9 tells us that if η has compact support then, in essence, the expected velocity

of the cell is given by equation (8.10).

Chapter 9. Space-dependent Perturbations

Recall that when an adhesion site attaches, its new location is a perturbation of the old

centroid governed by the distribution η. In this section, we examine what happens when η

becomes space-dependent.
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For each y ∈ E, let ηy be a Borel probability measure on E such that
∫
E

xdηy(x) is

well-defined and finite. Then define µ
(ψ,v)
{i,n} by

µ
(ψ,v)
{i,n} :=


(
δv(i) × δv(n)

)
◦ F−1

i if |ψ| = ψ(i) = 1(
δv(i) × δv(n)

)
◦ S−1

(0,(v(i)−v(n))/(|ψ|−1),1,1) ◦ F
−1
i if |ψ| > ψ(i) = 1

(ηv(n) × I) ◦ S−1
(−v(n),−(|ψ|+1)v(n),1,1/(|ψ|+1)) ◦ F

−1
i if ψ(i) = 0

So we now have that for (ψ,v) ∈ X, the measure µ
(ψ,v)
{i,n} uses ηv(n). That is, the perturbation

of a newly attached adhesion site from the previous centroid is governed by a distribution

that is dependent on the previous location of the centroid.

All the properties and results up to Lemma 8.8 follow exactly as before since whenever

we use µ or µx
{i,n}, we first fix x = (ψ,v) ∈ X, which then fixes our choice of the distribution

ηv(n). In place of Lemma 8.8 we now have

Lemma 8.8*. Suppose f : X→ [0,∞] is measurable and x = (ψ,v) ∈ X. Then

∫
X

f(y)µ(x, dy) =
∑

i∈ψ−1({1})

ri(ψ)f(si(ψ),v)

+
∑

i∈ψ−1({0})

ri(ψ)

∫
E

f
(
si(ψ),v|[n+1]\{i,n} ∪

{
(i,x + v(n)),

(
n,

x

|ψ|+ 1
+ v(n)

)})
dηv(n)(x)

(8.2*)

for |ψ| ≤ 1 and

∫
X

f(y)µ(x, dy) =
∑

i∈ψ−1({1})

ri(ψ)f
(
si(ψ),v|[n] ∪

{(
n,v(n)− v(i)− v(n)

|ψ| − 1

)})
+

∑
i∈ψ−1({0})

ri(ψ)

∫
E

f
(
si(ψ),v|[n+1]\{i,n} ∪

{
(i,x + v(n)),

(
n,

x

|ψ|+ 1
+ v(n)

)})
dηv(n)(x)

(8.3*)

for |ψ| > 1.

Note that the only change is that the integrals are now with respect to ηv(n). Theorem
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8.9 becomes the following:

Theorem 8.9*. For each i ∈ [n + 1], let fi : X → E be defined by fi(ψ,v) := v(i). Let σ

be as in Proposition 8.7 and let ρ be a distribution on X such that σ = ρ ◦ π−1 and such that

fi is ρ-integrable for every i. Let X be as in Proposition 8.3. Let ‖ · ‖ be the ∞-norm in

E. Assume there is some R > 0 such that ηy is supported on {x ∈ E : ‖x‖ ≤ R} for every

y ∈ E. Then for every i ∈ [n+ 1] and t ≥ 0, E(fi(Xt)) is well-defined and finite, and

∂

∂t+
E(fn(Xt)) =

∑
i∈[n]

θa(n− i)
i+ 1

∫
π−1({i})

η̄(x) dρ(x) (8.10*)

where η̄(x) :=
∫
E

x dηfn(x)(x).

Proof. Using Lemma 8.8* in place of Lemma 8.8, the proof proceeds as in the proof of

Theorem 8.9 up to equation (8.23) since anything involving Lemma 8.8 or µ either uses a

fixed x ∈ X, uses the uniform bound R on the support of ηy, or gives something that does

not involve ηy. Using h(x, y) = fn(y)− fn(x), equation (8.23) becomes

∫
π−1({j})

h(x, y)µ(x, dy) =
(n− π(x))θa

θdπ(x) + θa(n− π(x))
1{j−1}(π(x))

η̄(x)

j
(8.23*)

We then get

∫
π−1({i})

ρ(dx)

∫
π−1({j})

h(x, y)µ(x, dy)

=

∫
π−1({i})

ρ(dx)
(n− π(x))θa

θdπ(x) + θa(n− π(x))
1{j−1}(π(x))

η̄(x)

j

=


(n− i)θa

θdi+ θa(n− i)
1

i+ 1

∫
π−1({i})

η̄(x) dρ(x), if i = j − 1

0, otherwise
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which gives

E(h(Y0, Y1)|π(Y0) = i, π(Y1) = j)

=


(P(π(Y0) = i, π(Y1) = j))−1 (n− i)θa

θdi+ θa(n− i)
1

i+ 1

∫
π−1({i})

η̄(x) dρ(x), if i = j − 1

0, if i = j + 1

=


θdi+ θa(n− i)
(n− i)θaσ({i})

(n− i)θa
θdi+ θa(n− i)

1

i+ 1

∫
π−1({i})

η̄(x) dρ(x), if j = i+ 1

0, if j = i− 1

=


1

σ({i})(i+ 1)

∫
π−1({i})

η̄(x) dρ(x), if j = i+ 1

0, if j = i− 1

(8.24*)

We then get

E(h(Y0, Y1)|π(Y0) = i, π(Y1) = j, t ∈ [τ1, τ2))

=


1

σ({i})(i+ 1)

∫
π−1({i})

η̄(x) dρ(x), if j = i+ 1

0, if j = i− 1

(8.25*)

so that

E(h(Y0, Y1)|π(Y0) = i, π(Y1) = j, t ∈ [τ1, τ2))P(t ∈ [τ1, τ2)|π(Y0) = i, π(Y1) = j)

=


∫
π−1({i}) η̄(x) dρ(x)

σ({i})(i+ 1)

(
e−tĉ(i) − e−tĉ(i+1)

)
ĉ(i)

ĉ(i+ 1)− ĉ(i)
, if j = i+ 1

0, if j = i− 1

(8.27*)

Then

∥∥∥∥∥E(h(X0, Xt)|π(Y0) = i, π(Y1) = i+ 1)−

∫
π−1({i}) η̄(x) dρ(x)

σ({i})(i+ 1)

(
e−tĉ(i) − e−tĉ(i+1)

)
ĉ(i)

ĉ(i+ 1)− ĉ(i)

∥∥∥∥∥
≤ 2E(g(Y0)|π(Y0) = i, π(Y1) = i+ 1)(etnθ − 1− tnθ) +Rtnθ(etnθ − 1) (8.29*)
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and so

∥∥∥∥∥E(h(X0, Xt))−
n−1∑
i=0

∫
π−1({i}) η̄(x) dρ(x)

σ({i})(i+ 1)

(
e−tĉ(i) − e−tĉ(i+1)

)
ĉ(i)

ĉ(i+ 1)− ĉ(i)
θa(n− i)σ({i})
θdi+ θa(n− i)

∥∥∥∥∥
≤

n−1∑
i=0

(2Mi,i+1(etnθ − 1− tnθ) +Rtnθ(etnθ − 1))

(
θa(n− i)σ({i})
θdi+ θa(n− i)

)
+

n∑
i=1

(2Mi,i−1(etnθ − 1− tnθ) +Rtnθ(etnθ − 1))

(
θdiσ({i})

θdi+ θa(n− i)

)
(8.31*)

where Mi,j = E(g(Y0)|π(Y0) = i, π(Y1) = j). Therefore,

lim
t→0+

1

t

n−1∑
i=0

∫
π−1({i}) η̄(x) dρ(x)

σ({i})(i+ 1)

e−tĉ(i) − e−tĉ(i+1)

ĉ(i+ 1)− ĉ(i)
ĉ(i)

θa(n− i)
θdi+ θa(n− i)

σ({i})

= lim
t→0+

n−1∑
i=0

∫
π−1({i}) η̄(x) dρ(x)

σ({i})(i+ 1)

−ĉ(i)e−tĉ(i) + ĉ(i+ 1)e−tĉ(i+1)

ĉ(i+ 1)− ĉ(i)
ĉ(i)

θa(n− i)
θdi+ θa(n− i)

σ({i})

=
n−1∑
i=0

∫
π−1({i}) η̄(x) dρ(x)

σ({i})(i+ 1)

−ĉ(i) + ĉ(i+ 1)

ĉ(i+ 1)− ĉ(i)
ĉ(i)

θa(n− i)
θdi+ θa(n− i)

σ({i})

=
n−1∑
i=0

∫
π−1({i}) η̄(x) dρ(x)

σ({i})(i+ 1)
ĉ(i)

θa(n− i)
θdi+ θa(n− i)

σ({i}))

=
n−1∑
i=0

∫
π−1({i}) η̄(x) dρ(x)

i+ 1
(θdi+ θa(n− i))

θa(n− i)
θdi+ θa(n− i)

=
∑
i∈[n]

θa(n− i)
i+ 1

∫
π−1({i})

η̄(x) dρ(x) (8.33*)

and we get

∂

∂t+
E(fn(X0)) =

∑
i∈[n]

θa(n− i)
i+ 1

∫
π−1({i})

η̄(x) dρ(x)

By allowing the perturbations of newly attached adhesion sites to depend on the position

of the centroid, we are able to expand our model to incorporate more biological applications.
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For instance, our model can be used to predict the velocity of a cell in the presence of

chemical attractants, so we can better model chemotaxis.

Chapter 10. Discussion and Conclusion

In summary, we formulated a model of amoeboid cell motion of a single cell on a substrate.

In this model, we consider the cell as a nucleus attached by springs to several adhesion sites.

We then track the location of each adhesion site as well as the location of the centroid of the

adhesion sites that are currently attached to the substrate.

We examined a random process that tracks how many adhesion sites are attached at

time t using the assumption that it is a Markov process. We showed, in the context of a

transition rate matrix and distribution vectors, that this process has an attracting stationary

distribution.

Next, we formalized our model using transition kernels. We then rigorously proved that

our model is a continuous-time jump-type Markov process. We then derived a time-invariant

result to predict the time derivative of the expected location of the centroid. This result can

be used analytically and in numerical simulations to predict the velocity of a cell.

As a modification of our main result, we considered what happens when the perturbation

of an adhesion site from the centroid is governed by a distribution that is space-dependent.

Under these circumstances, we derived a result to predict the velocity of a cell. This extends

our model to more complex biological situations such as chemotaxis.

Appendix A. Additional Theorems

Theorem A.1. (Dynkin’s Criterion for Discrete-time Markov Processes on Topological

Spaces) Let T1 and T2 be topological spaces and f : T1 → T2 a continuous surjection with

a continuous right-inverse. Let Q1 : T1 × B(T1) → [0, 1] be a probability kernel, and let

Q2 : T2 × B(T2) → [0, 1] be a function satisfying Q1(x, f−1(A)) = Q2(f(x), A) for every
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x ∈ T1 and A ∈ B(T2).

Then Q2 is a probability kernel, and for every probability measure ρ on B(T1) and ev-

ery discrete-time Markov process Φ with initial distribution ρ and transition kernel Q1, the

discrete-time stochastic process f ◦Φ is a Markov process with initial distribution ρ◦f−1 and

transition kernel Q2

Proof. We first show that Q2 is a probability kernel. By hypothesis, there is some continuous

right-inverse g of f . Since f is surjective, for y ∈ T2 there is some x ∈ T1 with f(x) = y.

Notice that for A ∈ B(T2)

Q2(y, A) = Q2(f(x), A) = Q1(x, f−1(A)) = (Q1(x, ·) ◦ f−1)(A)

So Q2(y, ·) = Q1(x, ·) ◦ f−1. Since f is continuous, we know that f is measurable. Further-

more, Q1(x, ·) is a measure because Q1 is a probability kernel. Thus, Q2(y, ·) is a measure.

Additionally,

Q2(y, T2) = Q1(x, f−1(T2)) = Q1(x, T1) = 1

since Q1 is a probability kernel. So Q2(y, ·) is a probability measure.

Let A ∈ B(T2). For y ∈ T2, we know that (f ◦ g)(y) = y. So

Q2(y, A) = Q2(f(g(y)), A) = Q1(g(y), f−1(A)) = (Q1(◦, f−1(A)) ◦ g)(y)

That is, Q2(◦, A) = Q1(◦, f−1(A)) ◦ g. We know that g is measurable since it is continuous.

Moreover, Q1(·, f−1(A)) is measurable since Q1 is a probability kernel. Thus, Q2(◦, A) is

measurable. So Q2 is a probability kernel.

Let ρ be a probability measure on B(T1), and let Φ be a discrete-time Markov process

with initial distribution ρ and transition kernel Q1. Let Ψ = f ◦ Φ and ν = ρ ◦ f−1. Take

any k ∈ N and A0, A1, . . . , Ak ∈ B(T2). Since Φ is a Markov process with initial distribution
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ρ and transition kernel Q1 we know that

P (Φ0 ∈ B0, . . . ,Φk ∈ Bk) =

∫
x0∈B0

. . .

∫
xk−1∈Bk

ρ(dx0)Q1(x0, dx1) . . . Q1(xk−1, Bk)

for any B0, . . . , Bk ∈ B(T1) (see Theorem 3.4.1 [6]). Using yi = f(xi), we then get

P (Ψ0 ∈ A0, . . . ,Ψk ∈ Ak)

= P (f(Φ0) ∈ A0, . . . , f(Φk) ∈ Ak)

= P (Φ0 ∈ f−1(A0), . . . ,Φk ∈ f−1(Ak))

=

∫
x0∈f−1(A0)

. . .

∫
xk−1∈f−1(Ak−1)

ρ(dx0)Q1(x0, dx1) . . . Q1(xk−1, f
−1(Ak))

=

∫
y0∈A0

. . .

∫
yk−1∈Ak−1

ρ(f−1(dx0))Q2(y0, dy1) . . . Q2(yk−1, Ak)

=

∫
y0∈A0

. . .

∫
yk−1∈Ak−1

ν(dx0)Q2(y0, dy1) . . . Q2(yk−1, Ak)

This implies Ψ = f ◦Ψ is a Markov process with initial distribution ν = ρ◦f−1 and transition

kernel Q2.

Notation

F ∨ G := σ{F ,G} for σ-algebras F ,G.

A |= B means A and B are independent.

A |= CB means A and B are conditionally independent given C.

θt is the shift operator, so that (θtX)s = Xs+t

Theorem A.2. (Theorem 12.18 [5]) For any kernel α = cµ on S with α(x, {x}) ≡ 0,

consider a Markov chain Y with transition kernel µ and some i.i.d. exponentially distributed

random variables γ1, γ2, . . . |= Y with mean 1. Assume that
∑

n γn/c(Yn−1) = ∞ a.s. under
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every initial distribution for Y . Then

Xt = Yn, t ∈ [τn, τn+1), n ∈ Z+ (A.1)

τn =
n∑
k=1

γk
c(Yk−1)

, n ∈ Z+ (A.2)

define a pure jump-type Markov process with rate kernel α.

Proof. Let Px be the distribution of the sequences Y = (Yn) and Γ = (γn) when Y0 = x.

For convenience, we may regard (Y,Γ) as the identity mapping on the canonical space Ω =

S∞ ×R∞. Construct X from (Y,Γ) as in (1) and (2), with Xt = s0 arbitrary for t ≥
∑

n τn.

Then X is a pure jump-type process with jump times τ1, τ2, . . . . Introduce the filtrations

G = (Gn) induced by (Y, γ) and F = (Ft) induced by X. So Gn = σ{(Yk, γk) : k ≤ n} and

Ft = σ{Xs : s ≤ t}. It suffices to prove the Markov property Px[θtX ∈ ·|Ft] = PXt{X ∈ ·},

since the rate kernel may then be identified via Theorem 12.17 [5].

Fix any t ≥ 0 and n ∈ Z+, and define

κ = sup{k : τk ≤ t}, β = (t− τn)c(Yn)

Let

Tm(Y,Γ) = {(Yk, γk+1) : k ≥ m}, (Y ′,Γ′) = T n+1(Y,Γ), and γ′ = γn+1.

We show that Ft = Gn ∨ σ{γ′ > β} on {κ = n}. To prove this, we prove the following:

• Xt = Yn on {κ = n}

• {κ = n} ∈ Ft ∩ (Gn ∨ σ{γ′ > β})

• Gn = Gn ∨ σ{γ′ > β} on {κ = n}

• Ft ⊆ Gn on {κ = n}

• Gn ⊆ Ft on {κ = n}
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First note that if κ = n, then sup{k : τk ≤ t} = n. This means τn ≤ t and τn+1 > t. So

t ∈ [τn, τn+1), giving Xt = Yn on {κ = n}.

Next, we show that {κ = n} ∈ Ft ∩ (Gn ∨ σ{γ′ > β}). By construction X is a pure

jump-type process with jump times τ1, τ2, . . . . On p. 237 of [5] we are given that the jump

times τk are optional with respect to the filtration F = (Fs) induced by X. This means

that for each k ∈ Z+ we have {τk ≤ s} ∈ Fs for all s ∈ Z+. In particular, this gives

{τn ≤ t}, {τn+1 ≤ t} ∈ Ft.

Observe,

{κ = n} = {sup{k : τk ≤ t} = n}

= {τn ≤ t, τn+1 > t}

= {τn ≤ t} ∩ {τn+1 > t}

= {τn ≤ t} ∩ {τn+1 ≤ t}c

Since {τn ≤ t}, {τn+1 ≤ t} ∈ Ft, we have that {κ = n} ∈ Ft.

To show {κ = n} ∈ Gn ∨ σ{γ′ > β}, use (A.2) to get

τn =
n∑
k=1

γk
c(Yk−1)

=
γn

c(Yn−1)
+

n−1∑
k=1

γk
c(Yk−1)

=
γn

c(Yn−1)
+ τn−1

So

{τn ≤ t} =

{
γn

c(Yn−1)
+ τn−1 ≤ t

}
= {γn ≤ (t− τn−1)c(Yn−1)}

Let β′ = (t− τn−1)c(Yn−1). Then

{τn ≤ t} = {γn ≤ β′} = {γn ∈ [0, β′]} = γ−1
n ([0, β′])

Since [0, β′] = (β′,∞)c ∈ B, where B is the σ-algebra generated by the Borel sets of R+,

and γn is Gn/B-measurable, it follows that γ−1
n ([0, β′]) ∈ Gn. So {τn ≤ t} ∈ Gn. Thus,

{τn ≤ t} ∈ Gn ∨ σ{γ′ > β}.
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By a similar argument we get

{τn+1 > t} = {γn+1 > (t− τn)c(Yn)} = {γn+1 > β} = {γ′ > β}

So {τn+1 > t} ∈ Gn ∨ σ{γ′ > β}. Therefore,

{τn ≤ t} ∩ {τn+1 > t} ∈ Ft ∩ (Gn ∨ σ{γ′ > β})

giving

{κ = n} ∈ Ft ∩ (Gn ∨ σ{γ′ > β})

Now we show that on {κ = n} we have Gn ∨ σ{γ′ > β} = Gn. Notice that {κ = n} ⊆

{γ′ > β}. By definition, σ{γ′ > β} is the smallest σ-algebra containing {γ′ > β}. That is,

σ{γ′ > β} = {∅, {γ′ > β}, {γ′ > β}c,Ω}

Observe,

∅ ∩ {κ = n} = ∅

{γ′ > β} ∩ {κ = n} = {κ = n}

{γ′ > β}c ∩ {κ = n} = ∅

Ω ∩ {κ = n} = {κ = n}

So σ{γ′ > β} ∩ {κ = n} = {∅, {κ = n}}. Since {κ = n} ⊆ {τn ≤ t} and {τn ≤ t} ∈ Gn,

it follows that {τn ≤ t} ∩ {κ = n} = {κ = n}. So {κ = n} ∈ Gn ∩ {κ = n}, giving

σ{γ′ > β} ∩ {κ = n} ⊆ Gn ∩ {κ = n}. Thus, when restricted to {κ = n}, we have

Gn ∨ σ{γ′ > β} = Gn
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We now show that Ft ⊆ Gn on {κ = n}. Recall that on {κ = n} we have Xt = Yn. Thus

Ft = σ{Xs : s ≤ t} = σ{Ym : m ≤ n}

By definition, σ{Ym : m ≤ n} is the smallest σ-algebra such that Ym is measurable for each

m ≤ n. Since each Ym,m ≤ n, is measurable on Gn, it follows that σ{Ym : m ≤ n} ⊆ Gn. So

Ft ⊆ Gn on {κ = n}.

Next, we show that Gn ⊆ Ft on {κ = n}. We do this by showing Ym and γm are Ft-

measurable for each m ≤ n. We begin by proving that γm is Ft-measurable on {κ = n} for

all m ≤ n. By construction,

τm =
m∑
k=1

γk
c(Yk−1)

=
m−1∑
k=1

γk
c(Yk−1)

+
γm

c(Ym−1)
.

Thus,

γm =

τm − m−1∑
k=1

γk
c(Yk−1)

 c(Ym−1) = (τm − τm−1)c(Ym−1)

When given Ym−1, the value of c(Ym−1) is completely determined. This means that

EYm−1 [c(Ym−1)] = c(Ym−1). Thus,

EYm−1 [γm] = EYm−1 [(τm − τm−1)c(Ym−1)] = c(Ym−1)EYm−1 [(τm − τm−1)]

By hypothesis, γm |= Ym−1 and E[γm] = 1, so EYm−1 [γm] = E[γm] = 1. Thus,

1 = EYm−1 [γm] = c(Ym−1)EYm−1 [(τm − τm−1)]

which gives

c(Ym−1) =
1

EYm−1 [(τm − τm−1)]

70



We then have that

γm =
τm − τm−1

EYm−1 [(τm − τm−1)]

But γm |= Ym−1, so

γm =
τm − τm−1

E[τm − τm−1]

So γm is Ft-measurable if τm and τm−1 are Ft-measurable. By the definition of measurable

real-valued functions, τm is Ft-measurable if {τm ≤ s} ∈ Ft for all s ∈ R+. We prove this is

the case.

For s ≤ t, we have Fs ⊆ Ft by construction. Additionally, {τm ≤ s} ∈ Fs since τm is

optional. Thus, {τm ≤ s} ∈ Ft for s ≤ t.

For s > t, it is always true that τm ≤ s for m ≤ n since τm < τn ≤ t < s on {κ = n}. So

{τm ≤ s} ∈ Ft for s > t on {κ = n}.

Therefore, {τm ≤ s} ∈ Ft for all s on {κ = n}. Hence, τm is Ft-measurable on {κ = n}

for all m ≤ n. This implies γm is Ft-measurable on {κ = n} for all m ≤ n.

Since Xs = Ym for s ∈ [τm, τm+1), Fs ⊆ Ft for s ≤ t, and Xt = Yn, it follows that Ym is

Ft-measurable on {κ = n} for all m ≤ n. Therefore Gn ⊆ Ft on {κ = n}.

Hence,

Ft = Gn = Gn ∨ σ{γ′ > β} on {κ = n}

Now we want to prove the Markov property forX, namely that Px[θtX ∈ ·|Ft] = PXt{X ∈

·}. It is enough by Lemma 6.2 in [5] to prove that

Px[(Y
′,Γ′) ∈ ·, γ′ − β > r|Gn, γ′ > β] = PYn{T (Y,Γ) ∈ ·, γ1 > r}.

To justify this, we use Lemma 6.2 [5] to show that

Px[θtX ∈ ·|Ft] = Px[(Y
′,Γ′) ∈ ·, γ′ − β > r|,Gn ∨ σ{γ′ > β}]
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and we show that

PXt{X ∈ ·} = PYn{T (Y,Γ) ∈ ·, γ1 > r}

First, we show that {θtX ∈ ·} = {(Y ′,Γ′) ∈ ·, γ′ − β > r} on {κ = n}. Notice that

(Y ′,Γ′) = T n+1(Y,Γ) = {(Yk, γk+1) : k ≥ n+ 1}

So

{(Y ′,Γ′) ∈ ·, γ′ − β > r} = {(Yk, γk+1)k≥n+1 ∈ ·, γn+1 > β + r}

= {(Yk, γk)k≥n+1 ∈ ·}

= {(Yk, γk)k>n ∈ ·}

= {(Xs)s>t ∈ ·}

= {θtX ∈ ·}

where the fourth equality holds since (Y,Γ) determines X and Xt = Yn on {κ = n}. (Note

that we are changing set spaces at pretty much every step of the above calculations.)

This implies 1{θtX ∈ ·} = 1{(Y ′,Γ′) ∈ ·, γ′−β > r} on {κ = n}. We now have {κ = n} ∈

Ft∩ (Gn∨σ{γ′ > β}) with Ft = Gn∨σ{γ′ > β} and 1{θtX ∈ ·} = 1{(Y ′,Γ′) ∈ ·, γ′−β > r}

on {κ = n}. By Lemma 6.2 [5] it follows that

Px[θtX ∈ ·|Ft] = Ex[1{θtX ∈ ·}|Ft]

= Ex[1{(Y ′,Γ′) ∈ ·, γ′ − β > r}|Gn ∨ σ{γ′ > β}]

= Px[(Y
′,Γ′) ∈ ·, γ′ − β > r|Gn ∨ σ{γ′ > β}]
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We also find that on {κ = n}

PYn{T (Y,Γ) ∈ ·, γ1 > r} = PYn{(Yk, γk+1)k≥1 ∈ ·, γ1 > r}

= PYn{(Yk, γk)k≥1 ∈ ·}

= PYn{(Y,Γ) ∈ ·}

= PXt{X ∈ ·} since X is determined by (Y,Γ) and Yn = Xt

(Note that, again, we are changing set spaces at pretty much each step.)

Thus, to prove Px[θtX ∈ ·|Ft] = PXt{X ∈ ·}, it is sufficient to prove

Px[(Y
′,Γ′) ∈ ·, γ′ − β > r|Gn ∨ σ{γ′ > β}] = PYn{T (Y,Γ) ∈ ·, γ1 > r}

We show that γ′ |= (Gn, Y ′,Γ′) and that (Y ′,Γ′) |= Gn(γ′, β). By hypothesis we know that

γ1, γ2, . . . are i.i.d. and γ1, γ2, . . . |= Y . Since Gn = σ{(Yk, γk) : k ≤ n} and γn+1 |= (Yk, γk) for

k 6= n+ 1, it follows that γ′ |= Gn.

A conceptual description of conditional independence is that A and B are conditionally

independent given C if and only if B contains no information about A that is not contained

in C (see Proposition 6.6 in [5]). By definition (Y ′,Γ′) = {(Yk, γk+1) : k ≥ n + 1}. Concep-

tually, we see that σ(Y ′,Γ′) contains no information about σ(γ′), so σ(Y ′,Γ′) contains no

information about σ(γ′) that is not contained in Gn. Thus γ′ |= Gn(Y ′,Γ′). We now have that

γ′ |= Gn and γ′ |= Gn(Y ′,Γ′). By Proposition 6.8 in [5] this gives γ′ |= (Gn, Y ′,Γ′).

By definition

β = (t− τn)c(Yn) =

(
t−

n∑
k=1

γk
c(Yk−1)

)
c(Yn)

So σ(β) contains no information about σ(γ′) that is not contained in Gn, giving γ′ |= Gnβ.

Note that σ(Yn) ⊆ Gn, so Gn contains all the information about Yn. Since Y is Markov, we

know that Yn+1, Yn+2, . . . are independent of Y1, Y2, . . . Yn given Yn. This, along with the fact

that Gn contains no information about Yn+1, Yn+2, . . . , implies σ(β) contains no information
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about σ(Y ′,Γ′) that is not contained in σ(Gn, γ′). Therefore β |= Gn,γ′(Y ′,Γ′).

Since (Y ′,Γ′) |= Gnγ′ and (Y ′,Γ′) |= Gn,γ′β. It then follows by Proposition 6.8 [5] that

(Y ′,Γ′) |= Gn(γ′, β).

Next we show that

Px[(Y
′,Γ′) ∈ ·, γ′ − β > r|Gn ∨ σ{γ′ > β}] = PYn{T (Y,Γ) ∈ ·, γ1 > r}

First, note that {(Y ′,Γ′) ∈ ·} |= Gn{γ′ − β > r} since (Y ′,Γ′) |= Gn(γ′, β). Additionally, {γ′ −

β > r} ⊆ {γ′ > β} for r ≥ 0.

It is a simple exercise in probability to show that if A,B,C,D are events with A |= CB

and B ⊆ D with P (C), P (C ∩D) 6= 0, then

P (A ∩B|C ∩D) = P (A|C)
P (B|C)

P (D|C)

This implies

Px[(Y
′,Γ′) ∈ ·, γ′ − β > r|Gn ∨ σ{γ′ > β}] = Px[(Y

′,Γ′) ∈ ·|Gn]
Px[γ

′ − β > r|Gn]

Px[γ′ > β|Gn]

Observe that

Px[γ
′ − β > r|Gn]

Px[γ′ > β|Gn]
=
Px[γ

′ > β + r|Gn]

Px[γ′ > β|Gn]

By hypothesis we have that γ1, γ2, . . . |= Y are i.i.d. exponentially distributed with mean

1. Thus, γ′ |= Gnβ. We also know that γ′ |= Gn. Hence,

Px[γ
′ > β + r|Gn]

Px[γ′ > β|Gn]
=
e−(β+r)

e−β
= e−r

Therefore,

Px[γ
′ − β > r|Gn]

Px[γ′ > β|Gn]
= e−r = PYn [γ1 > r]
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By construction, T (Y,Γ) = {(Yk, γk+1) : k ≥ 1}. So

Px[(Y
′,Γ′) ∈ ·|Gn] = Px[{(Yk, γk+1) : k ≥ n+ 1} ∈ ·|Gn]

= Px[θn{(Yk, γk+1) : k ≥ 1} ∈ ·|Gn]

= PYn [{(Yk, γk+1) : k ≥ 1} ∈ ·] since Y is Markov, by Prop. 8.9 [5]

= PYn [T (Y,Γ) ∈ ·]

Note that γ1 |= T (Y,Γ). Thus,

PYn [T (Y,Γ) ∈ ·, γ1 > r] = PYn [T (Y,Γ) ∈ ·]PYn [γ1 > r]

Therefore,

Px[(Y
′,Γ′) ∈ ·, γ′ − β > r|Gn ∨ σ{γ′ > β}] = Px[(Y

′,Γ′) ∈ ·|Gn]
Px[γ

′ − β > r|Gn]

Px[γ′ > β|Gn]

= PYn [T (Y,Γ) ∈ ·]PYn [γ1 > r]

= PYn [T (Y,Γ) ∈ ·, γ1 > r]

as desired. Thus, Px[θtX ∈ ·|Ft] = PXt{X ∈ ·}, so X is a Markov process.

By construction, X is a pure jump-type process. To prove that α = cµ is the rate kernel

for X, we prove that

(Ex[τ1])−1Px[Xτ1 ∈ B] = c(x)µ(x,B)

Recall that µ is the transition kernel for Y , so that µ(x,B) = Px[Y1 ∈ B]. By construction,

Xτ1 = Y1, so µ(x,B) = Px[Xτ1 ∈ B]. Letting τ0 = 0, we also have

(Ex[τ1])−1 = (EY0 [τ1 − τ0])−1 = c(Y0) = c(x)

Thus, (Ex[τ1])−1Px[Xτ1 ∈ B] = c(x)µ(x,B) as desired, and α = cµ is the rate kernel of X.
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