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ABSTRACT

Interface Design and Synthesis for Structural Hybrid Microarchitectural Simulators

Zhuo Ruan
Department of Electrical and Computer Engineering, BYU

Master of Science

Computer architects have discovered the potential of using FPGAs to accelerate software
microarchitectural simulators. One type of FPGA-accelerated microarchitectural simulator, named
the hybrid structural microarchitectural simulator, is very promising. This is because a hybrid
structural microarchitectural simulator combines structural software and hardware, and this partic-
ular organization provides both modeling flexibility and fast simulation speed. The performance
of a hybrid simulator is significantly affected by how the interface between software and hardware
is constructed. The work of this thesis creates an infrastructure, named Simulator Partitioning
Research Infrastructure (SPRI), to implement the synthesis of hybrid structural microarchitectural
simulators which includes simulator partitioning, simulator-to-hardware synthesis, interface syn-
thesis. With the support of SPRI, this thesis characterizes the design space of interfaces for synthe-
sized hybrid structural microarchitectural simulators and provides the implementations for several
such interfaces. The evaluation of this thesis thoroughly studies the important design tradeoffs and
performance factors (e.g. hardware capacity, design scalability, and interface latency) involved in
choosing an efficient interface. The work of this thesis is essential to the research community of
computer architecture. It not only contributes a complete synthesis infrastructure, but also pro-
vides guidelines to architects on how to organize software microarchitectural models and choose
a proper software/hardware interface so the hybrid microarchitectural simulators synthesized from
these software models can achieve desirable speedup.

Keywords: hybrid microarchitectural simulator, software/hardware codesign, SystemC, FPGA
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Chapter 1

Introduction

Microprocessors are everywhere around us! They are widely used in designing digital elec-

tronic products such as desktops, smartphones, TVs, home security systems, and wifi routers. In

these products, multiple microprocessor cores can be integrated in a System On Chip (SOC) where

typically a central controller offloads tasks (e.g. audio, image, network) to special-purpose proces-

sor cores. These cores can be easily programed and reprogrammed with high-level languages (i.e.

C, C++) after fabrication which significantly increases design productivity and improves time-to-

market when they are compared with application-specific integrated circuits (ASICs).

Multiple microprocessors may be planned for a single product. For each microprocessor,

computer architects must consider many design alternatives. An efficient way to evaluate each

design candidate is constructing a microarchitectural model (also known as a microarchitectural

simulator). The execution result of a microarchitectural model can predict the timing and the func-

tionality of a microprocessor design. Microarchitectural models must be easy to create and flexible

to modify so that architectural changes can be quickly added. Traditionally, architects choose to

verify microarchitecture designs through software simulation rather than hardware prototyping for

two reasons. First, the creation of software models is less time-consuming. Second, these software

models are easier to create, modify, and debug.

Microarchitectural models are different from physical microprocessor designs or proto-

types; they abstract the implementation of a microprocessor design to a higher level. A microarchi-

tectural simulator doesn’t necessarily model every implementation detail as a hardware prototype

does, but it must capture how target instructions are processed at each simulated cycle in order to

be cycle-accurate. A software microarchitectural simulator is typically running on a host platform

which can be either a server or a computer workstation. It loads an executable binary for the sim-

ulated system and virtually executes each instruction of this binary through the microarchitectural
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Table 1.1: Performance of software-only cycle-level simulators [5]

Simulator Instruction-set Architecture Microarchitecture Speed OS
Intel x86-64 Core 2 1 - 10 KHz Yes
AMD x86-64 Opteron 1 - 10 KHz Yes
IBM PowerPC Power5 200 KIPS Yes
Freescale PowerPC e500 80 KIPS No
PTLSim x86-64 Athlon 270 KIPS Yes
Sim-outorder Alpha 21264 740 KIPS No
GEMS Sparc Generic 69 KIPS Yes

model. This dissertation refers to the system being simulated as the target, the platform where the

simulation runs on as the host, and the target executable binary as the benchmark.

Software microarchitectural simulators are commonly written in either sequential languages

(e.g. C, C++) [1] or structural simulation frameworks (e.g. SystemC [2], Unisim [3], LSE [4]).

However, it is more difficult to create timed processor models with sequential languages due to

the lack of language constructs that can capture structural and timing features. By contrast, struc-

tural simulation frameworks allow the rapid creation of microarchitectural models in a concurrent

and structural form that accurately mimics hardware behaviors. Unfortunately, the productivity

advantage of structural modeling comes at the cost of simulation performance, because process-

ing structural and timing constructs (e.g. signal, event, process) in software simulation introduces

significant execution overhead.

Typically, simulation speed is measured by the number of target instructions executed per

second (IPS) or simulated cycles per second (Hz). As target systems become more and more

complex, their microarchitectural simulators are increasingly slowing down. Table 1.1 lists the

software cycle-accurate or near-cycle-accurate simulators of several modern complex single-core

processors. The speed of these simulators are at the level of KIPS or KHz. Simulating a processor

of hundreds of cores with similar modeling details would cause a significant speed drop to the level

of IPS or Hz. The simulation speed is so much slower than the speed of the physical processor that

a relatively complex benchmark that a physical processor can finish in several minutes may take

days or weeks to run in software simulation. Architects have become increasingly concerned with

this problem, because the slower simulation speed results in a slower evaluation process and fewer

design candidates can be evaluated.
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Architects have advocated accelerating microarchitectural simulators by moving simula-

tion workloads to hardware, because thousands of host processor cycles spent on fetching, de-

coding, and executing host instructions can be effectively reduced to a few cycles of hardware

work. Hardware-accelerated simulators can be either fully-implemented or partially-implemented

in hardware. A microarchitectural simulator that is partially implemented in hardware is named a

hybrid microarchitectural simulator. A hybrid microarchitectural simulator is composed of a soft-

ware portion, a hardware portion, and a software/hardware interface. Hybrid microarchitectural

simulators are particularly interesting, because they allow trade-offs to be made between hardware

capacity, ease of implementation, and simulator performance. A promising type of hybrid mi-

croarchitectural simulator is the hybrid structural simulator. Such a design combines the benefits

of structural modeling and hardware acceleration.

Manually designing a hybrid simulator is very costly in that a great amount of time and

efforts has to be spent on circuit implementation and interface construction. The inefficient de-

sign process extensively restricts the use of hybrid simulators in practice. This thesis starts with

discussing the issues and challenges of the synthesis of hybrid structural microarchitectural simula-

tors. This thesis primarily focuses on the interface design and synthesis techniques and explores the

interface design space. The evaluation of this work thoroughly studies the important performance

factors and design trade-offs (i.e. hardware capacity, interface latency, interface bandwidth, and

scalability to simulate multiple processor cores) involved in choosing an efficient software/hard-

ware interface for synthesized hybrid structural microarchitectural simulators.

1.1 The Synthesis Problem of Hybrid Structural Microarchitectural Simulators

Hybrid structural microarchitectural simulators combine the benefits of structural modeling

and hardware acceleration. However, the time-consuming design process restricts their use in

practice. A more efficient way to create hybrid structural microarchitectural simulators would be

through an automatic synthesis process.

The synthesis of hybrid structural microarchitectural simulators is challenging. The syn-

thesis techniques for general software/hardware codesign cannot be applied directly for hybrid

simulators, although they have been researched for many years. This is because hybrid microar-

chitectural simulators are written and organized in a different fashion from general software/hard-
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ware co-design systems. A wide range of general software/hardware co-design projects target

data-intensive systems. These designs are typically partitioned in a certain way that the control

logic is kept in software and the computational portion is accelerated in hardware. Unlike those

designs, microarchitectural simulators have extensive data and control dependencies between sim-

ulator modules, and they commonly use a great amount of high-level language constructs to pro-

vide coding efficiency, modeling flexibility, and design productivity. Those features have caused

many difficulties in the synthesis of hybrid microarchitectural simulators, because they can not be

directly mapped to hardware.

1.1.1 Challenge 1: Simulator Partitioning

Simulator partitioning is challenging for two reasons. First, where a hybrid simulator is

partitioned significantly affects performance [6]. Second, it should be flexible to change the parti-

tioning boundaries so architects can explore arbitrary partitionings before selecting the best one to

proceed. Simulator partitioning splits a microarchitectural simulator into a software portion and a

hardware portion. The software portion and the hardware portion communicates with each other

through an interface. A poor software/hardware interface boundary may cause extensive overhead

on the interface and thereby leads to a hybrid simulator that runs even slower than a software

simulator.

1. Where to partition. The software/hardware partitioning impacts three aspects in a hybrid

simulator design: the amount of data that needs to be communicated, the amount of paral-

lelism that can be exploited, and the amount of hardware that is used. Microarchitectural

simulators have a great amount of data and control dependency between simulator mod-

ules. Simulator modules must frequently communicate with each other for synchronization.

No matter how a microarchitectural simulator is partitioned, the software portion and the

hardware portion must update processor state consistently to guarantee a correct execution

sequence of target instructions. A ideal partitioning should place closely-dependent mod-

ules on the same side (either software or hardware) to minimize synchronization cost, and

it also should place enough modules in hardware to achieve maximum speedup. However,

the ideal partitioning may not stay the same for every hybrid simulator design in practice.

For example, when accelerating a single-core model, one would prefer moving as much as
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possible to hardware in order to reduce the communication overhead. This partitioning may

not work effectively for a many-core model; a better partitioning option here would have a

smaller portion of each core implemented in hardware with the parallelism between cores

exploited to improve performance.

2. Partitioning flexibility. To provide the opportunity of exploring different hybrid simulators,

a partitioning technique should support simulator partitioning along arbitrary boundaries.

The more partitioning options architects have, the better decisions they can make on how to

pick the best hybrid design.

Partitioning flexibility allows different trade-offs to be made between the software and the

hardware. These trade-offs exist, because simulator partitioning is constrained by both the

hardware capacity and the synthesis capability. It is significantly beneficial to provide parti-

tioning flexibility so architects are able to avoid dealing with the simulator portions that are

either currently “unsynthesizable” or do not fit in the hardware.

How one partitions a microarchitectural simulator for the “hybrid” transformation depends

on what this simulator models, how it is organized, and what host platform it runs on. Because

architects are aware of all the details of how target simulators are written and which host platform is

chosen, it may be better for architects to explore partitioning alternatives and find the best solution

rather than replying on an automatic partitioning-selection process. Thus, our insfrastructure is

designed to fit this need. The partitioning process is automatic but the partitioning decision and

exploration are left to users.

1.1.2 Challenge 2: Hardware Synthesis

The hardware synthesis of hybrid structural microarchitectural simulators is challenging,

because some high-level language constructs used in software microarchitectural models can not be

directly and properly mapped to hardware descrption languages. To guarantee the functional and

timing correctness of microarchitectural simulator after synthesis, novel techniques are required to

interpret and translate high-level language features to hardware.

Typically, architects model microarchitectures in a structural simulation framework such as

SystemC [2]. SystemC models are written with a great amount of high-level language constructs
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to permit code reuse and coding efficiency. Table 1.2 list a set of high-level language features that

are commonly used in SystemC microarchitectual models. For example, complex data with nested

struct/array types can be used to contain the state information of each pipeline stage or decoded

instruction information; a templated SystemC module class can be used for register modeling so the

registered data can be different types for different register instances; command-line arguments offer

a flexible way to parametrized the number of simulated processor cores, cache size, or register-file

depth.

Table 1.2: List of high-level language constructs commonly used in software microarchitectural
models

Construct Category Construct Example Construct Usage

Complex Data Types Nested struct/Array, Vector, List, etc. Signal data type, Register type, Decoded in-
struction information, Pipeline stage state,
etc.

Command-line Argument Dynamic-allocated pointer, etc. Cache size, Register-file size, Processor core
number, etc.

Code Reuse Template, Virtual methods, Class inheri-
tance, Operator overload/override etc.

Register, Buffer, Instruction/data memory,
etc.

Coding Efficiency Shared variable, Pointer, Reference, Global
variable, Cross-object call, Function pointer,
etc.

Module state, Pipeline state, State lookup,
etc.

Complex Operation Multiply operator, Shift operator, Division
operator, etc.

ALU, Memory address/data manipulation,
etc.

Complex Control Flow Non-bounded loop, Nested loop, Break,
Continue, etc.

TLB, Cache lookup, Tag compare, etc.

These high-level language features are problematic in synthesis for two reasons. First, it

is difficult to determine statically what exactly the code and data to synthesize are. Second, there

are no equivalent HDL constructs that they can be directly mapped to. We solve these problems

by using a run-time synthesis technique to automatically produce VHDL [7] from SystemC. This

technique offers accesses to in-memory simulator objects at runtime after elaboration and applies

a set of dynamic and static analysis for code identification and optimization. During the synthesis,

it interprets high-level language contructs based on the context where they are used and output

VHDL code with equivalent functionality and timing.
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1.1.3 Challenge 3: Software/Hardware Interface Synthesis

The software/hardware interface design is constrained by both partitioning and hardware

synthesis capability. The software/hardware interface synthesis of hybrid structural microarchi-

tectural simulators is challenging, because this process must automatiaclly produce both software

interface code and hardware interface code for user-specified partitioning boundaries. Most im-

portantly, the synthesized interface must synchronize processor state cross the software/hardware

boundary correctly and efficiently. A poor interface would introduce extensive communication

overhead or consume too much hardware resource. To develop a technique for the interface syn-

thesis, three important traits regarding the interface design must be properly addressed.

1. Correctness. A usable interface for hybrid microarchitectural simulator must be correct.

In another word, simulator states transferred between the software and the hardware must

be correct, and the timing of state updates on both sides must be correct. Incorrect data

and timing of simulator state synchronization will cause simulation failure or inaccurate

performance prediction.

2. Concurrency. Interface concurrency is of great importance, because it reduces communica-

tion overhead by exploiting parallelsim in simulator execution and leads to the improvement

of simulator performance. The coprocessor-style interface, also known as a polling interface,

is the most commonly-used interface [8] for software/hardware co-design systems. Through

such an interface, the software blocks to wait till the hardware finishes processing and polls

the hardware results back. Due to lack of concurrency, a polling interface does not work effi-

ciently for hybrid microarchitectural simulators where an extensive amount of dependencies

exists between software modules and hardware modules. The execution of any one of them

may require a synchronization request to cross the interface. To overcome these drawbacks,

an optimized interface should overlap communication and computation and exploit not only

the parallelism that is internal to the hardware but also the parallelism between the software

and the hardware.

3. Scalability. Scalability is a significant concern when we are synthesizing interfaces for hy-

brid simulators. Interface scalability can be evaluated in two aspects: hardware cost and
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bandwidth cost. Both hardware cost and bandwidth cost will rise, when the amount of infor-

mation shared between the software and the hardware increases. The increased communica-

tion traffic leads to a higher interface overhead. Eventually the overhead will reach a point

that it cannot be mitigated anymore by the speedup achieved through the hardware acceler-

ation; then the hybrid simulation becomes slower than the software-only simulation. Every

interface design has a bottleneck like this. It is necessary to understand the bottlenecks of

different interfaces, because the insights can provide guidelines for architects on where to

partition a software simulator in order to achieve desirable speedup but within their hardware

budget.

As a matter of fact, various interface designs can be used for hybrid structural microar-

chitectural simulators, as long as they provides correct synchronization. The primary research

questions we should answer are:

1. what interfaces can be applied for hybrid structural microarchitectural simulators;

2. how these interfaces can be automatically generated;

3. which one is better and why.

1.2 Research Objectives and Contribution

A good partitioning scheme, a complete synthesis strategy, and an efficient interface design

combine to produce a high-performance hybrid simulator. The work of this thesis is the first effort

to synthesize hybrid structural microarchitectural simulators, but this thesis primarily discusses

how we solve the problem of interface design and synthesis for hybrid structural microarchitectural

simulators. Our contributions are:

1. identifying the design space of interfaces for synthesized hybrid structural microarchitectural

simulators.

2. providing synthesis techniques for several such interfaces in the design space.

3. determining the trade offs between simulator performance and hardware utilization which

must be considered when choosing an interface design.
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A complete infrastructure, named Simulate Partitioning Research Infrastructure (SPRI),

has been also contributed to automatically produce hybrid structural microarchitectural simulators

from existing software simulators. We demonstrate these contributions by implementing the syn-

thesis of several such interfaces within the SPRI infrastructure. This capability provides an unique

opportunity for this thesis to thoroughly analyze a set of synthesized hybrid structural microar-

chitectural simulators and evaluate scalability v.s. trade-offs between hardware capacity, interface

latency, and interface bandwidth. The insights of this study are essential. They can lead to better

decisions on how to organize a simulator, how to partition a simulator, and how to choose an in-

terface, no matter whether architects are planning on applying SPRI to generate equivalent hybrid

simulators or manually creating hybrid simulators from scratch.

1.3 Organization of the Dissertation

This thesis starts by introducing microarchitectural simulation and discussing the motiva-

tion for and issues of hybrid microarchitectural simulators. It then presents the SPRI infrastructure.

It primarily focuses on discussing the design space of interfaces for hybrid structural microarchi-

tectural simulators and the interface synthesis techqnues. The experimental results demonstrates

the interface design trade-offs and the performance scalability for synthesized hybrid structural

microarchitectural simulators.

Chapter 2 introduces the concept of microarchitectural modeling and the different mod-

eling methodologies. It also discusses the acceleration methods for software microarchitectural

simulator. Chapter 3 presents background information about hybrid microarchitectural simula-

tors. It introduces several host platforms for hybrid simulation and examines the previous works

of manually-created hybrid microarchitectural simulators. Chapter 4 displays the developed in-

frastructure, discusses the synthesis flow, and reveals the primary components of this tool-chain.

Chapter 5 explores the interface design space, discusses the synthesis techniques for each interface

in the design space, and conducts a thorough analysis and study on the interface evaluation results.

Chapter 6 summarizes and concludes this thesis.
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Chapter 2

Microarchitectural Simulation

Microarchitectural simulation allows architects to evaluate novel ideas without implement-

ing a physical microprocessor. Microarchitectural simulators typically model both functional and

timing behaviors of a microprocessor, and thereby are capable of predicting the performance. Like

a hardware prototype, microarchitectural simulators execute processor instructions in simulation

but they abstract target processor designs at microarchitectural level rather than register-transfer

level or gate level. As a result, microarchitectural models implement fewer design details and

can be created more rapidly than hardware prototypes, which significantly shortens the evaluation

phase of target processor designs.

Microarchitectural simulators can be classified in two categories based on the inputs: trace-

driven and execution-driven. A trace-driven simulator executes prerecorded streams of instructions

with some fixed input and only needs to maintain the microarchitectural state. An execution-driven

simulator executes instructions dynamically depending on the inputs and must track architectural

state in addition to microarchitectural state. Execution-driven simulation can capture the dynamic

properties of target benchmarks. The microarchitectural simulators discussed in this dissertation

refer to execution-driven simulators. They run on a host platform and start simulation by loading a

binary of target instructions.

2.1 Microarchitectural Simulator Design

A microarchitectural simulator is evaluated based on three criteria: speed, accuracy, and

flexibility [9]. All three criteria are expressed as a triangle in Figure 2.1 and they can’t be fully

achieved at the same time in a simulator design. A good microarchitectural simulator design must

balance the trade-offs between these three criteria. Hardware prototypes are accurate but slow and
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not flexible; detailed software models are accurate and flexible but slow; abstract software models

are fast and flexible but not accurate.

Simulator Design

Microarchitectural

Performance

AccuracyFlexibility

Figure 2.1: Trade-offs for microarchitectural simulator design [9]

Microarchitectural simulators are different from hardware prototypes. They are modeled at

a higher-abstraction level in order to capture important processor behaviors but obtain simulation

efficiency at the same time. Higher-level abstraction in a simulator design is desired to improve

clarity and speed. Because a microprocessor is a timed logic design, what matters to the correct-

ness of microarchitectural models is the value changes of signals at each clock edge. This fact

makes modeling within-clock-cycle behaviors for each wire of a microprocessor unnecessary [10].

Figure 2.2 diagrams a adder example to demonstrate the difference between modeling and hard-

ware implementation. A 1-bit adder model can be simply be created as an addition operation on

two integers with a latency rather than a collection of gate-level logic blocks. The microarchi-

tectural model effectively expresses the timing and the functionality of this operation and can be

easily created with high-level computer languages.

11



Signal_C

Signal_A

Signal_B

C = (A + B)

Latency = (1 clock cycle)

Microarchitectural Model of One−bit Adder(a)

A

B

Cin
Sum

Cout

(b) Gate−level Implementation of One−bit Adder

Figure 2.2: Example: model and implementation of 1-bit adder

2.1.1 Design Tools

Microarchitectural simulators are commonly written as software models. Software models

run on servers or workstations, and can be easily programed or reprogrammed for design ad-

justment. Software modeling, therefore, offers more flexibility than hardware does. Sequential

languages such as C and C++ [1] are widely applied in microarchitectural modeling, because ar-

chitects are very familiar with them. Sequential languages semantically mismatch the structural

and concurrent form of target systems which leads to increased simulator design and validation

time as well as inflexibility . It is possible to model concurrent behaviors through a global sched-

uler which manages a sequential execution order for a logically-concurrent simulator, however, it

results in a more complex simulator which increases the difficulty of understanding and debugging

the simulator code [11]. The modeling complexity with sequential languages grows extensively

when target microarchitectures scale to many cores and increased system integration.

The limitation of sequential languages has led architects to use structural simulation frame-

works (e.g. SystemC [2], Unisim [3], LSE [4]) for modeling. These frameworks provide users

with structural and concurrent constructs to create models that naturally mimic hardware behav-
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iors. Structural microarchitectural simulators can be created in a hierarchical fashion through sim-

ulator modules. A simulator module typically consists of one or several concurrent processes. The

processes in the same module or different modules can be interconnected through signals and they

are invoked to produce outputs when clock edges arrive or input changes are detected. Structural

simulation frameworks, unfortunately, have to trade off simulator performance for the modeling

productivity [12]. A significant amount of overhead is introduced in the execution of structural

simulators, because the simulation kernels must maintain signal updates, invocation sequences,

etc. Most structural simulation frameworks also allow the use of object polymorphism and non-

structural constructs (e.g. shared/global data structure, cross-object call) to permit code reuse,

increase modeling flexibility, and improve simulation speed. As a result, structural microarchi-

tectural models are usually formed from a wide range of high-level language constructs including

both structural and non-structural ones.

2.1.2 Design Organization

A microarchtectural simulator primarily models two aspects of a target microprocessor:

functionality and timing. Functionality refers to the execution correctness of target instructions

and timing strives to reproduce the execution latency of target instructions at each processing stage.

The organization of a microarchitectural simulator reflects how the simulation of functionality and

the simulation of timing interact with each other. Commonly, microarchitectural simulators can be

classified in two base organizations as displayed in Figure 2.3: integrated and decoupled. Different

simulator organizations emphasize different design goals: accuracy, speed, or flexibility.

A microarchitectural simulator can be written in a integrated fashion as a phyical micro-

processor design where functionality and timing are tightly coupled. Microarchitectural simulators

designed in this fashion can be very accurate, but at the cost of design flexibility. Integrated sim-

ulator allows the modeling of detailed operations for all system components. These system com-

ponents closely interact with each other and simulation states of each module must be frequently

updated. Integrated microarchitectural simulators will become more and more difficult to design

and debug with the increasing complexity of target systems.

A microarchitectural simulator can also be organized in a decoupled fashion. The simulator

is split into a functional portion and a timing portion and they communicate with each other for
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Timing & Function

Timing Function

Timing Function

Timing Function

Function−first

Integrated

Timing−directed

Timing−first

Decoupled

Figure 2.3: Microarchitectural simulator organization [13]

synchronization. Doing so addresses functional accuracy and timing accuracy in separate code and

reduces modeling complexity. The functional model simulates each target instruction by executing

an equivalent code-routine on the host, the process of which is therefore named instruction-set sim-

ulation. The timing portion models timing-related components (e.g. pipeline, memory hierarchy,

branch predictor) of the target microprocessor to calculate execution latency for each target instruc-

tion through microarchitectual simulation. Based on different synchronization mechanism between

the functional model and the timing model, decoupled simulators can be categorized as functional-

first, timing-directed, or timing-first. In a functional-first simulator, the functional model generates

a sequence of committed target instructions and feeds it to the timing model. One-way communi-

cation from the functional model to the timing model makes the simulator easy to design and fast to

execute; however, this fashion can not capture timing-dependent outcomes like branch mispredic-

tion. A type of functional-first simulator — the speculative functional-first simulator is introduced

to solve this problem [14]: the functional model speculatively executes instructions and is rolled

back to re-execute only if the branch prediction of the functional model does not match that of the

timing model. In a timing-directed simulator, the timing model gives explicit orders to the func-

tion model at certain timestamps on what behaviors to simulate (e.g. instruction fetch, instruction

decode, and instruction commit). This timing-directed fashion increases simulator accuracy at the

cost of simulator speed and complexity. A timing-first simulator, on the other hand, allows the

timing-model to execute timing-dependent (dynamic) instructions ahead of the function portion.
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The timing portion must be modeled with enough microarchitectural detail to support speculative

execution and the functional portion will be invoked to check for execution deviations. A timing-

first simulator can also be thought of as a near-complete integrated microarchitectural simulator

plus a functional checker.

The split of the functional model and the timing model simplifies dependency between

simulator modules and reduces modeling complexity. There is no absolute answer to which orga-

nization is the best, however, the choice of simulator organization does reflect architects’ emphasis

on accuracy, speed, and flexibility.

2.2 Microarchitectural Simulator Acceleration

Microarchitectural simulation often takes days or weeks to run in software. The faster sim-

ulation runs, the more design alternatives can be evaluated. Software microarchitectural modeling

permits a fast and flexible evaluation process for new computer designs, however, the simulation

speed increasingly slows down when target computer systems scale to many-core or increased

system-integration designs. A significant amount of effort has been devoted to improving the

performance of microarchitectural simulators. Software microarchitectural simulators can be ac-

celerated typically in two ways, either by reducing simulator workloads or by pursuing execution

parallelism.

Two techniques that can effectively reduce simulator workloads are input-stream shorten-

ing [15, 15] or sampling simulation [16, 17, 18, 19]. Input stream shortening leads simulators

with fewer or smaller input sets instead of complete benchmarks. By contrast, a simulator that

uses simulation sampling still executes a full benchmark, but it only cycle-accurately simulates

samples of this benchmark and the instructions between those samples are fast-forwarded through

functional simulation. The simulation-sampling technique usually requires simulators to have two

simulation modes — a functional-simulation mode and a cycle-accurate model to switch during

simulation. The simulators that use these workload-reduction techniques may not fully character-

ize the significance of the chosen benchmarks through the executed instructions, because they can

not completely enumerate all the simulation states. Thus, the simulation speedup is achieved by

sacrificing simulation accuracy.
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Another method to accelerate microarchitectural simulation is to parallelize simulators

(simulator parallelism). A microarchitectural simulator can be parallelized because it describes

hardware behaviors that are considered naturally and logically concurrent. This concurrency can

be internal to simulated modules, between simulated modules or between simulated cores. The

research community of computer architecture has proposed two approaches to parallelize microar-

chitectural simulators: software parallelization and hardware parallelization. Software paralleliza-

tion decomposes a simulator into multiple tasks that can be run in parallel. Hardware paralleliza-

tion exploit finer-grain (gate-level) parallelism to speed up simulation by directly implementing

simulators in circuits.

2.2.1 Software Parallelization

A software microarchitectural simulator is parallelized by distributing decomposed simu-

lator tasks to execute on different physical processors. The techniques of software paralellization

can be categorized based on the granularity of the decomposed tasks.

• Microarchitectural Parallelization: each simulated processor core is mapped to a different

physical processor for simulation and a separate processor is used to simulate the memory

hierarchy [20, 21].

• Simulation Trace Parallelization: several copies of a simulator are run in parallel; a instruc-

tion trace is divided into equal-length chunks and each chunk is fed into one of the parallel

simulators [22].

• Structural Parallelization: a structural simulator can be partitioned into a set of structural

modules. This simulator is thereby transformed to a parallel program. The parallel program

can be compiled and statically scheduled to run on a multiprocessor host platform with a

shared memory [10, 23, 24].

Microarchitectural parallelization and simulation trace parallelization partition simulators

into “naturally parallel” tasks which are limited in interacting with each other. They either ignore

the communication between parallel portions or utilize a simplified scheme to reduce synchroniza-

tion complexity and overhead. Both methods may cause incorrect simulation results due to the

lack of state consistency between parallel portions.
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Structural parallelization adopts a different approach. The method decomposes a structural

simulator into a set of structural modules and relies on compiler techniques to find a fixed concur-

rent execution order for them. The discovered execution order must not change with input data.

As a matter of fact, the simulator is transformed into a statically-compiled program that can be

scheduled based on module dependency to run in parallel on a host multiprocessor. The simulation

performance depends on the quality of the discovered schedule, and the performance improvement

can be achieved without losing accuracy. Unfortunately, microarchitectural models tend to have

an extensive amount of data and control dependency between simulator modules. The difficulty in

finding an efficient static schedule grows dramatically with the increasing size and complexity of

target computer systems. Finer-grain parallelism must be pursued to permit further performance

enhancement.

2.2.2 Hardware Parallelization

Instead of being implemented in software, a microarchitectural simulator can be designed

directly with circuits in hardware. The hardware version of the simulator exploits finer-grain (gate-

level) parallelism to accelerate simulation speed. A hardware-accelerated simulator can be signifi-

cantly faster than a software simulator for two reasons:

1. Different modules of the software-only simulator can be executed in parallel in hardware.

This is particularly true because the software is modeling hardware that is inherently parallel

[25].

2. Individual modules of a software-only simulator become significantly faster when imple-

mented in hardware. Several hundred software instructions can easily become one or two

hardware cycles worth of work. Although hardware (i.e. FPGA) frequency is significantly

lower than host CPU frequency, this speedup still occurs because overhead caused by in-

struction fetching and decoding is no longer necessary, and because fine-grain parallelism

within a module can be exploited.

Two approaches have been proposed for hardware parallelization. The first approach [26]

is to implement a microarchitectural simulator fully in hardware. The design process of a full-

hardware microarchitectural model that can accurately simulate both functional and timing behav-
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iors is difficult and time-consuming. It ends up implementing a multithreaded pipeline in hardware

to execute target instructions issued from multiple cores, the design complexity of which is similar

to a hardware prototype. The second approach [25, 14, 27] is a hybrid microarchitectural model

where a portion of the simulator is moved to hardware, the other portion stays in software, and they

communicate through a software/hardware interface. Hybrid simulators allow architects to select

what to move into hardware based on simulator organization and hardware capacity. A hybrid

simulator design scales better and offers more flexibility than a full-hardware design when target

computer systems become increasingly complex. In a hybrid simulator, architects can simply keep

the hardware-unfriendly portion in software and avoid spending a great amount of effort on hard-

ware implementation. They can also mitigate the constraint of hardware capacity by reducing the

size of the hardware partition at the cost of simulation performance. The design details of hybrid

microarchitectural simulators are discussed in the next chapter.
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Chapter 3

Hybrid Microarchitectural Simulation

An effective technique to accelerate software microarchitectural simulators is hardware par-

allelization. Hardware parallelization allows the pursuit of parallelism at a finer-granularity level

through circuits and the circuit implementation only takes one or two hardware cycles to accom-

plish the amount of work that must require several hundred software instructions. The concurrency

internal to simulated modules, between simulated modules or between simulated cores can all be

explored to speed up simulation.

One group of hardware-accelerated microarchitectural simulators only implement portions

of microarchitectural models in hardware, and therefore are named hybrid microarchitectural sim-

ulators. Hybrid microarchitectural simulators are very promising, because they allow trade-offs

to be made between simulator speed, ease of implementation, and hardware resources. A hy-

brid microarchitectural simulator is composed of a software portion, a hardware portion, and a

software/hardware interface for synchronization. It runs on a host platform that has a hardware

accelerator attached to a computer workstation through a physical communication channel. The

software portion is compiled and executed on the general-purpose processor of the computer work-

station; the hardware portion is implemented as a circuit and ported to the hardware accelerator.

The performance of a hybrid simulator is greatly influenced by the host platform in three aspects:

hardware capacity, communication latency, and communication bandwidth. Hardware capacity de-

cides the maximum amount of the moved-to-hardware portion; communication latency and band-

width together set the minimum interface overhead for a hybrid simulator design.

3.1 Host Platform for Hybrid Simulation

Hybrid microarchitectural simulators must run on a host platform which consists of a

general-purpose processor for the software portion, a hardware accelerator for the hardware por-
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tion, and an communication channel for the software/hardware interface. Because the hardware

accelerator and the communication channel significantly affect the performance of hybrid simula-

tion, an ideal host platform must fulfill several requirements.

The hardware accelerator must allow the pursuit of fine-grain parallelism (i.e gate-level).

Fine-grain parallelism fundamentally improves simulator performance by avoiding the costly ex-

ecution process of host instructions in software. The hardware accelerators commonly used for

data-intensive applications (i.e. GPU) are typically not suitable for hybrid microarchitectural sim-

ulators, because frequent synchronization between parallel threads serializes the execution. The

hardware accelerator must also be flexible to “program” and “reprogram” similarly to software.

This feature is necessary, because the architecture of a microprocessor under consideration may

require a lot of adjustments which must be easily added for simulation during the evaluation phase.

The communication channel between the host processor and the accelerator must be effi-

cient enough that the software/hardware interface built on top of it will not introduce an enormous

overhead to overshadow the speedup obtained through the hardware accelerator. Both low latency

and high bandwidth are desired for the communication channel. Lower latency shortens the round-

trip cost for data transmission; higher bandwidth means a faster data-transfer rate so that a larger

amount of data can be sent across the interface in a given time period.

Additional attention should be paid to the capacity of the hardware accelerator. A large

hardware capacity allows more simulator modules to be implemented in hardware, and leads to

a higher speedup. In fact, only one hardware accelerator may not be enough when the target

computer system scales to a design with tens or hundreds of cores. The hardware extensibility

of a host platform must be considered so that multiple accelerators may be stacked up in a host

platform to expand the capacity.

3.1.1 FPGA

Field Programmable Gate Arrays (FPGAs) are commonly-used hardware accelerators for

hybrid microarchitectural simulation. An FPGA is a integrated circuit which allows logic config-

uration and reconfiguration after the chip has been manufactured [28]. FPGAs allow designers to

improve simulator speed through circuit-level parallelism and to reconfigure circuit functionality

based on microarchitectural changes. Like software, the design flexibility of FPGA offers the po-
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tential to simply build and test design candidates repeatedly, thus resulting in a low nonrecurring

engineering cost which well suits the design requirement of microarchitectural simulators.
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Figure 3.1: Simplified FPGA structure and CLB logic

The basic FPGA architecture consists of configurable logic blocks (CLBs), interconnect

routing resources, and I/O ports. A simplified FPGA architecture and CLB logic are shown in

Figure 3.1. CLBs can be programmed with different logic functionality because of the built-in

programmable units called lookup tables (LUTs). The computed result of each CLB can be regis-

tered by a D-type flip-flop and carried through other CLBs by customizing the routing connection

with switches. CLBs and routing resource are distributed across the whole FPGA chip, thereby

permitting the implementation of millions of operations spatially and simultaneously [29]. FPGAs

can be programed using hardware description languages (HDLs) such as Verilog [30] and VHDL

[7]. FPGA companies (e.g. Xilinx, Altera) and the third party EDA companies (e.g. Synopsys,

Cadence) both provide sophisticated software development environments for FPGA development

and simulation. Bitsteam files that describe circuit connection and functionality can be produced

by those tools and downloaded to FPGAs for configuration and reconfiguration.
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(a) XUPv5 Board (b) BEE3 Board

(c) DRC-1000 System (d) ACP System

Figure 3.2: Several host simulation platforms

3.1.2 FPGA-based Host Platform

An FPGA-based host platform typically consists of a computer workstation and one or

more FPGA accelerators. FPGA accelerators are connected to the computer workstation through

a communication channel. The interconnection mechanism between FPGA and general-purpose

processor determines the hardware extensibility (hardware capacity) and the communication per-

formance (latency and bandwidth) which both significantly affect the design and efficiency of

hybrid microarchitectural simulators. In this dissertation, FPGA-based host platforms are clas-

sified based on the interconnection mechanism: network connection, I/O connection, and CPU

socket-level bus connection. Typically, network and I/O connects standalone FPGA boards (i.e.
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Figure 3.2(a), Figure 3.2(b)) to the host; CPU socket-level bus connections are used in integrated

systems (i.e. Figure 3.2(c), Figure 3.2(d)) to directly interface FPGAs with CPUs.

1. Network Connection Network connection allows workstations to interconnect in a sparse

mesh fashion through network cables. Network connection offers great extendability, how-

ever, has relatively low bandwith and high latency. A commonly-used network connection

is Ethernet connection. A standalone FPGA board typically provides one or more Ethernet

ports for off board communication. In a Ethernet network, hundreds of FPGA boards can

communicate with each other or the host. Typically, the Ethernet latency from a FPGA board

to the host is in the range of hundreds of micro-seconds per round-trip, and the maximum

bandwidth is commonly in the range of 10Mbs – 1Gbs depending on the types of Ethernet

network and the used Ethernet devices. Ethernet relies on complex protocols to provide reli-

able connections between workstations, but the complex transmission protocols introduce a

large amount of processing overhead. Thus, an efficient interface between FPGAs and work-

stations for hybrid microarchitectural simulators can be constructed as a local-area network

(LAN) running a simplified version of TCP/IP in order to reduce communication latency and

overhead.

2. I/O Bus Connection Computer I/O buses provide communication channels between the

computer host and peripherals. FPGAs can be considered as peripherals and connected to the

host computer through computer I/Os. I/O sockets are placed on the motherboard of the host

and peripherals can be directly plugged in. When compared with network connection, I/O

connection has higher bandwidth and lower latency, but only a limited number of peripherals

can be connected depending on available I/O slots. PCIe is one of the fast computer I/Os.

The fastest version (v4.0) of PCIe connection permits a bandwidth up to 1969 MBs per lane

(one direction). Most standalone FPGA boards provide PCIe ports to connect with host

computers. The PCIe communication is typically memory-mapped and the communication

protocol is significantly less complicated than TCP/IP. We measured the PCIe performance

of a single PCI lane between a XUP board and a workstation. From the stand point of CPU,

the bandwidth is 126 MB/s read and 27.9 MB/s write for 4 KByte transfers; the read latency

is 1.6 micro-second minimum.
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3. CPU Socket-level Bus Connection CPU socket-level buses are the communication channel

to provide high-speed data transaction between CPUs and system memories. Different CPU

manufacturers have different names for it. Intel names it the front-side bus (FSB); AMD

calls it the HyperTransport bus. FPGA-based accelerators can be hooked up as coprocessors

on CPU socket-level bus to directly communicate CPUs and access system memories. This

bus connection has the shortest latency, but the extendability is very limited. The CPU

socket-level bus can run faster than the I/O buses such as PCIe because the clock of the

secondary buses is usually derived from the clock of CPU socket-level buses. We measured

the HyperTransport performance on a DRC-1000 workstation. From the stand point of CPU,

the bandwidth is 224 MB/s read and 354 MB/s write for 4 KByte transfers; the read latency

is 1.4 micro-second minimum.

XUP XUPXUP XUP XUP

Front−end Workstation

Ethernet

Figure 3.3: A high-level view of an XUP-based platform (i.e RAMP Gold)

Figure 3.2 shows several commonly used platforms in hybrid microarchitectural simula-

tion. XUP [31] and BEE [32] are standalone FPGA accelerators. Both of them can be connected

to host workstations through either ethernet or PCIe. DRC [33] and ACP [34] are integrated sys-

tems where FPGAs are hooked up via the CPU socket-level buses.

XUP is a single FPGA board and priced less than $1000 for academic purchase. It is an

affordable and scalable platform solution for hybrid microarchitectural simulation. The RAMP

Gold simulator [26] runs on five XUP boards. These boards are not interconnected with each other

but they are attached to the same front-end workstation through ethernet. A high-level view of this
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Figure 3.4: A high-level view of BEE-based platform

host system is shown in Figure 3.3. Because the ethernet connection is relatively slow, people who

adopts a similar organization for the host platform typically tend to move simulator modules to

the hardware as much as possible in order to minimize off-board communication overhead. The

RAMP Gold simulator can be ported to BEE. This board consists of five interconnected FPGAs:

one FPGA is configured as a controller and the other four are processing units as in Figure 3.4.

BEE has much higher hardware capacity than XUP, but at a much higher price (over $10,000).
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Hyper
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DRC System

Socket 1 Sockect 2

FPGA

Figure 3.5: A high-level view of DRC
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Figure 3.6: A high-level view of ACP

DRC and ACP provide a complete platform solution for hybrid microarchitectural simula-

tion. DRC and ACP have FPGA accelerator modules directly plugged to additional CPU sockets as

coprocessors. Most FPGA-integrated systems come with device APIs and pre-synthesized FPGA

IPs to set up the communication between the host processor and FPGAs. FPGA-integrated sys-

tems have limited extendability, because only a small number of FPGA-accelerator modules can

be added on board. DRC is a AMD-chip-based system. This system, as shown in Figure 3.5, has a

two-socket Opteron server with one Opteron core replaced by an FPGA . The Opteron core and the

FPGA are connected through the HyperTransport bus and no FPGA extension is allowed. ACP, by

contrast, is a four-socket Intel server. ACP allows FPGAs to directly access system memory, but

DRC does not. Users can populate all 4 sockets with different combinations of FPGA accelerators

and Intel Xeon processors. Up to five FPGAs can be stacked up within a single socket and up to 3

sockets can be customized with FPGA accelerators. Nallatech [34] has been licensed to manufac-

ture three modules for the ACP platform: FSB-base, FSB-compute, FSB-expansion. FSB-base is

the interface board between the Intel front-side bus and FPGAs. FSB-compute is the FPGA accel-

erator board with two FPGAs and FSB-expansion is the accelerator extension board with only one

FPGA. A high-level view of this platform is diagrammed in Figure 3.6. The UT-FAST hybrid sim-

ulator [14] was implemented first on a DRC-1000 system. The software portion of the simulator

runs on the Opteron core and the hardware portion is implemented on the FPGA. The researchers

of this project attempted to transplant the hybrid design to a ACP system, but reliability issues in
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the ACP hardware caused data corruption during transfer and prevented them from running and

measuring the performance of the entire system [35].

3.2 Previous Hybrid Microarchitectural Simulators

Three types of hybrid microarchitectural simulators have been advocated. In a hybrid

function-timing simulator, the functional behavior of instructions is performed in software while

the time it takes to execute an instruction is calculated in hardware. In a hybrid transplanting

simulator, most behaviors of the simulator are implemented in hardware, but when a difficult-

to-implement operation such as simulated I/O device behavior must be performed, the hardware

calls upon the software to complete the operation. In a hybrid structural simulator, a collection of

processes from a structural simulation model are implemented in hardware. The three hybrid mi-

croarchitectural simulators are partitioned differently which leads to different interface strategies.

3.2.1 Hybrid Function-Timing Simulator

Function-timing simulators are split into a functional portion and a timing portion. Sim-

ulation of instruction behavior and timing behavior are decoupled in this process and they must

synchronize in some way to keep simulation states consistent on both sides. Several software-only

simulators such as FastSim [36], Asim [37], and M5 [38] are partitioned in this fashion.

The UT-FAST project [14] has created a hybrid function-timing simulator with the func-

tion model in software and the timing model in hardware. The UT-Fast simulator is implemented

on the DRC-1000 System. The functional portion runs on the Opteron core of the DRC box and

simulates the instruction-set architecture and system calls. The timing portion is implemented

on FPGA and models detailed actions of different pipeline stages to calculate execution latency.

This strategy allows the software to run first and speculatively execute instructions; it feeds the

hardware with instructions that has been executed; the hardware can roll back the software to re-

execute instructions, if the software branch predictor and the hardware branch predictor mismatch

each other. Thus, the cross-boundary interface is constructed in a asynchronous fashion using a

commercial FPGA message passing interface (MPI) library; the software and the hardware com-

municate through asynchronous queues to provide execution concurrency. The average number
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of round-trip communications is reduced to less than one per simulated clock cycle. The sim-

ulation speed is around 1.2 MIPS. UT-FAST didn’t implement a baseline software simulator to

compare against with so that it is impossible to evaluate the performance increase caused by using

the hardware accelerator.

HAsim [39] is a hybrid version of Asim which is internally used in Intel. Asim is a function-

timing split simulator where the timing portion is build in a structural fashion. The functional and

timing models of HAsim are closely coupled. The timing model explicitly requests that the func-

tional model executes an instruction at the corresponding simulated time stamp . This organization

results in a high degree of communication between these two partitions. In order to loose the tim-

ing constraints on the interface, HAsim applies a method named A-Port in the simulator design

[40]. The A-Port scheme is similar to FIFO. Modules can be connected through A-Port, and the

global synchronization is localized to enqueue and dequeue operations of FIFOs. This project has

demonstrated its scaling capability of constructing many-core simulators on a single FPGA (up

to 19 target cores). The overall simulation performance peaks at 3.2 MHz, but no performance

comparison against an equivalent software-only simulator has been reported.

3.2.2 Hybrid Transplanting Simulator

The ProtoFlex system [27] adopts an alternative approach that combines software simu-

lation with FPGA-accelerated instrumentation. This simulator currently only supports functional

simulation, but uses a different partitioning strategy. This system implements a processor in hard-

ware to simulate an instruction-set architecture. This instruction emulation engine is implemented

on a FPGA, but it is not complete and some complex and rare operations and conditions (e.g.

system I/O, FP operations, and certain traps) are handled in software by invoking either a host

processor or FPGA PowerPC core with necessary state transfer upon request. Multiple processor

contexts are supported to allow multiprocessor functional simulation. This simulator can achieve

a simulation throughput as high as 62 MIPS, but only simulating instructions. ProtoFlex didn’t

provide a equivalent software simulator for comparison either.
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3.2.3 Hybrid Structural Simulator

The Liberty project at Princeton has demonstrated the feasibility of a hybrid simulation

approach based upon a structural partitioning strategy in [25]. This project uses the LSE framework

to create a software-only simulator in a concurrent and structural form [41]. Later on, the processor

core in the created chip multiprocessor simulator are replaced with the physical PowerPC cores on

FPGAs. Both functionality and timing of the processor cores are simulated in hardware and the

memory architecture is simulated in software. The FPGA PowerPC cores are wrapped with a

communication interface; the interface transfers data with the software portion through a adapter

module that calls the device drivers. The interface implements a polling scheme and makes no

attempt to optimize the communication between software and hardware: the software requests

the hardware to execute and polls for hardware completion. This simulator is parallelized at a

coarse-granularity level through four physical PowerPC cores on the same FPGA. This hybrid

design is constrained by the number and performance of available FPGA PowerPC cores. This

hybrid simulator achieves up to 5.82 speedup, compared with the corresponding software-only

simulator. The performance comparison between the hybrid simulator and the software simulator

is not accurate. The hybrid simulator uses physical PowerPC cores, however, the baseline simulator

is a simplified microprocessor model so that the achieved simulation speedup is much less than it

would be with a detailed baseline simulator.

3.2.4 Discussion

Several hybrid microarchitectural simulators have been introduced in different categories.

It is impossible to compare their simulation speed with each other, because those simulators mod-

els different processors at different abstraction levels and they are organized and partitioned dif-

ferently. Most of the hybrid simulator designs didn’t provide a baseline software-only simulator to

compare with so that we are not able to investigate the impact of the hardware acceleration and the

interface overhead on the simulation performance. In addition, all the previous hybrid simulators

are created manually, so it is very time-consuming to design and debug the hardware portion and

the interface. The inefficient design process prohibits a widespread use of hybrid microarchitec-

tural simulators for evaluating microprocessor candidates in both academia and industry.
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The third category, hybrid structural microarchitectural simulator, is particularly interest-

ing. It combines the benefits of structural modeling and hardware acceleration. The design flow

starts with a software model created under a structural simulation framework, and portions of the

software structural model are replaced with equivalent hardware components for acceleration. The

performance loss of structural simulation can be recovered with the use of FPGAs. When the

transformation from software structural models to hybrid simulators is automated, this category of

hybrid simulators does have the potential to be easily created and efficiently executed.
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Chapter 4

SPRI: Simulator Partitioning Research Infrastructure

Hybrid structural microarchitectural simulators combine the benefits of structural modeling

and hardware acceleration in a flexible fashion that architects are able to make trade-offs between

hardware capacity, ease of implementation, and simulator performance. Unfortunately, it is very

time-consuming to create a hybrid structural microarchitectural simulator by hand. Architects have

to plan a software/hardware partitioning, design both the software and the hardware, and create a

software/hardware interface. The manual design process become increasingly prohibitive, when

target systems scale to many cores and higher system integration. To promote a widespread use of

hybrid structural microarchitectural simulators, we have proposed to automate the design process

through synthesis. This chapter introduces the synthesis flow for hybrid structural microarchitec-

tural simulators by describing the SPRI infrastructure in which the contributed techniques have

been implemented and integrated.

SPRI automatically synthesizes hybrid structural microarchitectural simulators from soft-

ware structural microarchitectural models. The input models must have been developed under a

structural simulation framework before being passed to SPRI. The output simulator consists of a

software portion, a hardware portion, and a software/hardware interface. The executable binary of

the software portion runs on the host processor; the hardware portion is downloaded to the FPGA

after being synthesized to gates. The design efforts of architects are only dedicated to implement-

ing the input structural microarchitectural models; no extra effort is needed to transform them to

the equivalent hybrid simulators. SPRI allows users to guide the partitioning and the interface

selection depending on how they organize their simulators. Given a software simulator as input

to SPRI, a set of equivalent hybrid simulators can be rapidly generated with different selection of

partitionings and interfaces.
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4.1 SPRI Input

SPRI has two inputs: SystemC microarchitectural models and partitioning specifications.

The partitioning specifications guide SPRI to move portions of the input software simulators into

hardware. The input simulator must have been developed and debugged; the users of SPRI must

be responsible for its correctness and accuracy.

Where to partition a SystemC microarchitectural simulator is of great importance in con-

structing a hybrid structural simulator. The simulator partitioning determines what to synthesize

and how to interface in later processing. Thus, the hardware cost and the hybrid-simulation speed

may vary depending on the chosen partitioning boundary. SPRI takes partitioning instructions

from the users and finishes the partitioning of the input SystemC microarchitectural models auto-

matically. This feature offers the users the flexibility to choose the partitioning boundary based on

the hardware capacity and the input simulator’s organization. Because there is no one partitioning

that works effectively for every simulator, the users are in charge of exploring partitioning options

and selecting the one that leads to the best hybrid simulator.

4.1.1 SystemC

There are several structural simulation frameworks (e.g. Liberty, Unisim, and SystemC)

that can be used to develop microarchitectural models in software. SystemC microarchitectural

models are chosen as input to SPRI particularly, because SystemC has several important features.

• SystemC is an additional library attached to C++, including a set of C++ classes and macros.

This feature enables architects to simulate concurrent hardware processes using plain C++

syntax which they are familiar and comfortable to work with.

• SystemC not only offers a rich amount of structural and concurrent constructs (e.g. process,

signal, event) to express model hierarchy and timing, but also has non-structural features

(e.g shared/global variable, cross-object call) and object polymorphism inherited from C++

to enhance modeling productivity and permit high-level code reuse.

• SystemC allows modeling at different abstraction levels (e.g. behavior level, RTL) or with a

mix of several. This is important for microarchitectural modeling because detailed models
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may be needed for a portion of a microarchtectural model that architects want to thoroughly

evaluate and less details may be described for the other portion in order to reduce modeling

complexity.

• Sophisticated SystemC simulation environments and debugging tools (e.g. CoCentric from

Synopsys, ModelSim from Mentor Graphics, OSCI SystemC Simulator) have been devel-

oped for years to facilitate software modeling.

SystemC [2] is an event-driven simulation framework; as events occur in the system, pro-

cesses which are sensitive to those events are invoked. In a typical detailed microarchitectural

model where only cycle-level accuracy matters, the only events are signals changing values. Pro-

cesses in these models can be divided into those that are sensitive to clock edges and those that are

not.1 Typically, such processes can be triggered in three ways: immediate notification, delta noti-

fication, and timed notification. Immediate notification is processed first at the beginning of each

simulation time-stamp. Immediate notification occurs when a process is sensitive to events fired

using the event.notify() method; there is no time duration between the invocations of the cur-

rent process and the previous process. Delta notification, by contrast, introduces a non-zero (delta)

duration between process invocations; a simulation clock cycle could have any number of delta-

time intervals. Delta notification occurs when updating the values of process-sensitive signals or

using the event.notify(SC ZERO TIME) method. When processes assign values to signals, the

assignment does not take place until after a delta cycle – a cycle with zero imputed time – has taken

place. During simulation, delta cycles occur as long as events are generated by signal assignments

or event.notify(SC ZERO TIME); once no more such delta events occur, time advances to the

next timed event which in a cycle-level model will be a clock edge. SystemC also allows users to

trigger processes to run after a certain amount of simulated time using event.notify(t).

SystemC uses a multiple-list event handling implementation, described in the pseudo-code

in Figure 4.1. A simulation time-step begins by running all processes on the runnable list. As they

run, they push immediate-notified processes back to the runnable list and assign values to signals;

these value changes are enqueued on an update queue. After there are no more processes to run,

1In SystemC, processes are known as methods or clocked threads. The other type of process (a thread) may wait
on events within the body of the process; it may be transformed into a clocked thread if only clock edges are waited
upon.
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1 do {
2 do { / / d e l t a c y c l e loop
3 foreach p r o c e s s in r u n n a b l e l i s t
4 dequeue and e x e c u t e p r o c e s s
5 add immedia te−n o t i f i e d p r o c e s s e s t o r u n n a b l e l i s t
6 foreach up da t e in up da t e l i s t
7 dequeue and pe r fo rm up da t e
8 foreach e v e n t in d e l t a e v e n t l i s t
9 dequeue e v e n t

10 add d e l t a −n o t i f i e d p r o c e s s e s t o r u n n a b l e l i s t
11 } whi le r u n n a b l e l i s t not empty
12
13 advance t ime t o minimum t ime in t i m e d e v e n t l i s t
14 foreach e v e n t in t i m e d e v e n t l i s t a t t h e new t i m e
15 dequeue e v e n t
16 add s e n s i t i v e p r o c e s s e s t o r u n n a b l e l i s t
17 } whi le t i m e d e v e n t l i s t not empty

Figure 4.1: Pseudo-code of the SystemC main loop

the update queue is processed. When a signal’s update causes it to change values, a delta event is

added to the delta event list. After all updates are handled, the delta events are processed by adding

the processes which are sensitive to the events to the runnable list. At this point, if the runnable list

is not empty, another delta cycle begins. Once the runnable list becomes empty, time is advanced,

all processes sensitive to that time (e.g. clock edges) are added to the runnable list, and a new delta

cycle begins.

4.1.2 Partitioning Specification

The partitioning instructions for SPRI are given by a partitioning specification language

(PSL). The PSL is a set-based language. The PSL permits basic set operations such as union, addi-

tion, and subtraction when describing the partitioning of microarchitectural simulators. The entire

input simulator is considered as all; the moved-to-hardware portion can be expressed either as

tohw [all - software set] or as tohw [hardware set]. The software set or hardware set

may contain three types of simulator elements: class, instance, process. A “class” element repre-

sents all the instances that are instantiated from it; a “instance” element includes all the processes

that are used in it; a “process” element covers all the function calls that are invoked from it. Four

examples of the PSL are shown in Figure 4.2. Example 1 moves everything to hardware except

all the instances of the Adder class. Example 2 specifies a template class and a normal class and

the instances instantiated from these two classes should be moved to hardware. Example 3 parti-
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Example 1 : s e t a d d e r = tohw [ : : ‘ ‘ Adder ’ ’ ] ;
tohw a l l − a d d e r ;

Example 2 : tohw [ : : ‘ ‘MUX<3, U i n t 3 2 t>’ ’ ] | [ : : ‘ ‘ R e g i s t e r F i l e ’ ’ ] ;

Example 3 : tohw [ PowerPC0 .ALU ] ;

Example 3 : tohw [ : : ‘ ‘ IDEX Reg i s t e r ’ ’ : : ‘ ‘ F r o n t E d g e P r o c e s s ’ ’%func %];

Figure 4.2: Partitioning specification examples

tions the ALU instance of a PowerPC core to hardware. The last example indicates that only the

FrontEdgeProcess process of the IDEX Register class should be implemented in hardware.

PSL specifications are provided by users and parsed by SPRI to indicate the set of processes

that will be moved to hardware. SPRI extracts the information (i.e simulator object, object con-

nectivity) for the moved-to-hardware processes based on the parsed PSL specification and passes

them to the rest part of SPRI that performs code modification and code generation for the output

hybrid simulator.

4.2 SPRI Output

The output of SPRI is a complete hybrid structural microarchitectural simulator. It is

composed of a SystemC portion, an FPGA portion, and a SystemC/FPGA interface. The SPRI-

generated hybrid microarchitectural simulator must run on a host platform that has a general-

purpose processor for the software and FPGAs for the hardware. The software portion, running

on the host processor, is able to interact with the OS to simulate device I/O and system calls;

the hardware portion is expressed in VHDL and synthesized to gate for FPGA configuration using

commercial tools (i.e Xilinx ISE). The FPGA can be arbitrarily reconfigured for simulator changes,

and it can provide on-chip RAMs and DSP units to support the simulation of memory hierarchy

and complex computational operations (e.g. floating point). The software portion and the hard-

ware portion are synchronized through a SystemC/FPGA interface. The stay-in-software SystemC

portion is linked with a software wrapper that transfers data with the hardware through device

APIs. The moved-to-hardware SystemC portion is transformed to VHDL code with an additional

VHDL wrapper that communicates directly with the software wrapper. This interface remark-

ably impacts the simulation performance. Because the modules of a microarchitectural simulator
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are tightly-coupled, the SystemC/FPGA interface must be efficient enough to handle the frequent

cross-boundary synchronization; otherwise, a high communication overhead would overshadow

the simulation speedup achieved by using FPGAs.

Interfacing SystemC and FPGAs is very challenging. The cross-boundary interface must

maintain state synchronization between SystemC and FPGA. This synchronization has two phases:

before simulation and during simulation. Before simulation, the hardware portion should be ini-

tialized with the same states as the software portion. SPRI can either synthesize the initial states

into VHDL directly or modify the software code to initialize the hardware at the beginning of

simulation. During simulation, simulator states must be synchronized frequently so that both data

correctness and timing correctness can be guaranteed: correct data needs to pass through the cor-

rect signals at the correct simulated time-stamp. Because microarchitectural models are timed,

what matters to the simulation correctness is the value changes of signals at the simulated clock

edge. Synchronizing clocked processes on the software side and the hardware side is easy to im-

plement; however, combinational processes are problematic. SystemC introduces the delta-cycle

concept to allow multiple invocations of a combinational process whenever its inputs change, and

its outputs must be stabilized before the simulation moves on to the next time-stamp. Delta cycles

do not exist in hardware, so the interface must either reflect the value changes immediately to the

hardware or wait for the stabilized values and transfer them once for the current timestamp where

the latter is more optimized and efficient.

When target systems scale to many cores or higher system integration, a frequent commu-

nication with a extensive amount of data cross the software/hardware boundary can easily mitigate

performance increase and may lead to a simulation even slower than the software-only one. Thus,

interface optimization becomes increasingly critical. An optimum interface design relies on a good

partitioning to balance the trade-offs between hardware capacity, communication latency, and com-

munication bandwidth of the host system. The exploration for a good partitioning and an efficient

interface is prohibitive due to the costly manual implementation process. Fortunately, SPRI solves

this problem through the design automation, and the users of SPRI only need to specify a parti-

tioning decision and select a interface.
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4.3 SPRI Host Platform

SPRI is designed to produce hybrid microarchitectural simulators which can run on general

computer workstations that are connected with FPGAs. The software portions run on the work-

stations and the hardware portions are downloaded to the FPGAs. The output of SPRI — hybrid

structural microarchitectural simulators can be easily ported to different platforms. The simula-

tor partitioning process and VHDL synthesis process are platform-independent, but the interface is

not. To make the interface design transplantable, SPRI creates the SystemC/FPGA interface in two

separate portions: a platform-independent portion (communication mechanism) and a platform-

dependent portion (device APIs). When switching host platforms, only the platform-dependent

APIs need to be replaced.

SPRI was tested on the DRC-1000 system [42]. The DRC computer is a integrated system,

and provides complete and reliable device APIs to the on-board FPGA, SRAM, and DRAM. The

API library saves a massive amount of time spent on writing and testing device API drivers. The

DRC-1000 system adopts a CPU socket bus connection for its CPU and FPGA which offers a low-

latency and high-bandwidth communication. The FPGA capacity of this system is relatively small

and not expandable, but it allows us to clearly demonstrate how hardware capacity, communication

latency, and communication bandwidth affect the performance of hybrid simulation when the target

microarchitectural model scales.

4.4 SPRI Organization

The SPRI infrastructure integrates a chain of tools. Because a hybrid simulator design

involves three steps: simulator partitioning, hardware design, and interface construction, SPRI is

naturally divided into three parts:

1. a partitioning tool which understands user-input partitioning specifications and automatically

splits simulator code into software and hardware portions;

2. a synthesis tool which generates RTL for the hardware portion of the simulator;

3. an interface tool which produces both the software-side and the hardware-side of the inter-

face.
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When producing hybrid simulators, SPRI transforms SystemC code into a mix of SystemC

code and VHDL code. In this process, SPRI must be capable of manipulating code, optimizing

code, and generating code in this transformation. SPRI uses a compiler framework to parse the

SystemC code and performs code optimization and code generation based on its intermediate rep-

resentation (IR). The compiler framework serves as the front-end; the three tools of SPRI perform

IR analysis, optimization, and backend code generation.

4.4.1 LLVM Compiler Framework

The SPRI infrastructure is created on top of the LLVM compiler framework [43]. SPRI

operates directly on LLVM’s intermediate representation (IR) rather than on the original source

code. Using LLVM has two benefits. First, doing so removes the need to parse SystemC or

deal with the fine points of its semantics. LLVM is capable of compiling SystemC code, because

SystemC is C++ with a extended library [44]. Second, we can take advantage of LLVM’s ability

to perform both static and run-time optimization.

LLVM is an open source compilation infrastructure allowing both static and run-time code

optimization and generation. It provides complete compiler front-ends for both C and C++. LLVM

compiles C and C++ into the LLVM IR. The LLVM IR is composed of RISC-like instructions in

a single-static assignment form which combines data and control flows to permit easy static and

dynamic optimization. LLVM can produce target machine code for multiple target platforms such

as X86, Sparc, and PowerPC. LLVM has a modular structure, and customized transformations

and passes can be easily plugged in, and it can also be linked as a library into other programs. A

very active and vibrant user community supports the continued development and maintenance of

LLVM. Additionally, LLVM uses a non-GPL open source license that does not restrict the release

of SPRI.

LLVM supports both static and dynamic compilation and therefore facilitates SPRI to per-

form transformation and synthesis during a run of the software-only simulation after elaboration is

finished. This feature allows SPRI to inspect the data and objects of SystemC modules at run-time

after they have been resolved and stored in system memory. As a result, the synthesis method-

ology of hybrid microarchitectural simulators proposed by SPRI is “hybrid” too, involving both

static and dynamic operations. We now discuss this synthesis flow.
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4.4.2 SPRI Synthesis Flow

SPRI is built upon LLVM and operates directly on the LLVM IR instead of SystemC source

code. SPRI performs a series of optimizations and transformations on the LLVM IR of the input

software-only simulator, and produces the corresponding hybrid simulator. SPRI synthesizes under

the run-time environment of LLVM which permits accesses to the information that can be used to

analyze the input microarchitectural models but is not available statically.

Partitioning Specification

SPRI HW Synthesizer

(LLVM−IR to VHDL)

SystemC Microarchitectural Simulator

SPRI Interface 

Generator 

Device API Lib

HW Wrapper Lib

HW Portion

Hardware
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Linker
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Software
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LLVM Run−time Environment

spriDB

simDB

spriDB

Figure 4.3: SPRI synthesis flow

Figure 4.3 displays the synthesis flow of SPRI. SPRI operates during a run of the input

software-only simulator after elaboration is finished and the simulation is suspended. After elabo-

ration, SystemC objects have been instantiated and stored in system memory. SPRI collects those
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in-memory objects and organizes them in a simulator database. This database is named SIMDB

and is provided for the SPRI partitioner. SIMDB maintains the module hierarchy of the input

simulator. This database records both object information and hierarchical information. The ob-

ject information contains SystemC module class, instance, method, port, signal, and event; the

hierarchical information describes what methods each module class contains, which instances are

instantiated from the same module class, how signals and ports are connected, and what events

can be triggered by a signal. The object information and the hierarchical information are obtained

by parsing the C++ run-time type information (RTTI) defined in the Application Binary Interface.

This parsing relies upon specific naming conventions for C++ mangled names and thus would

need to be changed for different operating systems or compilers; we have attempted to isolate

these changes to small portions of the code. The SPRI infrastructure is composed of three primary

tools: the SPRI partitioner, the SPRI VHDL synthesizer, and the SPRI interface generator. The

SPRI partitioner guides the hardware synthesis and the interface generation.

The output of the SPRI partitioner is a different database named SPRIDB. Based on a PSL

specification, the SPRI partitioner extracts the information of the moved-to hardware portion from

SIMDB and reorganizes it in SPRIDB. SPRIDB presents the hardware portion as a set of hardware

processes; each hardware process has a link to the corresponding LLVM IR. The hierarchy for the

hardware processes is completely flattened in that the hierarchical structures (i.e. class, instance,

ports) are ignored and the inter-process communication only goes through signals. Flattening the

hierarchy of the hardware portion can reduce the complexity of the hardware synthesis and the

interface generation, because they don’t have to reconstruct data routing through modules and pro-

cesses in the original hierarchical manner. Figure 4.4 displays an example of the SPRI partitioning

in which three hardware processes are extracted from SIMDB and flattened in SPRIDB. During

the partitioning process, SPRIDB does not collect SystemC event objects from SIMDB; instead, it

summarizes triggering sources (i.e clock, signal, event) and triggering types (i.e level trigger, edge

trigger) in a sensitivity list for each hardware process.

SPRIDB represents the hardware portion of the input simulator. This database is passed

to the SPRI VHDL synthesizer and the SPRI interface generator. The SPRI VHDL synthesizer

operates on the LLVM IR of each process recorded in SPRIDB and produces VHDL code for the

hardware process set. The SPRI interface generator creates a software wrapper and a hardware
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Figure 4.4: SPRI simulator partitioning

wrapper. The data transfer that crosses the software/hardware boundary is performed through

the communication between these two wrappers. The software wrapper is a mix of the modified

LLVM IR and newly-generated C++ code, and it is linked with the software process set to complete

the software portion. The hardware wrapper is generated in VHDL as the top level design for the

hardware portion. The hardware wrapper connects the VHDL blocks produced by the SPRI VHDL

synthesizer, and sets up state machines to transfer data with the software wrapper.

Most commonly, SystemC microarchitectural models are structurally partitioned to form

hybrid simulators, which is straight-forward to implement. A structural partitioning is performed

by placing only structural objects (i.e process) in the hardware and cutting only structural objects

(i.e. signals) on the software/hardware boundary. Because VHDL has similar semantics for the

structural portions of SystemC, most SystemC structural objects can be equivalently mapped to

VHDL in the synthesis. The structural partitioning results in a clean boundary between the hard-

ware processes and between the software and the hardware where the communication only occurs

via signals. However, SystemC allows the use of non-structural constructs in modeling to improve

modeling productivity and simulation speed. Thus, SPRI supports certain non-structural partition-

ings in addition to structural partitionings. The support of non-structural partitionings requires the

transformation of SystemC non-structural features to equivalent hardware implementations; the

misinterpretation of these features will conduct functional incorrectness and timing mismatch in

the hybrid simulation.
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Chapter 5

SPRI Interface Generation

The SPRI interface generator creates the software/hardware interfaces for the output hy-

brid microarchitectural simulators. The SPRI interface generator performs two tasks: fixing up

the partitioning boundary and producing a software wrapper and a hardware wrapper. The soft-

ware and hardware wrappers are placed on the partitioning boundary. They redirect signal inputs

and outputs between SystemC and FPGA to synchronize the simulation. This software/hardware

synchronization introduces an communication overhead, and thereby has a significant impact on

the performance of the hybrid simulation. High-overhead interfaces may overshadow the speedup

achieved through the FPGA acceleration. Typically, the synchronization overhead can be reduced

by two means.

1. Lowering the frequency and data amount of the cross-boundary communication. As stated

previously, microarchitectural models are clocked logics, so the software/hardware interface

does not have to synchronize at every delta cycle. It can wait till all the combinational outputs

become stable and transfer a packet of data once. However, the bandwidth of the physical

communication channel may become the bottleneck and limit the packet size, especially

when the number of simulated cores scales and the data to different cores is packed for

transfer.

2. Overlapping the communication with the computation. This method decouples the software

portion and the hardware portion of a hybrid simulator. The software and the hardware

execute asynchronously which however does not mean there is no synchronization of the

simulator state between the two of them. The asynchronous execution allows the overlap

of the communication and the computation. The communication overhead is hidden in the
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computation in order to mitigate the impact from the latency of the physical communication

channel.

In the previous works, the hybrid transplanting simulator [27] and the hybrid structural sim-

ulator [25] both use the coprocessor-style (block and wait) interface; the hybrid functional-timing

simulator [14] decouples the software and the hardware through queues to allow asynchronous

execution. The simulator designed in [26] even implements a microarchitectural simulator com-

pletely in hardware to avoid the communication overhead. Unfortunately, these interfaces are

designed by hand, and none of them targets interfacing SystemC and FPGA. Thus this chapter

starts with defining the design space of the software/hardware interfaces that can be applied for

SystemC/FPGA-based hybrid microarchitectural simulators. Then, it discusses the design and

synthesis of different interfaces in the design space, and evaluates the trade-offs between speed,

hardware cost, and scalability.

5.1 Design Space

The software/hardware interface of a hybrid microarchitectural simulator must coordinate

the production of new signal values and the update of state between the software processes and

hardware processes. There are two dimensions along which the design space of software/hardware

interfaces can be characterized: concurrency and composition.

5.1.1 Concurrency

The first dimension is the amount of concurrency provided by the interface. This concur-

rency may exist between hardware elements and between hardware and software. In general, as

concurrency increases, we would expect higher simulator performance. At one extreme, concur-

rency may be non-existent. When either software or hardware requires an operation of the other,

a request is made through the interface and it blocks execution until the request has been handled

[25], [27]. At the other extreme, software and hardware can be fully concurrent: either software

or hardware may initiate multiple requests to each other and continue on its own work without

waiting for the completion of their requests [14].
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5.1.2 Composition

Composition is the direct interconnection of a set of hardware processes. Signals internal

to the set do not need to be communicated through the interface. In general, as the amount of

communication decreases, we should expect higher simulator performance. We consider three

degrees of composition:

• No composition: All communication between hardware processes takes place via software.

• Single-FPGA-cycle composition: Only single-FPGA-cycle hardware processes are com-

posed.

• Multi-FPGA-cycle composition: All hardware processes are composed.

The distinction between single-FPGA-cycle and multi-FPGA-cycle composition is an im-

portant one. SystemC processes execute instantaneously with respect to simulated time. However,

efficient FPGA implementations of those processes may require several FPGA cycles to compute

the outputs and next state of one simulated cycle. We call FPGA process implementations which

require only a single cycle to compute single-FPGA-cycle hardware processes and those that re-

quire multiple cycles multi-FPGA-cycle hardware processes.

Single-FPGA-cycle hardware processes may be composed directly without affecting their

correctness because the processes can directly implement the state machine being modeled. How-

ever, as described in [45], multi-FPGA-cycle hardware processes cannot be directly composed

because the processes actually implement a different state machine which requires multiple FPGA

cycles to simulate the modeled state machine. Thus single-FPGA-cycle composition is fundamen-

tally different from multi-FPGA-cycle composition.

Multi-FPGA-cycle composition is possible if the hardware processes are designed to be

latency-insensitive. Latency insensitive processes could be designed by the user, however, in order

to synthesize an arbitrary structural process into a latency-sensitive version, some formal method-

ology for creating latency-insensitive processes is required. This methodology can be provided by

Latency-Insensitive Bounded Dataflow Networks (LI-BDNs), which are formalized in [46]. Hard-

ware processes can be wrapped to form LI-BDN processes using the interface and control logic
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Table 5.1: The interface design space

Designation Concurrency Composition Notes
BL-NONE Blocking None
BL-SC Blocking Single-FPGA-cycle
BL-MC Blocking Multi-FPGA-cycle Nonsensical
NB-NONE Non-blocking None
NB-SC Non-blocking Single-FPGA-cycle
NB-MC Non-blocking Multi-FPGA-cycle

shown in Figure 5.1. After LI-BDN transformation, LI-BDN processes are connected through FI-

FOs and simulated time is interpreted as enqueue and dequeue operations on the FIFOs: in one

simulated clock cycle, each FIFO is enqueued and dequeued once.1 LI-BDN processes execute

autonomously: when their inputs become available, they produce outputs and update state.

5.1.3 Combining the Dimensions: the Interface Design Space

Table 5.1 lists each of the points in the interface design space as well as a name for each

interface design style. Note that one design choice – BL-MC – is nonsensical; because LI-BDNs

execute autonomously, there can be no notion of software making a request for the hardware to

compute and blocking to wait until hardware finishes.

The non-blocking interfaces should have better performance than the blocking interfaces

due to their higher concurrency. Furthermore, interfaces with more composition should perform

better than interfaces with less composition due to reduced communication overhead. However,

multi-FPGA-cycle composition could have higher FPGA utilization caused by the LI-BDN trans-

formation. Note that it is somewhat obvious that BL-NONE should perform much worse than the

other interfaces. However, we still describe and evaluate BL-NONE because it corresponds to the

natural “co-processor” model of using hardware accelerators: simply request the hardware to do

some computation and then wait for it.

1Not all models can be composed in this fashion, as cycles of data dependence are not allowed. A detailed descrip-
tion of the LI-BDN implementation of hardware processes for SPRI is given in [47].
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Figure 5.1: SPRI-synthesized LI-BDN wrapper [45]
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5.2 Implementation

The SPRI interface generator can be configured to output any one of the five meaningful

interfaces specified in Table 5.1. Rather than implementing five different interface generators, the

SPRI interface generator abstracts a top-level interface template as diagrammed in Figure 5.2 and

applies it for all the five interfaces where different code may be produced for the interface blocks.

This interface template separates the platform-dependent portion and the platform-independent

portion, and thereby can be easily ported to different host platforms.
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Figure 5.2: The abstract form of the SystemC/FPGA interface

In a software wrapper, a mix of SystemC code and LLVM IR is produced for the fix-up

portion, and C++ code is produced for the data-collection and device-API portions. The fix-up

portion, first of all, disconnects the moved-to-hardware processes from the software simulator by

removing the sensitive events for each of these processes so these processes will not be invoked

anymore; then it switches the simulation from the software simulation to the hybrid simulation at

the exact timestamp where the software simulation is suspended for the VHDL synthesis. After

the “switch over”, the disconnected processes are replaced with a set of new SystemC processes

that communicate with the hardware. These new processes need two fix-ups: time to invoke (i.e

sensitivity) and places to load and store data (i.e. addresses of signal objects). The new SystemC
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processes and events are carefully constructed and arranged to ensure that the interface code runs at

the desired points within the main SystemC simulation loop but without modifying the simulation

engine. This is achieved by generating a set of processes and events in SystemC. Some processes

fire events directly to invoke other processes, which permits the manipulation of simulation time

at the delta-cycle level. When the replacement processes are invoked, they complete the data

exchange with the hardware through the data-collection portion and the device-API portion.

In a hardware wrapper, VHDL code is generated to bridge the communication channel

of the host platform with the hardware processes. The hardware wrapper controls inbound and

outbound data through a FSM controller on the signals of the communication channel. Cross-

boundary data are registered and routed to the corresponding signals for each hardware process.

The device API and the communication-channel FSM are the platform-dependent portions.

These two portions can be easily replaced through the device-API library and the FSM-template

library of SPRI. The capability allows SPRI-generated hybrid simulators to be easily transplanted

to different host platforms without changing the interface code.

5.2.1 Blocking, No Composition (BL-NONE)

This interface blocks after making requests of the hardware and allows no direct communi-

cation between hardware processes. The software side of the interface simply replaces the software

process corresponding to each hardware-implemented process with a proxy process sensitive to the

same set of signals.2 As shown in Figure 5.3, each proxy process first reads input signals from

SystemC and sends them to the hardware. It then waits for the hardware to finish execution, reads

the values of the output signals from hardware, and writes them to the corresponding SystemC

signals. The hardware automatically begins execution when the last input signal is written; if the

process is sensitive to the clock, the hardware updates state as part of its execution.

On the software side, better performance is achieved by staging the signal values through a

memory buffer, transferring the entire buffer at once rather than each signal value individually. We

speculatively read the hardware outputs at the same time we poll the status register; in the common

2A process sensitive to no signals will have a proxy which is never fired; this is correct, as the process must be
driving a constant value which will be driven during the hybrid simulator’s initialization.
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proxy ( ) { / / s e n s i t i v e t o i n p u t s i g n a l s or c l o c k edge
foreach i n p u t s i g n a l s

WriteDataToHW ( s . r e a d ( ) ) ;
/ / hardware b e g i n s e x e c u t i o n and u p d a t e s s t a t e
WaitForHWFinish ( ) ;

foreach o u t p u t s i g n a l s
s . w r i t e ( ReadDataFromHW ( ) ) ;

}

Figure 5.3: BL-NONE interface: software side

Proc 1
HW

HW
Proc n

...Communication
Channel

In Reg 1

Out Reg 1

In Reg n

Out Reg n

...

Status Register

Communication Channel

Controller

Figure 5.4: BL-NONE interface: hardware side

case of hardware finishing before the poll, the poll and data transfer occur with only a single device

driver call.

The hardware side of the interface (Figure 5.4) has a communication channel controller

(CCC) which manages the interface. Signal values are stored in distributed registers which are

memory-mapped into the communication channel’s address space. These registers are connected

directly to the hardware processes. There is also a memory-mapped completion status register. As

a size optimization, output signals driven by single-FPGA-cycle hardware processes do not have

output registers, because such processes produce their outputs continuously. The CCC triggers

the execution of a hardware process when the hardware process’s last input signal is written; the

CCC sets a completion bit in the status register when it receives a “done” signal from a hardware

process. The software must read the status register to determine data availability before it reads

and the CCC must set the completion bit only after all the output signal registers for a process are

valid. The status register is mapped to address 0 so that a sequential read of addresses will produce

the correct ordering.
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proxy ( ) { / / s e n s i t i v e t o i n p u t s i g n a l s or c l o c k edge
foreach c r o s s−boundary i n p u t s i g n a l s

c o p y t o B u f f e r ( s . r e a d ( ) ) ;
i f ( s e n s i t i v e t o c l o c k edge )

c l o c k e d T r a n s f e r E v . n o t i f y ( ) ;
e l s e

n o n c l o c k e d T r a n s f e r E v . n o t i f y ( ) ;
}

t r a n s f e r ( ) { / / s e n s i t i v e t o a t r a n s f e r e v e n t
WriteDataToHW ( d a t a f r o m b u f f e r ) ;
/ / hardware b e g i n s e x e c u t i o n and u p d a t e s s t a t e
WaitForHWFinish ( ) ;
foreach c r o s s−boundary o u t p u t s i g n a l s of t h e p r o c e s s s e t

s . w r i t e ( ReadDataFromHW ( ) ) ;
}

Figure 5.5: BL-SC interface: software side

5.2.2 Blocking, Single-FPGA-cycle Composition (BL-SC)

This interface blocks after making requests of the hardware but permits direct composition

of single-FPGA-cycle hardware processes. All single-FPGA-cycle processes are composed to

internalize communication.

The software side of the interface has a proxy process for each process that has input signals

across the software/hardware interface. All single-FPGA-cycle processes are grouped into a single

process set. Two transfer processes are required to transfer data and update values, one for the

clock-sensitive processes in the process set and another for the non-clock sensitive processes in the

process set. The two-step proxy/transfer flow is motivated by a desire to efficiently transfer data

for many signals with a single device driver call. Figure 5.5 gives pseudo-code for these processes.

A proxy process copies its cross-boundary input signal data into a buffer and triggers a

transfer process to run using a SystemC immediate notification. Each transfer process writes the

data from the buffer to the hardware and starts hardware execution. After the hardware finishes,

the transfer process reads the cross-boundary output signals from hardware and writes them to the

corresponding SystemC signals. Output signals are polled speculatively as in BL-NONE.

The transfer processes for clock-sensitive and non-clock-sensitive processes are different.

First, the clock-sensitive transfer process writes one additional word of data to the hardware which

the hardware interprets as an UPDATE STATE command. Second, while the non-clock-sensitive pro-

cess transfers all the cross-boundary outputs of non-clock-sensitive processes, the clock-sensitive
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Figure 5.6: BL-SC interface: hardware side

process must transfer the cross-boundary outputs of all processes. This difference occurs because

the state update in the hardware may have changed signal values which are combinationally de-

pendent upon the state and thus affected the outputs of non-clock-sensitive processes.

The structure of the hardware side of the interface is shown in Figure 5.6. It is quite similar

to that of BL-NONE, except that the CCC need only consider cross-boundary inputs and outputs.

The CCC asserts an UPDATE STATE signal to all processes in a process set when a dummy address

just beyond the last cross-boundary signal value’s register for that set is written. This extra dummy

address provides easy control over whether state updates occur. Only a single completion status

bit is maintained for each process set.

5.2.3 Non-blocking, No Composition (NB-NONE)

This interface does not block after making requests of the hardware but allows no direct

communication between hardware processes. To achieve a non-blocking interface, the software

side of the interface must separate the requests it makes to hardware from the checks it makes for

the completion of those requests. It must also execute any runnable software processes without

waiting for hardware completion. The software side has a proxy process for every hardware-

implemented process, two transfer processes, and two completion processes. The pseudo-code for

these processes is shown in Figure 5.7.

The proxy process is similar to that of BL-SC. As in BL-SC, the transfer processes write

data to hardware, however, they do not wait for the hardware to complete. Instead, they schedule
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a completion process to run later by firing an event to which the completion process is sensitive.

There is one transfer process for all clock-sensitive proxy processes and one transfer process for

all non-clock-sensitive proxy processes; the clock-sensitive transfer process writes an additional

word of data to indicate UPDATE STATE to the hardware, as in the BL-SC interface.

proxy ( ) { / / s e n s i t i v e t o i n p u t s i g n a l s or c l o c k edge
t h i s . r e q u e s t = t rue ;
foreach i n p u t s i g n a l s

c o p y t o B u f f e r ( s . r e a d ( ) ) ;
i f s e n s i t i v e t o c l o c k edge

c l o c k e d T r a n s f e r E v . n o t i f y ( ) ;
e l s e

n o n c l o c k e d T r a n s f e r E v . n o t i f y ( ) ;
}

t r a n s f e r ( ) { / / s e n s i t i v e t o a t r a n s f e r e v e n t
i f ! busy or t h i s i s t h e c l o c k e d t r a n s f e r p r o c e s s

WriteDataToHW ( d a t a f r o m b u f f e r ) ;
/ / hardware b e g i n s e x e c u t i o n and u p d a t e s s t a t e
busy = t rue ;
i f t h i s i s t h e c l o c k e d t r a n s f e r p r o c e s s

c l o c k e d C o m p l e t i o n E v e n t . n o t i f y ( SC ZERO TIME ) ;
e l s e

n o n c l o c k e d C o m p l e t i o n E v e n t . n o t i f y ( SC ZERO TIME ) ;
e l s e

mustRedo = t rue ;
}

c o m p l e t i o n ( ) { / / s e n s i t i v e t o a c o m p l e t i o n e v e n t
checkHWsta tus ( ) ;
foreach proxy p r o c e s s p such t h a t t h e

c o r r e s p o n d i n g ha rdware p r o c e s s i s not a c t i v e
and p . r e q u e s t i s t rue

foreach o u t p u t s i g n a l s of p
s . w r i t e ( ReadDataFromHW ( ) ) ;

p . r e q u e s t = f a l s e ;
i f no hardware p r o c e s s e s a r e a c t i v e

busy = f a l s e ;
i f mustRedo

mustRedo = f a l s e ;
n o n c l o c k e d T r a n s f e r E v . n o t i f y ( SC ZERO TIME ) ;

e l s e
i f t h i s i s t h e c l o c k e d c o m p l e t i o n p r o c e s s

c l o c k e d C o m p l e t i o n E v e n t . n o t i f y ( SC ZERO TIME ) ;
e l s e

n o n c l o c k e d C o m p l e t i o n E v e n t . n o t i f y ( SC ZERO TIME ) ;
}

Figure 5.7: NB-NONE interface: software side

There is a completion process for each transfer process. Each completion process begins

by determining which hardware processes are executing by reading a hardware status register.

The completion process then reads the output signals of each non-executing process whose proxy
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process has requested hardware process execution and writes them to the corresponding SystemC

signals, clearing the proxy process’ request flag. Finally, if any of the corresponding hardware

processes are still executing, the completion process schedules itself to run again.

The hardware side of the interface is very similar to that of the BL-NONE interface. In-

deed, the same hardware could be used. However, we optimize this hardware slightly by using

only two trigger signals, one for clock-sensitive processes and one for non-clock-sensitive pro-

cesses. The memory mapping of the input signal registers is arranged such that the input signals of

each of these two groups of processes are located at consecutive addresses and thus the last signal

to be written to in each group may be detected. Reducing the number of trigger signals slightly

reduces the FPGA resources required.

5.2.4 Non-blocking, Single-FPGA-cycle Composition (NB-SC)

This interface does not block after making requests of the hardware and permits direct

communication between hardware processes which execute in a single FPGA cycle. Processes are

grouped into process sets such that single-FPGA-cycle processes which share an input or output

signal are in the same set. The software side of the interface is structured identically to the software

side of the NB-NONE interface, with four differences:

1. Processes whose input/output signals are completely contained within hardware have no

proxy processes.

2. There are two transfer and two completion processes for each process set. There is a pair of

busy and redo flags for each process set.

3. Proxy, transfer, and completion processes only read, transfer, and write signals which are

on the boundary between hardware and software. Transfer and completion processes only

transfer and write those signals which are destined for or produced by their process set.

4. There are no individual request flags for the proxy processes. The non-clock-sensitive com-

pletion process writes all boundary signals produced by non-clock-sensitive processes in its

process set. The clock-sensitive completion process writes all boundary signals produced by

all processes in its process set.
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c l o c k e d ( ) { / / s e n s i t i v e t o c l o c k edge
t r a n s f e r E v e n t . n o t i f y ( SC ZERO TIME ) ;
c o m p l e t i o n E v e n t . n o t i f y ( SC ZERO TIME ) ;

}

t r a n s f e r ( ) { / / s e n s i t i v e t o t r a n s f e r E v e n t
/ / and a l l boundary i n p u t s i g n a l s

foreach boundary i n p u t−to−s o f t w a r e s i g n a l s
i f s . a v a i l a b l e

c o p y t o B u f f e r ( s . r e a d ( ) ) ;
s e t / c l e a r a v a i l a b l e f l a g f o r s in b u f f e r

i f any s i g n a l i s a v a i l a b l e
WriteDataToHW ( d a t a f r o m b u f f e r ) ;

}

c o m p l e t i o n ( ) { / / s e n s i t i v e t o c o m p l e t i o n E v e n t
foreach boundary o u t p u t−to−hardware s i g n a l s

i f s . ava i l ab l e InHW ( ) ;
s . w r i t e ( ReadDataFromHW ( ) ) ;
s . a v a i l a b l e = t rue ;

i f any boundary o u t p u t s i g n a l i s not y e t a v a i l a b l e in hardware
c o m p l e t i o n E v e n t . n o t i f y ( SC ZERO TIME ) ;

}

Figure 5.8: NB-MC interface: software side

The hardware side of the interface is identical to that of the BL-SC interface.

5.2.5 Non-blocking, Multi-FPGA-cycle Composition (NB-MC)

The final interface does not block after making requests of the hardware and permits com-

position of multi-FPGA-cycle hardware processes. Such composition requires the use of a latency-

insensitive hardware implementation method such as LI-BDNs and a rather different interface.

Two issues must be addressed. First, because time in LI-BDNs is measured in enqueue and de-

queue operations, the interface must ensure that exactly one value per boundary input signal to

the hardware is enqueued per simulated cycle. Second, LI-BDNs do not have a centralized notion

of time as the software does; individual LI-BDN elements may “slip” in time from one another.

Therefore, there must be a mechanism to allow the boundary LI-BDNs and software to coordinate

updates of simulation time.

The software side of the interface is shown in Figure 5.8. There is one clocked process, one

transfer process, and one completion process. The clocked process is made sensitive to the clock

edge and serves solely to schedule the completion and transfer processes to run later.

The transfer process is made sensitive to every boundary input signal to the hardware as

well as the event which triggers it at the start of the clock cycle. This process checks whether each
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signal is marked as available; if it is, its value is copied into a buffer and its availability flag in the

buffer is marked. Then the buffer is written to hardware, which will enqueue the available signals

which have not yet been enqueued in this cycle.

The completion process reads the boundary output signals as well as their availability. If a

signal is available from the hardware and has not yet been made available to SystemC in this clock

cycle, the signal is written to SystemC and set to be available. The completion process reschedules

itself to run again if any output signals are not yet available in the hardware. 3 This rescheduling

allows the interface to be non-blocking. As an optimization, all signal values and availability are

speculatively read from the hardware in one device driver call.

The hardware side of the interface is shown in Figure 5.9. The CCC is connected to the

LI-BDN through FIFOs. The CCC contains input signal value registers but no output signal value

registers. It also contains availability registers for both input and output signals. LI-BDNs fire

autonomously as their inputs become available, thereby requiring no process control signals.

The CCC sets a bit in the output availability register when an output FIFO is not empty.

The heads of the output FIFOs can be read without dequeuing. The CCC also maintains a simple

state machine for each boundary-crossing input signal; this state machine ensures that the signal is

only enqueued once per simulated clock cycle.

3The SystemC processes which remain in software require modifications to propagate signal availability. Details
of how these modifications are made within SPRI are beyond the scope of this work.
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The end of a simulated clock cycle is detected when all of the input FIFOs have been

enqueued, all of the output signals are available, and the CCC has serviced a read of the output

signals in which all signals were available. When this occurs, all input state machines are reset,

the output signal availability register is reset, and all output FIFOs are dequeued. To prevent race

conditions, software must ensure that it writes the input signal availability after writing the values.

Likewise, it must read the output signal values after reading the output availability. To make the

interface implementation easy to achieve this execution order in block writes and reads, the input

signal availability register is memory mapped at an address just after the input signal values and

the output signal availability register is mapped at address 0.

5.3 Evaluation

We evaluate the performance and hardware resource utilization of the five explored inter-

face designs for hybrid microarchitectural simulators. The hybrid simulators are synthesized by the

extended version of SPRI from a microarchitectural model of a chip multiprocessor which contains

a parameterizable number of simple, in-order PowerPC cores and a simplistic cache hierarchy. We

chose a speculative-functional-first [48] simulator organization: all instruction-set functional be-

havior is separated from the timing behavior. SPRI keeps the functional behavior processes in

software and synthesizes the timing behavior processes into hardware. This organization, parti-

tioning, and simple model were chosen to highlight the differences between the five interfaces

and demonstrate their scalability. Each core model in hardware has independent communication

with the software; the size of data to be communicated grows linearly with the size of the model.

The cores are simple so that we may fit large numbers of them on the FPGA and so that interface

overhead is more pronounced. Because the core models are so simple, little internal parallelism

can be exploited in hardware. As a result, we expect hybrid-simulator speedup to be mainly due

to exposing the parallelism between cores. This parallelism is limited by the number of cores, so

we expect speedups to not to be particularly high, however, there will be significant differences

between the interfaces.

Hybrid simulators with the five interfaces are synthesized for six different core counts. The

experiments are carried out on the DRC 1000 system and the VHDL-to-bitstream synthesis was

done by ISE 8.2. The simulator is run on the FFT and Radix kernels from the SPLASH-2 [49]
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Figure 5.10: Software-only simulation speed
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Figure 5.11: FPGA slice utilization

benchmark suite. LLVM 2.9 was used for compilation. Figure 5.10 shows the simulation speed

for the software-only simulators using the reference implementation of SystemC 2.0.1.

Figure 5.11 displays the FPGA slice utilization for the synthesized hybrid PowerPC mi-

croarchitectural simulators. Missing bars correspond to hybrid simulators which could not be

created due to FPGA capacity problems of two kinds. First, routing resources are limited for the
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Figure 5.12: Speedup of hybrid over software-only simulation

non-composition interfaces. More than two cores for BL-NONE and NB-NONE failed to route,

because large number of output signals can’t be muxed together within the CCC. Second, multi-

FPGA-cycle composition requires more slice resources because of the FIFOs and control logic

between processes used by LI-BDN [45].

Figure 5.12 shows the speedup over the baseline software-only simulator achieved by the

hybrid FAME simulators with the five interfaces. The FFT and Radix benchmarks have similar

results. Missing bars indicate that the FPGA runs out of resources for the corresponding simulators.
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Figure 5.13: Execution time breakdowns

As expected, even the best speedups for this model are not large, due to the simplicity and lack of

internal concurrency of this model. However, there is an enormous difference between interfaces:
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up to a 34x difference in speed. This is caused primarily by reducing the number of round-trip

communications and interface overhead due to composition and nonblockingness.

Additionally, a certain amount of time is spent in the operating system. When the device

driver is called for the software/hardware communication, it spins and waits for operations to

complete. Figure 5.13 shows the amount of time spent per cycle in both system and user modes.

The software-only model bars indicate how the amount of work which the baseline simulator must

do per cycle grows rapidly as the models increase in size. The two non-composing interfaces spend

the vast majority of their time in communication, because of the many round-trip communications

in each cycle. In user mode, they both do 10 to 15 times more work which stems from copying

signal data from place to place in the interface code. Thus both interfaces result in significant

slowdowns. On the other hand, the amount of time spent in communication grows very slowly for

the composing interfaces and the amount of time spent executing processes in software increases

far less rapidly than it does for the software-only model. Thus, as the number of cores increases,

the increasing amounts of offloaded concurrent work lead to higher speedups.

The speedups of hybrid simulation are affected by two aspects of the communication over-

head: the number of round-trip communications and the amount of data transferred across the

software/hardware boundary. First, as a result of the chosen partitioning and organization of this

model, the NB-MC interface has only one round-trip communication per cycle, the lowest com-

munication overhead; whereas the BL-SC and NB-SC have two: one for clock-sensitive pro-

cesses and one for non-clock-sensitive processes. In this case, BL-SC has similar performance as

NB-SC; with other partitionings, the blocking behavior would affect speeds more. Overall, the

NB-MC interface should expect to encounter these one-trip scenarios more frequently. However,

the NB-MC interface shows additional overhead in the user time; this overhead is spent in comput-

ing signal availability for software processes. Second, increasing the number of simulated cores in

hardware causes more signals to cross between software and hardware. The increasing amount of

transferred data eventually saturates the CPU-to-FPGA communication bandwidth, which thereby

becomes the performance bottleneck: when scaling to 32 simulated cores with the NB-SC and

BL-SC, the speedups of simulating 32 cores are not bigger than those of 16 cores.

To summarize, the combination of module composition and non-blocking communication

overcomes the speed limitations by permitting hardware concurrency, reducing the communication
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overhead, and overlapping communication and computation. The two preferred interfaces are NB-

SC and NB-MC. NB-SC should be used whenever single-FPGA-cycle composition is possible, as

it is both faster and less resource-intensive. NB-MC should be used when there is a large number

of multi-FPGA-cycle processes, as this will reduce communication overhead.

61



Chapter 6

Conclusions and Future Directions

Microprocessors are applied everywhere in our life. When designing products, architects

must face the challenge of planning, evaluating, and implementing multiple heterogeneous micro-

processors that are capable to meet different processing requirements. To rapidly validate their

ideas, microarchitectural models must be easy to construct, flexible to change, and fast to execute.

The synthesis of hybrid structural microarchitectural simulators offers an opportunity to achieve

all these goals. The work of this thesis takes the first step towards the synthesis of hybrid structural

microarchitectural simulators and contributes a complete infrastructure (SPRI) which perfoms sim-

ulator partitioning, hardware synthesis, and interface synthesis. This thesis has researched on the

interface design and synthesis techniques for synthesized hybrid structural microarchitectural sim-

ulators. It has also thoroughly evaluated the interface design space by implementing five interface

generators for SPRI and comparing a set of the automatically-generated interfaces. This analysis

and study have demonstrated the important design trade-offs and performance factors (i.e. hard-

ware capacity, interface latency, interface bandwidth, simulation speed, and design scalability to

simulate multiple cores) involved in choosing an efficient interface. The insights of this reseach

are essential. They can lead to better decisions on how to organize a simulator, how to partition a

simulator, and how to choose an interface, no matter whether architects are planning on applying

SPRI to generate hybrid structural microarchitectural simulators or manually creating them from

scratch.

In the future, we will continue to improve the non-blocking interface by separating com-

munications with the hardware into a separate thread, allowing SW to continue execution during

communication and by transforming portions of the SW into an LI-BDN-compatible form. We are

also looking to supports other hybrid simulation platforms which have FPGAs with large capacity

and scale to hybrid simulators for hundreds of cores.
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