
Brigham Young University Brigham Young University

BYU ScholarsArchive BYU ScholarsArchive

Theses and Dissertations

2013-09-01

Distributed Agent Cloud-Sourced Malware Reporting Framework Distributed Agent Cloud-Sourced Malware Reporting Framework

Kellie Elizabeth Kercher
Brigham Young University - Provo

Follow this and additional works at: https://scholarsarchive.byu.edu/etd

 Part of the Computer Sciences Commons

BYU ScholarsArchive Citation BYU ScholarsArchive Citation
Kercher, Kellie Elizabeth, "Distributed Agent Cloud-Sourced Malware Reporting Framework" (2013).
Theses and Dissertations. 4250.
https://scholarsarchive.byu.edu/etd/4250

This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion
in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please
contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.

http://home.byu.edu/home/
http://home.byu.edu/home/
https://scholarsarchive.byu.edu/
https://scholarsarchive.byu.edu/etd
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F4250&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsarchive.byu.edu%2Fetd%2F4250&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/4250?utm_source=scholarsarchive.byu.edu%2Fetd%2F4250&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu,%20ellen_amatangelo@byu.edu

Distributed Agent Cloud-Sourced Malware

Reporting Framework

Kellie E. Kercher

A thesis submitted to the faculty of
Brigham Young University

in partial fulfillment of the requirements for the degree of

Master of Science

Dale C. Rowe, Chair
Joseph J. Ekstrom
Derek L. Hansen

School of Technology

Brigham Young University

September 2013

Copyright © 2013 Kellie E. Kercher

All Rights Reserved

ABSTRACT

 Distributed Agent Cloud-Sourced Malware
Reporting Framework

Kellie E. Kercher

School of Technology, BYU
Master of Science

Malware is a fast growing threat that consists of a malicious script or piece of software

that is used to disrupt the integrity of a user's experience. Antivirus software can help protect a
user against these threats and there are numerous vendors users can choose from for their
antivirus protection. However, each vendor has their own set of virus definitions varying in
resources and capabilities in recognizing new threats. Currently, a persistent system is not in
place that measures and displays data on the performance of antivirus vendors in responding to
new malware over a continuous period of time. There is a need for a system that can evaluate
antivirus performance in order to better inform end users of their security options, in addition to
informing clients of prevalent threats occurring in their network. This project is dedicated to
assessing the viability of a cloud sourced malware reporting framework that uses distributed
agents to evaluate the performance of antivirus software based on malware signatures.

Keywords: malware, agent technology, antivirus

ACKNOWLEDGEMENTS

I am so very grateful for the IT faculty members and staff who helped me in developing

this project and going out of their way to ensure its success. I am also very thankful for my

family and their support along with the time they took to review my thesis.

iv

TABLE OF CONTENTS

LIST OF TABLES .. vii

LIST OF FIGURES ... viii

1 Introduction ... 1

1.1 Nature of the Problem ... 1

1.2 Purpose of the Research .. 2

1.3 Project Approach .. 2

1.4 Research Questions and Hypotheses .. 3

1.5 Definitions .. 4

2 Literature Review ... 5

2.1 Malware .. 5

2.2 Agent Technology ... 6

2.3 Antivirus ... 7

2.4 Antivirus Variations .. 8

2.5 Capabilities of Antivirus Protection ... 9

2.6 Existing Antivirus Comparisons ... 9

2.7 Multiple Antivirus Installations .. 11

3 Methodology .. 13

3.1 (R1) Framework Design ... 13

3.1.1 Development Environment ... 14

3.1.2 Prototype ... 15

3.2 (R2) Malware Identifiers .. 17

3.3 (R3) Antivirus Variations ... 17

3.4 (R4) Antivirus Malware Protection and Comparison ... 17

v

3.4.1 Data Collection ... 18

3.4.2 Antivirus Software and the Need for Multiple Installations 19

4 Framework Development ... 21

4.1 Data Collection Server .. 21

4.1.1 Python Secure Agent Event Listener .. 21

4.1.2 MySQL Database .. 22

4.1.3 Web Server .. 25

4.2 Client Side Agents .. 29

4.2.1 Windows Defender ... 31

4.2.2 Symantec ... 37

4.2.3 Sophos ... 40

4.2.4 Avira ... 44

4.2.5 Problems Encountered .. 48

4.3 Testing .. 53

4.3.1 Development Testing .. 54

4.3.2 Final Testing ... 55

4.4 Security ... 58

4.5 Usage and Project Distribution ... 60

5 Framework Analysis ... 63

5.1 (R1) Framework Design Challenges and Techniques .. 63

5.2 (R2) Universal Malware Identifiers .. 64

5.3 (R3) Vendor Naming Conventions ... 65

5.4 (R4) Benefits of Multiple Vendor Installations .. 67

6 Conclusion and Future Work .. 71

vi

6.1 Future Research .. 71

6.1.1 Fuzzy Hashes .. 72

6.1.2 Agent Accuracy... 72

6.1.3 Agent Support ... 72

6.1.4 Universal Agent .. 73

6.1.5 Expanding the Study ... 73

6.2 Project Contribution .. 74

REFERENCES .. 76

APPENDICES ... 79

Appendix A. Agent – Avira Premium Antivirus ... 80

A.1 Agent-Avira.py .. 80

A.2 config.txt .. 86

Appendix B. Agent – Sophos Antivirus ... 88

B.1 Agent-Sophos.py .. 88

B.2 config.txt .. 93

Appendix C. Agent – Symantec Antivirus ... 95

C.1 Agent-Symantec.py .. 95

C.2 config.txt .. 100

Appendix D. Agent – Windows Defender .. 101

D.1 Agent-WindowsDefender.py ... 101

D.2 config.txt .. 106

Appendix E. Server Listener .. 107

Appendix F. Malware Samples .. 109

vii

LIST OF TABLES

Table 1: Python Secure Agent Event Listener Libraries ...22

Table 2: Alerts and Updates MySQL Table Structure ...23

Table 3: Geo-Location Variables Tracked in the Database ...25

Table 4: Windows Defender Agent Libraries ..36

Table 5: Symantec Agent Libraries ...39

Table 6: Sophos Agent Libraries ...43

Table 7: Avira Agent Libraries ..47

Table 8: Agent Consumption Monitor ...57

Table 9: Naming Convention Comparison ..66

Table 10: Downloaded Malware Samples ...109

viii

LIST OF FIGURES

Figure 1: Antivirus Vendor Timeline ..7

Figure 2: Prototype Flowchart ...14

Figure 3: Proposed Distributed Agent Collection Design ...16

Figure 4: Threats Detected Tab ..26

Figure 5: Antivirus Update Notices Tab ..26

Figure 6: Antivirus Update Totals Tab ..27

Figure 7: Malware Quarantine Alerts Tab ...28

Figure 8: Antivirus Name Conventions Tab ..28

Figure 9: Download Tab ..29

Figure 10: Agent Architecture ...30

Figure 11: Agent Delivered Alert Report ..34

Figure 12: Agent Delivered Update Report ...35

Figure 13: Windows Defender Agent Architecture ...36

Figure 14: Symantec Agent Architecture ..39

Figure 15: Sophos Agent Architecture ..42

Figure 16: Avira Agent Architecture ...46

Figure 17: Endless Hashing Loop ..50

Figure 18: Testing Model...53

Figure 19: Wireshark Capture of Agent SSL Communications ..59

Figure 20: Windows Defender Right-Click Scan Menu Item ...62

Figure 21: Percentage of Antivirus Detections ..67

Figure 22: Percentage of Two Antivirus Installation Detections...68

file:///C:/Users/kkerche/Desktop/KKthesis_Update.doc%23_Toc370886606
file:///C:/Users/kkerche/Desktop/KKthesis_Update.doc%23_Toc370886607
file:///C:/Users/kkerche/Desktop/KKthesis_Update.doc%23_Toc370886615
file:///C:/Users/kkerche/Desktop/KKthesis_Update.doc%23_Toc370886618
file:///C:/Users/kkerche/Desktop/KKthesis_Update.doc%23_Toc370886619
file:///C:/Users/kkerche/Desktop/KKthesis_Update.doc%23_Toc370886620
file:///C:/Users/kkerche/Desktop/KKthesis_Update.doc%23_Toc370886621
file:///C:/Users/kkerche/Desktop/KKthesis_Update.doc%23_Toc370886622

ix

Figure 23: Percentage of Three Antivirus Installation Detections...69

Figure 24: Comparison between One and Three Antivirus Installations70

1

1 INTRODUCTION

1.1 Nature of the Problem

Malware is a fast growing threat to all end user devices. A popular antivirus vendor,

Symantec detected and blocked more than 5.5 billion types of malware in 2011, an 81% increase

from 2010 (“Internet Security Threat Report”). Large businesses are slow to detect malware

breaches with detection time in the year 2012 averaging 210 days (“2013 Trustwave Global

Security Report”). These numbers only include the malware actually discovered.

Intrusion detection systems, firewalls and antivirus software are all used to combat

malware attacks and secure devices against intrusion. Currently antivirus detection is part of a

commercially competitive market. There are numerous vendors each with their own detection

engines and virus databases. These vendors have significant differences in resources, detection

capabilities and response times for recognizing new forms of malware. With the increasing

number of malware threats, vendors compete to be the first to recognize and respond in order to

win a greater share of the security market.

Presently, there is no system in place to measure the real time performance of antivirus

software in responding to new malware over an ongoing period. Current evaluations take place at

a fixed time point and may provide sufficient uniformity to accurately evaluate ongoing trends in

detection response time. Without this data, it is difficult to perform ongoing analysis into

2

detection efficiency, and thus inform end users of their security options along with threat

detection activity.

1.2 Purpose of the Research

The purpose of this research is to assess the viability of a cloud sourced malware

reporting framework that utilizes distributed agents to evaluate the performance of antivirus

software based on malware signatures.

1.3 Project Approach

The novel aspect of this approach is the use of distributed agents for data collection along

with the provisioning of a centralized source of real time antivirus activity. An agent is a

primitive form of artificial intelligence (Sycara et al., 1996). It is able to recognize an

environment and respond to events. The proposed use of agent technology in this setting will be

used to detect new antivirus updates and malware quarantines for a host machine. Information

gathered by the agent will be delivered to a cloud-hosted database, where the data will be

publically available.

The scope of this research will be limited to the reported information from these

distributed agents for a specific set of defined antivirus vendors. The findings will be used to

compare the performance of different tools in responding to active threats. The data collected

will also be used to identify universal malware descriptors across multiple vendors of antivirus

software. It is hoped that this will open avenues to further studies in antivirus technologies along

with providing resources to better inform users with their antivirus software decisions.

3

1.4 Research Questions and Hypotheses

The following questions will be answered from this research:

 (R1) What are the challenges in creating an agent malware reporting framework

architecture and what techniques can be used to overcome these issues?

 (R2) What are the key characteristics that are suitable for universally identifying malware

strands?

 (R3) Is there a correlation between antivirus malware naming conventions?

 (R4) What quantifiable benefits may be achieved by using multiple vendor products to

detect malware?

The proposed research will analyze and compare antivirus trends and examine vendor

abilities through the use of a malware reporting framework. This will be accomplished with a

centralized data collection server and distributed reporting agents installed on endpoint devices.

Each agent will be able to universally identify and correlate malware strands by the malware file

hash. It is believed that despite different naming conventions vendors use to label a specific

malware threat, there will be patterns and similarities between the companies.

It is known that a single vendor will not always be the first responder to every new piece

of malware. At varying times, one vendor responder may be more efficient than another. Each

vendor has different capabilities and resources that enable their servers to detect and release new

virus definitions. Thus it is plausible that a host device may then benefit from multiple vendor

software installations due to this variation in response times and capabilities at identifying

malware and updating client devices. Researchers have commented that a single installation of

an antivirus alone may not be sufficient to protect a system against malware (Posey). Assuming

4

certain multiple antivirus installations can operate compatibly in a single environment, this

would decrease the time a host is vulnerable to a threat.

1.5 Definitions

 Agent Technology – A primitive form of artificial intelligence that is able to recognize an

environment and respond to alerts.

 Antivirus Software – An application designed to protect endpoint devices against

malware.

 Endpoint Devices – A host computer within a network.

 Hash – A fixed length bit string output resulting from a predefined algorithm on a block

of data.

 Malware - A malicious script or software that is used to disrupt, disclose, distort or

destroy computer operations.

 Virus Definitions – A set of characteristics that could include a virus signature that

uniquely describes a piece of malware.

 Virus Signature – A unique hash that identifies a piece of malware.

5

2 LITERATURE REVIEW

2.1 Malware

Malware is a malicious script or software that is used to disrupt, disclose, distort or

destroy computer operations. There are many different types of malware with different purposes.

Malware can be classified into multiple categories. These categories include (Aycock 2006, Tian

2011):

 Adware – A piece of software that automatically delivers advertisements to the client.

 Backdoor - A method that bypasses expected authentication procedures. It can be used to

secure entry into a system.

 Bot – An automated process that interacts with other network services. Through bots, a

third party can indirectly interact with a system over a network.

 Logic Bomb – A threat that consists of two parts, a payload and trigger. The payload is a

specific action to perform and the trigger is a condition that controls the execution of the

payload.

 Rabbit – Malware that multiplies rapidly. There are two types of rabbit malware. One

attempts to consume all of a resource such as disk space. The other type propagates over

a network but deletes its source copy, hence “hopping” from device to device.

6

 Rootkit – A program designed to take control of a system. It attempts to seize

administrative or root system privileges without authorization.

 Spyware – A piece of software that discretely reports user activity to a third party.

 Trojan horse - A malicious script or piece of software disguised as a safe application.

 Virus - A malicious application that self-propagates across devices.

 Worm - A script that self-propagates across a network.

A single piece of malware may perform numerous tasks thus fitting into multiple

categories. Malware often hides in the form of media files, advertisements, email attachments or

peer-to-peer shared files. Systems can be infected by users downloading the immediate strand of

malware or by downloading a piece of software packaged with the malware.

2.2 Agent Technology

Agent technology is being implanted in an increasing number of applications ranging in

size and capabilities (Jennings et al. 1998). There has been much debate on a universally

accepted definition however, research has generally agreed on an agent being a form of primitive

intelligence that is able to perform autonomous action in an environment in order to meet

programmed objectives. An agent is oriented to act without any human intervention. It is an

entity used to observe and environment and identify conditions to act upon (Jennings &

Wooldridge 1998, Nwana & Ndumu 1998). An agent development was chosen for this

framework because of its ability to watch an environment and take action without any user

interaction. For the framework, the agent will be able to detect and respond to antivirus events.

Agents can be integrated together into a distributed network of intelligent agents. The

purpose is to have the agents communicate issues or environmental features across the network

7

so as to inform all parts of each other’s state (Sycara et al. 1996). With a distributed array of

agents over multiple clients, a larger dataset can be acquired for the research.

2.3 Antivirus

Antivirus software is used to protect systems against malware by recognizing threats and

either removing or blocking the malware. Figure 1 shows a timeline of when some of the more

popular antivirus vendors were founded, the dates were provided by Wikipedia.com.

Antivirus software utilizes different approaches to update clients with the latest virus

information. This information is then used to protect a device against known threats. Cambridge

proposed a patent for a method of updating antivirus definitions over a network (Cambridge

2006). This design incorporates a centralized antivirus server with connected end user devices.

When the server receives an update of a new virus signature from an end user, its antivirus

Figure 1: Antivirus Vendor Timeline

8

database is then updated. Other end user systems can then be compared against the server in

order to update their signature files to the latest version as necessary. These signatures identify

malware and alert an antivirus of their presence in a network. Cambridge’s patent is used or

similarly copied in many antivirus applications such as McAfee.

A further advance on updating antivirus definitions includes the use of push agent

technology in order to update end users with the latest virus definitions. In application, when a

new signature has been found and added to a centralized server, updates from that machine are

then pushed out to client hosts. This service is performed in the background unannounced to the

user during normal use, as long as the host is connected to the internet (Hodges et al. 2001).

These different technologies have been implemented to improve antivirus performance in

relaying updates to endpoint clients. The proposed research will look to examine antivirus

software and the time it takes to utilize the updating technology in responding to new malware.

2.4 Antivirus Variations

According to Maggi et al. antivirus vendors are inconsistent with their naming

convention for malware specimens (Maggi et al. 2011). The same piece of malware may have

multiple names across antivirus vendors. The proposed project, along with analyzing the

performance of different antivirus vendors, will look to provide an interface that is able to

compare the different names vendors use to describe the same piece of malware. This visual will

reduce confusion and aid further research in analyzing malware across vendors.

Sanok examines the techniques of signature detection, heuristics and general decryption

that different antivirus applications use to detect and quarantine viruses (Sanok et al. 2005). His

research illuminates a method on how to detect and read virus signatures. This information is

9

beneficial in understanding how antiviruses treat signatures and where they are stored in order to

allow an agent to discover and disclose a signature.

2.5 Capabilities of Antivirus Protection

A study was performed by Rob Lee to measure the capabilities of antivirus software in

detecting popular network threats (Lee 2013). He created a lab environment running the popular

antivirus McAfee. With a team of college students, he devised a combination of crafted and well-

known pieces of malware to exploit the protected environment. From his experiment; it was

discovered that antivirus software is mainly used to defend against low-skilled attackers. Lee’s

findings stress the importance of a new security model to fortify end-users against popular

threats in today’s networks. His research supports the claim that a single antivirus on its own is

not enough to prevent malware attacks on a host machine.

2.6 Existing Antivirus Comparisons

Sukwong et al. examined six popular antivirus products and how they respond to 1,115

distinct malware samples (Sukwong et al.). The duration of this study took place over a 5 month

period of time. The antivirus software analyzed included:

 Avast 4.8 Professional v.4.8.1335

 Kaspersky Internet Security 2009

 McAfee Total Protection with Security Center v.9.15

 Norton Internet Security 2009 v.16.5.0.135

10

 Symantec AntiVirus v.10.1.7.7000

 Trend Micro Internet Security Pro v.17.1.1250

This study compared the times it takes these antivirus software to learn of an unknown

piece of malware with daily scheduled virus updates. The results of the study concluded that the

antivirus vendors varied in being first responders to a specific threat. This framework aims to

build upon this study and analyze a similar sample set of antivirus providers in real time.

Eventually this framework proposes the capabilities to analyze the ongoing ability of vendors

and their resources to update signature viruses and catch new threats.

Another comparison study was performed on 32 different antivirus programs against

1,599 samples of malware. This study analyzed the effects of diversity on the detection

capability as well as the time it takes an antivirus to evolve and update virus definitions. It also

found that each type of antivirus software has different capabilities of catching and updating

systems against a threat (Gashi et al. 2009). The study identified trends and displayed varying

antivirus first responders to a specific malware threat.

In addition to these published studies, there are companies that frequently execute

antivirus performance comparisons. AV-Comparatives regularly evaluates different antivirus

software vendors. Some of these vendors include:

 Avast

 AVG

 AVIRA

 Bitdefender

 F-Secure

 Kaspersky

 McAfee

 Panda

 BullGuard

 eScan

 Fortinet

 Sophos

 Microsoft

Security

Essentials

11

They release their findings after summarizing results for end users to review

(“Comparatives||tests - Reviews – Reports”). This evaluation is not in real time, but is rather an

accumulation of findings. Another company, AV-Test, ranks the protection, usability and

capabilities of antivirus software to quarantine malware from an infected device on a six-point

scale (“AV-TEST”). However, AV-Test does not provide detailed information on the exact

response times to a specific piece of malware.

There are numerous other organizations that regularly compare antivirus performance.

Despite these companies and their reports, users are not provided real time information on active

threats and antivirus response. In order to perform effective antivirus comparisons, a system is

needed that can catch and release comparative data on antivirus software in real time.

2.7 Multiple Antivirus Installations

Despite the improvements in antivirus technology, Sukwong determined that malware is

still in existence and spreading rapidly (Sukwong et al.). Though many solutions exist, there is

not a one antivirus product that is consistently the first responder to a new threat. A single

antivirus is not always the most effective in identifying the varying types of malware (“Why one

virus engine is not enough…”). It is unpredictable which antivirus vendor will be the first to

release a virus definition for a new strand of malware. For this reason, it is advised that a user

includes various antivirus installations to reduce the time a system is vulnerable to a threat (Ibid).

This is why products such as Microsoft’s Forefront Security license numerous scanning engines

from third-party vendors (Posey).

Another tool that takes advantage of multiple antivirus vendor resources is VirusTotal.

This online resource is used to analyze suspicious files in order to identify malware. It aggregates

12

resources and uses multiple antivirus engines to identify threats ("About VirusTotal."). Using

more than one antivirus can greatly improve the chances of detecting and removing new strands

of malware.

13

3 METHODOLOGY

This section outlines the plans for the study and describes how answers for each purposed

research question will be found.

3.1 (R1) Framework Design

The purpose of this research is to assess the viability of a cloud sourced malware

reporting framework that uses distributed agents to evaluate the performance of antivirus

software based on malware signatures. A prototype proof of concept will be built in order to

examine the effectiveness of such a framework. The development of this prototype will verify

what key components and design features are necessary along with the challenges involved in

creating an agent malware reporting framework.

This development will consist of two parts, client side agents that will be installed on host

devices and a cloud hosted centralized server. The agents will monitor antivirus events as they

are received on the hosts, securely sending any information of importance to the server. The

server will display the real time agent data concerning antivirus performance along with

localizing malware threats with publically available IP geo-location databases.

14

3.1.1 Development Environment

This prototype consists of the construction of a universal agent that can be distributed

across multiple clients ranging in antivirus software using a Windows development environment.

The reason for programming in this environment is due to the easily accessible antivirus software

available and ample malware samples. The following antivirus vendors are initially proposed to

be analyzed by this framework prototype:

 Sophos

 Symantec

 Windows Defender

 AVG

Figure 2: Prototype Flowchart

15

 Kaspersky

 McAfee

These antivirus vendors, excluding Sophos, were chosen because their products were

listed among the top ten worldwide contenders for the antivirus market share in the OPSWAT

“Market Share Report for Worldwide Antivirus Vendors” released in December 2012

(OPSWAT). Sophos was additionally chosen because of the developer’s familiarity with the

antivirus and to provide diversity in the antivirus products examined over past studies such as

Sukwong’s work on vendor comparison.

3.1.2 Prototype

The agent will be programed in Python 2.7. Python is a high-level programming language

that simplifies development by requiring fewer lines of code to perform functions. Python also

includes a large community of developers who are actively creating and maintaining libraries

that may be useful in the prototype development. The current production versions of Python are

2.7.5 and 3.3.2. Version 2.7.5 is still being maintained and is widely used throughout the

programming community. The original release of version of 3.0 contained numerous bugs which

discouraged developers from immediate adoption. While versions 3.0 and higher are actively

maintained, many third party packages have not yet released candidates compatible with this

version (Python Programming Language). Python 2.7 was chosen for the prototype development

because of the greater library support and developer familiarity.

The proof of concept will be programmed to look for antivirus update notifications and

malware detections. If an update is perceived on the client device, the agent will search and

retrieve the virus definition, update timestamp and hashes. If a malware alert is detected the

16

agent will report the timestamp, malware name, hash, vendor, location and signature version.

Additional data will be collected as found necessary during the development of the prototype.

A server will be built to receive data and host antivirus statistics from the distributive

agents. The server machine will consist of a Linux machine with the Apache HTTP server

installed along with a MySQL database to store data. These tools have been chosen because they

are open sourced, require little configuration, simplistic in installation processes and can quickly

render a web user interface for data collection. The agent will reside on a host machine and be

tested for its capabilities to communicate with the web server. Once compatibility is confirmed,

the agents will be installed across multiple devices.

Figure 3: Proposed Distributed Agent Collection Design

17

3.2 (R2) Malware Identifiers

The agents will be used to gather data on malware strands detected by client antivirus

software. This information will include the malware hash, name and any other type of identifying

information the vendor might use in recognizing malware. The discovered data will be reported

to the server and compared against other malware records in order to find what key

characteristics identify the same piece of malware universally across all hosts.

3.3 (R3) Antivirus Variations

It has been found that different antivirus vendors use different naming conventions to

describe the same piece of malware, though the hashes are the same. With this in mind, a hash of

a malware file can be used to identify a threat across multiple vendors. The hash and name will

be retrieved by the agent at the time of malware detection. These hashes along with the various

corresponding vendor names will be formatted and displayed in a table on the server for easy

comparison. If there is a correlation between vendors and antivirus naming conventions, the table

will display the similarities. However, if the malware names are unrecognizable between

vendors, the table will act as a universal connections resource for malware across antivirus

software.

3.4 (R4) Antivirus Malware Protection and Comparison

The research will use data collected by the agents to compare antivirus vendors and find

if there are quantifiable benefits that may be achieved by using multiple vendor products to

detect malware.

18

3.4.1 Data Collection

The prototype will locate and strip the following pieces of data from an antivirus update

event.

 Update timestamp

 Hash of virus definition

 Signature version

The prototype will additionally check for real time malware detections by the antivirus.

The following data will be extracted from these events.

 Alert timestamp

 Malware name

 Hash of malware file

 Signature version

 Vendor

 Geo-location

These are selected characteristics of antivirus update and malware detection events that

will help identify malware universally across multiple antivirus applications and are believed to

be of interest to the research. The prototype will test whether the variables exist in each signature

before communicating the data to the web server. The data will be formatted and displayed in the

web interface for visual comparison of the products ability to release new updates and handle

malware threats. Eventually, with real implementation of this framework over a large scale

distributed agent network, the collected data can be used to evaluate antivirus resources in

19

combating new malware threats. This can be accomplished by relaying update notices to the

latest malware alerts detected by the agents.

3.4.2 Antivirus Software and the Need for Multiple Installations

As explained in section 2.6, a single installation of an antivirus alone is not believed to be

enough to protect a system against malware. This is due to:

1. Various product delays in responding to new threats and distributing antivirus

signature updates to endpoint host machines

2. Unpredictability in the time it takes to release a new definition update

With multiple antivirus installations, the combined resources will decrease the time a

device is vulnerable to a threat and improve the device’s defense against malware. Instead of a

host waiting for a single antivirus to respond to a threat, the host has multiple supporting vendors

and has only to wait for the fastest.

The framework will prepare a structure for visualizing patterns between the timestamps,

signature updates and alerts detected. Over prolonged use and data collection, this framework

proposes the ability to aid users in discovering which definitions protect devices against certain

specific threats and disclose response times. Malware samples will be tested against the antivirus

software in the project scope. These samples will be downloaded randomly from the latest

entries to easily accessible, free online malware dumps. This sample set’s aim is to be unbiased

in replicating a user’s environment that potentially could be attacked by malware encountered

arbitrarily. Appendix F contains a table of the malware in the sample set and its sources.

The agents will be able to detect which vendors have definitions that protect a device

against these pieces or malware. It is believed that different vendors will have varying detections

20

and response times without consistency over an extended period of time. The percentage of

malware detected will be graphed for each vendor. Following, combinations of software will

then be graphed to see if there is additional protection provided by multiple installations of

malware. This will determine whether this new model of security should be recommended for

endpoint devices.

21

4 FRAMEWORK DEVELOPMENT

The framework consists of two primary components, the client side agents and the

centralized data collection server. This chapter goes into detail on the construction of these

framework mechanics.

4.1 Data Collection Server

The server is hosted on the Brigham Young University (BYU) Cyber Security Research

Lab network. It includes a Secure Socket Layer (SSL) listener for incoming events from the

agent clients, a MySQL database to store data and an Apache2 web server used to publicize and

graphically display antivirus behavior for analytics.

4.1.1 Python Secure Agent Event Listener

The listener consists of a python script that specifically waits to receive SSL

communications on port 12463 from the agents residing on client endpoints. SSL is used to

encrypt and secure information delivery between server and client. Table 1 lists the libraries used

by the script.

22

Table 1: Python Secure Agent Event Listener Libraries

Library Name Description (The Python Standard Library)

socket Creates a primitive networking interface

_mysql Used to connect to a MySQL database and execute commands

re Operator used to support regular expressions

thread Allows for control of multiple threads

SSL from OpenSSL Enables access to the Secure Socket Layer for encryption of peer

authenticated communications

urlopen from urllib2 Module used to open and read URL requests

When a connection is accepted on the server, it immediately starts a new thread for the

incoming stream. Threading enables the server to process multiple incoming requests at once.

The more agents distributed among clients, the greater the need for the server to handle multiple

incoming requests at various times. Within each new thread, information is read from the client

and saved to a temporary variable. The server then verifies the reception by sending a received

notification to the client before closing the connection.

4.1.2 MySQL Database

The temporarily saved data that is received from the agents is parsed and inserted into a

MySQL database. Incoming messages are classified as either antivirus alerts or updates. A table

in the database is dedicated to each type of communication. Table 2 shows the information fields

received from each type of communication and tracked in the database. Values underlined must

23

be unique for each instance in order to prevent duplicate records. Due to the differences in

antivirus structures, variable characters, or varchars, are used for each entity because of their

ability to store numbers and characters of varying length.

Table 2: Alerts and Updates MySQL Table Structure

Updates Table Alerts Table

Id (Primary Key) Id (Primary Key)

Timestamp (varchar) Timestamp (varchar)

Signature Version (varchar) Malware Name (varchar)

Signature File/Files Hash (varchar) Malware File Hash (varchar)

Antivirus Vendor (varchar) Antivirus Vendor (varchar)

Software Version (varchar) Software Version (varchar)

Operating System Distribution (varchar) Signature Version (varchar)

IP Address (varchar) Operating System Distribution (varchar)

 Action taken against the Malware (varchar)

 IP Address (varchar)

 The Updates table tracks new antivirus updates. The timestamp, signature version,

antivirus version, IP address and hash must be unique for each record instance. This is to ensure

that each client IP only records one update for a new virus signature coordinating to a specific

antivirus software version. In the instance that multiple agents share the same public IP address,

the timestamp is also recorded. All hashes are of SHA256. This is because Symantec only uses

24

this hashing algorithm for their malware quarantines. In order to keep records universal across

the agents, this particular hashing algorithm has been adopted. The Updates table’s purpose is to

show how often signatures are delivered to clients. In conjunction with data from the Alerts

table, this information will help highlight the threat detection capabilities for each vendor in

scope.

The Alerts table tracks all malware threats caught by the monitored antivirus products.

The timestamp, malware name, hash and IP address must be unique per instance. All stored

hashes in this table are again of SHA256. This hashing function was chosen because Symantec

logs their malware hashes in this format. The other vendors do not record hashes in plaintext and

require the agents to manually hash files. For consistency, all hashes were recorded in SHA256.

With these limitations, each record represents a single attack on the client. Unique timestamps

prevent the same attack from being caught and recorded multiple times. It is noted that a threat

may attempt to attack the same host at different time intervals. For this study, if an attack occurs

at different times, each instance is recorded and labeled as a separate attack.

In addition, if the agent is delivering a malware alert, the server writes an entry into the

Markers table. This table records geo-location information to be used by the web server to

graphically “mark” malware threats on a Google map. The location information is gathered from

a request to http://ipaddress.is querying the client’s public IP address. The latitude, longitude and

malware name fields must be unique for each entry into the table. This allows multiple attacks to

be recorded for a single location without duplicate attacks listed. One listing of an attack per

location is sufficient to alert users of a threat in the area. Duplicate entries are believed to just

take up storage space in the database.

25

Table 3: Geo-Location Variables Tracked in the Database

Markers Table

Id (Primary Key)

Latitude (varchar)

Longitude (varchar)

Malware Name (varchar)

Try and catch statements are implemented to catch any errors or issues and maintain

server communications to the clients at all times.

4.1.3 Web Server

The installed Apache2 web server is used to display all agent gathered data. It consists of

a single PHP page that dynamically writes out HTML content according to the data found in the

MySQL database. The page is then formatted and stylized by CSS and JQUERY to be more user

friendly. The address for the website is http://itsecurity.et.byu.edu:85/.

Content is divided up between six tabs on the website. The first tab, “Threats Detected,”

discusses the objectives of the project along with displaying alert coordinates from the Markers

table in a Google map.

26

Figure 4: Threats Detected Tab

The next tab, “Antivirus Update Notices,” lists all of the updates obtained by the endpoint

agents. Data is presented in an interactive JQUERY table that allows users to search, sort and

change the amount of visible records. Data on this page notifies users of how often vendors

update their signatures.

Figure 5: Antivirus Update Notices Tab

27

The following tab, “Antivirus Update Totals”, provides a listing of summary update

statistics for each vendor. This provides detailed information on how often a vendor releases new

signature updates to clients. However, the accuracy of the statisitcs depends on the clients

availability. Most clients are not intended to be operational at all times and future work will look

into creating an environment that will catch and report updates on an ongoing basis in order to

report accurate times.

Figure 6: Antivirus Update Totals Tab

The “Malware Quaratine Alerts” tab is similar to the update notices tab except it displays

malware alerts detected by the agents. This data shows users which signatures have detected

specific malware strands. This framework intends to use this data to compare antivirus vendors

and their capabilties in catching new malware strands.

28

Figure 7: Malware Quarantine Alerts Tab

Continuing, the “Antivirus Naming Convention” tab has been found extremely useful in

displaying direct relationships between antivirus vendors and a single piece of malware.

Figure 8: Antivirus Name Conventions Tab

29

The final tab provides download links to the different agent zipped packages. Users can

choose to download the agent that coordinates with their specific antivirus. Each package

includes everything necessary to operate the agent.

Figure 9: Download Tab

4.2 Client Side Agents

Initially it was believed that all antivirus software alerts and updates appeared in the

Windows 8 event logs, enabling the development of a universal agent that could operate across

multiple vendors. However, out of the proposed antiviruses for the project, Windows Defender

and Symantec were the only ones to record all their events in the event log. The other vendors

dealt with logging differently. This discovery led to each agent being customized for a specific

vendor. It was also found that many of the antivirus companies encrypt their logs. The following

vendors could not be analyzed for the project and were removed from scope:

30

 AVG

 Kaspersky

 McAfee

 The remaining vendors compatible with the prototype included Windows Defender,

Symantec and Sophos. Avira was later added to the list to increase the dataset. According to the

OPSWAT “Market Share Report for Worldwide Antivirus Vendors” released December 2012,

Avira had the 5th largest market share of 10.4% (OPSWAT), closely following Microsoft and

Symantec. With this significant popularity, it was chosen as a good substitute for the encrypted

antivirus solutions that would not work with the agent developments.

Each agent consists of three key components, which are the listener, mapper and logger

functions. The listener watches the client environment for any antivirus related changes to

Figure 10: Agent Architecture

31

software or window log files. Once a relating event is detected, the listener triggers the mapper

component. This function looks into the log file and gathers information relating to the event.

Once all data is gathered, it is passed to the logger which formats the data and delivers it to the

server. The logger function is programmed exactly the same in each agent, with the listener and

mapper functions differing depending on the vendor. The following sections describe the listener

and mapper functions in more detailed for each agent and coordinating vendor software.

In order for the agent to be more adaptable, each agent reads configuration settings from

a marked file. Users can record and make changes to this file affecting where the agent addresses

the server path along with system paths to the antivirus files. In future development, paths may

change in new releases of the Windows operating system. As long as the antivirus logs events

similarly, the agent will be able to operate with the new path entries without another

development release.

The following sections go into detail on the individual actions and programing of each

agent after they have read in configuration file details.

4.2.1 Windows Defender

Microsoft Windows Defender writes to its own Windows event log named Microsoft-

Windows-Windows Defender/Operational. The logger component of the agent monitors this

event log for changes. Python has a library for accessing the System, Application and Security

event logs, however it does not include functions for accessing individual application event logs.

With this in mind, it was found that Windows has a native command, wevtutil, which can be

used to access any event log stored in the C:\Windows\System32\winevt\Logs

directory. The ideal situation would have the agent trigger with a new event entry in the

32

Windows Defender log but the limitations on the querying ability of wevtutil prevent this action.

Instead, the tool can be used to pull events created within a specified range of milliseconds. In

the agent, an endless loop is created to run this command with the default delay time set to 3000

milliseconds. This variable time can be changed within the configuration file for faster or slower

processors.

If event records are returned from the wevtutil and are not duplicates from previous

requests, they are individual threaded and passed to the mapper. Within this component, the

getEventType function is first called. This function uses regular expressions to determine the

event id. Different events have different types of ids that describe the overall behavior of an

event. For instance, in Windows Defender, an event id of 1116 describes a malware detection

event or blocked file access. The getEventType function looks strictly for 1116 events and

2000 events otherwise known as antivirus updates.

With the detection of an 1116 event, the getEventType collects the hash with hashlib

of the malware file detected by Windows Defender. This path is included in the event

description. Following, the function calls getAlert which listens for an 1117 malware

response event. Often there is a race case in collecting this file hash before the antivirus deletes

or moves the file to quarantine. This is why 1116 events are captured. The agent has time to

collect the filename and hashes before the antivirus has taken action against the malware and

logs an 1117 event.

Even with these measures, the agent may still fail in getting a file hash. Hashes are

necessary in correctly identifying malware across vendors. For researchers, it is proposed to turn

off Windows Defender Real Time protection. Without this immediate scan, more time is

presented to the agent to gather the file hash during a manual scan of a file or directory. Turning

33

this setting off is not recommended for the average computer user because it may leave their

system very vulnerable. Windows 8 does not include the option to scan individual files natively

in the context menu that appears when a user right-clicks on a folder. For the users’ convenience,

directions on how to set a registry field to include this option are provided in the agent package.

Further details on the contents of the Agent package are included in the Usage and Project

Distribution section.

The getAlert function uses the wevtutil command to pull events in search of the 1117

response to the earlier found 1116 event. Within the 1116 event’s content is a malware id. This

id is found with the use of regular expressions in getEventType and passed to getAlert.

The function then searches all 1117 events for this malware id. The getAlert function loops

through until this combination is found or until 25 minutes have passed. This timing prevents an

infinite loop. In the case that multiple malware strands are detected at the same time, each

detection is connected to a single thread that runs through this process.

When a coordinating 1117 event is found, regular expressions are used to search the

event content for the timestamp of the event, antivirus signature version, malware name and

action. The antivirus software version is found by using the python GetFileVersionInfo

tool from the win32api library. This tool returns the version of a file provided, in this case the

Windows Defender executable. The version of this file coordinates with the software version

listed in the Windows Defender’s main menu window. The platform python library is used to

determine the operating system of the endpoint device running the agent. The client’s public IP

address is collected by the getIP function. This function sends a request to http://httpbin.org/ip.

In response, this webpage delivers the public IP in plaintext JSON which the function collects

and returns. Once all this reporting information is gathered, it is delivered to the server. Figure

34

11 displays an instance where an agent has delivered malware alert data found to the project

server. The universal report format used by the logger for all agent alerts is as follows:

<MYSQL ENTRY TABLE NAME>*<TIMESTAMP>*<MALWARE

NAME>*<HASH>*<VENDOR>*<SOFTWARE VERSION>*<SIGNATURE

VERSION>*<PLATFORM>*<ACTION>*<PUBLIC IP>

The server will split the string by the ‘*’ character and put the segments into the MySQL

database.

Figure 11: Agent Delivered Alert Report

Alternatively, if the agent mapper detects a 2000 event id within getEventType, it

calls the getUpdate function and passes the event data. This function uses regular expression

to pull the timestamp and the new signature version. The GetFileVersionInfo tool is again

used to get the software version. A hash is taken of the Windows Defender MpAvBase.vdm

35

and MpAvDlta.vdm files. These are the signature files that identify the update.

MpAvBase.vdm contains the base virus definition module. It is updated once a month with new

virus definitions. MpAvDlta.vdm is updated multiple times a day. It contains all the changes

that have occurred since the last base file was created. The platform python library is again used

to locate the operating system of the client. The public IP address is collected by the getIP

function described earlier. Once all this reporting information is found, the agent concludes by

delivering the update information to the server. Figure 12 displays an instance where an agent

has delivered update data to the project server.

Figure 12: Agent Delivered Update Report

The universal report format for all agent logger updates is as follows:

<MYSQL ENTRY TABLE NAME>*<TIMESTAMP>*<SIGNATURE

VERSION>*<HASH>*<VENDOR>*<SOFTWARE VERSION>*<PLATFORM>*<PUBLIC

IP>

36

The libraries used by this agent are listed in Table 4.

The libraries used by this agent are found in Table 4.

Table 4: Windows Defender Agent Libraries

Library Name Description (The Python Standard Library)

socket Creates a primitive networking interface

ssl Creates an SSL wrapper for socket objects

GetFileVersionInfo,

LOWORD, HIWORD

from win32api

Tools that find and format the version of a file.

pprint Prints formatted data

platform Tool that returns the host’s operating system platform

json Decodes and encodes JSON strings

Figure 13: Windows Defender Agent Architecture

37

Table 4, Continued

Library Name Description (The Python Standard Library)

re Regular expression operator

os Provides a toolset used to interact with the operating system

interface

hashlib Tool used to hash files

datetime Returns formatted date and time objects

time Allows access to time objects and conversion

sys Returns system-specific

thread Allows for control of multiple threads

urlopen from urllib2 Module used to open and read URL requests

4.2.2 Symantec

Symantec writes all updates and malware alerts to the Windows Application event log.

This agent utilizes the win32evtlog library to access and read these event logs. The win32event

library is used in conjunction with win32evtlog to create a listener that triggers a new thread

operation whenever a new Application log event occurs. Each new thread operation calls

getEvent and passes the function the event data retrieved by the listener.

The getEvent script, within the mapper component, analyzes the captured event data

with regular expressions to determine if it is a Symantec event. The win32log library includes a

38

function to pull an event’s source and event id. If it is found to be an event from Symantec, the

agent gathers a few environmental variables. The platform python library is used to determine

the operating system of the endpoint device running the agent. The function previously discussed

in the Window Defender section, getIP, is used to get the public IP address of the client.

GetFileVersionInfo is called on the Symantec main executable to retrieve the software

version and the timestamp is taken from the event and formatted for consistency across all agent

reports. Lastly, the current signature version is found in the definfo.dat file.

After these variables are collected, the agent looks at the event’s id. An id of 1090453511

indicates a virus definition update. With an update request, the agent collects the new signature

version from the event content and takes a hash of the Symantec update virus catalog.dat

file to uniquely identify the update’s content. Symantec uses this catalog.dat file to build

custom signature files depending on the host’s platform. This information is all reported to the

server.

A 400 event describes an instance where the antivirus has detected and blocked the user

from attempting to download a piece of malware. If the agent comes upon this event, it filters out

the malware name detected and the action taken against it. The operating system platform is

again detected along with the public IP address by the getIP function. This data along with the

previously collected environmental information is then reported to the server.

The last event the agent looks for is a 109045355 or malware detection incident on the

device. Similar to the block event, the agent uses regular expressions to get the name and action

performed against the malware. In addition, the agent then queries the quarantine for the

malware. By default Symantec creates an entry in the quarantine for each detected piece of

malware. Within this entry, the software records the hash and name of the malware in plaintext.

39

The agent uses the getHash function to locate the newest quarantine entry that contains that

name of the discovered malware and attempts to collect the hash of the file. This information

along with the detected operating system and the public IP address obtained by the getIP

function is reported to the server by the logger.

The libraries used by this agent are found in Table 5.

Table 5: Symantec Agent Libraries

Library Name Description (The Python Standard Library)

win32evtlog Provides an API for accessing the Windows event logs

win32event Includes functions for interacting with the win32 event API

win32api Encapsulates the Windows Win32 API into python calls

win32con Contains tools for accessing the Windows registry files

Figure 14: Symantec Agent Architecture

40

Table 5, Continued

Library Name Description (The Python Standard Library)

win32evtlogutil Tool used to retrieve the actual content body of text for event

socket Creates a primitive networking interface

ssl Creates an SSL wrapper for socket objects

GetFileVersionInfo,

LOWORD, HIWORD

from win32api

Tools that find and format the version of a file.

pprint Prints formatted data

platform Tool that returns the host’s operating system platform

json Decodes and encodes JSON strings

re Regular expression operator

os Provides a toolset used to interact with the operating system interface

hashlib Tool used to hash files

datetime Returns formatted date and time objects

4.2.3 Sophos

Sophos will write malware detection notifications to the Windows Application event log

but it does not write signature updates to this log. So in addition to using the win32log and

win32event libraries as in the Symantec agent, the Sophos agent also has a listener watching the

Sophos update log text file in the C:\ProgramData\Sophos\AutoUpdate\Logs\

directory for changes. A change made to this log indicates an update to the Sophos signature file.

41

This listener works by constantly checking the modified time on the log file. If the modified

times change then the agent knows an update has been made and it triggers.

If the win32 libraries detect a new event log, a new thread is created that passes the event

to the getAlert function. This mapper function’s first priority is to determine if the event’s

source is Sophos. The win32log library includes a function to pull an event’s source along with

other event details. If the event is from Sophos numerous environmental variables are then

collected. The timestamp is collected from the event and formatted along with the Sophos

software version by the GetFileVersionInfo tool. Following, the agent looks at the event

id.

An event id of 542638091 or 539295776 indicates a webpage being blocked or a malware

detected on the host. For the blocked event, the name and action is collected and delivered to the

host along with the earlier collected environmental data. If the event deals with malware

detection on the host, the malware name and file is collected by the agent through regular

expressions on the event content. The file is then hashed with hashlib In some instances this step

fails because the antivirus was quicker than the agent and has already removed the file. The hash

is not required in order to create a report. However, in order to prevent this, Sophos on-access

protection can be disabled. Without this setting the user is required to manually scan suspicious

files providing more time for the agent to react. This setting is not recommended for

inexperience computer users because it may render their system vulnerable to attacks. The IP

address is collected by the getIP function described in the Windows Defender section along

with the platform retained by the python platform tool. Once all data is collected, it is delivered

to the server.

42

If an update was detected instead of a malware incident, the getUpdate function is

called. This is a simple function that collects the same environmental variables as the

getAlert function and in addition uses regular expressions to get the latest update information

from Sophos’s main log file, SAV.txt. This information includes the signature version and the

number of viruses it can detect. Finally, the hash function is then called. This function looks for

and hashes the latest IDEs or signature files within the last specified number of minutes. Users

can set this number in the configuration file depending on how often Sophos is set to update. The

data is then accumulated with the platform retained by the python platform tool and the public IP

found with the getIP function. Everything is then reported to the project server by the logger.

Figure 15: Sophos Agent Architecture

43

The libraries used by this agent are found in Table 6.

Table 6: Sophos Agent Libraries

Library Name Description (The Python Standard Library)

win32evtlog Provides an API for accessing the Windows event logs

win32event Includes functions for interacting with the win32 event API

win32api Encapsulates the Windows Win32 API into python calls

win32con Contains tools for accessing the Windows registry files

win32evtlogutil Tool used to retrieve the actual content body of text for event

socket Creates a primitive networking interface

ssl Creates an SSL wrapper for socket objects

GetFileVersionInfo,

LOWORD, HIWORD

from win32api

Tools that find and format the version of a file.

pprint Prints formatted data

platform Tool that returns the host’s operating system platform

json Decodes and encodes JSON strings

re Regular expression operator

os Provides a toolset used to interact with the operating system

interface

hashlib Tool used to hash files

datetime Returns formatted date and time objects

44

Table 6, Continued

Library Name Description (The Python Standard Library)

time Allows access to time objects and conversion

sys Returns system-specific

thread Allows for control of multiple threads

codecs Includes multiple file reading codecs and base classes

urlopen from urllib2 Module used to open and read URL requests

4.2.4 Avira

Similar to Sophos, Avira only records malware detection events into the Windows event

log. In order for this agent to be able to catch the same alerts as the other agents, multiple listener

triggers had to be developed. The first trigger the agent uses combines the win32event and

win32evtlog libraries to detect incoming Windows Application events for Avira malware

detection alerts. When a new event appears, a new thread is created and calls getAlert,

passing the function the incoming event. This mapper function checks that the event’s source is

Avira and then looks at the event id. If the event has an id of -2147479353, it indicates malware

detection caught by Avira. This function then uses regular expressions and the win32evtlog tools

to gather information on the event. This data includes the malware name, file, action and

timestamp of detection. The file is hashed using the hashlib library. If a hash is not found, it is

noted in the reporting data sent to the server. To get the software version of Avira, the Avira

build file is opened and queried for the current version. The current virus signature version is

45

found and read from the registry. This information is then bundled with the detected platform

and public IP address and delivered to the server.

The agent also watches for modification on the C:\ProgramData\Avira\AntiVir

Desktop\BACKUP directory. If there has been a change, it means Avira has backed up

previous data in order to take in new virus signature files. When a change is made to this

directory, the agent first calls findFile with the requested file type being an update log. This

function then returns the latest update log file recorded in the Avira log directory. Avira makes a

new log file for each operation it performs and the type of log is easily identified by the naming

convention. Update logs include “Udp” in the name while scanning files include “AVSCAN” in

the name followed by the date and time. Once the log file is returned, the function calls the

getEvent function and passes it the detected log file along with the boolean update argument

set to true.

The third trigger deals with the Avira webguard. Since the other agents detect malicious

web content, it was a goal to have this agent also report suspicious web content. Every single

blocked web address is recorded in the Avira webguard.log file. If a modification on this log file

is detected the agent will call getEvent, with the boolean argument block set to true.

The getEvent mapper function will perform different functions depending on the

arguments provided. For all event types, the function reads the Avira build file to get the current

software version and reads the registry to get the current signature version. If update is set to

true, the function will read through the update log provided and hash each of the new signature

file paths listed in the log. The hashes are combined along with the signature, timestamp,

software version, platform found from the python platform tool and public IP returned by the

46

getIP function described earlier. This information is formatted and finally delivered to the

server.

For a blocked event, the getEvent function reads the webguard.log file and uses regular

expressions to capture the last entry. Inside this entry is the malware name and action taken

against it. For these types of events there is no need of hashes because there is no file, it has been

blocked. Finally, this information along with the earlier collected data, the platform and public IP

address is delivered to the server by the logger.

Figure 16: Avira Agent Architecture

47

The libraries used by this agent are included in Table 7.

Table 7: Avira Agent Libraries

Library Name Description (The Python Standard Library)

win32evtlog Provides an API for accessing the Windows event logs

win32event Includes functions for interacting with the win32 event API

win32api Encapsulates the Windows Win32 API into python calls

win32con Contains tools for accessing the Windows registry files

win32evtlogutil Tool used to retrieve the actual content body of text for event

socket Creates a primitive networking interface

ssl Creates an SSL wrapper for socket objects

re Regular expression operator

os Provides a toolset used to interact with the operating system interface

hashlib Tool used to hash files

datetime Returns formatted date and time objects

time Allows access to time objects and conversion

sys Returns system-specific

thread Allows for control of multiple threads

codecs Includes multiple file reading codecs and base classes

urlopen from urllib2 Module used to open and read URL requests

48

4.2.5 Problems Encountered

There were numerous problems encountered while developing these agents. The

following sections describe the issues and solutions used to overcome the challenges.

Antivirus Encrypted Logs

The most difficult issues dealt with finding software that did not encrypt all its logs files.

This was especially pertinent when the antivirus did not log events to the Windows event logs.

Due to intellectual property laws, no attempts were made to decrypt logs or extract private data

from any of the antivirus software. Some of the incompatible vendor possibilities explored

included:

 Panda

 AVG

 Trend Micro

 Kaspersky

 Norton

 McAfee

A lot of time went into exploring the file structure and application data for each of these

vendors. For future work, different tools such as Procmon could be used to identify antivirus

behavior. The vendors could also be contacted in order to find if they have interest in working

with the project. These efforts may lead to new antivirus agent support.

49

Logging Differences

Once an antivirus was discovered that recorded logging in plaintext, the next step was to

attempt to figure out how to get update and alert data from the logs. Each development was a

new learning experience. Virtual machines were utilized in the testing and development stages.

A virtual machine is a virtualized environment that replicates the behaviors of a physical

computer. With this setup, machines could be reverted back to previous snapshots making it

easier to test if an antivirus correctly responded to an update or malware alert. However, it was

still a slow process of trial and error experimenting to see which scripting logic would return

desired results. Another issue involved race cases where the antivirus deleted a malware file

before the agent could hash the file. It was discovered with Windows Defender and Sophos that

when real time scanning was enabled, the agent had difficulties hashing a malware file before an

antivirus discovered and removed it. With this setting turned off, the agent had plenty of time to

hash the file. However, it is not recommend for all users to turn of this additional layer of

security. If a malware hash fails, the server will still receive a report of the incident but the hash

will not be included.

Endless Hashing Loop

In some instances where the agent could hash the file first, the antivirus would get caught

in an endless loop responding to the file hashed as a new malware event. With the new event, the

agent would again respond and attempt to hash the file, repeating the process infinitely until the

agent was stopped. This was fixed by using the python file function instead of open. The

open function from the python standard library creates a file object while the file function creates

50

a constructor or type. The object created by open may have been interrupted as a new malware

instance by the antivirus causing the infinite loop.

Resource Consumption

There was also a concern for the processor consumption of the agent. If agents were too

heavy and slowed down the computer processes, they most likely would not be used on a regular

basis. The whole point of the agent is to run quietly in the background catching the random

Figure 17: Endless Hashing Loop

51

malware alerts and updates received by the antivirus. This wasn’t a problem for most of the

developed agents except for the Avira agent. Avira scatter writes data to numerous log files.

In the beginning the agent monitored four directories for changes. When one of the

directories was edited the agent would look to find the new file entry made in that specific

directory. Once the file was found the agent would read through it as the file itself was being

written. The agent would also have to read multiple other files to get all the environmental

variables. This severely loaded up the processor and slowed down all operations on the host. The

agent had to be completely redeveloped. Instead of watching numerous directories it was

discovered that the agent does communicate some alerts to the Windows event logs. Even though

these events were not as detailed as the entries into the text log, it was found more important to

have a lighter agent that does not disrupt the user experience. Also the Avira agent is set to watch

a log file modified time. Avira will not open and read a file until it has been unmodified for at

least five minutes. It is assumed that after five with no changes that the file has been completely

written out and is safe to read. It was found that reading a file while it is being written slows the

processer considerably and contributed to Avira’s consumption.

There were many times when agent development was believed to have been completed

but then multiple small errors became apparent. Many checks and exception cases were put into

the agents to prevent endless loops. There may be a time when an antivirus operation may

abruptly stop before finishing a log entry causing the agent to stall. If this happens, the agent is

set to stop querying for a specific log entry after 25 minutes.

52

Stress Testing Overload

When introducing numerous malware samples into an environment at once, some of the

agents were at first unable to handle the massive amount of alerts. Some events would even be

skipped. After further development, the agent behavior was corrected. Multi-threading allowed

the agents to responded to multiple events at once without pausing the event listening triggers.

Duplicate Entries

Despite its benefits, multi-threading events often caused duplicate entries. To prevent

these doubles, there are checks scripted on the server and client. The server’s MySQL database

requires certain field combinations to be unique before being inserted into a table. The clients

manually check to assure that an event that previously triggered an agent does not match the last

triggering event. These checks severely cut down the number of duplicate entries in the database.

Often a client’s antivirus text or event logs may record the same malware incident twice but with

different timestamps. These types of report duplicates are unpredictable and not blocked by any

of the checks. These events are not blocked because it cannot reliably be determined if the

malware attacked the system twice within a close proximity or if this is the same malware attack

recorded multiple times in the logs.

User Configuration

One objective to development was to create an agent that can immediately run out of the

box in its target environment without any necessary changes from the user. This was more a

convenience to users rather than a necessity. With this in mind, some of the previously

mentioned antivirus vendors could not be used. Some software products have configuration

53

settings available that allow the user to set the antivirus to write to the Windows event logs.

However, this requires the user to understand what the event logs are and how to access them.

The project framework aims to get as many user clients as possible running agents. Some users

may be deterred by the need to make additional configuration settings. The agent is more likely

to attract users if little configuration is required.

4.3 Testing

Testing was used throughout the entire developmental stages of the framework to assure

the agent exhibited the correct functionality. Final testing stressed the agent’s abilities to handle

a massive attack of numerous malware samples downloaded from various sources and also its

processor consumption.

Figure 18: Testing Model

54

4.3.1 Development Testing

The testing environment consisted of five virtual machines. A virtual machine is a

virtualized environment that replicates the behaviors of a physical computer. Four of the virtual

machines were each installed with a different antivirus. An agent development was copied into

each environment. Each agent was specifically designed and tested to work with the coordinating

antivirus installed on the virtual machine. The fifth virtual machine was used to test each

antivirus and agent in a fresh environment in order to ensure the agent could work on another

machine and was not limited to the development environment.

There were four main tests an agent had to pass in order to move onto final testing:

 Agent detects antivirus update

 Agent recognizes a blocked event

 Agent identifies when an antivirus finds malware during a scan

 Agent can operate in a fresh environment

Agent Detects Antivirus Update

The first test required updating the antivirus and ensuring the update was detected by the

agent. If an agent delivered the correct update variables to the server following a client update,

than the agent passed the test.

Agent Recognizes a Blocked Event

The second test required the agent to correctly respond to a blocked webpage or file

event. During this test, a browser was opened and directed to the Eicar Test Virus download,

55

http://www.eicar.org/download/eicar.com.txt. The agent passed the test by correctly identifying

the malware alert and delivering a report notice to the server.

Agent Identifies when an Antivirus Finds Malware During a Scan

The third test required the agent to identify when and antivirus captures malware during

an antivirus scan. For this test, a single piece of malware was downloaded from

http://contagiodump.blogspot.com in a zip file and extracted onto the client’s desktop. The test

was successful if the agent correctly detected the malware sample and delivered the coordinating

reporting data back to the project server.

Agent can Operate in a Fresh Environment

The final test ensured that the agent could be copied into a new environment and by fully

functional. For this test, the fifth virtual machine was used. An antivirus was installed on the

machine followed by the agent. If the agent retained full functionality and passed the prior tests

mentioned, the agent was successful. After each agent test, the machine was reverted back to the

state it was in before the antivirus was installed. This prepared the virtual machine for the next

agent and antivirus installations.

4.3.2 Final Testing

There were two primary tests involved in the final stages of testing:

 Agent can handle multiple requests at once during stress testing

 Agent remains lightweight, consuming very little system resources during performance

testing

56

Agents can Handle Multiple Requests at Once During Stress Testing

40 malware samples were used to test each agent’s capabilities in handling malware in

real time. A full list of the malware samples can be found in Appendix F. The malware samples

were individually zipped and copied onto the desktop of each virtual machine. The malware was

unzipped and scanned simultaneously to stress the agent and its report functionality. The purpose

of this test was to overwhelm the agent with an unrealistic scenario so as to ensure the agent

could handle a typical user environment where malware is encountered a few times a month. If

agents failed this test, they were put back into development and tested until it could successfully

handle the load.

Agent Remains Lightweight

The final test looked into the performance impact of an installed agent. Each virtual

machine in the testing environment consisted of the same less than average specs. This included

2 GB of memory, 1 processor, single core and 20 GB of hard disk space. The hosting machine

includes 16 GB of memory, 1 processor, i7 quad-core with 2.40GHz CPUs and 500 GB of hard

disk space. At the time of the tests, one virtual machine was powered on at a time running default

windows operations, their antivirus and the coordinating agent. This setup was used to provide a

free environment in order to accurately view the agent’s maximum consumption without any

type of bottleneck constrictions. The agent was set to a service in each environment and ran in

the background as each of the first three development tests described were performed multiple

times. For the malware detection tests, different samples of malware were tested one at a time in

order to obtain a representative average. Consumption was monitored on the Window Task

Manager. The results of the test are seen in Table 8.

57

Table 8: Agent Consumption Monitor

 Average Listening

Consumption

Average Update

Consumption

Average Blocked

Consumption

Average Malware

Detection

Consumption

Windows

Defender

0% CPU

8.9 MB Memory

0 MB/s Disk

0 Mbps Network

20.3% CPU

8.9 MB Memory

0.1 MB/s Disk

0.1 Mbps Network

3.1% CPU

8.9 MB Memory

0 MB/s Disk

0.1 Mbps Network

1.7% CPU

9.0 MB Memory

0 MB/s Disk

0.1 Mbps Network

Symantec 0% CPU

5.9 MB Memory

0 MB/s Disk

0 Mbps Network

1.4% CPU

5.9 MB Memory

0 MB/s Disk

0 Mbps Network

2.5% CPU

5.8 MB Memory

0 MB/s Disk

0.1 Mbps Network

10.9% CPU

5.8 MB Memory

0.1 MB/s Disk

0.1 Mbps Network

Sophos 0% CPU

4.9 MB Memory

0 MB/s Disk

0 Mbps Network

3.6% CPU

6.4 MB Memory

0.1 MB/s Disk

0.1 Mbps Network

0.9% CPU

5.5 MB Memory

0 MB/s Disk

0.1 Mbps Network

2.7% CPU

5.7 MB Memory

0 MB/s Disk

0.1 Mbps Network

Avira 0% CPU

5.7 MB Memory

0 MB/s Disk

0 Mbps Network

6.0% CPU

4.9 MB Memory

0.1 MB/s Disk

0.1 Mbps Network

0.8% CPU

5.9 MB Memory

0 MB/s Disk

0.1 Mbps Network

2.1% CPU

5.8 MB Memory

0 MB/s Disk

0.1 Mbps Network

These tests revealed that the agent had little impact on the computer environment

performance and a user’s experience, except during times when Windows Defender ran an

58

update. However, the spikes displayed in the table each lasted less than a second. From these

tests it is believed the user’s activities will be unaffected by the agent.

4.4 Security

The security of the client side agents and server was considered throughout the entire

development of the framework prototype. If this product is going to be distributed publically it

needs to be secure for the protection of user privacy. Steps were taken on the server and client

side to secure the project.

The server looks specifically for communications coming in on a designated high

numbered port. It is not an obvious or common port for services. This will not prevent the port

from being discovered but attackers just looking for low level common ports will not detect it.

Communications between client and server are also encrypted in SSL. This discourages others

from listening in on communications and using man in the middle attacks between the agent and

server. This type of attack is where an attacker intercepts messages between devices and

manipulates data packets for malicious intentions.

59

Figure 19: Wireshark Capture of Agent SSL Communications

Within the server, different user accounts are issued ownership over the python listener

and web services. This enacts access controls on the services and what files they can and can’t

access, preventing traversal attacks where hackers attempt to access protected files. The Apache2

server is also set to forbid requests for directory listings. Users will not be able to see the

contents or file structure of the web server.

There are no form submissions or user interactions that deal directly with the MySQL

database through the web interface. This prevents attackers from performing SQL injections.

There is a search box in the website controlled by JavaScript. It searches the current content

already displayed on the page. The page does reload and it does not relay the query anywhere on

the page for cross-side scripting attacks.

Lastly, there is a concern for the user and the information disclosed by the agent. The

website completely enumerates their antivirus version information and operating system

platform. This information can be passed to an attacker and used against a client. However,

60

information that could disclose the identity of the machine and user is not collected, except for

the public IP address of the network containing the client. The private IP address of the machine

is not collected. Despite the full public address being collected and stored in the server database,

the website does not disclose the full IP, only the first half of the address is visible. This is to

help ensure records displayed on the web interface cannot be traced back to a client.

Administrators alone have access to the full IP addresses in the database. The measures

described help maintain user privacy and secure data stored on the server.

In conclusion the following measures were taken to reduce the risk compromise:

 High server listening port

 SSL encryption

 Server access controls

 Limited access to the MySQL database

 Forbidden directory access through the browser

 Cross-side scripting filters

 Limited information disclosure

4.5 Usage and Project Distribution

Each agent comes completely packaged with an executable created by the py2exe

module. Python is not required to be installed on a client in order to run the agent. Everything

needed to run the agent has been packaged and is included in the agent zip folders distributed on

the web server. The source code is not intended for public release until it’s confirmed whether or

not the agents protect the intellectual property of the antivirus vendors, however the code will be

available on an internally hosted GIT server dedicated to the agent framework project. This GIT

61

server is managed by the BYU Cyber Security Research Lab and is only available to

participating faculty members and student researchers.

There are two ways the agent can be operated. The client can choose to directly run the

executable with administrator privileges, this method will open up a command prompt window.

The second method is for those who want the agent to run silently in the background, the agent

can be set as a service. Instructions on how to create a service are included in each agent’s

package. Once the agent is running, the user can forget about it. On its own it will collect data on

antivirus updates and malware alerts. This data will then be relayed to the server without

disrupting the user’s experience.

The user can choose to turn off real time protection in order to help contribute more

hashes to the study but this is not required and not recommended for the everyday user. Users

who turn this feature off will have to remember to run manual scans on a regular basis. The

Windows Defender agent package comes additionally with a registry script. This script enables

the right-click scan menu item which may be found useful for users who have chosen to turn off

real time protection. By default this option is not included in Windows 8.

62

Figure 20: Windows Defender Right-Click Scan Menu Item

The agent framework prototype is freely available to anyone who wants to download and

use the agents. Each new client will contribute an increase in information received by the server

and will help build upon the dataset. This material can then be used to compare vendor

performance and better answer the question of if there is a need to have multiple antivirus

installations on a client.

63

5 FRAMEWORK ANALYSIS

This section analyzes the final framework prototype and answers the proposed hypothesis

questions:

 (R1) What are the challenges and techniques utilized in creating an agent malware

reporting framework architecture?

 (R2) What are the key characteristics that are suitable for universally identifying malware

strands?

 (R3) Is there a correlation between antivirus malware naming conventions?

 (R4) What quantifiable benefits may be achieved by using multiple vendor products to

detect malware?

5.1 (R1) Framework Design Challenges and Techniques

As predicted, it is possible to develop a cloud sourced malware reporting framework that

uses distributed agents to assess the performance of antivirus software based on malware

signatures. This was evident by the successful development of a proof of concept prototype that

analyzed the update and malware alert events of an antivirus. The key components of the

prototype are the individual client side agents and the listening server. This framework would not

be able to meet its intended purpose without these two features. The prototype proof of concept

64

was completely custom developed. The reason for this effort was to ensure control over the

prototype behavior and guarantee expected performance.

The agents individually detect and respond to antivirus events occurring on an endpoint

device and are partially customized for a client’s particular vendor. At the time of development,

a universal agent could not be created because each antivirus analyzed logged events uniquely.

An agent consists of three components, the listener, mapper and logger. Each agent contains the

same logger function however the other two components vary. For future work, a base universal

agent may be considered with plugin options that will correctly handle setting up the agent

listener and mapper functions depending on the antivirus vendor.

 With each discovered malware alert or signature update, the agent queries and extracts

predefined variables describing the event. The agents are necessary for obtaining a dataset

concerning antivirus resources and abilities. Without this data, the framework would not provide

any insight into vendor performance. Information retrieved by the clients is delivered to a single

location. The server acts as a centralized data collection destination for all agents. It stores and

presents records in a formatted table. Accurate conclusions can only be determined when a

complete referencing dataset is presented in a readable presentation. The server is a necessary

component because it provides a graphical interface for reading the data reported by the agents

and completes the framework design.

5.2 (R2) Universal Malware Identifiers

It was found that the malware hash is the only suitable universal identifier for individual

malware strands. This became apparent when analyzing antivirus naming conventions. Malware

names are localized to a specific vendor’s definition. For this reason, names cannot be used to

65

identify the same piece of malware across vendors. In order to compare antivirus vendors and

their resources to combat a specific threat, the malware in question’s hash is necessary. Since a

name is not universal it cannot be compared across vendors. A hash needs to be used in order to

correctly query and compare different antivirus definitions and resources.

There is an issue with the same piece of malware having different variants. These

deviations would not have the same hash. To further improve upon the agent development, fuzzy

hashing could be implemented. A fuzzy hash is a hash taken of a file that can be compared

against others hashes in order to determine a percentage match. Instead of a one to one ratio

between hash comparisons, one fuzzy hash could match multiple malware strands. With received

data from the agents, the server can use fuzzy hashes to match one hash to all deviations of a

single malware threat. This would drastically change how malware is identified and coordinated

with the different vendor naming conventions.

5.3 (R3) Vendor Naming Conventions

From the tested malware samples, there are no visible patterns or consistent similarities in

the naming conventions between all of the antivirus software. Table 9 shows a comparison

between vendor names gathered by the agents in the prototype.

66

Table 9: Naming Convention Comparison

Identifying Malware

Hash

Malware Names by Vendor

Windows

Defender

Symantec Sophos Avira

05344813787920

a04b207416ea05516b21

958b3f6c8ad9fb8f0ce50

741efd01

Trojan:Win32/A

lureon.FT

Backdoor.Tidse

rv

Troj/Alureon-AD TR/Graftor.2

081254

0638324B80AAA7D185

F353FD4D5436D70845

D648E62791E60CDC16

26359C05CC

Exploit:Win32/P

dfjsc.AAX

Trojan.Gen.2 Troj/PDFEx-GD EXP/Pidief.c

vh

0DCB7A582A0E72DC

CCF4FD855A159A420

6B67B85FDCD0F58B7

1D85BA28E40440

PWS:Win32/Sin

owal.gen!Y

Trojan.Malcol Mal/Sinowal-N TR/Kazy.354

5812

1C464848DF9A803F01

035DACF70888A9D94

2E42ED44E071443A97

42930A23DD4

TrojanDownloa

der:Win32/Kulu

oz.B

Trojan.Gen Troj/Agent-WGO TR/Rogue.kd

v.637381

3407BF876E208F2DCE

3B43CCF5361C5E009E

D3DAF87571BA5107D

10A05DC7BC4

Trojan:Win32/R

2d2.A!rootkit

Backdoor.R2D

2

Troj/BckR2D2-A TR/GruenFin

k.2

Occasionally, some names may be similar across a few vendors, but very rarely are the

names universally consistent. Because of this behavior, there are no noticeably detectable

naming convention patterns between antivirus products. Typically the first responder to a piece

of malware gets the rights to name the malware. The name often comes from a string found

67

within the malware or the author’s name. However, the longer a piece of malware is live the

more likely it has developed numerous strands. In some circumstances a vendor identifies a

strand as a new piece of malware and utilizes its own naming convention to identify the threat as

evident from the data collected in the table. This research provides real-time correlation of

naming conventions based on the sample’s hash allowing easy identification of a strand even if a

vendor has applied a different name.

5.4 (R4) Benefits of Multiple Vendor Installations

The graph below illustrates the percentage of malware threats detected by the antivirus

software out of the complete sample set. The entire malware sample set is listed in Appendix F.

The data was collected by the client side agents and delivered to the server for centralized

analytics.

Figure 21: Percentage of Antivirus Detections out of 40 Samples of Malware

68

From the data collected by the agents, it is apparent that not every piece of malware from

the sampling set was detected by each vendor. On average, the antivirus software protected

against 76.875% of the malware threats in the test environment. With this in mind, by increasing

the number of installations on a device, resources are combined and there is a greater chance of

detecting malware. This is seen in Figure 22.

Figure 22: Percentage of Two Antivirus Installation Detections out of 40 Samples of Malware

On average, 86.667% of the threats were detected by two installments of antivirus

software. With each client averaging an increase of 4.75% in malware samples detected. The

graph shows the antivirus with the greatest detection rate as the base antivirus. The second layer

69

shows the additional support provided by a second provider. Even though it may not appear to be

an exceptional increase in protection from the base provider, it is evident that not all vendors

have succeeded in detecting every malware sample. It is not always known which provider is the

most proficient. However, with another installation, a device has a greater chance of being

protected from more threats. With three installations, even greater protection percentages are

achieved.

Figure 23: Percentage of Three Antivirus Installation Detections out of 40 Samples of Malware

Three installments on average provided 91.5% protection against the malware samples

tested. Figure 24 illustrates the maximum benefit of multiple installations of antivirus software

found in the study.

70

Figure 24: Comparison between One and Three Antivirus Installations

From the data, it is recommended that users considered at least two different vendor

installations of antivirus software for their client machine in order to increase their system’s

security. Future work should focuses on increasing the malware sample size to further support

this claim.

71

6 CONCLUSION AND FUTURE WORK

The purpose of this research was to assess the viability of a cloud sourced malware

reporting framework that utilizes distributed agents to evaluate the performance of antivirus

software based on malware signatures. From the research, it was found that an agent based

malware reporting framework may be used to collect details on the performance of antivirus

software. A prototype proof of concept was built to demonstrate the feasibility of such a

framework. It consisted of two key components, the centralized collection server and the

individual client side agents. Detected malware alerts and antivirus updates were reported from

the agents to the server.

6.1 Future Research

The following section discusses opportunities for future research and project

improvements comprising:

 Use of fuzzy hashes

 Agent uptime and accuracy

 Improving the antivirus agent support

 Universal Agent

 Increasing the number of agent clients and malware samples

72

6.1.1 Fuzzy Hashes

From the data collected by the agents, it was discovered that the only way to identify

malware universally across antivirus software was by a hash. The naming conventions of the

malware vendors contain no recognizable universal patterns. For this reason, the prototype

provides a reference for the monitored antivirus software and their naming conventions for a

specific hash. However, it should be noted that SHA256 may be ineffective against identifying

malware strands within a family and should be addressed in future research. A fuzzy hash can be

implemented to further identify malware strands and similar deviations across multiple vendors.

This will eliminate the need for each deviation of a specific malware file hash to be recorded in

the data. It will instead require one hash that can identify the majority of deviations.

6.1.2 Agent Accuracy

One problem with the prototype design is that it relies on the client machines being

powered on at all times in order to get accurate readings of antivirus performance. However,

many clients are powered off after use. One solution would be to create a permanent

environment where a grouping of virtual machines remains operational at all times. Each virtual

machine would then include a unique antivirus installation and coordinating agent in order to

provide more accurate antivirus update notifications from all supported vendors. Future research

should further look into this resolution and others in order to address the situation.

6.1.3 Agent Support

Further research should also look at increasing the antivirus vendor agent support along

with improving development code for client side performance. Many vendors were found

73

incompatible with the prototype because their log information in encrypted. Attempting to

decrypt or read this private data is illegal due to intellectual property laws. However, there may

be an opportunity to work together in the future with different antivirus companies and with their

permission create an agent compatible with these encrypted records. Also it may be beneficial to

look into tools such as Procmon to increase the number of antivirus software the agent supports.

If API functions are available, an agent may be able to utilize these tools to analyze and gather

event data from new processes coordinating with an antivirus.

6.1.4 Universal Agent

After reviewing the prototype development created as a proof of concept for the

framework, it is evident that a universal agent construction may be possible. Each agent consists

of the same three components. These parts include an event listener, a data mapper and report

logger. The agent logger remains the same across vendor installations while the other two

functions differ depending on how an antivirus logs events. A universal agent can consist of the

logger component along with plugin options that setup the other two components for the client’s

antivirus software improving upon the current design. This new implementation will lead to

simplified agent developments. Only additional plugins will need to be programmed for new

vendors while the agent remains the same.

6.1.5 Expanding the Study

 Continuing, the prototype can also be improved upon by increasing the number of

endpoint devices with installed agents. The BYU Information Technology’s security lab will

implement the agent on each desktop in order to increase the number of distributed agents and

74

detected malware events. Also, BYU’s Office of Information has been contacted about the

development will discuss installing agents in some of the campus labs as soon as the operating

systems are updated to Windows 8. This information will contribute to the current prototype’s

dataset and further identify antivirus trends and performance. With an increase in clients, more

malware samples are expected to be reported. This data will also contribute to the research and

further identify trends in multiple antivirus installations.

6.2 Project Contribution

Malware is a malicious, rapidly growing threat targeting endpoint devices. Numerous

vendors supply antivirus software that can help protect a user against these threats. Each vendor

has their own set of virus definitions varying in resources and capabilities in recognizing new

strands of malware. Users can benefit from a system that can evaluate antivirus performance in

order to be better informed about their security options, in addition to becoming aware of

prevalent threats occurring in their network.

The framework introduced in this research utilizes a cloud sourced malware reporting

system to benefit users and provide real time information in order to educate and assist in

security decisions. It localizes threats by geo-location along with informing clients on how active

vendors are in updating their definitions with new signature files. This reporting system benefits

the user by exposing current malware activities and the abilities antivirus technologies have to

combat these threats. In summary, the research contribution includes in real time:

 A system centric view of malware detection

 Correlation of malware identifiers

75

 Antivirus performance evaluations

 Support for a new security model with multiple vendor installations

Concluding, malware threats are increasing at a pace that vendors cannot match. A single

vendor does not have the resources to combat every attack. Research has shown that there is a

need to change the security model for endpoint devices (Lee 2013). The data discovered by the

agent prototype further confirmed that antivirus software does not protect against all threats and

that there is in fact a need for change. From the project findings it is concluded that by

combining antivirus resources with multiple vendor installations, a client will increase their

device’s security. This new model will improve host defenses against malware.

76

REFERENCES

 “2013 Trustwave Global Security Report.” Accessed April 13, 2013.
https://www2.trustwave.com/2013GSR-TY.html?aliId=1417176.

"About VirusTotal." VirusTotal. https://www.virustotal.com/en/about/ (accessed September 9,

2013).

"Antivirus Market Analysis: December 2012 | OPSWAT | Software management and security

solutions." OPSWAT. http://www.opswat.com/about/media/reports/antivirus-december-
2012 (accessed August 15, 2013).

Aycock, J. Computer Viruses and Malware. Springer, 2006.

“AV-TEST - The Independent IT-Security Institute: Test Procedures.” http://www.av-

test.org/en/test-procedures/ (accessed April 13, 2013).

Cambridge, R. D. “Method and System for Bi-directional Updating of Antivirus Database,” July

18, 2006. http://www.google.com/patents?id=OaB6AAAAEBAJ (accessed February 8,
2013).

“Comparatives||tests - Reviews - Reports.” Accessed April 13, 2013. http://av-

comparatives.org/comparativesreviews (accessed April 13, 2013).

"Download Python." Python Programming Language – Official Website.

http://www.python.org/getit/ (accessed August 21, 2013).

Gashi, I., V. Stankovic, C. Leita, and O. Thonnard. “An Experimental Study of Diversity with

Off-the-Shelf AntiVirus Engines.” In Eighth IEEE International Symposium on Network
Computing and Applications, 2009. NCA 2009, 4 –11, 2009.

Hodges, V. and S O’Donnell. “Method and System for Providing Automated Updating and

Upgrading of ...,” March 7, 2000.
http://www.google.com/patents?id=TGEDAAAAEBAJ (accessed February 8, 2013).

77

 “Internet Security Threat Report.”
http://www.symantec.com/content/en/us/enterprise/other_resources/b-
istr_main_report_2011_21239364.en-us.pdf (accessed April 13, 2013).

Jennings, N. R., and M. J. Wooldridge. Agent Technology: Foundations, Applications, and

Markets. Springer, 1998.

Jennings, N. R., K. Sycara, and M. Wooldridge. “A Roadmap of Agent Research and
Development.” Autonomous Agents and Multi-Agent Systems 1, no. 1 (January 1998): 7–
38. doi:10.1023/A:1010090405266.

Lee, R. “Is Anti-Virus Really Dead? A Real-World Simulation Created for Forensic Data Yields

Surprising Results” Computer Forensics and Incident Response. Blog, April 9, 2012.
http://computer-forensics.sans.org/blog/2012/04/09/is-anti-virus-really-dead-a-real-
world-simulation-created-for-forensic-data-yields-surprising-results (accessed February
8, 2013).

Maggi, F., A. Bellini, G. Salvaneschi, and S. Zanero. “Finding Non-trivial Malware Naming

Inconsistencies.” In Information Systems Security, 144–159. Edited by Sushil Jajodia and
Chandan Mazumdar. Lecture Notes in Computer Science 7093. Springer Berlin
Heidelberg, 2011. http://link.springer.com/chapter/10.1007/978-3-642-25560-1_10.

Nwana, H. S., and D. T. Ndumu. “A Brief Introduction to Software Agent Technology.” In

Agent Technology, edited by Nicholas R. Jennings and Michael J. Wooldridge, 29–47.
Springer Berlin Heidelberg, 1998. http://link.springer.com/chapter/10.1007/978-3-662-
03678-5_2.

Posey, B. “Microsoft Exchange Server Security Dos and Don’ts” TechTarget. SearchExchange.

http://searchexchange.techtarget.com/feature/Microsoft-Exchange-Server-security-dos-
and-donts (accessed March 18, 2013).

"Python v2.7.5 documentation." The Python Standard Library. http://docs.python.org/2/library/

(accessed August 16, 2013).

Sanok, Jr, D. J. “An Analysis of How Antivirus Methodologies Are Utilized in Protecting

Computers from Malicious Code.” In Proceedings of the 2nd Annual Conference on
Information Security Curriculum Development, 142–144. InfoSecCD ’05. New York,
NY, USA: ACM, 2005.

Sycara, K., A. Pannu, M. Willamson, D. Zeng, and K. Decker. “Distributed Intelligent Agents.”

IEEE Expert 11, no. 6 (December 1996): 36 –46.
http://ieeexplore.ieee.org/ielx3/64/11937/00546581.pdf?tp=&arnumber=546581&isnumb
er=11937 (accessed January 19, 2013).

78

Sukwong, O., H. S. Kim, and J. C. Hoe. “Despite the Widespread Use of Antivirus Software,
Malware Remains Pervasive. A New Study Compares the Effectiveness of Six
Commercial AV Products.”
http://theone.ece.cmu.edu/papers/94.commercial.2011.compmag.pdf (accessed April 13,
2013).

Tian, R.. An Integrated Malware Detection and Classification System. Deakin University.

(2011). Accessed April 24, 2013. http://dro.deakin.edu.au/view/DU:30043244.

 “Why one virus engine is not enough.” http://www.gfi.com/whitepapers/why-one-virus-engine-

is-not-enough.pdf (accessed April 13, 2013).

79

APPENDICES

80

APPENDIX A. AGENT – AVIRA PREMIUM ANTIVIRUS

A.1 Agent-Avira.py

"""Avira Distributed Agent Cloud-Sourced Malware Reporting

Framework v1.0 - Copyright 2013

 Kellie Kercher - agent@somethingk.com

 http://www.somethingk.com

 The code is available to anyone interesting in progressing

the research in agent based malware analysis. Please contact me

for

 suggestions, questions or improvements. If you are utilizing

this code please give credit to the project.

"""

import win32evtlog, win32event, win32api, win32con

from win32api import GetFileVersionInfo, LOWORD, HIWORD

import win32evtlogutil

import socket, ssl, pprint, platform, re, os, hashlib, codecs,

time, sys, thread

import datetime as dt

import json

from urllib2 import urlopen

#http://nullege.com/codes/show/src@w@i@WinSys-3.x-

0.5.2@winsys@event_logs.py

def getIP():

 ip = json.load(urlopen('http://httpbin.org/ip'))['origin']

 return ip

def findFile(path, type): #Find the coordinating log

 now=dt.datetime.now()

 ago=now-dt.timedelta(minutes=.1)

 mtime = lambda f: os.stat(os.path.join(path, f)).st_mtime

 latest = list(reversed(sorted(os.listdir(path),

81

key=mtime))) #Look at the latest log files

 for name in latest: #Loop through to find the latest update

or alert log

 st=os.stat(path+"\\"+name)

 mt=dt.datetime.fromtimestamp(st.st_mtime)

 if mt>ago:#Ensure the log was modified at the time of

the trigger

 if name.find(type) > -1: #begining of alert

filename

 return (path+"\\"+name)

 return

def getAlert(event, status):

 global registryPath

 global registryKey

 global build

 global logs

 global last

 try:

 if event.SourceName == "Avira Antivirus":

 eventID = event.EventID

 if eventID == -2147479535:

 msg =

str(win32evtlogutil.SafeFormatMessage(event, logtype))

 hash = "Malware file unavailable or deleted

before agent could hash."

 hashFile = re.search('in the

file\n?(.+(\n.+)?)', msg)

 if hashFile:

 if

os.path.isfile((hashFile.group(1)).strip()):

 hash =

(str(hashlib.sha256(file(str((hashFile.group(1)).strip()),

'rb').read()).hexdigest())).upper()

 sourceName = str(event.SourceName) #Setup

default values for variables

 buildFile = open(build, 'r')

 version = 'Not Found'

 name = 'Not Found'

 action = 'No Action'

 timeGen = str(event.TimeGenerated)

 newdate = dt.datetime.strptime(timeGen,

'%m/%d/%y %H:%M:%S')

 timeGen = newdate.strftime('%Y-%m-%d

%H:%M:%S')

 hKey = win32api.RegOpenKey

82

(win32con.HKEY_LOCAL_MACHINE, str(registryPath)) #read the

registry for definition version

 value, type = win32api.RegQueryValueEx

(hKey, registryKey)

 sig_version = value

 if buildFile: #read build file for product

version information

 file_read = buildFile.read()

 reg = re.search("ProductVersion=(.+)",

file_read)

 if reg:

 version = (reg.group(1)).strip()

 buildFile.close()

 name = re.search("AntiVir has detected

'(.+)'", msg).group(1)

 duplicate =

str(name)+"*"+hash+"*"+str(sourceName)+"*"+str(version)+"*"+str(

sig_version)+"*"+str(platform.platform())+"*"+str(action)+"*"+st

r(getIP())

 if last != duplicate:

 last = duplicate

 report =

"Alerts*"+str(timeGen)+"*"+str(name)+"*"+hash+"*"+str(sourceName

)+"*"+str(version)+"*"+str(sig_version)+"*"+str(platform.platfor

m())+"*Moved to Quarantine*"+str(getIP())

 return sendEvent(report)

 return

 except Exception:

 pass

 return

def getEvent(update, log, block=False): #read the latest event

data and report to the server different results determine by the

antivirus event type

 global registryPath

 global registryKey

 global build

 global blocked

 global signatureDirectory

 try:

 timeGen = dt.datetime.now().strftime('%Y-%m-%d

%H:%M:%S')

 sourceName = "Avira Antivirus" #Setup default values

for variables

 buildFile = open(build, 'r')

 version = 'Not Found'

83

 name = 'Not Found'

 action = 'No Action'

 if buildFile: #read build file for product version

information

 file_read = buildFile.read()

 reg = re.search("ProductVersion=(.+)", file_read)

 if reg:

 version = (reg.group(1)).strip()

 buildFile.close()

 hKey = win32api.RegOpenKey

(win32con.HKEY_LOCAL_MACHINE, str(registryPath)) #read the

registry for definition version

 value, type = win32api.RegQueryValueEx (hKey,

registryKey)

 sig_version = value

 if update: #if event is an update

 if log:

 print log

 f = ""

 h = ""

 while True: #loop through flagged files and

get the hash before file is deleted

 mt=os.path.getmtime(log.strip())

 now=time.time()

 if (now-mt)>=300:

 f = codecs.open(log.strip(), 'r',

encoding='utf16')

 break

 else:

 time.sleep(300)

 print "5 up"

 if f:

 lines = f.read()

 f.close()

 hashSearch = re.findall("was copied to

'(.+)'\.", str(lines)) #Find signature files for hash

 for hFind in hashSearch:

 if hFind.endswith('.vdf'):

 hash_file =

open(str(hFind.strip()), 'rb').read()

 check =

hashlib.sha256(hash_file).hexdigest()

 name = re.search("vbase\d+",

hFind)

 h =

h+str(name.group(0))+".vdf: "+str(check)+"\n"

84

 if h:

 report =

"Updates*"+str(timeGen)+"*"+str(sig_version)+"*"+str(h)+"*"+sour

ceName+"*"+version+"*"+str(platform.platform())+"*"+str(getIP())

 return sendEvent(report)

 elif block: #if blocked access file

 f = codecs.open(blocked, "r", encoding="utf16")

 lines = f.readlines()

 for i in range(0, len(lines)):

 line = lines[i]

 n = re.search("Contains code of the (.+)",

line) #read through log and pull out data

 if n:

 name = n.group(1)

 i = i+1

 line = lines[i]

 a = re.search("Executed action: (.+)",

line)

 if a:

 action = a.group(1)

 f.close()

 report =

"Alerts*"+str(timeGen)+"*"+name.strip()+"*No

File*"+sourceName+"*"+str(version)+"*"+str(sig_version)+"*"+str(

platform.platform())+"*"+str(action.strip())+"*"+str(getIP())

 return sendEvent(report)

 except Exception, e:

 print sys.exc_traceback.tb_lineno, str(e)

 pass

 return

def sendEvent(result): #send report results to server

 global callHomeServer

 global callHomePort

 try:

 print result

 s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

 ssl_sock = ssl.wrap_socket(s)

 ssl_sock.connect((callHomeServer, int(callHomePort)))

 ssl_sock.sendall(result)

 data = ssl_sock.read()

 print data

 del ssl_sock

 s.close()

 except Exception:

 print "Event not delivered to server"

85

 pass

#Read in Config Variables

try:

 config = open(os.path.join(os.path.dirname(sys.argv[0]),

'config.txt'), 'r').read()

 callHomeServer = re.search("callHomeServer = '(.+)'",

config).group(1)

 callHomePort = re.search("callHomePort = '(.+)'",

config).group(1)

 update = re.search("update = '(.+)'", config).group(1)

 logs = re.search("logs = '(.+)'", config).group(1)

 blocked = re.search("blocked = '(.+)'", config).group(1)

 registryPath = re.search("registryPath = '(.+)'",

config).group(1)

 registryKey = re.search("registryKey = '(.+)'",

config).group(1)

 build = re.search("build = '(.+)'", config).group(1)

except Exception:

 print 'Configuaration file (config.txt) is unavailable or

formatted incorrectly, unable to start agent.'

 sys.exit()

#Ensure Trigger files exist

while True:

 if os.path.isdir(logs) and os.path.isfile(blocked) and

os.path.isdir(update): #make sure directories exisits, if not

wait till it does

 break

#Setup environment

watcher1 = os.stat(blocked)

watcher2 = os.stat(update)

this_modified1 = last_modified1 = watcher1.st_mtime

this_modified2 = last_modified2 = watcher2.st_mtime

last = ""

lastlog = ""

server = 'localhost' # name of the target computer to get event

logs

logtype = 'Application'

handler = win32evtlog.OpenEventLog(server,logtype)

handlerEvent = win32event.CreateEvent (None, 1, 0, None)

flags =

win32evtlog.EVENTLOG_BACKWARDS_READ|win32evtlog.EVENTLOG_SEQUENT

IAL_READ

86

print "Finding SYSTEM Events"

win32evtlog.NotifyChangeEventLog(handler, handlerEvent)

while True:

 try:

 if this_modified2 > last_modified2: #Watch for changes

on the update file modified time, if there is a change in

modified time, trigger for updates

 report = findFile(logs, 'Upd-')

 if report:

 if report != lastlog:

 lastlog = report

 event =

thread.start_new_thread(getEvent, (True, report))

 last_modified2 = (os.stat(update)).st_mtime

 elif this_modified1 > last_modified1: #Watch for

changes on the webguard file modified time, if there is a change

in modified time, trigger for blocked access files

 last_modified1 = this_modified1

 event = getEvent(False, None, block=True)

 elif win32event.WaitForSingleObject (handlerEvent,

500) != win32event.WAIT_TIMEOUT: #Watch application event log

for updates, if new event appears, trigger

 events =

win32evtlog.ReadEventLog(win32evtlog.OpenEventLog(server,logtype

), flags,0)

 for event in events:

 alert = thread.start_new_thread(getAlert,

(event, "go"))

 watcher1 = os.stat(blocked)

 watcher2 = os.stat(update)

 this_modified1 = watcher1.st_mtime

 this_modified2 = watcher2.st_mtime

 except Exception:

 pass

A.2 config.txt

/* EDIT THE BELOW IP TO MATCH THAT OF THE TRACKING SERVER AND

ENSURE THE ANTIVIRUS DIRECTORY PATHS ARE CORRECT */

/* v1.0 */

/* If any of these variable are changed, please restart the

service. */

87

callHomeServer = 'itsecurity.et.byu.edu'

callHomePort = '12463'

update = 'C:\ProgramData\Avira\AntiVir Desktop\BACKUP'

logs = 'C:\ProgramData\Avira\AntiVir Desktop\LOGFILES'

blocked = 'C:\ProgramData\Avira\AntiVir

Desktop\LOGFILES\webguard.log'

registryPath = 'SOFTWARE\Wow6432Node\Avira\AntiVir Desktop'

registryKey = 'VdfVersion'

build = 'C:\Program Files (x86)\Avira\AntiVir Desktop\\build.dat'

88

APPENDIX B. AGENT – SOPHOS ANTIVIRUS

B.1 Agent-Sophos.py

"""Sophos Distributed Agent Cloud-Sourced Malware Reporting

Framework v1.0 - Copyright 2013

 Kellie Kercher - agent@somethingk.com

 http://www.somethingk.com

 The code is available to anyone interesting in progressing

the reseach in agent based malware analysis. Please contact me

for

 suggestions, questions or improvements. If you are utilizing

this code please give credit to the project.

 In order for the agent to work properly, windows event

logging must be enabled.

 For complete malware hashes, on-access scanning needs to be

turned off.

 This setting for on access scanning is not recommended for

the typical user.

"""

import win32evtlog, win32event, win32api, win32con

import win32evtlogutil

from win32api import GetFileVersionInfo, LOWORD, HIWORD

import socket, ssl, pprint, platform, re, os, hashlib, codecs,

time, sys, thread

import datetime as dt

import json

from urllib2 import urlopen

#http://nullege.com/codes/show/src@w@i@WinSys-3.x-

0.5.2@winsys@event_logs.py

def getIP():

 ip = json.load(urlopen('http://httpbin.org/ip'))['origin']

89

 return ip

def hash(path): #hash the signature files found, these will be

the files changed or added by the update

 global updateInterval

 now=dt.datetime.now()

 ago=now-dt.timedelta(minutes=int(updateInterval))

 hash=""

 for root, dirs, files in os.walk(path):

 for name in files:

 p = os.path.join(root,name)

 st=os.stat(p)

 mtime=dt.datetime.fromtimestamp(st.st_mtime)

 if mtime>ago:

 if name.endswith(".ide"):

 h = hashlib.sha256(file(str(p),

'rb').read()).hexdigest()

 hash = hash+name+":

"+(str(h)).upper()+"\n"

 return hash

def getAlert(event, status): #parse the latest event for malware

alerts

 global sig_version

 global antivirusExe

 global last

 try:

 if event.SourceName == "Sophos Anti-Virus": #Verify it

is a sophos event

 timeGen = str(event.TimeGenerated)

 newdate = dt.datetime.strptime(timeGen, '%m/%d/%y

%H:%M:%S')

 timeGen = newdate.strftime('%Y-%m-%d %H:%M:%S')

 sourceName = str(event.SourceName) #Pull data

from the event using the win32evtlog library

 eventID = event.EventID

 msg =

str(win32evtlogutil.SafeFormatMessage(event, logtype))

 get_version = GetFileVersionInfo(antivirusExe,

"\\")

 version =

str(HIWORD(get_version['FileVersionMS']))+"."+str(LOWORD(get_ver

sion['FileVersionMS']))+"."+str(HIWORD(get_version['FileVersionL

S']))+"."+str(LOWORD(get_version['FileVersionLS']))

 if eventID == 11 or eventID == 542638091:

#Specific Event ID for blocked alert

90

 name = re.search("Virus/spyware '(.+)'",

msg).group(1)

 action = re.search('detected at "(.+)"',

msg).group(1)

 report =

"Alerts*"+timeGen+"*"+str(name)+"*No

File*"+sourceName+"*"+str(version)+"*"+str(sig_version)+"*"+str(

platform.platform())+"*Access to "+str(action.strip())+" was

blocked.*"+str(getIP())

 return sendEvent(report)

 elif eventID == 32 or eventID == 539295776:

#Specific Event ID for action alert

 name = re.search("belongs to virus/spyware

'(.+)'.", msg).group(1)

 file_num = re.search('File "(.+)"',

msg).group(1)

 if last != file_num:

 last = file_num

 try:

 h =

(str(hashlib.sha256(file(file_num.strip(),

'rb').read()).hexdigest())).upper()

 except Exception:

 h = "Malware file unavailable or

deleted before agent could hash."

 report =

"Alerts*"+timeGen+"*"+str(name)+"*"+str(h)+"*"+sourceName+"*"+st

r(version)+"*"+str(sig_version)+"*"+str(platform.platform())+"*Q

uaratined*"+str(getIP())

 return sendEvent(report)

 except Exception:

 pass

 return

def getUpdate(timeGen, status): #get antivirus update

information

 global antivirusExe

 global sig_version

 global signatureDirectory

 global main_log

 global lastUpdate

 time.sleep(10) #wait for update vaurables to be changed

accordingly

 try:

 sourceName = "Sophos Anti-Virus"

 get_version = GetFileVersionInfo(antivirusExe, "\\")

91

 version =

str(HIWORD(get_version['FileVersionMS']))+"."+str(LOWORD(get_ver

sion['FileVersionMS']))+"."+str(HIWORD(get_version['FileVersionL

S']))+"."+str(LOWORD(get_version['FileVersionLS']))

 f = codecs.open(main_log, "r", encoding="utf16")

 sig_version = "Not Found"

 line = f.read()

 v1 = re.findall("(\d+) (\d+) Using detection data

version (.+) \(", line) #check for update regular expression

 if v1: #if there is an update

 ver1 = v1[-1][2]

 v2 = re.findall("This version can detect (.+)

items.", line) #get version information

 if v2:

 ver2 = v2[-1]

 sig_version = str(ver1) + " (Total viruses

with IDEs " + str(ver2) + ")"

 h = hash(signatureDirectory) #Get hash for

latest updated definition files

 if h:

 temp =

str(sig_version)+"*"+str(h)+"*"+sourceName+"*"+version

 if temp != lastUpdate:

 lastUpdate = temp

 report =

"Updates*"+str(timeGen)+"*"+str(sig_version)+"*"+str(h)+"*"+sour

ceName+"*"+version+"*"+str(platform.platform())+"*"+str(getIP())

 return sendEvent(report)

 return

 except Exception:

 pass

 return

def sendEvent(result): #send report results to server

 global callHomeServer

 global callHomePort

 try:

 print result

 s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

 ssl_sock = ssl.wrap_socket(s)

 ssl_sock.connect((callHomeServer, int(callHomePort)))

 ssl_sock.write(result)

 data = ssl_sock.read()

 print data

 del ssl_sock

 s.close()

92

 except Exception:

 print "Event not delivered to server"

 pass

#Read in Config Variables

try:

 config = open(os.path.join(os.path.dirname(sys.argv[0]),

'config.txt'), 'r').read()

 callHomeServer = re.search("callHomeServer = '(.+)'",

config).group(1)

 callHomePort = re.search("callHomePort = '(.+)'",

config).group(1)

 main_log = re.search("mainLog = '(.+)'", config).group(1)

 update_log = re.search("updateLog = '(.+)'",

config).group(1)

 signatureDirectory = re.search("signatureDirectory =

'(.+)'", config).group(1)

 antivirusExe = re.search("antivirusExe = '(.+)'",

config).group(1)

 updateInterval = re.search("updateInterval = '(.+)'",

config).group(1)

except Exception:

 print 'Configuaration file (config.txt) is unavailable or

formatted incorrectly, unable to start agent.'

 sys.exit()

#Setup environment

while True:

 if os.path.isfile(update_log) and os.path.isfile(main_log):

#make sure log exisits, if not wait till it does

 break

f = codecs.open(main_log, "r", encoding="utf16")

sig_version = "Not Found"

line = f.read()

v1 = re.findall("(\d+) (\d+) Using detection data version (.+)

\(", line) #check for update regular expression

if v1: #if there is an update

 ver1 = v1[-1][2]

 v2 = re.findall("This version can detect (.+) items.",

line) #get version information

 if v2:

 ver2 = v2[-1]

 sig_version = str(ver1) + " (Total viruses with IDEs "

+ str(ver2) + ")"

f.close()

93

watcher = os.stat(update_log)

this_modified = last_modified = watcher.st_mtime

server = 'localhost' # name of the target computer to get event

logs

logtype = 'Application'

handler = win32evtlog.OpenEventLog(server,logtype)

handlerEvent = win32event.CreateEvent (None, 1, 0, None)

flags =

win32evtlog.EVENTLOG_BACKWARDS_READ|win32evtlog.EVENTLOG_SEQUENT

IAL_READ

print "Finding SYSTEM Events"

win32evtlog.NotifyChangeEventLog(handler, handlerEvent)

last = ""

lastUpdate = ""

while True:

 try:

 if this_modified > last_modified: #Watch for changes

on the log modified time, if there is an update change in

modified time, trigger

 last_modified = os.stat(update_log).st_mtime

 timeGen = dt.datetime.now().strftime('%Y-%m-%d

%H:%M:%S')

 result = thread.start_new_thread(getUpdate,

(timeGen, "go"))

 if win32event.WaitForSingleObject (handlerEvent, 500)

!= win32event.WAIT_TIMEOUT: #Watch application event log for

alerts, if new event appears, trigger

 events =

win32evtlog.ReadEventLog(win32evtlog.OpenEventLog(server,logtype

), flags,0)

 for event in events:

 result = thread.start_new_thread(getAlert,

(event, "go"))

 watcher = os.stat(update_log)

 this_modified = watcher.st_mtime

 except Exception:

 pass

B.2 config.txt

/* EDIT THE BELOW IP TO MATCH THAT OF THE TRACKING SERVER AND

ENSURE THE ANTIVIRUS DIRECTORY PATHS ARE CORRECT */

94

/* v1.0 */

callHomeServer = 'itsecurity.et.byu.edu'

callHomePort = '12463'

mainLog = 'C:\ProgramData\Sophos\Sophos Anti-Virus\logs\SAV.txt'

updateLog = 'C:\ProgramData\Sophos\AutoUpdate\Logs\alc.log'

signatureDirectory = 'C:\Program Files (x86)\Sophos\Sophos Anti-

Virus'

antivirusExe = 'C:\Program Files (x86)\Sophos\Sophos Anti-

Virus\SavMain.exe'

/* How often you update in minutes */

updateInterval = '1440'

95

APPENDIX C. AGENT – SYMANTEC ANTIVIRUS

C.1 Agent-Symantec.py

"""Symantec Distributed Agent Cloud-Sourced Malware Reporting

Framework v1.0 - Copyright 2013

 Kellie Kercher - agent@somethingk.com

 http://www.somethingk.com

 The code is available to anyone interesting in progressing

the reseach in agent based malware analysis. Please contact me

for

 suggestions, questions or improvements. If you are utilizing

this code please give credit to the project.

"""

import win32evtlog, win32event, win32api, win32con

from win32api import GetFileVersionInfo, LOWORD, HIWORD

import win32evtlogutil

import socket, ssl, pprint, platform, re, os, hashlib, datetime,

sys, thread

import json

from urllib2 import urlopen

#http://nullege.com/codes/show/src@w@i@WinSys-3.x-

0.5.2@winsys@event_logs.py

def getIP():

 ip = json.load(urlopen('http://httpbin.org/ip'))['origin']

 return ip

sig_version = "None"

parsed_sig_version = "None"

def find(name, path): #find a file in a provided path

 for root, dirs, files in os.walk(path):

 if name in files:

96

 return os.path.join(root, name)

def getHash(path, name): #get the hash through regular

expression in the provided quaratine path

 now=datetime.datetime.now()

 ago=now-datetime.timedelta(minutes=1)

 hash=""

 files = [f for f in os.listdir(path) if

os.path.isfile(path+'\\'+f)]

 for f in files:

 p = os.path.join(path,f)

 st=os.stat(p)

 mtime=datetime.datetime.fromtimestamp(st.st_mtime)

 if mtime>ago:

 q_file = output = open(p,'r').read()

 if re.search(name, q_file):

 temp = re.search("[0-9a-fA-F]{64}", q_file)

 if temp:

 hash = temp.group(0)

 return hash

def getEvent(event, status): #parse the latest event for updates

or malware alerts

 global definfo, catalog, antivirusExe, quaratine1,

quaratine2, registryPath, registryKey, sig_version,

parsed_sig_version

 try:

 if event.SourceName == "Symantec AntiVirus" or

event.SourceName == "Symantec Network Protection": #Verify it is

a symantec event

 timeGen = str(event.TimeGenerated)

 newdate = datetime.datetime.strptime(timeGen,

'%m/%d/%y %H:%M:%S')

 timeGen = newdate.strftime('%Y-%m-%d %H:%M:%S')

 sourceName = str(event.SourceName) #Pull data

from the event using the win32evtlog library

 eventID = event.EventID

 msg =

str(win32evtlogutil.SafeFormatMessage(event, logtype))

 get_version = GetFileVersionInfo(antivirusExe,

"\\") #Find the antivirus executable and get file version

 version =

str(HIWORD(get_version['FileVersionMS']))+"."+str(LOWORD(get_ver

sion['FileVersionMS']))+"."+str(HIWORD(get_version['FileVersionL

S']))+"."+str(LOWORD(get_version['FileVersionLS']))

 hKey = win32api.RegOpenKey

97

(win32con.HKEY_LOCAL_MACHINE, str(registryPath)) #read the

registry for the definition file

 value, type = win32api.RegQueryValueEx (hKey,

registryKey)

 defs = str(value)+definfo

 f = open(defs, 'r')

 content = f.read() #Read file for current

definition data

 if content:

 parsed_sig_version =

re.search("CurDefs=(.+)", content).group(1)

 sig_version =

''.join(parsed_sig_version.split('.'))

 sig_version =

sig_version.split(datetime.datetime.now().strftime("%Y"))

 sig_version =

str(datetime.datetime.now().strftime("%y"))+sig_version[1]

#format defintion version

 f.close()

 if eventID == 7 or eventID == 1090453511:

#Specific Event ID for update

 sig_version = re.search("Version: (.+)\.",

msg).group(1)

 root_dir = value+"\\"+parsed_sig_version

 path = find(catalog, root_dir)

 if path:

 hash =

(str(hashlib.sha256(file(str(path),

'rb').read()).hexdigest())).upper() #get hash of update

 else:

 hash = "No file"

 report =

"Updates*"+timeGen+"*"+str(sig_version)+"*"+hash+"*"+sourceName+

"*"+version+"*"+str(platform.platform())+"*"+str(getIP())

 sendEvent(report)

 elif eventID == 400: #Specific Event ID for

blocked alert

 name = re.search("Attack: (.+)\ attack

blocked.", msg).group(1)

 action = re.search("attack blocked. (.+)",

msg).group(1)

 report =

"Alerts*"+timeGen+"*"+str(name)+"*No

File*"+sourceName+"*"+str(version)+"*"+str(sig_version)+"*"+str(

platform.platform())+"*"+str(action.strip())+"*"+str(getIP())

98

 sendEvent(report)

 elif eventID == 51 or eventID == 1090453555:

#Specific Event ID for action alert

 name = re.search("Security Risk Found\!(.+)\

in File", msg).group(1)

 action = re.search("Action Description:

(.+)", msg).group(1)

 file_num = re.search("([0-9]{1,4}\.){4}[0-

9]{1,4}", value).group(0)

 path = quaratine1+file_num+quaratine2

#Create the path for the quaratine file

 h = getHash(str(path), name)

 if h == "":

 h = "Malware file unavailable or

deleted before agent could hash."

 report =

"Alerts*"+timeGen+"*"+str(name)+"*"+str(h)+"*"+sourceName+"*"+st

r(version)+"*"+str(sig_version)+"*"+str(platform.platform())+"*"

+str(action.strip())+"*"+str(getIP())

 sendEvent(report)

 except Exception:

 pass

 return

def sendEvent(result): #send report results to server

 global callHomeServer

 global callHomePort

 try:

 print result

 s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

 ssl_sock = ssl.wrap_socket(s)

 ssl_sock.connect((callHomeServer, int(callHomePort)))

 ssl_sock.write(result)

 data = ssl_sock.read()

 print data

 del ssl_sock

 s.close()

 except Exception:

 print "Event not delivered to server"

 pass

#Read in Config Variables

try:

 config = open(os.path.join(os.path.dirname(sys.argv[0]),

'config.txt'), 'r').read()

99

 callHomeServer = re.search("callHomeServer = '(.+)'",

config).group(1)

 callHomePort = re.search("callHomePort = '(.+)'",

config).group(1)

 antivirusExe = re.search("antivirusExe = '(.+)'",

config).group(1)

 quaratine1 = re.search("quaratine1 = '(.+)'",

config).group(1)

 quaratine2 = re.search("quaratine2 = '(.+)'",

config).group(1)

 registryPath = re.search("registryPath = '(.+)'",

config).group(1)

 registryKey = re.search("registryKey = '(.+)'",

config).group(1)

 definfo = re.search("definfo = '(.+)'", config).group(1)

 catalog = re.search("catalog = '(.+)'", config).group(1)

except Exception:

 print 'Configuaration file (config.txt) is unavailable or

formatted incorrectly, unable to start agent.'

 sys.exit()

#Setup environment

server = 'localhost' # name of the target computer to get event

logs

logtype = 'Application'

handler = win32evtlog.OpenEventLog(server,logtype)

handlerEvent = win32event.CreateEvent (None, 1, 0, None)

flags =

win32evtlog.EVENTLOG_BACKWARDS_READ|win32evtlog.EVENTLOG_SEQUENT

IAL_READ

print "Finding SYSTEM Events"

win32evtlog.NotifyChangeEventLog(handler, handlerEvent)

while True:

 try:

 if win32event.WaitForSingleObject (handlerEvent, 500)

!= win32event.WAIT_TIMEOUT: #Watch application event log for

updates, if new event appears, trigger

 events =

win32evtlog.ReadEventLog(win32evtlog.OpenEventLog(server,logtype

), flags,0)

 for event in events:

 result = thread.start_new_thread(getEvent,

(event, "go"))

 except Exception:

100

 pass

C.2 config.txt

/* EDIT THE BELOW IP TO MATCH THAT OF THE TRACKING SERVER AND

ENSURE THE ANTIVIRUS DIRECTORY PATHS ARE CORRECT */

/* v1.0 */

/* If any of these variable are changed, please restart the

service. */

callHomeServer = '192.168.178.144'

callHomePort = '12463'

antivirusExe = 'C:\Program Files (x86)\Symantec\Symantec

Endpoint Protection\Smc.exe'

quaratine1 = 'C:\\ProgramData\\Symantec\\Symantec Endpoint

Protection\\' First half of directory

quaratine2 = '\\Data\\Quarantine' Second half of directory found

within the version file

registryPath = 'SOFTWARE\Wow6432Node\Symantec\Symantec Endpoint

Protection\CurrentVersion\Content'

registryKey = 'VirusDefs'

definfo = '\\definfo.dat'

catalog = 'catalog.dat'

101

APPENDIX D. AGENT – WINDOWS DEFENDER

D.1 Agent-WindowsDefender.py

"""Windows Defender Distributed Agent Cloud-Sourced Malware

Reporting Framework v1.0 - Copyright 2013

 Kellie Kercher - agent_research@somethingk.com

 http://www.somethingk.com

 The code is available to anyone interesting in progressing

the reseach in agent based malware analysis. Please contact me

for

 suggestions, questions or improvements. If you are utilizing

this code please give credit to the project.

 For complete malware hashes, real time protection needs to be

turned off.

 This setting is not recommended for the typical user.

"""

from win32api import GetFileVersionInfo, LOWORD, HIWORD

import socket, ssl, pprint, platform, re, os, hashlib, datetime,

time, sys, thread

import json

from urllib2 import urlopen

#http://nullege.com/codes/show/src@w@i@WinSys-3.x-

0.5.2@winsys@event_logs.py

def getIP():

 ip = json.load(urlopen('http://httpbin.org/ip'))['origin']

 return ip

def find(name, path): #find a file in a provided path

 for root, dirs, files in os.walk(path):

 if name in files:

 if root.find('Backup') < 1:

102

 return os.path.join(root, name)

def getEventType(record, status):

 try:

 eventID = re.search('Event ID: (.+)', record).group(1)

 file = None

 hash = None

 if eventID == str(1116):

 file = re.search("file:_(.+)", record) #pull out

the malware file path

 if file:

 file = file.group(1)

 list = file.split(';')

 try:

 f = open(list[0], 'rb').read()

 hash =

(str(hashlib.sha256(f).hexdigest())).upper() #get file hash

 except Exception:

 pass

 malwareID = re.search(' ID: (.+)',

record).group(1)

 return getAlert(malwareID, hash)

 if eventID == str(2000):

 return getUpdate(record)

 return

 except Exception:

 pass

def getAlert(malwareID, hash):

 global antivirusExe

 global delay

 now=datetime.datetime.now()

 ago=now+datetime.timedelta(minutes=25)

 then = datetime.datetime.now()

 while True: #Loop through events untill a 1117 alert result

event appears.

 records = os.popen('wevtutil qe "Microsoft-Windows-

Windows Defender/Operational" /f:text

"/q:*[System[TimeCreated[timediff(@SystemTime) <=

\''+delay+'\']]]"').read() #Pulls the latest defender event from

the windows event log

 then = datetime.datetime.now()

 try:

 parsed = records.split('\n\n')

 for record in parsed:

 if record != "":

103

 eventID = re.search('Event ID: (.+)',

record).group(1)

 if eventID == str(1117):

 id = re.search(" ID: (.+)",

record).group(1)

 if int(id) == int(malwareID):

 timeOccurred =

re.search('Date: (.+)', record).group(1)

 newdate =

datetime.datetime.strptime(timeOccurred, '%Y-%m-%dT%H:%M:%S.%f')

 timeOccurred =

newdate.strftime('%Y-%m-%d %H:%M:%S')

 sourceName =

re.search('Source: (.+)', record).group(1) #use regular

expressions to pull data from the eventlog

 get_version =

GetFileVersionInfo(antivirusExe, "\\") #Find the antivirus

executable and get file version

 version =

str(HIWORD(get_version['FileVersionMS']))+"."+str(LOWORD(get_ver

sion['FileVersionMS']))+"."+str(HIWORD(get_version['FileVersionL

S']))+"."+str(LOWORD(get_version['FileVersionLS']))

 sig_version =

re.search("Signature Version: AV: (.+), AS:", record).group(1)

 name = re.search("[^]Name:

(.+)", record).group(1)

 action = re.search("Action:

(.+)", record).group(1)

 if hash == None:

 hash = "Malware file

unavailable or deleted before agent could hash."

 report =

"Alerts*"+str(timeOccurred)+"*"+str(name)+"*"+hash+"*"+str(sourc

eName)+"*"+str(version)+"*"+str(sig_version)+"*"+str(platform.pl

atform())+"*"+str(action)+"*"+str(getIP())

 return sendEvent(report)

 time.sleep(1)

 if now>ago: #After 25 minutes return with no

results, this prevents endless loop

 return

 except Exception:

 break

 return

def getUpdate(record):

 global antivirusExe

104

 global signatureDirectory

 global vdm

 global vdm2

 try:

 type = re.search("Signature Type: AntiVirus", record)

 if type:

 timeOccurred = re.search('Date: (.+)',

record).group(1)

 newdate =

datetime.datetime.strptime(timeOccurred, '%Y-%m-%dT%H:%M:%S.%f')

 timeOccurred = newdate.strftime('%Y-%m-%d

%H:%M:%S')

 sourceName = re.search('Source: (.+)',

record).group(1) #use regular expressions to pull data from the

eventlog

 get_version = GetFileVersionInfo(antivirusExe,

"\\") #Find the antivirus executable and get file version

 version =

str(HIWORD(get_version['FileVersionMS']))+"."+str(LOWORD(get_ver

sion['FileVersionMS']))+"."+str(HIWORD(get_version['FileVersionL

S']))+"."+str(LOWORD(get_version['FileVersionLS']))

 sig_version = re.search("Current Signature

Version: (.+)", record).group(1)

 path = find(vdm, signatureDirectory) #Find

signature file

 path2 = find(vdm2, signatureDirectory) #Find

signature file

 h = ""

 h2 = ""

 if path:

 h = "MpAvBase.vdm:

"+(str(hashlib.sha256(file(str(path),

'rb').read()).hexdigest())).upper() #hash signature file

 if path2:

 h2 = "\nMpAvDlta.vdm: "

+(str(hashlib.sha256(file(str(path2),

'rb').read()).hexdigest())).upper() #hash signature file

 h_full = str(h)+str(h2)

 if h_full == "":

 h_full = "No File"

 report =

"Updates*"+str(timeOccurred)+"*"+str(sig_version)+"*"+h_full+"*"

+str(sourceName)+"*"+str(version)+"*"+str(platform.platform())+"

*"+str(getIP())

 return sendEvent(report)

 return

105

 except Exception:

 pass

def sendEvent(result): #send report results to server

 global callHomeServer

 global callHomePort

 try:

 print result

 s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

 ssl_sock = ssl.wrap_socket(s)

 ssl_sock.connect((callHomeServer, int(callHomePort)))

 ssl_sock.write(result)

 data = ssl_sock.read()

 print data

 del ssl_sock

 s.close()

 except Exception:

 print "Event not delivered to server"

 pass

#Read in Config Variables

try:

 config = open(os.path.join(os.path.dirname(sys.argv[0]),

'config.txt'), 'r').read()

 callHomeServer = re.search("callHomeServer = '(.+)'",

config).group(1)

 callHomePort = re.search("callHomePort = '(.+)'",

config).group(1)

 delay = re.search("delay = '(.+)'", config).group(1)

 antivirusExe = re.search("antivirusExe = '(.+)'",

config).group(1)

 signatureDirectory = re.search("signatureDirectory =

'(.+)'", config).group(1)

 vdm = re.search("vdm = '(.+)'", config).group(1)

 vdm2 = re.search("vdm2 = '(.+)'", config).group(1)

except Exception:

 print 'Configuaration file (config.txt) is unavailable or

formatted incorrectly, unable to start agent.'

 sys.exit()

print "Finding SYSTEM Events"

last = ""

full = ""

while True: #Loop through events untill a 1116 alert event

appears.

106

 try:

 records = os.popen('wevtutil qe "Microsoft-Windows-

Windows Defender/Operational" /f:text

"/q:*[System[TimeCreated[timediff(@SystemTime) <=

\''+delay+'\']]]"').read() #Pulls the latest defender event from

the windows event log

 if full != records:

 parsed = records.split('\n\n')

 for record in parsed:

 if last != record and record != "":

 result =

thread.start_new_thread(getEventType, (record, "Go"))

 last = record

 full = records

 time.sleep(1)

 except Exception:

 pass

#http://bobthegnome.blogspot.com/2007/08/making-ssl-connection-

in-python.html

D.2 config.txt

/* EDIT THE BELOW IP TO MATCH THAT OF THE TRACKING SERVER AND

ENSURE THE ANTIVIRUS DIRECTORY PATHS ARE CORRECT */

/* v1.0 */

/* If any of these variable are changed, please restart the

service. */

callHomeServer = '192.168.178.144'

callHomePort = '12463'

/* If your computer is slow or your not noticing any

updates/alerts being delivered you may want to increase the

millisecond delay */

delay = '3000'

antivirusExe = 'C:\Program Files\Windows Defender\MSASCui.exe'

signatureDirectory = 'C:\ProgramData\Microsoft\Windows

Defender\Definition Updates'

vdm = 'mpavdlta.vdm'

vdm2 = 'mpavbase.vdm'

107

APPENDIX E. SERVER LISTENER

#!/usr/bin/python

import socket

import _mysql, re, thread

from OpenSSL import SSL

from urllib2 import urlopen

def DMStoDEC(geo):

 dec = geo.replace(r'°',' ').replace('\'','

').replace('"',' ')

 final = dec.split(' ')

 direction = {'N':1, 'S':-1, 'E': 1, 'W':-1}

 return

(int(final[0])+int(final[1])/60.0+int(final[2])/3600.0)*directio

n[final[4]]

def readIncoming(connection, address):

 print 'Connection made on', address

 data = connection.recv(10000)

 connection.send('Recieved')

 connection.close()

 if data:

 print data

 con = None

 try:

 con = _mysql.connect('localhost', 'XXXXXXX',

'XXXXXXX', 'XXXXXXX')

 parsed = data.split('*')

 if parsed[0] == "Updates":

 con.query("INSERT INTO Updates (time,

signature_version, hash, vendor, version, platform, host_ip)

VALUES ('"+parsed[1]+"', '"+parsed[2]+"', '"+parsed[3]+"',

'"+parsed[4]+"', '"+parsed[5]+"', '"+parsed[6]+"',

'"+parsed[7]+"')")

 else:

 con.query("INSERT INTO Alerts (time,

108

malware_name, hash, vendor, version, signature_version,

platform, action, host_ip) VALUES ('"+parsed[1]+"',

'"+parsed[2]+"', '"+parsed[3]+"', '"+parsed[4]+"',

'"+parsed[5]+"', '"+parsed[6]+"', '"+parsed[7]+"',

'"+parsed[8]+"', '"+parsed[9]+"')")

 try:

 geo =

urlopen("http://ipaddress.is/"+str(parsed[9])).read()

 lat =

re.search("Latitude</td><td>(.+)</td>", geo).group(1)

 lng =

re.search("Longitude</td><td>(.+)</td>", geo).group(1)

 lat = DMStoDEC(lat)

 lng = DMStoDEC(lng)

 con.query("INSERT INTO markers (name,

lat, lng) VALUES ('"+parsed[2]+"', '"+str(lat)+"',

'"+str(lng)+"')")

 except Exception, e:

 print e

 pass

 except _mysql.Error, e:

 print "Error %d: %s" % (e.args[0], e.args[1])

 pass

 finally:

 if con:

 con.close()

context = SSL.Context(SSL.SSLv23_METHOD)

context.use_privatekey_file('server.key')

context.use_certificate_file('server.crt')

s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

s = SSL.Connection(context, s)

s.bind(('',12463))

s.listen(5)

while True:

 (connection, address) = s.accept()

 thread.start_new_thread(readIncoming, (connection,

address))

s.close()

109

APPENDIX F. MALWARE SAMPLES

Table 10: Downloaded Malware Samples

Malware Name SHA256 Hash Source Detecting Antivirus

Software

Bredolab CADC5E5DE72704

9C9EFBBE262F648

3F404818B6EA784

EA66D155A9B229

BC085C

http://contagiodump.bl

ogspot.com/

Avira

Sophos

Symantec

Windows Defender

Bundestrojan 3407BF876E208F2

DCE3B43CCF5361

C5E009ED3DAF87

571BA5107D10A05

DC7BC4

BE36CE1E79BA6F

97038A6F9198057

ABECF84B38F0EB

B7AAA897FD5CF3

http://contagiodump.bl

ogspot.com/

Avira

Sophos

Symantec

Windows Defender

110

85D702F

APT-Taidoor F105AB22354D586

2401BCF3215D511

9327EC779ED9469

1EA12361672F8C6

34EA

http://contagiodump.bl

ogspot.com/

Avira

Sophos

Symantec

Windows Defender

Gamarue.F or

Yakes

E142453F29ACD89

446BA13FD4AB1B

77B923FDD8F00B

EC44EE86DA33A7

671FC76

http://contagiodump.bl

ogspot.com/

Avira

Sophos

Symantec

Windows Defender

Blackhole CVE-

2010-0840

EE1FC2EC13E0678

24DBC950064115B

6D08705955C3F72

51F360183FACA51

93DA

http://contagiodump.bl

ogspot.com/

Avira

Sophos

Symantec

Windows Defender

Blackhole CVE-

2011-3544

C13839854D0D950

319CA97538F1CC

E6E050C5596D212

51BB6E925647BF3

E13D6

http://contagiodump.bl

ogspot.com/

Avira

Sophos

Symantec

Windows Defender

111

Blackhole CVE-

2011-0611

1581DC1E2CAC90

116A7F91BB8E68

D44A7F451336930

9C691F71F2D022D

85E63A

http://contagiodump.bl

ogspot.com/

Avira

Sophos

Symantec

Windows Defender

Blackhole

payload FakeAV

D2444EB298BCBC

ECC31C548B6F255

4424304672E727FB

F7497B3CC3DF2E

36E24

http://contagiodump.bl

ogspot.com/

Avira

Sophos

Symantec

Windows Defender

TDL/Alureon D7623DB7E16C1D

5B9D20A263576A

FC289E7F974CC9

CF15F2032F441B8

F87C73C

http://contagiodump.bl

ogspot.com/

Avira

Sophos

Symantec

Windows Defender

GameOver Zeus 701B1A1A8F6B59

C2EC79776D332A

3149F9D5E2AE449

214A13A5F76C371

FEC522

http://contagiodump.bl

ogspot.com/

Avira

Sophos

Symantec

Windows Defender

CVE-2010-0188 0544461A59606FB

C68C6AD5FC61D2

http://contagiodump.bl

ogspot.com/

Avira

Sophos

112

25A90A905764CB4

33C05FE522E6E48

DC138

Symantec

Windows Defender

ZeroAccess.D 9ED60D93D43FC9

A8A670E4EAB9C0

DDDA65B59567B

AD2FFE17F4518D

1AD368415

http://contagiodump.bl

ogspot.com/

Avira

Sophos

Symantec

Windows Defender

Kelihos.B 78CCEE8E07EBBC

84D9BA4F5D4952

CCC6BF516213559

B3317A915FD2566

C22FE1

http://contagiodump.bl

ogspot.com/

Avira

Sophos

Symantec

Windows Defender

Sinowal Mebroot

Torpig

20FF8BE4C486709

951104EDFDB72F4

30DA479166833D8

544E961AE367B89

8A02

428CFFECA860E2

8ABCD97C24500C

83AD559A0618D6

9EA802803D3196D

http://contagiodump.bl

ogspot.com/

Avira

Sophos

Symantec

Windows Defender

113

154AF1C

B7A19966529CD48

4004C6403E28BD7

4548E20119421FF0

049A37543D948C4

5C1

0DCB7A582A0E72

DCCCF4FD855A15

9A4206B67B85FD

CD0F58B71D85BA

28E40440

Koutodoor.F 1765AC579AA3307

BD087B7DA60181

41A4FA7529DFBD

0C5A14AA7816B1

5745AC8

http://contagiodump.bl

ogspot.com/

Avira

Windows Defender

SCKeyLog.O 553BDD506F30C07

86FD9D02551388B

FB3C4E6CC819343

E360FAA46CC100

3B7C7

http://contagiodump.bl

ogspot.com/

Avira

Sophos

Symantec

Windows Defender

Dozmot.D BF97BE25C653D6 http://contagiodump.bl Avira

114

48DD27EF76B9FC

4B82484940E257C

7EAF94F76BFE756

1FE137

ogspot.com/ Sophos

Symantec

Windows Defender

“Microsoft

Update” phish

05B047592B5D0A4

DA7A9FC0CDE5D

5AE847F50454336

39048FE25FAF6C0

EA8640

2A1D3DE21CB83A

8A2A16A3E5C61A

9214D1BBF3793E

CFC0748ACFA15E

774BDE1B

0E14F5E6CDAB92

18135D3A7EED11

F0457C9934210859

F6075D63BC60946

9D43B

C48DF0394939FCC

B9A3AC0853D0AE

696D04E7C5230D3

http://contagiodump.bl

ogspot.com/

Avira

Sophos

Symantec

Windows Defender

115

A6468EBCE257A0

BE4CCC

B9D5F59CE63AA7

0E3F0398012DC59

DC8519947C0D413

4ECDCAA917A22

DECFF26

107BDE2A12A9A

AE73FE078F5CED

DA98F2D186F0FC

ABF0A4114769640

3DC50CA8

APT Speech.doc 6A70E797617BB89

58BFBE94A423744

47E3859C6B4EF1E

108D43A30B5DB7

4480B

http://contagiodump.bl

ogspot.com/

Avira

Sophos

Symantec

Windows Defender

Ramnit F52BFAC9637AEA

189EC918D05113C

36F5BCF580F3C0

DE8A934FE343810

7D3F0C

http://contagiodump.bl

ogspot.com/

Avira

Sophos

Symantec

Windows Defender

116

TDL 05344813787920A0

4B207416EA05516

B21958B3F6C8AD

9FB8F0CE507C41E

FD01

http://contagiodump.bl

ogspot.com/

Avira

Sophos

Symantec

Windows Defender

Bakcorox.A 05B047592B5D0A4

DA7A9FC0CDE5D

5AE847F50454336

39048FE25FAF6C0

EA8640

2A1D3DE21CB83A

8A2A16A3E5C61A

9214D1BBF3793E

CFC0748ACFA15E

774BDE1B

0E14F5E6CDAB92

18135D3A7EED11

F0457C9934210859

F6075D63BC60946

9D43B

C48DF0394939FCC

B9A3AC0853D0AE

http://contagiodump.bl

ogspot.com/

Avira

Sophos

Symantec

Windows Defender

117

696D04E7C5230D3

A6468EBCE257A0

BE4CCC

B9D5F59CE63AA7

0E3F0398012DC59

DC8519947C0D413

4ECDCAA917A22

DECFF26

107BDE2A12A9A

AE73FE078F5CED

DA98F2D186F0FC

ABF0A4114769640

3DC50CA8

Downloader A3253B1732A5014

6038A68B3B46260

F80BEC6C1C

http://contagiodump.bl

ogspot.com/

Avira

Sophos

Symantec

Windows Defender

OSX.RSPlug.A 2BDCDAB0A5D41

F4B6AA48E2AB55

177552C8419C3F8

CE140C4850A0616

D7A2F3E

http://contagiodump.bl

ogspot.com/

Avira

Sophos

Symantec

118

CBCF96C780F2D9

C0482C7B26154C

AB3C4E760AD78D

4B742FD4D63E4C

08760020

Zitmo Android

Edition

F6239BA0487FFCF

4D09255DBA78144

0D2600D3C509E66

018E6A5724912DF

34A9

http://contagiodump.bl

ogspot.com/

Avira

Sophos

Symantec

Windows Defender

Eicar Test Virus 275A021BBFB6489

E54D471899F7DB9

D1663FC695EC2F

E2A2C4538AABF6

51FD0F

http://www.eicar.org/ Avira

Sophos

Symantec

Windows Defender

Unclassified

Trojan

81610CDEBCCF49

2D65140034076CD

9FB92FC9171A9C2

E1088D18F581B3A

6AB11

http://www.malwarebl

acklist.com/

Windows Defender

Unclassified

Trojan

3FC22160DB5F2B3

07CC9679EA7E9E

http://www.malwarebl

acklist.com/

119

3BB9E5764227010

1A90121F35762E2

E619E

Videos09u84293

7y4y3

373E4F41DF753D1

0436EE68CC58261

47958C9650DB94F

8795501E573B2E7

9DEE

http://www.malwarebl

acklist.com/

Sophos

Dldr.Delphi.Gen 97596D80FC8E49B

D20C58A68C3A65

FA9274BF546904E

C380F16B0E14B51

58AB0

http://www.malwarebl

acklist.com/

Avira

Sophos

Symantec

Win32.Generic FACA641D2ACA6

36C670CAC681FC

E30D72907EDDDB

58010BEEDE61FB

52CAFCE6F

http://www.malwarebl

acklist.com/

Avira

Sophos

Windows Defender

Rouge.9435288 86EDEEBD0A9536

46DA5D4C8F7F49

686CFDC9A1180F

46E1BD3C28425D

http://www.malwarebl

acklist.com/

Avira

120

B23B6B25

Dropper.Gen7 831EE2F602AD941

AC9B776400F3CD

553960C2756D4B7

CA8DC9A88F9005

D53940

http://www.malwarebl

acklist.com/

Avira

Sophos

Windows Defender

Rouge.1154657 DCBC781A1F3889

B35AE3F55C862F2

A2309C4E1BBC00

88677374A445C08

662E4C

http://www.malwarebl

acklist.com/

Avira

ATRAPS.Gen 72C090D6A4A7639

313E8E2FC64ABD

425C6A8F8CE1CF

5125B5BC79AA5E

222EBEC

http://www.malwarebl

acklist.com/

Avira

Sophos

Artemis F8917B602A887AC

5A09255A7673DF6

775C772F329C8F6

D32D477208FCD5

26E8C

http://www.malwarebl

acklist.com/

Sophos

Lamar.skw.44 02B69775E2AB1D http://www.malwarebl Avira

121

F451D2DE5FB5092

093DDDA7FD682F

90A7640DF53F7A

C69F68F

acklist.com/ Sophos

Framer.R.1 E5A2CF61957340D

4E0F991A6DF9819

636110D687856EA

E56C54D88EC6B2

1B86D

http://www.malwarebl

acklist.com/

Avira

Variant.Graftor 9BB80BCAF6522C

2D4B02193C4764D

985EC2284BA819E

C27D9D81ECDD04

DC31BB

http://www.malwarebl

acklist.com/

JS.Expack.FY

57CC9BE38355C8

D991CFC39A8478

AA44134B416FE1

EA908EEA396604

CE78C820

http://www.malwarebl

acklist.com/

Avira

Sophos

Windows Defender

	Distributed Agent Cloud-Sourced Malware Reporting Framework
	BYU ScholarsArchive Citation

	TITLE PAGE
	ABSTRACT
	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	1 Introduction
	1.1 Nature of the Problem
	1.2 Purpose of the Research
	1.3 Project Approach
	1.4 Research Questions and Hypotheses
	1.5 Definitions

	2 Literature Review
	2.1 Malware
	2.2 Agent Technology
	2.3 Antivirus
	2.4 Antivirus Variations
	2.5 Capabilities of Antivirus Protection
	2.6 Existing Antivirus Comparisons
	2.7 Multiple Antivirus Installations

	3 Methodology
	3.1 (R1) Framework Design
	3.1.1 Development Environment
	3.1.2 Prototype

	3.2 (R2) Malware Identifiers
	3.3 (R3) Antivirus Variations
	3.4 (R4) Antivirus Malware Protection and Comparison
	3.4.1 Data Collection
	3.4.2 Antivirus Software and the Need for Multiple Installations

	4 Framework Development
	4.1 Data Collection Server
	4.1.1 Python Secure Agent Event Listener
	4.1.2 MySQL Database
	4.1.3 Web Server

	4.2 Client Side Agents
	4.2.1 Windows Defender
	4.2.2 Symantec
	4.2.3 Sophos
	4.2.4 Avira
	4.2.5 Problems Encountered

	4.3 Testing
	4.3.1 Development Testing
	4.3.2 Final Testing

	4.4 Security
	4.5 Usage and Project Distribution

	5 Framework Analysis
	5.1 (R1) Framework Design Challenges and Techniques
	5.2 (R2) Universal Malware Identifiers
	5.3 (R3) Vendor Naming Conventions
	5.4 (R4) Benefits of Multiple Vendor Installations

	6 Conclusion and Future Work
	6.1 Future Research
	6.1.1 Fuzzy Hashes
	6.1.2 Agent Accuracy
	6.1.3 Agent Support
	6.1.4 Universal Agent
	6.1.5 Expanding the Study

	6.2 Project Contribution

	REFERENCES
	APPENDICES
	Appendix A. Agent – Avira Premium Antivirus
	A.1 Agent-Avira.py
	A.2 config.txt

	Appendix B. Agent – Sophos Antivirus
	B.1 Agent-Sophos.py
	B.2 config.txt

	Appendix C. Agent – Symantec Antivirus
	C.1 Agent-Symantec.py
	C.2 config.txt

	Appendix D. Agent – Windows Defender
	D.1 Agent-WindowsDefender.py
	D.2 config.txt

	Appendix E. Server Listener
	Appendix F. Malware Samples

