
Brigham Young University Brigham Young University

BYU ScholarsArchive BYU ScholarsArchive

Theses and Dissertations

1994-08-01

Polynomial Real Root Finding in Bernstein Form Polynomial Real Root Finding in Bernstein Form

Melvin R. Spencer
Brigham Young University - Provo

Follow this and additional works at: https://scholarsarchive.byu.edu/etd

 Part of the Civil and Environmental Engineering Commons

BYU ScholarsArchive Citation BYU ScholarsArchive Citation
Spencer, Melvin R., "Polynomial Real Root Finding in Bernstein Form" (1994). Theses and Dissertations.
4246.
https://scholarsarchive.byu.edu/etd/4246

This Dissertation is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for
inclusion in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more
information, please contact ellen_amatangelo@byu.edu.

http://home.byu.edu/home/
http://home.byu.edu/home/
https://scholarsarchive.byu.edu/
https://scholarsarchive.byu.edu/etd
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F4246&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/251?utm_source=scholarsarchive.byu.edu%2Fetd%2F4246&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/4246?utm_source=scholarsarchive.byu.edu%2Fetd%2F4246&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:ellen_amatangelo@byu.edu

Polynomial Real Root Finding in Bernstein Form

A Dissertation

Presented to the

Department of Civil Engineering

Brigham Young University

In Partial Ful�llment

of the Requirements for the Degree

Doctor of Philosophy

by

Melvin R. Spencer

August 1994

This dissertation by Melvin R. Spencer is accepted in its present form by the Department

of Civil Engineering of Brigham Young University as satisfying the disseration requirement

for the degree of Doctor of Philosophy.

Thomas W. Sederberg, Committee Chairman

Norman L. Jones, Committee Member

Rida T. Farouki, Committee Member

Date S. Olani Durrant Department Chairman

ii

ACKNOWLEDGEMENTS

I am deeply grateful and would like to thank Dr. Thomas W. Sederberg for this disser-

ation, being my advisory chair, research assistantships, and the lucid insight he provided

throughout my graduate work. Without his constant supportive source of ideas, sugges-

tions, encouragement, motivation, and dedication this work would not have met fruition. I

also thank him for his patient, considerate demeanor and grace under pressure.

I am very indebted and would like to thank Dr. Henry N. Christiansen for permitting

an enthusiastic under-graduate to pursue knowledge and gain enlightenment through the

many opportunities provided and with the many talented colleagues associated through his

graduate program at Brigham Young University.

I thank the faculty, deans, and administrators of the Department of Civil Engineering,

the College of Engineering and Technology, and the O�ce of Graduate Studies of Brigham

Young University for their continual support in granting the many considerations requested

for the ful�llment of this degree. In addtion, thanks to the sta� at the University Library

and its Inter-Library Loan Department for their constant service and unending supply of

reference material.

I extend my sincere appreciation and thanks to Dr. Thomas W. Sederberg and Dr. Rida

T. Farouki for their signi�cant and incessant contributions towards the completion of this

document which include their derivation and presentation of the chapter on preconditioning

which is the core of this work, their insights regarding Bernstein form polynomial real

root �nding, the many days sacri�ced and dedicated to the composition, rewriting, and

editing, and above all their considerate, good-natured personalities and much appreciated

and welcomed suggestions which lessened the burden of the oral and written presentation

of this thesis.

iii

Special e�ort needs to be recognized and thanks extended to my advisory committee

Dr. Thomas W. Sederberg, Dr. Norman L. Jones, and Dr. Rida T. Farouke as well as

my oral committee chairman Dr. Henry N. Christiansen, and members Dr. Thomas W.

Sederberg, Dr. Norman L. Jones, Dr. Rida T. Farouki, and Dr. C. Gregory Jensen for

their preparation, examination, and suggestions regarding the content of this dissertation.

I would like recognize and thank my fellow graduate colleagues for their assistance

in preparing this work. Dr. Alan K. Zundel for his many contributions to this work

which include his insights into the multiple root-�nding strategy and its implementation and

testing in his algebraic surface rendering program; and particularly his last minute e�orts

and contributions to the performance assessment and testing of the various algorithms. Kris

Klimaszewski for his initial implementation of the degree six isolator polynomial algorithm

as well as his many programming insights and comradery. Peisheng Gao and Hong Mu for

their unending and expert assistance in programming, illustrations, and testing which they

performed simultaneously with their many other graduate duties and responsibilities.

I would like to thank Dr. Anders N. Grimsrud and my other associates at work, for

the additional responsibility they have shouldered by providing me a leave of absence from

work to �nish this academic goal and project.

I would like to thank my parents, relatives, and friends for their emotional support

and con�dence regarding the completion of this work. Especially my father, Melvin Reed

Spencer; and my brother and his family Robert and Shannon, Erin, and Chase Spencer for

their �nancial and emotional support, providing a weekend refuge to refresh and collect my

thoughts.

And last but sincerely not least, I am grateful and thankful for the divine inspiration

empowered to all concerned for the motivation and exchange supporting the conception,

development, and completion of this collaborative e�ort.

iv

Contents

1 Introduction 1

1.1 Literature Search : 3

1.2 Overview : 4

2 Review of Polynomial Real Root Finding 5

2.1 Polynomial Representations and Properties : : : : : : : : : : : : : : : : : : 5

2.1.1 Power Form Polynomials : 5

2.1.2 Bernstein Form Polynomials : 6

Explicit B�ezier Curves : 6

Convex Hull Property : 7

Variation Diminishing Property : 7

2.2 Polynomial Real Root Localization : 8

2.2.1 Techniques for Bounding Real Roots : : : : : : : : : : : : : : : : : : 9

2.2.2 Isolation Techniques for Distinct Real Roots : : : : : : : : : : : : : : 11

Polynomial Factors and Roots : 12

Location Principles : 15

v

Variation of Coe�cient Signs : 16

Sturm Sequence : 16

Budan{Fourier Sequence : 18

Isolating Polynomials : 18

2.2.3 Isolation Techniques Accounting Multiple Real Roots : : : : : : : : 19

Common Roots of Two Polynomials : : : : : : : : : : : : : : : : : : 19

Separation of Multiple Roots : 20

2.3 Polynomial Real Root Approximation : 20

2.3.1 Closed Form Solvers : 21

2.3.2 Basic Serial Iterative Methods : 22

2.3.3 Hybrid Serial Iterative Methods : 23

2.3.4 Simultaneous Iterative Methods : 23

2.4 Power Form General Purpose Root Finders : : : : : : : : : : : : : : : : : : 24

Jenkins{Traub's Method : 24

Dunaway's Composite Method : 25

Madsen{Reid's Newton{Based Method : : : : : : : : : : : : : : : : : 26

Laguerre's Method : 26

2.5 Power Form Real Root Finders : 27

2.5.1 Sturm Sequence Techniques : 27

Hook{McAree's Method : 27

2.5.2 Di�erentiation Techniques : 28

Collins{Loos' Method : 28

vi

2.5.3 Variation of Signs Techniques : 28

Collins{Akritas' Method : 28

2.5.4 Interval Techniques : 29

Hansen's Newton Interval Methods : : : : : : : : : : : : : : : : : : : 29

Dedieu{Yakoubsohn's Exclusion Method : : : : : : : : : : : : : : : 29

2.6 Bernstein Form Real Root Finders : 30

2.6.1 Recursive Subdivide Techniques : 30

Lane{Riesenfeld's Method : 30

Rockwood's Method : 31

Schneider's Method : 31

2.6.2 Newton{Based Techniques : 31

Grandine's Method : 32

Marchepoil{Chenin's Method : 32

2.6.3 Hull Approximation Techniques : 32

Rajan{Klinkner{Farouki's Method : : : : : : : : : : : : : : : : : : : 33

3 Review of Numerical Considerations 34

3.1 Numerical Error : 35

3.1.1 Sources and Types of Numerical Error : : : : : : : : : : : : : : : : : 35

Causes of Computational Error : 36

3.1.2 Roundo� Error : 37

Floating-Point Computation : 37

vii

Machine Epsilon � and Roundo� Unit � : : : : : : : : : : : : : : : : 37

Roundo� Error Due to Floating-Point Operations : : : : : : : : : : 38

3.2 Estimating Bounds for Roundo� Error : 39

3.2.1 Forward Error Analysis : 40

3.2.2 Running Error Analysis : 40

3.2.3 Backward Error Analysis : 41

3.2.4 Interval Error Analysis : 42

3.2.5 General Stochastic Error Analysis : : : : : : : : : : : : : : : : : : : 42

3.2.6 Permutation{Perturbation Error Analysis : : : : : : : : : : : : : : : 43

3.3 Numerical Stability and Condition : 44

3.3.1 Preliminary De�nitions : 44

3.3.2 Condition of Perturbing Polynomial Coe�cients : : : : : : : : : : : 45

3.3.3 Condition of Bernstein and Power Forms : : : : : : : : : : : : : : : 46

3.4 Conversion Between Bernstein and Power Forms : : : : : : : : : : : : : : : 47

3.4.1 Example : 49

3.4.2 Closed Form Expression : 49

3.4.3 Numerical Rami�cations of Basis Conversion : : : : : : : : : : : : : 50

3.5 Performance of Polynomial Root Finders : 50

3.5.1 Benchmarking Principles : 50

Polynomial Classes for Performance Assessment : : : : : : : : : : : : 51

4 Preconditioning for Bernstein form polynomials 53

viii

4.1 An Illustrative Example : 54

4.1.1 The Bernstein Form : 56

4.1.2 Relative Errors in the Construction Process : : : : : : : : : : : : : : 59

4.2 Problems of Error Propagation and Ampli�cation : : : : : : : : : : : : : : : 61

4.2.1 Error Analysis of de Casteljau Algorithm : : : : : : : : : : : : : : : 62

4.2.2 Condition of the Subdivision Map : : : : : : : : : : : : : : : : : : : 66

4.2.3 Backward Error Analysis : 71

4.3 Application to Curve/Curve Intersections : : : : : : : : : : : : : : : : : : : 75

4.4 Concluding Remarks : 78

5 General Root Finding Concepts 81

5.0.1 Pseudo Code : 81

5.1 Bernstein Subdivision : 82

The de Casteljau Algorithm : 83

Subdivision Coe�cient Errors : 84

Subdivision Global Error Bound : 85

5.1.1 Algorithms: Bsubdivleft and Bsubdivright : : : : : : : : : : : : : : 85

5.1.2 Numerical Stability : 86

5.2 Bernstein Modi�ed Horner Evaluation : 87

5.2.1 Horner's Method Expressed in Power Form : : : : : : : : : : : : : : 87

5.2.2 Horner's Method Modi�ed for Bernstein Form : : : : : : : : : : : : 88

5.2.3 Algorithm: Beval : 89

ix

5.2.4 Polynomial Evaluation Considerations : : : : : : : : : : : : : : : : : 91

Scaled Bernstein Polynomial Coe�cients : : : : : : : : : : : : : : : : 91

5.3 Bernstein Deation : 92

5.3.1 Preliminary Concepts : 92

5.3.2 Algorithms: Bdeflatet, Bdeflateleft, and Bdeflateright : : : : 92

5.3.3 Deation Considerations : 94

5.4 Polynomial Coe�cient Normalization : 95

5.4.1 Preliminary Concepts : 95

5.4.2 Algorithms: NormPolybase and NormPolymax : : : : : : : : : : : 96

5.4.3 Normalization considerations : 96

5.5 Bernstein End Control Point Root Approximation : : : : : : : : : : : : : : 97

5.5.1 Algorithms: Bend0left and Bend0right : : : : : : : : : : : : : : : : 97

5.5.2 Bernstein End Zero Considerations : : : : : : : : : : : : : : : : : : : 99

5.6 Bernstein Di�erentiation : 99

5.6.1 Algorithms: Bderiv and Bderivpseudo : : : : : : : : : : : : : : : : 100

5.6.2 Di�erentiation Considerations : 101

5.7 Polynomial Real Root Bounds : 102

5.8 Pseudo Bernstein Basis Conversion : 102

5.8.1 Preliminary Concepts : 102

5.8.2 Algorithms: ConvCoefsb2p̂ and ConvCoefsp2b̂ : : : : : : : : : : : 105

5.8.3 Algorithms: ConvRoots
b̂
and ConvRootsp̂ : : : : : : : : : : : : 105

5.9 Closed Form Real Root Solvers : 106

x

Quadratic Solution : 107

Cubic and Quartic Solutions : 108

5.9.1 Algorithms: Psolver2, Psolver3, and Psolver4 : : : : : : : : : : 109

6 Polynomial Real Root-Finding Algorithms 116

6.1 Bernstein Convex Hull Approximating Step (Bcha1) : : : : : : : : : : : : : 117

6.1.1 Preliminary Concepts : 117

6.1.2 Algorithm: Bcha1 : 119

6.2 Higher Degree Approximating Steps (Bcha2�4) : : : : : : : : : : : : : : : : 121

6.2.1 Preliminary Concepts : 123

6.2.2 Higher Degree Approximating Step Considerations : : : : : : : : : : 127

6.3 Bernstein Combined Subdivide & Derivative (Bcom) : : : : : : : : : : : : : 127

6.3.1 Preliminary Concepts : 127

6.3.2 Algorithm: Bcom : 128

6.3.3 Bcom Considerations : 135

6.4 Bernstein Convex Hull Isolating Step (Bchi) : : : : : : : : : : : : : : : : : 138

6.4.1 Preliminary Concepts : 138

6.4.2 Algorithm: Bchi : 141

6.5 Standard Isolator Polynomial Separation (Sips) : : : : : : : : : : : : : : : : 143

6.5.1 Preliminary Concepts : 144

Isolator Polynomials : 144

6.5.2 Algorithm: Sips : 146

xi

6.5.3 Algorithm Considerations : 148

Restricting Input to Power Form Polynomials : : : : : : : : : : : : : 148

Tighter Root Bounds from the Convex Hull : : : : : : : : : : : : : : 149

Pseudo-basis Conversion : 149

Common Roots : 149

6.5.4 Illustrative Examples of IPs : 150

7 Numerical Results 158

7.1 Test Problems and Results for Distinct Real Roots : : : : : : : : : : : : : : 161

7.2 Discussion : 165

8 Conclusions 166

xii

List of Figures

2.1 Bernstein polynomial as an explicit B�ezier curve : : : : : : : : : : : : : : : 7

2.2 Convex hull property : 8

2.3 Application of Rolle's theorem. : 17

4.1 Two degree{7 B�ezier curves having 49 real intersections : : : : : : : : : : : 79

5.1 Subdividing a cubic explicit B�ezier curve. : : : : : : : : : : : : : : : : : : : 84

5.2 Explicit B�ezier curves before and after deating roots at t = a; b : : : : : : 98

5.3 Explicit B�ezier curve y[0;1](t) with a cluster of roots at t = b : : : : : : : : : 100

5.4 Log-log plot of pseudo-mapping x(t) = t=(1� t) over the region t 2 [0; 1]. : 104

5.5 Log-log plot of pseudo-mapping t(x) = x=(1 + x) over the region x 2 [0; 1]. : 104

6.1 Bcha1 root �nding : 122

6.2 P̂[a;b](t) of degrees one through four. : 124

6.3 Bcom root isolation heuristic (a-d). : 133

6.4 Bcom root isolation heuristic (e-h). : 134

6.5 Bcomsubdivision step heuristic. : 137

6.6 Root isolation using Bchi : 140

xiii

6.7 IPs of degree 1 and 3 based on a degree 5 Wilkinson polynomial over I [0; 1]. 150

6.8 IPs of degree 1 and 3 based on a degree 5 polynomial over I [0; 1] with roots

at f:1; :2; :4; :6; :8g. : 151

6.9 IPs both of degree 2 based on a degree 5 Wilkinson polynomial over I [0; 1]. 151

6.10 IPs both of degree 2 based on a degree 5 polynomial over I [0; 1] with roots

at f:1; :2; :4; :6; :8g. : 152

6.11 IPs of degree 1 and 4 based on a degree 6 Wilkinson polynomial over I [0; 1]. 152

6.12 IPs of degree 1 and 4 based on a degree 6 polynomial over I [0; 1] with roots

at f:1; :2; :3; :4; :7; :9g. : 153

6.13 IPs of degree 2 and 3 based on a degree 6 Wilkinson polynomial over I [0; 1]. 153

6.14 IPs of degree 2 and 3 based on a degree 6 polynomial over I [0; 1] with roots

at f:1; :2; :3; :4; :7; :9g. : 154

6.15 IPs of degree 2 and 4 based on a degree 7 Wilkinson polynomial over I [0; 1]. 154

6.16 IPs of degree 2 and 4 based on a degree 7 polynomial over I [0; 1] with roots

at f:1; :2; :3; :4; :5; :6; 1:g. : 155

6.17 IPs both of degree 3 based on a degree 7 Wilkinson polynomial over I [0; 1]. 155

6.18 IPs both of degree 3 based on a degree 7 polynomial over I [0; 1] with roots

at f:1; :2; :3; :4; :5; :6; 1:g. : 156

6.19 IPs of degree 3 and 4 based on a degree 8 Wilkinson polynomial over I [0; 1]. 156

6.20 IPs of degree 3 and 4 based on a degree 8 polynomial over I [0; 1] with roots

at f:1; :2; :3; :4; :5; :6; :7; 1:g. : 157

xiv

List of Tables

2.1 Global Bounding of Power Form Polynomial Real Roots : : : : : : : : : : : 10

4.1 Comparison of the computed roots of P 25(t), B25
[0;1](t), and B25

[:25;:75](u). : : 57

4.2 Condition numbers of subdivision matrices in various norms. : : : : : : : : 69

7.1 Machine Floating-Point Constants : 158

7.2 Relative Execution Times for Degree Five Polynomials : : : : : : : : : : : : 161

7.3 Relative Execution Times for Degree Ten Polynomials : : : : : : : : : : : : 161

7.4 Relative Execution Times for Degree Twenty Polynomials : : : : : : : : : : 162

7.5 Relative Execution Times for Wilkinson Polynomials in I [0; 1] : : : : : : : : 162

7.6 Relative Execution Times for Degree Two Polynomials : : : : : : : : : : : : 163

7.7 Relative Execution Times for Degree Three Polynomials : : : : : : : : : : : 163

7.8 Relative Execution Times for Degree Four Polynomials : : : : : : : : : : : : 164

7.9 Relative Execution Times for Degree 20 with Clustered Roots : : : : : : : : 164

7.10 Relative Execution Times for Degree 10 with Clustered Roots : : : : : : : : 164

xv

Chapter 1

Introduction

This dissertation addresses the problem of approximating, in oating{point arithmetic, all

real roots (simple, clustered, and multiple) over the unit interval of polynomials in Bernstein

form with real coe�cients.

The Bernstein polynomial basis enjoys widespread use in the �elds of computer aided

geometric design (CAGD) and computer graphics. The use of the Bernstein basis functions

to express B�ezier curves and surfaces allows many basic algorithms concerned with the

processing of such forms to be reduced to the problem of computing the real roots of

polynomials in Bernstein form.

A typical example is the problem of computing the intersection points of two B�ezier

curves. Given two curves of degrees m and n, respectively, the problem of identifying

their intersection points can be reformulated in terms of �nding the real roots on the unit

interval of a degree mn polynomial in Bernstein form [SP86]. Other examples from CAGD

include �nding a point on each loop of the intersection curve of two surfaces [Far86], and

the \trimming" of o�set and bisector curves [FJ94, FN90a]. Examples from computer

graphics include ray tracing [Kaj82, Han83, SA84, Wij84, BDM84] and algebraic surface

rendering [Sed85, Zun89].

In the early years of computer graphics and CAGD, the tendency was to convert from

1

CHAPTER 1. INTRODUCTION 2

the Bernstein to the power basis for root �nding (see, for example, [Kaj82]) since the

power basis is more \familiar" and library routines are commonly available to solve for

polynomial roots in the power basis. However, it has subsequently been demonstrated

[FR87] that the Bernstein basis is inherently better conditioned than the power basis for

�nding real roots on the unit interval (and this is all that is of interest when dealing with

B�ezier curves anyway). Thus, root �nding algorithms for polynomials in Bernstein form are

not merely a convenience, they in fact o�er signi�cantly better accuracy than their power

basis counterparts.

Furthermore, by expressing Bernstein form polynomials as explicit B�ezier curves, one can

take advantage of geometric insights based on the control polygon in developing root{�nding

algorithms. This can allow us to robustly �nd all real roots in the unit interval, typically

much faster than can a library polynomial root �nder which �nds all real and complex roots.

Thus, a root �nder that works in the Bernstein basis could provide enhanced speed and

accuracy when applied to problems whose solution traditionally relies on the computation

of real polynomial roots in the power basis.

The research reported in this dissertation falls in the domain of \experimental com-

puter science and engineering". Many of the results are empirical. Fortunately, there is

now growing recognition that proof of performance through such experimental means is an

acceptable and even crucial form of computer research [ECS94].

Nearly 25 years ago, Henrici remarked, at a symposium on the numerical solutions of

nonlinear problems:

I do not feel that the polynomial problem has been solved perfectly, not even from

a practical point of view [Hen70].

Our study of root �nding for polynomials in Bernstein form suggests that the �eld remains

fruitful even now.

CHAPTER 1. INTRODUCTION 3

1.1 Literature Search

The �rst known work on our problem is an algorithm, due to Lane and Riesenfeld [LR81],

which repeatedly applies the de Casteljau algorithm to isolate and re�ne roots of polynomials

in Bernstein form.

Several of the algorithms presented in this dissertation were �rst documented in an

unpublished report drafted nearly ten years ago [SSd86]. The signi�cant developments on

the numerical stability of the Bernstein form that arose in the intervening decade justify

our procrastination in submitting that report for publication. We always suspected there

was much more waiting to be reported!

[Gra89] presents an algorithm for �nding roots of B-spline functions, which is similar

to the convex hull root �nding algorithm in [SSd86]. [Sch90a] describes basically the same

algorithm. An intriguing algorithm based on \parabolic hulls" is introduced in [RKF88].

The approach involves a more sophisticated method for isolating roots. [Roc90] presents a

heuristic for accelerating the root isolation process. Each of these algorithms is reviewed

more thoroughly in [x 2.6] in Chapter 2.

This dissertation borrows concepts from the following four �elds:

1. Computer Aided Geometric Design and Graphics [SP86, FR87, RKF88, FR88]

2. Numerical Analysis [Act70, Buc66, BFR81, Bor85, Bre73, Dod78, DM72, FMM77,

IK66, Ham71, Hen64, Hen82, Hil74, Hou53, Hou70, Mac63, Mar66, McN73, Mer06,

Mor83, Non84, Ost60, Pen70, Pet89, PC86, Piz75, PW83, PFTV90, RR78, Ric83,

Sta70, Tra64]

3. Theory of Equations [Bor50, BP60, Caj04, Dic22, Mac54, Tur52, Usp48]

4. Higher Algebra [Boc64, Dav27, FS65, Kur80, MP65, Sal85]

CHAPTER 1. INTRODUCTION 4

1.2 Overview

Chapter 2 outlines some basic concepts pertaining to root �nding for polynomials in power

and Bernstein form. Chapter 3 discusses numerical considerations for implementing root

�nding schemes in oating{point arithmetic. Chapter 4 presents one of the most signi�cant

results of our research, the fact that root condition for polynomials in Bernstein form can

often be signi�cantly improved by shrinking the domain in the earliest stages of coe�cient

construction. For example, in the curve intersection algorithm mentioned earlier, if one of

the curves is split in half before proceeding with the intersection algorithm, the accuracy

of the �nal polynomial roots (which indicate the curve parameter values at the intersection

points) can be greatly improved.

Chapter 6 outlines several di�erent algorithms for root �nding of polynomials in Bern-

stein form. Chapter 5 describes basic functions common to those root �nding algorithms.

Chapter 7 compares the execution speed and numerical precision of the algorithms in chap-

ter 6 and of some general purpose power form polynomial root �nding schemes. Chapter 8

concludes and summarizes this work.

Chapter 2

Review of Polynomial Real Root

Finding

This chapter reviews basic concepts and algorithms concerned with computing the real roots

of polynomials represented in the power and Bernstein bases.

2.1 Polynomial Representations and Properties

We begin by recalling some de�nitions and properties of polynomials represented in both

power and Bernstein form.

2.1.1 Power Form Polynomials

A degree n polynomial in the power basis is de�ned by

f(t) =
nX
i=0

pit
i (2.1.1.1)

with pn 6= 0.

5

CHAPTER 2. REVIEW OF POLYNOMIAL REAL ROOT FINDING 6

2.1.2 Bernstein Form Polynomials

A degree n polynomial in Bernstein form is given by

y[0;1](t) =
nX

k=0

yk

n

k

!
(1� t)n�ktk (2.1.2.2)

where
�n
k

�
(1�t)n�ktk is the kth Bernstein basis function of degree n, and yk are the Bernstein

coe�cients. The subscript [0; 1] indicates that the domain of interest is t 2 [0; 1].

A polynomial in Bernstein form can be de�ned over arbitrary domain intervals by in-

troducing the change of variables

u =
t � a

b� a
(2.1.2.3)

that maps t 2 [a; b] to u 2 [0; 1]. We then have

y[a;b](t) =
nX

k=0

yk

n

k

!
(1� u)n�kuk =

nX
k=0

yk

n

k

!
(b� t)n�k(t� a)k

(b� a)n
(2.1.2.4)

Explicit B�ezier Curves

Useful geometric properties may be associated with a polynomial in Bernstein form by

casting it as an explicit B�ezier curve (see Figure 2.1):

P[a;b](t) = (t; y[a;b](t)) =
nX

k=0

Pk

n

k

!
(1� u)n�kuk (2.1.2.5)

where the control points Pk are evenly spaced along the horizontal axis:

Pk = (a+
k

n
(b� a); yk): (2.1.2.6)

The control polygon is formed by the set of line segments connecting adjacent control points.

The phrase control polygon is not an entirely accurate label, since it is not actually a closed

polygon because Pn and P0 are not connected.

CHAPTER 2. REVIEW OF POLYNOMIAL REAL ROOT FINDING 7

P0

P1

P2

P3

P4

P5

0
.2

.4 .6 .8 1

Figure 2.1: Bernstein polynomial as an explicit B�ezier curve

Convex Hull Property

We will make extensive use of the convex hull property of B�ezier curves, which states that

a B�ezier curve lies entirely within the convex hull of its control points, as illustrated in

Figure 2.2. The convex hull property is assured because the Bernstein polynomial basis

functions
�n
k

� (b�t)n�k(t�a)k

(b�a)n sum to one and are non-negative for t 2 [a; b].

Variation Diminishing Property

The variation diminishing property is really an expression of Descartes Law of Signs in the

Bernstein polynomial basis. It states that no line intersects a B�ezier curve more times than

it intersects the control polygon. More speci�cally, if a given line intersects a B�ezier curve

n1 times and the same line intersects the control polygon n2 times, then

n1 = n2 � 2n3 (2.1.2.7)

where n3 is a non-negative integer. For example, for the case of the t{axis in Figure 2.1,

n1 = n2 = 3. Equation (2.1.2.7) requires us to count multiple intersections properly, so a

simple tangent intersection accounts for two intersections.

CHAPTER 2. REVIEW OF POLYNOMIAL REAL ROOT FINDING 8

P0

P1

P2

P3

P4

P5

Figure 2.2: Convex hull property

Two implications of the variation diminishing property are immediately apparent. First,

if all coe�cients of y[a;b](t) have the same sign, there can be no roots in [a; b]. Second, if

the control polygon of P[a;b](t) crosses the t{axis exactly once, then y[a;b](t) has exactly one

root in [a; b].

2.2 Polynomial Real Root Localization

The �rst step for many root �nding methods is to divide the domain into disjoint intervals

which each contain zero or one root, a procedure known as root isolation. The more generic

term localization [Hou70] refers to root isolation as well as the determination of global root

bounds. Localization schemes are usually based on examining simple expressions involving

only the polynomial coe�cients.

This section is limited to a discussion of real root localization methods. Complex root

localization techniques are outlined in [Hou70, Mar66]. If a polynomial has real coe�cients,

CHAPTER 2. REVIEW OF POLYNOMIAL REAL ROOT FINDING 9

then any complex roots must occur in conjugate pairs. The following three subsections

review techniques for globally bounding, and locally isolating, distinct as well as multiple

real roots.

2.2.1 Techniques for Bounding Real Roots

This section reviews techniques for determining global bounds for real roots of polynomials

in power form. Concepts relevant to bounding real roots of polynomials in Bernstein form

are presented in [x 5.7].

The real roots of polynomials expressed in power form can lie anywhere in the open

interval (�1;+1). The only way a degree n polynomial in power form can have a root

exactly at in�nity is if its leading coe�cient is pn = 0.

Here we review four of several classical methods for determining a tighter upper bound

on the positive real roots of a power basis polynomial [Kur80, MP65, BP60, Caj04]. With

some simple transformations, it is possible to use these bounding methods to also �nd lower

bounds on positive roots, as well as upper and lower bounds on negative roots.

Suppose a method exists which guarantees that all real roots of f(t) are less than an

upper bound B1. To compute a lower bound for the positive real roots of f(t), �nd the

upper bound B2 of the roots of �2 � tnf(1=t). Then, a lower bound for the positive roots

of f(t) is 1=B2 since if � is a positive root of f(t), then 1=� will be a root of �2(t) and if

1=� < B2, then � > 1=B2. Likewise, if B3 is an upper bound on the roots of �3(t) � f(�t),
then �B3 is a lower bound on the negative roots of f(t); and if B4 is an upper bound on

the roots of �4 � tnf(�1=t), then �1=B4 is an upper bound on the negative roots of f(t).

Listed below are several of the more convenient and less computationally{intensive meth-

ods for �nding positive upper bounds on the real roots of a polynomial. Others not cited

can be found in [Hou70, Mar66, FS65]. Many of these theorems are simpli�ed versions of

their more general forms attributed to bounding complex roots of a polynomial found in

CHAPTER 2. REVIEW OF POLYNOMIAL REAL ROOT FINDING 10

Table 2.1: Global Bounding of Power Form Polynomial Real Roots

Positive roots of f(t) lie in [1=B2; B1]

Negative roots of f(t) lie in [�B3;�1=B4]

Polynomial Coe�cients Upper bound of roots

�1(t) � f(t) f0; f1; : : : ; fn B1

�2(t) � tnf(1=t) fn; fn�1; : : : ; f0 B2

�3(t) � f(�t) f0;�f1; f2; : : : ; (�1)nfn B3

�4(t) � tnf(�t) (�1)nfn; (�1)n�1fn�1; : : : ; f0 B4

[Hou70, Mar66]. In the following discussion, we assume that f(t) =
P

ait
i is a degree n

monic polynomial (an = 1).

The Cauchy bound [Kur80, MP65, Hou70] is usually too conservative when one is only

interested in real roots [Kur80], although it does provide a basis for other methods.

Theorem 2.2.1.1 (Cauchy Bound) All real roots of f(t) 2 <[t] are contained in the

closed interval [�B;B], where
B = 1+ max

i
(jaij): (2.2.1.8)

The modi�ed Cauchy bound [Mac54, Dav27, Mer06, Caj04] has the Cauchy bound for

its worst case, and thus may give a closer bound.

Theorem 2.2.1.2 (Modi�ed Cauchy Bound) Let N be the absolute value of the most

negative coe�cient of f(t) 2 <[t]. Then

B = 1 +N (2.2.1.9)

is a positive upper bound for all real roots of f(t).

The negative inverse sum bound [BP60, Dic22, Caj04] and the Maclaurin bound [Kur80,

MP65, FS65, BP60, Dic22, Mer06] are nearly always much better, although still rather

conservative. Examples in [BP60, Dic22] illustrate that both of these bounds are polynomial

dependent; either one may yield a better bound than the other.

Theorem 2.2.1.3 (Negative Inverse Sum Bound) For each negative coe�cient aj of

f(t) 2 <[t], let Sj be the sum of all positive coe�cients following aj in the sequence

CHAPTER 2. REVIEW OF POLYNOMIAL REAL ROOT FINDING 11

a0; : : : ; an. Then

B = 1 +max
j

 �����ajSj
�����
!

(2.2.1.10)

is a positive upper bound for all real roots of f(t).

Theorem 2.2.1.4 (Maclaurin Bound) Let N be the absolute value of the most negative

coe�cient of f(t) 2 <[t], and let k be the index of the last negative coe�cient in the sequence

a0; : : : ; an. Then

B = 1 +N1=(n�k) (2.2.1.11)

is a positive upper bound for all real roots of f(t).

The term grouping bound [MP65, BP60] and the Newton bound [Kur80, MP65, BP60,

Mac54, Tur52] both require initial guesses, and are more computationally intensive, but

they ordinarily provide closer bounds than any of the preceding methods [BP60], with the

Newton bound providing the tightest bound on real roots.

Theorem 2.2.1.5 (Term Grouping Bound) Let f(t) 2 <[t] be expressed in the form

f1(t) + f2(t) + : : :+ fk(t), such that the ordered coe�cients of each of the polynomials fi(t)

exhibit only one change of sign, the coe�cients of the highest{degree terms being positive.

Then any positive number B that renders fi(B) > 0 for i = 1; : : : ; k is an upper bound for

all real roots of f(t).

Theorem 2.2.1.6 (Newton Bound) Let f(t) 2 <[t] and let B be a number such that

f(B), f 0(B), f 00(B), : : : , f (n)(B) are all positive. Then B is a positive upper bound for all

real roots of f(t).

The values for f(B), f 0(B), : : : , fn(B) are easily found using Horner's algorithm [x 5.2.1],
[MP65, Mac54].

2.2.2 Isolation Techniques for Distinct Real Roots

The classical literature is abundant with root isolation methods that separate the distinct

real roots of a polynomial. Root isolation is an important step in solving for the roots of a

polynomial, since many iterative real root approximations methods require a \su�ciently

CHAPTER 2. REVIEW OF POLYNOMIAL REAL ROOT FINDING 12

close" starting value or a narrow inclusion interval to guarantee that their sequences of

approximations converge e�ciently to a root. We now review some of the salient concepts

for isolating real roots.

Polynomial Factors and Roots

The result of substituting a number � for x into a polynomial f(x) is a number called the

value f(�) of the polynomial at x = � [Usp48]. If f(�) is equal to zero the polynomial f is

said to vanish, and � is called a zero or root of polynomial f [Bor50].

An algebraic equation of degree n is an expression formed by equating a non{zero degree{

n polynomial f(x) 2 F [x] to zero [Caj04, Usp48, Bor50, Tur52],

f(x) = 0: (2.2.2.12)

Let f(x) 2 F [x] and suppose that K is a �eld containing F , i.e., K is an extension of

F such that F � K [Bor50]. The result of substituting any number � 2 K for x into the

polynomial f(x) yields

f(�) =
nX
i=0

ai�
i = �;

where � 2 K is the value of f at x = �. By de�nition, � is called a zero, root, or solution

of the equation f(x) = 0 when � = 0 [BP60, Hou70].

The existence of a root of any algebraic equation, or non-zero polynomial, is guaranteed

by the fundamental theorem of algebra [Dic22, Boc64, MP65, Ric83].

Theorem 2.2.2.1 (The Fundamental Theorem of Algebra) Any non{zero polynomial

of degree n (an 6= 0) in C[x] (and thus in R[x]) always has at least one complex 1 (real or

imaginary) root.

In other words, every algebraic equation has at least one solution [Caj04, Usp48, Tur52,

1A complex number a + ib, with a; b 2 R, i =
p�1, is real if b = 0, imaginary (or nonreal) if b 6= 0, and

pure imaginary if a = 0.

CHAPTER 2. REVIEW OF POLYNOMIAL REAL ROOT FINDING 13

Hou70, Hil74]. This theorem only guarantees the existence of a root; determining the

number and type of the roots of f(x) is more involved.

The de�nitions of value and root of a polynomial may also be established on the basis of

the remainder theorem [Caj04, Dic22, Usp48, Bor50, Mac54, Hou70, Kur80], and its corol-

lary the factor theorem [Caj04, Dic22, Bor50, Mac54, Hou70, Kur80], both a consequence

of the polynomial division algorithm represented by equation (2.2.2.13) and the conditions

(2.2.2.14) and (2.2.2.15).

Theorem 2.2.2.2 (Polynomial Division Algorithm) For any two polynomials f(x),

f1(x) 2 F [x] (called the dividend and the divisor polynomials, respectively), where f1(x) 6= 0,

there exists an unique pair of polynomials q(x); r(x) 2 F [x] (the quotient and remainder

polynomials) such that

f(x) � f1(x)q(x) + r(x) (2.2.2.13)

with either

Deg(r) < Deg(f1) (2.2.2.14)

or

r(x) = 0: (2.2.2.15)

Theorem 2.2.2.3 (The Remainder Theorem) If the polynomial f(x) is divided by the

linear term x � �, where � is any number, then the remainder is a constant, equal to the

value f(�) of f(x) at x = �, i.e.,

f(x) � (x� �)q(x) + f(�): (Deg(f) = n) (2.2.2.16)

Theorem 2.2.2.4 (The Factor Theorem) The remainder f(�) vanishes i� x � � is a

linear factor of the polynomial f(x). Equivalently, � is a root of f(x) = 0 i� x� � divides

exactly (i.e., with zero remainder) into f(x), so that

f(x) � (x� �)q(x): (Deg(f) = n; Deg(q) = n � 1) (2.2.2.17)

Together the fundamental theorem and the factor theorem indicate the number of lin-

ear factors, and hence the number of roots, of a polynomial degree n. These results are

succinctly described by the following three theorems [Caj04, Bor50, Dic22, Ham71, Hen64,

Hou53, Hou70, Kur80, Usp48].

CHAPTER 2. REVIEW OF POLYNOMIAL REAL ROOT FINDING 14

Theorem 2.2.2.5 (Factored, or Product, Form Theorem) If Deg(f) = n � 1, then

f(x) 2 C[x] is uniquely expressible in factored form as the product of n monic linear factors

x � �i and the constant an, where �1; : : : ; �n denote the roots corresponding to the linear

factors:

f(x) � an(x� �1)(x� �2) � � �(x� �n) (an 6= 0): (2.2.2.18)

Theorem 2.2.2.6 (Repeated Factored Form Theorem) If Deg(f) = n � 1, then

f(x) 2 C[x] is uniquely expressible in repeated factored form as the product of k � n

distinct monic power factors (x��j)
mj and the constant an, where the positive integers mj

sum to n and denote the multiplicities of the distinct roots �1; : : : ; �k, i.e.,

f(x) � an(x� �1)
m1(x� �2)

m2 � � � (x� �k)
mk (an 6= 0; n =

kX
j=1

mj): (2.2.2.19)

Theorem 2.2.2.7 (Root Census Theorem) An algebraic equation of degree n may be

regarded as having exactly n roots (not necessarily distinct), if the roots are counted according

to their multiplicities.

Each factor (x� �j)
mj corresponds to an mj -fold or mj-tuple root or a multiple root of

multiplicity mj [Bor50, MP65]. When mj = 1, a root �j is called a simple or distinct root.

Roots of multiplicity mj = 2; 3; 4; : : : are referred to as double, triple, quadruple, : : : roots.

From a numerical perspective, groups of roots that are nearly multiple form a \cluster"

of roots and are termed root clusters [Hou70]. Multiple roots are necessarily simultaneous

roots of f(x) and successive derivatives of f(x) [Usp48], i.e.,

f(�) = 0; f 0(�) 6= 0

f(�) = f 0(�) = 0; f 00(�) 6= 0

f(�) = f 0(�) = f 00(�) = 0; f 000(�) 6= 0

: : : : : : ;

for a simple, double, triple, : : :root �.

The �rst derivative of the polynomial f(x) =
Pn

i=0 aix
i can be represented in the re-

peated factored form of equation (2.2.2.19) as

f 0(x) =
n�1X
i=0

(i+ 1)ai+1x
i =

kX
j=1

mj f(x)

(x� �j)
(2.2.2.20)

CHAPTER 2. REVIEW OF POLYNOMIAL REAL ROOT FINDING 15

and has as its �rst derivative f 00(x), and so on [Caj04, Dic22, Kur80, Mac54].

For any polynomial in C[x], the number of roots is synonymous with the number of its

linear factors. A discussion of polynomials in R[x] requires two additional theorems on

conjugate pair roots and real factored forms [Bor50, Kur80, Mac54, McN73, Usp48].

Theorem 2.2.2.8 (Conjugate Pair Roots Theorem) If a polynomial in R[x] has an

imaginary root � = a+ ib of multiplicity m, it has also the conjugate value � = a� ib as a

root of the same multiplicity, i.e., imaginary roots occur in conjugate pairs.

Theorem 2.2.2.9 (Real Factored Form Theorem) Every polynomial f(x) of degree

n > 2 in R[x] can be expressed as a product of linear and/or quadratic factors that are

irreducible monic polynomials in R[x], that is

f(x) � an(x� �1)
m1 � � � (x� �i)

mi(x2 + b1x+ c1)
l1 � � � (x2 + bjx+ cj)

lj ; (2.2.2.21)

where

x2 + bjx+ cj = (x� �j)(x� �j): (2.2.2.22)

Location Principles

Rolle's Theorem [Tur52] relates the locations of the roots of f(x) and the roots of its

derivatives.

Theorem 2.2.2.10 (Rolle's Theorem) Between any two consecutive real roots a and b

of the polynomial f(x) there lies an odd number of roots | and therefore at least one root

| of its derivative polynomial f 0(x), a root of multiplicity m being counted as m roots.

Rolle's theorem provides the following concepts for isolating real roots of a polynomial

f(x) based on the real roots of its derivative polynomial f 0(x).

1. Between any two consecutive real roots c and d of f 0(x) there lies at most one real

root of f(x).

2. The smallest and largest real roots, � and !, of f 0(x) constrain the smallest and

largest real roots of f(x) to lie in the intervals [�1; �] and [!;+1], respectively.

3. Multiple roots of f(x) are necessarily roots of f 0(x).

CHAPTER 2. REVIEW OF POLYNOMIAL REAL ROOT FINDING 16

4. A method for separating the real roots of a polynomial f(x) whose roots are all simple,

when all the real roots of f 0(x) are known.

Variation of Coe�cient Signs

The number of sign variations in the sequence of coe�cients a0; a1; : : : ; an of a degree{

n polynomial f(x) is equal to the number of consecutive pairs of coe�cients that are of

opposite signs, after zero values have been deleted from the sequence.

Theorem 2.2.2.11 (Descartes' Rule of Signs) A real polynomial f(t) cannot have more

positive real roots than there are changes of sign in its sequence of coe�cients; nor more

negative real roots than there are changes of sign in the sequence of coe�cients f(�t).

Thus, the number of positive or negative roots will be even if there is an even number

of variations of sign, and odd if there is an odd number of changes.

Sturm Sequence

Descartes' rule provides only an upper bound on the number of real roots of a polynomial.

A method that determines the exact number of distinct roots of a polynomial f(t) on an

interval (a; b) is based on computing a Sturm sequence f1(t); : : : ; fm(t) for f(t), de�ned by

f1(t) = f(t)
f2(t) = f 0(t)
fi(t) = qi(t) fi+1(t) � fi+2(t) (i � 1).

The sequence terminates upon encountering a polynomial fm(t), possibly a constant, that

does not vanish on the interval of interest.

Theorem 2.2.2.12 (Sturm's Theorem) Let f1(t); f2(t); : : : ; fm(t) be a Sturm sequence

for the real polynomial f(t), and let the interval (a; b) be such that neither a nor b is a root

of f(t). Then if S(a) and S(b) are the number of sign changes in the sequences of values

f1(a); f2(a); : : : ; fm(a) and f1(b); f2(b); : : : ; fm(b), the number of distinct real roots of f(t)

between a and b is given exactly by S(a)� S(b).

Note that Sturm's theorem does not count roots on (a; b) according to their multiplicities.

CHAPTER 2. REVIEW OF POLYNOMIAL REAL ROOT FINDING 17

P (t)

0.2 0.4 0.6 0.8 11.0
t

P (t)’

0.2 0.4 0.6 0.8 11.0
t

P (t)’’

0.2 0.4 0.6 0.8 11.0
t

Figure 2.3: Application of Rolle's theorem.

CHAPTER 2. REVIEW OF POLYNOMIAL REAL ROOT FINDING 18

Budan{Fourier Sequence

A weaker result, which relies only on the polynomial and its derivatives rather than a

division sequence, is the Budan{Fourier theorem:

Theorem 2.2.2.13 (Budan{Fourier) Let the interval (a; b) be such that neither a nor b

is a root of the polynomial f(t) of degree n. Then if C(a) and C(b) denote the number of sign

changes in the sequences of values f(a); f 0(a); : : : ; f (n)(a) and f(b); f 0(b); : : : ; f (n)(b), the

number of roots between a and b, counted according to multiplicity, di�ers from C(a)�C(b)

by at most a positive even amount.

Isolating Polynomials

Another insightful approach to separating the real zeros of a given polynomial is to utilize

the real roots of isolating polynomials. Rolle's theorem may be regarded as a corollary to

the following theorem of Borofsky [Bor50]:

Theorem 2.2.2.14 Suppose f(x), g(x), and h(x) are real polynomials, such that a and

b are consecutive real roots of f(x), and g(a) and g(b) have the same signs. Then the

polynomial F (x) � g(x)f 0(x)+h(x)f(x) has an odd number of roots between a and b if each

root is counted according to its multiplicity.

Uspensky [Usp48] describes a related theorem due to de Gua:

Theorem 2.2.2.15 (de Gua) Let f(x) be a real polynomial of degree n having distinct

positive roots x1; : : : ; xr with multiplicities m1; : : : ; mr. Then if we de�ne

F (x) = x f
0

(x) + � f(x);

where � is an arbitrary non{zero constant, the following are true:

1. F (x) has at least one root in each of the intervals (x1; x2); : : : ; (xr�1; xr);

2. for mj > 1 each root xj is also a root of F (x) with multiplicity mj � 1; and

3. all roots of F (x) are real when � > 0.

CHAPTER 2. REVIEW OF POLYNOMIAL REAL ROOT FINDING 19

Similar considerations apply to the negative roots of f(x). A generalized version of the

above theorem is presented by Sederberg and Chang in [SC94]; this will be discussed in

detail in [x 6.5].

Finally, Dedieu and Yakoubsohn [DY93] use an exclusion function to separate the real

roots of a polynomial in their algorithm that is briey discussed in [x 2.5.4].

2.2.3 Isolation Techniques Accounting Multiple Real Roots

Multiple real roots lie, in a sense, at the limit between cases of distinct real roots and

complex roots [BP60, Dic22, Mer06]. (Dickson [Dic22, p.29] illustrates this principle for the

roots of a real quadratic polynomial with a simple ruler{and{compass construction.)

Common Roots of Two Polynomials

The Euclidean algorithm for deriving the greatest common divisor (GCD) of two polynomials

[Van70] provides for:

1. the determination of the multiple roots of a polynomial by reducing it to a polynomial

with the same, but simple, roots; and thus

2. the determination of the number of roots of a polynomial over an interval of the real

axis.

The GCD of f(x) and f 0(x), denoted by

g(x) =
�
f(x); f 0(x)

�
; (2.2.3.23)

can be used to reduce the multiple roots of f(x) to simple ones by performing the division

h(x) =
f(x)

g(x)
; (Deg(g(x)) 6= 0): (2.2.3.24)

The polynomial h(x) then possesses the same roots as f(x), but without multiplicity.

CHAPTER 2. REVIEW OF POLYNOMIAL REAL ROOT FINDING 20

Separation of Multiple Roots

An extension of the GCD algorithm that separates all the multiple roots of a polynomial

into distinct linear factors and simultaneously determines the multiplicity of each root is

described in [Dun72, Dun74, MP65, Van70] and implemented by [Dun72] for this purpose.

De�ne a GCD sequence by

g1(x) =
�
g0(x); g

0

0(x)
�
; g0(x) = f(x)

g2(x) =
�
g1(x); g

0

1(x)
�

: : :

gm(x) =
�
gm�1(x); g

0

m�1(x)
�
; Deg(gm(x)) = 0

and set (
hj(x) =

gj�1(x)

gj(x)

)m

j=1

; (2.2.3.25)

and then �
Fk(x) =

hk(x)

hk+1(x)

�m�1
k=1

; Fm(x) = hm(x): (2.2.3.26)

All the roots of the polynomials Fk(x) are then simple roots, and correspond to k{fold roots

of f(x). Note that f(x) can not possess roots of multiplicity greater than m.

2.3 Polynomial Real Root Approximation

This section reviews both closed{form algebraic solutions as well as numerical iterative ap-

proximations to polynomial equations expressed in power form. The �rst subsection [x 2.3.1]
discusses closed{form solutions for low{degree equations, with special attention to methods

that are concerned only with real roots. The next three subsections classify iterative numer-

ical schemes under three general groups: basic serial iterative methods [x 2.3.2], combined
or hybrid serial iterative methods [x 2.3.3], and simultaneous iterative methods [x 2.3.4].
Speci�c power form polynomial root �nders that �nd all polynomial roots, as well as power

CHAPTER 2. REVIEW OF POLYNOMIAL REAL ROOT FINDING 21

form and Bernstein polynomial root �nders that �nd only the real roots, are reviewed in

the subsequent sections [x 2.4], [x 2.5] and [x 2.6].

2.3.1 Closed Form Solvers

Direct root{�nding algorithms for equations that are algebraically solvable by radicals (the

roots may be expressed explicitly in terms of the coe�cients by a general algebraic formula

[Lod90, MP65, Bor50, Caj04]) are called exact, or closed{form solvers. Any polynomial

equation of degree � 4 can be solved in closed form; for higher degrees a general closed

form solution is impossible [Kur80, MP65].

A thorough discussion of classical solutions for quadratic, cubic, and quartic equations

can be found in elementary texts on the theory of equations [BP60, Mac54, Tur52, Bor50,

Usp48, Dic22, Mer06, Caj04], and higher algebra [Kur80, MP65, Dav27]. In principle, these

methods yield exact results, although oating{point implementations are, of course, subject

round{o� error and possible ill{conditioning e�ects.

Although numerical implementations of direct methods are subject to accuracy loss and

require square or cube root extractions, special purpose library functions for solving real

quadratic and cubic equations have bested general purpose root �nding methods by a factor

of 7 [MR75]. Closed form solvers restricted to �nding only real roots are of particular interest

for CAGD and graphics applications, as discussed in [x 1]. Hanrahan recorded nearly a 25

percent reduction of image rendering CPU time using exact solutions as compared to general

polynomial root �nders [Han83].

Numerical algorithms returning non-complex solutions are given in [Sch90b]. Numer-

ical considerations addressing the stable computation of closed form root expressions are

presented in a report by Lodha [Lod90], and are addressed for the quadratic and cubic in

[PFTV90]. Vignes [Vig78] also outlines a stable cubic real root solver developed by M. La

Porte.

CHAPTER 2. REVIEW OF POLYNOMIAL REAL ROOT FINDING 22

Further implementation considerations are deferred to [x 5.9]. Other references dis-

cussing numerical implementation of exact solvers include [HE86, PW83, Ric83, BFR81,

McN73, Hen64, Hou70, Pen70, Buc66].

2.3.2 Basic Serial Iterative Methods

Methods referred to by [Pet89] that compute one zero at a time and require successive pre{

isolation of the roots and post-deation to remove the corresponding linear factors, and

by Householder [Hou70] as local (convergent) methods that are dependent on close initial

guesses to roots for convergence will be called serial iterative methods here. Basic serial

iterative methods are presented in a variety of numerical texts that discuss iterative solution

of the real roots of an equation. Rice [Ric83] outlines several of these basic iterative methods

along with their corresponding iterative steps, which include the following schemes:

Bisection Method

Regual Falsi Method

Modi�ed Regula Falsi Method

Secant Method

Mueller's Method (see [Dun72, Mul56, PFTV90])

Fixed-Point Method

Newton's Method

Higher-Order Newton Method

The bisection and regula falsi methods are frequently referred to as root trapping or

bracketing methods because they require a bounding interval containing the real root in

their operation. Bracketing methods always converge, but at a linear rate, or superlinear

rate depending on what acceleration techniques are applied.

Basic serial iterative schemes may also be characterized by their use of interpolating

polynomials [Hil74, Hou70, Ost60, Tra64]:

CHAPTER 2. REVIEW OF POLYNOMIAL REAL ROOT FINDING 23

� Linear interpolation, e.g., as in the secant method.

� Linear inverse interpolation, e.g., the regula falsi methods.

� Quadratic interpolation, e.g., Muller's method.

� Other interpolation{based schemes, e.g., Newton's method.

Any of these methods can be combined, extended, and applied to general purpose poly-

nomial root �nding schemes for polynomials in both power and Bernstein forms.

2.3.3 Hybrid Serial Iterative Methods

Hybrid serial methods combine basic iterative root bracketing techniques (which always

converge, but usually at a slow rate) with the faster convergent schemes that occasionally

exhibit non-convergence [PW83]. The result is a hybrid approximation strategy that always

converges at a faster rate by using a higher order convergence technique while the iterative

step remains within the speci�ed interval, and the bracketing technique when the result

steps out of the interval.

Hybrid methods found in the literature include a secant{false position algorithm [PW83]

in PASCAL, a Newton{bisection algorithm in both FORTRAN and C [PFTV86, PFTV90], a

Newton{regula falsi algorithm in C by Blinn [Gla89], and an algorithm in FORTRAN and C

[FMM77, PFTV86, PFTV90] by Brent [Bre71] based on previous work by Van Wijngaarden

and Dekker which combines root bracketing, bisection, and inverse quadratic interpolation

to approximate a real root.

2.3.4 Simultaneous Iterative Methods

Methods referred to by Petkovic [Pet89] that simultaneously determine all zeros of a poly-

nomial, and by Householder [Hou70] as global (convergent) methods that are not dependent

on close initial guesses to roots for convergence are designated here as simultaneous iterative

methods. Such methods are not the focus of this study, but some of the more established

CHAPTER 2. REVIEW OF POLYNOMIAL REAL ROOT FINDING 24

algorithms are discussed in [x 2.4] as a reference to their use as benchmarking algorithms

compared against the algorithms presented in Chapter 6. Other simultaneous methods

mentioned in the literature include Bernoulli's method [Ait26], Grae�ee's method [Gra65],

the quotient di�erence method [Mor83, Hen82, BFR81, McN73, Hou70, Hen64] Petkovic's

simultaneous inclusion method [Pet89, Pet81], Gargantini's method [Gar79], etc.

2.4 Power Form General Purpose Root Finders

This section reviews some general purpose root �nding methods found in the literature that

approximate all the roots of polynomials in power form. Root �nders discussed below

include Jenkins and Traub's Rpoly, Dunaway's Composite, Madsen and Reid's Newton{

based, and Laguerre's methods. Additional general purpose methods not outlined here, but

referenced in other works, include the Lehmer{Schurr method [PFTV90, Mor83, Dun72,

Act70, Hou70, Hou53], Lin's linear and quadratic methods [Hil74, McN73, Act70, Buc66,

Lin43, Lin41], Bairstow's Newton quadratic factor method [PFTV90, PC86, Mor83, Hen82,

RR78, Piz75, Hil74, McN73, Dun72, Ham71, Hou70, Buc66, IK66, Hen64] as well as other

higher order methods referenced in [HP77, Hil74, Dun72, Hou53].

Jenkins{Traub's Method

Jenkin's Rpoly FORTRAN program, listed in [Jen75], �nds all the zeros of real polynomials

in power form. Rpoly is based on a three{stage algorithm described in [JT70] which

extracts an approximate linear or quadratic factor from a sequence of polynomials of degree

one less than the original polynomial that are generated by various shifting operations.

The real zero or quadratic factor is then deated from the original polynomial and the

process repeats on the reduced polynomial until all zeros are approximated. The �rst and

second stages are linear convergent, and the third stage is superquadratic convergent and

thus usually requires only a few iterations. Termination criteria for stage three iterations

CHAPTER 2. REVIEW OF POLYNOMIAL REAL ROOT FINDING 25

are based on round{o� error analysis. Due to its robust and e�cient performance, Rpoly

has become established as a de facto state{of{the{art algorithm that provides a basis of

comparison for many root �nding algorithms. Jenkins and Traub's algorithm implemented

for real polynomials reported about 2n2 milliseconds to calculate all the zeros for degree

n � 20 real polynomials, in contrast to about 8n2 milliseconds for their complex version

[JT70]. Other polynomial root �nding publications that refer to these methods include

[PFTV90, Ric83, BFR81, RR78, MR75, Dun72, Hou70].

Dunaway's Composite Method

Dunaway's Composite FORTRAN algorithm is included in [Dun72]. It computes all the

roots of real power form polynomials, with particular emphasis on the problem of solving

polynomials possessing multiple roots with greater accuracy and reasonable e�ciency than

had previously been available. This general purpose algorithm is actually applicable to any

class of polynomials with real coe�cients. In essence, the algorithm can be divided into two

separate stages, �nding the real roots �rst, and then the complex roots. The �rst part com-

prises several procedures which �rst isolate a GCD sequence of unique polynomial factors

containing distinct real roots, and then solves for these roots using a Sturm{Newton strat-

egy. The second part isolates the complex factors by forming interpolating polynomials as

an alternative to deating the real roots, and then uses a Lehmer{Shur method to approx-

imate initial root estimates for a complex Newton method. The composite algorithm was

compared against [JT70] for real polynomials and yielded a signi�cant increase in accuracy

and reasonable speed for cases tested which included randomly generated polynomials with

multiplicities from one to nine [Dun74]. Other related works which refer to this composite

algorithm include [GK90, FL85, LN79, Mat79, JT75].

CHAPTER 2. REVIEW OF POLYNOMIAL REAL ROOT FINDING 26

Madsen{Reid's Newton{Based Method

Madsen and Reid's Newton{based FORTRAN algorithms for both complex and real poly-

nomial coe�cients are included in [MR75]. Based on Madsen's earlier work [Mad73], they

utilize a two stage global and local Newton step process to isolate and approximate all the

zeros of a polynomial. To ensure stable deation, the algorithm repeatedly approximates

the zeros of the smallest modulus by �rst successively searching and computing tentative

Newton{based steps until the iterate is close enough to apply straightforward Newton ap-

proximation to quadratically converge to the root. Error estimation methods expanded

from Peters and Wilkinson [PW71] are implemented to enhance convergence criteria for

both complex and real coe�cient cases. The method reports a two{fold advantage over

the Jenkins and Traub algorithm [JT70]: a 2{4 times increase in e�ciency with at least

as accurate results, and a simpler algorithm yielding less bulky code (object code about 2
3

as long). The FORTRAN code is set up to easily accommodate various precisions, checks

for leading and trailing zero coe�cients, and normalizes deated coe�cients. Other works

referring to this method include [Wes81, RR78, SR77, Moo76].

Laguerre's Method

Laguerre's method FORTRAN and C algorithms [PFTV86, PFTV90] �nd all the roots

of a complex polynomial by �rst isolating guaranteed initial approximations for any root

(real, complex, simple, and multiple) using parabolas, and then uses further re�nement, or

root polishing, techniques to converge to within required precision. Laguerre's method is

guaranteed to converge independent of any initial values and incurs the calculation of f(t),

f 0(t), and f 00(t) for each stage of the iteration which provides cubic convergence near simple

real roots and linear convergence near multiple zeros. Other works referring to this method

include [Ric83, RR78, Act70, Hou70, Bod49].

CHAPTER 2. REVIEW OF POLYNOMIAL REAL ROOT FINDING 27

2.5 Power Form Real Root Finders

This section reviews existing power form real root �nding methods that may be categorized

according to how they isolate the real roots of the polynomial. We consider methods based

on:

1. Sturm sequences,

2. Di�erentiation,

3. Variation of signs,

4. Interval techniques.

2.5.1 Sturm Sequence Techniques

The determination of the number of real roots on an interval using Sturm sequences has

been described above. One root{�nding technique using Sturm sequences is described in

[Dun72]. Another is the method of Hook and McAree.

Hook{McAree's Method

Hook and McAree present a C implementation using Sturm sequences to bracket the real

roots of power form polynomials for subsequent re�nement by the modi�ed regula falsi

method [HM90]. The isolation phase builds a Sturm sequence using a pseudo{polynomial

remainder sequence derived from the original polynomial and its �rst derivative as outlined

in [x 2.2.2], and then applys a bisection technique to the sequence until a single sign variation
is achieved. A ray tracing program used this algorithm to render algebraic surfaces of

arbitrary order which frequently encounters the solution of ill-conditioned polynomials.

CHAPTER 2. REVIEW OF POLYNOMIAL REAL ROOT FINDING 28

2.5.2 Di�erentiation Techniques

Polynomial derivative sequences provide natural bounding intervals for the real roots of the

given polynomial, as exempli�ed by the work of Collins and Loos.

Collins{Loos' Method

Collins and Loos [CL76] present a polynomial real root isolation method that utilizes re-

cursive derivative sequences of the given power form polynomial to achieve root interval

separation, applying Rolle's theorem, a simple tangent construction heuristic, and polyno-

mial greatest common divisor calculations to determine the existence of two or no roots

in an interval. The algorithm is compared both analytically and empirically to Heindel's

Sturm sequence algorithm [Hei71] which uses integer arithmetic to compute the real zeros

of a polynomial. It performs signi�cantly faster in general, which is attributed primarily

to smaller coe�cients in the derivative sequence versus the Sturm sequence. Test cases

consisted of both random and perturbed random product polynomials as well as Chebyshev

and Legendre polynomials up to degree 25. Other references that cite this work include

[CA76, CL82, MC90, Rum79].

2.5.3 Variation of Signs Techniques

Real root isolation strategies that use Descartes' rule of signs to bound the roots are con-

tained in the work by Collins and Akritas.

Collins{Akritas' Method

Collins and Akritas [CA76] present a polynomial real root isolation method that combines

Descartes' rule of signs with linear fractional transformations. This is a modi�cation of

Uspensky's algorithm based on a theorem by Vincent [Usp48]. The algorithm is 2 to 8

CHAPTER 2. REVIEW OF POLYNOMIAL REAL ROOT FINDING 29

times more e�cient than the Collins and Loos method described above. Other sources that

cite this work include [CL82, MC90].

2.5.4 Interval Techniques

Real root isolation schemes that construct bounding intervals to contain and exclude the

roots include Hansen's Newton interval and Dedieu and Yakoubsohn's exclusion interval

methods, respectively.

Hansen's Newton Interval Methods

Hansen develops polynomial real root �nding methods [Han78b, Han78a] introduced by

Moore [Moo66] that extend interval analysis to Newton's method. This guarantees isolation

and approximation of all the real roots of a polynomial by bounding intervals. Other interval

versions of Newton's method are cited in Hansen's works as well as in [AH83, Han69, Moo79].

Further sources extending these concepts to solutions of complex roots, as well as systems

of non{linear equations, include [AH83, GH73, Han69, HG83, Moo77, Moo79].

Dedieu{Yakoubsohn's Exclusion Method

Dedieu and Yakoubsohn's exclusion algorithm [DY93] is a real root isolation scheme that

localizes all the real roots of a real polynomial, based on an exclusion function which de�nes

intervals on which the original polynomial does not have any roots. The arrangement of

the exclusion intervals provides the necessary bounding intervals for approximation by an

appropriate root bracketing scheme [x 2.3.2,2.3.3]. The exclusion method guarantees con-

vergence to the accuracy " in O(jlog "j) steps and is stable under modi�cations of the initial
iterate as well as rounding errors. The exclusion scheme proved stable for higher degree

polynomials as opposed to the unstable e�ects of a Sturm's method with identical step

convergence order, although Sturm's method exhibits better e�ciency for well{conditioned

CHAPTER 2. REVIEW OF POLYNOMIAL REAL ROOT FINDING 30

lower degree polynomial cases. The exclusion algorithm also extends to computing complex

roots. The authors provide a C version of the isolating algorithm.

2.6 Bernstein Form Real Root Finders

This section briey reviews existing Bernstein form polynomial real root �nding methods,

which are grouped according to how they isolate the real roots, using either:

1. Recursive subdivision,

2. Newton{based methods,

3. Hull approximation techniques.

2.6.1 Recursive Subdivide Techniques

Bernstein root �nders that repeatedly subdivide to isolate and even approximate the real

roots of a polynomial are designated as recursive subdivision techniques. Three methods

developed by Lane and Riesenfeld, Rockwood, and Schneider are reviewed below. Another

method is presented in this document in [x 6.3] that utilizes subdivision and derivative

heuristics to isolate each root. The roots are then further re�ned using a hybrid serial

approximation scheme adapted to Bernstein form polynomials.

Lane{Riesenfeld's Method

Lane and Riesenfeld [LR81] couple recursive bisection with properties of the Bernstein form

to isolate and eventually approximate real roots over a speci�ed interval. The polynomial

is recursively subdivided at its midpoint until either the root is approximated to a speci-

�ed precision, or no root exists in the polynomial subinterval, whereupon the polynomial

segment is eliminated. The variation diminishing property [x 2.1.2] is utilized to indicate

whether or not a root exists in the subinterval. Binary subdivision incurs O(n2) steps and

CHAPTER 2. REVIEW OF POLYNOMIAL REAL ROOT FINDING 31

provides one bit of accuracy for each subdivision step. Other related works which reference

this method include [Gra89, MC90, RKF88, Roc89, Sch90a].

Rockwood's Method

Rockwood's algorithm [Roc89] is a variation on the Lane and Riesenfeld method suitable

for parallel and vector processing. Instead of binary subdivision, Rockwood uses a step

hueristic that estimates the root using the linearly interpolated value between two points

on the curve receiving the greatest inuence from the nearest control points to the crossing.

This estimate eventually becomes a Newton step in the vicinity of the approximate root,

exhibiting quadratic convergence. The ordered real roots are found to a speci�ed tolerance.

This work is also referenced in [MC90].

Schneider's Method

Schneider's algorithm [Sch90a] is also a variant of the Lane and Riesenfeld algorithm which

uses recursive binary subdivision to approximate the ordered roots over the Bernstein in-

terval. A root is determined when either the recursion depth limit is reached, or when the

control polygon crosses the abscissa once and approximates a straight line, or is at enough,

the root in the corresponding region being then computed as the intersection of the t{axis

with the chord joining the �rst and last control point. The at enough termination criterion

is achieved when the maximum perpendicular distance of the control points to the chord is

bounded by a speci�ed tolerance.

2.6.2 Newton{Based Techniques

Bernstein root �nding schemes that use Newton-type steps to isolate and approximate the

real roots of a polynomial are exempli�ed by the algorithms of Grandine and of Marchepoil

and Chenin.

CHAPTER 2. REVIEW OF POLYNOMIAL REAL ROOT FINDING 32

Grandine's Method

Grandine [Gra89] computes all the zeros of a univariate spline function using a Newton

interval method that requires bounds on the derivative of the function, without breaking

the interval into its individual polynomial pieces. The method exhibits Newton convergence

for simple roots, and thus at best linear convergence for multiple roots.

Marchepoil{Chenin's Method

A report by Marchepoil and Chenin in French [MC90] uses a combination of Bernstein

subdivision techniques combined with Newton iterations to �nd the ordered set of real roots

over an interval for ray tracing applications. Unfortunately, the author was unable to obtain

a complete translation of this report and thus cannot provide a detailed comparison with

other methods. The method is benchmarked against the Rockwood and Lane{Riesenfeld

algorithms described above.

2.6.3 Hull Approximation Techniques

Bernstein root �nding methods can also exploit the convex hull property to isolate and even

approximate the real roots of a polynomial. A method by Rajan, Klinkner, and Farouki

exempli�es this type of method. Two other methods are presented in this document that use

optimal convex hulls to provide steps that in the �rst case [x 6.4] isolate the ordered real roots
(which are subsequently approximated using a hybrid serial approximation method adapted

to Bernstein form polynomials), and in the second case [x 6.1] successively approximate the

ordered real roots.

CHAPTER 2. REVIEW OF POLYNOMIAL REAL ROOT FINDING 33

Rajan{Klinkner{Farouki's Method

Rajan et al. [RKF88] use parabolic hulls to isolate and approximate simple real roots of a

Bernstein form polynomial. A parabolic hull is a parabolic generalization of the convex hull

property [x 2.1.2] that bounds the polynomial from above and below. This method favors

high degree polynomials (examples up to degree 2048) with few roots over the interval

of interest, and was up to several orders of magnitude faster than other algorithms for

this type of problem. The scheme exhibits cubic convergence when approximating a root.

Generalization of the technique to higher{degree hulls is also outlined.

Chapter 3

Review of Numerical

Considerations

Robust computer implementation of polynomial root �nding methods requires, in addition

to a formal mathematical description of the algorithm, a keen awareness of the limitations

of the oating{point number system and issues of numerical stability and error propaga-

tion. This chapter reviews key numerical considerations pertaining to the implementation

of polynomial real root �nding algorithms. Section [x 3.1] reviews sources and types of

numerical error noted in the literature. Section [x 3.2] discusses general deterministic and

indeterministic analysis techniques for estimating bounds for roundo� error. Section [x 3.3]
reviews numerical stability and condition properties including the condition of polynomial

roots with respect to perturbations in the coe�cients, with particular attention to the

power and Bernstein representations. Section [x 3.4] reviews and provides an example of

the conversion process between Bernstein and power forms of a polynomial. Finally, section

[x 3.5] presents guidelines for benchmarking the performance of polynomial root �nders,

identifying various classes of polynomials appropriate for testing.

34

CHAPTER 3. REVIEW OF NUMERICAL CONSIDERATIONS 35

3.1 Numerical Error

The computer implementation of mathematical algorithms involves a variety of ways in

which numerical errors may be generated, propagated, and ampli�ed. This section out-

lines the various types and sources of numerical error discussed in the literature [Buc66,

Dod78, Dun72, Hen82, Hil74, Hou53, McN73, Mor83, Pen70, PC86, Piz75, RR78, Sta70]

with particular emphasis on oating{point roundo� error, indicating guidelines to minimize

the error whenever possible.

3.1.1 Sources and Types of Numerical Error

We may distinguish between two distinct types of error, which arise in the the \modeling"

and \computing" stages:

Modeling Error (as distinct from numerical error) reects the de�ciencies of, for example,

a discrete approximation to a continuous mathematical problem, or the possible failure

of an iterative method to have guaranteed convergence to the desired solution.

Computational Error measures the numerical errors due to implementing an algorithm

in oating{point arithmetic on a computer. Computational error may be classi�ed

into the following categories:

Gross Error is caused by mistakes, oversights, or malfunctions of man or machine.

Truncation Error results from using a �nite approximation to represent an ideal

function, equation, or value that does not have a tractable �nite representation.

Convergence Error arises from either a divergent iterative process, or premature

termination of a convergent process.

Overow-Underow Error results from the �nite dynamic range of the oating{

point number system. It may be largely avoided by using appropriate data scaling

and normalization techniques.

Roundo� Error arises from the fact that the results of oating{point operations

must be rounded to be representable within the oating{point number system.

This incurs errors at each arithmetic step of an algorithm, and the propagation

and possible ampli�cation of errors incurred in preceding steps.

CHAPTER 3. REVIEW OF NUMERICAL CONSIDERATIONS 36

Although distinct from computational error, the proper modeling and formulation of

a mathematical problem is an important aspect of robust implementations [x 3.3]. As a

general guideline for minimizing numerical error, computations should be kept as concise

as possible, although there are exceptions to even this rule.

Causes of Computational Error

Computational errors arise under a variety of circumstances, such as:

1. Inherent error in the input data of a computation. This may arise from physical

measurement errors, the fact that the input data is itself the result of oating{point

computations, or simply the need to round \exact" input to oating{point format.

2. Cancellation error in subtracting nearly equal numbers, which incurs an ampli�cation

of pre{existing relative errors in the operands. This may be ameliorated by rearranging

sums so that di�erences close to zero are avoided, and using reducible subtraction

operations [Vig78] which detect and ensure the summation of like signed numbers.

3. Roundo� in adding or subtracting one large and one small number. Summing numbers

in increasing magnitude helps remedy this source of error.

4. Simple roundo� due to the ordinary arithmetic operations of addition, subtraction,

multiplication, and division.

5. Floating{point overow or underow (e.g., due to division by a very small number).

Other pertinent tips for minimizing roundo� error include:

� Avoid (if possible) expressions of the form ab where b is a oating point number,

� Use double precision for oating{point calculations,

� Rearrange formulas to use original data rather than derived data,

� Rearrange formulas to minimize arithmetic operations,

� Avoid chaining operations which involve round{o� error, and

� Work with integers whenever possible and economically feasible.

CHAPTER 3. REVIEW OF NUMERICAL CONSIDERATIONS 37

3.1.2 Roundo� Error

Discussions regarding oating-point computation preface most numerical analysis texts in

part and is exclusively de�ned and examined by Sterbenz [Ste74]. In addition, a text

by Plauger [Pla92] provides extremely useful insight regarding standardized oating-point

constants for a UNIX-based machine usually located in the �le: nusrnincludenoat.h.

Floating-Point Computation

A computer expression in F formed by the arithmetic set of computer operators

f �; 	; �; � g (3.1.2.1)

that numerically approximates an algebraic expression de�ned by the set of real numbers

R and formed by an arithmetic set of exact operators

f +; �; �; = g (3.1.2.2)

results in numerical rounding of the algebraic expression when F and its respective operators

de�ne the set of oating-point numbers and operations. A oating-point number x has the

form

x = �m �e 2 [xmin; xmax] 2 F (3.1.2.3)

where the signed number m 2 F is the normalized mantissa of x, having d signi�cant digits

in the base � of the machine, and e 2 Z is the exponent of x, lying within some range

[emin; emax].

Machine Epsilon � and Roundo� Unit �

The precision of oating-point arithmetic is characterized by the machine epsilon which is

de�ned as the smallest oating point number � such that

1� � > 1 or � = �1�d; (3.1.2.4)

CHAPTER 3. REVIEW OF NUMERICAL CONSIDERATIONS 38

and its corresponding roundo� error bound by the machine roundo� unit [Mor83] which is

de�ned as the smallest oating point number � such that

1� � = 1 or � =
1

2
� =

1

2
�1�d (3.1.2.5)

which reduces to � = 2�d on a binary machine.

A function that calculates the machine epsilon for any machine is given in the following

algorithm [FMM77].

Algorithm 3.1.2.1 (� = ComputeMachineEps ()) Compute and return the ma-

chine epsilon �.

1. � = 1

2. While ((1 + �) > 1)

3. � = 1
2�

EndWhile

End of ComputeMachineEps

Roundo� Error Due to Floating-Point Operations

The absolute error of a computed value x due to roundo� of a binary oating-point operation

f �; 	; �; � g is represented by

"x� (3.1.2.6)

and the corresponding relative error is denoted by

"x�
x

(3.1.2.7)

which measures the precision, or the number of correct digits, in x. The formulas that

account for the roundo� error due to oating-point operations are

x � y = (x+ y) (1 + �)
x 	 y = (x� y) (1 + �)
x � y = x � y (1 + �)
x � y = x=y (1 + �)

CHAPTER 3. REVIEW OF NUMERICAL CONSIDERATIONS 39

where � is the relative roundo� error introduced by a single oating-point operation which

satis�es the relation j�j � � [Dod78, Hil74, Hou53, IK66, KM81, Pen70, PW71, PW83,

Ric83, Sta70]. Note that these formulas do not take into consideration inherent or pre{

existing errors in the operands (see [xx 3.2.2],[PW83]).

3.2 Estimating Bounds for Roundo� Error

There are a variety of approaches to monitoring the propagation of rounding errors in

numerical computations so as to estimate error bounds for computed quantities. They may

be boradly classi�ed as as either deterministic or indeterministic techniques [BC86, FV85,

Ham71, Hen82, Mil75b, RR78, Ric83, Ste74, Wil63].

Deterministic techniques estimate an upper bound for the roundo� error incurred during

a computation, and may be divided into the following approaches:

1. Forward Error Analysis

2. Running Error Analysis

3. Backward Error Analysis

4. Interval Error Analysis

Indeterministic techniques estimate an average bound based on certain measures of reli-

ability for the roundo� error incurred during a computation which separates into the

following current approaches.

1. General Stochastic Error Analysis

2. Permutation-Perturbation Error Analysis

It is important to note that these methods yield estimates of the propagated roundo�

error at the expense of a loss of e�ciency in both execution and a more complicated im-

plementation. The general purpose polynomial root �nder implemented by Madsen and

Reid discussed in [xxx 2.4] reported their running error analysis overhead increased CPU

time usually about 25% for simple roots and up to 100% when many multiple roots were

considered [MR75]. Thus, a good rule of thumb is to use methods that avoid roundo� error

analysis when possible, and to use error analysis judiciously when needed.

CHAPTER 3. REVIEW OF NUMERICAL CONSIDERATIONS 40

3.2.1 Forward Error Analysis

Forward error analysis bounds the absolute or relative roundo� errors of the intermediate

steps of a computation. Various perspectives on forward error analysis are presented in

[Mil75b, PW71, RR78, Ric83, Ste74, Wil63]. This approach is often too conservative,

yielding error bounds that can be many orders of magnitude larger than the actual error

and thus virtually useless when used as a convergence criterion. In addition, forward error

analysis is tedious and often di�cult to apply to complex computations (although applied

skillfully to straightforward equations this approach can produce a tight error bound on the

computed value). Also, it does not account for cancellation e�ects | see [x 4.2.1] below.

3.2.2 Running Error Analysis

Peters and Wilkinson coined the term running error analysis in [PW71] to describe a method

that computes error estimates \on{the{y" for the case of Horner evaluation of f(x). The

essence of this method is to obtain for each intermediate step of the computed value an

absolute or relative bound on the error due to the e�ects of both the inherent and roundo�

error. Such methods are often termed linearized running error analyses, since they neglect

higher{order terms in small quantities. Works that discuss concepts related to running error

analysis include [Hen64, Hen82, Hil74, Hou53, Mor83, Pen70].

The absolute error of a computed value x represented by

"x = "x� + "x� (3.2.2.8)

that accounts for both roundo� and inherent error when computed with a binary operator

consists of a component "x� due to roundo� from the a oating point operation [xxx 3.1.2]
as well as a component "x� due to the inherent error which already exists in x due to prior

sources of error [PW83]. The corresponding relative error is measured and denoted by

"x
x

=
"x�
x

+
"x�
x
: (3.2.2.9)

CHAPTER 3. REVIEW OF NUMERICAL CONSIDERATIONS 41

There are two main approaches presented in the literature that account for the inherent

and roundo� error terms in equations (3.2.2.8) and (3.2.2.9).

Binary Operator approach is based on the fact that variables in any sequence of a com-

putation are only processed two at a time by binary operators. Thus, the operations

composing the entire computation are arranged into a sequence of binary operations.

The error bound is obtained by accumulating the errors from each binary operation

such that the e�ects of each binary operation contributes to the next and so forth.

A calculation graph which maps the two operands of each binary operation to the

corresponding nodes of a binary graph is presented in [DM72].

Partial Derivative Operator approach is based on the idea that a computation can be

expressed as the sum of a sequence of linear successive operators. A partial di�erential

equation represents the sum of these linear successive operators which each represent

an independent variable in the di�erential equation.

The error bound is obtained by applying the chain rule to the partial di�erential

equation for each linear successive operator, and thus, is the sum of the e�ects of all

the errors contributing to the computation.

A calculation graph which maps each partial derivative operation to a corresponding

node of a directed graph is presented in [Pen70, PW83].

Both methods work for simple expressions. Complex formulations need to be decom-

posed or factored into simple parts which are then composed and analyzed as a simple

function. Although running error analysis provides reasonably tight bounds, it at least

doubles the operations in solving a particular expression.

3.2.3 Backward Error Analysis

Rather than tracking the absolute or relative errors of computed values at each intermediate

step of an algorithm, backward error analysis is concerned with showing that the computed

result is exact for some \neighboring" problem, corresponding to perturbed input parame-

ters. The approach indicates a range of input values which give results di�ering from the

true solution by an amount that reects the cumulative e�ects of intermediate computa-

tional errors. Sources describing this process include [Hen82, Mil75b, Mil75a, RR78, Ric83,

CHAPTER 3. REVIEW OF NUMERICAL CONSIDERATIONS 42

Ste74, Wil63]; see also [x 4.2.3] below.

3.2.4 Interval Error Analysis

Interval error analysis introduced by Moore [Moo66] and also covered by [AH83, GL70,

Han69, KM81, Moo66, Moo79, RL71, Ste74] replaces each computed value x with a scalar

interval represented by

[a; b] = fx j a � x � bg: (3.2.4.10)

Interval arithmetic operations for two intervals [a; b] and [c; d] are represented by

[a; b] + [c; d] = [a+ c; b+ d]
[a; b] � [c; d] = [a� d; b� c]
[a; b] � [c; d] = [Min(ac; ad; bc; bd); Max(ac; ad; bc; bd)]
[a; b] = [c; d] = [a; b] � [1=d; 1=c]

where interval division is de�ned only for denominator intervals that do not contain 0.

Although interval analysis gives a guaranteed bound the error of the computed value,

this bound is often too conservative and can be very expensive due to interval arithmetic

overhead if not judiciously applied [Ham71]. Interval analysis has been applied to algo-

rithms involving Bernstein{form computations [Rok77, SF92], bounds on interval polyno-

mials [Rok75, Rok77], and the determination of polynomial zeros [GH72, Han70].

3.2.5 General Stochastic Error Analysis

Stochastic error analysis techniques estimate the correctness of a computation by studying

the statistical variance and mean values for the generated roundo� error. These values are

not upper (worst{case) error bounds, but rather approximations to an upper error bound

to within a certain level of con�dence. Various concepts and techniques for the general

application of this process are presented in [Buc66, Ham71, Hil74, Hen64, Hou53, KL73,

Pen70, Piz75, RR78, Ric83, Ste74, Wil63]. Of well{tested approach is the permutation{

perturbation stochastic method, which is reviewed in the next subsection.

CHAPTER 3. REVIEW OF NUMERICAL CONSIDERATIONS 43

3.2.6 Permutation{Perturbation Error Analysis

The permutation{perturbation or CESTAC technique of error analysis Introduced by Vignes

and La Porte [VL74] and further developed in [FV85, Vig78] determines the precision of

a oating{point computation by considering the stochastic e�ects that roundo� due to

the permutation e�ects of the computer arithmetic operations and the perturbation of

their possible images has on the computed values. The method essentially simpli�es to the

following three steps which, provide an error estimate with a computed number of signi�cant

digits with a probability of 95% as a consequence of Student's law and the central limit

theorem [Alt86].

1. Compute three values fxig3i=1 via an (machine dependent) algorithm that randomly

permutes the permutable operators and randomly perturbs the last bit of the mantissa

on any intermediate value.

2. Compute the mean value �x and the standard deviation � of the three values fxig by

�x =

P3
i=1 xi
3

and � =

sP3
i=1(xi � �x)2

2
:

3. Compute the number of signi�cant digits �d of �x from the formula

�d = log10
�x

�
: (3.2.6.11)

Although the computational overhead is increased by at least a factor of three (step

1), this method provides an extremely accurate estimate of the incurred roundo� error.

This method has been successfully applied to algorithms involving computational geometry

[DS90], eigenvalues [Fay83], Fourier transforms [BV80], integration of ordinary di�erential

equations [Alt83], linear and non{linear programming [Tol83], optimization [Vig84], parallel

and closed form polynomial root �nding [Alt86, Vig78]. It has been recommended for

scienti�c computing in general in [BC86, Vig88], with sample FORTRAN codes provided

in [BV80, Vig78] of the machine dependent permutation{perturbation function required in

the initial step above.

CHAPTER 3. REVIEW OF NUMERICAL CONSIDERATIONS 44

3.3 Numerical Stability and Condition

An important indication of whether or not computational errors are likely to be signi�cant

in a given problem is the condition or \intrinsic stability" of that problem. If small changes

in the input values induce large changes of the (exact) solution, the problem is said to be

ill{conditioned, and it is unrealistic to expect high{accuracy solutions from �nite{precision

computations. A related, but distinct, issue is whether the particular algorithm used to

address a given problem is stable (e.g., whether it incurs subtraction of near{identical

quantities). This section reviews some basic de�nitions and concepts pertaining to numerical

stability and conditioning, the condition of perturbing power form polynomial coe�cients,

and compares the condition of the Bernstein and the power polynomial forms.

3.3.1 Preliminary De�nitions

We summarize below the basic concepts and terminology concerning numerical stability and

condition [FR87, Hen82, RR78, Ric83].

Numerical Stability is a property of an algorithm which measures its propensity for

generating and propagating roundo� error and inherent errors in the input data.

Numerical Instability results when the intermediate errors due to roundo� strongly in-

uence the �nal result.

Numerical Condition is a mathematical property of a problem which measures the sen-

sitivity of the solution to perturbations in the input parameters.

Condition Number is one or more scalar values that describes the condition of a problem,

estimating how much uncertainty in the initial data of a problem is magni�ed in its

solution; condition numbers may be formulated in terms of both absolute and relative

perturbations of the input and output values.

Well{Conditioned describes a problem characterized by a small condition number, i.e.,

changes of the initial data yield commensurate changes of the output data, so the

problem can be solved to reasonable accuracy in �nite{precision arithmetic.

Ill{Conditioned describes a problem characterized by a large condition number, changes

of the input leading to much larger changes of the output, so that accurate solutions

CHAPTER 3. REVIEW OF NUMERICAL CONSIDERATIONS 45

are di�cult to compute in �nite{precision arithmetic.

Thus, it is almost impossible for an ill{conditioned problem to be numerically stable

in implementation [Ric83]. On the other hand, an unstable method for a well{conditioned

problem may at �rst produce accurate results until the propagation of roundo� accumulates

to yield erroneous intermediate and �nal results [RR78]. Since the condition of a problem is

dependent upon its formulation, it may be possible to ameliorate e�ects of ill{conditioning

by reformulating the problem, i.e., restating it in terms of di�erent input/output variables

[Ric83].

3.3.2 Condition of Perturbing Polynomial Coe�cients

The numerical condition of polynomials with respect to root{�nding is analyzed by perturb-

ing the coe�cients and observing the resulting e�ects on the roots. This is accomplished

by establishing a relationship between the roots f�ig of the original polynomial

f(x) =
nX
i=0

aix
i

and the roots f�i + ��ig of the perturbed polynomial

f(x) =
nX
i=0

(ai + �ai)x
i (3.3.2.12)

where for purposes of analysis the coe�cient errors f�aig are regarded as begin speci�ed

arbitrarily (in practice they might reect rounding errors due to earlier computations).

For instance, the well{known Wilkinson polynomial [Wil63] represented in product form

by

f(x) =
20X
i=1

(x+ i); f�ig = f�1;�2; : : : ;�20g (3.3.2.13)

yields the following roots f�i + ��ig (correct to 9 decimal places):

CHAPTER 3. REVIEW OF NUMERICAL CONSIDERATIONS 46

-1.00000 0000
-2.00000 0000
-3.00000 0000
-4.00000 0000
-4.99999 9928
-6.00000 6944
-6.99969 7234
-8.00726 7603
-8.91726 0249
-10.09526 6145 � 0.64350 0904 i
-11.79363 3881 � 1.65232 9728 i
-13.99235 8137 � 2.51883 0070 i
-16.73073 7466 � 2.81262 4894 i
-19.50243 9400 � 1.94033 0347 i
-20.84690 8101

when the power coe�cient a19 is perturbed by as little as �a19 = 2�23 [Hou70, PC86, Piz75,

RR78, Wil63]. These results illustrate the di�culties in computing the roots of high degree

polynomials represented in power form.

3.3.3 Condition of Bernstein and Power Forms

Both analytical [FR87, FR88] and empirical [SP86] studies indicate that polynomials ex-

pressed in Bernstein form can provide superior computational stability and root conditioning

than in the power form. The following results outlined in [FR87] regarding the improved

root condition of the Bernstein basis over the power basis are duplicated for convenience:

Given a Bernstein basis de�ned over an arbitrary interval [a; b] (typically [0,1]) that

contains all the roots of interest, and a power basis de�ned about any point (typically

the origin) excluding the interior of [a; b], then for any simple real root of an arbitrary

polynomial the root condition number

1. is smaller in the Bernstein basis than in the power basis,

2. decreases monotonically under Bernstein degree elevation,

3. decreases monotonically under Bernstein subdivision, and

CHAPTER 3. REVIEW OF NUMERICAL CONSIDERATIONS 47

4. is smaller in the Bernstein basis than in any other basis which may be expressed as a

non-negative combination of the Bernstein basis on that interval.

The same holds true for multiple roots if the condition number (which is formally in�nite)

is regarded as the constant factor of the non-linear growth rate of the root displacements

with the coe�cient perturbations.

3.4 Conversion Between Bernstein and Power Forms

Consider a polynomial in Bernstein form over the [0; 1] domain

B(t) =
nX
i=0

bi

n

i

!
(1� t)n�iti

and the same polynomial in power form

P (t) =
nX
i=0

pit
i:

The problem we consider is, given the Bernstein coe�cients bi, �nd the corresponding power

coe�cients pi (Bernstein to power basis conversion) or given the pi, �nd the bi (power to

Bernstein conversion).

An elegant solution to this problem can be obtained by performing a Taylor's series

expansion of B(t):

B(t) � B(0) +B0(0)t+
B00(0)t2

2!
+ : : :+

B(n)(0)tn

n!
:

A power basis polynomial is equivalent to a Bernstein basis polynomial (P (t) � B(t)) if

and only if

P (i)(0)ti

i!
� B(i)(0)ti

i!
; i = 0; : : : ; n:

But, for the power basis,

P (i)(0)

i!
= pi

CHAPTER 3. REVIEW OF NUMERICAL CONSIDERATIONS 48

so

pi =
B(i)(0)

i!
; i = 0; : : : ; n: (3.4.0.14)

The terms B(i)(0) can be found as follows. Recall from Section 5.6 that the coe�cients of

the derivative of a polynomial in Bernstein form are:

n(b1 � b0); n(b2 � b1); : : : ; n(bn � bn�1):

The coe�cients of the second derivative are:

n(n � 1)(b2� 2b1 + b0); n(n� 1)(b3 � 2b2 + b1); : : : ; i n(n� 1)(bn � 2bn�1 + bn�2):

Since B(0) =
Pn

i=0 bi
�n
i

�
(1� 0)n�i0i = b0, we have

B0(0) = n(b1 � b0); B00(0) = n(n� 1)(b2� 2b1 + b0)

B(i)(0) = n(n � 1) � � �(n� i+ 1)
iX

j=0

(�1)(i�j+1)

i

j

!
bj :

This can be written more neatly if we de�ne the recurrence

bji = bj�1i+1 � bj�1i

with b0i � bi. Then

B(i)(0) = n(n � 1) � � �(n� i+ 1)bi0 =
n!

(n � i)!
bi0:

From equation 3.4.0.14,

pi =
n!

(n� i)!i!
bi0 =

n

i

!
bi0:

Thus, the problem reduces to one of �nding the values bi0. This is easily done using a

di�erence table:

b00 = b0 = p0 b01 = b1 : : : b0n = bn
b10 = b01 � b00 = p1=

�n
1

�
b11 = b02 � b01 : : : b0n = b0n � b0n�1

b20 = b11 � b10 = p2=
�n
2

�
b21 = b12 � b11 : : : b2n = b1n � b1n�1

: : : : : : : : : : : :

bn�10 = bn�21 � bn�20 = pn�1=
� n
n�1

�
bn�11 = bn�22 � bn�21

bn0 = bn�11 � bn�10 = pn

CHAPTER 3. REVIEW OF NUMERICAL CONSIDERATIONS 49

Thus, to perform Bernstein to power basis conversion, load the Bernstein coe�cients into

the top row and compute the di�erence table. Scale the left column by
�n
i

�
, and you have

the power coe�cients.

To perform power to Bernstein conversion, divide the power coe�cients by
�n
i

�
, load

them into the left column, compute the di�erence table backwards, and read the Bernstein

coe�cients o� the top row.

3.4.1 Example

Convert to power basis the degree 4 Bernstein form polynomial with coe�cients (1; 3; 4; 6; 8).

This is done by setting up the di�erence table

1 3 4 6 8
2 1 2 2
-1 1 0
2 -1
-3

so the power coe�cient are taken from the left column, times the binomial coe�cients:

p0 = 1
�4
0

�
= 1

p1 = 2
�4
1

�
= 8

p2 = �1�42� = �6
p3 = 2

�4
3

�
= 8

p4 = �3�44� = �3

3.4.2 Closed Form Expression

The conversion from Bernstein to power basis can be written concisely as follows:

pi =
iX

k=0

bk

n

i

!
i

k

!
(�1)i�k:

Power to Bernstein conversion is accomplished by the formula:

bi =
iX

k=0

i

k

!

n

k

!pk: (3.4.2.15)

CHAPTER 3. REVIEW OF NUMERICAL CONSIDERATIONS 50

3.4.3 Numerical Rami�cations of Basis Conversion

The numerical condition of basis transformation has been studied in [FR88, DD88, Far91b].

The condition number for the basis transformation matrix gives an upper bound | for

arbitrary polynomials | on the largest possible value by which basis conversion ampli�es

the relative coe�cient error. It grows exponentially with the polynomial degree n.

3.5 Performance of Polynomial Root Finders

Guidelines for performance comparisons of mathematical software are proposed in [CDM79,

Ign71, Ric83], and more speci�cally for polynomial root �nding algorithms by Jenkins and

Traub in [JT74, JT75] and Wilkinson in [Wil63]. This section reviews principles regarding

establishing and evaluating the overall performance of polynomial root �nding algorithms

based on the above references.

3.5.1 Benchmarking Principles

The criteria for testing root �nding algorithms may be concisely summarized under the

categories: 1) Robustness, 2) Convergence, 3) De�ciencies, and 4) Assessment.

Program Robustness is validated with pathological examples that test for speci�c pro-

gram properties and underlying methods, such as:

1. Checking leading coe�cients that approximate zero,

2. Checking trailing coe�cients that approximate zero,

3. Proper handling of low degree polynomials,

4. Proper scaling of polynomial coe�cients to avoid oating-point overow and

underow,

5. Assessing the condition of each zero and adjusting the precision of computation

accordingly,

6. Specifying iteration limits, and

7. Providing a failure exit or testable failure ags.

CHAPTER 3. REVIEW OF NUMERICAL CONSIDERATIONS 51

Program Convergence is a computational problem and needs validation regarding the:

1. Starting conditions for proper convergence,

2. Convergence of iterate sequences to acceptable tolerances,

3. Slow convergence of iterate sequences as in multiple zeros cases,

4. Divergence of iterate sequences, and

5. Program termination criteria.

Program De�ciencies for speci�c known implementation defects or weaknesses are im-

portant to document and are tested by forcing:

1. A program to produce an unde�ned result,

2. The decision mechanisms of the program to fail, and

3. Roundo� error to destroy accuracy of solution as in deating zeros.

Program Assessment regarding performance is best analyzed by comparing program

statistical information based on the establishment of meaningful measures.

1. Reliability of the solution.

2. Accuracy or closeness to the exact solution.

3. Precision or the number of signi�cant digits in the answer.

4. E�ciency measurements including:

� CPU time based on accurate timers and uniformly optimized code,

� Function evaluations,

� Arithmetic operations, and

� Storage requirements regarding arrays, stacks, object code size.

5. Portability of the program to di�erent computer platforms.

Polynomial Classes for Performance Assessment

Classes of polynomials for performance assessment should include both well-conditioned

and ill-conditioned polynomials. A few well-conditioned cases should be tested against

other algorithms in the literature, with the major testing focusing on ill-conditioned cases.

1. Well-conditioned Polynomials

CHAPTER 3. REVIEW OF NUMERICAL CONSIDERATIONS 52

Uniformly Modulated Zeros yield similar zero cases.

Polynomials constructed from uniformly distributed random zeros di�er little

from each other because the randomness tends to `average out' in the coe�cients.

Uniformly Modulated Coe�cients yield uniformly distributed zeros.

Polynomials constructed from uniformly distributed random coe�cients tend to

have their zeros uniformly distributed around the origin near the unit circle.

2. Ill-conditioned Polynomials

Dual Bands of Modulated Zeros yield clustered zeros.

Polynomials constructed from both a wide band and a much narrower band

of uniformly distributed random zeros produce ill-conditioned polynomials with

clustered zeros, where the severity of the condition is controlled by the amount

the narrower band is decreased and its percentage of zeros is increased.

Widely Modulated Zeros yield widely varying sizes of zeros.

Polynomials constructed from zeros whose mantissa and exponent are chosen

from separate random uniform distributions yield zeros of widely varying size

which often illustrate ine�ciences in a program usually not apparent from other

tests, e.g., poorly chosen initial iterates may tend to `wander' slowly to the area

of the zero and such behavior will be magni�ed on this class of polynomials.

Widely Modulated Coe�cients yield widely varying intervals of zeros.

Polynomials constructed from coe�cients whose mantissa and exponent are cho-

sen from separate random uniform distributions yield zeros with widely varying

intervals which typify wide applicability of the program.

Sources that de�ne examples of the various generated polynomials include [Dun72,

GK90].

Chapter 4

Preconditioning for Bernstein

form polynomials

As mentioned in Chapter 1, several fundamental geometrical problems that arise in the

processing of free{form curves and surfaces may be reduced computationally to the task of

isolating and approximating the distinct real roots of univariate polynomials on �nite inter-

vals. Representative examples are: ray{tracing of surfaces [Han83, Kaj82, SA84]; computing

intersections of plane curves [GSA84, SAG85, SP86]; �nding a point on each loop of the

intersection curve of two surfaces [Far86]; and the \trimming" of o�set and bisector curves

[FJ94, FN90a]. Such an approach is attractive in that it provides an algebraically precise

formulation of the geometrical problem under consideration | given an \algorithmic" root

�nder | but it is widely perceived to be impractical in all but the simplest cases, due to

the potentially poor numerical condition of the high{degree polynomials incurred. Thus,

it has not found as widespread application as subdivision methods [CLR80, LR80] based

on successively re�ned piecewise{linear approximations of curves and surfaces (generated

recursively from their B�ezier/B{spline control polygons).

In the aforementioned problems, the polynomials whose roots we seek are not speci�ed

ab initio, but rather must be \constructed" by a sequence of oating{point arithmetic op-

erations on given numerical data, which may incur signi�cant errors in the �nal polynomial

53

CHAPTER 4. PRECONDITIONING FOR BERNSTEIN FORM POLYNOMIALS 54

coe�cients. Our investigations suggest that the sensitivity of the roots to errors in the

polynomial coe�cients incurred during the construction stage typically dominates any error

associated with the actual root{�nding process.

In this chapter we describe an approach to processing polynomials in Bernstein form

that can signi�cantly improve the accuracy of computed roots by minimizing adverse e�ects

of the polynomial \construction" errors. In essence, the approach amounts to performing de

Casteljau subdivision in the earliest stages of an algorithm, a procedure that we shall call \a

priori subdivision." As is well known [FR87], the Bernstein form exhibits monotonically{

decreasing root condition numbers with respect to subdivision. The practical meaning of

this statement is that, if Bernstein representations are available to the same relative accuracy

in the coe�cients on both the nominal interval [0; 1] and a subset [a; b] thereof, then the

latter form always exhibits smaller worst{case errors for those roots actually located on the

smaller interval.

Obviously, explicit oating{point subdivision of a polynomial with given initial coe�-

cient errors cannot result in any diminution of the perturbations of its roots due to those

initial errors | one cannot gain \something for nothing." Our key observation here, how-

ever, is that the consequences of errors incurred in the polynomial constructions for various

geometrical operations can be ameliorated by supplying them with input polynomials that

have been subdivided | even in oating{point arithmetic | a priori.

4.1 An Illustrative Example

A simple experiment on a well{known pathological example [Wil59] serves to motivate the

proposed approach. Consider the degree{n Wilkinson polynomial having evenly{spaced

roots k=n, k = 1; : : :n, between 0 and 1. In the power basis, we have

Pn(t) =
nY

k=1

(t� k=n) =
nX

k=0

pk t
k : (4.1.0.1)

CHAPTER 4. PRECONDITIONING FOR BERNSTEIN FORM POLYNOMIALS 55

Here the polynomial Pn(t) is \constructed" by explicitly multiplying out, in oating{point

arithmetic, the linear factors in the above product expression to obtain the power coe�cients

fpkg. Column 2 of Table 4.1 shows the results of attempting to approximate the roots in

the case n = 25 using this \constructed" power representation. The cause of the very large

inaccuracies in the computed roots is discussed in [Wil59]. A simple intuitive understanding

may be gleaned from the following calculation, taken from [Far91a], for the value of the

polynomial halfway between the roots t = 0:50 and t = 0:55 in the case n = 20 (the values

are correct to the number of digits shown):

p0 = +0:000000023201961595

p1 t = �0:000000876483482227

p2 t
2 = +0:000014513630989446

p3 t
3 = �0:000142094724489860

p4 t
4 = +0:000931740809130569

p5 t
5 = �0:004381740078100366

p6 t
6 = +0:015421137443693244

p7 t
7 = �0:041778345191908158

p8 t
8 = +0:088811127150105239

p9 t
9 = �0:150051459849195639

p10 t
10 = +0:203117060946715796

p11 t
11 = �0:221153902712311843

p12 t
12 = +0:193706822311568532

p13 t
13 = �0:135971108107894016

p14 t
14 = +0:075852737479877575

p15 t
15 = �0:033154980855819210

p16 t
16 = +0:011101552789116296

CHAPTER 4. PRECONDITIONING FOR BERNSTEIN FORM POLYNOMIALS 56

p17 t
17 = �0:002747271750190952

p18 t
18 = +0:000473141245866219

p19 t
19 = �0:000050607637503518

p20 t
20 = +0:000002530381875176

P 20(t) = 0:000000000000003899 : (4.1.0.2)

We see that the value of P 20(t) is an extremely small residual resulting from the addition

of large terms of alternating sign. Owing to massive cancellations, the �nal value is � 1013

times smaller than the individual terms pkt
k , and thus any initial relative errors in the

coe�cients pk (as incurred, say, by \constructing" them in oating{point) will be magni�ed

by this enormous factor in determining the relative error of the value P 20(t) | resulting in

a commensurate loss of accuracy in the root{�nding process.

The above argument may be cast in more rigorous terms by computing the root condition

numbers [FR87] for the polynomial P 20(t), which measure the displacement of roots due

to given fractional errors in the coe�cients | these condition numbers are, in fact, of

order 1013. One should subsequently bear in mind the lesson of this example, namely,

that severe ill{conditioning generally arises from the \magni�cation" of initial (perhaps

seemingly innocuous) relative coe�cient errors through cancellation e�ects.

4.1.1 The Bernstein Form

We mention the power form of the Wilkinson polynomial only as a point of reference;

henceforth we shall be concerned solely with the Bernstein representation

Bn
[0;1](t) =

nY
k=1

[k(1� t) + (k � n)t] =
nX

k=0

bk

n

k

!
(1� t)n�k tk (4.1.1.3)

of this polynomial. Note that, apart from a multiplicative constant, each of the factors

k(1� t) + (k� n)t corresponds to the terms t� k=n in (4.1.0.1). As emphasized in [FR87],

CHAPTER 4. PRECONDITIONING FOR BERNSTEIN FORM POLYNOMIALS 57

exact computed root computed root computed root
root of P 25(t) of B25

[0;1](t) of B25
[:25;:75](u)

0.04 0.039999999999997 0.0400000000000001

0.08 0.079999999997924 0.0799999999999781

0.12 0.120000000039886 0.1200000000006346

0.16 0.159999999495945 0.1599999999960494

0.20 0.200000020778928 0.1999999999971261

0.24 0.239999230565953 0.2400000000904563

0.28 0.280016180829233 0.2799999998181714 0.28000000000000000

0.32 0.319793958664642 0.3199999991463299 0.31999999999999999

0.36 0.362001308252336 0.3600000057566014 0.35999999999999979

0.40 0.391605636801344 0.3999999834411160 0.40000000000000060

0.44 complex 0.4400000307234767 0.44000000000000140

0.48 complex 0.4799999585120591 0.47999999999998849

0.52 complex 0.5200000426509138 0.52000000000002370

0.56 complex 0.5599999668961838 0.55999999999997959

0.60 complex 0.6000000183938222 0.60000000000000710

0.64 complex 0.6399999934951202 0.63999999999999929

0.68 complex 0.6800000009245819 0.68000000000000000

0.72 complex 0.7200000003141216 0.72000000000000000

0.76 complex 0.7599999998045576

0.80 complex 0.8000000000422774

0.84 complex 0.8399999999963719

0.88 complex 0.8799999999999752

0.92 0.925606820606031 0.9200000000000135

0.96 0.965436705906776 0.9600000000000007

1.00 0.998812554595766 1.0000000000000000

Table 4.1: Comparison of the computed roots of P 25(t), B25
[0;1](t), and B25

[:25;:75](u).

CHAPTER 4. PRECONDITIONING FOR BERNSTEIN FORM POLYNOMIALS 58

the Bernstein form is much better conditioned than the power form for roots in [0; 1]. See

column 3 of Table 4.1 for the roots obtained using the Bernstein form, as constructed by

multiplying out the linear factors in (4.1.1.3) using oating{point arithmetic. (Note that

transformations between the power and Bernstein forms should be avoided [DD88, Far91b];

algorithms of interest may readily be formulated directly in the Bernstein basis [FR88] in

lieu of the power basis.)

We now illustrate the e�ect of \a priori subdivision" on the root accuracy of (4.1.1.3) by

constructing the Bernstein representation of this polynomial on a subinterval [a; b]� [0; 1]

as follows. First, we de�ne the change of variables

u =
t � a

b� a
(4.1.1.4)

that maps t 2 [a; b] to u 2 [0; 1]. We then represent each of the linear factors k(1� t) +

(k � n)t in (4.1.1.3) in terms of u, i.e., we re{write these factors in the equivalent form

(k � na)(1� u) + (k � nb)u ; (4.1.1.5)

and then multiply them together to obtain

Bn
[a;b](u) =

nY
k=1

[(k� na)(1� u) + (k � nb)u] =
nX

k=0

~bk

n

k

!
(1� u)n�kuk : (4.1.1.6)

For the case [a; b] = [0:25; 0:75] we �nd that the coe�cients ~bk in (4.1.1.6) are of much

smaller magnitude than those bk for the representation (4.1.1.3) on the full interval [0; 1].

Furthermore, as shown in column 4 of Table 4.1, when using this representation the twelve

roots that actually lie on the interval t 2 [0:25; 0:75] are computed to � 13 accurate digits

| almost twice as many as were obtained using the representation B25
[0;1](t).

For higher degree polynomials, this experiment yields even more impressive results. For

example, n = 37 is the highest degree for which the roots of Bn
[0;1](t) can be computed to

at least one digit of accuracy in double{precision oating point: for n = 38, some of the

computed roots become complex. Yet tests indicate that a priori subdivision allows us to

CHAPTER 4. PRECONDITIONING FOR BERNSTEIN FORM POLYNOMIALS 59

approximate the roots of Wilkinson polynomials of very high degree to full double precision

accuracy if the interval width b�a is su�ciently small. For the case n = 1000, for example,

the 101 roots within the interval [a; b] = [0:45; 0:55] can be computed to the full � 17

digits of accuracy if a priori subdivision is used when constructing the polynomial.

It should be emphasized that the dramatic improvement seen in Table 4.1 would not

have occurred with \a posteriori subdivision" | i.e., if we had adopted the approach of

�rst constructing the representation (4.1.1.3) on [0; 1] and then explicitly subdividing this

representation to [a; b] using (say) the de Casteljau algorithm. With such an approach, the

quality of the computed roots is found to be comparable to, or even slightly worse, than

those given in column 3 of Table 4.1. Using exact arithmetic, of course, one would �nd that

the \a priori" and \a posteriori" subdivision paradigms yield identical results.

4.1.2 Relative Errors in the Construction Process

An empirical explanation for the improvements obtained using a priori subdivision can be

given as follows. The construction of the Bernstein form of Wilkinson's polynomial was

performed for degrees 10 � n � 100, and intervals [a; b] of width 1, 0.5, 0.25, 0.125, and

0.0625, in each case using both double and quadruple precision oating{point arithmetic.

The relative coe�cient errors incurred by the construction process were then estimated by

regarding the outcome of the quadruple{precision calculations as \exact" reference values.

Characteristic measures of these errors were formulated in the 1, 2, and1 norms (see [x 4.2]
below), and were found not to depend signi�cantly on the chosen norm.

For a given degree, the relative errors of the constructed coe�cients showed no systematic

dependence on the interval width, and in all cases were quite small and within a few orders of

magnitude of each other (typically 10�16 to 10�14). Further, any tendency for the errors to

increase with n was quite mild, and barely discernible within the � 2 orders{of{magnitude

randomness. These results are consistent with the commonly{accepted notion that each

CHAPTER 4. PRECONDITIONING FOR BERNSTEIN FORM POLYNOMIALS 60

oating{point operation incurs only a small relative error [Wil60], bounded by the \machine

unit" �, and the fact that the number of operations required to construct the polynomial

is independent of [a; b] and grows only linearly with n.

It cannot be overemphasized, however, that � is a valid bound on the relative error only

for operands that are presumed to have exact initial oating{point representations. If | as

is the case in practice | the relative error of interest is that de�ned by taking arbitrary

real numbers, converting them to oating{point representation, and then performing the

oating{point operation under consideration, this relative error can be arbitrarily large

compared to exact arithmetic in cases were signi�cant cancellation | i.e., the subtraction

of nearly identical quantities | occurs (see [x 4.2.1] below).

Our results are thus consistent with the view that, in the construction process, the

likelihood of signi�cant cancellation occurring does not seem to depend in any systematic

way on the chosen interval. Indeed, the � 2 orders{of{magnitude spread observed in the

relative coe�cient errors suggest occasional mild cancellations (one or two digits) arising in

a fairly random fashion when constructing the coe�cients.

While it seems that the coe�cients may be generated on any desired interval to a more{

or{less uniform level of relative accuracy, coe�cient errors of a �xed relative size can have

vastly di�erent consequences for representations on large and small intervals. This is because

the root condition numbers on larger intervals are always [FR87] | and often dramatically

| bigger than on smaller intervals. The results of Table 4.1, for example, can be explained

by the fact that while the constructed coe�cients for the representations on [0; 1] and

[0:25; 0:75] have comparable relative errors (� 10�15), in the former representation the

roots have a far greater sensitivity to those errors | by some 6 orders of magnitude |

than in the latter. A measure of the disparity between root condition number magnitudes

on various intervals may be formulated in terms of the condition of the subdivision map, as

described in [x 4.2.2] below.

CHAPTER 4. PRECONDITIONING FOR BERNSTEIN FORM POLYNOMIALS 61

Unfortunately, formulating detailed error analyses for the \polynomial constructions"

appropriate to practical geometric algorithms is not a trivial task. It is probable that, if

the likelihood of signi�cant cancellations occurring during the construction process does not

depend systematically on the chosen interval, one will always produce coe�cients with com-

parable relative errors on di�erent intervals. It would be di�cult to establish this claim for

general algorithms on a quantitative analytic basis. In [x 4.3], however, we describe empiri-
cal evidence that convincingly supports it in an important context, namely, the curve/curve

intersection problem.

4.2 Problems of Error Propagation and Ampli�cation

We may, in principle, distinguish two kinds of processes that govern the generation or

ampli�cation of numerical errors when constructing and �nding the roots of polynomials in

Bernstein form on various intervals. In actual oating point implementations these processes

are, of course, not entirely independent | but considering them separately facilitates a

simple characterization of their consequences. We can show, furthermore, that one of these

two processes dominates in the example described in [x 4.1], and may alone explain the

observed di�erences in accuracy. These processes may be illustrated by considering two

modes of operation for, say, the de Casteljau algorithm:

� assuming that exact Bernstein coe�cients on [0; 1] are speci�ed initially, but the de

Casteljau algorithm runs in oating point arithmetic, a certain accumulation of the

rounding errors associated with each of its arithmetic steps will inevitably be incurred;

� assuming now that the de Casteljau algorithm executes in exact arithmetic, but there

are initial errors in the speci�ed Bernstein coe�cients on [0; 1], the output of the

de Casteljau algorithm will inevitably reect a certain magni�cation of those initial

errors.

CHAPTER 4. PRECONDITIONING FOR BERNSTEIN FORM POLYNOMIALS 62

The second process may be described precisely (in the worst{case sense) in terms of a

condition number for the \subdivision map" [FN90b]; see [x 4.2.2] below. Nominally, the

�rst process may be analyzed by means of a running error analysis that yields a priori

error bounds [FR87]. Unfortunately, however, this kind of analysis fails | in a manner

that is not easily remedied | when signi�cant cancellations arise due to the subtraction of

near{identical quantities (as noted in [x 4.1], it is precisely this kind of situation that gives

rise to severe ill{conditioning). We discuss this problem further in [x 4.2.1] below.

The method of backward error analysis attempts to quantify e�ects of the �rst process

in the conceptual framework of the second: the imprecise result of each oating{point

arithmetic operation is regarded as a precise result corresponding to perturbed operands; by

working these perturbations all the way back to the initial input quantities, one formulates

the cumulative e�ect of arithmetic errors in terms of the sensitivity of the solution to

perturbed input values. We will return to this in [x 4.2.3].

4.2.1 Error Analysis of de Casteljau Algorithm

In evaluating polynomials that have been \constructed" in oating{point arithmetic, one

must account for both the propagation of initial errors in the computed coe�cients, and

the generation | and subsequent propagation | of errors in each step of the evaluation

algorithm. Similar methods of error analysis may, in principle, be applied to both the

construction and evaluation algorithms. Unfortunately, however, such methods often fail

to account in a tractable manner for the potentially unbounded growth of relative error (as

compared to exact arithmetic) that may arise in exceptional cases of severe cancellation.

Since the \construction" algorithm will depend in detail on the geometric operation

under consideration, we illustrate this problem in the context of polynomial evaluation

(using the de Casteljau algorithm) only. Let b0; : : : ; bn be the Bernstein coe�cients of a

degree{n polynomial P (t) on [0; 1] and let s 2 (0; 1) be a point at which we wish to evaluate

CHAPTER 4. PRECONDITIONING FOR BERNSTEIN FORM POLYNOMIALS 63

| and \split" | the polynomial. Upon setting b
(0)
k = bk for k = 0; : : : ; n, the de Casteljau

algorithm consists of the iterated sequence of linear interpolations:

b
(r)
k = (1� s) b

(r�1)
k�1 + s b

(r�1)
k k = r; r+ 1; : : : ; n (4.2.1.7)

for r = 1; 2; : : : ; n. The quantities b
(r)
k form a triangular array, and the values

b
(0)
0 ; b

(1)
1 ; : : : ; b(n)n and b(n)n ; b(n�1)n ; : : : ; b(0)n

on the left{ and right{hand sides of this array are the Bernstein coe�cients for P (t) on

the two subintervals [0; s] and [s; 1]. In particular, b
(n)
n represents the value P (s) of the

polynomial at the split point.

The (forward) error analysis of an algorithm such as (4.2.1.7) is usually based [Wil60]

on the formula

(1� �) x � y � oat(x � y) � (1 + �) x � y ; (4.2.1.8)

where oat(x�y) denotes the result of a oating{point arithmetic operation \�" (i.e., +, �,
�, or �), x � y is the exact{arithmetic result, and � = 1

2b
�(d�1) represents the machine unit

for oating{point numbers having a mantissa of d digits in base b (we assume rounding,

rather than truncation).

Basically, equation (4.2.1.8) says that relative error incurred in each oating{point arith-

metic operation is bounded by a very small quantity � (for typical double{precision arith-

metic, with b = 2 and d = 53, we have � � 10�16). Great caution must be urged in

attaching a \practical" signi�cance to this statement, however. It is implicit in (4.2.1.8)

that the operands x and y are numbers that have exact oating{point representations ab

initio. This is hardly ever true: in practice, x and y usually represent rounded approxima-

tions to arbitrary real numbers X and Y that may be input values or results of intermediate

calculations. We denote by x = oat(X) and y = oat(Y) this process of rounding, which

itself incurs only small fractional errors:

(1� �)X � x = oat(X) � (1 + �)X ;

CHAPTER 4. PRECONDITIONING FOR BERNSTEIN FORM POLYNOMIALS 64

(1� �) Y � y = oat(Y) � (1 + �) Y : (4.2.1.9)

For practical purposes, of course, the error of interest incurred by the operation (4.2.1.8) is

the error relative to the result of an exact{arithmetic operation on arbitrary real numbers

X and Y , i.e., it is the quantity

relative error =
joat(x � y) � X � Y j

jX � Y j : (4.2.1.10)

In most instances, this quantity is | in agreement with intuition | no more than a few times

�, and the model (4.2.1.8) thus provides a fairly reliable basis for analyzing error propagation

and estimating the deviation of oating{point calculations from exact{arithmetic results.

There are important circumstances, however, in which the quantity (4.2.1.10) can exceed

� by many orders of magnitude, and the model (4.2.1.8) fails dramatically in terms of

monitoring the discrepancy between oating{point and exact{arithmetic results.

Such instances correspond to the subtraction of like{signed oating{point numbers x and

y that have identical exponents and agree in several leading digits of their mantissas (or,

equivalently, the addition of such quantities of unlike sign). In such situations, cancellation

of the identical leading digits of x and y occurs, and the quantity x � y therefore requires

no rounding for machine representation: oat(x � y) � x � y. The problem is thus not one

of arithmetic error in the actual subtraction, but rather magni�cation of \initial" errors

incurred in the oating{point conversions x = oat(X), y = oat(Y).

To illustrate this, we use (4.2.1.9) to write x = (1 + �)X and y = (1 + �)Y , where �

and � are random numbers in the range �� � �; � � +�. We further suppose that X and

Y agree in r of their leading binary digits. Noting again that oat(x � y) � x � y in such a

case, expression (4.2.1.10) becomes

relative error =
j(1 + �)X � (1 + �)Y � (X � Y)j

jX � Y j =
j�X � �Y j
jX � Y j :

Now the numerator of the right{hand side attains its maximum value, namely � (jX j+ jY j),
when � and � are of opposite sign and magnitude �. Furthermore, if X and Y have mantissas

CHAPTER 4. PRECONDITIONING FOR BERNSTEIN FORM POLYNOMIALS 65

that agree in r leading bits, we have

jX j+ jY j � 2 jX j and jX � Y j � 2�r jX j ;

so the bound on the error, relative to the exact{arithmetic result, is approximately

relative error <� 2r+1 � : (4.2.1.11)

This bound can clearly become arbitrarily large as r!1 (note that r is the number of bits

of agreement of the exact real numbers X and Y , and is not bounded by d, the number of

bits of the mantissa in the oating{point number system). We emphasize again the nature

of the phenomenon that gives rise to the error (4.2.1.11): it is not at all an \arithmetic

error" | it is rather a magni�cation of the small relative errors incurred by the conversions

x = oat(X) and y = oat(Y) that arises when jX � Y j � jX j; jY j.

The inability of the simple model (4.2.1.8) to accommodate the large relative errors

(4.2.1.11) due to cancellation e�ects is a serious shortcoming. Moreover, this defect can-

not be easily \�xed" in a manner that is germane to a general{purpose analysis (rather

than case{by{case inspections) | the amount of cancellation, which determines the error{

ampli�cation factor in (4.2.1.11), is evidently dependent on the detailed numerical values of

X and Y . Note also that error ampli�cation due to cancellation e�ects need not be con�ned

to individual arithmetic operations; the calculation (4.1.0.2) is an example of a sum of many

terms where the �nal result is extremely susceptible to such e�ects.

Notwithstanding this serious defect, the model (4.2.1.8) is widely used, and can yield

reasonable error estimates (compared to exact arithmetic) in cases where one can be con-

�dent that cancellation e�ects will not arise. By applying this model to the algorithm

(4.2.1.7), for example, one obtains the (rather loose) bound [FR87]:

j�P j � 2nmaxk(jbkj) �

on the absolute error in P (s) = b
(n)
n due to arithmetic round{o�. One can be con�dent

of this bound in, for example, cases where s 2 [0; 1] and the initial coe�cients b0; : : : ; bn

CHAPTER 4. PRECONDITIONING FOR BERNSTEIN FORM POLYNOMIALS 66

are all of like sign.1 The important point to note is that, in such cases, the arithmetic

error is well contained | it grows only linearly with n and does not \explode" as we

consider polynomials of ever{higher degree. This is in sharp contrast to the cancellation

phenomenon described above, and the related matter of ampli�cation of initial errors in

b0; : : : ; bn as described in [x 4.2.2] below.

Another point worth mentioning with regard to (4.2.1.8) is that one should be wary

of naively using this model on modern RISC machines, which may have, for example, a

hardware FMA (i.e., oating{point multiply{and{add) instruction that allows expressions

such as (x� y) + z to be evaluated in a single cycle and with an error lower than ordinary

sequential � and + operations would incur. The ability to utilize such machine instructions

can be algorithm{ and compiler{dependent [Bel90].

We may summarize as follows. In the absence of cancellation e�ects, the accumulation

of arithmetic error in the execution of an algorithm (as compared to exact{arithmetic re-

sults) is well described by the formula (4.2.1.8), which indicates very small relative errors

in each step and consequently fairly mild �nal errors in all but very lengthy calculations.

When cancellation e�ects occur, however, the model (4.2.1.8) fails dramatically to provide

a reliable indication of the deviation from exact{arithmetic results, and cannot be easily

amended to do so. In such cases, the errors that arise are not really arithmetic errors, but

rather magni�cations of pre{existing errors. Although we have emphasized the de Castel-

jau algorithm, similar considerations apply to the \polynomial construction" algorithms

corresponding to various geometric operations of interest.

4.2.2 Condition of the Subdivision Map

We now turn to the second process mentioned at the beginning of [x 4.2]. Given the

coe�cients b = (b0; : : : ; bn)
T of a degree{n polynomial in the Bernstein basis on t 2 [0; 1]

1A rather uninteresting case in the present context, since P (t) would evidently have no real roots on
t 2 [0; 1].

CHAPTER 4. PRECONDITIONING FOR BERNSTEIN FORM POLYNOMIALS 67

we may obtain the corresponding coe�cients b̂ = (b̂0; : : : ; b̂n)
T in the Bernstein basis on any

subinterval t 2 [a; b] thereof by multiplying the former by the appropriate (n+1)� (n+1)

subdivision matrix :

b̂ = Mb : (4.2.2.12)

Note that multiplication by M, whose elements are given by [FN90b]:

Mjk =

min(j;k)X
i=max(0;j+k�n)

n� j

k � i

!
(1� a)n�j�k+iak�i

j

i

!
(1� b)j�ibi for 0 � j; k � n ;

is equivalent to two applications of the de Casteljau algorithm. We are concerned here

with the condition or \inherent stability" of the linear map de�ned by (4.2.2.12) | i.e., a

bound C on the amount by which (random) errors of fractional magnitude � in the input

coe�cients b are ampli�ed to give the fractional errors �̂ of the output coe�cients b̂, so

that �̂ � C�. This \error ampli�cation" is intrinsic to the analytic relation between b̂ and

b | it would arise even if the multiplication (4.2.2.12) were performed in exact arithmetic.

Introducing the vector and subordinate matrix p{norms de�ned by

kbkp =

"
nX

k=0

jbkjp
#1=p

and kMkp = sup
b6=0

kMbkp
kbkp

;

and introducing p{norm fractional error measures for b and b̂ as

�p =
k�bkp
kbkp and �̂p =

k�b̂kp
kb̂kp

;

where �b = (�b0; : : : ; �bn)T and �b̂ = (�b̂0; : : : ; �b̂n)T represent the individual coe�cient

errors, it is readily veri�ed [Ste73] that

�̂p � Cp(M) �p where Cp(M) = kMkpkM�1kp : (4.2.2.13)

The quantity Cp(M) is the p{norm condition number of the subdivision matrix. Note

that the error bound (4.2.2.13) is sharp, i.e., there exist perturbations �b = (�b0; : : : ; �bn)
T

of the given coe�cients such that �̂p = Cp(M) �p. In the case p = 1, where we de�ne

CHAPTER 4. PRECONDITIONING FOR BERNSTEIN FORM POLYNOMIALS 68

kbk1 = maxk(jbkj), the condition number de�ned by (4.2.2.13) admits a simple closed{

form expression [FN90b]:

C1(M) =

�
2max(m; 1�m)

b� a

�n
;

where m = (a + b)=2 is the midpoint of the subinterval [a; b]. Analogous expressions

for other norms are not known, although it is fairly easy to compute numerical values in

two cases: C2(M) =
p
�max=�min, where �max and �min denote the largest and smallest

eigenvalues of the symmetric matrix MTM, while C1(M) is the product of the greatest

column{sums of absolute values of the elements of M and M�1.

Table 4.2 lists computed values for the logarithm of the subdivision matrix condition

number for the case [a; b] = [0:25; 0:75] and degrees 1 � n � 25. These values indicate,

approximately, the number of additional decimal places of accuracy that may be lost in

\magnifying" (i.e., subdividing) the given representation on [0; 1] to that on [0:25; 0:75].

It is seen that the magnitude of the condition number does not depend strongly on the

chosen norm p, and in each case exhibits a roughly exponential growth with the polynomial

degree n (a unit increase in degree incurs roughly a doubling of the condition number).

It is worthwhile noting that the ampli�cation of the relative errors �p in the coe�cients

on [0; 1] by a factor of up to Cp(M) to give the relative errors �̂p on [a; b] is mostly due,

in the present instance, to a decrease in kb̂kp compared to kbkp, rather than an increase in

k�b̂kp relative to k�bkp. From the relations �b̂ =M �b and b =M�1 b̂, and the de�nition

of the matrix norm, we note that

k�b̂kp � kMkp k�bkp and kb̂kp � kbkp
kM�1kp ;

and the subdivision matrix M that we are interested has the property kMkp � kM�1kp
for large n or small [a; b] (in fact, kMkp � 1 for the case p = 1 [FN90b]). In other

words, relative coe�cient errors increase with subdivision because the coe�cient magnitudes

decrease while the absolute errors remain relatively constant.

CHAPTER 4. PRECONDITIONING FOR BERNSTEIN FORM POLYNOMIALS 69

n log10C1 log10C2 log10C1

1 0.301 0.301 0.301

2 0.879 0.633 0.602

3 1.180 0.963 0.903

4 1.605 1.288 1.204

5 1.906 1.609 1.505

6 2.276 1.926 1.806

7 2.577 2.241 2.107

8 2.921 2.553 2.408

9 3.222 2.864 2.709

10 3.551 3.174 3.010

11 3.852 3.483 3.311

12 4.171 3.790 3.612

13 4.472 4.098 3.913

14 4.786 4.403 4.214

15 5.087 4.704 4.515

16 5.397 5.018 4.816

17 5.698 5.370 5.118

18 6.005 5.672 5.419

19 6.306 5.975 5.720

20 6.611 6.278 6.021

21 6.912 6.580 6.322

22 7.217 6.883 6.623

23 7.518 7.185 6.924

24 7.821 7.487 7.225

25 8.122 7.741 7.526

Table 4.2: Condition numbers of subdivision matrices in various norms.

CHAPTER 4. PRECONDITIONING FOR BERNSTEIN FORM POLYNOMIALS 70

The condition number Cp(M) was formulated above as a bound on the amount by

which initial fractional errors in the Bernstein coe�cients on [0; 1] are ampli�ed when

the coe�cients on [a; b] are determined from them. Another characterization is useful in

interpreting the empirical results described in [x 4.1]: if one may choose between Bernstein

coe�cients on [0; 1] or [a; b] of comparable relative accuracy, then the former choice leads

to errors in the roots/values of the polynomial between a and b that are up to � Cp(M)

times larger than the latter. This may be explained intuitively as follows:

It was shown in [FR87] that, for an arbitrary polynomial, the root condition numbers in

the Bernstein basis on [a; b] are smaller than those in the basis on [0; 1]. How much smaller

depends, of course, on the particular polynomial and root under consideration. But we now

argue that, for all polynomials, Cp(M) represents a fair measure of the largest factor by

which root condition numbers on [0; 1] exceed those on [a; b].

Suppose a root r has condition number k in the basis on [0; 1] so that an (in�nitesimal)

fractional error � in the Bernstein coe�cients on that interval induces an uncertainty in the

root satisfying j�rj � k �. If we now subdivide down to [a; b] in exact arithmetic, we know

the root r must have a smaller condition number, k̂ say, in the basis on this subinterval.

The exact subdivision, however, clearly cannot alter the uncertainty in r, and hence the

diminution of the root condition number must be accompanied by a corresponding increase

of the fractional coe�cient errors to, say, �̂. Setting j�rj � k � = k̂ �̂, we see from (4.2.2.13)

that the root condition numbers on [0; 1] must be larger than those on [a; b] by a factor of

up to

k=k̂ = �̂=� = Cp(M) :

We spoke only of roots above, but the same considerations hold for the values of a

polynomial between a and b. It follows as a corollary of our argument that one must

typically know the Bernstein coe�cients on [0; 1] to a precision some Cp(M) times greater

than that of those on [a; b] so as to guarantee root/value computations based on the former

CHAPTER 4. PRECONDITIONING FOR BERNSTEIN FORM POLYNOMIALS 71

of accuracy comparable to that a�orded by the latter. Note from Table 4.2, for example,

that Cp(M) >� 106 for n � 20. Assuming that the relative errors incurred in \constructing"

the Bernstein form of Wilkinson's polynomial are of comparable magnitude when [a; b] is

chosen to be either [0; 1] or [0:25; 0:75], the phenomenon described above is alone su�cient

to explain the fact that the roots computed using the former representation have � 6 fewer

accurate decimal digits than those using the latter.

4.2.3 Backward Error Analysis

In [x 4.2.1] we have emphasized the di�culty | due mainly to cancellation e�ects | of

formulating reliable measures for the accuracy of computed results, relative to corresponding

exact{arithmetic calculations, based on models for the (forward) propagation of oating{

point arithmetic errors. Although more subtle, and often more di�cult to carry out in

practice, the method of backward error analysis [Wil60, Wil63] | coupled with condition

number estimates for the problem at hand | can largely bypass this di�culty.

The basic idea underlying backward error analysis is to note that the result of oating{

point arithmetic operations on operands x and y will satisfy

oat(x� y) � (1 + �) xy ;

oat(x� y) � (1 + �) x=y ;

oat(x� y) � (1 + �)x� (1 + �)y ; (4.2.3.14)

for some �; � 2 [��;+�]. By contrast with (4.2.1.8), the formulations (4.2.3.14) should not

be interpreted as furnishing bounds for the error incurred in each oating{point arithmetic

operation. Instead, they state that the outcome of such operations will be identical to the

results of exact{arithmetic operations on perturbed operands. For multiplication/division,

we associate a perturbation of relative magnitude � � with only one of the operands; for

addition/subtraction, we must allow for such a perturbation in both operands [Wil63].

Applying this notion to each arithmetic step of an algorithm, one can say that the �nal

CHAPTER 4. PRECONDITIONING FOR BERNSTEIN FORM POLYNOMIALS 72

result obtained by a oating{point computation is the exact result for some \neighboring"

problem, corresponding to perturbed input values. The key requirement is thus to prop-

agate the individual perturbations of operands in each step backward so as to obtain the

appropriate overall perturbations of the input. To complete the analysis, one must also have

a measure of the sensitivity of the �nal answer to input perturbations of a given magnitude,

i.e., one must be able to compute the condition number of the problem at hand.

Thus, the method does not attempt a detailed step{by{step comparison of corresponding

oating{point and exact{arithmetic calculations (which was the cause of the di�culties

described in [x 4.2.1]). Rather, it says that the oating{point result is exact for some

\nearby" problem (one having slightly di�erent input data). Whether this problem is

su�ciently nearby to produce an accurate answer will depend, of course, on whether or not

neighboring problems have neighboring results, i.e., on the condition of the problem.

To illustrate the use of the backward{error{analysis method, consider its application to

the de Casteljau algorithm (4.2.1.7). Assuming, for simplicity, that both 1 � s and s have

exact oating{point representations, the evaluation of (4.2.1.7) in oating point using the

rules (4.2.3.14) becomes

b
(r)
k = oat

h
oat

�
(1� s)� b

(r�1)
k�1

�
+ oat

�
s� b

(r�1)
k

� i
� (1 + �

(r)
k)(1 + �

(r)
k) (1� s) b

(r�1)
k�1 + (1 + �

(r)
k)(1 + �

(r)
k) s b

(r�1)
k : (4.2.3.15)

Here �
(r)
k and �

(r)
k are perturbations associated with the two multiplications, and �

(r)
k , �

(r)
k

are perturbations associated with the single addition; these quantities are all of magnitude

� �. We emphasize again the interpretation that is to be attached to (4.2.3.15): it represents

an exact execution of the de Casteljau step (4.2.1.7), but on the perturbed operands

(1 + �
(r)
k)(1 + �

(r)
k) b

(r�1)
k�1 and (1 + �

(r)
k)(1 + �

(r)
k) b

(r�1)
k ;

rather than the nominal values b
(r�1)
k�1 and b

(r�1)
k .

Suppose we are interested only in the �nal computed value b
(n)
n = oat(P (s)) of the

CHAPTER 4. PRECONDITIONING FOR BERNSTEIN FORM POLYNOMIALS 73

polynomial, i.e., the value produced by a oating{point computation. By carrying through

the steps (4.2.3.15) it is possible to express this value in the form

oat(P (s)) =
nX

j=0

(1 + ej)bj

n

j

!
(1� s)n�jsj ; (4.2.3.16)

namely, the computed quantity is the exact value of a polynomial with \perturbed" coef-

�cients (1 + e0)b0, : : : ; (1 + en)bn, rather than the nominal coe�cients b0; : : : ; bn. It is not

di�cult | only rather tedious | to derive closed{form expressions for the overall coe�cient

perturbations e0; : : : ; en in terms of the individual arithmetic{step perturbations

�
(r)
k ; �

(r)
k and �

(r)
k ; �

(r)
k for k = r; : : : ; n and r = 1; : : : ; n :

Such expressions would, in any case, require simpli�cation to be of practical value. This

can be achieved, without formally writing down the expressions, as follows:

Upon execution of (4.2.3.15) for k = r; : : : ; n and r = 1; : : : ; n, the j{th term in (4.2.3.16)

is evidently the (exact) sum of
�n
j

�
perturbed quantities, each of which may be traced

back through n oating{point multiplications and n oating{point additions to the original

coe�cient bj. By allowing also for the need to round the initial coe�cients to oating{point

format, it is seen that the perturbation factors in (4.2.3.16) have the form

1 + ej = h2n+ 1i

where, following Stewart [Ste73], we have introduced the notation

hmi =
mY
k=1

1 + �k ; (4.2.3.17)

the �k denoting appropriate choices and indices for the individual{step perturbations �
(r)
k ,

�
(r)
k and �

(r)
k , �

(r)
k (each bounded by � in magnitude). We are thus interested in establishing

bounds on the quantity (4.2.3.17). If � � 1, we clearly have the approximate bounds

1�m� <� hmi <� 1 +m� :

CHAPTER 4. PRECONDITIONING FOR BERNSTEIN FORM POLYNOMIALS 74

If we assume (as is reasonable in most practical circumstances) thatm� < 0:1, more rigorous

bounds may be derived [DB75, Wil63] as follows. Noting that

(1 + �)m < exp(m�)

(since each term in the binomial expansion of the left{hand side is less than or equal to the

corresponding term in the Taylor series for the right{hand side), we have

(1 + �)m � 1 < m�

"
1 +

m�

2!
+
(m�)2

3!
+ � � �

#
< m�

"
1 +

m�

2
+

�
m�

2

�2
+ � � �

#
;

where the second step follows from the fact that r! � 2r�1 for all r � 1. The in�nite sum in

the �nal expression is just (1� 1
2m�)�1 and thus (1+�)m�1 < m� (1� 1

2m�)�1 <� 1:053m�

when m� < 0:1. Conventionally [Wil63], we write

1� 1:06m� < hmi < 1 + 1:06m� :

We are now ready to state the results of our backward error analysis for the de Casteljau

algorithm. Let b0; : : : ; bn be the Bernstein coe�cients of a degree{n polynomial, and let the

value s 2 [0; 1] be such that both 1 � s and s have exact oating point representations.

Then the outcome b
(n)
n = oat(P (s)) of the algorithm (4.2.1.7) running in oating point is

the exact value of a polynomial with Bernstein coe�cients (1+ e0)b0; : : : ; (1+ en)bn, where

the perturbations ej satisfy

jej j < 1:06 (2n+ 1) � for j = 0; : : : ; n : (4.2.3.18)

Note that these perturbations are of uniform magnitude, i.e., independent of the index

j. Thus, evaluation of a polynomial in Bernstein form using de Casteljau's algorithm

in oating{point arithmetic yields the exact value for some \nearby" polynomial, cor-

responding to a uniform (random) perturbation of the coe�cients of relative magnitude

� = 1:06(2n+ 1)� (compare with the evaluation of a polynomial in power form by Horner's

method, for which larger perturbations must be associated with higher{order coe�cients).

CHAPTER 4. PRECONDITIONING FOR BERNSTEIN FORM POLYNOMIALS 75

In order to complete the argument, we need to specify what e�ect a relative perturbation

� in the coe�cients b0; : : : ; bn will have on the values/roots of the polynomial P (t) by

formulating the appropriate condition numbers Cv (for values) and Cr (for roots). In the

present case, we have [FR87]:

j�P j � Cv � where Cv =
nX

j=0

����� bj

n

j

!
(1� t)n�j tj

����� (4.2.3.19)

for the bound on the error in the value at any point t, and

j�rj � Cr � where Cr =
1

jP 0(r)j
nX
j=0

����� bj

n

j

!
(1� r)n�jrj

����� (4.2.3.20)

for the bound on the displacement of a root r, i.e., P (r) = 0; the latter bound holds only

for in�nitesimal �.

With � = 1:06(2n+1)�, expressions (4.2.3.19) and (4.2.3.20) describe errors in computed

values and roots that are due to oating{point arithmetic errors incurred in using the de

Casteljau algorithm (4.2.1.7) to evaluate the polynomial. The backward{error{analysis and

condition{number approach, as described above, fully accommodates the possibility of large

error ampli�cations due to cancellation e�ects.

4.3 Application to Curve/Curve Intersections

The mode of \constructing" polynomials used in the examples of [x 4.1] is admittedly rather
arti�cial | knowing the roots of a polynomial, we multiplied out the linear factors corre-

sponding to each of those roots to obtain the polynomial coe�cients in various bases. We

will now show that the \pre{conditioning" strategy of using representations that have been

subdivided (even in oating point arithmetic) before performing the polynomial construc-

tion, rather than constructing the polynomial on [0; 1] and then subdividing, can also yield

signi�cant improvements in accuracy in the context of more \realistic" calculations.

Speci�cally, we choose the context of computing the intersection points of two polyno-

mial B�ezier curves, by means of the \implicitization" algorithm [SP86], to illustrate this.

CHAPTER 4. PRECONDITIONING FOR BERNSTEIN FORM POLYNOMIALS 76

Suppose

r1(t) = fx1(t); y1(t)g and r2(t) = fx2(t); y2(t)g

are the curves in question, of degree n1 and n2. The B�ezier control points p1;k for k =

0; : : : ; n1 and p2;k for k = 0; : : : ; n2 of the two curves (de�ned on t 2 [0; 1]) are the input

data; the output data are the parameter values t1; : : : ; tN 2 [a; b], where N � n1n2, on a

prescribed subsegment of (say) r1(t) that identify its intersections with r2(t).

The \intersection polynomial" P (t), of degree n1n2, is to be constructed by substituting

the parametric equations x = x1(t), y = y1(t) of the �rst curve into the implicit equation

f2(x; y) = 0 of the second: P (t) = f2(x1(t); y1(t)). The real roots of this polynomial

correspond to parameter values on r1(t) where the two curves intersect. The bivariate

polynomial f2(x; y) describing the curve r2(t) implicitly may be formulated as an n2 � n2

determinant, whose entries are the linear forms

Lij(x; y) = aijx+ bijy + cij =
X

k�min(i;j)

k+l= i+j+1

n2
k

!
n2
l

!
(p2;k � r)� (p2;l � r) (4.3.0.21)

for 0 � i; j � n2� 1, where we write r = (x; y). The curve intersection problem thus breaks

down naturally into two stages: (i) construction of P (t) on a prescribed interval [a; b] by

substituting the B�ezier form of r1(t) on [a; b] for r in the determinant de�ned by (4.3.0.21)

and expanding it out; and (ii) �nding the roots of P (t) on the interval [a; b] based on this

constructed representation.

A formal error analysis of the curve intersection problem, along the lines described in

[x 4.2.3], would comprise the following steps:

� Perform a backward error analysis for the construction of the intersection polynomial

P (t) on [a; b] in oating point arithmetic, to ascertain the relative magnitude � of

initial perturbations in the control points p1;k and p2;k that are equivalent to the

e�ects of rounding errors in the oating{point expansion of the determinant de�ned

by (4.3.0.21).

CHAPTER 4. PRECONDITIONING FOR BERNSTEIN FORM POLYNOMIALS 77

� Formulate a condition number Cc for the construction of P (t) on [a; b] as follows: if

the control points p1;k and p2;k are subject to random perturbations �p1;k and �p2;k

of relative magnitude � in a suitable norm, then the relative magnitude of the induced

errors �bk in the Bernstein coe�cients bk of P (t) on [a; b] will be bounded (in the

same norm) by Cc �.

� By combining the results of the preceding steps, it may be deduced that the coe�cients

bk of P (t), as constructed in oating point arithmetic, will have relative errors of order

Cc �.

� From the condition number Cr for a root r of P (t) (see expression (4.2.3.20) above),

we can estimate the perturbation of the root due to oating{point errors in the con-

struction process as j�rj <� CrCc �. The e�ect of oating{point errors in evaluating the

constructed polynomial during the root{�nding process may also be incorporated us-

ing the backward error analysis described in [x 4.2.3] | if these errors are equivalent to

perturbations of relative magnitude �0 in the coe�cients bk, then as j�rj <� Cr(�
0+Cc �).

Note that, if the control points p1;k and p2;k are speci�ed on [0; 1], their oating{point

subdivision to the subinterval [a; b] must be considered a part of the construction process

if P (t) is to be constructed on that interval (i.e., the condition and backward error analysis

e�ects of this step must be incorporated in the quantities Cc and � | these e�ects have

already been characterized in [x 4.2.2] and [x 4.2.3]).

There are, unfortunately, formidable practical di�culties in carrying out the �rst two

steps of the above program. The coe�cients bk of P (t) are, in general, polynomials of degree

2max(n1; n2) in the coordinates of the control points p1;k and p2;k. However, writing them

out explicitly as such | in order to determine their sensitivity to input perturbations �p1;k

and �p2;k | is a cumbersome process (even if we could formulate Cc by such an approach,

it would apply only to in�nitesimal perturbations). By the same token, a backward error

analysis for the evaluation of the determinant whose elements are given by (4.3.0.21) would

CHAPTER 4. PRECONDITIONING FOR BERNSTEIN FORM POLYNOMIALS 78

be quite involved, and dependent on the particular determinant expansion scheme adopted.

We therefore rely on empirical results to show that, for the curve intersection problem,

the construction of P (t) incurs relative errors in its coe�cients that are fairly (in at least

an average, if not worst{case, sense) independent of the choice of interval, i.e., Cc � is not

strongly dependent on [a; b]. Choosing smaller intervals thus gives more accurate results,

on account of the smaller root condition numbers Cr associated with them.

Figure 4.1 shows a con�guration of two degree{7 B�ezier curves, intersecting at 49 distinct

real points, that we have used as a test case. We have attempted to compute the parameter

values of the intersection points by constructing the Bernstein coe�cients of the intersection

polynomial P (t) on various intervals. Using standard double{precision arithmetic, it was

found that the relative errors of the constructed coe�cients (estimated by comparison with

quadruple{precision calculations) were typically of order 10�15 and fairly independent of

the chosen interval.

When the intersection polynomial was constructed on the full interval [0; 1] only 15 of

the 49 real roots could be computed. Performing constructions on the intervals [0; 12] and

[12 ; 1] instead, all 49 roots were determined to an accuracy of at least 7 signi�cant digits

(with up to 16 digits for roots near the interval endpoints). Finally, a construction on [16 ;
1
2]

gave at least 13 accurate digits for all roots on that interval.

4.4 Concluding Remarks

For geometrical algorithms that have a natural algebraic formulation, in terms of �nding

the real roots of polynomials that must be constructed from given data, we have shown that

the \pre{conditioning" strategy of constructing the Bernstein form on smaller intervals can

lead to signi�cant improvements in accuracy, especially for conspicuously ill{conditioned

problems. Although, for reasons enumerated above, a rigorous demonstration of this claim

for the general curve/curve intersection problem seems infeasible, the empirical evidence

CHAPTER 4. PRECONDITIONING FOR BERNSTEIN FORM POLYNOMIALS 79

Figure 4.1: Two degree{7 B�ezier curves having 49 real intersections

CHAPTER 4. PRECONDITIONING FOR BERNSTEIN FORM POLYNOMIALS 80

is compelling and suggests a simple intuitive explanation: whereas the relative accuracy

with which the intersection polynomial may be \constructed" is fairly independent of the

chosen interval width, Bernstein representations on smaller intervals can have signi�cantly

enhanced root stability compared to those on larger intervals.

It is known [FR87] that degree{elevated Bernstein representations also have systemat-

ically smaller root/value condition numbers than those having the nominal degree of the

polynomial under consideration. One is thus lead to enquire as to whether the construc-

tion of Bernstein representations of arti�cially elevated degrees might also constitute a

viable \pre{conditioning" strategy. We o�er at present just two comments on this: (i) the

situation is not entirely analogous with the subdivision case, since degree{elevated represen-

tations incur increased computation and data requirements in their construction; and (ii)

for practical use, the subdivision approach is likely to yield greater accuracy improvements,

since signi�cant reductions of the root condition numbers through degree elevation require

highly{inated degrees [FR87].

Chapter 5

General Root Finding Concepts

This chapter discusses general concepts used in the polynomial root �nding algorithms

presented in chapter [x 6].

Section [x 5.1] reviews the Bernstein subdivision process along with oating point error

accumulation. Section [x 5.2] describes a modi�ed Horner method for evaluating polynomi-

als in Bernstein form. Section [x 5.3] outlines the process for deating a real root from a

Bernstein polynomial. Section [x 5.4] discusses polynomial coe�cient normalization for pre-
venting numerical overow and underow. Section [x 5.5] considers approximating zeros at
either end control point of the corresponding Bernstein coe�cients. Section [x 5.6] describes
di�erentiation of polynomials in Bernstein form, along with coe�cient error accumulation.

Section [x 5.7] reviews schemes for bounding the real roots of a polynomial. Section [x 5.8]
outlines a \pseudo" basis conversion technique for converting between Bernstein and power

forms. Section [x 5.9] discusses closed form schemes for solving the real roots of degree 2

through 4 polynomials.

5.0.1 Pseudo Code

This subsection explains the pseudo code notation and syntax employed in presenting the

algorithms in Chapter 6.

81

CHAPTER 5. GENERAL ROOT FINDING CONCEPTS 82

The symbol 2 denotes a comment, and the BoldSmallCaps font is used for function

names and pseudo code control words, e.g., Bdeflate, For, If, and EndIf.

Curly brackets f g delimit sets of expressions (arrays, equations, etc.) represented by

f : : : indexed expressions : : : glimit
index=initial;next

where the annotated subscripts are only used in cases to minimize confusion. Lists with mul-

tiple expressions are separated by commas. The number of expressions in a list constitutes

the size of the list. Lists of similar size may be assigned to each other.

Control loops are designated by either the above annotated lists for simple expressions,

or as standard For and While statements.

Both Evariable and "variable represent error values with respect to the subscripted vari-

able, where "variable usually represents coe�cient errors such as "yi , and Evariable usually
represents a global error bound such as Ekyik or the error of the computed value of an

evaluation algorithm such as Ey(t).

5.1 Bernstein Subdivision

Given a B�ezier curve P[a;b](t) and a real number c, the de Casteljau algorithm [BFK84]

\subdivides" the curve at t = c by �nding the coe�cients for P[a;c](t) and P[c;b](t). In many

situations, only one of the two resulting curve segments is needed, and some computation

can be saved by only computing the curve segment of interest. Algorithm Bsubdivleft

returns P[a;b](t) and Bsubdivright returns P[c;b](t). These algorithms also perform linearized

running error analysis [x 3.2.2] for tracking coe�cient error that accumulates during the

subdivision computation.

CHAPTER 5. GENERAL ROOT FINDING CONCEPTS 83

The de Casteljau Algorithm

Consider a degree n Bernstein form polynomial represented as an explicit B�ezier curve

(equation 2.1.2.5)

P[a;b](t) = (t; y[a;b](t)) =
nX
i=0

Pi

n

i

!
(1� u)n�kuk (5.1.0.1)

where, again, the control points Pk are evenly spaced along the horizontal axis. P[a;b](t)

can be subdivided at t = c into P[a;c](t) and P[c;b](t) as follows. Set � = c�a
b�a and add a

superscript of 0 to the control points of P[a;b](t),

P0
i � Pi; i = 0; : : : ; n:

Then compute the auxiliary points� n
P
j
i = (1� �)P

j�1
i�1 + �P

j�1
i

on
i=j;j+1

�n
j=1;2

: (5.1.0.2)

The control points of P[a;c](t) are

P[a;c]i = Pi
i (5.1.0.3)

and the control points of P[c;b](t) are

P[c;b]i = Pn�i
n (5.1.0.4)

The de Casteljau algorithm also evaluates ths curve at P(c) since
�
c; y(c)

�
= Pn

n. How-

ever, subdivision is an O(n2) algorithm, incurring 1
2n(n+1) total arithmetic operations, so

if evaluation without subdivision is called for, the algorithm in x5.2 is faster.

Figure 5.1 illustrates the de Casteljau algorithm applied to a cubic explicit B�ezier curve

subdivided at t = 0:4.

Note that when the de Casteljau algorithm is applied to an explicit B�ezier curve, the

control points remain evenly spaced along the t axis: Initially, the control points P[a;b]i have

t coordinates a+ i
n (b�a), and after subdivision, the t coordinates of P[a;c]i are a+

i
n(c�a)

and the t coordinates of P[c;b]i are c+
i
n(b� c). Thus, the algorithm really only needs to be

applied to the y coordinates of the control points.

CHAPTER 5. GENERAL ROOT FINDING CONCEPTS 84

P0
0

P1
0

P2
0

P3
0

P1
1

P2
1

P3
1

P2
2

P3
2

P3
3

Figure 5.1: Subdividing a cubic explicit B�ezier curve.

Subdivision Coe�cient Errors

Applying the de Casteljau algorithm to the Bernstein coe�cients yi with � = (1� �) yields

the respective intermediate coe�cients

yji = � yj�1i�1 + � yj�1i : (5.1.0.5)

Their respective coe�cient errors eji [FR87] which represent the accumulated error bounding

the computed value yji are derived by applying linearized running error analysis [x 3.2.2] to
(5.1.0.5):

eji =
� ���yji ���+ j�j

���yj�1i�1

���+ j� j
���yj�1i

��� � � +
�
j�j ej�1i�1 + j� j ej�1i

�
(5.1.0.6)

with
�
e0i = "yi

	n
i=0;1 and Ey(t) � enn, where "yi denotes the initial coe�cient error of yi. e

n
n

can be used to check for polynomial roots, since jy(t)j � enn is as close to zero as we can

expect.

The eji for the left and right subintervals (5.1.0.4) are "y[a;c]i = eii and "y[c;b]i = en�in ,

CHAPTER 5. GENERAL ROOT FINDING CONCEPTS 85

respectively. If � = � = 1=2, then expression (5.1.0.5) simpli�es, reducing expression

(5.1.0.6) to

eji =
�
2
���yji ��� � � +

�
ej�1i�1 + ej�1i

�
jtj : (5.1.0.7)

Subdivision Global Error Bound

A global bound [FR87] on the magnitude of the round-o� error for any computed value

t 2 [a; b] of equation (5.1.0.5) is given by

Ey(t) = 2 n kyik �: (5.1.0.8)

Here kyik indicates the greatest absolute value of the coe�cient yi, and � is the machine

unit for round-o� [x 3.2.2].

5.1.1 Algorithms: Bsubdivleft and Bsubdivright

Both algorithms presented below use a polynomial structure de�ned by

p =
�
[a; b]; fyi; "yigni=0

	

in their argument lists, where p[a;c] and p[c;b] denote the left and right subdivided polynomial

segments. Bsubdivleft and Bsubdivright both return p[a;c] � pL and p[c;b] � pR. They

di�er only in that in Bsubdivleft, p[a;b] is overwritten by p[c;b] and in Bsubdivright, p[a;b] is

overwritten by p[a;c].

Algorithm 5.1.1.1 (Bsubdivleft (c; p(L); pR)) The initial coe�cients fyi; "yig subdi-

vided at c 2 [a; b] are replaced with the coe�cients de�ned over the left subinterval [a; c].

The coe�cients for the polynomial de�ned over the right subinterval [c; b] are appropriately

assigned and returned.

1. t = (c� a)=(b� a)

2. s = 1� t

3. f y[c;b]n ; "y[c;b]n g = f yn; "yn g
4. For (j = 1; 2; : : :; n)

CHAPTER 5. GENERAL ROOT FINDING CONCEPTS 86

5. For (i = n; n� 1; : : : ; j)

6. ytmp = yi

7. yi = s yi�1 + t ytmp

8. "yi = (jyij + jsj jyi�1j + jtj jytmpj) � + (jsj "yi�1 + jtj "yi)
EndFori

9. f yRn�j ; "yR
n�j

g = f yn; "yn g
EndForj

End of Bsubdivleft

Algorithm 5.1.1.2 (Bsubdivright (t; p
(R); pL)) The initial coe�cients fyi; "yig subdi-

vided at t 2 [a; b] are replaced with the coe�cients de�ned over the right subinterval [c; b].

The coe�cients fyLi ; "yLi g de�ned over the left subinterval [a; c] are appropriately assigned

and returned.

1. t = (c� a)=(b� a)

2. s = 1� t

3. f yL0 ; "yL0 g = f y0; "y0 g
4. For (j = 1; 2; : : :; n)

5. For (i = 0; 1; : : : ; j)

6. ytmp = yi

7. yi = s ytmp + t yi+1

8. "yi = (jyij + jsj jytmpj + jtj jyi+1j) � + (jsj "yi + jtj "yi+1)

EndFori

9. f yLj ; "yLj g = f y0; "y0 g
EndForj

End of Bsubdivright

5.1.2 Numerical Stability

The de Casteljau algorithm using �nite precision arithmetic is numerically stable for values

of t 2 [a; b], but can be unstable otherwise. This can be seen from equation (5.1.0.6). For

t 62 [a; b], j�j > 1 or j� j > 1 (or both), and e
j
i can become much larger than e

j�1
i�1 or ej�1i ,

while for t 2 [a; b], eji is roughly the same magnitude as ej�1i�1 or ej�1i .

CHAPTER 5. GENERAL ROOT FINDING CONCEPTS 87

5.2 Bernstein Modi�ed Horner Evaluation

This section reviews the evaluation of a polynomial expressed in Bernstein form using a

modi�ed Horner's algorithm [Pav82]. This algorithm is called Beval and includes linearized

running error analysis.

Horner's algorithm adapted to the Bernstein representation can evaluate a polynomial

with roughly the same numerical precision as the subdivision algorithm [x 5.1], yet with fewer
operations. However, neither algorithm can claim superior error bounds in the evaluation

of arbitrary polynomials [FR88].

5.2.1 Horner's Method Expressed in Power Form

Horner's method for a polynomial in power form p(t) =
Pn

i=0 pit
i evaluates a polynomial

using nested multiplication, which is the most e�cient method of evaluating a power form

polynomial at a single value [MB72]. It requires O(n) steps (n multiplies and n adds).

f p̂i = t p̂i�1 + pn�i gni=1;2 ; p̂0 = pn; p(t) � p̂n (5.2.1.9)

fp̂ign�1i=0;1 are the deated polynomial coe�cients when t is a root of p(t). Applying lin-

earized running error analysis [x 3.2.2] to equation (5.2.1.9), which has coe�cients pi with

corresponding initial errors "pi , yields the corresponding intermediate error values denoted

by êi. We neglect any error in the oating point representation of t.

�
êi = (jp̂ij+ jtj jp̂i�1j)� + (jtj êi�1 + "pn�i

)
	n
i=1;2

; ê0 = "pn ; ên = Ep(t) (5.2.1.10)

where � is the machine round-o� unit [x 3.2.2]. êi represents the maximum error bounding

p̂i. The �rst term tracks the expression's round-o� error and the second term tracks the

inherent error due to both the expression as well as the coe�cient errors "pi .

Expanding the upper error bound for the Horner evaluation given by Farouki and Rajan

CHAPTER 5. GENERAL ROOT FINDING CONCEPTS 88

[FR87] to include the inherent coe�cient errors yields the following global bound

Ekp̂ik � 2 n kp̂ik � + n k"pik (5.2.1.11)

where kp̂ik and k"pik represent the absolute magnitude of the intermediate coe�cients and
of the original coe�cient errors, respectively.

5.2.2 Horner's Method Modi�ed for Bernstein Form

Horner's scheme can be adapted to evaluate a degree n polynomial in Bernstein form [x 2.1.2]

y[a;b](t) =
nX

i = 0

yi

n

i

!
(1� t)n�iti

by dividing by (1� t)n [Pav82]. This yields the expression

y(t)

(1� t)n
=

y0 +

n

1
v

�
y1 +

n � 1

2
v
�
y2 +

n� 2

3
v
�
y3 + : : :+

2

n � 1
v(yn�1 +

1

n
vyn) : : :

���!

(5.2.2.12)

with v = t
1�t for t 6= 1 which is appropriate over the interval [0; 12]. Factoring out the

quantity tn yields the expression

y(t)

tn
=

yn +

n

1
u

�
yn�1 +

n� 1

2
u
�
yn�2 +

n� 2

3
u
�
yn�3 + : : :+

2

n� 1
u(y1 +

1

n
uy0) : : :

���!

(5.2.2.13)

with u = 1�t
t for t 6= 0 which is appropriate over the interval [12 ; 1].

Equation (5.2.2.13) can be re-written

�
ŷi = yi + ŷi�1 u

i

n � i+ 1

�n
i=1;2

; ŷ0 = y0; ŷn (1� t)n � y(t): (5.2.2.14)

This requires n steps with a total 6n operation per evaluation. However, we typically apply

the modi�ed Horner algorithm several times to a given polynomial, and it pays to simply

pre-multiply each yi by
�n
i

�
. Once this is done, y(t) can be evaluated in 3n+ 1 operations.

Applying linearized running error analysis to equation (5.2.2.14) (neglecting any inherent

error in the value t) it is possible to factor the term corresponding to the round-o� bound

CHAPTER 5. GENERAL ROOT FINDING CONCEPTS 89

as �
êri = jyij + (êri�1 + 5 jŷi�1j) u i

n� i+ 1

�n
i=1;2

; êr0 = 0: (5.2.2.15)

The same analysis gives inherent error bound term as

�
êii = "yi + êii�1 u

i

n� i+ 1

�n
i=1;2

; êi0 = "0: (5.2.2.16)

This yields the total error bounding the computed value y(t) as

Ey[a;b](t) � ((êrn + n jŷnj) � + êin) tn (5.2.2.17)

which includes error analysis due to the operations involving the quantity tn.

Thus, the evaluation of a Bernstein form polynomial using the above modi�ed Horner

method maintains O(n) complexity with a total of (7n+ 1) arithmetic operations for com-

puting y(t) = ŷn tn. Additional (6n+5) operations are required for computing Ey(t), where
4n and 2n arithmetic operations are attributed to the round-o� and inherent error bound

terms, respectively.

5.2.3 Algorithm: Beval

The algorithm outlined below uses a variable solution list argument de�ned by

s =
n
[a; b]; fyi; eyigni=0 ; y(t); Ey(t); y0(t)

o

where y(t) is the computed value, Ey(t) is the computed error bounding this value, and y0(t)

is the computed derivative.

Algorithm 5.2.3.1 (Beval (t, s)) The initial coe�cients fyi; "yig are evaluated at

t 2 [a; b]; the computed value y(t), the computed error Ey(t) bounding y(t), and the computed
derivative y0(t) are returned.

1. scale = 1

2. er = 0

3. � = (t� a) = (b � a)

4. If (� < 1
2)

CHAPTER 5. GENERAL ROOT FINDING CONCEPTS 90

5. v = �
1��

6. ei = "n

7. a = yn

8. b0 = yn � yn�1

9. For (i = n� 1; n� 2; : : : ; 0)

10. scale = scale (1� �)

11. b = yi + a v n�i
i+1

12. er = jbj + (er + 5 jaj) v n�i
i+1

13. ei = "i + ei v
n�i
i+1

14. If (i < n� 1) b0 = (yi+1 � yi) + b0 v n�1�i
i+1

15. a = b

EndFori

16. nscale = 2n� 1

17. scale0 = scale
1��

18. Else

19. u = 1��
�

20. ei = "0

21. a = y0

22. b0 = y1 � y0

23. For (i = 1; 2; : : : ; n)

24. scale = scale �

25. b = yi + a u i
n�i+1

26. er = jbj+ (er + 5 jaj) u i
n�i+1

27. ei = "i + ei u
i

n�i+1

28. If (i < n) b0 = (yi+1 � yi) + b0 u i
n�i

29. a = b

EndFori

30. nscale = n

31. scale0 = scale
�

EndIf

32. y(t) = b scale

33. Ey(t) = Err (: : :)

34. y0(t) = n b0 scale0

End of Beval

The variables er and ei denote round-o� and inherent error bound terms, respectively.

The function Err (: : :) represents the error bounding the computed value. It is denoted

CHAPTER 5. GENERAL ROOT FINDING CONCEPTS 91

by

Err (: : :) = ((er + nscale jbj) � + ei) scale

when including the coe�cient errors "yi , and by

Err (: : :) = (er + nscale jbj) � scale

when neglecting the coe�cient errors "yi .

5.2.4 Polynomial Evaluation Considerations

Note that for root �nding applications it is possible to disregard the scale factor variables

since y(t) = 0 yields y(t)
scale = 0. Thus, any expression involving related scale factor variables

might be eliminated, and the corresponding Err function adjusted accordingly. However,

initial testing of this idea suggested that the simpli�cation can impede convergence, and we

have opted against using it.

Although implementation of running error analysis provides tighter error bounds for

computed values, the number of arithmetic operations and complexity of the algorithm

doubles.

Scaled Bernstein Polynomial Coe�cients

An important alteration which helps increase e�ciency and minimize roundo� is to eliminate

the fractional factor from Steps 11-14 (and corresponding Steps 25-28) by �rst scaling each

of the Bernstein coe�cients by their appropriate binomial factor represented by

ŷi = yi

n

i

!
(5.2.4.18)

which creates scaled polynomial coe�cients ŷi [FR88] which are explicitly used for the

evaluation of Bernstein form polynomials. The corresponding round-o� expression in in

Steps 12 and 26 reduces to

êr = jbj + jŷij + (êr + 3 jaj) t (5.2.4.19)

CHAPTER 5. GENERAL ROOT FINDING CONCEPTS 92

and the inherent error expression in Steps 13 and 27 reduces to

êi = "̂i + êi t: (5.2.4.20)

It is important to not that this alteration cannot be employed for isolation concepts

and their respective functions dependent on the convex hull property, because this property

does not hold for the scaled polynomial coe�cients.

5.3 Bernstein Deation

This section describes the process of deating a zero from a Bernstein form polynomial.

Three Bernstein deation algorithms, Bdeflatet, Bdeflateleft, and Bdeflateright, are

presented that deate roots located at any parameter value as well as the special cases when

roots exist at either end control point. The algorithms track coe�cient error accumulation

by applying linearized running error analysis to the deation computation.

5.3.1 Preliminary Concepts

Deation [PW71, Ric83, Sed93] is the process of computing

yn�1(t) =
yn(t)

(� � 1)t + �(1� t)

where yn(t) is a degree n Bernstein form polynomial [x 2.1.2] with a root at t = � . yn�1(t)

contains all the roots of yn(t) except � .

5.3.2 Algorithms: Bdeflatet, Bdeflateleft, and Bdeflateright

All three algorithms presented below use the structure de�ned by

p =
�
[a; b]; fyi; "yigni=0

	

in their argument lists.

CHAPTER 5. GENERAL ROOT FINDING CONCEPTS 93

Algorithm 5.3.2.1 (Bdeflatet (t; p)) The initial coe�cients fyi; "yig deated at t 2
[a; b] are replaced with their deated values.

1. � = (t� a) = (b � a)

2. If (� < 1
2)

3. u = � = (1� �)

4. ytmp1 = yn�1

5. "ytmp1 = "yn�1

6. yn�1 = yn

7. For (i = 1; 2; : : : ; n� 1)

8. ytmp2 = yn�i�1

9. "ytmp2 = "yn�i�1

10. yn�i�1 = (n ytmp1 + i yn�i u) = (n� i)

11. "yn�i�1 = Err(yn�i; ytmp1; "yn�i ; "ytmp1)

12. ytmp2 = ytmp1

13. "ytmp2 = "ytmp1

EndFori

14. Else

15. u = (1� �) = �

16. For (i = 1; 2; : : : ; n� 1)

17. ytmp = yi

18. "ytmp
= "yi

19. yi = (n ytmp + i yi�1 u) = (n � i)

20. "yi = Err(yi; ytmp; "yi ; "ytmp
)

EndFori

EndIf

21. n = n� 1

End of Bdeflatet

Bdeflatet approximates the cumulative coe�cient error by applying linearized running

error analysis [x 3.2.2] to Steps 10 and 19, yielding the following error

Err(yj ; ytmp; "yj ; "ytmp) =

�
2jyj j + njytmpj + 3jjyj�1j juj

n � j

�
� +

n "ytmp + j "yj�1

n� j

where the 1st and 2nd terms account for the round-o� and inherent errors, respectively.

Algorithm 5.3.2.2 (Bdeflateleft (p)) The initial coe�cients fyi; "yig deated at t =
a are replaced with their deated values.

CHAPTER 5. GENERAL ROOT FINDING CONCEPTS 94

1. For (i = 0; 1; : : :; n� 1)

2. yi = yi+1
n
i+1

3. "yi = 2 jyij � + "yi+1
n
i+1

EndFori

4. n = n� 1

End of Bdeflateleft

Algorithm 5.3.2.3 (Bdeflateright (p)) The initial coe�cients fyi; "yig deated at

t = b are replaced with their deated values.

1. For (i = 0; 1; : : :; n� 1)

2. yi = yi
n

n�i

3. "yi = 2 jyij � + "yi
n

n�i

EndFori

4. n = n� 1

End of Bdeflateright

5.3.3 Deation Considerations

Deation reduces the polynomial degree, as well as preventing double convergence to a

multiple root when used prudently [PFTV90].

Deation is stable when the roots are deated in order of ascending magnitude [PFTV90,

Pet89, Ric83, Hil74, Wil63]. Deation is unstable when a root is approximated inaccurately,

and thus, induces errors in the deated coe�cients. Repeatedly performed, this yields more

inaccurate roots and perturbed coe�cients which may be compounded to yield meaning-

less results. This is especially evident in successive approximation root �nding algorithms

[x 2.3.2].

It is recommended [PFTV90, Ric83, Hil74, RR78, Hen64] that, whenever possible, a

root from a deated polynomial should be puri�ed . Puri�cation means using the root as

an initial guess to a re�ning process such as Newton's method for a couple of iterations on

the original (undeated) polynomial, before deation of the root.

A general guideline which has been validated empirically is to avoid deation whenever

CHAPTER 5. GENERAL ROOT FINDING CONCEPTS 95

possible, because when an imprecise root is deated, the accuracy of subsequent approxi-

mated roots will su�er.

5.4 Polynomial Coe�cient Normalization

This section presents two algorithms that perform coe�cient normalization to guard against

oating point overow and underow. NormPolybase combines concepts from [Jen75,

Mad73, Dun72] and normalizes the polynomial coe�cients without inducing roundo� by

computing a scale factor which is the reciprocal of the largest power of the machine base,

or radix, not exceeding the largest modulus of the coe�cients. NormPolymax normalizes

the polynomial with a scale factor that is merely the reciprocal of the largest modulus of

the coe�cients.

5.4.1 Preliminary Concepts

Coe�cient normalization [FR88, FL85, Jen75, Mad73, Dun72, Ham71] is the process by

which a suitable scale factor is applied to the polynomial coe�cients in order to avoid

oating-point overow and underow.

Various coe�cient scaling methods have been implemented to minimize round-o� error

in the computed roots. Schemes that optimize the variation of magnitude in the coe�cients

are described by [GK90, Dun74]. Results from applying this technique to a general root

�nding method (such as Laguerre's method) indicates no signi�cant e�ect on the precision

of the approximate roots [GK90]. Although Dunaway [Dun74] reports that this technique

does improve GCD sequence determination | a claim that invites further scrutiny.

Strategies that scale the coe�cients by a power of the machine radix are implemented

in Jenkin's RPOLY [Jen75] and [Mad73, Dun72], and do not induce round-o� error. A

polynomial coe�cient yi is represented in normalized oating-point arithmetic as

y = m �e

CHAPTER 5. GENERAL ROOT FINDING CONCEPTS 96

where e is the exponent and m is the mantissa. It can be scaled by a factor s = ��p,

yielding

y s = m �e ��p = m �(e � p)

which preserves all base digits of the mantissa and updates only the exponent by power p,

and thus prevents round-o�.

Another method outlined in [FR88] scales Bernstein coe�cients, yielding a polynomial

with a unit root{mean{square value on [0; 1].

The only scaling that Farmer-Loizou [FL85] deemed necessary was the initial scaling of

the polynomial to monic form, followed by deation of any zeros at the origin.

5.4.2 Algorithms: NormPolybase and NormPolymax

Algorithm 5.4.2.1 (NormPolybase (ytol; fyi; "yigni=0)) The coe�cients yi; "yi and

their global error bound ytol are normalized and returned.

1. fs = kyik gni=0

2. p = Log10(s) = Log10(b)

3. s = b�p

4. f yi = yi s; "yi = "yi s gni=0;1

5. ytol = s ytol

End of NormPolybase

Algorithm 5.4.2.2 (NormPolymax (ytol; fyi; "yigni=0)) The coe�cients yi; "yi and

their global error bound ytol are normalized and returned.

1. f yi = yi
kyik

; "yi =
"yi
kyik

gni=0;1

2. ytol = ytol
kyik

End of NormPolymax

5.4.3 Normalization considerations

Coe�cient normalization is implemented in the test driver module that generates the coef-

�cients from the speci�ed roots, where the product terms are normalized at each iteration.

CHAPTER 5. GENERAL ROOT FINDING CONCEPTS 97

Without such normalization, overow was experienced when trying to generate high degree

polynomials. The root �nding algorithms only normalize the initial input coe�cients, and

after deating zeros at endpoints [x5.5].

Both algorithms work equally well.

5.5 Bernstein End Control Point Root Approximation

This section presents two algorithms (Bend0left and Bend0right) which detect roots of

Bernstein form polynomials at the left and right limits of their parameter domains.

The end control points of an explicit B�ezier curve [x 2.1.2] interpolate the curve:

P[a;b]0 = P[a;b](a) = (a; y0); P
� [a;b]n

= P[a;b](b) = (b; yn):

When jy0j � " or jynj � ", a or b are taken to be roots of P(t). The �rst step of most of

our algorithms is to check for roots at a or b, deate them if they exist [x 5.3], �nd a new

coe�cient error bound ytol [x 5.1], and re{normalize [x 5.4]. Figure 5.2 shows the explicit

B�ezier curves before and after both roots are deated at t = a and t = b.

5.5.1 Algorithms: Bend0left and Bend0right

Algorithm 5.5.1.1 (Bend0left (f ytol; fyi; "yigni=0;1g; nroots)) Bernstein coe�cients of

the polynomial y(t)[a;b] are tested until no root(s) exist at t = a. For each root detected at

a, the root is deated, a new global coe�cient error bound ytol is computed, and then nor-

malized along with the coe�cients fyig and their errors f"yig.
1. nroots = 0

2. � = 0:

3. While (y[0;1](�) <= " And n 6= 0)

4. nroots = nroots + 1

5. Bdeflateleft (�; fyi; "yig)
6. ytol =

 k"yi k; "kyik
7. NormPoly (ytol; fyi; "ig)

EndWhile

CHAPTER 5. GENERAL ROOT FINDING CONCEPTS 98

P0

P1

P2

P3

P4

P5

P0

P1

P2

P3

Figure 5.2: Explicit B�ezier curves before and after deating roots at t = a; b

CHAPTER 5. GENERAL ROOT FINDING CONCEPTS 99

End of Bend0left

The tolerance " in step 3 is the computed error Ey(t) from the Bernstein modi�ed Horner

evaluation algorithm [x 5.2]

Beval (t;
n
fyi; "yig; y(t); Ey(t)

o
)

| see considerations below.

Algorithm 5.5.1.2 (Bend0right (f ytol; fyi; "yigni=0;1g; nroots)) Bernstein coe�cients

of the polynomial y(t)[a;b] are tested until no root(s) exist at t = b. For each root detected

at b, the root is deated, a new global coe�cient error bound ytol is computed, and then

normalized along with the coe�cients fyig and their errors f"yig.
2 The algorithm is the same as Bend0left except 2. and 5. are replaced by:

2. � = 1:

5. Bdeflateright (�; fyi; "yig)

5.5.2 Bernstein End Zero Considerations

Step 3 utilizes " = Ey(�) which yields a tighter root bound than " = "kyik. This is illustrated

by the case shown in Figure 5.3 with given roots at ri = f -2.0, 0.9999999999999, 1.0, 1.0,
1.0000000000001, 2.0 g61 where there exist clustered roots at the right limit, b = 1:0

Using the global bound " = "kyik in step 3 yields the 4 roots ri = f 0.99999999999999989,
1.0, 1.0, 1.0 g41; using the computed error bounding the computed value of the modi�ed Bern-
stein Horner algorithm " = Ey(�) yields the 3 approximate roots ri = f 0.99999999999999989,
1.0, 1.0 g31.

5.6 Bernstein Di�erentiation

This section presents two Bernstein derivative algorithms (Bderiv and Bderivpseudo) that

compute normal and scaled, or pseudo, derivative coe�cients. They also account for co-

e�cient error propagation by applying linearized running error analysis to the derivative

computation.

CHAPTER 5. GENERAL ROOT FINDING CONCEPTS 100

P0

P1

P2

P3 P4

P5 P6

0.0 1.0
t

Figure 5.3: Explicit B�ezier curve y[0;1](t) with a cluster of roots at t = b

Di�erentiation of a degree n Bernstein form polynomial [x 2.1.2] given by

y(t) =
nX
i=0

yi

n

i

!
(1� t)n�i ti

whose coe�cients fyig have initial errors f"yig yields derivative coe�cients represented by

n
y0i = (yi+1 � yi) n; "y0i = 2jy0ij� + n ("yi+1 + "yi)

on�1
i=0;1

:

Each "0yi is computed by applying linearized running error analysis to their respective y0i

computation.

Since roots of a polynomial are unaltered when the coe�cients of the polynomial are

scaled, pseudo derivative coe�cients are as follows:

n
y0pi = (yi+1 � yi) n; "y0pi

= jy0pi j� + ("yi+1 + "yi)
on�1
i=0;1

:

5.6.1 Algorithms: Bderiv and Bderivpseudo

Both algorithms below use in their argument lists the following two structures

p =
n
[a; b]; fyi; "yigni=0

o
and p0 =

n
[a0; b0];

n
y0i; "y0i

on
i=0

o
:

CHAPTER 5. GENERAL ROOT FINDING CONCEPTS 101

Algorithm 5.6.1.1 (Bderiv (p; p0)) The initial coe�cients fyi; "yig are di�erentiated,
and their derivative values are returned as fy0i; "y0ig.

1. For (i = 0; 1; : : :; n� 1)

2. y0i = n (yi+1 + yi)

3. "y0
i
= 2 jy0ij � + n ("yi+1 + "yi)

EndFori

4. n = n� 1

5. [a0; b0] = [a; b]

End of Bderiv

Algorithm 5.6.1.2 (Bderivpseudo (p; p0)) The initial coe�cients fyi; "yig are di�er-

entiated, and their scaled derivative values returned as fy0pi ; "y0pi g.

1. For (i = 0; 1; : : :; n� 1)

2. y0pi = (yi+1 + yi)

3. "y0pi
= jy0pi j � + ("yi+1 + "yi)

EndFori

4. n = n� 1

5. [a0; b0] = [a; b]

End of Bderivpseudo

5.6.2 Di�erentiation Considerations

Bderiv is used in cases where the actual derivative is required such as in Newton root

approximation. Bderivpseudo is utilized during root isolation when the relative magnitude

of the coe�cients are immaterial.

Error analysis is employed in cases whose computations involve, and consequently results

depend, on inherent error accumulation. A signi�cant example is the evaluation of the

master polynomial and its derivatives during root approximation, where approximated error

of the computed value is required for termination criteria. Note that the approximated error

in Step 3 of Bderivpseudo provides a tighter coe�cient error than the same expression in

Bderiv.

CHAPTER 5. GENERAL ROOT FINDING CONCEPTS 102

5.7 Polynomial Real Root Bounds

Since polynomials in Bernstein form are usually de�ned over the unit interval [xx 2.1.2],
and one is generally interested in roots on that interval, root bounds are unnecessary for

algorithms based on the Bernstein form. The intersection of the convex hull with the t-axis

provides tighter root bounds than 0 and 1 if desired. Global root bounds for polynomials

in power form have been discussed in [xx 2.2.1].

5.8 Pseudo Bernstein Basis Conversion

This section presents a stable method of converting between Bernstein and power polyno-

mial forms by de�ning a pseudo-basis conversion. Two algorithms called ConvCoefsb2p̂

and ConvCoefsp2b̂ are outlined which convert Bernstein coe�cients to pseudo-power co-

e�cients and power coe�cients to pseudo-Bernstein coe�cients, respectively. The required

remapping of the roots generated from the pseudo-coe�cients to their proper values is

facilitated by the two functions ConvRootsb̂ and ConvRootsp̂.

5.8.1 Preliminary Concepts

Methods for converting between Bernstein and power forms have been documented in [FR87,

LR81, Riv70, CS66] and presented in [x 3.4]. A stable process of converting coe�cients

between the Bernstein and power forms became expedient in order to more accurately

compare both types of polynomial root �nders. A pseudo-basis conversion provides a stable

alternative for converting between power and Bernstein coe�cients.

Given a Bernstein form polynomial [x 2.1.2] represented by

b[0;1](t) =
nX
i=0

bi

n

i

!
(1� t)n�i ti; (5.8.1.21)

CHAPTER 5. GENERAL ROOT FINDING CONCEPTS 103

we rewrite it in nested form [x 5.2] as

b[0;1](t) = (1� t)n
nX
i=0

bi

n

i

! �
t

1� t

�i
: (5.8.1.22)

A power form representation is denoted by

p(x) =
nX
i=0

pi x
i: (5.8.1.23)

Excluding the quantity (1� t)n a pseudo-basis conversion from Bernstein-to-power form is

evidently given by

pi = bi

n

i

!
and xi =

�
t

1� t

�i
(5.8.1.24)

and from power-to-Bernstein form by

bi = pi =

n

i

!
and ti =

�
x

1 + x

�i
: (5.8.1.25)

Thus, the transformations

x =
t

1� t
and t =

x

1 + x
(5.8.1.26)

represent the real root mapping required from the pseudo Bernstein and power forms, re-

spectively. Figures 5.4 and 5.5 illustrate these mappings over their respective unit intervals.

Complex roots can be mapped by substituting for x and t the quantities

z = (c+ i d) and s = (u+ i v) (5.8.1.27)

where i =
p�1. The mapping of the real and complex parts of the complex roots found

from the pseudo Bernstein and power coe�cients are represented by

c =
u(1� u)� v2

(1� u)2 + v2
; d =

v

(1� u)2 + v2
(5.8.1.28)

and

u =
c(1 + c)� d2

(1 + c)2 + d2
; v =

d

(1 + c)2 + d2
; (5.8.1.29)

CHAPTER 5. GENERAL ROOT FINDING CONCEPTS 104

0.005 0.01 0.05 0.1 0.5 1
t0.001

0.01

0.1

1

10.

100.

1000.

x(t) = t/(1-t)

Figure 5.4: Log-log plot of pseudo-mapping x(t) = t=(1� t) over the region t 2 [0; 1].

0.005 0.01 0.05 0.1 0.5 1
x

0.005

0.01

0.05

0.1

0.5

1

t(x) = x/(1+x)

Figure 5.5: Log-log plot of pseudo-mapping t(x) = x=(1 + x) over the region x 2 [0; 1].

CHAPTER 5. GENERAL ROOT FINDING CONCEPTS 105

respectively. Note that when the complex parts d = 0 and v = 0, equations (5.8.1.28) and

(5.8.1.29) simplify to

c =
u

(1� u)
and u =

c

(1 + c)
(5.8.1.30)

which is equivalent to equations (5.8.1.26).

5.8.2 Algorithms: ConvCoefsb2p̂ and ConvCoefsp2b̂

Algorithm 5.8.2.1 (ConvCoefsb2p̂ (fbi; p̂igni=0)) Convert Bernstein coe�cients fbig
to pseudo-power coe�cients fp̂ig.

1. ŝ0 = b0

2. f ŝi = bi
�
n

i

� gn�1i=1

3. ŝn = bn

End of ConvCoefsb2p̂

Algorithm 5.8.2.2 (ConvCoefsp2b̂ (fpi; b̂igni=0)) Convert power coe�cients fpig to

pseudo-Bernstein coe�cients fb̂ig.
1. b̂0 = s0

2. f b̂i = si =
�
n

i

� gn�1i=1

3. b̂n = sn

End of ConvCoefs
p2b̂

5.8.3 Algorithms: ConvRootsb̂ and ConvRootsp̂

Algorithm 5.8.3.1 (ConvRootsb̂ (fr<i ; r=ignrootsi=1)) The initial computed pseudo-Bernstein

form real and complex roots fr<i ; r=ig are converted and replaced by their power form roots.

1. For (i = 1; 2; : : :; nroots)

2. s = 1 � r<i

3. sq = r2=i

4. d = s2 + sq

5. r<i
= (r<i

s � sq) = d

6. r=i
= r=i

= d

EndFori

End of ConvRootsb̂

CHAPTER 5. GENERAL ROOT FINDING CONCEPTS 106

If only real roots are needed then replace steps 2-6 with

r<i =
r<i

1 � r<i
:

Algorithm 5.8.3.2 (ConvRootsp̂ (fr<i; r=ignrootsi=1)) The initial computed pseudo-power

form real and complex roots fr<i ; r=ig are converted and replaced by their Bernstein form

roots.

1. For (i = 1; 2; : : :; nroots)

2. s = 1 + r<i

3. sq = r2=i

4. d = s2 + sq

5. r<i
= (r<i

s + sq) = d

6. r=i
= r=i

= d

EndFori

End of ConvRootsp̂

If only real roots are needed, then replace steps 2-6 with

r<i =
r<i

1 + r<i
:

Note that roots only need to be remapped when they are found from pseudo converted

coe�cients, as opposed to other methods presented in [FR88, LR81, Riv70, CS66] and

[x 3.4].

5.9 Closed Form Real Root Solvers

This section presents the implementation of closed{form solvers [x 2.3.1] for quadratic, cubic,
and quartic polynomials in power form modi�ed to solve for only real roots. These are called

Psolver2, Psolver3, and Psolver4, respectively. The algorithms consider degenerate

polynomial cases, as well as applying linearized running error analysis [x 3.2.2] to their

discriminant formations to assist in detecting and estimating multiple root cases. Psolver2

integrates numerical considerations from algorithms found in [Lod90, PFTV90, Sch90a].

CHAPTER 5. GENERAL ROOT FINDING CONCEPTS 107

Psolver3 and Psolver4 primarily follow the considerations outlined in [Lod90] taking

into consideration implementations outlined in [PFTV90, Sch90a] for the cubic and [Sch90a]

for the quartic real root solvers. Valuable insights regarding numerical considerations for

solving real roots from closed{form cubic equations are presented in [Vig78]; unfortunately

this algorithm was not completely implemented for comparison.

We �rst make some preliminary remarks pertaining to closed{form solutions for quadratic,

cubic, and quartic polynomial equations represented in power form p(x) =
Pn

i=0 pix
i = 0,

indicating real root strategies along with numerical considerations pertaining to discrimi-

nant error analysis.

Quadratic Solution

The solution of the quadratic polynomial equation

p2x
2 + p1x + p0 = 0 (5.9.0.31)

transformed into monic form

x2 + q1x+ q0 = 0 (q2 = 1) (5.9.0.32)

is represented by

x1;2 =
�q1 �

q
q21 � 4q0

2
(5.9.0.33)

with the discriminant

� = q21 � 4q0 (5.9.0.34)

yielding a corresponding computed bounding error of

"� �
�
j�j + q21

�
� +

�
2 q21

�
"q1
q1

�
+ 4 q0

�
"q0
q0

� �
; (5.9.0.35)

where "� is computed by applying linearized running error analysis to �, and

�
"q1
q1

�
= � +

�
"p1
p1

�
+

�
"p2
p2

�
;

�
"q0
q0

�
= � +

�
"p0
p0

�
+

�
"p2
p2

�
(5.9.0.36)

CHAPTER 5. GENERAL ROOT FINDING CONCEPTS 108

are relative error bounds taking into consideration the monic transformation of equation

(5.9.0.32) and the inherent error due to the coe�cients fpig. An alternate form of the

solution (5.9.0.33) is given by

x1;2 =
�q1
2

�
s�

q1
2

�2
� q0 (5.9.0.37)

with the discriminant [Sch90a]

� =

�
q1
2

�2

� q0 (5.9.0.38)

yielding the computed discriminant error of

"� �
�
j�j + q21

�
� +

�
2 q21

�
"q1
q1

�
+ q0

�
"q0
q0

� �
; (5.9.0.39)

where the inherent error applied to the q0 term is now reduced by a factor of 4 compared

to equation (5.9.0.35), thus minimizing the e�ect of any relative error incurred from
�"q0

q0

�
(see considerations below).

Depending on whether the discriminant � is <, =, or > 0 there are 0, 2 identical, or 2

distinct real roots, respectively. Numerical accuracy is enhanced in computing 2 identical

real roots by substituting the condition (� � "�) for the strict condition (� > 0), and for

computing 2 distinct real roots by replacing the inherent subtractive cancellation due to

the radical term in the equation (5.9.0.37) with a reducible subtraction operation [Vig78,

Lod90, PFTV90] that calculates the �rst root according to the sign of q1 by

r1 = �
�
q1
2

+ Sign

�
q1
2

� q
j�j
�

(5.9.0.40)

where the second root is calculated by r2 =
q0
r1
.

Cubic and Quartic Solutions

Considerations similar to those described above apply also to the closed{form treatments

of cubic and quartic equations. The particulars are readily developed from the algorithm

descriptions given below; in the interest of brevity we omit a detailed discussion here.

CHAPTER 5. GENERAL ROOT FINDING CONCEPTS 109

5.9.1 Algorithms: Psolver2, Psolver3, and Psolver4

Algorithm 5.9.1.1 (Psolver2 (t; fpig2i=0; frjgnrootsj=1)) Standard closed{form real root

quadric solver returns nroots = 0; 2 roots frjg 2 <.
2 TEST degenerate polynomial cases.

1. If (IsCoef0 (p2))

2. If (IsCoef0 (p1)) nroots = 0

3. Else RecordRoots (1 @ �p0
p1

! frjg)
4. Return

EndIfp2

2 CONVERT coe�cients to normal form.

5. q1 = p1
2 p2

6. q0 = p0
p2

2 COMPUTE the discriminant � and respection error "� .

7. � = q21 � q0

8. "� = (j�j + 7 q21 + 3 jq0j) �
2 CASE: 0 roots in < | (� < 0).

9. nroots = 0

2 CASE: 2 identical roots in < | (� = 0).

10. If (j�j � "�)

11. RecordRoots (2 @ � q1 ! frjg)
2 CASE: 2 distinct roots in < | (� > 0).

12. ElseIf (� > �"�)
13. RecordRoots (1 @ � (q1 + Sign(q1)

p
j�j) ! frjg)

14. RecordRoots (1 @ q0
r1

! frjg)
EndIf�

End of Psolver2

The above algorithm makes use of the following functions:

IsCoef0 (c): TEST if coe�cient c approximates zero

Sign(b): Return the sign of b

Sortasc(fvig): Sort values fvig in ascending order

Algorithm 5.9.1.2 (Psolver3 (t; fpig3i=0; frjgnrootsj=1)) Standard closed{form real root

cubic solver returns nroots roots frjg 2 <.

CHAPTER 5. GENERAL ROOT FINDING CONCEPTS 110

2 CASE: degenerate cubic (p3 � 0)

1. If (IsCoef0 (p3))

2. Psolver2 (fpig2i=0; frjgnrootsj=1)

3. Return

2 CASE: other zero coe�cients

4. Else

2 CASE: 1 root = p0 � 0

5. If (IsCoef0 (p0))

6. RecordRoots (1 @ x = 0 ! frjg)
2 CASE: 2 roots = p1 � p0 � 0

7. If (IsCoef0 (p1))

8. RecordRoots (1 @ x = 0 ! frjg)
2 CASE: 3 roots = p2 � p1 � p0 � 0

9. If (IsCoef0 (p2))

10. RecordRoots (1 @ x = 0 ! frjg)
2 CASE: 2 roots = 0 & single root in <

11. Else

12. RecordRoots (1 @ �p2
p3

! frjg)
EndIfp2�0

2 CASE: single & quadric roots in <
13. Else

14. Psolver2 (fpig3i=1; frjgnrootsj=2)

EndIfp1�0

15. Return

EndIfp0�0

EndIfp3�0

2 CONVERT to monic form (q(x) = p(x) = p3)

16. fq2; q1; q0g = fp2
p3
; p1

p3
; p0

p3
g

2 CHANGE of variable: x = y � q2
3

2 SOLVE cubic using reduced/canonical cubic

2 y3 + (q1 � 1
3
q22)y + (q0 � 1

3
q2q1 +

2
27
q32) = 0

17. p̂1 = q1 � 1
3
q22

18. "p̂1 = (jp̂1j + jq1j+ 4
3 q22) �

19. p̂0 = q0 � 1
3
q2q1 + 2

27
q32

20. "p̂0 = (jp̂0j + 1
2 jq0j + jq2j (7

27 q22 + 1
2 jq1j)) �

2 COMPUTE discriminant �

21. � = 4
27 p̂31 + p̂20

22. "� = (j�j+ 16
27 jp̂31j + p̂20) � + (12

27 p̂21 "p̂1 + 2 jp̂0j "p̂0)

CHAPTER 5. GENERAL ROOT FINDING CONCEPTS 111

2 CASE: 1 root in < (� > 0)

23. If (� > "�)

24. w =
p
�

25. � = w+p̂0
2

26. � = w�p̂0
2

27. If (p̂0 < 0)

28. RecordRoots (1 @ (�3 � 1
3 p̂1 �

�1
3 � q2

3) ! frjg)
29. Else

30. RecordRoots (1 @ (��
3 + 1

3 p̂1 �
�1
3 � q2

3) ! frjg)
EndIfp̂0<0

2 CASE: 3 roots in < (� � 0)

31. Else

2 CASE: cubic root in < (� � 0; p � 0)

32. If (j�j � "� And jp̂1j � "p̂1)

33. RecordRoots (3 @ �q2
3

! frjg)
2 CASE: single & double roots in < (� � 0; p̂1 < 0)

2 AND CASE: 3 distinct roots in < (� < 0)

34. Else

35. � =
q
�1

3 p̂1

2 SUGGESTION 1 | not yet implemented

36. t = �1
2 p̂0 = �3

2 SUGGESTION 2 | not yet implemented

2 AVOID round-o� problems | cos�1(�1 � t � 1)

37. If (t > 1) t = 1

38. ElseIf (t > 1)Int = �1
39. � = cos�1(t)

3

40. RecordRoots (1 @ (� q2
3 + � 2 cos(�))! frjg)

41. RecordRoots (2 @ (� q2
3 � � (cos(�) � p

3 sin(�))) ! frjg)
EndIf��"�

EndIf�>"�

End of Psolver3

Algorithm 5.9.1.3 (Psolver4 (t; fpig4i=0; frjgnrootsj=1)) Standard closed{form real root

quartic solver returns nroots roots frjg 2 <.
2 CASE: degenerate quartic case p4 � 0

1. If (IsCoef0 (p4))

2. Psolver3 (fpig3i=0; frjgnrootsj=1)

CHAPTER 5. GENERAL ROOT FINDING CONCEPTS 112

3. Return

2 CASE: other zero coe�cient cases.

4. Else

2 CASE: 1 root = p0 � 0

5. If (IsCoef0 (p0))

6. RecordRoots (1 @ x = 0 ! frjg)
2 CASE: 2 roots = p1 � p0 � 0

7. If (IsCoef0 (p1))

8. RecordRoots (1 @ x = 0 ! frjg)
2 CASE: 3 roots = p2 � p1 � p0 � 0

9. If (IsCoef0 (p2))

10. RecordRoots (1 @ x = 0 ! frjg)
2 CASE: 4 roots = p3 � p2 � p1 � p0 � 0

11. If (IsCoef0 (p3))

12. RecordRoots (1 @ x = 0 ! frjg)
13. Else

14. RecordRoots (1 @ �p3
p4

! frjg)
EndIfp3�0

2 CASE I: 2roots = p1 � p0 � 0 & quadric roots in <.
15. Else

16. Psolver2 (fpig4i=2; frjgnrootsj=3)

EndIfp2�0

2 CASE: 1 root = p0 � 0 & cubic roots in <
17. Else

18. Psolver3 (fpig4i=1; frjgnrootsj=2)

EndIfp1�0

19. Return

EndIfp0�0

EndIfp4�0

2 CASE II: p3 � p1 � 0 Roots = �pquadric roots in <
20. If (IsCoef0 (p3) And IsCoef0 (p1))

21. fp̂2; p̂1; p̂0g = fp4; p2; p0g
22. Psolver2 (fp̂ig2i=0; fr̂jgn̂rootsj=1)

23. f RecordRoots (2 @ �pr̂j ! frjg) gn̂rootsi=1

24. Return

EndIfp3� p1�0

2 CONVERT to monic form (q(x) = p(x)=p4)

25. fqi = pi
p4
g3i=0

CHAPTER 5. GENERAL ROOT FINDING CONCEPTS 113

2 PREPARE special quartic method

26. 0 = q2 � 1
4 q23

27. 1 = q3 0 � 2 q1

28. "1 = (j1j + j0j (2jq3j+ 3) + 6jq1j+ jq3j (74q23 + 3jq2j)) �
29. 2 = q0 + q23 � q21

30. "2 = (j2j + 10jq0j q23 + 7q21) �

2 CASE: special quartic method

31. If (j1j � "1)

32. fp̂2; p̂1g = f1; q32 g
33. � = q1

q3

2 CASE III: 2 double roots in < (gamma1 � 2 � 0)

34. If (j2j � "2)

35. p̂0 = �

36. Psolver2 (fp̂ig2i=0; fr̂jgn̂rootsj=1)

37. f RecordRoots (2 @ r̂j ! frjg) gn̂rootsj=1

38. Return

2 CASE IV: (1 � 0; 2 < 0)

39. ElseIf (2 < 0)

40. � =
p
�2 � q0

2 SOLVE quartic factor: x2 + q3
2 x+ (� + �)

41. p̂0 = � + �

42. Psolver2 (fp̂ig2i=0; fr̂jgn̂rootsj=1)

43. f RecordRoots (1 @ r̂j ! frjg) gn̂rootsj=1

2 SOLVE quartic factor: x2 + q3
2 x+ (� � �)

44. p̂0 = � � �

45. Psolver2 (fp̂ig2i=0; fr̂jgn̂rootsj=1)

46. f RecordRoots (1 @ r̂j ! frjg) gn̂rootsj=1

47. Return

EndIf2

EndIf1

2 SOLVE quartic using general method of reduced cubic

2 y3 + 2q2y
2 + (q22 + q3q1 � 4q0) y + (q21 � q3q2q1 + q23q0) = 0

48. fp̂3; p̂2; p̂1; p̂0g = f1; �2q2; q22 + q3q1 � 4q0; q
2
1 � q3q2q1 + q23q0g

2 SOLVE for real roots of reduced cubic

49. Psolver3 (fp̂ig3i=0; fr̂jgn̂rootsj=1 g)
50. u = k (q22 � r̂j)

2 � 4q0 k
51. v = k q23 � 4r̂j k

CHAPTER 5. GENERAL ROOT FINDING CONCEPTS 114

2 METHOD I: u > v, where r̂k is the root maximized u

52. If (u > v)

53. u =
p
u

54. w = q2 � r̂k

55. If (y < 0)

56. h2 =
w�z
2

57. h1 =
q0
h2

58. Else

59. h1 =
w+u
2

60. h2 =
q0
h1

EndIfcy

61. z = q3 y � 2q1

62. If (q3 z < 0)

63. g2 = (q3 � z
u
) = 2

64. g1 = q0 r̂k = g2

65. Else

66. g1 = (q3 +
z
u
) = 2

67. g2 = q0 r̂k = g1

EndIfq3z

2 METHOD II: v > u, where r̂l is the root that maximized v

68. Else

69. v =
p
v

70. y = q2 � r̂l

71. z = q3 y � 2q1

72. If (y z < 0)

73. h2 = (y � z
v
) = 2

74. h1 = q0 = h2

75. Else

76. h1 = (y + z
v
) = 2

77. h2 = q0 = h1

EndIfyz

78. If (q3 < 0)

79. g2 = (q3 � v) = 2

80. g1 = r̂l = g2

81. Else

82. g1 = (q3 + v) = 2

83. g2 = r̂l = g1

84. EndIfq3

CHAPTER 5. GENERAL ROOT FINDING CONCEPTS 115

EndIfu

2 SOLVE: x2 + g1x+ h1 = 0

85. fp̂2; p̂1; p̂0g = f1; g1; h1g
86. Psolver2 (fp̂g2i=0; fr̂jgn̂rootsj=1)

87. f RecordRoots (1 @ r̂j ! frjg) gn̂rootsj=1

2 SOLVE: x2 + g2x+ h2 = 0

88. fp̂2; p̂1; p̂0g = f1; g2; h2g
89. Psolver2 (fp̂ig2i=0; fr̂jgn̂rootsj=1)

90. f RecordRoots (1 @ r̂j ! frjg) gn̂rootsj=1)

End of Psolver4

Chapter 6

Polynomial Real Root-Finding

Algorithms

This chapter presents several algorithms for �nding all the real roots of a polynomial in

Bernstein form expressed as an explicit B�ezier curve, P[0;1].

Section 6.1 presents an algorithm called Bcha1 which applies the Bernstein convex

hull property to create a sequence of approximating steps that converge to the leftmost

real root. When the root is found, it is deated and the march continues to the next

root. Section [x 6.2] extends the linear approximation step concept to quadratic, cubic, and

quartic approximating steps which embody algorithms Bcha2, Bcha3, and Bcha4.

The algorithms Bcom and Bchi in sections [x 6.3.2.1] and [x 6.4], respectively, are

based on the isolate/re�ne strategy and involve di�erent methods for root isolation. Once

a root is isolated, each algorithm invokes a root re�nement routine. Section [x 6.3.2.1]

applies the de Casteljau algorithm a few times and counts the sign changes in the resulting

control polygons. If that fails to isolate the leftmost root, the leftmost root of the �rst

derivative is computed. This procedure is applied recursively in the case of root clusters

and multiple roots. The algorithm in section [x 6.4] presents an isolation method wherein

the t-axis is traversed in increments which are guaranteed to contain at most one root.

Section [x 6.5] presents the algorithm Sips which investigates the use of the real roots from

116

CHAPTER 6. POLYNOMIAL REAL ROOT-FINDING ALGORITHMS 117

isolator polynomials to isolate the real roots of a polynomial in power form of degree up to

nine.

The numerical accuracy of these algorithms is enhanced by implementing the valuable

insights on error tolerances and root conditioning provided by Farouki and Rajan [FR87,

FR88], especially in dealing with multiple and clustered roots.

6.1 Bernstein Convex Hull Approximating Step (Bcha1)

The Bernstein convex hull approximating step algorithm (Bcha1) �nds each real root on

[0; 1] in ascending order by computing a sequence of approximating steps which are guar-

anteed to not skip over a real root. Each step is determined by exploiting the convex hull

property [x 2.1.2] which assures that all roots lie within the interval where the convex hull

of the control polygon intersects the t-axis. A root is realized when its respective sequence

of approximating steps converge to a limit.

This algorithm was �rst overviewed in [SP86], and fully discussed in an unpublished

manuscript [SSd86]. Since then, it has appeared in [Gra89, Sch90a], and has been adapted

to various applications and to higher dimensions under a technique referred to as B�ezier

clipping [SWZ89, Sed89, SN90a, SN90b].

6.1.1 Preliminary Concepts

Bcha1 is quite similar to Newton's method, but it has the advantage that it always ap-

proaches the root from the left, and hence it cannot diverge like Newton's method. The

(linear) approximation step is outlined in algorithm BhullApprox1 below which �nds the

most positive (or negative) slope based on the left{most intersection of the convex hull with

the t-axis.

This algorithm employs an e�ective split heurisitic which alleviates slow progression due

to coe�cients that vary by several orders of magnitude. The heuristic is set if the steepest

CHAPTER 6. POLYNOMIAL REAL ROOT-FINDING ALGORITHMS 118

line is not de�ned by the line joining the �rst two coe�cients of a Bernstein form polynomial,

y0 and y1, whereupon the polynomial is subsequently subdivided. The algorithm works with

the left segment only until all its roots are found, and then processes the right segment.

The split heuristic works well because subdivision tends to even out the magnitudes of the

coe�cients.

Algorithm 6.1.1.1 (BhullApprox1 (fyigni=0; split; t)) Compute and return the left-

most point t 2 [0; 1] at which the t-axis intersects the convex hull of the control points of the

explicit B�ezier curve. Also, indicate possible slow convergence or multiple root conditions

with the ag split which is set if the steepest slope is not a function of the �rst control point

y1.

1. split = False

2. slope = y1 � y0

2 Get most +slope

3. If (y0 < 0)

4. For (j = 2; 3; : : : ; n)

5. slopetmp = yi � y0
i

6. If (slopetmp > 0 And slopetmp > slope)

7. split = True

8. slope = slopetmp

Endifslopetmp

EndFori

2 Get most �slope
9. Else

10. For (j = 2; 3; : : : ; n)

11. slopetmp = yi � y0
i

12. If (slopetmp < 0 And slopetmp < slope)

13. split = True

14. slope = slopetmp

EndIfslopetmp

EndFori

EndIfy0

15. slope = n slope

2 Compute where hull's slope crosses abscissa

16. t = � y0
slope

End of BhullApprox1

CHAPTER 6. POLYNOMIAL REAL ROOT-FINDING ALGORITHMS 119

6.1.2 Algorithm: Bcha1

Bcha1 is divided into two primary stages as depicted in the following algorithm outlines.

Algorithm 6.1.2.1 (Bcha1 (LeftRootonly ; ttol; fci; "cigni=0; frjgnrootsj=1)) Bcha1 re-

ceives as input a leftmost{root{only ag LeftRootonly , a solution tolerance ttol, and Bern-

stein coe�cients and their errors fyi; "yig de�ned over the domain [0; 1] and returns nroots
roots frjg.

Bcha1.1. Real Root Pre-Approximation Steps, and

Bcha1.2. Real Root Approximation Steps,

End of Bcha1

The respective steps pertaining to these stages are outlined below. The pre-approximation

stage is a variation of similar stages presented in [x 6.3.2] and [x 6.4.2].
Bcha1.1: Real Root Pre-Approximation Steps

1.1 ASSIGN a master (polynomial) segment structure.

(The master segment structure consists of the degree N , master polynomial

coe�cients and their error coe�cients f Yi; Eig, and the master domain limits

�xed to the unit interval [Tmin; Tmax] = [0; 1].)

1.2 NORMALIZE the master coe�cients f Yi; Eig.
(See [x 5.4])

1.3 TEST for rightmost root(s) at the right interval limit Tmax.

(Use: Bend0right in [x 5.5])
1.4 INITIALIZE both a left and a right (local) segment structure to the master

segment structure.

(The left (inner and active) coe�cients are represented by fyLi ; eLi g with degree

nL, and the right (outer and pending) coe�cients are represented by fyRi ; eRi g
with degree nR, and their respective domain limits in which they are de�ned are

initially set to [tL0 ; t
L
n] = [tR0 ; t

R
n] = [Tmin; Tmax].)

1.5 INITIALIZE the step progression ag damn = False.

(When the progression reaches a root, damn is true.)

1.6 Proceed to Step 2.1.

CHAPTER 6. POLYNOMIAL REAL ROOT-FINDING ALGORITHMS 120

Bcha1.2: Real Root Approximation Steps

2.1 TEST if progression is damned.

(If (damn), then

Bsubdivright segment fyRi ; eRi g at tRk =
tL0�t

R
0

tRn�t
R
0
,

RECORD the root at tL, and

Bdeflateleft tL from fyLi ; eLi g,
Proceed to Step 2.1.)

2.2 TEST if control polygon straddles t-axis.

(Check the number of sign variations in the coe�cients, keeping tract of the 1st

coe�cient which changes sign denoted as icross1 .)

2.3 CASE for more than 1 sign change | more than 1 root.

2.3.1 COMPUTE an approximating step tLk . (The linear step is computed

using BhullApprox1 which is the intersection of the convex hull with

the t-axis, and the non-linear steps use BhullApprox2�4.)

2.3.2 STORE fyLi ; eLi g as 1st temp segment fyT1i ; eT1i g in case step over root.
2.3.3 SUBDIVIDE the right segment at tLk returning the left subdivided

hull as a 2nd temporary segment, the right subdivide hull as the new

left segment.

(Bsubdivright segment fyLi ; eLi g at tLk returning fyT2i ; eT2i g.
2.3.4 TEST for function convergence.

(If (yL0 � eL0), then damn = True, and Proceed to Step .2.1)

2.3.5 TEST for overshooting the root.

(If (yT20 � eT20 And yL0 � eL0), then

REFINE the isolated root using modi�ed regula falsi,

RESTORE fyLi ; eLi g = fyT1i ; eT1i g,
SUBDIVIDE the left segment at the root, returning the right subdi-

vided hull as the new left segment.)

2.3.6 TEST progress heuristic split; and if true,

SUBDIVIDE the left (inner) segment based on icross1 ,

UPDATING the left segment with the left subdivided hull.

(If (split), then

Bsubdivleft segment fyLi ; eLi g at t = icross1=n
L.

2.3.7 Proceed to Step 2.1.

2.4 CASE control polygon does not straddle t-axis | a single real root.

CHAPTER 6. POLYNOMIAL REAL ROOT-FINDING ALGORITHMS 121

2.4.1 TEST left limit for possible root.

(If (damn = yL0 � eL0) Proceed to Step 2.1.)

2.4.2 TEST for more roots in the left (inner) segment.

(If (yLn < yR0), then

Bsubdivright segment fyRi ; eRi g at tRk =
tLn�t

R
0

tRn�t
R
0
,

ASSIGN fyRi ; eRi g = fyLi ; eLi g and tL0 = tR0 , t
L
n = tRn .

Proceed to Step 2.1.)

2.5 RECORD any right-most roots at Tmax found from Step 1.3, and

RETURN.

A simpli�ed example of the real root approximation stage for the leftmost root pro-

ceeds as illustrated in Figure 6.1, where each approximating step tLk = tk computed from

BhullApprox1 progresses towards the root from the left. The progression is damned at

the root when the left-most control point approximates its coe�cient error bound which con-

sequently accumulates during each subdivision and deation - see algorithms Bsubdivleft

(5.1.1.1) and Bdeflateleft (5.3.2.2). The process is repeated for each real root.

Analytically, the approximating step never crosses the left-most root due to convex hull

containment. Numerically, the computational error induced by roundo� [x 3.1] may allow

the iterate to step over the root. To remedy this anomaly, Step 2.3.5 is implemented to

check the inner polynomial segment for an isolated root which is then approximated via the

modi�ed regula falsi algorithm. It should be stressed that a mere absolute error check of the

iterating approximate step is not an adequate convergence check for this problem, because a

polynomial exhibiting atness in the neighborhood of this bracketed interval usually returns

prior to actual convergence.

6.2 Higher Degree Approximating Steps (Bcha2�4)

This section describes modi�cations to Bcha1 which provide for higher order convergence.

These modi�cations are consolidated into the algorithm BhullApprox2�4 by substituting

them for algorithm BhullApprox1 (6.1.1.1) in Step 2.3.1 of algorithm Bcha1 (6.1.2.1).

CHAPTER 6. POLYNOMIAL REAL ROOT-FINDING ALGORITHMS 122

(a) 0 1
t1

(b) 0 1
t2

(c) 0 1

 . . . After 4 more iterations,
progress stops

(d) 0 1

t6 = t7

Deflate the root

(e) 0 1

Figure 6.1: Bcha1 root �nding

CHAPTER 6. POLYNOMIAL REAL ROOT-FINDING ALGORITHMS 123

6.2.1 Preliminary Concepts

Bcha1 has the advantage that, unlike Newton's method, it will never step past a root. It

has the disadvantage that a de Casteljau operation (O(n2)) is required at each step, whereas

Newton's method only requires function evaluation (O(n)).

A reasonable modi�cation to Bcha1 is to devise approximating polynomials of degrees

two, three, and four whose leftmost roots are guaranteed to be less than the leftmost root

of the given polynomial.

Such approximations are straightforward to construct using the explicit B�ezier curve

representation. Given P[a;b](t) = (t; y[a;b](t)) and P̂[a;b](t) = (t; ŷ[a;b](t)) with with y[a;b](a) =

ŷ[a;b](a) < 0 and y[a;b](t) � ŷ[a;b](t) for t 2 [a; b], clearly the leftmost root of P̂[a;b](t) will

lie to the left of the leftmost root of P[a;b](t). If P̂[a;b](t) is degree two, three, or four, its

roots can quickly be found in closed form, and could provide an improved step for Bcha1.

Figure 6.2 shows examples of P̂[a;b](t) of various degrees.

Of course, convergence is enhanced if P̂[a;b](t) matches as many derivatives as possible

with P[a;b](t) at t = a. If P[a;b](t) is degree n and P̂[a;b](t) is degree n̂, it is possible to match
n̂� 1 derivatives:

P0 = P̂0 (6.2.1.1)

For n̂ � 2:

P0
[a;b](a) = P̂0

[a;b](a)

n(P1 �P0) = n̂(P̂1 � P̂0)

P̂1 = n(P1 �P0)=n̂+P0

For n̂ � 3:

P00
[a;b](a) = P̂00

[a;b](a)

n(n� 1)(P2 � 2P1 + P0) = n̂(n̂ � 1)(P̂2 � 2P̂1 + P̂0)

P̂2 =
n(n� 1)

n̂(n̂� 1)
(P2 � 2P1 + P0) + 2P̂1 � P0

For n̂ � 4:

P000
[a;b](a) = P̂000

[a;b](a)

CHAPTER 6. POLYNOMIAL REAL ROOT-FINDING ALGORITHMS 124

Degree 1

Degree 2

Degree 3

Degree 4

P(t)

Figure 6.2: P̂[a;b](t) of degrees one through four.

CHAPTER 6. POLYNOMIAL REAL ROOT-FINDING ALGORITHMS 125

n(n� 1)(n� 2)(P3 � 3P2 + 3P1 � P0) = n̂(n̂� 1)(n̂ � 2)(P̂3 � 3P̂2 + 3P̂1 � P̂0)

P̂3 =
n(n� 1)(n � 2)

n̂(n̂� 1)(n̂ � 2)
(P3 � 3P2 + 3P1 � P0) + 3P̂2 � 3P̂1 + p0

This will �x the values of all but the last coe�cient of P̂[a;b](t), P̂n̂, which is chosen in a way

that will assure y[a;b](t) � ŷ[a;b](t). This is done by degree elevating P̂[a;b](t) to degree n, and

solving for P̂n̂ so that when P̂[a;b](t), none of its control points lie beneath the respective

control points of P[a;b](t).

Denote by Q(t) the degree elevation of P̂(t). Because of the derivative constraints, we

have

Qi � Pi; i = 0; : : : ; n̂� 1: (6.2.1.2)

The remaining control points are functions of P̂n̂:

Qi =

P
j + k = i
j 2 [0; n̂]

�n̂
j

��n�n̂
k

�
P̂j

�n
i

� ; i = n̂ : : :n: (6.2.1.3)

We now determine P̂n̂ which will force Qi � Pi, i = n̂ : : :n (where > denotes having a

larger vertical coordinate):

P̂n̂ �
�n
i

�
�n�n̂

k

�

2
6666664
Qi �

X
j + k = i

j 2 [0; n̂� 1]

pj(n1; k)(m; j)

(n; i)

3
7777775

i = n̂ : : :n (6.2.1.4)

The following algorithm succinctly implements this polynomial approximation.

Algorithm 6.2.1.1 (BhullApprox2�4 (fyigni=0; fŷign̂i=0)) Bernstein coe�cients fŷig
are computed which optimally approximate any explicit Bernstein polynomial de�ned by fyig
over interval [a; b], according to the speci�ed degree n̂. NOTE: The split heuristic is obtained

by calling BhullApprox1 with the original coe�cients | separate from this function.

1. ŷn = y0

2. ŷ1 = y0 + n
n̂
(y1 � y0)

3. If (n̂ > 2) ŷ2 =
n(n�1)
n̂(n̂�1)(y2 + 2y1 � y0) + 2y1 � y0

CHAPTER 6. POLYNOMIAL REAL ROOT-FINDING ALGORITHMS 126

4. If (n̂ > 3) ŷ3 = n(n�1)(n�2)
n̂(n̂�1)(n̂�2)(y3 � 3y2 + 3y1 � y0) + 3y2 � 3y1 + y0

5. sum = 0

6. m = n� n̂

7. If(y0 > 0)

8. ymin = +DoubleMaxValue

9. For (i = n̂; n̂+ 1; : : : ; n)

10. For (j = 0; 1; : : : ; n̂)

11. For (k = 0; 1; : : : ;m)

12. If (j + k == i)

13. If (j == n̂) coe =
�
m

k

�
=
�
n

i

�
14. Else sum = sum + ŷj

�
n̂
j

� �
m
k

�
=
�
n
i

�
Endifj+k

EndFork

EndForj

15. ŷn̂ = yi � sum

coe

16. If (ŷn̂ < ymin) ymin = ŷn̂

17. sum = 0

18. ŷn̂ = ymin

EndFori

19. Else

20. ymax = �DoubleMaxValue
21. For (i = n̂; n̂+ 1; : : : ; n)

22. For (j = 0; 1; : : : ; n̂)

23. For (k = 0; 1; : : : ;m)

24. If (j + k == i)

25. If (j == n̂) coe =
�
m
k

�
=
�
n
i

�
26. Else sum = sum + ŷj

�
n̂
j

� �
m
k

�
=
�
n
i

�
EndIfj+k

EndFork

EndForj

27. ŷn̂ = yi � sum

coe

28. If (ŷn̂ < ymax) ymax = ŷn̂

29. sum = 0

30. ŷn̂ = ymax

EndFori

EndIf

End of BhullApprox2�4

CHAPTER 6. POLYNOMIAL REAL ROOT-FINDING ALGORITHMS 127

6.2.2 Higher Degree Approximating Step Considerations

The minimum root of the approximated polynomial P̂[a;b] obtained from the closed form

real root solvers [x 5.9] over the speci�ed interval is used as the next approximation step

for algorithms Bcha2�4.

This application appears to be limited by numerical round-o� error induced from the

numerical closed form solution which permits the approximating step to nudge over a root.

This is especially evident in the quartic version. Therefore Step 2.3.5 in Bcha1 handles

this condition and checks whether the polynomial crosses the t-axis, and if so, re�ne the

isolated root using a root approximation algorithm.

6.3 Bernstein Combined Subdivide & Derivative (Bcom)

The Bernstein combined subdivide and derivative algorithm (Bcom) is an isolate/re�ne

strategy. Isolation commences with a binary search, and if a root is not isolated within a

few iterations, the leftmost root of the �rst derivative is computed for use as a possible root

isolation value. Once a root is isolated, it is re�ned using the modi�ed regula falsi method.

Bcom is somewhat similar to the Lane-Riesenfeld root �nding algorithm [LR81]. How-

ever, Bcom is substantially faster because it is able to isolate roots in fewer subdivisions,

and because its re�nement stage uses an O(n) polynomial evaluation algorithm rather than

the O(n2) de Casteljau algorithm used by the Lane-Riesenfeld algorithm.

This section provides a serial implementation of Bcom. [Zun89] outlines a recursive

implementation of a similar algorithm.

6.3.1 Preliminary Concepts

Bcom couples the stable condition inherent in Bernstein subdivision [x 5.1] with real root

isolation principles based on Rolle's theorem [x 2.2.2] which utilize the various derivative

CHAPTER 6. POLYNOMIAL REAL ROOT-FINDING ALGORITHMS 128

levels of the polynomial to isolate each real root of the Bernstein form polynomial over a

speci�ed interval. In addition, the use of scaled polynomial coe�cients suggested in [FR88]

increases the e�ciency of the modi�ed Horner's algorithm presented in [x 5.2].

6.3.2 Algorithm: Bcom

The main functions of Bcom are summarized in the following algorithm and outlined below

in pseudo code format.

Algorithm 6.3.2.1 (Bcom (LeftRootonly ; ttol; fci; "cigni=0; frjgnrootsj=1)) Bcom re-

ceives as input a leftmost{root{only ag LeftRootonly , a solution tolerance ttol, and Bern-

stein coe�cients and their errors fyi; "yig de�ned over the domain [0; 1] and returns nroots
roots frjg.

Bcom.1. Real Root Pre-Isolation Steps

This stage INITIALIZES variables, ASSIGNING and NORMALIZING the mas-

ter polynomial structure, TESTING for roots at the end control points, AS-

SIGNING a local polynomial structure, and then PROCEEDS to phase Bcom.2.

(See details in stage Bcom.1 outline below.)

Bcom.2. Real Root Isolation Loop Steps

This stage uses a combination of subdivision and derivative heuristics to ISO-

LATE the real roots into distinct ascending ordered intervals, and PROCEEDS

to phase Bcom.3 to approximate the root whenever a single sign change is de-

tected in a coe�cient sequence. After all the real roots are found, all right

end roots are RECORDED and the program is EXITED. (See details in stage

Bcom.2 outline below.)

Bcom.3. (Multiple) Real Root Approximation Loop Steps

This stage APPROXIMATES and RETURNS each isolated root to its appro-

priate multiplicity. (See details in stage Bcom.3 outline below.)

End of Bcom

Bcom.1: Real Root Pre-Isolation Steps

1.1 2 INITIALIZE counters for subdivide stack, derivatives, & roots.

CHAPTER 6. POLYNOMIAL REAL ROOT-FINDING ALGORITHMS 129

Stop = 0 2 top of subdivided poly segment stack f Si
poly gStopi=1

l = 0 2 derivative level index
lmax = 0 2 counter for maximum derivative levels found
Dl
pos = 0 2 position of �rst encounter of derivative l on Spoly

Dl
sub = 0 2 number of subdivides before di�erentiating

nright = 0 2 number of right-end real roots
nroot = 0 2 number of total real roots
[Tmin; Tmax] = [0; 1] 2 domain for all master polynomial segments

1.2 2 ASSIGN the master poly structure M l
poly for l = 0

2 for polynomial evaluation and approximation.

M0
poly =

n
N0 = n; fY 0

i = ci; "Y 0
i
gN0

i=0; Y 0
tol = k EkY 0

i
k; "Y 0

i
k
o

1.3 2 NORMALIZE M l=0
poly .

NormPoly (M l
poly)

1.4 2 TEST for M l=0
poly root(s) at right interval limit t = Tmax.

Bend0right (M
l
poly ; nright)

1.5 2 TEST for M l=0
poly root(s) at left interval limit t = Tmin, and

2 RECORD any found.

Bend0left (M
l
poly ; nroots)

RecordRoots (nroots @ Tmin ! frjg)
1.6 2 ASSIGN the local poly structure Ll=0

poly , and

2 PROCEED to 2.1.

L0
poly =

n
[t00; t

0
n] = [Tmin; Tmax]; nl = N0; fyli = Y 0

i gn
l

i=0

o

Bcom.2: Real Root Isolation Loop Steps

2.1 2 TEST for candidate root(s) at left interval limit t = tl0.

If (l > 0 And jyl0j � Y l
tol)

2.1.1 2 EVALUATE M l
poly at t

l
0.

Beval (tl0; M
l
poly)

2.1.2 2 CONFIRM candidate root tl0 when jY l(tl0)j � EY l(tl0)
.

If (jY l(tl0)j � EY l(tl0)
)

Bdeflateleft (fylig)
Proceed to 2.1

EndIf

CHAPTER 6. POLYNOMIAL REAL ROOT-FINDING ALGORITHMS 130

2.2 2 COMPUTE the number of sign variations ncross in
n
yli

onl
i=0

, and

2 TRACK the �rst two i position crossings as icross1 and icross2 .

2.3 2 TEST if control polyline crosses t-axis.

If (ncross > 1) 2 subdivide or di�erentiate Ll
poly

2.3.1 2 COMPUTE the local subdivision point � of poly segment fyign
l

i=0.

� =
(icross1+icross2)+1:5

2nl
2 [0; 1]

2.3.2 2 EVALUATE M l
poly at its subdivide point tsub,

2 COMPUTING its bounding error EY l(tsub)
.

tsub = tl0 + �(tln � tl0)

Beval (tsub; M
l
poly)

2.3.3 2 TEST whether to di�erentiate Ll
poly ,

If (Dl
sub > DMAXSUB Or jY l(t)j � EY l(t))

Dl
pos = Stop

Dl
sub = Dl+1

sub = 0

Increment : l

2 COMPUTE a new master derivative M l
poly from M l�1

poly .

If (l > lmax)

Bderiv (fY lmax

i ; "
Y lmax
i

gN lmax

0 g; fY l
i ; EY l

i
gN l

0)

Increment : lmax

EndIf

Bderivpsedo (fyl�1i gnl�1

0 ; fylign
l

)

2.3.4 2 OTHERWISE SUBDIVIDE Ll
poly

2 REPLACING Ll
poly with the left poly segment, and

2 PUSHING the right poly segment onto stack Spoly .

Else

Increment : Stop and Dl
sub

Bsubdivleft (Ll
poly; S

Stop
poly)

EndIfDl
sub

2.4 2 OTHERWISE only 1 or 0 real roots.

Else

2.4.1 2 TEST for 1 real root.

If (ncross � 1)

llsub = 0

2 SET root bounds.

CHAPTER 6. POLYNOMIAL REAL ROOT-FINDING ALGORITHMS 131

[tleft; tright] = [tl0; t
l
n]

2 APPROXIMATE root to its multiplicity.

Proceed to 3.1

EndIf

2.4.2 2 TEST for termination,

If (Stop � 0)
If (l = 0) Proceed to 2.5
Else Decrement : l

2.4.3 2 OTHERWISE POP the top of stack fSi
polygStopi=1 to Ll

poly.

Else

Ll
poly = S

stop
poly

Decrement : Stop
EndIfStop

EndIfncross

2.5 2 RECORD nright roots at Tmax, and

2 RETURN.

RecordRoots (nright @ Tmax ! frjg)
Exit Bcom

Bcom.3: (Multiple) Real Root Approximation Loop Steps

3.1 2 REFINE troot 2 [tleft; tright] with multiplicity m = 1.

m = 1

Brefine ([tleft; tright]; ttol; fY l
i ; "Y l

i
gN l

i ; troot)

3.2 2 TEST whether to record m roots at tlroot.

If (l = 0)

RecordRoots (m @ tlroot ! frjg)
If (tright < tln)

� =
tright�y

l
0

yln�y
l
0

Bsubdivright (�; L
l
poly)

While (jyl0j � Y l
tol) Bdeflateleft (Ll

poly)

Proceed to 2.1

EndIf

3.3 2 OTHERWISE TEST for possible multiple roots by

2 EVALUATING M l
poly at t

l
root, and

2 COMPARING jY l(tlroot)j � Eyl(tlroot).

CHAPTER 6. POLYNOMIAL REAL ROOT-FINDING ALGORITHMS 132

Else

Decrement : l

Stop = Dl
pos

Beval (tlroot; fY l
i ; "Y l

i
gN l

i=0; Y (t
l
root); EY l(tlroot)

)

3.3.1 2 TEST for multiple roots at tlroot.

If (Y l(tlroot) � EY l(tlroot)
)

Increment : m

Proceed to 3.2

3.3.2 2 OTHERWISE TEST for root in either the left or right segment

related to tlroot.

Else

m = 0

If (yl0 Y l(tlroot) < 0)

tleft = tl0
tright = tlroot
Proceed to 3.1

Else

Increment : Stop Dl
sub = 0

� = (tlroot � tl0) = (t
l
n � tl0)

Bsubdivleft (�; fylgnli=0; SStop
poly)

EndIf

Proceed to 2.1

EndIfY l(tlroot)

EndIfl

The root isolation heuristic for Bcom is illustrated in Figures 6.3 and 6.4. Figure 6.3.a

shows an initial degree �ve polynomial with simple roots at 0, 0.2, and 1, along with a

double root at 0.6. Figure 6.3.b shows the polynomial after deating the roots at 0 and 1.

In Figure 6.3.c, the polynomial has been split in two pieces at �1 and the segment P
(2)
[0;�1]

(t)

is determined to contain exactly one root since its control polygon crosses the t axis exactly

once. In Figure 6.3.d, P
(3)
[�1;1]

(t) does not pass the isolation test because its control polygon

crosses the t axis twice.

In Figure 6.4.e, P
(3)
[�1;1]

(t) is split and the right half is seen to have no roots, while the

left half is indeterminate. Figure 6.4.f performs another subdivision, with the same results,

CHAPTER 6. POLYNOMIAL REAL ROOT-FINDING ALGORITHMS 133

P (0)
[0,1](t)

0.2 0.4 0.6 0.8 11.0
t

(a)

P (1)
[0,1](t)

0.2 0.4 0.6 0.8 11.0
t

(b)

P (2)
[0,τ1](t)

0.2 0.4 0.6 0.8 11.0
t

(c)

P (3)
[τ1,1](t)

0.2 0.4 0.6 0.8 11.0
t

(d)

Figure 6.3: Bcom root isolation heuristic (a-d).

CHAPTER 6. POLYNOMIAL REAL ROOT-FINDING ALGORITHMS 134

P (4)
 (t)

0.2 0.4 0.6 0.8 11.0
t

(e)

P (5)
 (t)

0.2 0.4 0.6 0.8 11.0
t

(f)

P (6)
 (t)

0.2 0.4 0.6 0.8 11.0
t

(g)

P ’
 (t)

0.2 0.4 0.6 0.8 11.0
t

(h)

Figure 6.4: Bcom root isolation heuristic (e-h).

CHAPTER 6. POLYNOMIAL REAL ROOT-FINDING ALGORITHMS 135

as does Figure 6.4.g. At this point, Bcom changes its heuristic for isolating the root from

binary search to �nding the left{most root of the derivative of P(6)(t). That derivative,

shown in Figure 6.4.h, has only one root in the interval. The root is re�ned and used

to isolate the left{most root of P(6)(t). In this case, the double root at 0:6 is identi�ed

by checking that the numerical value of P(6)(0:6) is less than the computed running error

bound.

6.3.3 Bcom Considerations

Bcom uses three di�erent stacks to store the following polynomial segment structures:

master The master stack contains the original polynomial along with any of its stacked

(true) derivative polynomials which are required and only used for any subsequent

polynomial evaluation during the isolation (Stage 2) and approximation (Stage 3)

of its corresponding roots. All of these polynomials denote master polynomials and

maintain a unit domain. The initial level master polynomial contains the normalized

[x 5.4] original polynomial after any left or right domain limit roots are detected

and then deated [x 5.5] during pre-isolation Stage 1. The master derivatives are

computed and stored as deemed necessary during isolation Step 2.3.3.

A master polynomial structure consists of the degree of the derivative, the coe�cients

and their errors which accumulate according to linearized running error analysis for

each derivative operation [x 5.6], and a global coe�cient tolerance which is the max-

imum of either the maximum coe�cient errors, or the de Casteljau global bound

[xx 5.1].

local The local stack contains a stack of local polynomial segment structures which are

appropriately subdivided and di�erentiated during the real root isolation stage. The

local stack is replenished by polynomials on the pending stack, which are appropriately

popped and assigned in Step 2.3.4.

A local polynomial structure consists of the degree of the polynomial segment, the

coe�cients, and the domain limits over which the polynomial segemnt is de�ned

which are always a subset of the master domain. The local coe�cients are each

initially scaled by their corresponding binomial factor to minimize calculations in the

evaluation procedures.

pending The pending stack contains any a series of \remaining" subdivided right local

polynomial segments that need to be processed.

CHAPTER 6. POLYNOMIAL REAL ROOT-FINDING ALGORITHMS 136

The local and subdivide stacks are used extensively during root isolation and multiple root

detection loops.

Note the conditions in Step 2.3.3 which qualify the polynomial for di�erentiation as

opposed to subdivision. The basic strategy employed is when in doubt to whether the

convergence is slowing or an isolation step approximates a root, simply di�erentiate. Setting

the constant DMAXSUB = 2 is inexpensive and provides good results, as opposed to larger

numbers which usually do not elevate the isolation step into the proper derivative levels for

accurate and e�cient multiple root approximation. Bcom exhibits e�cient and accurate

convergence once it determines which derivative contains the linear factor of the multiple

root. These heuristics also force all root approximations to be performed in stage three

which minimizes special case root tests.

In addition, polynomial residual error tests are employed in Steps 1.4, 1.5, 2.1.2, 2.3.3,

3.3, and 3.3.1, as opposed to constant error tests which are usually too conservative for

multiple or clustered root considerations. Although global error tolerances do provide e�-

cient candidate checks for possible use of computed running error bounds as demonstrated

in Step 2.1.

Deation is employed to factor out the leading zeros of only derivative polynomials,

otherwise it is avoided. This helps maintain unperturbed master coe�cients for polynomial

evaluation purposes (see Steps 2.1 and 3.2).

The isolation step heuristic in Step 2.3.1 is illustrated in Figure 6.5 where the boxed

coe�cients, P0 and P3, represent the pair of variables icross1 and icross2 , respectively, and

the � at 0:25 represents the point of subdivision.

An algorithm to approximate and purify isolated real roots is represented by

Brefine ([tleft; tright]; ttol; fY l
i ; "Y l

i
gN l

i ; troot)

CHAPTER 6. POLYNOMIAL REAL ROOT-FINDING ALGORITHMS 137

x

P0

P1 P2

P3

P4

P5

P6

P7

P8

P9

0.0 0.25 0.5 0.75 1.0

Figure 6.5: Bcomsubdivision step heuristic.

CHAPTER 6. POLYNOMIAL REAL ROOT-FINDING ALGORITHMS 138

where modi�ed regula falsi �rst computes an initial approximate root using the scaled local

coe�cients. The initial root is then puri�ed a second time by modi�ed regula falsi using

the scaled master polynomial coe�cients.

Finally, the following function is considered for recording roots.

Algorithm 6.3.3.1 (RecordRoots (n @ x ! frjgnrootsj=1)) Record and return n

roots at value x into array frjg and increment the current root counter nroots by n, where-

upon the calling function is EXITED ONLY when the leftmost root only ag LeftRootonly
is de�ned and true in the calling function.

1. f rj = value gnroots+nj=nroots+1
2. nroots = nroots + n

3. If (LeftRootonly) Exit the calling function

End of RecordRoots

The left{most{root ag is useful for some applications such as ray tracing in which only the

smallest positive root is of interest.

6.4 Bernstein Convex Hull Isolating Step (Bchi)

The Bernstein convex hull isolating step (Bchi) algorithm separates each real root of [0; 1]

in ascending order by stepping along the t-axis in increments which are guaranteed to

contain at most one root. The step size is determined by taking the leftmost edge of an

optimal convex hull formed from a linear combination of the Bernstein polynomial segment

and its derivative. Once isolated, each root of each subinterval is subsequently re�ned the

modi�ed regula falsi method. The following subsections describe the preliminary concepts

and outline the basic strategy of algorithm Bchi.

6.4.1 Preliminary Concepts

De�ning the original polynomial as

P[a;b](t) = (t; y[a;b](t)) (6.4.1.5)

CHAPTER 6. POLYNOMIAL REAL ROOT-FINDING ALGORITHMS 139

and its �rst derivative polynomial as

P0[a;b](t) = (t; y0[a;b](t)) (6.4.1.6)

we have the following theorem.

Theorem 6.4. Assume that P[a;b](t) has at least two roots in [a; b]. Denote by �1 the

leftmost root, and by �5 the next largest root (�2, �3, and �4 will be used in the proof).

Form a new polynomial

V[a;b](t) = (t; v[a;b](t)) = (t; c1y[a;b](t) + c2y
0
[a;b](t)) (6.4.1.7)

where c1 and c2 are any real numbers, not both zero. For any give c1 and c2, denote the

leftmost root of V[a;b](t) by VL(c1; c2). For all possible c1 and c2, denote the largest value

of VL(c1; c2) by max(VL) Then,

�1 � max(VL) � �5: (6.4.1.8)

Proof: . �1 is a lower bound for max(VL) because VL(1; 0) = �1. If �1 = �5 (a multiple

root), then P[a;b](t) and P
0
[a;b](t) both have �1 as their leftmost root, and max(VL) = �1.

If �1 6= �5, then by Rolle's theorem, P0[a;b](t) has at least one root �3 2 [�1; �5]. Assume

without loss of generality that y(a) < 0. Then, since P[a;b](t) and P
0
[a;b](t) are continuous

functions, there exists a value �2 2 [�1; �3] such that y(�2) = y0(�2) and their also exists a

value �4 2 [�3; �5] such that y(�4) = �y0(�4).

Again since P[a;b](t) and P
0
[a;b](t) are continuous functions,

1. there is at least one root for v(t) in [�1; �2] for c1 = 1 and c2 2 [�1; 0].

2. there is at least one root for v(t) in [�2; �3] for c2 = 1 and c1 2 [�1; 0].

3. there is at least one root for v(t) in [�3; �4] for c2 = 1 and c2 2 [0; 1].

CHAPTER 6. POLYNOMIAL REAL ROOT-FINDING ALGORITHMS 140

4. there is at least one root for v(t) in [�4; �5] for c1 = 1 and c2 2 [0; 1].

Therefore, v(t) has at least one root in [�1; �5] for any c1 and c2, and VL � �5, with equality

holding only if �1 = �5.

P0

P1

P2

P3

P4

P5

V0

V1

V2

V3

V4

V5

Figure 6.6: Root isolation using Bchi

We can use this theorem to devise an algorithm for determining a large step size which

will not pass through more than one root. In essence, the algorithm considers all possible

values of c1 and c2 and �nds the maximum value of where the convex hulls of all the

resulting V[a;b](t) intersect the t-axis. This is an optimization problem which reduces to

linear programming by observing that the optimal choice of c1 and c2 is one for which the

leftmost edge of the convex hull of the control points of V[a;b](t) contains three collinear

points. This search can be performed in linear time.

If we are lucky, the convex hull of the control points of V[a;b](t) will intersect the t axis

between �1 and �5, thereby isolating the leftmost root of P[a;b](t). An example of this is

given in Figure 6.6. Notice in this example that V0, V1, and V2 are collinear.

CHAPTER 6. POLYNOMIAL REAL ROOT-FINDING ALGORITHMS 141

6.4.2 Algorithm: Bchi

Bchi is similar to the Bcha algorithms except it uses an isolating as opposed to an approx-

imating convergence step to bound a real root. The following algorithm discusses the steps

of Bchi which are outlined below.

Algorithm 6.4.2.1 (Bchi (LeftRootonly ; ttol; fci; "cigni=0; frjgnrootsj=1)) Bchi receives

as input a leftmost{root{only ag LeftRootonly , a solution tolerance ttol, and Bernstein co-

e�cients and their errors fyi; "yig de�ned over the domain [0; 1] and returns nroots roots

frjg.

Bchi.1. Real Root Pre-Isolation Steps,

Bchi.2. Real Root Isolation Steps.

End of Bchi

Bchi.1: Real Root Pre-Isolation Steps

1.1 INITIALIZE counters,

ASSIGN the interval tolerance ttol,

ASSIGN a master polynomial (poly) structure.

(The master poly structure consists of parameter limits [Tmin = 0:; Tmax = 1:],

degree N , coe�cients Yi, and error coe�cients Ei = 0: ; and is used for any root

re�nement evaluation.)

1.2 NORMALIZE the coe�cients Yi.

1.3 TEST for rightmost root(s) at the right interval limit Tmax.

(IF (jYnj � EYn), a root exists at Tmax. Thereupon, INCREMENT the

rightmost root counter nright, DEFLATE the master poly at Tmax, and REPEAT

this step, testing for further (multiple) roots at Tmax. Use: Bend0right)

1.4 COPY master poly structure to local poly structure,

PROCEED to Step 2.1.

(The local poly structure consists of parameter limits [t0; tn], degree n, coe�-

cients yi, and error coe�cients ei.)

Bchi.2: Real Root Isolation Steps

CHAPTER 6. POLYNOMIAL REAL ROOT-FINDING ALGORITHMS 142

2.1 TEST for root(s) at the left interval limit t0.

(IF ((jy0j � e0) OR deltaflag), a root exists at troot = t0. Therefore,

RECORD troot, DEFLATE the local poly at troot, and REPEAT this step,

checking for possible (multiple) roots at troot before continuing.)

2.2 COMPUTE the number of sign variations nvary in the yi sequence.

(The value nvary determines the number of possible real roots. It is implied that

IF (nvary = 0), the local poly has no real roots; that is, the master poly has

no real roots in the interval [t0; tn], and thus PROCEED to Step 2.5.)

2.3 TEST for > 1 real roots.

(IF (nvary > 1), need to �nd an optimal step to subdivide the local poly so

that only its leftmost root is isolated.)

2.3.1 COMPUTE a conservative approximation tstep = max(VL(c1; c2)),

TEST for convergence of the step.

(IF (tstep � (tn � t0) � ttol), ASSIGN deltaflag = TRUE, and

PROCEED to Step 2.1. In addition, the computation of tstep also

provides a possible slow convergence ag split for Step 2.3.4.)

2.3.2 SUBDIVIDE the local poly at tstep.

(ASSIGN the left poly segment to a left poly structure with limits

[tl = t0; tr = t0 + tstep(tn � t0)], coe�cients yli, and error coe�cients

eli; and the right poly segment as the local poly with the parameter

limits [t0 = tr; tn]. The left poly structure is used for the next step's

REFINE.)

2.3.3 TEST for root in left segment.

(Essentially, IF (yl0 � yln < 0), the left segment contains an iso-

lated real root. Therefore, REFINE the real root troot within the

limits [tl; tr], RECORD troot, DEFLATE the local poly at troot, and

PROCEED to Step 2.1.)

2.3.4 TEST for possible slow convergence.

(IF (split), there is a possible several orders of magnitude variance

among the yi. Therefore, SUBDIVIDEleft the local poly at tsplit where

[t0 = tsplit; tn = t0 + tsplit(tn � t0)].)

2.3.5 PROCEED to Step 2.1.

2.4 TEST for 1 real root.

(ELSE IF (nvary = 1), REFINE the isolated real root troot between the limits

[t0; tn], and RECORD it.)

CHAPTER 6. POLYNOMIAL REAL ROOT-FINDING ALGORITHMS 143

2.5 TEST for an inner poly segment.

(IF (tn < Tmax), the local poly is an inner poly segment. Therefore, ASSIGN

[t0 = tn; tn = Tmax], n = N , and yi = Yi. SUBDIVIDEright the local poly at

t0, and PROCEED to Step 2.1.)

2.6 RECORD nright roots = Tmax, and RETURN.

Bchialso uses modi�ed regula falsi to REFINE the bracketed real roots. RecordRoots

is described in [x6.3.2].

6.5 Standard Isolator Polynomial Separation (Sips)

The standard isolator polynomial separation algorithm (Sips) solves power form polynomials

of degrees 1{9. This algorithm is an extension of a degree 6 scheme originally developed by

Klimazewski and Sederberg which is based on Sederberg-Chang's [SC94] concepts regarding

isolating polynomials [xx 2.2.2] called isolator polynomials, or IPs, which are revisited below.

Sips �nds the real roots of a polynomial in ascending order by appropriately sorting

lower and upper real root bounds along with the roots of the generated IPs, and using

these values as the corresponding interval limits for each distinct real root of the original

polynomial. The roots of the IPs are solved using closed form real root solvers [xx 2.3.1,x 5.9].
The coe�cients of the IPs are formed from closed form equations that are derived from a

pair of IPs which are generated from a polynomial remainder sequence of the polynomial

and its �rst derivative.

An e�ort was attempted to formulate IPs in Bernstein form, hoping they would reduce to

a more intuitive, eloquent, and e�cient form. Since achieving this desired objective proved

unsuccessful, the algorithm is presented for polynomials in power form as to aide in future

discussion regarding testing with implementation of power form root �nders presented in

Chapter 7 on numerical results.

CHAPTER 6. POLYNOMIAL REAL ROOT-FINDING ALGORITHMS 144

6.5.1 Preliminary Concepts

The SIP algorithm exploits the fact that the real roots of the two IPs a(x) and b(x) isolate

all the real roots of the given standard polynomial p(x). Thus, all the real roots of a given

standard polynomial p(x) are isolated by solving for the roots of the two IPs a(x) and

b(x) which are generated from a polynomial remainder sequence generated by p(x) and

p0(x). Since the roots of the IPs are obtained via standard closed-form real root solvers,

this algorithm can �nd the real roots of a given polynomial up to degree 9 where both IPs

would be degree 4. These isolating roots are then sent as interval limits to a bracketing

root approximation function.

Isolator Polynomials

This section contains a brief description of Sederberg and Chang's report on isolating poly-

nomials which separate the real roots of a polynomial p(x) in <[x] by locating intervals

that contain exactly one real root of p. The method consists of �nding a pair of auxiliary

polynomials whose set of combined real roots contain at least one value in every closed

interval de�ned by each pair of adjacent real roots in p. It turns out that any member of

the polynomial remainder sequence generated by p and p0 can serve as one of these auxiliary

polynomials. The balance of the following discussion is an abridgement of Sederberg and

Chang's report [SC94]. Refer to this report for motivating examples.

Isolator polynomials are a pair of auxiliary polynomial de�ned as a(x) and b(x) in the

following theorem [SC94].

Theorem 6.5.1.1 (Isolator Polynomials, IP) Given any polynomial p(x) 2 <[x] with
two adjacent distinct real roots �1 and �2, and given any two other polynomials b(x); c(x) 2
<[x], de�ne

a(x) = b(x)p0(x) + c(x)p(x); (Deg(p) = n; a(x) 2 <[x]) (6.5.1.9)

Then a(x) or b(x) has at least one distinct real root in the closed interval [�1; �2].

CHAPTER 6. POLYNOMIAL REAL ROOT-FINDING ALGORITHMS 145

Thus, between any pair of distinct real roots of p(x) lies a distinct real root of a(x) or

b(x).

It is always possible to generate a pair of IPs a(x) and b(x) where

Deg(a) +Deg(b) = Deg(p)� 1

from a polynomial remainder sequence based on p and p0. For instance, let ri(x) de�ne any

member of the Sturm's sequence [x 2.2.2] of p and p0, that is

r�1(x) = p(x)
r0(x) = p0(x)
r1(x) = r�1(x)� q1(x)r0(x)
r2(x) = r0(x)� q2(x)r1(x)

� � �
ri(x) = ri�2(x)� qi(x)ri�1(x), (r0 = p0(x); r�1 = p(x)).

Then ai(x), bi(x) and ci(x) are formed in general by

ai(x) = ri(x), (a0 = r0(x); a�1 = r(x); a�2 = 0)
bi(x) = bi�2(x)� qi(x)bi�1(x) (b0 = 1; b�1 = 0),
ci(x) = ci�2(x)� qi(x)ci�1(x), (c0 = 0; c�1 = 1)

with Deg(ai) � Deg(p)� i� 1 and Deg(ai) +Deg(bi) = Deg(p)� 1.

The following recursive Mathematica [Wol91] expressions [Sed93] establish such a se-

quence based upon p(x) and p0(x) to generate a pair of IPs a(x) and b(x) and the polynomial

c(x), where px represents the polynomial equation of Deg(p(x)) = n in standard form.

Algorithm 6.5.1.1 (Mathematica Power Form IPs) Isolator polynomials represented by

a(x) and b(x) are generated from polynomial px = p(x) of degree n in power form.

a[-2,px_] := 0

a[-1,px_] := px

a[0,px_] := D[px,x]

a[n_Integer, px_] := PolynomialRemainder[a[n-2,px],a[n-1,px],x]

q[n_Integer,px_] := PolynomialQuotient[a[n-2,px],a[n-1,px],x]

b[-1,px_] := 0

b[0,px_] := 1

CHAPTER 6. POLYNOMIAL REAL ROOT-FINDING ALGORITHMS 146

b[n_Integer,px_] := b[n-2,px] - q[n,px] b[n-1,px]

c[-1,px_] := 1

c[0,px_] := 0

c[n_Integer,px_] := c[n-2,px] - q[n,px] c[n-1,px]

End of Mathematica Power Form IPs

The IP coe�cients are thus de�ned completely in terms of the the coe�cients of p(x)

in closed form.

Theorem (6.5.1.1) addresses the case of distinct real roots. For multiple real roots,

�1 = �2 and p(�1) = p0(�1) = a(�1). Thus, if a root in a(x) coincides with a root in p(x),

this root is a multiple root in p(x).

Informal testing performed by [SC94] indicated that IP root isolation is generally less

e�cient in oating point arithmetic than heuristic methods like Collins and Akritas [CA76]

which is based on Descartes' rule of signs.

6.5.2 Algorithm: Sips

The following three stages are used in conjunction with evaluating the Sips algorithm. The

Sips algorithm actually constitutes Step 2, Although any power form polynomial could be

substituted for Sips in Step 2.

Algorithm 6.5.2.1 (Sips (LeftRootonly ; tl; tr; ttol; fyi; "yigni=0; fr(IP)j gn
(IP)
roots

j=1 ; frjgnrootsj=1))

Sips receives as input a leftmost{root{only ag LeftRootonly , solution interval limits I [tl; tr],

a solution tolerance ttol, Bernstein coe�cients fyi; "yig, and returns n
(IP)
roots isolator roots

fr(IP)j g as well as nroots real roots frjg of the original polynomial over the interval I [tl; tr].

Sips.1. Real Root Pre-Sips Steps,

(For polynomials input in Bernstein form.)

Sips.2. Real Root Isolation Steps,

(For polynomials in power form.)

CHAPTER 6. POLYNOMIAL REAL ROOT-FINDING ALGORITHMS 147

Sips.3. Real Root Post-Sips Steps.

(For polynomials input in Bernstein form

when using pseudo Bernstein conversion.)

End of Sips

Sips.1: Real Root Pre-Algorithm Steps

1.1 ASSIGN a Bernstein polynomial master (poly) structure.

(The master poly structure consists of parameter limits [Tmin = 0:;Tmax = 1:],

degree N , coe�cients Yi, and error coe�cients Ei.)

1.2 ASSIGN an interval tolerance ttol,

COMPUTE a global coe�cient tolerance Ytol.

1.3 TEST for rightmost root(s) at the right interval limit Tmax.

(Use: Bend0right)

1.4 TEST for leftmost root(s) at the left interval limit Tmin.

(Use: Bend0left)

1.5 ASSIGN minimum and maximum real root bounds [tl; tr].

1.6 CONVERT coe�cients from Bernstein Yi to pseudo power pi form.

Sips.2: Real Root Isolation Steps

2.1 NORMALIZE the coe�cients pi.

2.2 COMPUTE the coe�cients ai and bi of the two isolator polynomials a(t) and

b(t).

(The isolator polynomial coe�cients ai and bi are calculated from coded formulas

that are a function of the coe�cients pi from precomputed expressions.

2.3 SOLVE for the real roots of the two isolator polynomials a(t) and b(t) using

closed form standard real root solvers.

2.4 SORT the solved isolator roots with the lower and upper real root bounds tl
and tr.

2.5 REFINE and RECORD the real roots between isolated root's intervals.

CHAPTER 6. POLYNOMIAL REAL ROOT-FINDING ALGORITHMS 148

2.6 Proceed to Step 3.1.

Sips.4: Real Root Post-Algorithm Steps

4.1 MAP real roots obtained from pseudo-power coe�cients back to the Bernstein

interval [Tmin; Tmax].

4.2 RETURN.

Sips uses modi�ed regula for REFINE to approximate the roots, and Horner's algorithm

to evaluate a polynomial in power form. Horner's algorithm is implemented both with and

without running error analysis which computes bounds for the computed value.

6.5.3 Algorithm Considerations

The following considerations apply to the above Sips algorithm outline.

Restricting Input to Power Form Polynomials

Polynomials input in power form require the modi�cation of only the following two steps

from stage Sips.1,

Sips.1.2 ASSIGN an interval tolerance ttol,

Sips.1.5 ASSIGN real root search interval bounds [tl; tr].

Steps Sips.1.1{4 dealing with the Bernstein form of the polynomial and testing for roots

at the parameter limits [Tmin; Tmax] is not applicable in the power basis since the parameter

now takes on the range t 2 [�1;+1]. This forces the use of classical real root bounding

techniques [xx 2.2.1] for step Sips.1.5 when the root search interval bounds [tl; tr] are not

known.

Although these classical techniques provide analytically sound real root bounds, nu-

merically these values are too conservative and inict slow convergence. Since these root

CHAPTER 6. POLYNOMIAL REAL ROOT-FINDING ALGORITHMS 149

bounds [tl; tr] consequently bound the leftmost and rightmost real roots, lack of su�ciently

close values usually impairs the convergence rate of any serial iterative root re�ning algo-

rithm. The closeness of these root bounds [tl; tr] to their respective leftmost and rightmost

real roots is imperative for quick convergence to these roots for any serial iterative root

re�nement scheme.

Finally, the lack for basis conversion eliminates steps Sips.1.6 and Sips.3.1. Therefore,

in addition to the two preliminary steps Sips.1.2 and 5, only stages Sips.2 and Sips.3 are

required.

Tighter Root Bounds from the Convex Hull

If all the roots in [Tmin; Tmax] are sought, then default root search bounds are obviously

[tl = Tmin; tr = Tmax]. Tighter bounds result when assigning the left hl and right hr convex

hull intersections with the t-axis as the root search interval bounds, i.e. [tl = hl; tr = hr].

These hull intersections provide smaller isolation intervals when re�ning the �rst and last

real roots of the interval.

Pseudo-basis Conversion

Step Sips.1.6 performs a pseudo Bernstein conversion on the Bernstein coe�cients, resulting

in pseudo power coe�cients [x 5.8].

Common Roots

Common roots of the original polynomial with the isolator polynomials do not guarantee

the existence of multiple roots. Rather, multiple roots are guaranteed to be common with

the original polynomial. Thus, it is possible for the isolator roots to coincide with each

other and the original polynomial and not be multiple roots. Figure 6.15 depicts a degree 7

CHAPTER 6. POLYNOMIAL REAL ROOT-FINDING ALGORITHMS 150

Wilkinson polynomial which is a classical example of this artifact. Thus, special techniques

are required to separate the coincident isolating interval information which is not covered

in this work.

It is important to note that equi-modular root conditions (e.g. the Wilkinson polyno-

mial) tend to produce more cases of common roots among the IPs. Mapping the domain

of the polynomial to a di�erent interval (such as in pseudo-basis conversion [x 5.8]) tends
to alleviates detected problems, although \a priori" knowledge of the root distribution is

usually not known.

6.5.4 Illustrative Examples of IPs

Below are some illustrative examples of isolator polynomials for various degrees based on

given polynomials.

0.0 1.0

p(x)

a(x)

b(x)

Figure 6.7: IPs of degree 1 and 3 based on a degree 5 Wilkinson polynomial over I [0; 1].

CHAPTER 6. POLYNOMIAL REAL ROOT-FINDING ALGORITHMS 151

0.0 1.0

a(x)

p(x)

b(x)

Figure 6.8: IPs of degree 1 and 3 based on a degree 5 polynomial over I [0; 1] with roots at
f:1; :2; :4; :6; :8g.

0.0 1.0

b(x)

p(x)

a(x)

Figure 6.9: IPs both of degree 2 based on a degree 5 Wilkinson polynomial over I [0; 1].

CHAPTER 6. POLYNOMIAL REAL ROOT-FINDING ALGORITHMS 152

0.0 1.0

b(x)

p(x)

a(x)

Figure 6.10: IPs both of degree 2 based on a degree 5 polynomial over I [0; 1] with roots at
f:1; :2; :4; :6; :8g.

0.0 1.0

b(x) a(x)

p(x)

Figure 6.11: IPs of degree 1 and 4 based on a degree 6 Wilkinson polynomial over I [0; 1].

CHAPTER 6. POLYNOMIAL REAL ROOT-FINDING ALGORITHMS 153

0.0 1.0

a(x)

b(x) p(x)

Figure 6.12: IPs of degree 1 and 4 based on a degree 6 polynomial over I [0; 1] with roots
at f:1; :2; :3; :4; :7; :9g.

0.0 1.0

b(x)

p(x) a(x)

Figure 6.13: IPs of degree 2 and 3 based on a degree 6 Wilkinson polynomial over I [0; 1].

CHAPTER 6. POLYNOMIAL REAL ROOT-FINDING ALGORITHMS 154

0.0 1.0

b(x)

a(x)
p(x)

Figure 6.14: IPs of degree 2 and 3 based on a degree 6 polynomial over I [0; 1] with roots
at f:1; :2; :3; :4; :7; :9g.

0.0 1.0

b(x)a(x)

p(x)

Figure 6.15: IPs of degree 2 and 4 based on a degree 7 Wilkinson polynomial over I [0; 1].

CHAPTER 6. POLYNOMIAL REAL ROOT-FINDING ALGORITHMS 155

0.0 1.0

b(x)a(x) p(x)

Figure 6.16: IPs of degree 2 and 4 based on a degree 7 polynomial over I [0; 1] with roots
at f:1; :2; :3; :4; :5; :6; 1:g.

0.0 1.0

a(x)

b(x)

p(x)

Figure 6.17: IPs both of degree 3 based on a degree 7 Wilkinson polynomial over I [0; 1].

CHAPTER 6. POLYNOMIAL REAL ROOT-FINDING ALGORITHMS 156

0.0 1.0

b(x) a(x) p(x)

Figure 6.18: IPs both of degree 3 based on a degree 7 polynomial over I [0; 1] with roots at
f:1; :2; :3; :4; :5; :6; 1:g.

0.0 1.0

a(x)

b(x)

p(x)

Figure 6.19: IPs of degree 3 and 4 based on a degree 8 Wilkinson polynomial over I [0; 1].

CHAPTER 6. POLYNOMIAL REAL ROOT-FINDING ALGORITHMS 157

0.0 1.0

b(x)

a(x)

p(x)

Figure 6.20: IPs of degree 3 and 4 based on a degree 8 polynomial over I [0; 1] with roots
at f:1; :2; :3; :4; :5; :6; :7; 1:g.

Chapter 7

Numerical Results

This chapter presents results of empirical tests which compare implementations of the real

root �nding algorithms outlined in chapter 6. The algorithms were tested in double precision

arithmetic on an IBM RS6000/350 workstation with oating-point machine constants as

summarized in table 7.1. These constants are de�ned in the system �le nusrnincludenoat.h
[Pla92].

IBM RS6000 Series Machines

Value Constant Description

2 FLT RADIX Machine Base

53 DBL MANT DIG Mantissa Bits

2.2204460492503131E{16 DBL EPSILON Machine Tolerance

1.1102230246251565E{16 � Machine Roundo� Unit

2.2250738585072014E{308 DBL MIN Machine Underow Limit

1.7976931348623157E+308 DBL MAX Machine Overow Limit

Table 7.1: Machine Floating-Point Constants

The following Bernstein form polynomial root �nding algorithms are included in the

benchmarked results. These root �nders are speci�cally designed to �nd all real roots in

the unit interval.

Bcom [x 6.3] is implemented in FORTRAN.

158

CHAPTER 7. NUMERICAL RESULTS 159

Bcha1 [x 6.1] is implemented in FORTRAN.

Bcha2 [x 6.2] is implemented in FORTRAN.

Bcha3 [x 6.2] is implemented in FORTRAN.

Bcha4 [x 6.2] is implemented in FORTRAN.

Bchi [x 6.4] is implemented in FORTRAN.

Rockwood [xx 2.6.1] is implemented in FORTRAN based on the pseudo code outline

presented in [Roc89].

Lane{Schneider [xx 2.6.1] is implemented in C based on the code in [Sch90a] with some

simpli�cation and corrections.

Routines which are written for power basis polynomials can also solve for Bernstein

roots by using the pseudo basis conversion [x 5.8]. This conversion does not induce any

appreciable error. The following algorithms, included in the benchmarked results, compute

all real and complex roots of a polynomial in power basis.

Rpoly [xx 2.4] is the self-contained Jenkins{Traub FORTRAN program taken directly

from [Jen75] with its intrinsic functions updated to accommodate double precision

variables.

Laguerre [xx 2.4] is written in FORTRAN as found in [PFTV86], with intrinsic functions

changed to accommodate double precision.

Dunaway [xx 2.4] is written in FORTRAN, taken directly from [Dun72].

Madsen{Reid [xx 2.4] is written in FORTRAN, copied directly from [MR75]. Minor mod-

i�cation was performed to eliminate occasional oating-point overows.

CHAPTER 7. NUMERICAL RESULTS 160

The following algorithms, included in the benchmarked results, compute only the real

roots of a power basis polynomial.

Closed Form [x 5.9, xx 2.3.1], the closed{form solutions to polynomials of degree two,

three, and four, are implemented in both FORTRAN and C using concepts primarily

found in [Lod90, PFTV90] with some constructions noted in [Sch90b]. Only real roots

are computed.

Exclusion [x 2.5.4] was generously provided by its authors. It is written in C. The basic

algorithm returns a set of disjoint intervals which each contain exactly one root.

We coupled it with the same Modified Regula Falsi C algorithm used in the

Sturm (Hook{McAree) algorithm.

Sips [x 6.5] is written in C and uses the the C versions ofClosed Form. ItsModified Regula Falsi

algorithm is the same one used by Bcom, Bcha2�4, and Bchi modi�ed to accommo-

date power form evaluations and converted to C.

Sturm (Hook{McAree) [xx 2.5.1] is written in C, taken directly from [HM90].

The algorithms were polished and debugged su�cient enough to provide a rough indica-

tion of their relative performance. Only Bcom, Rpoly, and Laguerre performed robustly

in almost every case. We suspect that the implementation of each of the other algorithms

can be improved to handle cases of polynomials simple roots reliably.

Relative di�erences in execution time of less than a factor of, say, three should not be

attributed much signi�cance. These relative performance measures are rather sensitive to

what machine the tests are being run on, and what compiler or compiler options are being

used, as well as which set of polynomials is being tested. Furthermore, we did not make

much e�ort to optimize the code.

CHAPTER 7. NUMERICAL RESULTS 161

7.1 Test Problems and Results for Distinct Real Roots

Number of roots
in [0; 1] 1 2 5

Bcom 1 1.1 2.9

Bcha1 1.9 1.7 4.2

Bcha2 2.3 2.3 7.2

Bchi 1.2 1.6 3.4

Rockwood 1 1.1 4

Lane{Schneider 4.3 6.8

Rpoly 3.2 2 1.5

Exclusion 15 11 20

Sips 2.4 1 1

Laguerre 5.6 3 3

Dunaway 83 46

Sturm (Hook{McAree) 3.2 1.7 3.5

Average Unit Time (sec) .92e-3 .43e-2 .16e-2

Table 7.2: Relative Execution Times for Degree Five Polynomials

Number of roots
in [0; 1] 1 2 5 10

Bcom 1 1 1 1.4

Bcha1 2.5 2.3 2.0 2.2

Bcha2 4.1 4.4 4.4 4.2

Bcha3 3.7 | | |

Bcha4 3.0 50 | |

Bchi 1.5 2.8 2.3 2.7

Rockwood 1.6 1.7 2.0 2.5

Lane{Schneider | | 4.8 3.5

Rpoly 9.0 4.8 1.9 1

Laguerre 16 7.8 2.5 1.3

Dunaway 170 98 45 21

Sturm (Hook{McAree) 109 71 28 16

Average Unit Time (sec) .12e-2 . .22e-2 . .60e-2 . .19e-1

Table 7.3: Relative Execution Times for Degree Ten Polynomials

CHAPTER 7. NUMERICAL RESULTS 162

Number of roots
in [0; 1] 1 2 3 10 20

Bcom 1 1 1 1 1.4

Bcha1 1.64 4.1 4.3 3.1 4.1

Bchi 1.7 4 4.1 2.7 5.6

Rockwood 2.7 2.8 3.3 3.2 5.9

Rpoly 19 11 7.7 1.3 1

Exclusion 97 50 36 | |

Laguerre 45 23 15 2.5 1.7

Average Unit Time (sec) .34e-2 .72e-2 .17e-1 .44e-1 .21e-1

Table 7.4: Relative Execution Times for Degree Twenty Polynomials

Degree 2 3 4 5 10 15 20 25

Bcom 29 25 17 1.4 1.38 1.44 1.55 1.56

Bcha1 21 22 17 1.6 2 2.7 3.5 4.4

Bcha2 21 17 24 2.5 3.4 4.8 6.55 8.3

Bcha3 | 17 12 1.8 2.3 3.2 4.73 X

Bcha4 | | 12 1.3 2.1 3.5 X X

Bchi 16 16 17 1.7 2.25 3.8 4.73 5.9

Rockwood 8 18 14 15 1.6 2.5 3.8 4.82

Lane{Schneider 131 193 79 10 145 24 84 10.4

Closed Form 1 1 1 | | | | |

Rpoly 2 2 8.3 1 1 1 1 1

Exclusion 71 180 80 9.7 11.6 15 18.4 8.7

Sips 1 3.2 2.8 1.27 | | | |

Laguerre 12 13 9 1.01 1.25 1.25 1.45 1.44

Dunaway 220 127 67 11 94 25 73 11

Madsen{Reid 13 16 13 1.2 1.13 1.94 8.1 X
Sturm (Hook{McAree) 11 13 127 41 27 31 37 42

Average Unit Time (sec) .25e-5 .67e-5 .15e-4 .22e-3 .40e-3 .16e-2 .22e-2 .32e-2

Table 7.5: Relative Execution Times for Wilkinson Polynomials in I [0; 1]

CHAPTER 7. NUMERICAL RESULTS 163

Number of roots in [0; 1] 0 1 2

Closed Form 2.5 1.4 1

Bcom 16 14 26

Bcha1 9 24 20

Bcha2 6 12 13

Bcha3 8 12 13

Bcha4 7 11 13

Bchi 10 15 20

Rockwood 5 10 15

Lane{Schneider 1 60 97

Rpoly 5.5 2 2

Exclusion 151 102 133

Sips 4.5 1 1.4

Laguerre 30 13 11

Dunaway 311 129 109

Sturm (Hook{McAree) 46 15 14

Average Unit Time (sec) .20e-4 .50e-4 .29e-3

Table 7.6: Relative Execution Times for Degree Two Polynomials

Number of roots in [0; 1] 0 1 2 3

Closed Form 16 1 1 1

Bcom 35 5 12 17

Bcha1 16 9 16 20

Bcha2 16 10 14 28

Bcha3 14 6 11

Bchi 24 5 14 14

Rockwood 10 4 18

Lane{Schneider 1 22 50 54

Rpoly 112 7 9 6.4

Exclusion 507 51 77 101

Sips 12 7 13 13

Laguerre 160 12 11 12

Dunaway 3255 205 97 X

Sturm (Hook{McAree) 147 10 11 10

Average Unit Time (sec) .10e-4 .15e-3 .12e-3 .74e-3

Table 7.7: Relative Execution Times for Degree Three Polynomials

CHAPTER 7. NUMERICAL RESULTS 164

Number of roots
in [0; 1] 1 2 3 4

Closed Form 1 1 1 1

Bcom 2 5 7.6 8.8

Bcha1 4 6 10 14

Bcha2 5 9 15 22

Bcha3 5 7 10

Bcha4 20 5 7

Bchi 3 6 10 9

Rockwood 2 4 8 12

Lane{Schneider 11 19 32 22

Rpoly 6 5 7 4.5

Exclusion 31 36 52 62

Sips 5 6 8 6

Laguerre46.5 10 7 8 8

Dunaway 143 92 71

Sturm (Hook{McAree) 6 6 7 32

Average Unit Time (sec) .34e-3 .39e-3 .94e-2 .80e-3

Table 7.8: Relative Execution Times for Degree Four Polynomials

Number of roots
in [0; 1] 2 3 5

Bcom 1 1 1

Rpoly 8 6 3.5

Laguerre 20 14 8

Average Unit Time (sec) .42e-2 .64e-2 .12e-1

Table 7.9: Relative Execution Times for Degree 20 with Clustered Roots

Number of roots
in [0; 1] 2 3 4 5

Bcom 1 1 1 1

Rpoly 3.8 2.7 1.8 1.4

Laguerre 7.4 5.1 3.4 2.3

Average Unit Time (sec) .26e-2 .37e-2 .53e-2 .68e-2

Table 7.10: Relative Execution Times for Degree 10 with Clustered Roots

CHAPTER 7. NUMERICAL RESULTS 165

7.2 Discussion

For polynomials of degree two, three, and four, the Closed Form algorithms are clearly

fastest. For degree �ve through nine, Bcom and Rockwood appear to be fastest, though

Sips works well if there are several real roots, especially if they are clustered.

For degree ten and higher, Bcom appears to be fastest when the number of real roots

in [0; 1] is small. If the number of real roots approaches the degree of the polynomial,

Rpoly is the best of the algorithms we tested. We ran some sample tests for higher degree

polynomials, and Bcom was almost always 10{30 times faster than Rpoly for 1{3 real

roots in [0; 1].

Bcom also is capable of handling multiple roots more intelligently than the other Bern-

stein root �nders that we implemented, since it engages the roots of derivatives and performs

a running error analysis. Furthermore, the algorithm can probably be sped up somewhat

by performing the running error analysis only on the �nal few re�nement iterations.

For degree greater than ten, Bcom can outperform Rpoly because it typically concerns

itself with a small subset of the roots that Rpoly computes. Bcom runs faster than

other Bernstein root �nders such as Rockwood, Bcha1, and Lane{Schneider largely

because it re�nes roots using the O(n) Horner evaluation algorithm rather than the O(n2)

de Casteljau algorithm.

Chapter 8

Conclusions

This study was motivated by a recurring problem in practical computer{aided design and

computer graphics applications, namely, the determination of the real roots of a polynomial

on a �nite interval. The widespread use of the B�ezier representation for curves and surfaces,

and the inherent numerical stability of the Bernstein polynomial basis, provides a fruitful

context for re{examination of this classical problem.

We have presented and analyzed a variety of algorithms that take advantage of the

intuitive geometric properties and constructions associated with the Bernstein form. These

algorithms are simple in implementation, and also compare favorably in performance with

established power{form root solvers. In instances involving high{degree polynomials with

only a few real roots on the domain of interest, which are typical of cases encountered

in CAD applications, the Bernstein{form solvers can in fact be signi�cantly faster than

the state{of{the{art RPOLY power{form solver developed by Jenkins and Traub (which

determines both real and complex roots).

The use of Bernstein{form solvers in the geometric processing of free{form curves and

surfaces obviates the need to perform explicit Bernstein{to{power basis conversions, which

can be numerically unstable (note also that the pseudo{basis conversion allows the roots of

Bernstein{form polynomials to be found using power{form solvers without loss of accuracy).

166

CHAPTER 8. CONCLUSIONS 167

In addition to taking advantage of the superior numerical stability of the Bernstein form

de�ned over the nominal interval t 2 [0; 1], as compared to the power form about t = 0,

we showed that the monotonically{improving condition of Bernstein representations with

respect to subdivision yields a practical \preconditioning strategy" for computing the real

roots of ill{conditioned high degree polynomials.

Speci�cally, when constructing the Bernstein coe�cients of, say, a polynomial whose

roots represent the intersections of two B�ezier curves, the relative coe�cient errors incurred

in the \construction" process are found to be fairly independent of the size of the chosen

parameter interval, whereas even a small reduction in the Bernstein interval width can result

in dramatic improvements in the root condition numbers. Thus, by constructing Bernstein

representations on a few subintervals, rather than the full domain [0; 1], intersection points

can be computed to very high accuracy.

CHAPTER 8. CONCLUSIONS 168

Bibliography

Bibliography

[Act70] Forman S. Acton. Numerical Methods That Work. Harper and Row Publications,

Inc., New York, 1970.

[AH83] Gotz Alefeld and Jurgen Herzberger. Introduction to Interval Computations. Aca-

demic Press, New York, 1983.

[Ait26] A.C. Aitken. On Bernoulli's numerical solution of algebraic equations. Proceedings

of the Royal Society of Edinburgh, 46:289{305, 1926.

[Alt83] Rene Alt. Minimizing the error propagation in the integration of ordinary dif-

ferential equations. In R. Stepleman et al., editor, Scienti�c Computing, IMACS

Transactions on Scienti�c Computation, pages 231{235. North-Holland, Amster-

dam, 1983.

[Alt86] R. Alt. The use of the CESTAC method in the parallel computation of roots of

polynomials. In Robert Vichnevetsky and Jean Vignes, editors, Numerical Math-

ematics and Applications, IMACS Transactions on Scienti�c Computation, pages

3{9. North-Holland, Amsterdam, 1986.

[BC86] Marie-Christine Brunet and Francoise Chatelin. CESTAC, a tool for stochastic

round-o� error analysis in scienti�c computing. In Robert Vichnevetsky and Jean

Vignes, editors, Numerical Mathematics and Applications, IMACS Transactions on

Scienti�c Computation - 85, pages 11{20. North-Holland, Amsterdam, 1986.

[BDM84] C. Bouville, J.L. Dubois, and I. Marchal. Generating high quality pictures by

ray tracing. In B�, K. and Tucker, H.A., editor, Eurographics'84, pages 161{177,

Copenhagen, September 1984. North-Holland.

[Bel90] R. Bell. IBM RISC System/6000 performace tuning for numerically intensive FOR-

TRAN and C programs. Technical Report Document GG24{3611, IBM Interna-

tional Technical Support Center, Poughkeepsie, NY, 1990.

[BFK84] Wolfgang Bohm, Gerald Farin, and Jurgen Kahmann. A survey of curve and

surface methods in cagd. Computer Aided Geometric Design, 1:1{60, 1984.

169

BIBLIOGRAPHY 170

[BFR81] Richard L. Burden, J. Douglas Faires, and Albert C. Reynolds. Numerical Anal-

ysis. Prindle, Weber & Schmidt, Boston, 2nd edition, 1981.

[Boc64] Maxime Bocher. Introduction to Higher Algebra. Dover Publications, Inc., New

York, 1964.

[Bod49] E. Bodewig. On types of convergence and on the behavior of approximations in the

neighborhood of a multiple root of an equation. Quarterly of Applied Mathematics,

7:325{333, 1949.

[Bor50] Samuel Borofsky. Elementary Theory Of Equations. The MacMillan Company,

New York, 1950.

[Bor85] G.J. Borse. Fortran 77 and Numerical Methods for Engineers. PWS Engineering,

Boston, 1985.

[BP60] William Snow Burnside and Arthur William Panton. The Theory Of Equations:

With an Introduction to the Theory of Binary Algebraic Forms, volume 1. Dover

Publications, Inc., New York, 7th edition, 1960.

[Bre71] R.P. Brent. An algorithm with guaranteed convergence for �nding a zero of a

function. The Computer Journal, 14(4):422{424, 1971.

[Bre73] Richard P. Brent. Algorithms for Minimization without Derivatives. Prentice-Hall,

Inc., Englewood Cli�s, N.J., 1973.

[Buc66] R.A. Buckingham. Numerical Methods. Sir Issac Pitman & Sons LTD., London,

1966.

[BV80] P. Bois and Jean Vignes. A software for evaluating local accuracy in the Fourier

transform. Mathematics and Computers in Simulation, XXII:141{150, 1980.

[CA76] George E. Collins and Alkiviadis G. Akritas. Polynomial real root isolation using

Descarte's rule of signs. In Proceedings of the 1976 ACM Symposium on Symbolic

and Algebraic Computation, pages 272{275, 1976.

[Caj04] Florian Cajori. An Introduction To The Modern Theory Of Equations. The MacMil-

lan Company, New York, 1904.

[CDM79] Harlan Crowder, Ron S. Dembo, and John M. Mulvey. On reporting computa-

tional experiments with mathematical software. ACM Transactions on Mathemat-

ical Software, 5(2):193{203, June 1979.

[CL76] George E. Collins and R�udiger Loos. Polynomial real root isolation by di�eren-

tiation. In Proceedings of the 1976 ACM Symposium on Symbolic and Algebraic

Computation, pages 15{25, 1976.

BIBLIOGRAPHY 171

[CL82] George E. Collins and R�udiger Loos. Real zeros of polynomials. Computing, Suppl.,

4:83{94, 1982.

[CLR80] Elaine Cohen, Tom Lyche, and Richard F. Riesenfeld. Discrete B{splines and

subdivision techniques in computer{aided geometric design and computer graphics.

Computer Graphics and Image Processing, 14:87{111, 1980.

[CS66] G.T. Cargo and O. Shisha. The bernstein form of a polynomial. Journal Of

Research of the National Bureau of Standards - B, Mathematics and Mathematical

Physics, 70B(1):79{81, January{March 1966.

[Dav27] Charles Davison. Higher Algebra: For Colleges and Secondary Schools. University

Press, Cambridge, 2nd edition, 1927.

[DB75] G. Dahlquist and �A. Bj�orck. Numerical Methods. Prentice{Hall, Englewood Cli�s,

NJ, 1975.

[DD88] M. Daniel and J.C. Daubisse. The numerical problem of using B�ezier curves and

surfaces in the power basis. Computer Aided Geometric Design, 6:121{128, 1988.

[Dic22] Eugene Leonard Dickson. First Course In The Theory Of Equations. John Wiley

& Sons, Inc., New York, 1922.

[DM72] William S. Dorn and Daniel D. McCracken. Numerical Methods with Fortran IV

Case Studies. John Wiley & Sons, Inc., New York, 1972.

[Dod78] Irving Allen Dodes. Numerical Analysis for Computer Sciences. North{Holland,

New York, 1978.

[DS90] David Dobkin and Deborah Silver. Applied computational geometry: Towards

robust solutions of basic problems. Journal of Computer and System Sciences,

40:70{87, 1990.

[Dun72] Donna K. Dunaway. A Composite Algorithm for Finding Zeros of Real Polynomi-

als. PhD thesis, Southern Methodist University, August 21 1972. FORTRAN code

included.

[Dun74] Donna K. Dunaway. Calculation of zeros of a real polynomial through factorization

using Euclid's algorithm. SIAM J. Numer. Anal., 11(6):1087{1104, December 1974.

[DY93] Jean-Pierre Dedieu and Jean-Claude Yakoubsohn. Computing the real roots of a

polynomial by the exclusion algorithm. Numerical Algorithms, 4:1{24, 1993.

[ECS94] Academic careers for experimental computer scientists and engineers. Communi-

cations of the ACM, 37(4):87{90, 1994.

BIBLIOGRAPHY 172

[Far86] R.T. Farouki. The characterization of parametric surface sections. Computer Vi-

sion, Graphics, and Image Processing, 33:209{236, 1986.

[Far91a] R.T. Farouki. Computing with barycentric polynomials. The Mathemtical Intelli-

gencer, 13:61{69, 1991.

[Far91b] R.T. Farouki. On the stability of transformations between power and Bernstein

polynomial forms. Computer Aided Geometric Design, 8:29{36, 1991.

[Fay83] J.-P. Faye. Stabilizing eigenvalue algorithms. In R. Stepleman et al., editor, Scien-

ti�c Computing, IMACS Transactions on Scienti�c Computation, pages 245{249.

North-Holland, Amsterdam, 1983.

[FJ94] R.T. Farouki and J.K. Johnstone. The bisector of a point and a plane parametric

curve. Computer Aided Geometric Design, to appear, 11, 1994.

[FL85] M.R. Farmer and G. Loizou. Locating multiple zeros interactively. Comp. & Maths

with Appls., 11:595{603, 1985.

[FMM77] George E. Forsythe, Michael A. Malcolm, and Cleve B. Moler. Computer Methods

for Mathematical Computations. Prentice-Hall, Inc., Englewood Cli�s, NJ, 1977.

[FN90a] R.T. Farouki and C. A. Ne�. Analytic properties of plane o�set curves & Algebraic

properties of plane o�set curves. Computer Aided Geometric Design, 7:89{99 &

100{127, 1990.

[FN90b] R.T. Farouki and C.A. Ne�. On the numerical condition of Bernstein{B�ezier

subdivision processes. Mathematics of Computation, 55:637{647, 1990.

[FR87] R.T. Farouki and V.T. Rajan. On the numerical condition of polynomials in Bern-

stein form. Computer Aided Geometric Design, 4:191{216, 1987.

[FR88] R.T. Farouki and V.T. Rajan. Algorithms for polynomials in Bernstein form.

Computer Aided Geometric Design, 5:1{26, 1988.

[FS65] D.K. Faddeev and I.S. Sominskii. Problems in Higher Algebra. W. H. Freeman &

Company, San Francisco, 1965.

[FV85] J.-P. Faye and J. Vignes. Stochastic approach of the permutation-perturbation

method for round-o� error analysis. Applied Numerical Mathematics, 1:349{362,

1985.

[Gar79] Irene Gargantini. The numerical stability of simultaneous iterations via square-

rooting. Comp. & Maths. with Appls., 5:25{31, 1979.

[GH72] Irene Gargantini and Peter Henrici. Circular arithmetic and the determination of

polynomial zeros. Numerische Mathematik, 18:305{320, 1972.

BIBLIOGRAPHY 173

[GH73] J.A. Grant and G.D. Hitchins. The solution of polynomial equations in interval

arithmetic. The Computer Journal, 16(1):69{72, 1973.

[GK90] S. Ghaderpanah and S. Klasa. Polynomial scaling. SIAM J. Numer. Anal.,

27(1):117{135, February 1990.

[GL70] Donald I. Good and Ralph L. London. Computer interval arithmetic: De�nition

and proof of correct implementation. Journal of the ACM, 17(4):603{612, 1970.

[Gla89] Andrew S. Glassner. Simple numerical root-�nding. The Ray Tracing News,

3(1):19{22, May 1989. C code included.

[Gra65] A.A. Grau. Modi�ed Grae�e method. Communications of the ACM, 8(6):379{380,

1965.

[Gra89] Thomas A. Grandine. Computing zeros of spline functions. Computer Aided Geo-

metric Design, 6:129{136, 1989.

[GSA84] Ronald N. Goldman, Thomas W. Sederberg, and David C. Anderson. Vector

elimination: A technique for the implicitization, inversion, and intersection of pla-

nar parametric rational polynomial curves. Computer Aided Geometric Design,

1:327{356, 1984.

[Ham71] Richard W. Hamming. Introduction to applied numerical analysis. McGraw{Hill,

New York, 1971.

[Han69] E. Hansen. Topics In Interval Analysis. Clarendon Press, Oxford, 1969.

[Han70] Richard J. Hanson. Automatic error bounds for real roots of polynomials having

interval coe�cients. The Computer Journal, 13(3):284{288, August 1970.

[Han78a] E. Hansen. A globally convergent interval method for computing and bounding

real roots. BIT, 20:415{424, 1978.

[Han78b] E. Hansen. Interval forms of Newton's method. Computing, 20:153{163, 1978.

[Han83] Pat Hanrahan. Ray tracing algebraic surfaces. Computer Graphics (SIGGRAPH'83

Proceedings), 17:83{90, July 1983.

[HE86] Don Herbison-Evans. Solving quartics and cubics for graphics. Technical Report

CS-86-56, University of Waterloo, November 1986.

[Hei71] Lee E. Heindel. Integer arithmetic algorithms for polynomial real zero determina-

tion. Journal of the ACM, 18(4):533{548, 1971.

[Hen64] Peter Henrici. Elements of Numerical Analysis. John Wiley & Sons, New York,

1964.

BIBLIOGRAPHY 174

[Hen70] Peter Henrici. Uniformly convergent algorithms for the simultaneous determination

of all zeros of a polynomial. In Ortega J.M. and Rheinboldt, W.C, editor, Proceed-

ings of the Symposium on Numerical Solution of Nonlinear Problems, Studies in

Numerical Analysis 2, pages 1{8, Philedelphia, 1970. SIAM.

[Hen82] Peter Henrici. Essentials of Numerical Analysis: With Pocket Calculator Demon-

strations. John Wiley & Sons, New York, 1982.

[HG83] E.R. Hansen and R.I. Greenberg. An interval Newton method. Applied Mathemat-

ics and Computation, 12:89{98, 1983.

[Hil74] F.B. Hildebrand. Introduction To Numerical Analysis. International Series in

Pure and Applied Mathematics. McGraw-Hill Book Company, Inc., New York,

2nd edition, 1974.

[HM90] D.G. Hook and P.R. McAree. Using Sturm sequences to bracket real roots of

polynomial equations. In Andrew S. Glassner, editor, Graphics Gems, pages 416{

422,743{755. Academic Press, Inc., San Diego, CA, 1990. C code included.

[Hou53] A.S. Householder. Principles Of Numerical Analysis. International Series in Pure

and Applied Mathematics. McGraw-Hill Book Company, Inc., New York, 1953.

[Hou70] A.S. Householder. The Numerical Treatment Of A Single Nonlinear Equation.

McGraw-Hill Book Company, Inc., New York, 1970.

[HP77] Eldon Hansen and Merrell Patrick. A family of root �nding methods. Numer.

Math., 27:257{269, 1977.

[Ign71] James P. Ignizio. On the establishment of standards for comparing algorithm

performance. Interfaces, 2(1):8{11, November 1971.

[IK66] Eugene Isaacson and Herbert Bishop Keller. Analysis of Numerical Methods. John

Wiley & Sons, Inc., New York, 1966.

[Jen75] M.A. Jenkins. Algorithm 493: Zeros of a real polynomial [c2]. ACM Transactions

on Mathematical Software, 1(2):178{192, June 1975. FORTRAN code included.

[JT70] M.A. Jenkins and J.F. Traub. A three-stage algorithm for real polynomials using

quadratic iteration. SIAM J. Numer. Anal., 7(4):545{570, 1970.

[JT74] Michael A. Jenkins and Joseph F. Traub. Principles for testing polynomial ze-

ro�nding programs. In Proceedings of Mathematical Software II, pages 84{107,

West Lafayette, Ind., Purdue Univ., May 29-31 1974.

[JT75] M.A. Jenkins and J.F. Traub. Principles for testing polynomal zero�nding pro-

grams. ACM Transactions on Mathematical Software, 1(1):26{34, March 1975.

BIBLIOGRAPHY 175

[Kaj82] James T. Kajiya. Ray tracing parametric patches. Computer Graphics (SIG-

GRAPH'82 Proceedings), 23(2):245{254, July 1982.

[KL73] Toyohisa Kaneko and Bede Liu. On local roundo� errors in oatng point arithmetic.

Journal of the Association for Computing Machinery, 20(3):391{398, 1973.

[KM81] Ulrich W. Kulisch and Willard L. Miranker. Computer Arithmetic in Theory and

Practice. Academic Press, New York, 1981.

[Kur80] A. Kurosh. Higher Algebra. Mir Publishers, Moscow, 3rd edition, 1980.

[Lin41] Shih-nge Lin. A method of successive approximations of evaluating the real and

complex roots of cubic and higher-order equations. Journal of Mathematics and

Physics, 20:231{242, 1941.

[Lin43] Shih-nge Lin. A method for �nding roots of algebraic equations. Journal of Math-

ematics and Physics, 20:60{77, 1943.

[LN79] Charles C. Lee and H.P. Niu. Determination of zeros of polynomials by synthetic

division. International Journal of Computer Mathematics, 7:131{139, 1979.

[Lod90] Suresh Lodha. Computing real zeros of quartic and lower order polynomials in

closed-form. IBM Research Report RC16056, IBM Research Division, T. J. Watson

Research Center Yorktown Heights, NY 10598, October 1990.

[LR80] Je�rey M. Lane and Richard F. Riesenfeld. A theoretical development for the

computer generation and display of piecewise polynomial surfaces. IEEE Trans.

Pattern Anal. Machine Intell., 2:35{46, 1980.

[LR81] Je�rey M. Lane and Richard F. Riesenfeld. Bounds on a polynomial. BIT, 21:112{

117, 1981.

[Mac54] Cyrus Colton MacDu�ee. Theory Of Equations. John Wiley & Sons, Inc., New

York, 1954.

[Mac63] Nathaniel Macon. Numerical Analysis. John Wiley & Sons, Inc., New York, 1963.

[Mad73] Kaj Madsen. A root-�nding algorithm based on Newton's method. BIT, 13:71{75,

1973.

[Mar66] Morris Marden. Geometry of Polynomials. Mathematical Surveys Number III.

American Mathematical Society, Providence, Rhode Island, 1966.

[Mat79] G.K. Matthew. An alternative to Euclid's algorithm. Transactions of the ASME:

Journal of Mechanical Design, 101:582{586, October 1979.

BIBLIOGRAPHY 176

[MB72] Ian Munro and Allan Borodin. E�cient evaluation of polynomial forms. Journal

of Computer and System Sciences, 6:625{638, 1972.

[MC90] Denis Marchepoil and Patrick Chenin. Algorithmes de recherche de z�eros d�une

fonction de B�ezier. Laboratoire de Mod�elisation et Calcul RR 834-I & M-, In-

stitut National Polytechnique de Grenoble, Universit�e Joseph Fourier Grenoble 1,

Centre National de la Recherche Scienti�que, Ecole Normale Sup�erieure de Lyon,

November 1990.

[McN73] Samuel S. McNeary. Introduction To Computational Methods For Students Of

Calculus. Prentice-Hall, Inc., Englewood Cli�s, NJ, 1973.

[Mer06] Mans�eld Merriman. The Solution Of Equations. Mathematical Monographs No.

10. John Wiley & Sons, New York, 4th edition, 1906.

[Mil75a] Webb Miller. Computer search for numerical instability. Journal of the Association

for Computing Machinery, 1(2):512{521, October 1975.

[Mil75b] Webb Miller. Software for roundo� analysis. ACM Transactions on Mathematical

Software, 1(2):108{128, June 1975.

[Moo66] Ramon E. Moore. Interval Analysis. Prentice-Hall Series in Automatic Computa-

tion. Prentice-Hall, Inc., Englewood Cli�s, NJ, 1966.

[Moo76] J.B. Moore. A consistently rapid algorithm for solving polynomial equations. J.

Inst. Maths. Applics, 17:99{110, 1976.

[Moo77] J.B. Moore. A test for existence of solutions to nonlinear systems. SIAM Journal

of Numerical Analysis, 14(4):611{615, 1977.

[Moo79] Ramon E. Moore. Methods And Applications Of Interval Analysis. SIAM Studies

in Applied Mathematics. SIAM, Philadelphia, 1979.

[Mor83] J. Ll. Morris. Computational Methods In Elementary Numerical Analysis. John

Wiley & Sons, Inc., New York, 1983.

[MP65] A.P. Mishina and I.V. Proskuryakov. Higher Algebra: Linear Algebra, Polynomials,

General Algebra. Pergamon Press Ltd., Oxford, 1st English edition, 1965.

[MR75] K. Madsen and J.K. Reid. Fortran subroutines for �nding polynomial zeros. Tech-

nical Report A.E.R.E. R.7986, Computer Science and Systems Division, AERE

Harwell, Computer Science and Systems Division, A.E.R.E. Harwell, Didcot, Ox-

ford, England, February 1975.

[Mul56] David E. Muller. A method for solving algebraic equations using an automatic

computer. Math. Tab., Wash., 10:208{215, 1956.

BIBLIOGRAPHY 177

[Non84] T.R.F. Nonweiler. Computational Mathematics: An Introduction to Numerical

Approximation. Ellis Horwood Limited, Chichester, 1984.

[Ost60] A.M. Ostrowski. Solution of Equations and Systems of Equations. Academic Press,

New York, 1960.

[Pav82] Theo Pavlidis. Algorithms for Graphics and Image Processing. Computer Science

Press, Rockville, MD, 1982.

[PC86] Chris Phillips and Barry Cornelius. Computational Numerical Methods. Ellis Hor-

wood Limited, Chichester, 1986.

[Pen70] Ralph H. Pennington. Computer Methods and Numerical Analysis. Macmillian

Co., Toronto, 1970.

[Pet81] M.S. Petkovic. On a generalization of the root iterations for polynomial complex

zeros in circular interval arithmetic. Computing, 27:37{55, 1981.

[Pet89] Miodrag Petkovic. Iterative Methods For Simultaneous Inclusion of Polynomial

Zeros. Lecture Notes in Mathematics #1387. Springer-Verlag, Berlin, 1989.

[PFTV86] William H. Press, Brian P. Flannery, Saul A. Teukolsky, and William T. Vet-

terling. Numerical Recipes in FORTRAN: The Art of Scienti�c Computing. Cam-

bridge University Press, Cambridge, 1986.

[PFTV90] William H. Press, Brian P. Flannery, Saul A. Teukolsky, and William T. Vet-

terling. Numerical Recipes in C: The Art of Scienti�c Computing. Cambridge

University Press, Cambridge, 1990.

[Piz75] Stephen M. Pizer. Numerical Computing And Mathematical Analysis. Science

Research Associates, Inc., Chicago, 1975.

[Pla92] P.J. Plauger. The Standard C Library. Prentice Hall, Englewood Cli�s, NJ, 1992.

[PW71] G. Peters and J.H. Wilkinson. Practical problems arising in the solutions of poly-

nomial equations. J. Inst. Maths Applies, 8:16{35, 1971.

[PW83] Stephen M. Pizer and Victor L. Wallace. To Compute Numerically: Concepts and

Strategies. Little, Brown & Company, Boston, 1983.

[Ric83] John R. Rice. Numerical Methods, Software, and Analysis. McGraw-Hill Book

Company, New York, imsl reference edition, 1983.

[Riv70] T.J. Rivlin. Bound on a polynomial. Journal of Research of the National Bureau

of Standards - B, Mathematical Sciences, 74B(1):47{54, January-March 1970.

BIBLIOGRAPHY 178

[RKF88] V.T. Rajan, S.R. Klinkner, and R.T. Farouki. Root isolation and root approxi-

mation for polynomials in Bernstein form. IBM Research Report RC14224, IBM

Research Division, T.J. Watson Research Center, Yorktown Heights, N.Y. 10598,

November 1988.

[RL71] J. Rokne and P. Lancaster. Complex interval arithmetic. Communications of the

ACM, 14(2):111{112, February 1971.

[Roc89] Alyn Rockwood. Constant component intersections of parametrically de�ned

curves. Technical report, Silicon Graphics Computer Systems, 1989.

[Roc90] Alyn Rockwood. Accurate display of tensor product isosurfaces,. Proc IEEE Vi-

sualization '90 Conf., 1990.

[Rok75] J. Rokne. Reducing the degree of an interval polynomial. Computing, 14:5{14,

1975.

[Rok77] J. Rokne. Bounds for an interval polynomial. Computing, 18:225{240, 1977.

[RR78] Anthony Ralston and Philip Rabinowitz. A First Course In Numerical Analysis.

McGraw-Hill Book Company, New York, 2nd edition, 1978.

[Rum79] Siegfried M. Rump. Polynomial minimum root separation. Mathematics of Com-

putation, 33(145):327{336, January 1979.

[SA84] T.W. Sederberg and D.C. Anderson. Ray tracing of steiner patches. Computer

Graphics (SIGGRAPH'84 Proceedings), 18:159{164, 1984.

[SAG85] T.W. Sederberg, David C. Anderson, and Ronald N. Goldman. Implicitization, in-

version, and intersection of planar rational cubic curves. Computer Vision, Graph-

ics, and Image Processing, 31:89{102, 1985.

[Sal85] George Salmon. Modern Higher Algebra. Chelsea Publishing Company, New York,

5th edition, 1885.

[SC94] Thomas W. Sederberg and Geng-Zhe Chang. Isolator polynomials. In Chandra-

jit L. Bajaj, editor, Algebraic Geometry and Its Applications, chapter 32, pages

507{512. Springer-Verlag, New York, 1994.

[Sch90a] Philip J. Schneider. A B�ezier curve-based root-�nder. In Andrew S. Glassner,

editor, Graphics Gems, pages 408{415,787{797. Academic Press, Inc., San Diego,

CA, 1990. C code included.

[Sch90b] Jochen Schwarze. Cubic and quartic roots. In Andrew S. Glassner, editor, Graphics

Gems, pages 404{407,738{742. Academic Press, Inc., San Diego, CA, 1990. C code

included.

BIBLIOGRAPHY 179

[Sed85] Thomas W. Sederberg. Piecewise algebraic surface patches. Computer Aided Ge-

ometric Design, 2:53{59, 1985.

[Sed89] ThomasW. Sederberg. Algorithm for algebraic curve intersection. Computer-Aided

Design, 21(9):547{554, 1989.

[Sed93] Thomas W. Sederberg, 1993. private communication.

[SF92] Thomas W. Sederberg and Rida T. Farouki. Approximation by interval B�ezier

curves. IEEE CG&A, 12(5):87{95, September 1992.

[SN90a] Thomas W. Sederberg and Tomoyuki Nishita. Curve intersection using B�ezier

clipping. Computer-Aided Design, 22(9):538{549, 1990.

[SN90b] T.W. Sederberg and Tomoyuki Nishita. Ray tracing trimmed rational surface

patches. Computer Graphics (SIGGRAPH'90 Proceedings), 24:337{345, 1990.

[SP86] Thomas W. Sederberg and Scott R. Parry. Comparison of three curve intersection

algorithms. Computer-Aided Design, 18(1):58{63, January/February 1986.

[SR77] C.E. Schmidt and L.R. Rabiner. A study of techniques for �nding the zeros of

linear phase �r digital �lters. IEEE Transactions on Acoustics, Speech and Signal

Processing, 25(1):96{98, 1977.

[SSd86] Thomas W. Sederberg, Melvin R. Spencer, and Carl de Boor. Real root approxi-

mation of polynomials in Bernstein form. draft copy, December 1986.

[Sta70] Peter A. Stark. Introduction to Numerical Analysis. Macmillan Publishing Co.,

Inc., New York, 1970.

[Ste73] G.W. Stewart. Introduction to Matrix Computations. Academic Press, New York,

1973.

[Ste74] Pat H. Sterbenz. Floating-Point Computation. Prentice-Hall, Inc., Englewood

Cli�s, NJ, 1974.

[SWZ89] Thomas W. Sederberg, Scott C. White, and Alan K. Zundel. Fat arcs: a bounding

region with cubic convergence. Computer Aided Geometric Design, 6:205{218,

1989.

[Tol83] Pierre Tolla. Linear and non-linear programing software validity. Mathematics and

Computers in Simulation, XXV:39{42, 1983.

[Tra64] J.F. Traub. Iterative Methods For The Solution Of Equations. Prentice-Hall Series

in Automatic Computation. Prentice-Hall, Inc., Englewood Cli�s, NJ, 1964.

BIBLIOGRAPHY 180

[Tur52] H.W. Turnbull. Theory Of Equations. Oliver & Boyd Ltd., Edinburgh, 5th edition,

1952.

[Usp48] J.V. Uspensky. Theory Of Equations. McGraw-Hill, New York, 1948.

[Van70] H. Van de Vel. A note on the automatic pretreatment of polynomials. The Com-

puter Journal, 13(3):289{290, 1970.

[Vig78] Jean Vignes. New methods for evaluating the validity of the results of mathematical

computations. Mathematics and Computers in Simulation, XX:227{249, 1978.

[Vig84] Jean Vignes. An e�cient implementation of optimization algorithms. Mathematics

and Computers in Simulation, XXVI:243{256, 1984.

[Vig88] Jean Vignes. Review on stochastic approach to round-o� error analysis. Mathe-

matics and Computers in Simulation, 30:481{491, 1988.

[VL74] Jean Vignes and M. La Porte. Error analysis in computing. Information Processing,

74:610{614, 1974.

[Wes81] David H. West. Computer-assisted magnet shimming. Review of Scienti�c Instru-

ments, 52(12):1910{1912, 1981.

[Wij84] J.J. Van Wijk. Ray tracing objects de�ned by sweeping a sphere. In B�, K. and

Tucker, H.A., editor, Eurographics'84, pages 73{82, Copenhagen, September 1984.

North-Holland.

[Wil59] J.H. Wilkinson. The evaluation of the zeros of ill{conditioned polynomials, Parts

I & II. Numer. Math., 1:150{166 & 167{180, 1959.

[Wil60] J.H. Wilkinson. Error analysis of oating point computation. Numer. Math.,

2:319{340, 1960.

[Wil63] J.H. Wilkinson. Rounding Errors In Algebraic Processes. Prentice-Hall, Inc., En-

glewood Cli�s, NJ, 1963.

[Wol91] Stephen Wolfram. Mathematica: A System for Doing Mathematics by Computer.

Addison-Wesley Publishing Company, Inc., Reading, Massachusetts, 2nd edition,

1991.

[Zun89] Alan K. Zundel. Scan line rendering of algebraic surfaces and half spaces. Master

of Science, Brigham Young University, August 1989.

Polynomial Real Root Finding in Bernstein Form

Melvin R. Spencer

Department of Civil Engineering

Ph. D. Degree, August 1994

ABSTRACT

This dissertation presents pre-conditioning, isolation, and approximation concepts per-

taining to �nding the real roots of a polynomial in Bernstein from over a speci�ed domain.

Subdivision of a polynomial into smaller intervals prior to coe�cient construction signif-

icantly improves the accuracy of the approximated roots as compared to \a posteriori"

subdivision after the coe�cients are generated.

Real root isolation and approximation strategies are presented that exploit various prop-

erties of the Bernstein representation to compute the real roots of polynomials in Bernstein

form. The numerical performance of these strategies is compared with other existing Bern-

stein and power form polynomial real root-�nding strategies.

COMMITTEE APPROVAL:

Thomas W. Sederberg, Committee Chairman

Norman L. Jones, Committee Member

Rida T. Farouki, Committee Member

S. Olani Durrant, Department Chairman

	Polynomial Real Root Finding in Bernstein Form
	BYU ScholarsArchive Citation

	dis.dvi

