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ABSTRACT

Application of Next-Generation Transcriptomic Tools for Non-Model
Organisms: Gene Discovery and Marker Development
Within Plecoptera (Insecta)

Nicholas G. Davis
Department of Biology, BYU
Master of Science

Phylogenetic research on non-model organisms has been hindered by limited marker
availability. Next generation sequencing techniques are eliminating that barrier. Using [llumina
sequencing technology, Trinity assembly software, custom Perl reciprocal BLAST scripts, and
Primer3 primer prediction software, we produced and analyzed 7 Plecopteran transcriptomes,
representing 7 of the 16 total families, in an attempt to identify and develop conserved
orthologous genetic markers. The transcriptomes were used to reconstruct a gene content
phylogeny using a simple distance matrix generated from reciprocal blastn data. By producing
and filtering a reciprocal blast network we identified and aligned over 450 putative orthologs.
Out of these, 25 primer pairs were selected that showed 100% conserved primer sites across all
the transcripts from which they were created. Of those 25, 3 loci (PlecSK1, Perl534, and
PvC2190) show very positive phylogenetic potential. These 3 markers may also be suitable and
even highly useful in population genetic studies in which the populations have had sufficient
time to develop significant genetic separation. The rapid and affordable nature of this study
demonstrates the ease by which non-model organism phylogenetics can be expanded and made
more robust.

Keywords: transcriptome, phylogenetic, plecoptera, insects, non-model, BLAST, ortholog
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Introduction

Phylogenetic research with non-model organisms has been hampered by the limited
number of markers. Due to the difficulty in developing additional markers, genes and markers
are often chosen for a study based on availability rather than suitability for the phylogenetic
hypothesis to be tested [1]. This problem, of less than ideal markers, has contributed to the
continual revisions to specific evolutionary trees and taxonomic nomenclature. Adding data from
a single gene can result in major relational changes, indicating that not incorporating enough
markers to allow the congruence and incongruence between the individual gene trees to balance,
prevents generation of an accurate and robust species tree, which is stable to the inclusion of
additional data [2,3]. Adding more sequences to a dataset does not resolve all of the challenges
of systematics, which include long-branch attraction, lineage sorting, well supported erroneous
trees, bad alignments, proper ortholog identification, taxon sampling, and evolutionary model
selection [4,5]. However, while adding sequence data is clearly not an end all solution, it will
increase the tree’s resistance to change. Thus marker selection is crucial to avoid reliance on an
incorrect topology.

Nuclear protein coding genes are often well conserved markers. They can significantly
increase the ability to recover deep rooted evolutionary relationships [6]. Messenger RNA
transcript sequencing is an efficient and effective way to sample the protein coding sequence of
the nuclear genome for evolutionary studies [7-10]. RNA extraction techniques, including silica
matrix (SM) and guanidinium thiocyanate-phenol-chloroform (GTPC), successfully isolate RNA
from all other genomic material [11,12]. RNA can then be converted into complementary DNA
(cDNA) that can be sequenced. The ability to sequence large portions of genomes at reasonable

costs is facilitated by advances in next generation sequencing technology [13]. Many platforms



exist, but at this time none produce as many reads at the fidelity and low price per base as the
[lumina platform.

[llumina sequencing technology relies on bridge amplification that clones specific
sequences in clusters (solid-phase amplification) [14,15]. The base identification is achieved
through a cyclic process of washing polymerase, reversible terminator nucleotides, and primers
across the sample, followed by laser excitation to fluoresce and read the base addition; reversible
terminators must then be unblocked [14,15]. Each sequencing cycle uses fresh chemicals, thus
increasing sequencing cycles in a sequencing run raises the total sequencing cost. Advantages of
[llumina’s sequencing methods over other currently available technologies include no issues with
homopolymer runs, reading all A, G, C, or T nucleotides within the same flow cycle, and a very
high throughput (600 Gb for 100 bp paired end sequencing) (www.illumina.com) resulting in a
lower cost per base (Roche/454 gives only 700 Mb) (www.454.com) [14,15]. Disadvantages
include a somewhat quick dephasing that results in shorter reads (150 bp) (www.illumina.com)
compared to Roche/454 (650 bp) (www.454.com) and a relatively low capacity for multiplexing
samples [14,15]. Overall the much higher throughput and ease of sequencing homopolymers has
made Illumina an obvious choice for many research applications.

A plethora of computer algorithms and software packages have been developed to deal
with next generation sequence data. Early shotgun sequencing assembly methods relied on
Overlap Layout Consensus (OLC) methods, which is optimal for the longer reads provided by
Sanger and Roche/454 [16,17]. Yet, [llumina, which produces much shorter reads, requires a
very different assembly approach. De Bruijn Graph (DBG) assembly methods are ideal for short
read data [16]. The process relies on breaking sequencing reads into small chunks called k-mers,

of length k, aligning k-mers that most likely go together meeting the designated criteria or



parameters, eliminating k-mers that are likely false due to sequencing errors, and assembling the
reads into transcripts or contiguous sequences [16]. DBG software choices are abundant, and
which one to use can depend on the data set itself. Trinity is a software package that was
developed to specifically handle de novo transcriptome assembly [18]. Its strengths over other
DBG software include extremely low-base error rates (detects 99% of errors), handling small and
large data sets equally well and across a range of conditions, and higher rates of gene and
isoform detection [18,19]. However, Trinity software requires significantly longer run times

[19], but with adequate planning this should never be a problem. Being that our RNA-seq
datasets will be small, full of complex alternative splicing, and require extremely low error rates
for accurate ortholog detection, Trinity is the clear choice for our data-analysis.

Homology is the underlying principle to all phylogenetics and systematics. It is the
concept that a character, gene, or nucleotide base in two different organismal groups is derived
from the same character, gene, or nucleotide base in a common ancestor. Homology in historical
phylogenetics can only be inferred from evidence such as position, likeness, and function. An
ortholog is a homologous genetic sequence or gene that is directly descended from the same
copy of an ancestral gene as opposed to paralogs that are related as different copies of the same
gene from a duplication event [20]. Inferring genetic orthology is complicated by many non-
trivial factors. They include paralogy, gene loss, gene fusion, gene fission, horizontal gene
transfer, insertions, deletions, gene duplication, back mutations (multiple hits), and incomplete
lineage sorting [21,22].

Ortholog inference software programs are based on two main approaches. The first
approach is a tree method that compares the proposed ortholog tree to a reliable species tree and

then evaluates the evolution of the ortholog in most the parsimonious way to verify probable



orthology [21,22]. The second approach is a graph-based or heuristic method that utilizes a
BLAST or best match algorithm. The best-matches among all compared sequences are
determined from a “pairwise sequence similarity search” and are set aside as putative homologs
[21,22]. Tree-based methods tend to be less sensitive to the exact software used but rely on the
accuracy of a multiple sequence alignment (MSA) and the tree reconstruction which both of
which can have bias and error, causing incorrect ortholog prediction [21,22]. While tree based
methods tend to be more accurate than heuristic approaches, especially when gene losses are
present, they are substantially more intense computationally [21,22]. The advantages of heuristic
approaches include being faster, easier to run, and not influenced by MSA and tree errors
[21,22]. Ortholog inference software has been solely applied to nuclear genomic data, not to
cDNA transcript data. It is very unlikely that any of the available software packages would work
for our datasets. Therefore we will develop our own that combines several of the techniques used
in other ortholog detection software [23] such as self-blasting and reciprocal blasting [24].
Orthologous sequences can be used in a traditional phylogenetic framework, but genomic
data has provided opportunities for the development of novel approaches to phylogenetic
investigations. Gene content phylogeny [25], while relatively computationally inexpensive, is an
entirely different approach to inferring systematic relationships. It relies on the idea that the more
similar two taxa are, the more genes or gene content of the genome will be shared. In general, the
concept is applied by performing BLAST on whole genomic datasets, between all of the taxa
being evaluated. The higher the number of blasts between taxa the smaller the distance of
relatedness is between them, thus a distance matrix is employed in tree reconstruction. Many
studies have employed this method [26,27], some modifying it by applying ideas of weighting

and e-values [28,29]. E-values reflect how likely a blast result would be by chance, calculated



based on a number of factors including percent identity and the length of the matching, also
called sequence coverage.

The intent, of this project is to develop these methods and expand the genetic marker set,
identifying genes that can be used as phylogenetic markers in non-model organisms. We selected
an aquatic insect order, Plecoptera. This order contains roughly 3500 species, 286 genera, and 16
families [30]. The first published molecular phylogeny of Plectoptera utilized a single nuclear
marker, 28S, approximately 1,300 nucleotides in length and incorporated 30 taxa. All families
were represented [31]. The most recent, and only other molecular systematic study of Plecoptera
was much more extensive, utilizing 138 binary characters, 6 genes (5 loci), approximately 6000
total nucleotides, incorporating 179 taxa with all families represented [32]. All other research on
the phylogenetic relations among the families of Plecoptera have been based on morphological
and behavioral characteristics [32-37]. The use of phenotypic characters can be significantly
biased by the researcher’s experience and presuppositions [38]. It is well accepted that the best
approach to inferring systematic relationships incorporates both molecular and morphological
data. However, being that morphological approaches have been the major focus for most insect
systematics, including Plecoptera, the expansion of the molecular data set appears to be the most
promising source of additional informative data [39].

Non-model organism phylogenetics have been restricted by a lack of phylogenetic
markers [40]. Current arthropod systematics is still only using a few genes in most analyses and
most sequence data are limited to the mitochondrial genome, which has been well demonstrated
as a relatively poor marker for deeper phylogenetic relationships [41]. Several research teams
have leveraged RNA-seq data to develop nuclear markers specific to their orders [8-10]. The

objectives of this study are to identify conserved, yet informative, nuclear markers suitable for



designing robust PCR primers by using RNA sequence data from many different taxa within

Plecoptera, and to employ genome content phylogenetic ideas to transcriptomes.

Materials and Methods

RNA Sequencing

Specimens representing seven different stonefly families were collected (See Table 1)
from February to April 2012: Capnia nana, Hesperoperla pacifica, Megarcys Sp., Pteronarcys
californica, Sweltsa Sp, Taenionema Sp., Zapada cinctipes. Upon collection, specimens were
placed live in bottles filled with stream water and stored in coolers with ice for transport. RNA
extractions were performed within 48 hours of collection. For next day extractions the specimens
were kept overnight in a chilled, well oxygenated, artificial stream. RNA extractions were
conducted using the Qiagen RNeasy Plant Mini Kit (Qiagen Group, Valencia, CA) following
their “Purification of Total RNA from Animal Tissues” protocol. Successful extraction was
verified with a NanoDrop spectrometer. Failed extractions were repeated until successful.
Extracted total RNA was stored at -80°C until all samples were finished and ready for cDNA
library construction.

Immediately prior to cDNA library construction RNA concentrations were again
quantified a second time using a NanoDrop spectrometer. One microgram of total RNA was
used. cDNA libraries were made using [llumina TruSeq RNA Sample Prep Kit V2 (Illumina
Inc., San Diego, CA) following the “Low Throughput” (LT) protocol. Success of cDNA library
construction was verified using the Agilent DNA 7500 Kit (Agilent Technologies Inc., Santa
Clara, CA) to determine overall range of fragment size. A PicoGreen assay was used to

determine cDNA concentrations for each sample. cDNA libraries were submitted to the
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Huntsman Cancer Institute for sequencing on an Illumina HiSeq 2000 (Illumina, San Diego,
CA). The seven stonefly libraries and 6 other insect libraries were sequenced on a single lane of
a flow cell at 50 bp single end reads. Reads obtained from this sequencing run were then filtered
using the Sickle (najoshi, GitHub.com) quality trimmer software and assembled de novo into

contigs, representative of transcripts, using Trinity assembly software [18].

Ortholog Inference

Each transcriptome or RNA sequencing dataset was compared and evaluated by a set of
custom Perl scripts (runBlast.pl, blast.pl, mergeBlast.pl). These scripts filter out contigs through
a combination of self-blasting and a reciprocal blast network. runBlast.pl (see appendix A)
designates the files to be analyzed, sets e-value thresholds (i.e. best hit at 1e-50, and better than
second best hit by a factor of 1e-20 or more) prepares a blast index for each file, and then calls
blast.pl. blast.pl (see appendix B) submits a blastn job for all file combinations to the computer,
removes blastn results not meeting the set e-value threshold requirements from further analysis,
and prints acceptable data to an outfile. Finally, in running mergeBlast.pl (see appendix C),
outfiles from blast.pl are used to create a hash tree which connects all of the file combinations
blast results in a network. This network is evaluated to determine the reciprocity of blastn results
and to designate apparently non-paralogous reciprocal best hits. Every contig of every file is
checked for self-blast and to insure that it is also the sole significant blast for each contig it blast-
ed to within the other files (each file being the blast.pl hit data of an individual species’
transcriptome). Networks of contigs passing these criteria are then aligned using MUSCLE [42]
and saved as alignment text files. mergeBlast.pl also allows for “missing data” in the sense that

the user indicates how many of the taxa must participate in the reciprocal blast network. To



evaluate the effect of missing data, up to 5 of the 7 taxa, that were RNA-sequenced, were

permitted to not participate in the reciprocal blast networks.

Transcriptome Content Phylogeny

A separate reciprocal blast analysis was conducted, in which each species’ transcriptome
was blast-ed against that of every other species in the study. The total number of blasts that were
reciprocated and significant at an e-value of 1e-40 or greater with no other hits greater than 1le-
20, were counted as reciprocal best hits. The resulting hit count for each combination of species
was put into a distance matrix in which the distance (number of reciprocal best hits) was
interpreted inversely so that the greater the number of reciprocal best hits the closer two species
were related, or in other words, the smaller the distance between them. The distance matrix was

used to infer phylogenetic relationships between the seven taxa used for RNA sequencing.

Primer Development

Contig alignments produced during the mergeBlast.pl step of the ortholog inference were
evaluated by eye in GeneiousPro version 6.0.5 (Biomatters; Auckland, NZ). Alignments that
contained two or more regions that were conserved at 100% identity and long enough (>18bp) as
well as at least 100 bp apart from one another were used to make primers in Primer3 online [43].

Primer3 parameters were left on default.

Marker Validation

Primers were tested using template DNA from five different freshly collected stonefly
specimens representing five families (See Table 2): Capnia utahensis, Claassenia Sp.,

Isogenoides Sp., Pteronarcella badia, Zapada cinctipes. DNA extractions were done using the



Qiagen DNeasy kit using the animal tissue protocol (Qiagen Group, Valencia, CA). One of the
five species used was one of the RNA-sequenced species (Zapada cinctipes). PCR reactions
were run using the following reaction mixture: 2.25 pL nuclease-free water, 0.5 uL forward
primer, 0.5 pL reverse primer, 6.25 pL Taq polymerase, and 3 pL DNA for a total reaction
volume of 12.5 pL. Cyclic PCR reactions consisted of 3 min at 95°C; 35 cycles of 1 min at 95°, 1
min at 55°C, and 90 sec at 72°C, followed by a final extension step of 7 min at 72°C.
Amplification success was verified by standard gel electrophoresis.

Purified PCR product was used as template for cycle sequencing reactions with Big Dye
chemistry (Applied Biosystems, Inc. Foster City, CA) using the same primers for PCR, using the
following reaction mixture: 2.75 pL nuclease-free water, 1.75 uL 5x buffer, 0.5 pL Big Dye, 0.5
pL primer (~10 pmoles), and 5.0 uL of purified PCR product for a total reaction volume of 10.5
nL. Separate sequencing reactions were used for the forward and reverse primers. Products of
cycle sequencing were purified with Sephadex (G-50; Sigma-Aldrich Co., St. Louis, MO) spin
columns. Dry samples were submitted to the Brigham Young University DNA Sequencing
Center to be Sanger sequenced using a 3730x] automated sequencer (Applied Biosystems, Inc.
Foster City, CA).

Sequences were aligned and edited in GeneiousPro. Individual alignments were used to
create a single consensus sequence. All consensus sequences for a single gene were aligned
together as nucleotide sequences and were translated using “Codon Align”, on the HIV Sequence
Database website (http://www.hiv.lanl.gov/content/sequence/CodonAlign/codonalign.html),
which infers the best reading frame aligned as protein sequences. Each consensus sequence was
also blast-ed against NCBI’s non-redundant nucleotide database using blastn [44] as well as the

protein database using blastx [44]. Alignment and blast results were evaluated for consistency.



Genes that were amplified and sequenced as the same single copy gene were then
sequenced in additional species and in two cases, individuals from the same species but from
different populations (see Table 3). Identifications of the specimens used in this part of the
protocol and in previous steps were performed by the author and Charles R. Nelson (Department
of Biology, BYU) using the appropriate manuals ([45-48]. The resulting sequence data were then
aligned to the data from the original test PCR taxa as well as the transcripts from which the
primers were created. The alignments were trimmed in BioEdit [49] so that the same nucleotides
were evaluated/compared for each taxon. A maximum likelihood phylogeny was created by
performing a maximum likelihood search and GTR+G model of rate heterogeneity at 100
bootstraps using RAXML online version 7.7.1 [50] and PhyML [51] at 1000 bootstraps [52].
Neighbor-Joining [53] trees were created using HKY [54] and Jukes-Cantor [55] genetic distance
models and bootstrap values were calculated from 1000 replicates. Trees were re-rooted
separating the two stonefly suborders systellognathan and euholognathan. The figures were made

using FigTree v1.4 (http://tree.bio.ed.ac.uk/software/figtree/).

Results

RNA Sequencing

RNA extraction concentrations ranged from 60 to 2500 nanograms/microliter, the
average being 1047 ng/ul. The cDNA library concentrations ranged from 12 to 66
nanograms/microliter, the average being 42 ng/ul. All 7 Plecopteran Illumina libraries sequenced

and assembled, ranging from 15,305 to 26,526 contigs.
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Ortholog Inference

Applying the custom BLAST scripts to the 7 stonefly transcriptomes, not allowing for
any “missing” data, created about 30 alignments (at 70% shared identity) of unique orthologs.
When 1, 2, or 3 transcriptomes were allowed to be missing from the reciprocal blast network, the
set of putative ortholog alignments increased to ~120. Permitting up to 4 to be missing,
generated a total of ~170 alignments were generated. Two hundred and thirty alignments (at 80%
shared identity) were output when the reciprocal blast network was constrained to just the
hypothesized super-family Perloidea (see Fig. 1). When evaluating the probable sister families of

Perlodidae and Chloroperlidae, 465 alignments (at 85% shared identity) were found.

Transcriptome Content Phylogeny

The transcriptome content phylogenetic reconstruction recovered the major relationships
found in the leading Plectopteran morphological systematics research. Those major relationships
include the monophyly of Perloidea, Systellognatha, and Euholognatha. The resulting tree differs
in that the relationships between Perloidea families are resolved (Perlidae as the outgroup to
Perlodidae and Chloroperlidae) as is a rearrangement of relationships between the
Euholognathan taxa (Nemouridae as the outgroup to Capniidae and Taeniopterygidae). Overall,
the differences in the total numbers of genes shared between different nodes in the tree are high,
with the exception of the Nemouridae and the Capniid and Taeniopterygid sister relationship (52
reciprocal blasts). This is much lower in comparison to the difference between Perlidae and the
sister relationship of Perlodidae and Chloroperlidae (594 reciprocal blasts) as well the difference

between Pteronarcyidae and Perloidea (184 reciprocal blasts).
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Primer Development

Of the ~170 alignments, when evaluating all of the stonefly transcriptomes together, 22
appeared suitable for developing primers, in that they contained regions which were conserved
>18 bp in a row. In designing the primers, 14 of those 22 produced suitable primer pairs, suitable
meeting standard primer optimization criteria (i.e. melting temperature, homopolymers,
dimerization, etc.). Of the ~230 Perloidea alignments, 22 appeared suitable with only 9 of the 22
adequately meeting the primers generation parameters. Thirty-nine primer pairs were found
suitable from the Perlodid-Cholorperlid alignments, 35 of those were conserved enough for
primers. All of the Plecoptera and Perloidea primers were tested, while only 2 from Perlodidae
vs. Chloroperlidae were tested, due to the fact that it was poor subsampling of order level

variation.

Marker Validation

Overall, successful, consistent, and intentional PCR amplification was rare. Eight of the
25 tested markers amplified in at least a single taxon. Of those 8 loci, 5 produced sequence from
the intended target region. However, only three (PlecSK1, Perl534, and PvC2190) of the 5
markers met the criteria of consistent amplifications, clean sequencing of all amplified taxa, and
clean alignment (Table 4).

PlecSK1 sequence data were produced in four out the seven transcriptomes, five out of
the five primer testing taxa, and for 11 additional individuals. Total taxonomic representation
consisted of 7 families, 15 genera, and 17 species, two species having two individuals from two
different populations. PlecSK1 nucleotide and protein sequence returned the same best BLAST
results using blastn and blastx respectively; identifying the sequences generated from the

PlecSK1 primers as a muscle-specific actin of the sugar kinase HSP70 actin superfamily. The
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trimmed nucleotide alignment (870 bp) of 19 of the 20 nucleotide sequences (Claassenia Sp.
sequence data quality was too poor to include) had 175 variable sites (20.1%). The protein
alignment of the same sequence data showed five non-synonymous mutations (98.3% identical,
16/19 taxa being 100% identical). Two of those non-synonymous mutations only occurred in
both of the Pteronarcyid species. One occurred in both Pteronarcyid species and the Neoperla
species. One occurred in only the two species of Agnetina. The last one only occurred in the two
Agnetina species and the two Pteronarcyid species.

The maximum likelihood (Fig. 2) and neighbor-joining (Fig. 3) phylogenies, based on the
PlecSK1 nucleotide alignment, display, similar results to each other. In both methods, all of the
families represented by more than one species, remained monophyletic. In both methods, the
monophyly of Systellognatha and Euholognatha are strongly supported. Although nearly all of
the systematic relationships are conserved between the two methods, eight of the 17 nodes have
relatively weak bootstrap support.

Perl534 sequence data is present from three (from Perloidea) of the seven transcriptomes
and was sequenced in three of the primer testing taxa; Claassenia Sp., Isogenoides Sp., and
Pteronarcella badia. The trimmed nucleotide alignment of these six sequences was 179 bases,
60 of which were variable (66.5% conserved identity). The translated nucleotide alignment is
50% variable, however, the variation exists between two regions with 100% identity on the end
of the locus, the regions being eight and ten amino acids long. The variable areas tend to vary
among all taxa and the more conserved regions, tend to be conserved among all taxa, with only
three gaps of one amino acid spacing. The sequences for this locus did not blast to any known

nucleotide or protein sequences using both blastn and blastx.
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PvC2190 was sequenced for a total of six species, two sequences from the transcriptomes
of Megarcys Sp. and Sweltsa Sp.; the rest being Claasenia Sp., Isogenoides Sp., Capnia
utahensis, and Pteronarcella badia. The nucleotide alignment is 427 base pairs long with 172
variable sites (40.3%). The protein sequence alignment is only 37.2% conserved. However, the
conserved regions are in series of 17-26 residues. Blastn and blastx against NCBI’s database do
not return any results. Specifics, including the specific primer sequences, for PlecSK1, Perl534,

and PvC2190 are found in Table 5.

Discussion

Inferring the orthology of any trait, genetic or morphological, carries an inseparable
burden, one that affects all of phylogenetics. That burden is the fact that in spite of a methodical
and well-reasoned approach, just as you cannot directly observe the history of evolution, you
cannot know that the marker you are using conveys correct phylogenetic signal. The goal and
expectation of this study was to develop and proof a relatively inexpensive methodology for
finding and developing a plethora of genetic markers which would allow enough correct
phylogenetic signal to overshadow incorrect or misleading similarities.

It is potentially more challenging to develop markers for all of Plecoptera and other old
insect orders like it, simply because, they share a more distantly related common ancestor than
more recent orders such as Diptera or Lepidoptera [8]. It could be the case that age has less of an
effect on genetic divergence than the biology and behavior of a particular lineage’s genome or
life history, however, realistically it is an interaction of many factors, including time. As part of
this same consideration, molecular evolution will vary from locus to locus and even base pair to
base pair. 3" base pair codon position typically evolves faster than its two other counter parts

which tend to cause changes in the protein sequence. The study marker PlecSK1 appears to
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demonstrate this principle in that nearly all of the variable nucleotides between taxa are 3 codon
and synonymous. Being that the variability is synonymous, it stands to reason that those
nucleotide positions should each represent near neutral phylogenetic data points. One major
drawback, however, is that in comparing taxa at an ordinal level and of an order as old as
Plecoptera, neutral data points may mutate so fast that they give useless and even misleading
information. Transcriptomes, representative of the “active” parts of the genome may have
inherent advantages and disadvantages relative to marker development.

Transcriptomes represent the RNA being actively transcribed in cells at a particular
moment in time. Expression varies over an organism’s lifespan as well as in response to
environmental inputs. In this study, for many of the samples, individuals were pooled together
for extractions, especially for the taxa with relatively low mass. Whether an extraction was
performed on pooled individuals or not, the RNA generally only represented one life stage’s
response or status with regard to regulatory processes for that life stage and environmental
conditions. By incorporating individuals from a large variety of the life stages of an organism,
the likelihood of capturing a greater proportion of the species’ exome should increase. Doing this
for all of the species sequenced would also likely increase the number of, or at least confidence
in, predicted orthologs. That being said, there were still hundreds of putative orthologs identified
without performing a more robust sampling of the exome.

While suitable primers could be not be made for all of the putative orthologs we
identified, the markers that we were able to amplify and evaluate are promising. The fact that the
marker PvC2190, which amplified in multiple families, was created by comparing two species
from two different families of the same superfamily. This shows that it may not be necessary in

all cases to sequence RNA for many taxa for both a large and old groups. While the marker
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Perl534 does not amplify a particularly large section of DNA, it does have a high amount of
variability. It too was created from a significantly narrowed subset of the transcriptomes.
PlecSK1, created only from four of the seven transcriptomes is the longest and most conserved
when it comes to the protein sequence, the variable nucleotides being functionally neutral third
codon positions.

The maximum likelihood and neighbor-joining phylogenies, constructed using the
PlecSK1 alignment, have only minor incongruences with the most accepted systematic
hypotheses of Pleopteran systematics [36]. One incongruence being that Pteronarcyidae was not
recovered as the out-group to the Superfamily Perloidea, rather that Perlidae is the out-group to a
monophyletic clustering of Chloroperlidae, Perlodidae, and Pteronarcyidae (See Figures 2 and
3). The congruence between the current major Plecopteran systematic studies and the PlecSK1
phylogeny, may indicate, through the topology and support values, that the bases that are
informative for resolution of deeper nodes may be able to overshadow the noise provided by the
bases that may be helping to resolve the shallower nodes. While PlecSK1 sequence is unlikely to
be sufficient to reconstruct or represent the real history of all relationships within Plecoptera, its
greatest importance would be to analyze it in conjunction to the datasets of Zwick et al 2000 and
Terry et al 2003.

Additional sequencing, similar to that in investigating the phylogenetic potential of
PlecSK1, should be completed for both Perl534 and PvC2190. It is interesting to note in both
PlecSK1 phylogenies, that the support value for the monophyly of Hesperoperla pacifica is
lower than would be expected (ML 58, NJ 93) (see Figures 2 and 3). These lower bootstrap

values are low due to the amount of intraspecific variation found between the two specimens
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used. This may indicate that PlecSK1 could be useful in population genetic studies in some
Plecopteran species in addition to Hesperoperla pacifica.

There are several points of possible modification and improvement for this work. Two of
those factors include generating higher quality sequence data and using an improved application
of BLAST comparisons. The Illumina sequencing in this study was conducted using single end
reads. Paired end sequencing can result in 10 times the number of assembled contigs (Shiozawa
unpublished data), which would likely increase the ability of our Perl scripts to infer more
orthologs and paralogs. In addition to generating more complete transcriptomes by changing the
BLAST software to run reciprocal blast networks based on translated nucleotide sequences
(tblastx), cross-comparing translated transcriptome sequences and performing protein sequence
alignments, proteins would give a much more accurate picture of orthology. Suitable alignments
would then be back-translated to visualize the potential for making primers.

The transcriptome content phylogeny we produced, akin the genome content phylogeny
concept [25], is apparently its first application to RNA sequence data. It assumes that the more
related two genomes are to one another, the more they will share reciprocal best blasts or
reciprocal best hits between them. It generated a phylogeny (Fig.1) which is nearly identical to
the leading Plecopteran systematic hypotheses, supporting the monophyly of Perloidea,
Euholognatha, and Systellognatha. In addition, Perlidae was placed as the out-group to a sister
relationship between Perlodidae and Chloroperlidae, which is the prominent hypothesis among
Plecopteran morphologists. While not ideally sampled, both for life stages, taxonomic breadth,
and lack of replicate independent sequencings, it demonstrates the application’s potential. Its
accuracy should be quantitatively compared to traditional base pair to base pair comparisons, as

it uses a broad source of evidence, based on the comparisons of thousands of loci. This approach
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may even benefit from running the analysis based on both blastn and tblastx, doing both may
increase robustness and accuracy.

From this research many advantages and disadvantages to working with transcriptomes
for phylogenetic or population genetics work have become clear. Some of these advantages or
disadvantages could be seen the other way based on the specifics of the study but they are worth
considering. Positive attributes include that transcriptomes are relatively conserved.
Transcriptome sequencing is a very effective form of genome reduction. The molecular protocols
involved are relatively easy and can be accomplished with standard lab equipment.
Transcriptomes can be assembled De Novo. The overall process is relatively affordable (<$5000
for extractions, cDNA library construction, and Illumina sequencing). [llumina transcriptome
data are relatively bioinformatically simple to evaluate. Disadvantages to RNA sequencing
include the rapid degradation of the RNA itself, requiring fresh carefully processed tissue. The
[lumina library construction protocol is somewhat time consuming. Without a reference
genome, predicting introns and primer mispriming issues for creating optimized primers, are not
possible. There is a bigger upfront investment in the sequencing process compared to Sanger
methods, however, over all costs are low. It simply implies that the focus should shift to the
planning stages of the sequencing project. It requires bioinformatics skills and the processing
power of a supercomputer, especially for transcriptome assembly.

Overall, this study demonstrates the rapid and relatively simple process of generating
hundreds of orthologous sequence alignments for a group of non-model organisms. While genes
may very well be orthologs, that does not imply that they have long enough regions of identical
base pairs to be able to create primers for successful Sanger sequencing. However, investing in

paired end sequencing, running the reciprocal blast as a tblastx, and pooling individuals together
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that represent a robust sampling of the life cycle, should dramatically improve results. This is
especially the case when working with sub-ordinal relationships or with groups that are more
recently diverged. While Sanger sequencing will generally not facilitate marker discovery, it still
remains a very high quality sequencing method and is very useful in validating genetic markers

as well as being the method of choice for smaller scale target sequencing studies.
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Table 1: RNA Sequenced Taxa

Family Taxon

Capniidae Capnia nana
Chloroperlidae Sweltsa Sp.
Nemouridae Zapada cinctipes
Perlidae Hesperoperla pacifica
Perlodidae Megarcys Sp.
Pteronarcyidae Pteronarcys californica

Taeniopterygidae =~ Taenionema Sp.

State
UT
UT
UT
UT
UT
UT
UT

County
Utah
Utah
Utah
Utah
Utah
Utah
Utah

Location

South Fork Lower Provo River
South Fork Lower Provo River
South Fork Lower Provo River
South Fork Lower Provo River
South Fork Lower Provo River
Diamond Fork River

South Fork Lower Provo River

26

Collection Date
1-Mar-12
5-Mar-12
1-Mar-12
23-Feb-12
23-Feb-12
4-Mar-12
5-Mar-12

Life Stage
Adult
Nymph
Adult
Nymph
Nymph
Nymph
Nymph



Table 2: Primer Testing Taxa

Family
Capniidae
Nemouridae
Perlidae
Perlodidae
Pteronarcyidae

Taxon

Capnia utahensis
Zapada cinctipes
Claassenia
Isogenoides Sp.
Pteronarcella badia

State

UT
UT
UT
UT
UT

27

County
Utah
Utah
Utah
Utah
Utah

Location

Hobble Creek
Hobble Creek
Diamond Fork River
Soldier Creek
Soldier Creek

Collection Date
12-Mar-13
12-Mar-13
12-Mar-13
12-Mar-13
12-Mar-13



Table 3: SK1 Phylogenetic Reconstruction Taxa

Family Taxon State County Location Collection Date Transcripts
Capniidae Capnia nana uT Utah South Fork Lower Provo River  1-Mar-12 v
Capnia utahensis uT Utah Hobble Creek 12-Mar-13
Utacapnia logana uT Utah Hobble Creek 12-Mar-13
South Fork American Fork
Chloroperlidae Alloperla thalia uT Utah River 20-Jul-13
Sweltsa Sp. uT Utah South Fork Lower Provo River  5-Mar-12
Leuctridae Paraleuctra Sp. UT Duschesne  Yellowstone Creek 18-Sep-10
Nemouridae Zapada cinctipes uT Utah South Fork Lower Provo River  1-Mar-12 v
uT Utah Hobble Creek 12-Mar-13
Perlidae Agnetina capitata PA Perry Juniata River 11-Jun-13
Agneticna flavescens PA Perry Juniata River 11-Jun-13
Hesperoperla pacifica UT Utah South Fork Lower Provo River ~ 23-Feb-12 v
UT Washington Leeds Creek 14-Oct-10
Neoperla Sp. PA Perry Juniata River 11-Jun-13
Perlodidae Isogenoides Sp. uT Utah Soldier Creek 12-Mar-13
South Fork American Fork
Isoperla sobria uT Utah River 20-Jul-13
South Fork American Fork
Megarcys signata uT Utah River 23-Feb-13 v
Skwala Sp. uT Summit Upper Provo River 18-Sep-10
Pteronarcyidae Pteronarcella badia uT Utah Soldier Creek 12-Mar-13
Pteronarcys proteus PA Clinton Bear Creek. 9-Jun-13
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Table 4: Primer Testing (Amplification) Results

Locus Relatioship % ldentity # Individuals Test PCR Sequenced Target Variable

Plec761 Order 82 4 0/5
PlecSK1 Order 86 4 5/5 5/5 5/5 Yes
Plec12 Order 98 5 1/5 1/1 Yes
Plec600 Order 100 3 0/5
Plec100 Order 100 7 0/5
Plec628 Order 100 2 1/5 1/1 No
Plec1790 Order 100 2 0/5
Plec1810 Order 100 2 0/5
PlecEF1 Order 70 4 1/5 1/1 Yes
Plec57 Order 71 5 0/5
Plec37 Order 74 3 0/5
Plec73 Order 77 5 0/5
Plec98 Order 77 4 0/5
PlecMLC Order 82 3 0/5
Perl674 Superfamily 93 3 2/5 1/2 No
Perl648 Superfamily 91 3 2/5 2/2 0/2
Perl1205 Superfamily 99 3 0/5
Perl1243 Superfamily 92 3 0/5
Perl1552 Superfamily 91 3 0/5
Perl845 Superfamily 91 3 0/5
Perl534 Superfamily 91 3 3/5 3/3 3/3 Yes
Perl337 Superfamily 90 3 0/5
Perl245 Superfamily 90 3 0/5
PvC1026 Sister Families 94 2 0/5
PvC2190 Sister Families 97 2 4/5 4/4 4/4 Yes
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Table 5: Primer Specifications

Locus Forward (5'-3') Reverse (5'-3")
PlecSK1 GTGGGCATGGGACAGAAG TAGAAGCACTTGCGGTGGAC
Perl534 TGATTGCTTTTCGCCATGT AGGTCGTCCTTCATATCTCCAC

PvC2190 TTTGGCCTAGTGCATTTTAGTG TGTTTGATTTTACAAACGGGAAG

Target Length (bp)

30

995
264
520

Unedited Length (bp)
900-1300
200-500
550-1000

Edited Length (bp)
~870
~180
~400

Tm °C
55
55
55



Perloidea

Perlodidae
(Megarcys Sp.)

3341

2647 -Chloroperlidae

(Sweltsa Sp.)
Perlidae

(Hesperoverla pacifica)

2463.5 Systellognatha

Pteronarcyidae
(Pteronarcys californica)

981.3125

Nemouridae
glossa
(Zapada cinctipes) paraglossa

1617 — Capniidae

(Capnia nana)

Euholognatha

1669

- Taeniopterygidae
(Taenionema Sp.)

Figure 1: Transcriptome Content Phylogeny. The phylogeny is based on a distance matrix generated by applying a reciprocal BLAST
algorithm in which each of the above taxon was BLASTed against every other taxon. For a gene or locus to be considered in common,
the best blast hit must receive a score of 1e-40, be 1e-20 higher than the next highest hit, and the corresponding sequence must
reciprocate and meet the same criteria. Images depicting the glossae and paraglossae of stoneflies from Merritt, Cummins, and Berg 2008.
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Systellognatha

Isogenoides Sp.

45 Skwala Sp.
31 Megarcys Sp. Perlidae
Isoperla sobria
38 Alloperla thalia
Chloroperlidae
Sweltsa Sp.
o ﬁ Hesperoperla pacifica (S. Fk. Provo River)
= Hesperoperla pacifica (Leeds Creek)
& Agnetina capitata Perlodidae
99

Neoperla Sp.

Agnetina flavescens

Pteronarcys proteus
ysp Pteronarycidae

100
L Ppternarcella badia
Paraleuctra Sp. | Leuctridae
Zapada cinctipes (S. Fk. Provo River,
95 100 p pes ( ) Nemouridae
- Zapada cinctipes (Hobble Creek)

75

Capnia nana

LF Utacapnia logana Capniidae
33
{ Capnia utahensis

Euholognatha

0.02

Figure 2: PlecSK1 Maximum Likelihood Phylogeny. ML phylogeny inferred from the single locus of PlecSK1 created using RAXML online at
100 bootstraps and PhyML at 1000 bootstraps both using the GAMMA+GTR rate of heterogeneity. The relationships were the same and support
values nearly identical for the trees produced using the two different software.
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99.8
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57.2

59.5

90.7

92.8

46.8

46.5

46.5

100

99.8

70.6

100

0.009

98.7

35.8

Neoperla Sp.

Agnetina capitata

Agnetina flavescens

Hesperoperla pacifica (S. Fk. Provo River)
Hesperoperla pacifica (Leeds Creek)
Isogenoides Sp.

Skwala Sp.

Isoperla sobria

Megarcys signata

Alloperla thalia

Sweltsa Sp.

Pteronarcella badia

Pteronarcys proteus

Paraleuctra Sp.

Zapada cinctipes (Hobble Creek)
Zapada cinctipes (S. Fk. Provo River)
Utacapnia logana

Capnia nana

Capnia utahensis

Perlidae

Perlodidae

Chloroperlidae

Pteronarycidae

Leuctridae

Nemouridae

Capniidae

Systellognatha

Euholognatha

Figure 3: Neighbor Joining Phylogeny. This phylogeny was created using the Neighbor Joining method at 1000 bootstrap replicates
employing the HKY and Jukes-Cantor genetic distance models. The two models produced exactly the same relationships with very minor
differences in bootstrap values (the most being approximately by 3).
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Appendix A: runBlast.pl

#!/fslhome/user/perl/bin/perl

use strict;
use warnings;

my $DIR = '/fslhome/user/directory/"';
my QFILES = ('Filel.fasta', 'File2.fasta', 'File3.fasta',
'Filed.fasta', 'File5.fasta', 'File6.fasta', 'File7.fasta'):;

my $minE = 50;
my SdiffE = 20;

# prepare BLAST indices

for my $fastaFile (QFILES) {
‘/fslapps/blast/blast-2.2.21/bin/formatdb -pF -i $fastaFile’;

}

# perform blasts (All files x all files)
for my $filel (Q@FILES) {

for my $file2 (Q@FILES) {

‘gsub -v

DIR=$DIR,FILEl=$filel, FILE2=5file2,MIN E=SminE,DIFF E=5$diffE
blast.pl™;

}
}

exit O;
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Appendix B: blast.pl

#!/fslhome/jtpage/perl/bin/perl
#PBS -1 nodes=1:ppn=1:beta,pmem=6gb,walltime=24:00:00

use strict;
use warnings;

use Bio::SearchIO;

my $dir = SENV{DIR} || '
my $filel = SARGV[O0] |
my S$file2 SARGVI[1] |

SENV{FILELl};

|
| SENV{FILE2};

#E-value criteria passed in from runBlast
my $minE = $ENV{MIN E} || 30;
my $diffE = SENV{DIFF E} || 10;

my SblastFile = "$filel-$file2.blast";
my SoutFile = "$filel-$file2.hits";

my ScutE = 'le-'. (SminE - S$diffE);
“/fslapps/blast/blast-2.2.21/bin/blastall -p blastn -e $cutE -d
Sdir/$file2 -i $dir/Sfilel -o Sdir/SblastFile’;

my Sblast = Bio::SearchIO->new( -file => "S$dir/SblastFile", -format =>
'blast' );

open (OUT, ">$dir/SoutFile");

#Utilizes blast files and generates hit files
while (my $result = $blast->next result) {

my Sfirst = $result->next hit;

next unless (defined S$first);

my Sexpl = $first->expect;

if (Sexpl == 0) {

Sexpl = 255;
}

else {
Sexpl =~ m/\de- (\d*)/;
Sexpl = $1;

}

#next blast result evaluated unless current result meets min e-value
next unless (Sexpl >= $SminE);

my S$second =
my Sexp2 = 0;
if (defined $second) {
Sexp2 = $second->expect;
if (Sexp2 == 0) {
Sexp2 = 255;

Sresult->next hit;
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}

else {
Sexp2 =~ m/\de- (\d*)/;
Sexp2 = $1;
}
}
#If second best blast result isn’t different enough it evaluates the
#next “gene’s” or “locus’” blast results
next unless ($Sexpl - Sexp2 >= S$diffE);

print OUT join ("\t", Sresult->query name, $first->name, S$first-

>expect ('exp'), "\n");
}

close (OUT);

exit O;
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Appendix C: mergeBlast.pl

#!/fslhome/user/perl/bin/perl

use strict;
use warnings;

use Bio::DB::Fasta;
use Bio::Tools::Run::Alignment::Muscle;
use Bio::AlignIO;

# Creates new link to MUSCLE
my SMUSCLE = Bio::Tools::Run::Alignment::Muscle->new();

# These arguments must be given at the command line with mergeBlast.pl
# Example: AllPlecoptera 1 1 Filel.fasta File2.fasta File3.fasta

#This ID is used in naming all of the alignment files produced
my $ID = SARGVI[O0];

# 0 means don’t perform alignments, 1 means do perform alignments
my SALIGN = SARGVI[1];

# The number given here indicates how many species are allow to not
# participate in the reciprocal blast networks
my SMISSING = $SARGVI[2];

my $FILE_START = 33
my $MIN = scalar (QARGV) - SFILE START - SMISSING;

# Indicates minimum length allowed for alignments to be kept
my $MIN LEN = 100;

my $fastas = ();
my %$hits = ();

# load hits
for (my $i = $FILE_START; S1 <= S#ARGV; $i++) {
Sfastas{$i} = Bio::DB::Fasta->new ($SARGV[$1], -reindex => 1);

for (my $j = SFILE START; $j <= S$#ARGV; S$j++) ({
my ShitsFile = "SARGV[S$Si]-SARGV[S$]].hits";

open (HITS, S$hitsFile);
while (<HITS>) {

chomp;
my ($Squery, $hit) = split (/\t/, $_);

# Builds a “hash” tree or web of relationships of edges and nodes
Shits{S$i}{Squery}{$j} = Shit;
}
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close (HITS);

# check edges
my S$countBlast = 0;

for (my S$startPoint = SFILE START; SstartPoint <= SFILE START +
SMISSING; S$startPoint++) {
FIRST: for my $first (keys %{ Shits{S$startPoint} }) {
my @group = ();

# avoid redundancy: ensures that this network of genes hasn’t
# already been evaluated
for (my $i = SFILE START; $i < SstartPoint; S$i++) {
next FIRST if (defined S$hits{$startPoint}{S$Sfirst}{$i});
}

SECOND: for (my $i = S$startPoint; $i <= S$#ARGV; S$i++) {
my S$second = S$hits{$startPoint}{$first}{S$i};

next SECOND unless (defined S$second):;

# check reflexiveness and symmetry

next SECOND unless (defined S$hits{$i}{$second});

next SECOND unless (defined S$hits{S$i}{$second}{$i}):;

next SECOND unless (S$second eqg Shits{S$i}{S$second}{$i});
# reflexive

next SECOND unless (defined S$Shits{S$i}{$second}{S$SstartPoint});
next SECOND unless (S$first eq Shits{$i}{S$second}{SstartPoint});
# symmetric

# check consistency of other edges
for (my $j = $FILE START+1; $3j <= $i; $J++)
my Sthird = Shits{$i}{Ssecond}{$j};
next SECOND unless (defined S$third):;
next SECOND unless (defined S$hits{$j}{Sthird});
next SECOND unless (defined Shits{$j}{Sthird}{si});
next SECOND unless (S$second eqg Shits{S$j}{Sthird}{S$i});

#Retrieves sequences by name and organizes them for alignment
my $seql = Sfastas{$i}->get Seq by id

(Shits{S$startPoint} {Sfirst}{$i});
next unless (defined $seql);
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my S$seq2 =
>id, -seq => $seqgl->seq);
push (@group, S$seq2);
}

# good gene (BLAST)
if (scalar (Qgroup) >= S$SMIN) ({

ScountBlast++;

my Sgene = "SID\ ScountBlast";
my Saln;

if (SALIGN) {

Saln = SMUSCLE->align (\Qgroup) ;

my Smin length = $SMIN LEN;
for my $seq (Saln->each seq) {
$min length = $seqg->length if
$min length);
}

($seg->length <

next unless ($min length >= $MIN LEN);

# 1if MUSCLE off, places unaligned seqs in group file

else {
Saln = Bio::SimpleAlign->new;
for my S$seq (Qgroup) {
$aln->add seq ($seq);
}
}

my SoutId = "S$gene.fasta";

# incorporates alignment %$ID into naming of alignments

$outId = int (Saln->percentage identity) ." SoutId" if
(SALIGN) ;

my $alnOut = Bio::AlignIO->new( —-file => ">$outId", -format
'fasta' );

$alnOut->write aln ($aln);

}
}

}
exit 0;

39

Bio::LocatableSeg->new ( —-id => "SARGV[Si]\ \ ".Sseql-



	Application of Next-Generation Transcriptomic Tools for Non-Model Organisms: Gene Discovery and Marker DevelopmentWithin Plecoptera (Insecta)
	BYU ScholarsArchive Citation

	Title Page
	ABSTRACT
	ACKNOWLEDGMENTS
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Materials and Methods
	RNA Sequencing
	Ortholog Inference
	Transcriptome Content Phylogeny
	Primer Development
	Marker Validation

	Results
	RNA Sequencing
	Ortholog Inference
	Transcriptome Content Phylogeny
	Primer Development
	Marker Validation

	Discussion
	Citations
	Table 1
	Table 2
	Table 3
	Table 4
	Table 5
	Figure 1
	Figure 2
	Figure 3
	Appendix A
	Appendix B
	Appendix C

