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ABSTRACT 
 

Evaluation of Passive Force Behavior for Bridge Abutments Using 
Large-Scale Tests with Various Backfill Geometries 

 
Jaycee Cornwall Smith 

Department of Civil and Environmental Engineering, BYU 
Master of Science 

 
 

Bridge abutments are designed to withstand lateral pressures from thermal expansion and 
seismic forces. Current design curves have been seen to dangerously over- and under-estimate 
the peak passive resistance and corresponding deflection of abutment backfills. Similar studies 
on passive pressure have shown that passive resistance changes with different types of 
constructed backfills. The effects of changing the length to width ratio, or including MSE 
wingwalls determine passive force-deflection relationships. The purpose of this study is to 
determine the effects of the wall heights and of the MSE support on passive pressure and backfill 
failure, and to compare the field results with various predictive methods. 

 
To compare the effects of backfill geometries, three large-scale tests with dense compact 

sand were performed with abutment backfill heights of 3 ft (0.91 m), 5.5 ft (1.68 m), and 5.5 ft 
(1.68 m) confined with MSE wingwalls. Using an existing pile cap 11 ft (3.35 m) wide and 5.5 ft 
(1.68 m) high, width to height ratios for the abutment backfills were 3.7 for the 3ft test, and 2.0 
for the 5.5ft and MSE tests. The failure surface for the unconfined backfills exhibited a 3D 
geometry with failure surfaces extending beyond the edge of the cap, increasing the "effective 
width", and producing a failure "bulb". In contrast, the constraint provided by the MSE 
wingwalls produced a more 2D failure geometry. The "effective width" of the failure surface 
increased as the width to height ratio decreased. In terms of total passive force, the unconfined 
5.5ft wall provided about 6% more resistance than the 5.5ft MSE wall.  However, in terms of 
passive force/width the MSE wall provided about 70% more resistance than the unconfined wall, 
which is more consistent with a plane strain, or 2D, failure geometry. In comparison with 
predicted forces, the MSE curve never seemed to fit, while the 3ft and 5.5ft curves were better 
represented with different methods. Even with optimizing between both the unconfined curves, 
the predicted Log Spiral peak passive forces were most accurate, within 12% of the measured 
peak resistances. The components of passive force between the unconfined tests suggest the 
passive force is influenced more by frictional resistance and less by the cohesion as the height of 
the backwall increases. 
 
 
 
 
 
 
 
Keywords: passive force, bridge abutment, large scale, skew, pile cap, lateral resistance, MSE 
wingwalls, mechanically stabilized earth, PYCAP, backwall height, geometry 
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1 INTRODUCTION 

This document provides further analysis of the skewed bridge abutment tests performed 

over the summer of 2012. The effects of a skew angle on abutments with MSE walls, and with 

both 5.5ft and 3ft heights were previously analyzed by Franke (2013), Marsh (2013), and Palmer 

(2013), respectively. While skew angles were a large part of this research study, a lot of 

information can come from comparing the backfill heights as well. This thesis compares the 

different backfill types of the abutment tests with no applied skew angle. Due to the excessive 

comparisons and reference to the backfill heights as the names of the tests, the 3ft, 5.5ft, and 

MSE tests will be referred to as such without metric units. When height descriptions are needed, 

metric units will be provided. While the zero skew results can be found in the corresponding 

skewed abutment tests, the analysis provides distinct comparisons between different length-to-

width abutment ratios and between unconfined and confined backfills. 

1.1 Background 

Bridge abutments are used to support a bridge crossing. Usually, the abutments consist of 

driven pile groupings overlain with a thick concrete block, or pile cap. A soil backfill is then 

compacted behind the cap to provide lateral resistance. Due to loads from thermal expansion, 

earthquakes, and strong winds, passive earth pressures may develop within the backfill. Passive 

pressures exceeding the soil resistance can cause failure of the bridge structure. Passive earth 

pressure equations commonly used to predict passive earth pressures include the Rankine, 
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Coulomb, and Log Spiral theories. Testing of non-skewed abutments on various backfills have 

shown that the Log Spiral theory comes closest to observed soil failure (Duncan and Mokwa 

2001, Lemnitzer, et al. 2009, Rollins and Cole 2006, Rollins and Sparks 2002). Peak passive 

pressures were also seen to occur between 3% and 5% of the backwall (abutment) height 

(Rollins and Sparks 2002). Design criteria (AASHTO 2011, Caltrans 2010) for bridge abutments 

have been based on the results of previous tests. In most design criteria, skew angles are ignored 

and non-skew designs are implemented. Some specifications limit skew angles not to exceed 30° 

or less (Kunin and Alampalli 1999). Recent examples have shown that these predictions are 

overestimating the lateral resistance of the backfill and bridge failures are occurring with skewed 

bridges (Apirakyorapinit, et al. 2012, Elnashai, et al. 2010, Shamsabadi, et al. 2006, Unjohn 

2012).  

Recently, testing has been completed to analyze the effects of skew angles on bridge 

abutments. Rollins and Jessee (2012) conducted lab-scale tests which established passive force-

deflection curves for bridge abutments at zero, fifteen, thirty, and forty-five degree skew angles. 

Numerical models were also analyzed by Shamsabadi, et al. (2006). Results of both studies 

warranted further research and so large-scale tests were conducted to validate the results. Tests 

were established to analyze various backfill mechanisms at skew angles of 0°, 15°, and 30°. 

Detailed analyses of the 3 ft (0.91 m) backfill, 5.5 ft (1.68 m) backfill, and 5.5 ft (1.68 m) 

backfill with mechanically stabilized earth (MSE) walls are discussed by Palmer (2013), Marsh 

(2013), and Franke (2013), respectively. 

 To further validate the large-scale skew tests and discover similarities between the 

heights of the backfill and the effects of MSE walls, a comparison of the backfill mechanisms 
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was also completed. This comparison is to provide information about the behavior of bridge 

abutments as abutment length vs. height ratios are changed and as MSE walls are implemented.  

1.2 Research Objectives 

The objectives of the research conducted are to: 

(1) Determine and compare the failure geometry of abutment backfills with varying heights 

and with the effects of MSE wingwalls. 

(2) Provide comparisons of the measured passive force of abutments with varying backfill 

heights and with the effects of MSE walls. 

(3) Validate the developed procedures for predicting passive resistance for bridge abutments. 

(4) Determine and compare the measured and computed passive force-displacement curves 

for bridge abutments with varying backfill types from large-scale tests. 

1.3 Scope of Research 

 The research project focused on the effects of different skew-angled bridge abutments at 

different backfill heights and with the placement of MSE walls. To analyze this research 

effectively, the project included 10 large-scale tests with various skew degree (0°, 15°, 30°), and 

backfill height (3ft, 5.5ft, and with MSE wingwalls). Data were obtained with repetition and 

overlap to compare and validate the results. Recorded data included: passive force-deflection 

curves, pile cap displacement and rotation, pressure distribution, soil strain, and backfill failure 

surfaces. The data was then analyzed and reduced to be presented in multiple papers. Specific 

skewed abutment test results can be found in Marsh (2013), Palmer (2013), and Franke (2013). 

 This thesis will focus on the zero skew tests performed including the 3ft, 5.5ft, and MSE 

wall tests. Without including the skew angles, the effects of changing backfill parameters will be 
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compared. The three zero skew tests will be analyzed but most comparisons will be made 

between the two unconfined tests with different heights (3ft and 5.5ft), and between the 5.5ft 

unconfined and confined tests. To better relate with the other presented theses, some data and 

assumptions may overlap. However, the passive force analysis was determined with new 

parameters to better match the given curves as a whole. Finally, the developed passive force 

design curves and peak values are compared with the measured passive force-deflection curves.  

Expectations are to have similar failures between the height differences, and an increase in both 

force and displacement with backfill confinement. Also, the Log Spiral prediction method is 

expected to align most accurately with the measured curves. 
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2 LITERATURE REVIEW 

This chapter covers the research that has previously been completed relating to the scope 

of this thesis. This includes multiple theories to predict passive earth pressures, analysis methods 

of the Log Spiral theory (Duncan and Mokwa 2001), previous testing and results on similar 

studies with pile caps and MSE wingwalls, seismic bridge design, and reports on skewed bridge 

abutments including recent examples of performance. 

2.1 Passive Earth Pressures: Governing Factors, Theories, and Methods 

Passive earth pressures develop when a body of soil is compressed. The resistance of the 

soil against the compelling force can be measured with displacement. The failure surface of the 

soil occurs along the shear, or weakest, plane when the soil inadequately resists the applied 

pressure. Differing theories have been established to predict the soil resistance and the location 

of the failure plane, including the Coulomb, Rankine, and Log Spiral theories. For this study, a 

large-scale pile cap was pushed into a soil backfill providing a compressive force to determine 

the soil resistance and failure surface of the backfill. The field values resulting from this test are 

compared with the predictive methods in Chapter 5. 
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2.1.1 Governing Factors 

The published studies of lateral earth pressures began in 1776 with Coulomb and due to 

the unpredictability of soil behavior and recent considerations, new findings are still being 

published today. A paper published by Duncan and Mokwa (2001) pinpoints factors that affect 

the passive resistance of a soil as: the magnitude and direction of structure movement; soil 

strength and stiffness; structure to soil relationships, including friction and adhesion; and 

structure shape.  

The magnitude and direction of the structure movement affects how the backfill soil 

behaves. Simultaneous horizontal and vertical soil movement occurs when passive resistance is 

not large enough to cause the structure to move upwards as well. Small structures, such as anchor 

blocks, tend to follow vertical soil movement (Ovesen 1964). Upward movement of the structure 

is prevented by using a heavy weight or supporting the structure with underlying piles, such as 

used with a pile cap. Figure 2.1(a) shows how the soil moves in this case. Restricted vertical 

movement was provided for the results of this project and as such, the same force assumptions 

were made as seen in Figure 2.1(b) and (c). The upward movement of the soil causes upward and 

downward shear forces on the structure and soil, respectively, resulting in a passive earth 

pressure Ep both acting in the direction of push and downward at an angle δmob from the 

horizontal (Duncan and Mokwa 2001). Loose, compressible soils require more movement to 

reach the passive state than dense, relatively incompressible soils (Clough and Duncan 1991, 

Cole and Rollins 2006). 

 The strength and stiffness of a soil also affects the forces needed to mobilize the backfill.  

Stronger soil resists a larger maximum passive force, where stiffer soil increases the passive 
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pressure at any given displacement. Shear strength depends on the effective stress and density of 

the soil, which can be defined by field compaction. 

 Interface friction depends on the roughness of the structure face and the properties of the 

soil (friction, density, cohesiveness). This is the angle δmob from the horizontal at which the 

passive pressure force is acting on the soil, causing the soil to separate from the structure. On 

large, stable structures such as a pile cap, the slip occurs at the interface. Based on a relationship 

study between soil friction angles 𝜙 and interface wall friction angles 𝛿 by Potyondy (1961), a 

range of 𝛿/𝜙 = 0.6 to 0.8 is used in current practice. 

 Another factor is the shape of the structure. Most theoretical methods – including 

Coulomb, Rankine, and Log Spiral – assume a 2-dimensional failure plane, assuming that the 

length of the structure-soil interface is indefinite. But most often this is not the case; the structure 

has boundary limits, such as a measured 11 ft (3.35 m) wide pile cap, which increases the 

amount of load that the soil can withstand. For finite wall lengths, the failure surface extends 

beyond the length of the backwall, mobilizing more backfill and resulting in a greater passive 

resistance (Cole and Rollins 2006). The Ovesen (1964) and Brinch Hansen (1966) method 

corrects for this with a 3D correction factor Rf. This value is limited to twice the calculated 

passive pressure. 

The conducted project tested the shape of the structure by changing the backwall height 

and confining the backfill. All other governing factors were left the same: the pile cap was 

pushed at the same load increments; the backfill used throughout testing consisted of the same 

soil, compacted to similar values; and the friction and adhesion for interface between concrete 

and sand were assumed similar between tests. Each of these factors is addressed in each 

predictive method. 
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Figure 2.1: Movement of structure affecting soil movement (Duncan and Mokwa 2001) 

2.1.2 Coulomb Method 

Coulomb was the first to theorize the passive earth pressure on retaining structures in a 

paper he published in 1776 (Coulomb 1776). Coulomb's work is well-known and was 

summarized from a Principles of Geotechnical Engineering text book (Das 2010). The Coulomb 

method, as described in Figure 2.2, assumes a linear failure surface behind the backwall. Using 

parameters such as the interface friction angle 𝛿′, soil friction angle 𝜙′, soil unit weight 𝛾, and 

height of the backwall 𝐻, the peak passive force 𝑃𝑝 can be estimated, as exhibited in Equation 

(2.1). Studies over the years have limited the Coulomb method to low angles of interface friction 

(Terzaghi et al., 1996). Large angles over 0.4𝜙′ tend to overestimate the passive force. 

 
𝑃𝑝 =

1
2
𝐾𝑝𝛾𝐻2 (2.1) 

where   
 𝑃𝑝 = passive force per unit length of wall; inclined at an angle 𝛿′to the normal of the 

 8 



wall face that supports the soil 
 𝛿′ = interface friction angle between soil and wall 
 𝐾𝑝 = Coulomb’s passive earth-pressure coefficient, described as 
 

       =
cos2(𝜙′ + 𝜃)

cos2𝜃 cos(𝛿′ − 𝜃) �1 −�sin(𝜙′+𝛿′) sin(𝜙′+𝛼)
cos(𝛿′−𝜃) cos(𝛼−𝜃) �

2 (2.2) 
 

 𝛾 = the unit weight of the soil  
 𝐻 = the height of retaining wall  
 𝛼 = angle of inclined backfill  
 𝑊 = the weight of the soil wedge  
 𝐹 = the resultant of shear and normal forces on failure surface, BC; 

inclined at an angle of 𝜑′ to normal of BC plane 
 

 

 

 

 

Figure 2.2: Coulomb’s passive pressure trial failure wedge (top) and force polygon 
(bottom) (Das 2010) 
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2.1.3 Rankine Method 

 Rankine’s theory is the simplest to calculate using many simplifying assumptions 

(Rankine 1857). Rankine's passive pressure is calculated using 𝑃𝑝 as given in Equation (2.1) 

using a simpler 𝐾𝑝, when there is no inclined backfill (𝛼 = 0), given as Equation (2.3). The soil 

friction angle 𝜙 is the only parameter needed to calculate Rankine’s coefficient 𝐾𝑝, where 

Coulomb's coefficient also requires the interface friction angle 𝛿′, referred to in Equation (2.2).  

 
𝐾𝑝 = tan2 �45 +

𝜙
2
� =

1 + sin𝜙
1 − sin𝜙

 (2.3) 

where   
 𝐾𝑝 = Rankine’s passive earth pressure coefficient  
 𝜙 = internal friction angle of soil  

 Rankine's theory has proven conservative for determining active pressure values and is 

regularly used in practice. In determining passive pressures, however, Rankine's theory greatly 

underestimates the passive pressure making the theory unsuitable for use in these circumstances 

(Duncan and Mokwa 2001).  

2.1.4 Log Spiral Method 

The Log Spiral theory does not assume a planar failure surface as do the Coulomb and 

Rankine theories. As seen in Figure 2.3, Terzaghi (1996) assumes a log spiral or circular arc 

curve beneath the base of the structure. Line ab is assumed to be a structure pushed into the soil 

mass behind it. The surface slides along bde. This line is separated into two zones, the curved bd 

and straight de. The linear wedge is the Rankine zone where the soil is in the passive Rankine 

state and there are no shearing stresses in the vertical direction at f, leaving the horizontal force 

EPR. The curved side near the wall is the Prandtl zone, which incorporates the log spiral failure of 

the soil. 
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Assuming log spiral or arc of circle shape simplifies the means of obtaining the real 

sliding surface. Although this does not find the real surface plane, Terzaghi (1996) reports that 

after performing the more complicated equations, the accuracy is sufficient. The error between 

using the log spiral or arc of circle methods is negligible. For either method, Equation (2.4) can 

be used to determine the log spiral failure surface. 

 𝑟 = 𝑟0𝑒𝜃 tan𝜙′ (2.4) 

Using the center of the spiral O on line ad at an angle of 45° − 𝜙′

2
 from the horizontal, 

every force F, 𝜙′ from the vertical, passes through point O. Using this assumption, Terzaghi 

(1996) then created a graphical method to determine the forces on the soil to overcome the 

normal Pp and shear Ca forces. 

 Though more complicated to compute, the Log Spiral method has proven to give a more 

accurate passive pressure estimation (Duncan and Mokwa 2001). To simplify the computational 

process, charts and computer programs were developed to apply and solve for passive earth 

pressures using the Log Spiral theory. For example, AASHTO (2011) uses charts in the LRFD 

code to estimate the Kp value used in the passive force Equation (2.1). Duncan and Mokwa 

(2001) established PYCAP, an Excel module which calculates and plots the passive force as a 

function of displacement. Shamsabadi, et al. (2007) developed another program entitled 

ABUTMENT to determine backfill soil capacity. These Log Spiral method applications are 

further explained in the following sections and compared to field results in Chapter 5. 
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Figure 2.3: Log Spiral Passive Pressure Failure (Duncan and Mokwa 2001) 

2.1.5 AASHTO LRFD Approach 

The AASHTO (2011) method uses Equation (2.5) to determine the  peak passive pressure 

for bridge design. The coefficient Kp is determined from Figures 3.11.5.4-1 or 3.5.11.4-2 in the 

2011 Bridge Specification manual. For more information refer to the AASHTO LRFD Bridge 

Design Specification (2011) manual. 

 
𝑃𝑃 = �

1
2
𝐾𝑃𝛾𝑠𝐻𝑤1 + 2𝑐�𝐾𝑃𝑤2�𝐻𝑐𝑜𝑠𝛿 (2.5) 

where  
 𝑃𝑝 = horizontal component of the passive lateral earth pressure (ksf) 
 𝛾𝑠 = unit weight of soil (kcf)  
 𝑤1 = effective width of failure wedge [see Ovesen (1964)]  
 𝑤2 = abutment width (ft)  
 𝑐 = soil cohesion (ksf)  
 𝐻 = abutment height (ft)  
 𝐾𝑝 = coefficient of passive earth pressure calculated as specified above 
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2.1.6 Caltrans Approach 

The Caltrans (2010) method uses a bilinear approximation, as shown in Figure 2.4. Based 

on large-scale passive force tests on bridge abutments by Maroney (1995) and Stewart, et al. 

(2007), and analyzed by Shamsabadi, et al. (2007), the initial stiffness Ki for appropriate soils 

(given in the Standard Specifications) was determined to be 50 kip/in/ft (28.70 kN/mm/m) or 

half for non-standard fill material [25 kip/in/ft (14.35 kN/mm/m)]. This value is adjusted for 

height with Equation (2.6). 

 
𝐾𝑎𝑏𝑢𝑡 = 𝐾𝑖 × 𝑤 × �

ℎ
𝑥
� (2.6) 

where 𝑤 is the width of the abutment backwall, ℎ is the height of the abutment backwall, and 𝑥 

is a height proportionality factor of 5.5 ft (1.7 m) based on the heights of the previous tests. The 

passive pressure force is determined by the ideal bilinear Equation (2.7). 

 
𝑃 = 𝐴𝑒 × 𝑦 × �

ℎ
𝑥
� (2.7) 

where   

 𝐴𝑒 = ℎ × 𝑤𝑒 = effective abutment wall area (2.8) 
 ℎ = the effective height of the backwall  
 𝑤𝑒 = the effective width corrected for skew (see Figure 2.5) 

If the abutment design is skewed, wabut is taken as the width of the abutment. 
 𝑦 =  5.0 ksf (239 kPa); the maximum passive pressure determined by the ultimate static 

force from previous testing 
 𝑥 = 5.5 ft (1.7 m); height proportionality factor based on heights of previous testing 

For more information on the design of shear keys and elastic response of the abutment, 

see the Caltrans 2010 Seismic Design Criteria manual. The design to account for transverse 

movement of the abutment due to skew is suggested to use a seat type abutment which resists 

lateral loads with an elastic response. Caltrans (2010) also suggests that the lateral resistance 
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should be placed on the bridge bent rather than on the abutment itself. Diaphragm type 

abutments are conservatively estimated, but not recommended. 

 

 

Figure 2.4: Passive force - deflection curve developed by Caltrans bilinear method 

 

Figure 2.5: Effective abutment width corrected for skew (Caltrans 2010) 

2.1.7 Development of Passive Earth Pressure with Deflection 

As passive pressures develop with deflection, methods have also been developed to 

predict the shape of the passive force curves. Both the AASHTO (2011) and the Caltrans (2010) 

approaches assume a conservative bilinear failure as seen in Figure 2.4. After reaching the 
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ultimate passive pressure, Pult, the force is considered constant with more deflection. Another 

theory is the hyperbolic model developed by Duncan and Mokwa (2001). The curve follows the 

calculated line given in Equation (2.9) and displayed in Figure 2.6. 

 
𝑃 =

∆
1

𝐾𝑚𝑎𝑥
+ 𝑅𝑓

∆
𝑃𝑢𝑙𝑡

 (2.9) 

where   
 𝑃𝑢𝑙𝑡 = maximum passive resistance  
 𝑃 = mobilized passive resistance  
 ∆= deflection  
 𝑅𝑓 = failure ratio  
 𝐾𝑚𝑎𝑥 = initial stiffness of the load-deflection curve  

This hyperbolic curve is used when estimating the passive force - deflection with both 

PYCAP (Duncan and Mokwa 2001) and ABUTMENT (Shamsabadi, et al. 2007). Field results 

seem to more closely follow the hyperbolic model (Cole and Rollins 2006, Lemnitzer, et al. 

2009, Rollins and Sparks 2002).  

 

 

Figure 2.6: Example of hyperbolic curve taken from Shamsabadi, et al. (2007) 
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2.2 Passive Force-Displacement Tests for Non-Skewed Abutment Walls 

Various tests have been performed incorporating abutment backfills and passive force - 

displacement curves. Each test or series of tests has added information to the way soils behave in 

passive pressure situations. Different variables tested include backfill material, wall heights, pile 

configurations, and including MSE wingwalls. Some tests were also compared to the predictive 

design methods listed in Section 2.1 giving insight to the accuracy of those methods. 

2.2.1 Tested Variables and Results 

 Scopes of research included pushing a solid mass into backfill soil, measuring force and 

displacement. With different types of backfill soil used, tests developed a variety of peak 

resistance values. Tests were comprised of assorted wall heights and pile cap configurations. 

Dynamic tests on pile caps also provided information on earth pressure behavior. While the 

operation and mechanics varied, the tests yielded comparable results.  

Among the various studies conducted on passive earth pressures, similar trends were 

observed. Most studies recorded lateral deflection of the wall as it was pushed into the backfill. 

Measurements of displacement indicated that maximum passive earth pressures developed 

between 2 and 6% of the wall height (Lemnitzer, et al. 2009, Rollins and Cole 2006, Rollins and 

Sparks 2002). In comparison to unconfined backfills, MSE wingwalls slightly increased the 

deflection at which maximum passive force occurred (Rollins, et al. 2010). Mokwa and Duncan 

(2001) concluded that the passive resistance directly related to the stiffness and strength of the 

backfill. As they compared backfill heights, they noted that lateral deflections can be reduced 

with increased cap thickness or depth of embedment. Compared to an unconfined backfill, the 

MSE walls provided a decrease in the overall resistance while increasing the passive force per 

unit width of the backwall (Rollins, et al. 2010).  
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The measured peak passive earth pressures were often compared to the predictive 

methods. The Coulomb and Rankine methods regularly over- and under-estimated, respectively,  

the measured force. Most studies agree that the Log Spiral method best predicts the peak passive 

pressure measured in the field (Duncan and Mokwa 2001, Lemnitzer, et al. 2009, Rollins and 

Cole 2006, Rollins and Sparks 2002). Cole and Rollins (2006) specifically identified the Log 

Spiral theory to be accurate among differing types of soil. With MSE walls, the Log Spiral 

method overestimates the passive resistance. To accurately predict the backfill resistance using 

MSE walls, the 3-dimensional reduction needed to be neglected and the friction angle increased 

in the Log Spiral method equations (Rollins, et al. 2010, Strassburg 2010). The shear planes 

recorded from the varying tests also repeatedly correlated with the Log Spiral estimated failure 

surface (Lemnitzer, et al. 2009, Rollins and Cole 2006). Computer models of failure zones also 

indicated Log Spiral profiles (Nasr and Rollins 2010). 

2.3 Passive Force-Displacement Tests for Skewed Abutments 

The skew angle on a bridge abutment causes passive pressures to develop differently than 

with the previously tested and predicted square bridges. Few tests have been completed to 

determine the earth pressure distribution and behavior of skewed bridges. As further studies have 

been conducted, similar results validate the loss of passive resistance with increased skew angles. 

Recent earthquakes have also demonstrated that skewed bridges are more apt to failure than 

those with non-skewed abutments. 

2.3.1 Skewed Bridge Behavior  

Differences in skewed and non-skewed bridges have been recently noticed and 

researched. Lateral earth pressures, assumed 2D in bridge design, seem to behave in a 3D fashion 
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when forces are applied at a skewed angle. The lateral pressure on the obtuse side of skewed 

bridges was observed to be significantly higher than on the acute side (Palmer 2013, Sandford 

and Elgaaly 1993). Tests also indicated rotation of the abutment which could account for the 

increase in pressure on the obtuse end (Marsh 2013, Palmer 2013, Sandford and Elgaaly 1993, 

Shamsabadi, et al. 2006). The worst effect of skew is the loss of passive resistance behind the 

bridge. In Figure 2.7, PLAXIS computer models demonstrate the capacity of the abutment 

backfill with increased skew (Shamsabadi, et al. 2006). As the skew angle increases, passive 

resistance drops dramatically. 

To further validate the conclusions of the models, both small-scale laboratory and large-

scale field tests were completed. Both series of tests found the same trends in the loss of 

resistance with increased skew. The results from Rollins and Jessee (2012) are displayed in 

Figure 2.8. Using the resulting data, Rollins and Jessee (2012) developed a reduction factor to 

predict the passive resistance of backfills against skewed abutments, as shown in Figure 2.9. The 

equation to determine the skew correction factor Rskew depends on the skew angle 𝜃, as seen in 

Equation (2.10). 

𝑅𝑠𝑘𝑒𝑤 = 8.0 ∗ 10−5𝜃2 − 0.018𝜃 + 1.0 (2.10) 

The large-scale test results from this study also showed a decrease in passive force when 

the skew angle was increased. Each of the 5.5ft, 3ft, and MSE wall passive resistances decreased 

with increased skew (Franke 2013, Marsh 2013, Palmer 2013). The large-scale tests are plotted 

in Figure 2.9 along with Shamsabadi's numerical analysis, and generally follow the suggested 

reduction curve. 

The effects of earthquakes on skewed bridges have also been analyzed. The dynamic 

loading produces similar results to the static loading of the tests. Studies concluded that skewed 

bridges tended to incur more damage than their non-skewed counterparts (Toro, et al. 2013, 
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Unjohn 2012). The cause of the damage was attributed to rotation of the skewed bridges. The 

cases found an increase in stress on the obtuse side of the abutments and unseating of the bridge 

deck on the acute side (Apirakyorapinit, et al. 2012, Unjohn 2012). With these recent 

considerations, suggestions have been made to improve the design of skewed bridges (Toro, et 

al. 2013). 

 

 

Figure 2.7: Effect of bridge skew angle on passive backfill capacity based on PLAXIS 
models (Shamsabadi, et al. 2006) 

 19 



 

Figure 2.8: Passive force-deflection curves for lab tests (Rollins and Jessee 2012) 

 

Figure 2.9: Reduction factor based on skew angle, compared to field, lab, and numerical 
tests [adapted from Rollins and Jessee (2012)] 
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3 TESTING METHODS 

This section describes the methods of testing, including: the test site description and 

history, and geotechnical characteristics of the test site. Also described are the methods used for 

this research: the testing layout, backfill properties, measurement instrumentation, and the 

general test procedure. 

3.1 Site Description 

The Salt Lake Airport test site was originally built in 1995 and used for multiple tests 

throughout the years, being altered and adapted for new test scopes. Large-scale lateral load tests 

on pile groups and caps were conducted at the site (Christensen 2006, Johnson 2003, Peterson 

1996, Snyder 2004, Walsh 2005). The previous testing provided a source for expected results. 

Many tests were also previously conducted to determine the soil profile and these results were 

used for current soil properties. 

All testing occurred on unused land located near the Salt Lake City (SLC) International 

Airport. The site is located approximately 1000 ft (300 m) north of the airport control tower. A 

recent Google Map aerial photograph of the test site is provided in Figure 3.1. Figure 3.2 shows 

how the unused land is flat and open, clear of vegetation, structures, or any obstructions. It is a 

gated area, safe from vandalism and interference. Also, over the 2012 test course, Granite 

Construction Company shared the gated area but nothing conflicted with the testing. 
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Figure 3.1: Location of test site (2012 Google Map) 

 

Figure 3.2: Plan view of test site location 
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3.1.1 Geotechnical Site Characterization 

From past research, geotechnical site information is available from tests during the 

construction of the airport control tower (in 1995) and tests done specifically on the test site. 

Previous testing includes: standard penetration (SPT), vane shear (VST), pressuremeter (PMT), 

cone penetrometer (CPT); 3 new CPT tests and 2 drilled holes were conducted and compared in 

2003 (Christensen 2006). Lab tests from disturbed samples were also conducted to determine 

particle size distribution, soil classification (USCS), consolidation characteristics, shear strength, 

and Atterberg limits. More lab tests were completed in 2003. A diagram is provided in Figure 3.3 

locating each in-situ test and the year it was performed throughout the test site. No further tests 

were conducted for this study. The pile cap used for this study is located 26 ft (7.92 m) north of 

the drilled shafts in Figure 3.3. 

3.1.2 Soil Profile Results 

Previous testing resulted in a soil profile of imported gravel fill on the top 5 ft (1.5 m). 

Underlying soils alternate between lean clay, sandy silt, and silty sand layers to approximately 50 

ft (15 m) as shown in Figure 3.4. The gravel fill surrounding the pile cap and drilled shafts was 

replaced with clean sand for the tests. Figures 3.4 and 3.5 consist of an idealized soil profile of 

the site and other measured soil characteristics. Additional subsurface soil information can be 

found in Christensen (2006), Snyder (2004), and Peterson (1996). 
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Figure 3.3: Locations and years of site in-situ tests (Christensen 2006) 
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Figure 3.4: Idealized soil profile from lab and in-situ tests (Christensen 2006) 

 

 

Figure 3.5: Idealized soil profile from CPT data (Christensen 2006) 
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3.2 Test Layout 

Four major components provided the general testing layout: a reaction foundation, pile 

cap, loading apparatus, and backfill zone. Detailed descriptions of each component follow in the 

next sections. Figure 3.6 shows a complete drawing of the general testing setup. 

 
Figure 3.6: Plan and cross-section views of the general testing layout (Marsh 2013) 
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3.2.1 Reaction Foundation 

The reaction foundation was constructed for previous testing and consists of two drilled 

shafts, a sheet pile wall, and two large steel I-beams. Figures 3.7 and 3.8 show the reaction 

foundation setup. The setup provides resistance as the actuators push against the pile cap. 

The 4-ft (1.22-m) diameter drilled shafts are spaced apart 12 ft (3.66 m) center-to-center. 

The west shaft is 55.2 ft (16.8 m) deep and the east shaft is 70.0 ft (21.35 m) deep. The 

reinforcement in the top 35 ft (10.67 m) of each shaft consists of 18 #11 (#36) vertical bars, 

spiral reinforcement of #5 (#16) bars with a 3- in (75-mm) pitch. From 35 ft (10.67 m) and below 

only 9 #11(#36) vertical bars were used and the spiral pitched increased to 12 in (0.305 m). The 

top two feet of the shafts consist of a 4-ft (1.22-m) square cap. Throughout the lengths of the 

shafts, a 4.75-in (120-mm) concrete cover was maintained. The concrete compressive strength 

was 6000 psi (41 MPa). 

The sheet pile wall was previously installed against the north sides of the drilled shafts. 

Installation was completed by driving the sheet pile sections with a vibratory hammer alternating 

depths from 33.6 to 35.6 ft (10.24 to 10.85 m) below the ground surface. As the piling is 

designed to support the drilled shafts, installation was kept as vertical and as close to the shafts 

as possible. The material for the wall consists of AZ-18 sheet piling constructed of ASTM A-

572, Grade 50 steel. 

 The two I-beams were 28 ft (8.53 m) long, 64 in (1626 mm) high with 16 in (406 mm) 

wide flanges. They were reinforced with parallel stiffeners along the web to prevent buckling. 

Each beam was previously laid horizontally on both sides of the drilled shafts to provide 

additional lateral resistance, distribute loading, and unify the system. Between testing projects, 

the north beam settled in the soil and was thus raised to a level position and realigned with the 
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actuator connections. The I-beams were attached to the reaction foundation with eight 1.75-in 

(44-mm) DYWIDAGs which extended through the reaction foundation to connect to the 

actuators. Minimal post-tensioning was used as no dynamic testing was conducted. 

 

 

Figure 3.7: South side of reaction foundation 

 

Figure 3.8: North side of reaction foundation 

 28 



3.2.2 Loading Apparatus 

Two MTS hydraulic actuators, shown in Figure 3.9, were used to load the pile cap. They 

were positioned between the reaction foundation and the pile cap. They were held in place with 

the DYWIDAGs on the reaction foundation and DYWIDAGs embedded in the pile cap. Two 4-

ft (1.22-m) extension beams connected the actuators to the pile cap. Each actuator has a 

compressive capacity of 600 kips (2.67 MN) (north direction) and a tensile capacity of 450 kips 

(2.00 MN) (south direction). Swivel heads located at both the north and south ends of the 

actuators eliminate bending moment effects on the pile cap loading. Care was taken to install the 

actuators level and attached at a height of 2.75 ft (0.84 m) above the base of the pile cap. 

 

 

Figure 3.9: MTS hydraulic actuators 

3.2.3 Pile Cap and Piles 

 The pile cap and piles setup was previously installed before the project and only minor 

changes to the pile cap (i.e., skew construction) and the reaction foundation were needed. The 

pile cap is located 16.4 ft (5.0 m) north of the reaction foundation above six piles. Each pile has 

 29 



an outside diameter of 12.75 in (324 mm), a wall thickness of 0.75 in (9.5 mm), and is 

constructed with ASTM A252 Grade 3 steel pipe with average yield strength of 57 ksi (393 

MPa). All piles were driven closed-ended to a depth of approximately 43 ft (13.1 m) below the 

ground surface. 

Construction of the pile cap involved removing the center row of piles from an existing 

9-pile group which increased the (north-south) center-to-center spacing to 12 ft (3.66 m). The 

east-west center-to-center spacing of the piles remained at 3.5 ft (1.07 m). To ensure a rigid 

connection between the piles and the cap, the piles were embedded into the cap at a 6 in (150 

mm) minimum. Rebar cages, 18 ft (5.49 m) long, consisting of 6 #8 (#25) vertical bars and a #4 

(#13) spiral at a pitch of 6 in (152 mm), were lowered 13.2 ft (4.02 m) into the steel piles with 

the remaining 4.8 ft (1.47 m) extending into the pile cap to support the upper horizontal 

reinforcing mat. Horizontal reinforcing mats consisting of #5 (#19) bars in the longitudinal and 

transverse direction 8 in (203 mm) on center were installed on both top and bottom of the pile 

cap. The connections and the cap were constructed of 6,000-psi (41.37-MPa) concrete. Final cap 

dimensions are 15 ft (4.57 m) long (north-south direction), 11 ft (3.35 m) wide, and 5.72 ft (1.74 

m) high. During construction, inclinometer and shape array pipes were cast into the center pile of 

each row, along with eight DYWIDAGs cast horizontally into the pile cap to provide a 

connection point between the pile cap and the loading apparatus. 

3.2.4 Concrete Wedges 

While the zero skew tests did not utilize the skew wedges, a basic understanding of the 

pile cap modifications is useful. To establish the 15 and 30 degree skew angles for testing, 

concrete wedges were formed and cast adjacent to the existing pile cap backwall face, as shown 

in Figure 3.10. Construction occurred after the zero degree testing was completed. Concrete 
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reinforcement was conservatively designed for both a vertical and horizontal triangular pressure 

distribution along the face of each wedge. Wedge construction provided a rigid connection 

between the cap and  both wedges and also allowed for simple removal of the skewed faces after 

testing was completed for the 30° and 15° tests. The wedges were constructed atop a railroad tie 

foundation with a series rollers as illustrated in Figure 3.11 to reduce friction at the base of the 

wedges. The wedges were effective for testing, providing the necessary solid resistance as the 

pile cap was pushed into each backfill. For a more detailed explanation of the set up and 

installation of the 15° and 30° skew wedges refer to Marsh (2013). 

 

 

Figure 3.10: Construction of 15° and 30° wedges (Marsh 2013) 

 

Figure 3.11: Roller foundation for 15° and 30° wedges (Marsh 2013) 
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3.2.5 Backfill Zone 

The pile cap was pushed into the backfill zone, located on the north end of the pile cap as 

shown in Figure 3.12. The area was approximately 24 ft (7.3 m) wide and 24 ft (7.3 m) long. The 

backfill next to the pile cap face extended to a depth approximately 1 to 2 ft (0.3 to 0.6 m) below 

the base of the pile cap. The backfill zone gradually inclined over approximately 8 ft (2.4 m), 

until the backfill extended to a depth roughly level with the bottom of the pile cap. This area was 

filled with the test material to 3 ft (0.91 m) and 5.5 ft (1.68 m), whereas the area was limited to 

11 ft (3.35 m), or the width of the pile cap, when MSE walls were used. 

 Backfill material was placed in lifts approximately 6 to 8 in (150 to 200 mm) in height. 

Water was added to the material during placement to aid in compaction. A vibratory roller and 

vibrating plate compactor were used to compact each lift. To ensure proper compaction and to 

determine the soil unit weight and moisture content, two nuclear density tests were performed for 

each lift. The water table at the test site is approximately 5.5 ft (1.68 m) below the ground 

surface. To keep the water from interfering with test procedures, two automated sensor pumps 

were provided which continuously pumped the water out of the test pit. 

 

 

Figure 3.12: Test site backfill zone 
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3.3 Geotechnical Backfill Properties 

This section describes the laboratory and field test results of the backfill soil used during 

testing. Included are the soil gradation, relative density, dry and moist unit weights, and water 

content for each of the zero skew tests. 

3.3.1 Backfill Gradation and Relative Density 

Approximately 250 tons (227 metric tons) of sand at 7% moisture content was purchased 

for this project, see Figure 3.13. The sand was classified as poorly graded (SP type soil according 

to the Unified Soil Classification System or an A-1-b type soil according to the AASHTO 

Classification System) and was used as backfill material for all tests. Pre- and post-testing 

gradation plots are shown in Figure 3.14. Initial soil conditions fall within the gradation limits of 

washed concrete sand (ASTM C33), though additional fines picked up during testing caused the 

particle size distribution to fall outside the gradation limits of a washed concrete sand towards 

the end of testing. Table 3.1 provides the soil gradation parameters for the soil particle size 

analyses conducted before and after the abutment tests. Changes in gradation during testing were 

likely due to contamination of the backfill material with the native material located at the bottom 

and sides of the test pit. However, because the zero skew tests were completed first, the 

gradation likely stayed within the washed concrete sand limits. 

 

Table 3.1: Soil gradation characteristics, pre- and post-test 

 Sand Fines D60 D50 D30 D10 Cu Cc  [%] [%] [in] [mm] [in] [mm] [in] [mm] [in] [mm] 
Pre-Test 98.0 2.0 1.22 (31.0) 0.9 (22.9) 0.4 (10.2) 0.16 (4.1) 7.6 0.8 
Post-Test 96.1 3.9 1.26 (32.0) 0.92 (23.4) 0.34 (8.6) 0.13 (3.3) 9.7 0.7 
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Figure 3.13: Delivered backfill sand (SP) 

 
Figure 3.14: Particle size distribution of backfill soil, pre- and post-test (Marsh 2013) 
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3.3.2 Lift Compaction Properties 

The compaction properties were measured in two various locations of the backfill per 

each lift using a nuclear gage test. The maximum dry density according to the modified Proctor 

compaction lab test (ASTM D1557) was 111.5 pcf (17.52 kN/m3) with optimum moisture 

content of 7.1%. The achieved average relative compaction for all zero skew tests considered 

herein was 97.2% of the modified proctor maximum, which was higher than the target on-site 

compaction level of 95%. 

Histograms showing the frequency of backfill dry unit weight occurrences for the 3ft fill, 

the 5.5ft fill, and the MSE wall tests are shown in Figures 3.15, 3.16, and 3.17, respectively. 

Figure 3.18 and Table 3.2 summarize the dry unit weight characteristics of all three zero skew 

tests. The average dry unit weights for the 3ft, 5.5ft, and MSE wall zero skew tests were found to 

be 107.0 pcf (16.81 kN/m3), 107.0 pcf (16.81 kN/m3), and 108.3 pcf (17.02 kN/m3), respectively. 

The average dry unit weight of all zero skew tests was 107.2 pcf (16.84 kN/m3) with an average 

relative compaction of 96.2%. The similar unit weights and relative compaction suggest that the 

backfill material is comparable for the zero skew tests. 

Relative density was calculated using a correlation developed by Lee and Singh (1971) 

between relative density and relative compaction of granular soils, shown as Equation (3.1). 

Calculated relative densities, 𝐷𝑟, and relative compaction, 𝑅, for each of the three zero skew tests 

are summarized in Table 3.3. The 0° skew average relative density was calculated to be 81.0%. 

Other nuclear gage parameters determined during each test were recorded and analyzed. 

Scatter plots of moisture content, relative compaction, dry unit weight, and moist unit weight 

with respect to elevation above the base of the pile cap for all three zero skew tests are shown in 

 𝑅 = 80 + 0.2𝐷𝑟 (3.1) 
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Figures 3.19, 3.20, 3.21, and 3.22, respectively. All values were determined from two nuclear 

gage tests per lift for each test. The average moisture content for each fill height hovered around 

9%. As before stated, relative compaction averaged at 96.2% for all zero skew tests. The average 

dry and moist unit weights were 107 pcf (16.81 kN/m3) and 117 pcf (18.38 kN/m3), respectively. 

The tight scatter suggests the lifts were similar throughout the backfill for each of the zero skew 

tests. The average values are similar between each test, again suggesting the testing methods 

allowed for reliable comparisons of the data. 

 

Table 3.2: Summary of backfill dry unit weight characteristics for all 0° tests 

 
3ft Test 5.5ft Test MSE Wall Test 

Dry Unit Weight [pcf] [kN/m3] [pcf] [kN/m3] [pcf] [kN/m3] 
Minimum  105.7 16.6 105.4 16.6 104.8 16.5 
Maximum  108.2 17.0 109.9 17.3 110.0 17.3 

Average  107.0 16.8 107.0 16.8 107.5 16.9 
Median  106.8 16.8 106.9 16.8 107.4 16.9 

 

Table 3.3: Backfill relative compaction and relative densities for 0° tests 

 3ft Test 5.5ft Test MSE Wall Test 
Relative Compaction [%] 96.0 96.0 96.4 

Relative Density [%] 79.9 79.8 82.2 
 

 Table 3.4: Average of measured field parameters with respect 
to depth for each backfill 

 

Average Soil Parameters 
0° Skew 

3ft 5.5ft MSE 
Moisture Content [%] 9.3 8.9 9.1 
Relative Compaction [%] 96 96 97 
Dry Unit Weight [pcf] 107 107 108 
Moist Unit Weight [pcf] 117 117 117 
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Figure 3.15: Backfill dry unit weight histogram for 3ft fill test 

 

Figure 3.16: Backfill dry unit weight histogram for 5.5ft fill test 
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Figure 3.17: Backfill dry unit weight histogram for MSE wall test 

 

Figure 3.18: Backfill dry unit weight histogram for all 0° skew tests 
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Figure 3.19: Moisture content with respect to depth for all 0° tests 

 

Figure 3.20: Relative compaction with respect to depth for all 0° tests 
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Figure 3.21: Dry unit weight with respect to depth for all 0° tests 

 

Figure 3.22: Moist unit weight with respect to depth for all 0° tests 
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3.3.3 Backfill Shear Strength 

Direct shear tests (ASTM D 3080) were conducted in the BYU soils laboratory to 

determine the friction angle φ and cohesion c of the backfill material. The results are presented 

fully in Marsh (2013), and only summarized here. 

A large range of normal stresses were tested to match the vertical stresses in the field 

tests. The typical field moisture contents were also used for direct shear testing, as well as 

submerged. The backfill strength parameters are included in Table 3.5. 

 

Table 3.5: Backfill strength parameters (Marsh 2013) 

Source of Test Result Peak Ultimate 
φ (deg) c (psf) φ (deg) c (psf) 

Direct Shear (full range, dry) 46.7 161.6 40.4 113.8 
Direct Shear (full range, dry, zero cohesion) 48.3 0 41.8 0 
Direct Shear (full range, submerged) 42.7 92.9 41.4 78.8 
Direct Shear (full range, sub., zero cohesion) 43.8 0 42.3 0 

 

3.4 Instrumentation 

Four independent pieces of instrumentation were used to measure pile cap and wall 

displacement: string potentiometers, linear variable differential transformers (LVDTs), an 

inclinometer, and shape accelerometer arrays (SAA). Independence of the instrumentation 

allowed each device to be compared for accuracy. The string pots and LVDTs measured 

longitudinal and/or lateral displacement, while the inclinometer and SAAs were equipped to 

measure both directions of displacement. Longitudinal load was measured by pressure 

transducers in the actuators throughout the duration of each test. For this series of tests, vertical 
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movement of the pile cap was not monitored because the piles and weight of the cap were 

assumed to hold the cap in place. 

3.4.1 String Potentiometers 

An independent reference frame was placed between the reaction foundation and the pile 

cap, shown in Figure 3.23 as the highlighted frame stretching across the test pit. Six string 

potentiometers were attached to this reference frame with C-clamps. Approximate string pot 

attachment locations are shown in Figure 3.23 as the dashed lines. Four string pots measured the 

deflection of the four corners of the pile cap and two measured the deflection of the reaction 

foundation. The four pile cap string pots were used to measure the longitudinal movement and, if 

any, rotation of the pile cap during testing. The two reaction foundation string pots attached to 

the center of the I-beam at the same level of the actuators. The numerical locations, described as 

coordinates, follow in Table 3.6, which remained constant for each of the tests. 

Seven additional string pots mounted to the top north end of the pile cap measured the 

backfill strain, as shown in Figure 3.24. For the zero skew tests, the seven string pots were 

located 10 in (254 mm) behind the north face of the cap. Each potentiometer was attached to a 

stake in the backfill at the distances from the cap face shown in Table 3.7. The distance of the 

string pot from the centerline of the backfill is also included as the instruments could not be 

placed in the same centerline location. Values with a negative distance indicate the string pot was 

located on the west side of the backfill centerline. 
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Figure 3.23: String pot locations and reference frame 

 

Figure 3.24: String pot arrangement for zero skew backfill deflection measurements 

Table 3.6: String pot locations on south end of pile cap 

String Pot ID 
String Pot Distance [in (cm)] 
From Top 

of Pile Cap 
From West Side 

of Pile Cap 
SP 965 (top west) 3 (7.62) 3 (7.62) 
SP 963 (bottom west) 51 (130) 3 (7.62) 
SP 964 (top east) 3 (7.62) 129 (328) 
SP 962 (bottom east) 51 (130) 129 (328) 
SP 967 (west reaction) 33 (83.8) -10.5 (-277) 
SP 966 (east reaction) 36 (91.4) 145.5 (370) 
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Table 3.7: String pot distances from pile cap face for zero skew tests 

String Pot ID Dist. from Face 
[ft (m)] 

Dist. from Center 
[ft (m)] 

SP25 2 (0.61) 0.58 (0.18) 
SP968 4 (1.22) -0.25 (-0.08) 
SP18 6 (1.83) 1.42 (0.43) 
SP10 10 (3.05) -1.08 (-0.33) 
SP11 14 (4.27) 2.25 (0.69) 
SP969 18 (5.49) -1.75 (-0.53) 
SP2 22 (6.71) -2.50 (-0.76) 

 

3.4.2 Linear Variable Differential Transformers (LVDTs) 

For the 0° skew tests, LVDTs were only used during the MSE test. Assuming  similar  

movement of the walls due to symmetry, the LVDTs were only used on the east wall. The 

locations are included in Table 3.8. The instrumentation setup for the zero skew MSE wingwalls 

is shown in Figure 3.25. Other recorded tests used LVDTs to measure both the east and west 

MSE walls, and pile cap movement; specifics can be found in Franke (2013), Marsh (2013), and 

Palmer (2013). 

 

 

Figure 3.25: MSE wall instrumentation setup for 0° test 
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Table 3.8: Instrument locations on 0° skew MSE wall 

String Pot ID 
Distance [in (cm)] 

From Top 
of MSE Wall 

From North Side 
of MSE wall 

SP 971 (top south) 2 (5.08) 259 (658) 
SP 973 (top mid-south) 2 (5.08) 180 (457) 
SP 972 (top mid-north) 2 (5.08) 109 (277) 
SP 970 (top north) 2 (5.08) 51 (130) 

LVDT ID 
Distance [in (cm)] 

From Bottom 
of MSE Wall 

From North Side 
of MSE wall 

SR 1 (bottom south) 5.5 (14.0) 262 (665) 
SR 2 (bottom mid-south) 9 (22.9) 182 (462) 
SR 5 (bottom mid-north) 7 (17.8) 109 (277) 
SR 3 (bottom north) 6 (15.2) 53 (135) 

3.4.3 Inclinometer 

As seen in Figure 3.26, two inclinometer pipes are located in the longitude center of the 

pile cap on both the north and south ends, 146 in (371 cm) apart with the south pipe 18 in (46 

cm) from the south edge of the pile cap. The pipes are installed within the center pile of both pile 

rows of the pile group. Each pipe runs to a depth of approximately 43 ft (13.1 m), or to the 

bottom of the piles. The pipes extend above the pile cap by 12 in (0.31 m), making the top-most 

inclinometer reading at 1.1 ft (0.34 m) level with the top of the pile cap. The grooved 

inclinometer pipes have an outside diameter of 2.75 in (70 mm) and an inside diameter of 2.32 in 

(60 mm). 

The Digitilt inclinometer probe, manufactured by SlopeIndicator, is 2 ft (0.61 m) long 

with sensors at the top and bottom of the probe. Data is recorded by calculating movement based 

on the relative angle between the two sensors. The probe consists of spring-pressured wheels to 

securely run through the pipe grooves. The cord length was used to 43.1 ft (13.1 m) and 41.1 ft 
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(12.5 m) on the north and south ends, respectively. For recording purposes, every 2 ft (0.61 m) 

on the cord is marked with yellow tape and every 10 ft (3.05 m) is marked with red tape and 

length value. The probe was lowered to the bottom of the pipe, careful not to strike the bottom 

which would cause damage to the probe sensor. A pulley system attached to the top of the pipe 

was used to provide an accurate measurement datum, and to easily raise and lower the probe. 

While the instructions recommended letting the probe acclimate for at least five minutes at the 

bottom of the pipe, the suggestion was not always followed which may have led to some slight 

discrepancies in the data. A cooler temperature due to water towards the bottom of the 

inclinometer pipe could also have affected the readings. 

Inclinometer readings were recorded with a DataMate II portable data acquisition unit. 

Using the pulley system, each reading was taken when the yellow tape was pulled just past the 

pulley catch. Each side of the pile cap was measured twice, first facing north and then again with 

a 180° rotation facing south. These recorded values were averaged during data reduction to 

reduce error in recording. This data provided information on both longitudinal and lateral 

movement of the pile cap versus depth. This procedure occurred both before pushing began and 

after the pile cap had reached its maximum displacement. 

 

Figure 3.26: Inclinometer locations on top of pile cap 
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3.4.4 Shape Accelerometer Arrays (SAA) 

 A 1.1-in (27-mm) inside diameter schedule 40 PVC electrical conduit was tied alongside 

the north and south inclinometer pipes.  The PVC pipe was originally installed to a depth of 50.2 

ft (15.3 m) below the top of the pile cap.  The electrical conduit extends upward through the pile 

cap and terminates approximately 3 in (75 mm) above the cap.  However, over time, some sand 

appears to have accumulated within the pipe, thus reducing the effective length. For this study, a 

48-ft (14.6-m) array was installed into the north pipe to a depth of 38.7 ft (11.8 m) below the top 

of the pile cap. A 24-ft (7.32-m) array was installed in the south pipe to a depth of 23.1 ft (7.04 

m) below the top of the cap. 

 The arrays connected to a data concentrator which in turn connected to the field 

computer. Both arrays provided triaxial static and dynamic accelerations for each joint along the 

length of the arrays. Application software (“SAARecorder”) calculated positional data at the 

vertices of the arrays using the static components. For static or slowly-changing deformations, 

the accelerometers measure tilt angles of each segment, similar to conventional inclinometers. 

However, azimuth in the SAA is resolved by performing 3D joint-angle calculations using the 

bend-without-twist joint construction as a constraint (Measurand Inc. 2011), rather than the 

grooves in the inclinometer casing. The bottom (FAR) node for the north array was considered 

deeper than any expected lateral movement and was thus set as an absolute zero reference point. 

Assuming the rigid pile cap to move as a block, the shorter south array was adjusted to match the 

uppermost longitudinal movement of the array in the north end of the pile cap. This adjustment 

allowed the south array to more accurately describe the south pile movement. 

 Both arrays were also adjusted to align their x- and y-axes with the north and east 

movements of the pile cap. More information on these adjustments can be found in Franke 
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(2013), Marsh (2013), and Palmer (2013). The shape array data included in the results portion of 

this thesis has been adjusted according to the judgment of the researchers, similar to those 

outlined in the given papers. 

3.4.5 Instruments for Backfill Heave and Shear Displacement 

For each zero skew test, the backfill vertical heave was measured with use of a 2-ft (0.61-

m) grid painted on the backfill surface. The relative elevation of each grid intersection was 

measured with a survey level before and after each test. The observed surface cracks in the 

backfill were also marked with paint following the completion of each test. Refer to Figure 3.27 

to see the backfill instrumentation setup. 

Holes to measure shear failure within the backfill were also included during testing. A 

hand auger was used to drill 2-in (51-mm) diameter, vertical holes at various locations 

throughout the backfill to determine the location of the internal failure surfaces. These columns 

were then refilled and compacted with red-dyed sand. After the final displacement was reached, 

the soil adjacent to the shear holes was excavated to reveal the failure locations in each red sand 

column. For specific locations of the shear columns for each test refer to Marsh (2013) and 

Palmer (2013). Results of the shear failure locations are included in Section 4.1.2. 
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Figure 3.27: General view of backfill instrumentation 

3.5 General Test Procedure 

This section describes the general test procedure in relation to the 0° skew tests. This 

includes which tests will be discussed, test set up, and test and measurement operation. 

3.5.1 Summary of Tests 

There were a total of 16 large-scale tests conducted during the testing time period (April 

to June 2012) including six baseline tests. All tests are summarized in Table 3.9 organized by the 

date performed. Tests 3, 4, and 6 correspond with the zero skew tests that will be discussed and 

compared in detail within this thesis. These include the 0° skew tests at backfill heights of 3 ft 

(0.91 m), 5.5 ft (1.68 m), and MSE wingwalls with 5.5 ft (1.68 m) backfill. The 0° skew tests 

were conducted on the existing pile cap before the skew wedges were constructed and attached. 

The general testing procedure occurred as follows. Prior to testing each skew angle, a 

lateral load test was performed to determine the “baseline” resistance of the pile cap and attached 

wedges. Following the baseline test, the sand was compacted adjacent to the cap so a lateral load 
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test could be performed to obtain the total resistance. Following backfill installation, the surface 

grid and shear columns were applied and appropriate initial measurements were recorded. 

 To run the test, the pile cap was pushed longitudinally into the backfill zone using the 

two hydraulic actuators. The cap was pushed in 0.25-in (6.35-mm) increments to final 

displacements of 3.25 in to 3.75 in (8.30 cm to 9.53 cm) to prevent failure of the supporting 

piles. At each 0.25-in (6.35-mm) displacement increment the load was held for approximately 2 

minutes to observe the reduction in longitudinal force against the backwall as a function of time. 

Intermediate measurements were recorded at each incremental push. After the last push, final 

measurements were recorded. The pile cap was pulled by the actuators back to its initial starting 

position, and the backfill soil was removed. The backfill material was completely excavated and 

recompacted for each individual test. 

 

Table 3.9: 2012 Testing Summary 

Test 
Number Test Date  

Test Description 
Skew Angle Backfill 

1 4/25/2012  0° Baseline 
2 4/25/2012  0° Baseline Retest 
3 4/30/2012  0° 3.0 ft (0.91 m) 
4 5/3/2012  0° 5.5 ft (1.52 m) 
5 5/3/2012  0° Baseline Retest 
6 5/8/2012  0° MSE Wall 
7 5/14/2012  30° Baseline 
8 5/15/2012  30° Baseline Retest 
9 5/18/2012  30° MSE Wall 
10 5/24/2012  30° 5.5 ft (1.52 m) 
11 5/30/2012  30° 3.0 ft (0.91 m) 
12 5/31/2012  15° Baseline 
13 6/4/2012  15° 5.5 ft (1.52 m) 
14 6/6/2012  15° 3.0 ft (0.91 m) 
15 6/8/2012  15° 3.0 ft (0.91 m) Retest 
16 6/13/2012  15° MSE Wall 
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3.5.2 Backfill Installation 

In general, backfilling began between 6 to 12 in (15.2 to 30.5 cm) below the bottom of 

the pile cap. Underneath the backfill consisted of native clay material. Each lift was placed in 

approximately 6-in (15.2-cm) increments until the desired height for each test was reached. Each 

lift was filled and leveled by a backhoe and by hand with shovels for the corners and edges. The 

lift was then compacted with a vibrator roller compactor for deep compaction and a walk-behind 

plate compactor for shallow compaction, edges, and corners. Figure 3.28 shows the compactor 

instrumentation in action. Each lift was tested in two random locations by a nuclear density gage, 

as shown in Figure 3.29, to ensure that a density greater than or equal to 95% of the modified 

proctor value was achieved. The average soil properties for each test are given and summarized 

in Section 3.3. After reaching the desired height, the backfill was smoothed and leveled by taking 

random level rod readings along the top of the soil surface. 

 

 

Figure 3.28: Compaction instruments with vibrator roller compactor on left and plate 
compactor on right 
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Figure 3.29: Testing soil with nuclear gage 

3.5.3 Instrumentation Measurements 

After each backfill was leveled adequately, a 2 x 2 ft2 (0.61 x 0.61 m2) grid was spray 

painted on the surface parallel to direction of push and to the cap face a shown in Figure 3.30. 

The grid lines helped to measure and locate soil surface cracking and failure. Dimensions of the 

grid equaled approximately 22 ft (6.7 m) wide and 24 ft (7.3 m) long for the 3ft and 5.5ft tests. 

The MSE walls limited the backfill to 11.5 ft (3.5 m) wide. During testing, surface cracking often 

appeared first on the spray painted lines. 

At each intersection of the grid, a relative elevation measurement was taken with a 

surveying level and rod. These measurements were recorded, and new measurements were taken 

and recorded at the end of the test to determine the vertical displacement of the backfill. String 

pots were also set up near the face of the pile cap to read the longitudinal displacement of the 

soil. Each string pot was attached to a rod at varying positions along the grid as presented in 
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Section 3.4.1. Before pushing the cap, inclinometer and shape array readings were taken at both 

the north and south ends of the pile cap. Results for backfill movement are given in Section 4.1. 

 

 

Figure 3.30: General backfill surface grid 

3.5.4 Procedures During Test 

For each test, the actuators pushed the pile cap into the backfill at a rate of 0.05 inches 

per minute (1.27 mm per minute) Each push was limited to approximately 0.25-in (6.4-mm) 

increments. After each push, an SAA reading was recorded for approximately 10 seconds. String 

pot values were also recorded and averaged to determine the actual push distance. These values 

helped calculate the next applied load of the actuators. Surface cracking was marked throughout 

the test with a spray paint color different from the grid. Each test was pushed at least 3.25 in 

(82.6 mm) not exceeding 3.75 in (95.3 mm) to prevent failure of the supporting piles. 

At the end of the test, final SAA and inclinometer readings were taken. The crack 

locations were recorded as shown in Figure 3.31. Final heave measurements were taken with the 

surveying level and rod. During final measurements, the actuators were held at a constant load. 

Before excavation of the backfill, the pile cap was pulled back to its starting position. 
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Figure 3.31: Marking and recording crack patterns in backfill 

3.5.5 Shear Locations and Excavation 

For the 3ft and 5.5ft zero skew tests, shear columns were placed along the middle of the 

grid at 2, 4, 6, and 8 ft (0.61, 1.22, 1.83, and 2.44 m) perpendicular to the pile cap face. These 

were constructed by hand auguring each hole to below the bottom of the pile cap, then refilling 

and compacting each hole with red-dyed sand. To find the shear plane, the lengths of the holes 

were excavated by backhoe and shovel; an example is shown in Figure 3.32. After the depths of 

the shear plane were measured and recorded, the pile cap was returned to its initial position, and 

the backfill was excavated by backhoe to the bottom clay layer boundary. 
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Figure 3.32: Discovering shear plane 
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4 0° SKEW TEST RESULTS AND ANALYSIS 

This section compares the results of the different backfills for the 0° skew tests. Most 

often, the comparisons are between the unconfined 3ft and 5.5ft tests and between the 5.5ft 

unconfined and MSE confined tests. The displacement, strain, and failure zones of the backfills 

are first discussed along with the deflections of the tested pile cap. The passive force - deflection 

curves are subsequently discussed and analyzed. 

4.1 Backfill Displacement, Strain, and Failure 

The shear failure wedge for each test was determined by mapping the vertical 

displacement and cracking patterns observed on the surface of the backfill and using sand 

columns placed within the backfill. The strain in the backfill was also recorded. 

4.1.1 Backfill Heave and Surface Cracking 

Displacement of the backfill for each of the zero skew tests was an interesting 

comparison. Figure 4.1 provides a side-by-side comparison of ground surface heave and crack 

patterns for each test. Figure 4.2 provides side-by-side photographs of the crack patterns 

observed for each test. Lastly, Figure 4.3 provides photos and contour plots side-by-side for each 

of the three tests. 
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(a) (b) (c) 

Figure 4.1: Plotted heave and crack patterns for 0° skew tests for (a) 3ft, (b) 5.5ft, (c) MSE 

 

   
(a) (b) (c) 

Figure 4.2: Heave and crack patterns for 0° skew for (a) 3ft, (b) 5.5ft, (c) MSE 

 

As shown in Figure 4.1, the maximum heave values were 2.4 in (61 mm) near the face of 

the cap, 1.8 in (46 mm) near the face of the cap, and 1.8 in (46 mm) between 4 and 10 ft (1.2 and 

3.0 m) behind the face of the cap for the 3ft, 5.5ft, and MSE wall tests, respectfully. These heave 

values amount to 6.7%, 2.7%, and 2.7% of each respective backfill height. The larger heave 

values for the 3ft test could be partially attributed to the lesser amount of soil being pushed and 

the reduction in vertical confining pressure. The soil had less resistance above and therefore 
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compressed and rose at the face of backwall with greater ease. More likely, the larger heave may 

be attributable to the fact that the normalized longitudinal displacement for the 3ft test was about 

three times greater than that for the 5.5ft test. Greater longitudinal displacement would be 

expected to result in more heave. 

The maximum heave values near the outside edges of the pile cap are similar to 

observations from previous tests (Cummins 2009, Douglas and Davis 1964). Larger vertical 

displacement values and cracking of the backfill indicate higher pressures at those locations. 

Heaving and cracking release the pressure. The failure surface can be identified by heave 

contours and visible cracks at the surface. Figure 4.1 shows the shear failure surfaces of the 3ft 

and 5.5ft tests form a bulb-like shape, where the most pressure has been released. The MSE wall 

test, discussed subsequently, most likely failed with a different governing failure mechanism 

than the other two tests. 

Each heave surface is relatively symmetrical about the centerline of the backfill. Heave 

and cracking of the unconfined 3ft and 5.5ft tests are similar in shape, with a larger failure bulb 

existing in the 5.5ft test. The defining boundary line of the failure zone is generally located 

where heave values are between 0.4 to 0.6 in (10.2 to 15.2 mm) (Franke 2013). This is generally 

exhibited in both the 3ft and 5.5ft tests by comparing the cracks and heave contour values. Based 

on 0.6 in (15.2 mm) heave criteria, the heave zones extended out from the backwall face by 10 ft 

(3.1 m), 17 ft (5.2 m), and 18 ft (5.5 m) for the 3ft, 5.5ft, and MSE backfills, respectively. The 

length of the heave zone increased by about 70% as the height of the backfill increased about 

80% from 3 ft (0.91 m) to 5.5 ft (1.68 m). The ratio of failure surface length to wall height was 

relatively consistent with a value between about 3.1 and 3.3. 
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 (a) 

 

 

(b) 

 

 

(c) 

 
 

Figure 4.3: Heave and crack patterns for 0° skew tests for (a) 3 ft, (b) 5.5 ft, (c) MSE wall 
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For the unconfined backfills, the failure planes extend beyond the edges of the pile cap 

and increase the "effective width" of the pile cap. The effective widths, measured parallel to the 

cap face and between failure surfaces, were estimated as 17 ft (5.2 m), 21 ft (6.4 m), and the 

confined 11.5 ft (3.5 m) for the 3ft, 5.5ft, and MSE wall backfills, respectively. These effective 

widths correspond to 1.54B, 1.91B, and 1.05B, respectively, where B is the 11 ft (3.35 m) width 

of the pile cap. The "effective width" to wall height ratios were also relatively consistent 

remaining between about 3.6 and 3.8 for both unconfined tests. 

The confined MSE wall test shows an "X" shape crack pattern and maximum vertical 

deformation farther from the cap face. This is most likely due to the attached grids and MSE 

walls, which helped the backfill act together as a unit as the pile cap was pushed (Franke 2013). 

Heave values are seen to remain high along the MSE walls. The longitudinal cracking pattern 

suggests that the MSE wall panels are moving outward transverse to the direction of loading. The 

greatest transverse wall deflection occurs at about 12 ft (3.7 m) back from the pile cap face 

(Franke 2013). 

4.1.2 Shear Failure 

Both the 3ft and 5.5ft backfills failed along a log spiral curve surface as illustrated in 

Figure 4.4. The observed shear locations for each soil column were measured and plotted as 

shown in Figure 4.5. Both the 3ft and 5.5ft tests exhibited a shear failure zone as described by 

Terzaghi (1943), consisting of both the Prandtl and Rankine zones. The base of the Prandtl zone 

has a curved (log-spiral) shape while the base of the Rankine zone is linear. A downward 

trending shear plane separates the two zones. The Prandtl zone wedge, adjacent to the face of the 

backwall, seems to displace the most moving forward and down. The farther and downward 

movement of the Prandtl zone is seen in both Figures 4.4a and 4.4b for the 3ft and 5.5ft backfills, 
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respectively. The Rankine zone, which incorporates the soil wedge beneath the surface of the 

backfill, is forced upwards by the Prandtl zone and forward by the Prandtl zone and pile cap 

displacement. The portion of the soil columns below the log spiral shear plane are outside the 

shear zone. Heave is limited to the zone inside the failure mass. 

 

 

(a) 

 

(b) 

Figure 4.4: Shear failure zone for (a) 3ft test and (b) upper 5.5ft test 
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(a) 

 
(b) 

Figure 4.5: Profile plot of failure geometry for (a) 3ft (Palmer 2013) and (b) 5.5ft (Marsh 
2013) tests 
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4.1.3 Backfill Displacement 

The measurements from the string pots located longitudinally along the backfill grid for 

each of the zero skew tests are displayed in Figure 4.6, with the final displacements summarized 

in Figure 4.7. String pot setup is discussed in Section 3.4.1. Displacement versus distance curves 

for incremental pushes of the pile cap are shown with different line styles. Curves are shown at 

longitudinal pile cap deflection of 0.5 in (12.7 mm), 1.0 in (25.4 mm), 2.0 in (50.8 mm), and the 

final push at 3.25 in (82.6 mm). The displacements at various locations in the three backfills are 

similar up to the 2.0 in (50.8 mm) push.  

At the 2.0 in (50.8 mm) push, the 3ft test displacement drops significantly lower than the 

other tests at approximately 12 ft (3.7 m) from the backwall. With the shear failure wedge 

daylighting at 10 ft (3.0 m) and the peak passive force occurring at 1.53 in (38.9 mm), it can be 

assumed the 12 and 14 ft (3.7 and 4.3 m) measurements were outside the shear failure zone and 

thus experienced a smaller amount of displacement. Neither the 5.5ft nor MSE wall tests show 

the same distinctive drop in displacement, or daylighting of the shear wedge in the zero skew 

tests. Rather the displacement pattern showed a relatively linear trend with distance from the 

backwall. In Figure 4.7, the 5.5ft test exhibits a rather significant drop in displacement 

immediately behind the backwall, suggesting significant heave and compression of the soil 

between the face of the cap and the 2.0-ft (0.61-m) string pot measurement. This type of drop in 

displacement is also seen in the 2.0 in (50.8 mm) and the last push of each of the tests, though 

not as dramatic. Due to the resisting force from the larger amount of backfill, the 5.5ft test 

reasonably compresses more than the other tests. As the soil compressed during loading, the 

amount of displacement proportionally decreased with distance from the pile cap face. The MSE 
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test curve has a similar shape through each of the pushes, suggesting that the MSE walls 

effectively held the soil together as a unit. 

 

 

Figure 4.6: Backfill displacement measurements at various locations beyond the pile cap 
for 0° skew tests 

 

Figure 4.7: Final backfill displacement of 0° skew tests 
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4.1.4 Backfill Compressive Strain 

The longitudinal compressive strain in each of the backfills was calculated from the 

measured displacements in Figures 4.6 and 4.7 and is plotted as a function of distance from the 

back of the pile cap in Figure 4.8. For simplicity, Figure 4.8 compares the final compressive 

strain for each of the 0° skew tests. All three strain profiles are reasonably comparable. The 

greatest amount of compressive strain is located within the first 2 ft (0.61 m) of the backwall 

with strain values of 2 to 6%. The 5.5ft backfill produced the greatest strain while the MSE 

produced the least. Beyond about 3 ft (0.91 m), the strain levels drop and remain typically 

between 0.5% and 1.5% along the rest of the backfill distance. The lower and constant strain 

suggests that the soil mass is displacing more or less as a block. Some evidence of increased 

strain for the 3ft test occurred where the failure surface daylights at around 11 ft (3.4 m) 

indicating that the soil behind the failure wedge was likely being compressed (Palmer 2013). 

Without a daylighted failure wedge in either the 5.5ft or MSE wall 0° skew tests, the 

compressive strain shows little evidence of the failure surfaces. Perhaps the grid spacing is too 

coarse to resolve the increased strain around the failure surface which may be rather localized. 

The lower strain in the MSE test could also be attributed to the presence of the MSE walls and 

grids which reinforce the soil, preventing soil compressibility. The rise in compressive strain 

between 8 and 16 ft (2.4 and 4.9 m) occurs within the unreinforced section of the MSE walls 

(Franke 2013). Also, outward movement of the MSE wall panels could have relieved pressure 

and reduced the compressive strain. 
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Figure 4.8: Final compressive strain of backfill for 0° skew tests 
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4.2.1 Baseline Tests 

Six baseline tests were conducted throughout the testing program. The baseline tests 

provided means to compare the backfill resistance of the different heights and skews for the tests 

performed. To summarize, the pile cap was pushed three separate times with no skew wedge 

attached, twice with the 30° wedge, and once with the 15° wedge. The individual baseline tests 

chosen for the zero skew analyses were determined for the 3ft, 5.5ft and MSE wall tests in the 

Palmer (2013), Marsh (2013), and Franke (2013) theses, respectively. To accurately compare 

their results, the same chosen baseline tests were used for this analysis. The reader may refer to 

their theses for further discussion on the baseline choices. For the 0° skew, the 3ft test used the 

first 30° skew baseline test (Palmer 2013), the 5.5ft test used the first 0° baseline test (Marsh 

2013), and the MSE wall test also used the first 0° baseline test (Franke 2013). The baseline 

results used for each of the 0° skew tests are shown in Figure 4.9. As expected, the results are all 

very similar which allows the computed backfill resistance to be compared. 

 

 

Figure 4.9: Baseline resistance for each of the 0° skew tests 
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4.2.2 Passive Force – Deflection Curve 

Figure 4.10 provides the resulting backfill resistance for each of the 0° skew tests. The 

peak passive forces for the 3ft, MSE wall, and 5.5ft unconfined fill tests were 167.6 kips (745.5 

kN), 453.7 kips (2018 kN), and 480.5 kips (2137 kN), respectively. The associated deflections 

for the peak forces occurred at 1.53 in (38.9 mm), 3.18 in (80.8 mm), and 2.97 in (75.4 mm), 

respectively. Although actual peak resistance may not have been fully achieved, concerns about 

exceeding pile resistance with further displacement necessitated that the peak passive force for 

the MSE wall test be defined at the maximum displacement (Franke 2013). Thus, the peak 

resistance and deflection may have actually been somewhat higher than the values reported for 

the MSE wall test. As previously mentioned in Section 4.1, the lack of failure may have occurred 

because the MSE wall boundaries prevented shear zones from extending beyond the edges of the 

pile cap. The normalized deflection at the peak passive force for the 3ft, 5.5ft, and MSE wall 

tests, with H as the height of the backwall, correspond to 0.043H, 0.045H, and 0.048H, 

respectively. Each of these values are comparable and fall within the previously observed ranges 

of 0.03H to 0.05H for zero skew tests by Rollins and Cole (2006). Table 4.1 summarizes the 

passive force and deflection values for easy reference. 

 

Table 4.1: Peak passive force and deflection values for the 0° skew tests 

Test Peak Passive Force 
[kips] (kN) 

Deflection  
[in] (cm) 

Deflection  
Equation 

3ft 167.6 (745.5) 1.53 (3.89) 0.043H 
5.5ft 480.5 (2137) 2.97 (7.54) 0.045H 

MSE wall 453.7 (2018) 3.18 (8.08) 0.048H 
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Figure 4.10: Backfill resistance for each 0° skew test 
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included in the comparison, only a slight load increase is seen compared to the larger mass 

increase between the MSE wall and 5.5ft tests. 

 

Table 4.2: Percent increase in mass and load between 0° skew tests 

Test Applied Load 
[kips (kN)] 

Mass Resistance 
[kips (kN)] 

Increase in Load (%) Increase in Mass (%) 
From 3ft From MSE From 3ft From MSE 

3ft 167.6 (745.5) 45 (200) - - - - 
MSE 453.7 (2018) 137 (609) 171 - 204 - 
5.5ft 480.5 (2137) 188 (837) 187 6 318 37 

 

 

Except for the zero skew MSE wall, each test exhibited a hyperbolic load-displacement 

curve as seen in previous large scale tests (Rollins and Cole 2006, Shamsabadi, et al. 2006). The 

hyperbolic shape occurs when the backfill soil mass shears and resistance peaks or flattens out. 

The maximum passive force is the load that occurs just before shear failure is reached. The 

leveling out of the load results in the formation of 3-dimensional shear surfaces within the soil 

mass. Shear planes for the various tests are discussed in Section 4.1.2. The 3ft test, with a smaller 

passive force, sheared at an earlier deflection than the other two tests as seen in Table 4.1. The 

5.5ft test took nearly twice the displacement of the 3ft test to shear. Compared to the unconfined 

5.5ft test, the MSE about 7% more displacement was needed to reach the peak resistance. 

 Between the three tests, width of the failed soil (3D plane) was seen to affect the force 

resisted by the soil. Estimated from the shear failure zones, as shown in Section 4.1.1, effective 

widths for the MSE wall, 3ft, and 5.5ft tests are 11.5 ft (3.5 m), 17 ft (5.2 m), and 21 ft (6.4 m), 

respectively. The ratios of effective width to actual width are 1.55 and 1.91, respectively for the 

3ft and 5.5ft walls. The ratio appears to increase as the wall width to height ratio decreases. 

When passive force is divided by effective width, the efficiency of a given abutment geometry 
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can be better understood. The results in Figure 4.11 clearly show that the passive force per width 

is greater for the backfill with MSE walls than for the unconfined test. The peak passive force for 

the MSE wall is 72% higher relative to the unconfined 5.5ft test as described in Table 4.3. This 

observation may be explained by at least three reasons. First, the failure geometry of the MSE 

case is a 2D or plane strain condition, whereas the failure for the unconfined backfill is closer to 

a 3D or triaxial shear geometry. As discussed in more detail in Section 5.1, greater soil strength 

is generally obtained with a plane strain geometry. In addition, the presence of the bar mats and 

MSE wall panels can potentially increase the lateral pressure on the failure mass and thereby 

increase shear strength. Finally, reinforcing mats may create a volume which simply compresses 

longitudinally and expands laterally rather than allowing a conventional log spiral shear surface 

to form. Even if the failure surface did form, it would have to pass through the reinforcing layers 

which would then increase shear strength. 

 

 
Figure 4.11: Backfill resistance normalized with effective width for each 0° skew test 
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Table 4.3: Comparison of passive force/width between confined and unconfined 5.5ft tests 

Test Peak force/Measured width 
[kips/ft (kN/m)] 

MSE/5.5ft 
(% increase) 

5.5ft 22.9 (332) 72 MSE 39.5 (577) 
 

 

 The previous discussion and the results in Figure 4.11 clearly show that both the effective 

width and the total passive force for the unconfined backfills vary with backfill height. As 

described in Section 2.1, the effect of backfill height is not seen as a linear trend. Based on the 

classical passive force theories, the passive force should increase proportionally to the square of 

the height ratio. The square of the height ratio between the 3ft and 5.5ft tests equals 3.36, which 

is greater than the passive force ratio of 2.87. Therefore, the increase in passive force is not as 

great as expected based on the height ratio. There are two possible explanations for the differing 

values. First, the 3D effects for the two wall heights are different as addressed in Section 4.1 and 

more fully analyzed in Section 5.1. The 3ft test has a smaller effective width than the 5.5ft test. 

Second, small amounts of cohesion can have a pronounced effect on the passive force 

contributed by the soil. Discussed in more detail in Section 5.1, the cohesive term is only a linear 

function of the height ratio. As a result, a lower passive force ratio than expected by the squared 

height ratio is likely. Without considering cohesion or effective width differences, the raw test 

results suggest an exponent of 1.74 for the height in the passive force equation. Another study 

conducted by Shamsabadi, et al. (2010) also found that the squared height ratio was not an 

accurate comparison to the passive force ratio for dense sand. Section 5.1 discusses the effects of 

removing the 3D and cohesion force contributions using Duncan and Mokwa's (2001) PYCAP 

program, and lowering the squared height ratio. 

 72 



In Figures 4.10 and 4.11, the initial stiffness clearly increases as the wall height increases 

and also seems to depend on the amount of backfill placed behind the wall in each test. However, 

all three tests have a similar initial stiffness when force is normalized by peak force and 

displacement is normalized by wall height. Initial stiffness comparisons of the 0° skew tests are 

included in Figure 4.12. Initially, the 5.5ft test has the highest stiffness, but decreases at about 

0.01H. The 3ft test has the most consistent slope and peaks much earlier than the other two tests. 

Because of the smaller load and height associated with the 3ft test, normalized displacement 

extends the curve to 0.09H. The curve remains relatively flat after the peak is reached although 

there is a small decrease (<5%) in resistance. The MSE wall test has the softest response, likely 

due to transverse movement of the wingwalls as longitudinal force is applied. Taking out the 

normalized effects of displacement in Figure 4.13, the locations of peak passive force are more 

clearly seen. In terms of absolute displacement, the 3ft test peaked first, then the 5.5ft test, with 

the MSE wall test reaching its peak at the farthest displacement. 

 

 

Figure 4.12: Normalized backwall resistance vs. normalized pile cap displacement for 0° 
skew tests to compare initial stiffness values 
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Figure 4.13: Normalized backwall resistance vs. displacement for 0° skew tests to compare 
peak force locations 

4.3 Pile Cap Deflection and Rotation 
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forward deflection for each test, inclinometer readings were taken of the pile cap deflection. 

Figure 4.14 provides plots of longitudinal deflection versus depth curves at the maximum 

forward displacement for each zero skew test side by side for easy comparison. Good agreement 

is seen between all instruments in each test for both the measured north and south ends of the 

pile cap, which gives validation to the repeatability of the tests. The final displacements of each 

of the tests are also similar, resulting in comparable attributes. In each case, the deflections 

within the pile cap itself indicate that the cap largely translated under the lateral loading but some 

forward rotation was also evident in each case. Below the base of the cap within the piles, the 

deflection rapidly decreased to zero at a depth of about 20 ft (6.1 m) which did not vary much 

with the backfill type. 

Transverse deflection was also recorded for the north and south ends of the pile cap. 

Comparisons are shown in Figure 4.15. Reasonable agreement is seen between the shape array 

and inclinometer readings; however, the transverse movements are very small. The cap shifted 

slightly to the left (west) during both the 3ft and MSE wall tests, whereas for the 5.5ft test the 

cap generally stayed close to the original centerline but did rotate out to the right (east and 

counterclockwise) on the south end. More discussion of rotation is provided in the following 

section. Movement is seen in the uppermost 20 ft (6.1 m) of the piles in both the longitudinal and 

lateral deflections. 

4.3.2 Rotation 

Transverse displacement at the top of the pile cap are plotted to show and aerial view of 

the rotation in Figure 4.16. The transverse displacements were obtained from the top points of 

both the inclinometer and shape arrays on the north and south sides of the pile cap for each zero 

skew test. The transverse deflection measurements of the pile cap for both north and south sides 
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revealed small amounts of counterclockwise rotation even during the zero skew test as shown in 

Figure 4.16. The rotation is likely accounted for by the two actuator components during the 

pushing of the pile cap and small discrepancies in the displacement for each actuator. The 

differences in rotation are assumed to be due to the backfill properties. For comparison, the zero 

skew baseline test is also included and shows slight counterclockwise rotation without much of a 

lateral shift. 

 

   

(a) (b) (c) 

Figure 4.14: Longitudinal pile deflection as measured by the north and south shape arrays, 
inclinometers, and string pots for (a) 3ft, (b) 5.5ft, and (c) MSE wall tests 
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(a) (b) (c) 

Figure 4.15: Transverse pile deflection as measured by the shape arrays and inclinometers 
for the (a) 3ft, (b) 5.5ft, and (c) MSE wall tests  
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the pile cap (Palmer 2013). 
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Figure 4.16: Final pile cap rotation  for each 0° skew test 

  

(a) (b) 

Figure 4.17: String pot, shape array, and inclinometer measurements of pile cap for both 
(a) north and (b) south sides showing slight forward rotation 
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5 PASSIVE FORCE ANALYSIS AND COMPARISON 

This section compares the results of various passive force theories and predictive 

methods described in Section 2 to the field results of the 0° skew tests. 

5.1 Comparison of Results with Various Passive Force Prediction Approaches 

The design methods for passive force - deflection curves described in Section 2.2 were 

used to make comparisons with the measured field test results. To provide comparable results, 

the soil backfill parameters were generally held constant for each design method. The back-

calculated PYCAP parameters, determined from the two different zero skew backfill heights 

were used to compute the design curves. In most cases, the design curves were not accurate. In 

addition, best-fit parameters were also back calculated for each method. 

5.1.1 PYCAP Design Curve 

Duncan and Mokwa’s (2001) PYCAP Excel spreadsheet was used to back calculate the 

optimum parameters for each test which were then used in calculating the other design curves. 

The optimum parameters determined by Palmer (2013), Marsh (2013), and Franke (2013) are 

listed in Table 5.1 and the curve comparisons are shown in Figure 5.1. The optimum soil 

parameters found for the 3ft and 5.5ft tests were similar, but many of the values for the MSE 

wall test parameters needed to be increased to fit the actual curve. The Brinch-Hansen (1966) 3D 

effects were disregarded for the MSE wall curve. In each thesis, the passive force curve was 
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optimized for the individually analyzed backfill, which prohibited a realistic estimate of the 

potential error found in the PYCAP predictions. 

 

 Table 5.1: Parameters used with PYCAP approach to compare passive 
force – deflection curves for individual 3ft, 5.5ft, and MSE wall tests 

[Adapted from Palmer (2013), Marsh (2013), and Franke (2013)] 

 

Parameter 3ft 5.5ft MSE Units 
Cap Width, b 11 (3.35) 11 (3.35) 11 (3.35) ft (m) 
Cap Height, H 3.0 (0.91) 5.5 (1.68) 5.5 (1.68) ft (m) 
Cohesion, c  100 (4.79) 85.0 (4.07) 137.7 (6.59) psf (kN/m2) 
Soil Friction Angle, ϕ  42 40 47.2 degrees 
Wall Friction Angle, δ  28.8 28 32.0 degrees 
Friction Ratio, δ/φ 0.686 0.700 0.678 – 
Initial Soil Modulus, Ei  415 (19.87) 415 (19.87) 520 (24.90) kip/ft2 (kN/m2) 
Poisson’s Ratio, ν 0.25 0.33 0.25 – 
Soil Unit Weight, γm  117 (18.4) 116.5 (18.3) 117.4 (18.4) pcf (kN/m3) 
Adhesion Factor, α 1.00 1.00 1.00 – 
Δmax/H at Failure 0.032 0.032 0.065 – 

 

 

To more fully compare the backfills, an attempt was made to determine how well one set 

of consistent PYCAP parameters would fit the measured test results for all tests. The Brinch-

Hansen (1966) 3D correction equation was used to account for the effective width. Values for the 

3D factor are tabulated in Table 5.2. These values are typically about 5% lower than observed in 

the field tests discussed previously. However, in computing the passive force for the MSE test 

the Brinch-Hansen (1966) correction factor was removed because the failure surface could not 

extend beyond the edge of the cap owing to the presence of the MSE wingwalls. Parameters 

were found that suited both the 3ft and 5.5ft tests within about 10% of the measured field curves. 

These values can be found in Table 5.4 and the computed and measured passive force-

displacement curves are plotted in Figure 5.2. However, with these same parameters the 
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predicted curve for the MSE test significantly underestimates the measured load-deflection curve 

as shown in Figure 5.2. This is consistent with previous tests using MSE walls and appears to be 

a result of the 2D or plane strain loading condition (Bingham 2012, Rollins, et al. 2010, 

Strassburg 2010). The MSE curve in Figure 5.2 suggests that use of a triaxial, or 3D, friction 

angle in backwall design leads to a substantially conservative estimate. 

 

 

Figure 5.1: Comparison of PYCAP design curve with the passive force vs. backwall 
deflection curve for the individual 3ft, 5.5ft, and MSE wall tests [adapted from Palmer 
(2013), Marsh (2013), and Franke (2013), respectively] 

 

Table 5.2: Comparison of measured and calculated 3D end effects 
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[ft (m)] 3D Factor 

Measured 17 (5.18) 1.55 21 (6.40) 1.91 
PYCAP 16.1 (4.91) 1.47 20.0 (6.10) 1.82 
% Error 5.3 5.2 4.8 4.7 
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Table 5.3: Parameters used with PYCAP approach to compare passive force – 
deflection curves for 3ft, 5.5ft, and MSE wall tests 

 

Parameter 3ft 5.5ft MSE Units 
Cap Width, b 11 (3.35) 11 (3.35) 11 (3.35) ft (m) 
Cap Height, H 3.0 (0.91) 5.5 (1.68) 5.5 (1.68) ft (m) 
Cohesion, c  100 (4.79) 100 (4.79) 100 (4.79) psf (kN/m2) 
Soil Friction Angle, ϕ  41.2 41.2 41.2 degrees 
Wall Friction Angle, δ  27.0 27.0 27.0 degrees 
Friction Ratio, δ/φ 0.654 0.654 0.654 – 
Initial Soil Modulus, Ei  450 (21.6) 450 (21.6) 450 (21.6) kip/ft2 (kN/m2) 
Poisson’s Ratio, ν 0.25 0.25 0.25  
Soil Unit Weight, γm  117.0 (18.4) 116.5 (18.3) 117.4 (18.4) pcf (kN/m3) 
Adhesion Factor, α 1.00 1.00 1.00 – 
Δmax/H at Failure 0.035 0.035 0.035 – 

 

  

 

Figure 5.2: Comparison of PYCAP design curves with the passive force vs. backwall 
deflection curve for the combined 3ft, 5.5ft, and MSE wall tests with same soil parameters 

 

0 2 4 6 8 10 

0 

500 

1,000 

1,500 

2,000 

2,500 

0 

100 

200 

300 

400 

500 

600 

0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 

Pile Cap Displacement [cm] 

Lo
ng

itu
di

na
l F

or
ce

 [k
N

] 

Lo
ng

itu
di

na
l F

or
ce

 [k
ip

s]
 

Pile Cap Displacement [in] 
3-ft Field Test 5.5-ft Field Test MSE Field Test 
3ft PYCAP 5.5ft PYCAP MSE PYCAP 

 82 



While trying to preserve the parameters found with the 3ft and 5.5ft, some MSE test 

parameters were increased to better fit the field curve as shown in Table 5.4. While keeping the 

ratio similar to the unconfined tests, the soil and interface friction angles were increased. To 

make the plane strain condition compatible, an approximate 10% increase over the triaxial 

friction angle was needed. This increase is consistent with laboratory tests results which indicate 

that the plane strain friction angle is typically about 10% higher than the triaxial friction angle 

(Bingham 2012, Rollins, et al. 2010, Strassburg 2010). Figure 5.3 compares the effectiveness of 

using a plane strain friction angle rather than the commonly used triaxial angle. The plane strain 

parameters much more closely match the measured passive force-deflection curve, particularly 

up to a displacement of about 2.5 in (6.4 cm) after which the measured curve diverges upward. 

However, both cases assume the peak force occurred at a deflection 3.5% of the backfill height, 

which does not match the observed MSE field curve. The divergence at large deflections call into 

question the baseline curve used to define the MSE wall passive force, but no obvious errors in 

the baseline curve could be determined. Based on the shape of the measured curve, failure of the 

backfill is assumed to have occurred after the final measured displacement. Therefore, the ∆max/H 

value was increased to 0.065 for which the curve follows a more comparable path. The final 

values used in the analysis can be found in Table 5.4 and the resulting computed passive force-

deflection curve in Figure 5.4. 
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Figure 5.3: Comparison of MSE field test with unconfined PYCAP parameters using 
triaxial and plane strain friction angles  

 

 Table 5.4: Final parameters used with PYCAP approach for 3ft and 5.5ft 
tests with adjusted MSE test parameters 

 

Parameter 3ft 5.5ft MSE Units 
Cap Width, b (ft) 11 (3.35) 11 (3.35) 11 (3.35) ft (m) 
Cap Height, H (ft) 3.0 (0.91) 5.5 (1.68) 5.5 (1.68) ft (m) 
Cohesion, c  100 (4.79) 100 (4.79) 100 (4.79) psf (kN/m2) 
Soil Friction Angle, ϕ  41.2 41.2 45.3 degrees 
Wall Friction Angle, δ  27.0 27.0 29.6 degrees 
Friction Ratio, δ/φ 0.654 0.654 0.654 – 
Initial Soil Modulus, Ei  450 (21.6) 450 (21.6) 450 (21.6) kip/ft2 (kN/m2) 
Poisson’s Ratio, ν 0.25 0.25 0.25  
Soil Unit Weight, γm  117.0 (18.4) 116.5 (18.3) 117.4 (18.4) pcf (kN/m3) 
Adhesion Factor, α 1.00 1.00 1.00 – 
Δmax/H at Failure 0.035 0.035 0.065 – 
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Figure 5.4: Comparison of PYCAP design curves with the passive force vs. backwall 
deflection curve for the combined 3ft, 5.5ft, and MSE wall tests with similar soil 
parameters 

 

The shape of the MSE passive force-deflection curve is similar in comparison with 
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consisted of a dense sand with field compaction averaging between 95% and 96% of modified 

Proctor target. While the backfill heights were similar at 5.5 ft (1.68 m), the loads varied due to 

various testing methods as described in Bingham (2012), Rollins, et al. (2010), and Strassburg 

(2010), and were thus normalized with the maximum force values. Conveniently, each test was 

pushed to approximately the same deflection. These similar curves suggest that the MSE tests are 

valid and that the wingwalls do affect the passive resistance and deflection of the backfill. The 

compared MSE tests also increased the soil friction angle and percent deflection to match the 

calculated PYCAP curves to the field curves (Bingham 2012, Rollins, et al. 2010, Strassburg 

2010). 
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Figure 5.5: Comparison of MSE tests [adapted from Rollins, et al. (2010), Strassburg 
(2010), Bingham (2012)] 
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force and squared height ratios. The lower passive force ratio between the tests is likely due to 

the 3D effects and cohesion contribution to the passive resistance. When the cohesion and 3D 

effects are removed, the passive forces can be more appropriately compared. After removal of 
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524.2 kips (2332 kN), respectively. Table 5.14 in Section 5.2 reports that the PYCAP values 

used are within 12% of the measured results and can logically be related to the field results. As 

such, the measured peak passive forces and the calculated PYCAP components were used in the 

calculations. After removing the edge shear effects with the Brinch-Hansen (1966) 3D correction 

factor, the 2D passive forces came to 114.2 kips (508 kN) and 215.8 kips (960 kN) for the 3ft 

and 5.5ft backfills, respectively. The cohesion contributions of 33.7 kips (150 kN) and 62.4 kips 

(278 kN) for the respective 3ft and 5.5ft tests were removed from the 2D passive forces to 

determine a comparable cohesionless 2D passive force for each of the unconfined backfills. The 

forces for the 3ft and 5.5ft tests were determined to be 80.5 kips (358 kN) and 202.3 kips (900 

kN), respectively. 

In Table 5.6, the passive force contributions provided by the 3D edge effects and 

cohesion are listed as a percentage of the total passive force. The combined percent contribution 

is slightly higher for the 5.5ft test at 58% than that of the 3ft test at 53%, which suggests the 

lower backwall is more influenced by the friction angle. The amount of force supplied by each 

variant between the different components is also insightful. The 3ft test is only slightly more 

influenced by the 3D factor than the cohesion. The 5.5ft test is influenced almost five times more 

by the 3D effects than the cohesion factor. Relatively, cohesion provided slightly more force to 

the 3ft test than the 5.5ft test, with 20% and 13% respective contributions. These percentages 

suggest that the passive force is increasingly influenced by the friction angle, and simultaneously 

less affected by cohesion as the height of the backwall increases. In addition, for a given wall 

width, the 3D edge effects become more pronounced as the wall height increases. The effects of 

the cohesion and 3D edge effects on the measured passive force - deflection curves are shown in 

Figure 5.6. As demonstrated, removing the cohesion variable affects the 3ft passive force 
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relatively more than the 5.5ft curve. While removing the 3D effects lowers the 5.5ft passive force 

relatively more than with the 3ft force. The similar effect of each contribution on the 3ft curve is 

also seen. Although the error between the measured curves and the calculated PYCAP curves 

may cause the contributions and percentages to vary, the results support that a trend between 

backfill height and passive force contributions exists. 

 

 Table 5.5: Comparison of passive force contributions for the 0° skew 
3ft and 5.5ft tests using PYCAP parameters 

 

 3ft 5.5ft 
Total measured passive force [kip (kN)] 167.6 (746) 480.5 (2137) 
3D correction factor 1.468 1.815 
3D effect contribution [kip (kN)] 53.4 (238) 215.8 (960) 
2D passive force [kip (kN)] 114.2 (508) 264.7 (1177) 
Cohesion contribution [kip (kN)] 33.7 (150) 62.4 (278) 
Cohesionless 2D passive force [kip (kN)] 80.5 (358) 202.3 (900) 

 

 

 
Figure 5.6: Effects of cohesion and Brinch-Hansen (1966) 3D correction factor on passive 
force for 3ft and 5.5ft unconfined tests using PYCAP 
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Table 5.6: Percent contribution of passive forces for 3ft and 5.5ft tests 

 Percent Contribution [%] 
3ft 5.5ft 

3D effects 32 45 
Cohesion 20 13 
Combined 3D and cohesion 52 58 

 

 

The comparison of the height and force ratios are presented in Table 5.7. Based on a ratio 

of (H1/H2)2 with H1 and H2 being respectively 5.5 ft (1.68 m) and 3 ft (0.91 m), the passive 

resistance ratio should match 3.36. Using the calculated cohesionless 2D forces from Table 5.5, 

the ratio comes to a smaller value of 2.51. The exponent on the height ratio has been previously 

proposed to give a closer estimate of the force ratio with a value closer to 1.5 for sand backfills 

(Shamsabadi, et al. 2010). To scale the height for backfills with both cohesion and friction, an 

exponent between 1 and 2 is suggested (Stewart, et al. 2011). In this case, exponents of 1.4 or 1.5 

for 2D passive force with cohesion or frictional resistance, respectively, fall within this more 

suitable range. As seen in Table 5.4, the soil properties between the two field tests are the same 

besides the backfill height and the unit weight of the soil. Even so, the soil unit weights are 

within 0.5 pcf (0.1 kN/m3) of each other and do not cause great difference when calculated with 

the PYCAP program. Some amount of error could also possibly be attributed to potential 

variations in soil properties between the two tests. Because the PYCAP program was used to 

match both field tests, neither result exactly followed the measured field curves, as shown in 

Figure 5.2, which could also contribute some error. Error could also be because the measured 

field curves were used to calculate the forces, using the PYCAP values which did not completely 

match the curves. 
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Table 5.7: Passive force and height ratio comparison 

Ratio (5.5ft/3ft) 
Height (H/H)2 3.36 
Passive force (corrected for 
3D effects) 2.32 
Passive force (based on 
frictional resistance) 2.51 

 

5.1.2 AASHTO Design Method 

Using the design parameters included in Table 5.8, the AASHTO curves for each test 

were plotted in Figure 5.7. The values for Kp were estimated using Figure 3.5.11.4-2 in section 

3.11.5.4 of the 2011 specifications (AASHTO 2011). For the 3ft and 5.5ft tests, the Kp value was 

estimated to be 21 with a reduction factor R of 0.720. The MSE test Kp was estimated to be 35 

with a reduction factor of 0.659. The peak displacement for each test was estimated as 2% of the 

backwall height as recommended in the AASHTO (2011) design manual. The peak values for 

the 3ft, 5.5ft, and MSE wall tests were 137 kips (609 kN), 515 kips (2292 kN), and 442 kips 

(1966 kN), respectively. Compared to field peak resistance, the AASHTO design curves 

underestimated the 3ft peak passive force by 22%, and overestimated the 5.5ft by 7% and MSE 

test by 24.3%. Error for both the unconfined tests is within a reasonable range. The 3ft AASHTO 

curve seems to best follow the shape of the field curve, but misinterprets the stiffness of both the 

5.5ft tests. The 5.5ft and MSE wall AASHTO curves peak at an earlier horizontal displacement 

than the field curves show, thus giving false force estimations at earlier displacements. 
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 Table 5.8: Parameters used with AASHTO approach to compare passive 
force – deflection curves for 3ft, 5.5ft, and MSE wall tests 

 

Parameter 3ft 5.5ft MSE Units 
Soil Friction Angle, φ 41.2 41.2 45.3 degrees 
Soil Unit Weight, γs 117.0 (18.4) 116.5 (18.3) 117.4 (18.4) pcf (kN/m3) 
Abutment Width, w2 11 (3.35) 11 (3.35) 11 (3.35) ft (m) 
3D Width Corr. Factor 1.468 1.815 N/A (2-D failure) – 
Effective Width of 
Failure Wedge, w1 16.1 (4.92) 20.0 (6.09) 11.0 (3.35) ft (m) 
Soil Cohesion, c 100.0 (4.79) 100.0 (4.79) 100.0 (4.79) psf (kN/m2) 
Abutment Height, H 3.0 (0.91) 5.5 (1.68) 5.5 (1.68) ft (m) 
Interface Friction 
Angle, δ 27.0 27.0 29.6 degrees 
Interface/Soil Friction 
Angle Ratio, δ/φ 0.654 0.654 0.654  
Coefficient of Passive 
Earth Pressure, Kp 15.1 15.1 23.1 – 

 

 

 

Figure 5.7: Comparison of AASHTO design curve with the passive force vs. backwall 
deflection curve for the 3ft, 5.5ft, and MSE wall tests 
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5.1.3 Caltrans Design Method 

As outlined in Section 2.1.6, the Caltrans predictive method uses generalities based on 

previous passive force testing. Equation (2.7) calculates the passive force based on the effective 

area of the backwall, the maximum passive force found with previous tests, and is adjusted with 

the backwall height from the conducted tests. The abutment stiffness is calculated with Equation 

(2.6) and based on appropriate soil conditions to determine the initial stiffness value used. The 

Caltrans approach parameters were determined from soil type and wall geometry, and are 

summarized in Table 5.9. The Brinch-Hansen (1966) 3D correction factors were calculated 

through PYCAP. 

To find the backwall area, the effective widths of the unconfined backfills were used to 

account for the 3D end effects. Because the MSE test was assumed to fail with a plane strain 

condition, the actual width of the backwall was used. Assuming the backfills met the soil 

conditions listed in the Caltrans (2010) Standard Specifications, the higher initial stiffness 

parameter was used, and these results are shown in Figure 5.8. Both the 5.5ft and MSE wall tests 

did not need the height adjustment as they both matched the 5.5 ft (1.68 m) backwall height of 

the Caltrans tests. The 3ft test was reduced with a linear height ratio according to the Caltrans 

(2010) Specifications. However, a closer fit to the 3ft field curve was achieved by increasing the 

height ratio with a 0.75 exponent rather than an exponent of 1.0. The curve using the 0.75 

exponent is shown in Figure 5.9. 

The calculated peak force values for the 3ft, 5.5ft, and MSE wall tests are 132 kip (587 

kN), 549 kip (2442 kN), and 303 kip (1348 kN), respectively. Peak field data for each test 

compare with values of 168 kips (746 kN), 481 kips (2137 kN), and 454 kips (2018 kN), 

respectively. The Caltrans method overestimates the 5.5ft peak resistance by only 14.1%. 
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Comparatively, it underestimates the 3ft and MSE wall peaks by 21.4% and 33.3%, respectively. 

For the 5.5ft and MSE tests, more error is seen at smaller displacements due to the higher 

stiffness. In Figure 5.8, the 5.5ft Caltrans curve reaches the peak at a much lower displacement 

assuming the field resistance to be almost twice as much as actually recorded. However, the 

agreement with the 3ft test seems reasonable. The shape of the MSE field curve compared with 

the Caltrans prediction seems to defy the Caltrans assumptions. As described in Section 4.2.2, 

the MSE test may not have reached a peak passive force. The Caltrans method does not account 

for the increased resistance of the MSE walls and grids within the backfill, which only assumes a 

plane strain failure similar to the 5.5ft test. More research on MSE passive force would be useful 

in adjusting the Caltrans method to more appropriately address the increased force that MSE 

walls and grids provide. 

 

 Table 5.9: Parameters used with Caltrans approach to compare passive 
force – deflection curves for 3ft, 5.5ft, and MSE wall tests 

 

Parameter 3ft 5.5ft MSE Units 
Most Appropriate Initial 
Backfill Stiffness, Ki 50 (28.7) 50 (28.7) 50 (28.7) kip/in/ft 

(kN/mm/m) 
Projected Wall Width, w 11 (3.35) 11 (3.35) 11 (3.35) ft (m) 
3D Width Correction Factor 1.468 1.815 1.000 – 
Effective Wall Width, we 16.1 (4.9) 20.0 (6.1) 11 (3.35) ft (m) 

Abutment Stiffness, Kabut 453 (79.4) 491 (86.1) 275 (48.2) kip/in 
(kN/mm) 

Wall Height, h 3.0 (0.91) 5.5 (1.68) 5.5 (1.68) ft (m) 
Effective Backwall Area, Ae 47.1 (4.38) 105.6 (9.81) 60.5 (5.62) ft2 (m2) 
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Figure 5.8: Comparison of Caltrans design curve with the passive force vs. backwall 
deflection curve for 3ft, 5.5ft, and MSE wall tests 

 

 
Figure 5.9: Comparison of the Caltrans predicted curve using a height ratio of (3ft/5.5ft)0.75 
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5.1.4 ABUTMENT Design Curve 

The curves derived from Shamsabadi's (2007) ABUTMENT program are plotted in 

Figure 5.10. The soil parameters initially used in the analyses are listed in Table 5.10 and are the 

same values used in the PYCAP analyses. Recommended values for ε50 are listed in Table 5.11 

and typical Rf values should be between 0.94 and 0.98 (Shamsabadi, et al. 2007). For the tests in 

this study, the recommended ε50 and Rf values were not high enough to achieve agreement with 

the field curves. Other comparisons have also needed to increase the ε50 to match the field curves 

(Bingham 2012, Marsh 2013, Palmer 2013, Rollins, et al. 2010, Strassburg 2010). In Figure 5.10, 

the MSE test has a higher ε50 value and a lower Rf to match the measured curve, which was also 

done by Franke (2013). Within ABUTMENT, the peak passive force was computed using the 

“Log Spiral – Modified Moment Method”. The MSE wall test was analyzed using a 2D failure 

plane, while the 3ft and 5.5ft tests were considered 3-dimensional with edge effect corrections 

using the Brinch-Hansen (1966) equation. 

The computed passive force-deflection curves for both the unconfined tests are 

overestimated using the initial parameters. At the peak resistance of the field tests the 3ft, MSE, 

and 5.5ft predicted peak forces were estimated to be 192 kips (854 kN), 415 kips (1846 kN), and 

655 kips (2914 kN), respectively. These values correspond to percent errors of 14%, 8.6%, and 

136% from the measured peak passive forces for the 3ft, MSE, and 5.5ft tests, respectively. 

Increasing the ε50 strain increased the amount of displacement needed to reach the peak value, 

which also lowered the curve. Based on the measured field curves, higher strain values have 

been quite typical (Bingham 2012, Rollins, et al. 2010, Strassburg 2010). Although the 

ABUTMENT curves continuously increase in force, the rounded shape of the curves more 

closely follow the field curves as opposed to the AASHTO and Caltrans design curves. The MSE 
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curve most likely aligns better with the field curve because of the individually adjusted 

parameters. 

 

Table 5.10: Parameters used with ABUTMENT approach to compare passive force – 
deflection curves for 3ft, 5.5ft, and MSE wall tests 

Soil Parameter 3ft 5.5ft MSE Units 
Friction Angle, φ 41.2 41.2 45.3 degrees 
Interface Friction Angle, δ 27.0 27.0 29.6 degrees 
Soil Density, γ 117.0 (18.4) 116.5 (18.3) 117.4 (18.4) pcf (kN/m3) 
Cohesion, c 100 (4.79) 100 (4.79) 100 (4.79) psf (kN/m2) 
Strain at 50% of Max Load, ε50 0.0035 0.0035 0.014 – 
Poisson’s Ratio, ν 0.25 0.25 0.25 – 
Failure Ratio, Rf 0.98 0.98 0.90 – 

 

 

Table 5.11: Range of values for ε50 [taken from Shamsabadi, et al. (2007)] 
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Figure 5.10: Comparison of ABUTMENT design curves with the passive force vs. backwall 
deflection curves for the 3ft, 5.5ft, and MSE wall tests 
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the Coulomb, Rankine, and Log Spiral methods and field comparisons are as expected based on 

previous testing (Duncan and Mokwa 2001, Franke 2013, Lemnitzer, et al. 2009, Marsh 2013, 

Palmer 2013, Rollins and Cole 2006, Rollins and Sparks 2002). As seen by the percentages in 

Table 5.14, the Coulomb method significantly overestimated the passive force in each test; the 

Rankine method significantly underestimated the passive force in each test; and the Log Spiral 

method was the closest to predicting the measured passive force in each test. 

By comparing the percent error values with the error determined by Franke (2013), 

Marsh (2013), and Palmer (2013) in Table 5.15, the Log Spiral is again seen as the most accurate 

with an even smaller amount of error. The values in both tables also roughly emulate the margin 

of error between the PYCAP curves when matched to the field curves. In the results from each 

individual thesis, the PYCAP curves were optimized using the maximum passive force for each 

curve. In Figure 5.1, the values were optimized individually for each test, and therefore have a 

much smaller amount of error. The overestimation of the Log Spiral passive force for the MSE 

wall test is most likely attributed to the test not reaching a peak passive force value (Franke 

2013). In Figure 5.2, the values were optimized to the 3ft and 5.5ft tests together, introducing a 

±12% margin of error. As illustrated in both in Figure 5.2 and Table 5.14, the Log Spiral curve 

underestimated the 3ft curve and overestimated the 5.5ft curve. The smaller percent error for the 

MSE wall test is most likely due to individually optimizing the PYCAP values. As seen in these 

examples, the high degree of accuracy of the Log Spiral method was due to the previously 

optimized input parameters. However, PYCAP is still a useful tool in estimating the field 

performance and in conducting sensitivity studies. 
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Table 5.12: Calculated passive force for Coulomb, Rankine, and Log Spiral methods 

Test Method Passive Force per ft 
kip/ft (kN/m) 

Total Passive Force 
kips (kN) 

3ft 

Coulomb 11.37 (166) 183.1 (814) 
Rankine 2.56 (37.3) 41.2 (183) 
Log Spiral 9.40 (137) 147.6 (657) 
Field Results 10.68 (156) 167.6 (746) 

5.5ft 

Coulomb 38.06 (554) 761.2 (3386) 
Rankine 8.56 (125) 171.3 (762) 
Log Spiral 27.30 (398) 524.2 (2332) 
Field Results 25.05 (366) 480.5 (2137) 

MSE 

Coulomb 81.13 (1182) 892.4 (3970) 
Rankine 10.50 (153) 115.5 (514) 
Log Spiral 40.32 (180) 463.7 (2063) 
Field Results 39.48 (176) 453.7 (2018) 

 

 

 Table 5.13: Parameters used with predictive methods for 
3ft, 5.5ft, and MSE tests 

 

Parameter 3ft 5.5ft MSE Units 
Cap Width, b 11 (3.35) 11 (3.35) 11 (3.35) ft (m) 
Cap Height, H 3.0 (0.91) 5.5 (1.68) 5.5 (1.68) ft (m) 
Soil Friction Angle, ϕ  41.2 41.2 45.3 degrees 
Wall Friction Angle, δ  27.0 27.0 29.6 degrees 
Soil Unit Weight, γm  117.0 (18.4) 116.5 (18.3) 117.4 (18.4) pcf (kN/m3) 
Brinch-Hansen (1966) 
3D Correction Factor 1.468 1.815 1.000 - 
Effective Widths 16.1 (4.9) 20.0 (6.1) 11.0 (3.35) ft (m) 
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 Table 5.14: Comparison of predicted total passive force values to 
measured total passive force in percent error 

 

Test 
Total Passive Force Percent Error (%) 

Coulomb Rankine Log Spiral 
3ft  9.2 -75.5 -11.9 
5.5ft 158.4 -64.3 9.1 
MSE 196.7 -74.5 2.2 

 

 

Table 5.15: Comparison of predicted total passive force values to measured total passive 
force in percent error [Adapted from Franke 2013, Marsh 2013, and Palmer 2013] 

Test 
Total Passive Force Percent Error (%) 

Coulomb Rankine Log Spiral 
3ft  75.0 -61.3 -0.10 
5.5ft 47.0 -60.0 -1.50 
MSE 115.0 -63.0 10.0 
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6 CONCLUSIONS AND RECOMMENDATIONS 

This thesis presents results from a series of laterally loaded tests on a large-scale pile cap 

including unconfined backfill heights of 3 ft (0.91 m) and 5.5 ft (1.68 m), and a 5.5 ft (1.68 m) 

backfill with MSE wall supports. The purpose of this study is to determine the effects of the wall 

heights and of the MSE support on passive pressure and backfill failure, and compare the field 

results with various predictive methods. Based on the results and analysis on this series of tests, a 

number of conclusions and recommendations can be made. Further research is recommended to 

compare test results between backfill heights for skewed abutments to see if the differences are 

similar when a skew angle is introduced 

6.1 Conclusions Relative to Failure Geometry 

1. The failure surface for the unconfined backfills exhibited a more 3D geometry 

with failure surfaces extending beyond the edge of the cap, increasing the 

"effective width", and producing a failure "bulb". In contrast, the constraint 

provided by the MSE wingwalls produced a more 2D failure geometry. 

2. The "effective width" of the failure surface increased as the width to height ratio 

decreased. The effective width predicted using the Brinch-Hansen (1966) 

equation was typically about 5% less than the measured effective width. 
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3. For each test, the length of the passive failure wedge was typically about 3.2 times 

the wall height for the sand tested. 

4. Both the 3ft and 5.5ft unconfined backfills shear failure zones were similar to a 

log spiral failure geometry. However, the MSE walls and grids seemed to hold the 

soil mass together so a traditional failure "bulb" was complicated by outward 

movement of the walls. Nevertheless, the heave patterns suggest a similar length 

of the failure surface. 

5. Compressive strain for all tests was highest in the first 2 ft (0.61 m) of the failure 

zone behind the pile cap and then decreased significantly within the failure mass. 

This suggests that most of the failure surface is moving as a block. The MSE 

walls and grids presumably reduced the strain on the soil mass as the 

reinforcements kept the backfill from compressing. 

6.2 Conclusions Relative to Measured Passive Force 

1. As the wall height for the unconfined backfill increased from 3ft to 5.5ft, the 

passive force increased by 2.87 times in displacing about 2 times the mass.  If 3D 

geometry and cohesion contributions are ignored, this increase can be explained 

using a height ratio with an exponent of 1.75 rather than 2.0 as in classical 

theories. 

2. In terms of total passive force, the unconfined 5.5ft wall provided about 6% more 

resistance than the 5.5ft MSE wall.  However, in terms of passive force/width the 

MSE wall provided about 70% more resistance than the unconfined wall. Most 

likely, the MSE test failed with a plane strain, or 2-dimensional, geometry which 
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generally contributes to a greater soil strength than a triaxial, or 3-dimensional, 

failure geometry. 

3. The peak passive pressures occurred at normalized deflections of 0.043H, 0.045H, 

and 0.048H for the 3ft unconfined fill, the 5.5ft unconfined fill, and the 5.5ft MSE 

fill, respectively. All values fell within the high end of the previously suggested 

range (Rollins and Cole 2006). However, the MSE test might have exceeded the 

range if pushed beyond the assumed peak value. Further testing is recommended 

to discover and compare an actual peak force and displacement for tests including 

MSE walls. 

6.3 Conclusions Relative to Computed Passive Force 

1. The passive force computed using the Log Spiral approach produced the best 

agreement (<12% error) with the measured passive force for the three tests. In 

contrast, the Rankine method significantly underestimated the resistance (≈70% 

low), while the Coulomb method significantly overestimated the passive 

resistance (over 100% high). 

2. To match the measured passive force for the MSE wall test using the Log Spiral 

method, it was necessary to use a plane strain friction angle which was about 10% 

higher than the triaxial friction angle which produced acceptable agreement for 

the unconfined wall tests. These results suggest that a plane strain friction angle 

should be used in computing the passive force for walls where the failure 

geometry is close to a 2D geometry. 
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3. The predicted peak passive forces from the AASHTO approach overestimated the 

5.5ft unconfined test by only 7% and the 5.5ft MSE test by 24%, while the 3ft test 

was underestimated by 22%. 

4. The Caltrans method overestimates the 5.5ft peak resistance by only 14.1%. 

Comparatively, it underestimates the 3ft peak by 21.4% and significantly 

underestimates the MSE wall peak 33.3%. The Caltrans method does not account 

for the increased resistance of the MSE walls and grids within the backfill, which 

only assumes a plane strain failure similar to the 5.5ft test. 

5. As the height of the backwall increased for the unconfined tests, the passive force 

was influenced more by frictional resistance and less by the cohesion. Relatively, 

cohesion provided 20% of the total passive force for the 3ft test but only 13% of 

the passive force for the 5.5ft test. 

6. As the wall height increased from 3ft to 5.5ft, the wall width to height ratio 

decreased and the effective width increased. This led to a higher 3D correction 

factor for the 5.5ft wall than the 3ft wall. 

7. After removing the 3D edge and cohesion effects, the field tests for the 3ft and 

5.5ft walls indicate that the exponent for the height term is between 1.0 and 2.0 as 

indicated in classical passive pressure equations. 

6.4 Conclusions Regarding Computed Load-Deflection Relationships 

1. The bi-linear passive force-displacement curves proposed by Caltrans were 

unable to consistently match the measured curves using the 50 k/in/ft criteria. 

2. Using the same PYCAP parameters, Shamsabadi's (2007) ABUTMENT program 

had higher curves. As seen in previous comparisons, an increased ε50 value better 
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matches the field curves. The rounded shape of the ABUTMENT curves more 

completely match the measured field curves as opposed to the AASHTO and 

Caltrans design curves. 

3. The AASHTO design method had relatively good agreement with the unconfined 

field tests, but overestimated the stiffness of the 5.5ft and MSE field tests. 

4. For the MSE curve, the Caltrans prediction significantly underestimated the 

passive force curve. Further research would be useful in adjusting the Caltrans 

method to more appropriately address the increased resistance that MSE walls and 

grids provide. While with a steeper abutment stiffness, the Caltrans design curve 

followed the 5.5ft field test relatively well. The 3ft Caltrans design curve fit the 

field curve more closely with a non-linear height adjustment of (H/5.5 ft)0.75. 

More research is recommended to validate this type of height adjustment. 
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