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ABSTRACT

Synthesis and Immunological Evaluation of Type I, Type II,
and γδ NKT Cell Antigens

Brian L. Anderson
Department of Chemistry and Biochemistry

Doctor of Philosophy

The purpose of the immune system is to protect our bodies from infection. One way it accom-
plishes this task is through the presentation of foreign pathogens to NKT cells. After an antigen
is presented to the T cell receptor, activated NKT cells quickly release soluble chemical signals,
termed chemokines and cytokines, that modulate the response of the immune system. Due to
the immunological relevance of NKT cell activation, we developed and synthesised non-natural
analogs of immunostimulatory type I, II, and γδ NKT cell antigens. The immunological evalua-
tions of these analogs resulted in identification of sulfatide as a γδ NKT cell antigen, along with the
characterization of these newly discovered sulfatide-reactive γδ NKT cell line. During sulfatide
structure activity relationship studies, a novel azido-sulfatide analog was synthesized to traffick
and image sulfatide in vivo. These studies demonstrated that sulfatide accumulated in the late en-
dosome/lysosome. In conjunction with previous studies, this observation explains the persistence
of CD1d-restricted T cells with high affinity for this antigen in healthy individuals. Finally, stim-
ulatory assays were performed on a panel of synthesized lyso-glycosylceramides. This led to the
discovery of stimulatory type I NKT cell antigens, α-psychosine and α-glucopsychosine.

Keywords: sulfatide, glycolipid, carbohydrate, synthesis, organic, chemistry, immunology, traf-
ficking, analogs
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Chapter 1

Invariant Natural Killer T Cells Recognize

Glycolipid Antigens

A highly discriminatory immune system is essential for our survival as humans. Without an

immune system, a variety of invading viral, bacterial, parasitic, and infectious pathogens would

take advantage of the rich sources of nutrients provided by our bodies. Our immune system has

evolved an exceptional set of mechanisms that can not only differentiate between destructive for-

eign pathogens and our own cells, but also between beneficial foreign entities (e.g., gut flora, fetus)

and foreign pathogens. These mechanisms are categorized into innate immunity and adaptive im-

munity. Innate immune responses are nonspecific and target a large range of conserved microbial

and pathogen components, including proteins, nucleic acids, and carbohydrates. In contrast, adap-

tive immune responses are specific to a foreign antigen and remain at rest until they encounter

a foreign pathogen. Despite the rich complexity of these two mechanisms and the overall effi-

1



1.1 Blood facilitates immune responses 2

ciency of the immune system in fighting off viral, bacterial, and parasitic attack, the human body is

nonetheless susceptible to infection. Indeed, there are even destructive foreign pathogens that rou-

tinely elude the detection of the human immune system. One clinical approach to this dilemma is

to activate the native immune response toward otherwise undetected foreign pathogens. An advan-

tage of this approach is that the immune system’s existing (and efficient) evolutionary mechanisms

are leveraged to eliminate pathogens and disease. Thus, the development of immunostimulatory

compounds is an active and promising field of scientific research. This dissertation addresses the

development of non-natural analogs of immunostimulatory compounds.1–3

1.1 Blood facilitates immune responses

The principal function of our immune system is to protect against infection. To fulfill this pur-

pose, the immune system utilizes a range of cells, tissues, and organs that not only work together

to target, mark, and eliminate foreign pathogens, but also develop immunity to future infection.

The primary immunological organs are the bone marrow and the thymus (where the majority of

immunological cells are developed). Since the immune system needs to be able to find and re-

spond to infection quickly, these cells use immunological tissues and media (i.e., blood, lymphatic

tissues, and the spleen) to quickly respond throughout the entire body.1

Three key immune components are found in the blood: antibodies, plasma, and hematopoi-

etic cells. Blood is thus a vital immunological medium. Antibodies, or immunoglobulins, have the

ability to bind specifically to foreign cells/antigens. The hallmark of the immune system is to be
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able to distinguish between foreign antigen and self-antigen (antigen produced by and necessary

to the proper functioning of the body), and mount an immune response to the former. Plasma is

the main liquid component of the blood, allowing the immune system to transport a variety of

immunological cells quickly throughout the body. Plasma also consists of clotting factors that

can help localize hematopoietic cells at the site of an infection that circulate throughout the body.

Lastly, blood also contains many hematopoietic cells, classified into myeloid, lymphoid, and ery-

throid lineages (Figure 1.1). These cells have varied function ranging from antimicrobial activity,

inflammation, and blood clotting, to cell mediated immunity.1,2 Lymphoid cells, in particular, are

developed to recognize proteins, substructures, and moieties of invading pathogens.

Figure 1.1 Functions of the immunological components of the blood. Adapted from Pier
et. al.1
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1.1.1 B and T lymphocytes recognize a diverse array of antigens

Lymphoid cells are key to the immune system’s ability to respond to nearly infinite types of

pathogens. They can be subdivided into cells causing humoral immunity and cell-mediated im-

munity. Humoral immunity involves the activation of B lymphocytes. B lymphocytes have surface

B-cell receptors (BCRs) that recognize a diverse array of antigens. B cells are also unique in their

ability to secrete forms of their BCRs (often referred to as antibodies or immunoglobulins).1,4 An-

tibodies gain antigen diversity by somatic recombination of variable and joining DNA segments

encoding their BCR. Even though each B cell only presents one BCR, diversity in the B cell pop-

ulation allows B cells to recognize a near infinite number of distinct antigens.5

Cell mediated immunity is carried out by T lymphocytes and large granular lymphocytes. T

lymphocytes develop in the bone marrow initially but fully develop in the thymus. They also have

cell surface binding receptors called T cell receptors (TCRs), but unlike B cells they do not produce

antibodies. Their TCRs are comprised of an α and β or γ and δ chains.6 They also recognize a

diverse array of antigens due to special genes that undergo genetic rearrangements during T cell

development. Segments of these genes are spliced from their genomic DNA, which results in

distinct rearranged genes. There are 1012 combinations of TCR proteins due to this process.1,2

Large granular lymphocytes, termed natural killer (NK) cells, are also involved in cell-

mediated immunity. These cells do not have TCRs or BCRs but have other cell surface proteins

that recognize cell surface changes on tumor cells and virally infected cells. These cells damage

infected cells and mark them for apoptosis.7
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1.2 Natural killer T cells

Three different populations of T cells are developed for specific immune functions, differing pri-

marily by their cell surface receptors. T cells that express the CD4 coreceptor on their surface

(CD4+ T cells) are termed Helper T cells. They increase the activity of other immunological cells

through the release of cytokines (soluble mediators of the immune system). CD4+ cells recognize

peptides bound to the transmembrane antigen presenting molecule (APM) major histocompatibil-

ity complex (MHC) class II presented on antigen presenting cells such as dendritic cells.1,2,6

The second population of T cells, the cytotoxic T cells (CTLs), express the CD8 coreceptor

(CD8+ cells). These cells recognize peptides that are complexed to MHC class I proteins, which

are found on all nucleated cells of the body. Many times the MHC I protein is complexed with

endogenous or self-peptide. When a CTL comes in contact with self-peptide, the CTL recognizes

it as self and no immune response is triggered. When foreign peptide is presented by MHC class I,

CTLs become activated and induce lysis of the cell, thereby eliminating the infected cell. Not only

can CTLs mark and destroy foreign intracellular pathogens, they also mark and destroy aberrant

self-cells that might be harmful and possibly give rise to cancer.1,2,6

In 1987, two groups reported a third subset of CD4- CD8- double negative T cells.8 Orig-

inally these cells were termed natural killer T (NKT) cells because they expressed NK1.1 and/or

CD161 receptors, natural killer c-lectin receptors, along with a TCR that overexpressed a specific

vβ8 gene segment. These cells are found in the thymus, liver, bone marrow, spleen, and peripheral

blood. Subsequent studies found that these T cells have an αβ -TCR that did not recognize peptides

via MHC class I or II proteins, but instead recognized lipid containing antigens that were bound to
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Figure 1.2 Antigen recognition of subsets of T cells. A) CD4+ T-helper cell TCR recog-
nition of peptide presented by MHC class II. B) CD8+ CTL cell TCR recognition of
peptide presented by MHC class I. C) TCR recognition of CD1d-presented glycolipid to
a CD4-CD8- NKT cell. Adapted from Tupin et. al.6

a non-classical MHC class I like protein called CD1.9 Since then, other NKT cells that are CD4+

or CD8+ have been isolated and characterized.10–12

1.2.1 iNKT cells recognize lipid-bound CD1

NKT cells express a much more limited range of TCRs than B cells, TH cells, and CTLs. The most

studied subpopulation of NKT cells, invariant NKT cells (iNKT or Type 1 NKT cells), have a TCR

with an invariant Vα14-Jα18 rearrangement in mice and a surprisingly homologous Vα24-Jα18

rearrangement in humans. In addition, the TCR has a restricted selection of β TCR chains (Vβ11

in humans). The second major population of NKT cells, type 2 NKT cells, do not have an invariant

TCR-α chain but instead have a semi-invariant TCR-α chain that is over represented by Vα3 and

Vα8 chain segments.10,12–17

NKT cells recognize lipid-containing antigens that are bound to CD1, the non-classical
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MHC-like APM. CD1 molecules are cell surface glycoproteins that are expressed on B-cells, den-

dritic cells, macrophages, hepatocytes, and epithelial cells. They consist of two chains: a heavy

chain comprised of three extracellular domains (α1−α3) and β2 microglobulin (β2 microglobulin

is also found in MHC class I molecules).5,18

The CD1 family comprises five isoforms in humans (CD1a-e). These isoforms are also

subdivided into groups based on their sequence similarity: group 1 comprises CD1a-c, group 2

only consists of CD1d, and group 3 consists of CD1e.18,19 A characteristic of type 1 and type 2

NKT cells is that they are CD1d restricted. Less abundant T cell lineages recognize lipid based

antigens for the other CD1 isoforms. These isoforms recycle through intracellular compartments

where they sample multiple lipid antigens that are present or are trafficked to different endocytic

compartments.20 For example, CD1a trafficks through early and recycling endosomes on its way to

the cell surface, whereas CD1b and CD1d are localized in the late endosome and lysosome where

microbial lipids accumulate during infections.12,13,21

Figure 1.3 α-GalCer-CD1d complex. The fatty acyl chain binds into the A′ pocket,
whereas the sphingosine chain binds into the F′ pocket. Reproduced from Zajonc et. al.21

Copyright 2005 Nature Immunology Publishing Group
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CD1 proteins have very different binding grooves than their MHC counterparts. The groove

on CD1 is narrower, deeper, and more hydrophobic. This makes the binding site well-suited for

docking long lipid tails. The antigen binding groove forms two hydrophobic pockets, termed the

A′ and F′ pockets (Figure 1.3). Long carbon lipid tails can fit into the F′ and the A′ pockets.3,13

For example, α-galactosylsylceramide (α-GalCer), the characteristic glycolipid antigen of iNKT

cells, has its sphingosine tail bind into the F′ pocket, its fatty acyl chain binds into the A′ pocket,

leaving the carbohydrate portion bound by an extensive hydrogen bonding network that positions

and extends the sugar head for interaction with the TCR of iNKT cells.5,13,19,21

1.2.2 Natural Killer T cells are integral parts of the immune system

After stimulation from a CD1-bound antigen, NKT cells can produce, within hours, large amounts

of cytokines. The released cytokines promote two different immune responses. One group of

cytokines (including interleukin (IL)-2, inferferon-γ ,and tumor necrosis factor-α) leads to a proin-

flammatory T helper 1 (TH1) response. TH1 responses are employed to combat and control in-

vading bacterial, viral, and parasitic infections. Cytokines, such as IL-4, IL-5, IL-6, IL-10, and

IL-13, promote an immunoregulatory T helper 2 (TH2) response. Many autoimmune diseases

such as type 1 diabetes, multiple sclerosis, lupus, and rheumatoid arthritis are TH2-mediated dis-

eases.5,9,17,19,22,23

Not only can NKT cells directly modulate the immune system but they can also indirectly

modulate innate and adaptive immune responses (Figure 1.4). Released cytokines can activate

adaptive cells such as T and B cells, and innate cells such as dendritic cells and NK cells.22,24 These
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Figure 1.4 NKT cells modulate the innate and adaptive immune responses. Illustration
depicts NKT cells activating T and B cells, dendritic cells, MDSCs, and NK cells. Activa-
tion signals can be received through cell surface receptors, such as the TCR recognizing
lipid-bound CD1, costimulatory receptors (CD40, CD70, OX40), or cytokines. Adapted
from Cerundolo et. al.13
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bidirectional signals can be received through cell surface receptors, such as the TCR recognizing

lipid-bound CD1, costimulatory receptors (CD40, CD70, OX40), or cytokines. For example, acti-

vation of NKT cells results in rapid maturation of dendritic cells and B cells. Activated NKT cells

can also counterbalance the suppressive effects of myeloid-derived suppressor cells (MDSCs).13,23

1.3 iNKT cells recognize lipid antigens

As stated earlier, iNKTs were the first NKT cells to be discovered. Consequently iNKT cells

have become the foundation for all NKT cell research. A brief historical background and review

of the discovery and advancements in the field of iNKT cell research is essential to illustrate the

fundamental principles and theories that helped shape our research.

1.3.1 The model iNKT antigen: α-GalCer

In 1993, Kirin Pharmaceuticals, a pharmaceutical subsidiary of Kirin Brewery inc., screened for

marine natural products for anti-tumor activity. Their efforts led to the isolation and characteriza-

tion of glycolipids termed “agelasphins,” as shown in Figure 1.5. Agelasphins were an exciting

discovery because these isolated glycolipids had an α-linked glycosidic bond, instead of a β -linked

bond (β -linked glycolipids had already been found in mammals and other higher organisms).25,26

At the time Kirin pharmaceuticals focused on structure-activity relationships of the lipid moi-

ety to elucidate and then enhance the anti-tumor properties of agelasphins. These initial analogs

showed that the C2 hydroxyl (see Figure 1.5 for glycolipid numbering) did not significantly im-
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Figure 1.5 Representative structures of an agelasphin and KRN7000

pact the anti-tumor properties, the C4′ hydroxyl had very slight impact, and the C3′ hydroxyl was

essential for the anti-tumor characteristics. These studies also produced a synthetically simplified

agelasphin analog called KRN7000, also known as α-galactosylceramide (α-GalCer).25,27 Over

the next several years the immunoregulatory role of α-GalCer with iNKT cells became more ap-

parent. Consequently, this analog became the model and primary iNKT cell antigen in the study

of iNKT cell stimulation (Figure 1.5).3

Although α-GalCer is the model iNKT cell antigen, it has two limitations that inhibit its ther-

apeutic effectiveness. First, after iNKT cell stimulation from CD1d-bound α-GalCer, the immune

system releases a bevy of TH1 and TH2 cytokines that counteract each others’ abilities to modulate

the immune system in a deliberate fashion. Second, the massive amount of cytokines also leads

to iNKT cell anergy, or inactivation of the iNKT cell.28 Because of these limitations, a desire to

find more effective iNKT cell antigens has ensued. Through understanding the antigen specificity

of iNKT cells, research groups have manipulated immunomodulatory properties of iNKT cells to

varying success. Research has been roughly divided into three main foci: isolation and charac-

terization of natural antigens, structure-activity analyses, and the study of the immunological and

therapeutic importance of iNKT cells.
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1.3.2 Isolation and characterization of natural antigens

Figure 1.6 shows a variety of natural iNKT cell antigens that have been identified over the last

decade. These natural antigens are categorized as endogenous antigens (antigens synthesized in

our bodies) or exogenous antigens (those synthesized from other organisms).

Endogenous antigens

Researchers have spent the past decade attempting to find "the" endogenous antigen that our body

uses for positive selection in the thymus. During development of iNKT cells, an immature thymo-

cyte must interact with CD1 bound with an endogenous antigen. Without this antigen, our body

does not allow maturation of the iNKT cell.18 To date, no α-linked glycolipids have been found in

humans, so efforts were focused on finding β -linked endogenous antigens.26 In 2004, Zhuo et al.

presented lysosomal isoglobotrihexosylceramide (iGb3) as an endogenous antigen and likely se-

lecting antigen candidate for iNKT cells.29 The fact that iGb3 activated most iNKT cells in vitro,

combined with the data that the lack of iGb3 in mice resulted in a dramatic decrease of iNKT

cells in vivo, made a good argument for iGB3.15 Initially this claim was followed by controversy

because it was believed that humans lacked the enzyme responsible for synthesis of iGb3. The sup-

port for iGb3 came via two papers that described the detection of iGb3 in human cells via ion-trap

mass spectrometry.23

Although iGb3’s purpose as the predominant selecting antigen during iNKT cell develop-

ment has been questioned, iGb3 is still the most potent endogenous antigen discovered to date.

Other endogenous antigen candidates that have been isolated are sulfatide, a 3-sulfo-galactosylceramide
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Figure 1.6 Representative structures of natural and synthetic iNKT cell antigens

that is found in the myelin sheaths of the brain, and phosphotidyl choline (PC) and tumor-cell ex-

tracted phosphotidyl ethanolamine (PE). These antigens do bind to CD1d but they are very weak

antigens or type 2 antigens.

Exogenous antigens

Since one of the purposes of the immune system is to fight off invading bacteria, it would be logical

to assume that iNKT cells have exogenous bacterial antigens. In recent years, immunologists
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and chemists have found a variety of these natural exogenous antigens. Recently, diacylglycerol

compounds were isolated from the the causative agent of lyme disease, B. burgdorferi. These

B. burgdorferi compounds, shown in Figure 1.6, demonstrated a direct role in host defense in

conjunction with iNKT cells.20 These glycerols have an α-linked carbohydrate moiety and two

fatty acids of varied length and saturation.9 The degree of saturation plays a key role in their

immunological potency reinforcing the structure-activity studies from Zhou et al.30 Interestingly,

unlike α-GalCer, the lipids of these glycerols can bind in either the F′ or A′ pockets.20

Similar to the B. burgdorferi glycerols, three more diacyl glycerol natural antigens have been

isolated (Figure 1.6). PC and PE from extracted cypress pollen was shown to bind to CD1d and

CD1a, similar to their endogenous counterparts. PIM4, one of the first reported iNKT cell associ-

ated bacterial glycolipids, was isolated from Mycobacterium bovis bacillus and showed iNKT cell

recognition also.3,13,22

The TCR of iNKT cells also recognizes a series of glycolipid antigens that were isolated

from the Sphingomonadaceae family of bacteria, called the GSLs.22,31 The structure of GSL-1 is

represented in Figure 1.6. There is also a GSL-2 (synthetic), GSL-3, and GSL-4 which are di, tri,

and tetrasaccharides respectively. Even though the GSLs are very similar to α-GalCer, they do

not stimulate NKT cells as well. Crystal structures of the TCR-GSL1-CD1d complex showed that

the lack of the C4′-hydroxyl results in an alternative hydrogen-bonding network (in comparison

to α-GalCer), which showed a slight lateral shift of the galactosyl head group. This slight lateral

shift is thought to explain the difference in antigenicity between GSL-1 and KRN7000.9,31,32
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1.3.3 Structure-activity analyses of α-GalCer

Because of α-GalCer potency, many structure-activity relationship studies have been conducted

over the years to determine the TCR-glycolipid-CD1d specificity. These analyses have focused on

three moieties: the phytosphingosine scaffold, the galactosyl head group, and the lipid chains. The

following subsections will discuss a non-exhaustive list of many of the key analyses performed.

Modification of phytosphingosine scaffold

As discussed in section 1.3.1, Kirin Breweries conducted the first structure-activity studies that

found the importance of the 3′-hydroxyl and the minimal impact of the 4′-hydroxyl (see Figure

1.5 for glycolipid numbering). The majority of studies have verified these findings. For example,

Kronenberg et al. verified Kirin’s work by making a 3′-deoxy variant; this variant could not bind

to CD1d.33 Another group replaced the amide with a triazole moiety; this triazole variant stimu-

lated comparably to α-GalCer, proving that the amide hydrogen was not essential to binding.34

The other main analyses replaced the phytosphingosine subunit with scaffolding found in other

natural antigens, namely sphingosine (GSLs), diacyl glycerol (B. burgdorferi, PE, PC, and serine-

based lipids (a non-natural ceramide mimic).3,19,35 Another noted analog replaced the oxygen

glycosidic bond with a carbon-carbon bond. This analog showed an increased immunostimulatory

response against malaria and metastatic melanoma (in mice) in comparison to α-GalCer.13,28 In

recent years, these analyses have been verified from the solved crystal structures of CD1d bound

to the appropriate antigen. These comparison studies truly solidified the importance of the 3’-

hydroxyl, and demonstrated small shifts that occur without the 4’-hydroxyl that consequently gives
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α-GalCer stronger binding affinity and better stimulatory activity.3,19

Modification of the sugar headgroup

The Koezuka group, at Kirin pharmaceuticals, synthesized a large array of analogs that explored

the structure-activity relationships of the galactosyl headgroup. Their major findings were gleaned

from a series of disaccharides that demonstrated that α-linked sugars were potent but β -linked

antigens gave no stimulatory response. Furthermore, their mannose analog gave no response, sug-

gesting the importance of the 2′′-hydroxyl (see Figure 1.5 for glycolipid numbering).27,28 The

mannose results led many groups to explore the importance of the 2′′-hydroxyl. 2′′-fluoro, 2′′-

deoxy, and 2′′-acetoamino analogs nullified the stimulatory activity.19,28 Whereas analogs that

explored 4′′-hydroxyl and the 6′′-hydroxyl variants were well tolerated. Notably, Liu et al. were

able to substitute the 6′′-hydroxyl with an acetamide group, that matched and exceeded α-GalCers

potency.36 Along with well tolerated biotinylated and fluorophoranated analogs that are used for

glycolipid trafficking and CD1d loading studies.19,37 The aforementioned crystal structure analy-

ses further proved the importance of the 2′′-hydroxyl and showed why modification at the 6′′ and

4′′-hydroxyl are well tolerated. The 2′′-hydroxyl strongly hydrogen bonds with an aspartamine

from CD1d to position the headgroup for TCR presentation. The 2′′-hydroxyl analogs hamper the

alcohol’s ability to bind and position the sugar, whereas the 6′′ and 4′′-hydroxyl analogs are well

tolerated because they protude out and away from the CD1d complex.38
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Modification of lipids

The SAR studies that have focused on the lipid portion of α-GalCer have found a very interesting

and useful observation. Lipid chain length biases the balance of TH1 and TH2 cytokines released.

Zhou et al. showed that shortened lipid chains biased a TH2 cytokine release profile whereas longer

lipid chain lengths biased a TH1 response.30 These findings along with Miyake and coworkers

study present compelling evidence that INF-γ production requires longer TCR stimulation than

IL-4 production. The shorter lipid chain length analogs do not form as stable complexes with

CD1d than the longer chain analogs, due to the lack of additional hydrophobic interactions in

the F′ pocket.30,39 These analogs stimulate the TCR for a short amount of time in comparison to

the more stable longer lipid antigens. Chi-Huey Wong and collaborators were able to verify this

by making lipid tails with terminal aromatic groups to enhance hydrophobic interactions. Their

analogs biased a TH1 response and were even more potent than α-GalCer.19,40,41

1.3.4 Immunological and therapeutic importance of NKT cells

The therapeutic potential of iNKT cells lies in their ability to modulate or activate the immune

system through the rapid release of TH1 and TH2 cytokines. Endogenous and exogenous antigens

are currently being modified to provide antigens that polarize cytokine release to either a TH1 or

a TH2 response. This interest stems from years of well-documented research that has focused

on finding out what diseases are affected by iNKT cells.3 These studies have generally done one

of three things to survey iNKT cell involvement in murine and human diseases: (1) observed

the iNKT cell numbers, (2) monitored the effect of CD1d or iNKT cell depletion on the disease,



1.4 Conclusion 18

or (3) administered α-GalCer to see its effect on the disease. For example, when studying two

separate Type 1 diabetes animal models, there were lower concentrations of iNKT cells in the

spleen, liver and thymus, one study ameliorated the disease with lack of CD1d/iNKT cells, whereas

administration of α-GalCer improved the diseased mice.15 In this way, iNKT cells have been

implicated in many autoimmune diseases such as type 1 diabetes, multiple sclerosis, rheumatic

arthritis, and asthma.

One of the first applications of iNKT cell antigens has been as vaccine adjuvants. The clas-

sic live attenuated pathogens (or whole inactivated organisms) and the current recombinant virus

vaccine strategies have had limited success. Many times these vaccines fail to promote a strong

enough response to cause immunity to the virus in question. Advances in vaccination strategies

has allowed the design of highly specific synthetic protein vaccines. As an adjuvant, a NKT cell

antigen could cause a strong enough immune response to promote immunity. This hypothesis has

shown promise by a variety of groups by co-injection of α-GalCer with an antigen. This caused

an increased immune response for the co-antigen. Because of the limitations of α-GalCer (section

1.3.1), more iNKT cell adjuvant candidates are necessary for the successful adjuvant application.13

1.4 Conclusion

This dissertation addresses key advances in the understanding of antigen specificity of type I,

type II, and γδ NKT cells. It builds upon previous SAR studies to further the goal of finding

and/or understanding NKT cell antigens, as well as present data of a new sulfatide-reactive CD1d-



1.4 Conclusion 19

restricted γδ T cell line derived from the blood of healthy individuals.



Chapter 2

Synthesis and Evaluation of Sulfatide

analogs: a γδ T cell antigen

2.1 Introduction

Sulfatide, introduced in section 1.3.2, was the first isolated sulfated glycolipid. Although isolated

from human brain in 1884, it was first chemically characterized in 1962.42,43 As shown in figure

2.1, sulfatide is a galactosylceramide with a sphingosine scaffold (outlined in blue) and a sulfate at

the 3′′-hydroxyl position. The biosynthesis of sulfatide starts in the endoplasmic reticulum where

UDP-galactose is added onto ceramide via the enzyme UDP-galactose:ceramide galactosyltrans-

ferase (CGT; EC 2.4.1.45). Galactosyl ceramide is transported from the endoplasmic reticulum

to the golgi apparatus where 3′phosphoadenosine - 5′phosphosulfate:cerobroside sulfotransferase

(CST; EC 2.8.2.11) sulfates the 3′′-hydroxyl position of galactosylceramide.42

20
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Figure 2.1 Representative structure of sulfatide

Sulfatide is widely expressed throughout the body and has been found in neural tissue, the

islets of langerhans (pancreas), kidneys, and retina.44 Sulfatide is found in a variety of isoforms

that vary in the amide chain length and degree of saturation (a minor portion of sulfatide also can

have hydroxylated acyl chains).45 Most sulfatide found in humans have the following fatty acyl

chains c16:0, 18:0, 18:1, 20:0, 22:0, 24:0, and 24:1 (chain length:degree of saturation). Distinct

ratios of sulfatide isoforms have been reported in different areas in the body. For example, c16:0

sulfatide is predominantly found in the pancreas, whereas longer chain sulfatides (c24:1 and c24:0)

are more abundant in the brain.44

As discussed in section 1.3.2, sulfatide is an endogenous NKT cell antigen. Unlike α-Galcer,

sulfatide has a binding affinity to multiple CD1 moieties and has been shown to bind to CD1a, b,

and c. Upon stimulation with sulfatides, multiple CD1a-c-specific T cell lines have been isolated

from the blood of healthy individuals.46,47 Work presented by Vipin Kumar’s group also found a

CD1d-dependent sulfatide-reactive T cell population in naive mice. This work also defined the

subpopulation as mostly (90%) CD4+CD8- T cells with the majority lacking the NK1.1 marker.

They also gave clear evidence that the subpopulation did not bind α-GalCer which further char-

acterized these T cells as type II NKT cells. Another notable finding was the observation that
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the concentration of sulfatides increased in the absence of the enzyme CGT, suggesting that the

autoreactive cells were normally eliminated by exposure to self antigen.48

Since the discovery of sulfatide-reactive T cells, subsequent research has implicated their

involvement in tumor immunity, experimental autoimmune encephalomyelitis (EAE), multiple

sclerosis (MS), and type 1 diabetes.49 We were particularly interested in the potential pathologi-

cal relevance of sulfatide-specific T cells in EAE and MS because of the reported increased fre-

quency of sulfatide in the blood of patients with multiple sclerosis and also in the lesions of EAE

in mice.46,48,50 As conditions, MS and EAE are associated with demyelination via attack of the

myelin sheaths of the axons of the central nervous system’s.51 Because the most abundant compo-

nent of myelin sheaths are glycolipids, with one fifth of the total myelin glycolipids being sulfatide,

subsequent release of sulfatides may expand T cells reactive to self-lipids and further aggravate the

immunopathological process.46,52

In an attempt to enumerate and characterize CD1d-sulfatide-specific T cells in fresh human

blood, instead of previously reported mouse blood, in an unbiased manner (i.e., without prior ex-

pansion of cultured cell lines), we used tetramers for direct enrichment of CD1d-sulfatide specific

T cells. Additionally, we synthesized a series of sulfatide analogs that mimicked previous SAR

study analogs for Type I NKT cells in order to find out the structural requirements necessary for

NKT cell stimulation. Finally, we solved the crystal structure of the γδ TCR-sulfatide-CD1d com-

plex.
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2.2 Synthesis of Sulfatide analogs

To facilitate our collaborative research with Albert Bendelac and Erin Adams, at the University of

Chicago, seventeen sulfatide analogs were designed. With these variants in hand, we explored the

effect of lipid chain length on the immunological impact of sulfatides, evaluated the positioning

of the sulfate, mimicked the addition of acetamide in the highly potent PBS57 NKT cell antigen,

developed a nonhydrolyzable sulfonated β -galactosylceramide, trafficked and imaged sulfatide

(Chapter 3), and carried out binding studies on a series of deoxy sulfatide variants. Most immuno-

logical studies utilize isolated or semi-synthetic sulfatide, which has sometimes been shown to be

contaminated, our work has allowed evaluation of pure and consistent sulfatide throughout this

study. The following section outlines the synthetic routes towards these sulfatide analogs.

2.2.1 Synthesis of sulfatide 2.1 and the phytosphingosine analog of sulfatide

2.2

Sulfatide synthesis strategies include three different aspects: (1) the preparation of the sphingosine

scaffold acceptor, (2) the selective sulfation of the 3′′-hydroxyl, and (3) the glycosylation of the

galactosyl donor with the sphingosine acceptor. (1) We closely followed the synthesis of Xing et al.

using ceramide as an acceptor instead of azido-sphingosine.53 Although traditionally plagued by

poor yields during glycosylation, a ceramide acceptor produced a convergent route suitable for

our varying syntheses. (2) The decision of orthogonal protection of the 3′′-hydroxyl (towards

subsequent deprotection then sulfation) was influenced by a concern of reproducibility between
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separate sulfatide batches sythesized prior to this work in our lab. Another method that exists is the

use of dibutyl tin oxide, followed by selective sulfation at the 3′′-position with sulfur trioxide. This

method, developed by Flitsch et al., is a useful method that shortens the synthesis significantly,

but has the slight disadvantage of sulfating the 6′′-hydroxyl position. We ultimately decided to

follow the previously adapted synthesis of sulfatide first, which later proved fruitful as nearly all

the sulfatide variants share the common synthetic building block 2.14. (3) The last decision of

glycosylation conditions is many times chosen by preference or experience, the majority of the

glycosylations were carried out under the well-established Schmidt coupling reaction conditions.

Synthesis of ceramide 2.11d

Scheme 2.1 Representative synthesis of sulfatide 2.11d
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The amine of commercially available L-serine was protected with Boc anhydride in order for

the successful conversion of serine’s carboxylic acid into a Weinreb amide. Amide 2.4 was further

protected with dimethoxy propane. Fully protected amide 2.5, was reduced with lithium aluminum

hydride to form "Garner’s aldehyde (2.6)." The addition of lithium 1-pentadecyne to the aldehyde

gives excellent stereoselectivity (15:1) towards the desired propargylic alcohol 2.7. The absence of

chelating agents allows the pentadecyne to attack the Re face in accordance with the Felkin-Ahn

model. As reported by Garner et al., formation of sphingosine 2.8 was achieved by subjecting the

propargylic alcohol to the strong reducing conditions of lithium in liquid ethyl amine.54 This not

only reduced the alkyne but it deprotected the Boc and the dimethoxy propane groups. To verify

that we synthesized and isolated the correct propargylic alcohol. We took a small portion of 2.8 and

commercially available isolated sphingosine, peracylated them, and compared them by 1H NMR.

Once the structure of sphingosine was verified, traditional peptide couplings were performed to

form the desired amides from the appropriate acid (e.g. nervonic acid (24:1)) to form ceramide

2.9d. Selective thexyl dimethyl silyl protection of the primary alcohol and subsequent protection

of the secondary alcohol led to compound 2.10d. Selective deprotection of the silyl group with

hydrofluoric acid provided glycosylation acceptor 2.11d (Note: this reaction if done slowly, left

overnight, heated up, or purified slowly can and will result in migration of the 2-acetyl group to the

primary alcohol. It is essential that the chemist quench this reaction immediately after completion).
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Scheme 2.2 Representative synthesis of sulfatide 2.1d

Synthesis of sulfatide 2.1d

The synthesis of the Schmidt glycosolation donor 2.16, outlined in scheme 2.1, was an adapted

synthesis from Dr. Nin Ying’s dissertation at this institution. Starting with commercially available

β -D-pentacetate-glucose, the anomeric position was protected with thiophenol. Global deprotec-

tion of the acetate protecting groups, via sodium methoxide in methanol, followed by protection

of the 4-hydroxyl and the 6-hydroxyl with anisaldehyde dimethyl acetal afforded compound 2.13.

Exploiting the nucleophilicity difference between the 3-hydroxyl and the 2-hydroxyl, stepwise ad-

dition of levulinic acid followed by benzoyl chloride, installed the orthogonal Lev group on the
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3-hydroxyl position (2.14). The para-methoxy phenyl group was removed under acidic conditions,

followed by the installation of benzoyl protecting groups to make compound 2.15. Fully protected

galactose 2.15, was transformed into coupling donor 2.16 through a traditional 2-step process that

replaces the thiophenol with a trichloroacetonitrile moiety. Schmidt coupling conditions were car-

ried out with donor 2.16 and acceptor 2.11d to yield glycolipid 2.17d. Orthogonal hydrolysis of

the levulinic ester with hydrazine and acetic acid, gave alcohol 2.18d. The 3-hydroxyl was used

to form the sulfated glycolipid 2.19d in the presence of sulfur-trioxide pyridine complex. Finally,

2.19d was globally deprotected with fresh sodium methoxide in methanol and tetrahydrofuran

(THF) to form sulfatide 2.1d. The following procedure was repeated with four different ceramide

acceptors, differing in their acyl chain length and saturation (c8:0, 16:0, 24:0, 24:1).

Synthesis of phytosphingosine sulfatide analog 2.2d

Scheme 2.3 Representative synthesis of sulfatide 2.2d
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While synthesizing the sphingosine series of sulfatide, we also synthesized four phytosphin-

gosine sulfatides (2.2a-d). These variants only differ by the presence of a 4′-hydroxyl instead of a

double bond between the 4′ and 5′ carbon of the sphingosine scaffold. Yang Liu, while a gradu-

ate student at BYU, provided all four phytosphyingosine ceramides (prepared from commercially

available phytosphingosine following the same ceramide route). These ceramides were coupled

under Schmidt conditions to give the desired glycolipids. Figure 2.3 shows the abbreviated syn-

thesis of these sulfatides.

2.2.2 Synthesis of 6′′-sulfo-sulfatide variants 2.23 and 2.24

During the initial synthesis of sulfatide, we developed a theory concerning the origins of a repro-

duciblity problem between previous batches of sulfatide (synthesized from two other graduates in

our lab). We postulated that under basic conditions, migration of the sulfate to other alcohols may

be possible and subsequently produce different stimulatory results. Since migration to the primary

6′′-hydroxyl would be the most likely by-product, we devised a synthesis for 6′′-sulfo sulfatide vari-

ants. The synthesis is represented in scheme 2.4. To install a sulfate at the 6′′-hydroxyl, donor 2.26,

had to be synthesized. This was carried out starting from 2.12. Crude deprotected thiophenyl galac-

tose was dissolved in DMF and heated in the presence of tert-butylchlorodiphenylsilane (TBDPS-

Cl) in order to protect the primary alcohol at C6. After successful silyl ether formation the remain-

ing hydroxyl groups were protected with benzoyl chloride to ultimately form compound 2.25. The

same series of steps outlined in Scheme 2.2, were followed to form the donor and subsequently the

glycolipid. Under Schmidt reaction conditions, the glycolipid formed very sluggishly, presumably
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due to the bulky TBDPS group that hindered attack at the anomeric position, and favored ortho-

ester formation. After glycosylation, the silyl group was deprotected with hydrofluoric acid. The

final installation of the sulfate and global deprotection followed the synthetic route of 2.1d to give

6′′-sulfo-β -galactosylceramide 2.23.

We also synthesized a phytosphingosine 6′′-sulfo sulfatide variant from donor 2.26 with the

appropriate palmitic phytosphingosine acceptor. The partial synthesis of 2.24d is represented in

Scheme 2.5.

Scheme 2.4 Representative synthesis of sulfatide 2.23
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Scheme 2.5 Representative synthesis of sulfatide 2.24

2.2.3 Synthesis of N-acyl sulfatide variant 2.33

Our immunological studies involved initially working with Type II sulfatide-reactive CD1d-restricted

NKT cells. Our strategy, while waiting for biological data, involved mimicking previous SAR

studies of iNKT cells. One of the most potent iNKT cell antigens ever developed, is PBS57. This

analog (PBS57) differs only by replacement of a hydroxyl by an amide instead of the 6′′-hydroxyl.

This small change resulted in a significant increase in stimulatory activity.36 Since type I and II

NKT cells are both presented by CD1d, a similar sulfatide analog (2.33) became a logical target.

The synthesis of 2.33 is outlined in Scheme 2.6, and benefits from using the same building

block (2.13) as the previous syntheses. The PMP group in 2.13 was removed in acetic acid and

water. The primary alcohol was selectively protected with tosyl chloride, followed by protection
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of the 4-hydroxyl with benzoyl chloride to form compound 2.34. Introduction of sodium azide

replacing the tosyl group with an azido moiety at the sixth position. Stepwise azide reduction and

amide formation (Ph3P, water followed by acetyl chloride in pyridine) led to multiple migratory

biproducts between the Lev and the other benzoyl groups. A one step amide formation with ruthe-

nium trichloride and thioacetic acid proved particularly effective towards the synthesis of 2.36.55

The final steps of the synthesis of 2.33 followed the route outlined in scheme 2.2 without any

further complications.

Scheme 2.6 Representative synthesis of sulfatide variant 2.33
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2.2.4 Synthesis of sulfonate sulfatide analog 2.41

The biosynthesis of sulfatide was briefly discussed in section 2.1, and a brief discussion of the

degradation of sulfatide is necessary to justify the synthesis of 2.41. Once sulfatide is in the

lysosome, arylsulfatase A (ASA: EC3.1.6.8) specifically hydrolyzes the sulfate at the 3′′-hydroxyl

position. It has been shown that ASA employs the help of sphingolipid activator protein-1, also

referred to as Saposin B, to extract sulfatide from membranes thereby making sulfatide accessible

to ASA for degradation.42 Our theory was to synthesize a sulfonate analog (2.41), this analog

would benefit from a sulfur-carbon bond that would make degradation from sulfatide to ceramide

via ASA not possible. We postulated that this analog would therefore have a longer period of

stimulation to the NKT cells, resulting in a larger stimulatory response.
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Scheme 2.7 Representative synthesis of sulfonate sulfatide analog 2.41

Scheme 2.7, outlines the synthesis of this novel sulfonate glycolipid. Compound 2.42 was

prepared by utilizing the nucleophilicity difference between the 3-hydroxyl and the 2-hydroxyl.

Therefore, stepwise addition of triflic anhydride followed by acyl chloride, installed the triflate

group on the 3-hydroxyl position. In the presence of tetrabutyl ammonium nitrate and heat, the tri-

flate was replaced with an axial alcohol to give allose adduct 2.43. This alcohol was transformed to

a triflate, so that potassium thioacetate could add via an SN2 reaction to afford compound 2.44. The

PMP group was deprotected under acidic conditions, followed by the installation of benzoyl pro-

tecting groups to make compound 2.45. After unsuccessful glycosylation attempts with Schmidt
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coupling conditions, compound 2.46 was synthesized as a Koenigs-Knorr donor. Under Koenigs-

Knorr conditions, glycolipid 2.47 was coupled in excellent yield. Global deprotection of 2.47 with

sodium methoxide in methanol and THF afforded thiol 2.48. The final sulfonate formation with

sodium acetate, acetic acid, and hydrogen peroxide suffered from a difficult separation and poor

yield, nevertheless compound 2.41 was finally obtained.

2.2.5 Synthesis of 4′′-deoxy sulfatide analog 2.49

Shortly before our initial immunological results were published, Erin Adams, a structural biologist,

joined our collaboration. She was very interested in our findings with γδ T cells (this is discussed

in further detail in section 2.3). With her, our goal was to provide pure sulfatide so her group

could solve the crystal structure of the γδ TCR-sulfatide-CD1d complex. Along with this, we

decided to make additional analogs of sulfatide so we could observe any relevant changes in the

crystal structure in comparison to sulfatide. To date, only 2.49 has been synthesized, as well as

varying degrees of progress towards a 6′′-deoxy, and 2′′-deoxy analosg. Schematic 2.8 outlines the

synthesis of 4′′-deoxy-3′′-sulfo sulfatide. Starting from sulfatide’s 2.14a, the primary 6-hydroxyl

was selectively protected quantitatively with benzoyl chloride to yield compound 2.52. The next

two steps followed classical Barton deoxygenation conditions to give us the 4-deoxy compound

2.54. The rest of the synthesis follows the same sulfatide synthesis as previously described without

any additional difficulties.
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Scheme 2.8 Representative synthesis of 4′′-deoxy sulfatide analog 2.49

2.3 Results and Discussion

2.3.1 c24:1 sulfatide is a potent NKT cell antigen

All sulfatide variants were gauged on their ability to stimulate NKT cells by measuring their

IL-2, IL-4, TNF-α and/or INF-γ production. Hela cells expressing WT CD1d molecules were

pulsed with bovine sulfatide (obtained from Matreya, LLC; Pleasant Gap, PA) or synthetic sul-

fatide overnight at the indicated concentrations. Cells were washed and cocultured with sulfatide-
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specific αβ T cells (for sulfatide) overnight. All cytokine concentrations were measured in the

supernatants. All representative data were acquired in triplicates.

Figure 2.2 Initial sulfatide analog targets

Our first series of variants were synthesized in order to understand the structural activity

relationships of the fatty acid chain length, the sphingosine scaffold, and the positioning of the sul-

fate. Preliminary immunological studies used an isolated sulfatide mixture from bovine brain as an

indicator of a Type II NKT cell antigen. The approximate sulfatide isoform ratios (provided by the

company) informed us that of the twenty sulfatide isoforms in the complex mixture, nearly 50%

of the sulfatide was composed of the c24:1 and c24:0 isoforms. We decided to focus our efforts

on synthesizing the ten variants represented in figure 2.2. Our first results (not shown) compared

the immunostimulatory activity between the small chain sulfatides 2.1a vs. 2.2a. Not surpris-

ingly, neither stimulated NKT cells, presumably due to their poor loading with CD1d. The lack of

hydrophobic interactions in the F′ pocket, inhibited their loading capacity and consequently sul-

fatide’s ability to be presented to the TCR. Figure 2.3 (A) represents the first relevant data gleaned

from this series of variants. The results, as expected, indicted that cytokine release is dependent on

lipid concentration. Compound 2.1b had significantly higher IL-4 and INF-γ production than 2.2b,
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which suggests that the 4′-hydroxyl of the phytosphingosine chain makes an unfavorable interac-

tion in comparison to the 3′-4′ double bond present in the sphingosine scaffold. The comparisons

between 2.1c vs 2.2c and 2.1d vs 2.2d showed similar results (analysis carried out be the Bendelac

lab).

To elucidate the stimulatory activities of the distinct sulfatide isoforms, we compared the

stimulatory activity of 2.1a-d. Figure 2.3(B), shows us a comparison of the stimulatory activity

of 2.1b to 2.1d. This identified that the most potent NKT cell stimulator that was tested was the

nervonic acid sulfatide. Also, 2.1d is more potent than the bovine mixture, indicating that it is

the immunodominant sufatide presented in the bovine mixture. This claim has been verified by the

published work of Blomqvist et al. During our studies, they published a more in depth investigation

on the stimulatory activity of the distinct sulfatide isoforms. They not only concluded that the

most potent sulfatide isoform was the nervonic acid sulfatide, but they found that a lysed version

of sulfatide, was a significantly more potent Type II αβ -NKT cell antigen.56

As discussed in section 2.2.2, we synthesized two 6′′-sulfo-sulfatides (16:0) to verify if the

sulfate positioning had an effect on the stimulatory properties of sulfatide. Data in figure 2.3(C),

demonstrated that the sulfate at the 3′′-hydroxyl postion is crucial to TCR stimulation, as 2.23 did

not stimulate at all. Though not graphically presented, 2.24 also did not show any appreciable

release of cytokines post-presentation.



2.3 Results and Discussion 38

Figure 2.3 Stimulatory activities of the sulfatide isoforms. (A) Compound 2.1b had sig-
nificantly higher IL-4 and INF-γ production than 2.2b, suggesting an unfavorable inter-
action occurs with the 4′-hydroxyl of the phytosphingosine chain. (B) Nervonic acid
isoform of sulfatide stimulated NKT cells more than the other tested isoforms. (C) 6′′-
sulfo-sulfatide did not stimulate NKT cells, thus the sulfate at the 3′′-hydroxyl postion is
crucial to TCR stimulation.
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2.3.2 N-acyl sulfatide analog is a comparable CD1d antigen and the sul-

fonate moiety is tolerated

In 2006, Liu. et al. presented a novel α-GalCer analog. They modified the 6′′-hydroxyl position

to an amide so that they could make a more soluble NKT cell antigen. This resulted in a variant

that stimulated NKT cells at a much lower concentration, presumably due to the better solubil-

ity.36 Though the sulfatide does not have solubility problems similar to α-GalCer, we synthesized

a PBS57-like variant 2.33. Upon completion, 2.33 was tested and compared to the stimulatory

results of 2.1b. As shown in figure 2.4, 2.33 gave comparably stimulatory activity to its sulfatide

counterpart. Though we did not improve the activity, the maintained stimulatory effect supports

the ability to modify the 6′′-hydroxyl in sulfatide, similar to reported iNKT cell counterparts.37

Figure 2.4 Dose response (TNF-α , INF-γ , IL-2) of NKT cells to sulfatide analogs 2.41,
2.33, and 2.1b(control).

Figure 2.4 also shows the stimulatory activity of sulfonate 2.41. Though there is a substantial

decrease in activity, we were excited to see that compound 2.41 retained the ability to stimulate αβ

T cells in vitro. in vivo testing of compound 2.41, has not been completed. The full impact of hav-

ing the sulfonate instead of the sulfate at the 3′′ position. Since the sulfonate will not be removed
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enzymatically, the degradation of this analog will be significantly slowed. Longer stimulation of

NKT cells with this analog might result in a substantial inflammatory immune response.

2.3.3 Identification of CD1d-sulfatide-specific Vδ1+ T cells among fresh PBMCs

in healthy individuals

We first assessed the lipid-loading conditions required to generate CD1d-sulfatide complexes. As

shown by their altered migration on a native isoelectrofocusing (IEF) gel, recombinant human

CD1d molecules were efficiently loaded after 1 h of incubation with a ten-fold molar excess of

sulfatide in pH 7.2 HEPES-buffered saline, without requirement for lipid transfer protein (2.5(A)).

We used these loading conditions prior to adding streptavidin in order to generate sulfatide-loaded

human CD1d tetramers. These tetramers were used in flow cytometry experiments to obtain an

unbiased representation of the existing population of sulfatide-specific CD1d-restricted T cells in

healthy individuals. The frequency of CD1d-sulfatide+ cells among CD3+ T cells was under 10−4

in the PBMCs of all individuals examined (2.5(B)). Because it is typically difficult to distinguish

genuine staining from background at this low frequency, 108 PBMCs were MACS-enriched using

CD1d-sulfatide tetramers, a procedure that allowed the recovery of 105 cells, of which 0.6-5.7%

were CD1d-sulfatide+ CD3+ T cells in different individuals examined (Figure 2.5(B-C)). Surpris-

ingly, these cells rarely expressed the αβ TCR, but were mostly γδ T cells that used the Vδ1 chain.

On average, in all seven individuals examined, 83% of the tetramer-positive cells (range 48-100%)

were γδ T cells that expressed the same Vδ1 variable gene segment (Fig. 1C). In another individ-

ual (no. 4) for which Vδ1 staining was not available, RT-PCR detected Vδ1 TCR chain expression
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among 200 sorted tetramer+ cells. Most circulating γδ T cells in humans express the Vγ9-Vδ2

TCR, representing 3% of adult blood T cells on average, whereas Vδ1 T cells represent only 0.8%

of T cells.57 As shown in Figure 2.5(D), the CD1d-sulfatide-specific T cells represented less than

1% of these circulating Vδ1 T cells. Thus, the frequency of CD1d-sulfatide-specific Vδ1+ T cells

was generally very low, well under 10−4 in all the healthy subjects examined.46
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Figure 2.5 CD1d-sulfatide tetramer staining and MACS enrichment of healthy PBMCs. (A)
Loading of human CD1d molecules with purified bovine sulfatide demonstrated by native iso-
electrofocusing (IEF). Data are representative of two independent experiments. (B) CD3/tetramer
staining before and after tetramer MACS enrichment in PBMCs from three healthy subjects. Start-
ing population included 1 x 108 PBMCs, with 1 x 105 cells typically recovered after MACS
enrichment. Gated CD3+ tetramer+ cells were further characterized for TCRαβ , TCRγδ , and
Vδ1 expression. Numbers indicate percentages in the gated population. Data are representa-
tive of one to five experiments per individual. (C) Frequency of CD1d sulfatide tetramer+ CD3+
PBMCs in eight healthy individuals; nd, not determined; for individual no. 4, presence of Vδ1 T
cells was inferred from the amplification of a Vδ1-Jδ1 sequence by RT-PCR after CD1d-sulfatide
tetramer MACS enrichment followed by FACS sorting of 200 tetramer+ cells. (D) Frequency of
CD1d-sulfatide tetramer+ cells among gated CD3+ Vδ1+ cells PBMCs. Values indicate average
percentage +/- SEM of six individuals examined.46
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2.3.4 Antigen-specific recognition of CD1d molecules by Vδ1+ γδ T cells

Clones

DP10.7 and AB18.1, clonally expanded Vδ1+ γδ T cells derived from the blood of healthy indi-

viduals, demonstrated specificity for sulfatide apparent from positive tetramer staining by purified

bovine sulfatide as well as by our synthetic sulfatide c26:0. This study showed no staining by

CD1d-αGalCer or unloaded tetramers. Furthermore, tetramer staining was specifically inhibited

by preincubation with anti-TCR γδ but not by isotype control antibody. Tetramer staining did

not decay significantly over an extended period of 6 h both at ice cold temperature and at 37◦C,

suggesting substantial affinity of the Vδ1 TCR for the CD1d-sulfatide complex. Interestingly,

CD1d-α-GalCer tetramers exhibited even lower binding than unloaded CD1d, further supporting

the antigen-specific recognition of CD1d-lipid complexes.46

The question of the antigenic specificity of γδ T cells, in particular whether putative antigens

are directly recognized or are presented by MHC-like molecules remains largely unresolved.58

With the exception of the MHC class I-like ligand T10, whose direct recognition in the absence of

associated peptide was demonstrated at the biochemical and structural level, other γδ T-cell anti-

gens have not been fully characterized.59 Because of the cellular readout of the tetramer-staining

experiments, the apparent interaction between the Vδ1 TCRs, CD1d, and sulfatide might be indi-

rect, involving some other cellular product. We generated recombinant DP10.7 and AB18.1 TCRs

to probe direct binding with CD1d sulfatide complexes in a cell-free system. After incubation

for 15 min with equimolar amounts of CD1d-sulfatide complexes, both TCRs demonstrated di-
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rect binding as shown by the formation of complexes in native gel electrophoresis. Importantly,

both TCRs required sulfatide loading for binding CD1d, providing direct proof of antigen-specific

recognition in a cell-free system.46

2.3.5 Progress towards solving the crystal structure of the γδ TCR-sulfatide-

CD1d complex

After the immunological results were obtained (outlined in sections 2.3.3 and 2.3.4); Dr. Erin

Adams and her group focused their efforts on understanding the γδ TCR-sulfatide-CD1d molecular

interactions. Their main goal was to solve the TCR-sulfatide-CD1d crystal structure. They first

spent a year trying to get good crystals to form using commercial sulfatide with little luck. A key

problem with commercial sulfatide is impurity and variablity among batches. We were able to

provide clean and consistent sulfatidefor the study.

We then sent out two batches of sulfatide (C24:1) to them. These batches of sulfatide loaded

CD1d better than Matreya’s samples and ultimately facilitated the crystallography process. γδ

TCR-CD1d-sulfatide crystals have been obtained and recently the crystal structure has been solved.

We have also utilized isoelectric focusing gels to compare the binding of different synthetic

sulfatides (2.1b, 2.1d, 2.49, 3.1) to CD1d. As expected, the 4-deoxy sulfatide (2.49) binds just as

well as 2.1d. Finally, we used surface plasmon resonance (SPR) to quantify the effect of bound

lipid on CD1d recognition with γδ T cells. Using β -GalCer as a control, we have convincing data

that sulfatide recognizes both DP10.7 and AB18.1 γδ TCR clones.
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2.4 Concluding remarks

Our collaboration underscores the value of utilizing synthetic chemistry to further the understand-

ing of NKT cell biology. As further evidenced by these results, our group has provided cleaner

and more consistent glycolipids than the commercial counterparts. This has been essential for

the molecular biologists in progressing the structural γδ T cell field. Also, we have been able to

synthesize multiple analogs that broadened the necessary structural requirements for sulfatide.46

Our immunological findings highlight the value of unbiased studies of fresh antigen-specific

T cells using MHC or CD1 tetramers in humans over in vitro expanded cell lines. While the ori-

gin and function of the Vδ1+ CD1d-sulfatide reactive T cells remain to be elucidated, especially

in the context of demyelinating processes, the current findings, together with reported examples

of blood- or gut-derived Vδ1 T-cell clones with specificity for CD1 molecules,60,61 support the

emerging notion that a large fraction of this enigmatic γδ T-cell population may be specialized for

recognition of lipids presented by CD1 family members. In addition, our biochemical studies con-

stitute the first direct demonstration of antigen presentation by MHC-like molecules to human γδ

T cells, a longstanding hypothesis which has received surprisingly little support over the years.46

2.5 Experimental Procedures
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Preparation of 2.3: Commercially available D-serine (40.0g, 381 mmol) was dissolved in 1 M

NaOH (700 mL) and dioxane (350 mL). This solution was cooled to 0◦C (ice bath). After cooling

was achieved, boc anhydride (100g, 419 mmol) was dissolved in the remaining dioxane (350 mL)

and added dropwise to the solution. The reaction slowly warmed to room temperature overnight.

The next day the dioxane was evaporated off via rotary evaporator. The resultant NaOH solution

was washed with diethyl ether (3 x 250 mL). The aqueous layer was saved and acidified by intro-

duction of concentrated hydrochloric acid (12.1 M HCl) to pH 2.0. After acidification, the solution

was once again washed with diethyl ether (3 x 250 mL). The organic layer was dried over sodium

sulfate (NaSO4), concentrated via rotary evaporator, and placed on a high vacuum system in prepa-

ration for the second step of the reaction. This compound does not stain well on TLC or show up

well in mass spec, so monitoring this reaction is very difficult to accomplish.

Preparation of 2.4: The dried pale-yellow syrup was dissolved in DCM (500 mL) and

cooled to -10◦C (acetone:ice bath). 4-methyl morpholine (83.8 mL, 762 mmol) and N,O-dimethyl

hydroxyamine-HCl (37.2 g, 381 mmol) were added to the round bottom flask and stirred for ten

minutes. Over the time period of fifteen minutes, 1-Ethyl-3-(3-dimethylaminopropyl) carbodi-

imide (EDCI)(73.0 g, 381 mmol) was added portionwise. This reaction stirred for another 30 min

after which time the reaction was removed from the ice bath and maintained at room tempera-

ture for two more hours. Ice cold 1 M HCl was added to quench the reaction and extract and
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subsequently discard the excess EDCI. The organic layer was rebasified with a saturated sodium

bicarbonate (NaHCO3) wash, dried over NaSO4, concentrated, and dried with a high vacuum pump

in preparation for the next step. The following compound was synthesized via the experimental

procedure outlined from Garner et al.54 After isolation, the compound was affirmed via the com-

parison of the published NMR spectroscopic data.

Preparation of 2.5: The solid pale yellow material (2.4), dimethoxy propane (39.7 g, 381

mmol), and boron trifluoride diethyl etherate (7 mL, 57.2 mmol) were dissolved in acetone and

stirred at room temperature overnight. The reaction was quenched with triethylamine. After re-

moval of the acetone (600 mL), the resultant residue was loaded onto a silica gel column and pu-

rified by a 10%, 40%, and 60% (EtOAc:Hexane) eluent method. A pale yellow syrup was isolated

(60.0 g, 55% yield, over three steps). This compound does not stain well on TLC or show up well

in mass spec, so monitoring this reaction is very difficult to accomplish. The following compound

was synthesized via the experimental procedure outlined from Garner et al.54 After isolation, the

compound was affirmed via the comparison of the published NMR spectroscopic data.
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Preparation of 2.6: All glassware was flame dried under a vacuum to evaporate off any

microscopic water that had collected in the flasks from moisture in the air. Purified amide 2.5

(28.0 g, 97.3 mmol) was washed with toluene three times in order to azeotrope water from the

product. This was dissolved in anhydrous THF (300 mL) and cooled to 0◦C. In a separate RBF,

LAH (3.70 g, 97.3 mmol) was dissolved in anhydrous THF (100 mL) and also cooled to 0◦C.

The dissolved LAH was transferred to the RBF via cannula dropwise over a few minutes. The

reaction temperature was maintained for two hours and monitored by thin layer chromatography

(TLC). After starting material was consumed, indicated by the emergence of a dark yellow spot on

TLC, the reaction was stopped by the slow addition of saturated ammonium chloride. The excess

THF was evaporated off and the salty solution was washed with diethyl ether (3 x 250 mL). The

diethyl ether washes were dried over NaSO4, concentrated, and subjected to flash chromatography

(10% EtOAc/Hexane column). The resulting product was a viscous clear syrup (41.0 g, 93%).

The following compound was synthesized via the experimental procedure outlined from Garner

et al.54 After isolation, the compound was affirmed via the comparison of the published NMR

spectroscopic data.

Preparation of 2.7: All glassware was flame dried under a vacuum to evaporate off any

microscopic water that had collected in the flasks from moisture in the air. 1-pentadecyne (32.6

mL, 124 mmol) was diluted with anhydrous THF (800 mL) and cooled to -23◦C by the piece-wise
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addition of dry ice into a bath of acetonitrile. N-butyl lithium (43 mL, 108 mmol) was added drop-

wise and the cloudy mixture was stirred at -23◦C for one hour. To the solution was added dropwise

via cannula a solution of compound 2.6 (19.0 g, 82.9 mmol) in anhydrous THF (50 mL). After

one more hour the reaction was complete and subsequently quenched with saturated ammonium

chloride. The excess THF was evaporated off and the salty solution was washed with ethyl ac-

etate (3 x 200 mL). The ethyl acetate washes were dried over NaSO4, concentrated, and subjected

to flash chromatography (5% EtOAc/Hexane column). The resulting product was a clear yellow

syrup (15.0 g, 41%). The following compound was synthesized via the experimental procedure

outlined from Garner et al.54 After isolation, the compound was affirmed via the comparison of

the published NMR spectroscopic data.

Preparation of 2.8: All glassware was flame dried under a vacuum to evaporate off any

microscopic water that had collected in the flasks from moisture in the air. Ethyl amine (100 mL)

was condensed in a two-neck flame-dried RBF that was cooled to -78◦C (acetone:dry ice bath).

Hexane-washed lithium (1.70 g, 246 mmol) was added to the ethyl amine and stirred for half an

hour. After the solution turned a dark blue color, compound 2.7 (7.16 g, 16.4 mmol) was dissolved

in anhydrous THF (150 mL), cooled to -78◦C, and transferred via cannula into the dissolving

metal solution. The reaction was maintained at -78◦C for four hours. The reaction was quenched

with solid ammonium chloride and raised to room temperature (at which point the solution turned
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a creamy yellow color). The quenched reaction stirred overnight in a hood to allow any excess

ethyl amine to evaporate. The next day the excess THF was removed via rotary evaporator and

the slurry was dissolved in water and extracted with diethyl ether (4 x 300 mL). This ether layer

was dried over NaSO4, impregnated with silica gel, and loaded dry onto a column. A very po-

lar eluent method (0.5:5:95, 1:10:90, 1:15:85 ammonium hydroxide:MeOH:DCM) was employed

to purify the compound (4.30 g, 88%). HRMS (ESI) calcd for C18H37NO2 [M+H]+: 299.2824,

found: 300.3042. The following compound was synthesized via the experimental procedure out-

lined from Garner et al.54 After isolation, the compound was affirmed via the comparison of the

published NMR spectroscopic data. Due to differential shifts in the amine 1H, and surrounding

1H chemical shifts, we bought isolated sphingosine, peracylated it, and compared it to some per-

acylated synthetic sphingosine. This comparision affirmed that the major product was the desired

diasteriomer.

Preparation of 2.9d: EDCI (1.06 g, 5.51 mmol), hydroxybenzotriazol (HOBt)(745 mg, 5.51

mmol), and nervonic acid (2.02 g, 5.51 mmol) were combined in a RBF and diluted in anhydrous

THF (75 mL). The reactants did not dissolve well so the RBF was heated with a heat gun for a

few seconds to allow more dissolution of the compounds. This mixture was stirred for one hour

at room temperature. Compound 2.8 (1.50 g, 5.01 mmol) was dissolved in anhydrous THF (25
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mL) and added to the reaction mixture. The reaction was left at room temperature overnight.

The next morning the THF was evaporated via rotary evaporator, the resultant yellow solid was

dissolved in water, washed with DCM (3 x 100 mL), and dried over NaSO4. The organic layer was

concentrated down and subjected to flash chromatography (50%, 70% EtOAc/Hexane eluent, then

5%, 10% MeOH/DCM). HRMS (ESI) calcd for C42H81NO3 [M+H]+: 647.6216, found: 648.6289.

Preparation of 2.10d: Partially purified compound 2.9d (Theoretical 5.01 mmol) was dis-

solved in a minimal amount of anhydrous pyridine (10 mL). Chloro(dimethyl)thexylsilane (TDS-

Cl) (0.983 mL, 5.01 mmol) was added to the reaction flask. The reaction was monitored by mass

spec for formation of the monosilated product. Every hour, more TDS-Cl (0.983 mL, 5.01 mmol)

was added as needed. Once the starting material was completely consumed or presence of the

disilated product was found, excess acetic anhydride (1.89 mL, 20.0 mmol) was added. After pos-

itive confirmation of completion of the reaction, the pyridine was evaporated via a high vacuum

rotary evaporator. The dark syrup was dissolved in water and washed with DCM. The organic

layer was concentrated down and subjected to flash chromatography (5% EtOAc/Hexane). The

column yielded a white powder compound (2.80 g, 71% over three steps). 1H NMR (300 MHz,

Chloroform-d) δ 5.75 (m, 1H), 5.64 (d, J = 9.4 Hz, 1H), 5.45 - 5.21 (m, 3H), 4.21 (m, 1H), 3.73

(dd, J = 10.2, 2.8 Hz, 1H), 3.56 (dd, J = 10.2, 4.1 Hz, 1H), 2.14 (t, J = 7.6 Hz, 2H), 2.02 (q, J = 6.2,

5.2 Hz, 5H), 1.60 (m, 4H), 1.41 - 1.13 (m, 58H), 0.88 (m, 18H), 0.08 (s, 3H), 0.00 (s, 3H). HRMS
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(ESI) calcd for C52H101NO4Si [M+H]+: 831.7500, found: 832.7614.

Preparation of 2.11d: Compound 2.10d (245 mg, 0.295 mmol) was dissolved in DCM (5

mL) and acetonitrile (ACN)(30 mL) and placed in a plastic centrifuge tube (with the appropriate

stir bar). To this tube was added 1 mL of hydrofluoric acid (48%). The reaction was monitored

by TLC for formation of product 2.11d. Every thirty minutes, more hydrofluoric acid was added

as needed. Once the starting material was completely consumed, the reaction was quickly and

carefully quenched on a bed of solid NaHCO3 in a separate plastic container (equipped with the

appropriate stir bar). Water, DCM, and solid NaHCO3 were slowly added until a neutral or basic

pH was reached. The water/DCM workup was filtered to remove excess undissolved NaHCO3.

The water was washed with DCM (6 x 100 mL) and the organic layer was dried over NaSO4,

concentrated (water bath was 30◦C or below to minimize acetal migration), and subjected to flash

chromatography (5% EtOAc/Hexane). The column yielded a white powder compound (210 mg,

99%). Note: this reaction if done slowly, left overnight, heated up, or purified slowly can and will

result in migration of the 2-acetyl group to the primary alcohol. It is essential that the chemist

quench this reaction immediately after completion. 1H NMR (500 MHz, Chloroform-d) δ 5.94 (d,

J = 8.4 Hz, 1H), 5.77 (dt, J = 14.2, 6.7 Hz, 2H), 5.50 - 5.43 (m, 1H), 5.35 (t, J = 4.8 Hz, 2H), 5.28

(t, J = 7.4 Hz, 1H), 4.16 - 4.09 (m, 1H), 3.65 (brs, 2H), 2.74 (brs, 1H), 2.17 (td, J = 7.4, 4.2 Hz,
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2H), 2.11 (s, 3H), 2.02 (p, J = 7.9, 6.9 Hz, 6H), 1.61 (q, J = 7.2 Hz, 2H), 1.40 - 1.16 (m, 56H), 0.88

(t, J = 6.8 Hz, 6H). HRMS (ESI) calcd for C44H83NO4 [M+H]+: 689.6322, found: 690.6459.

Preparation of 2.12: Pentaacetate-d-galactose (25.0 g, 64 mmol) was dissolved in DCM

(200 mL) and placed in an ice bath. Phenyl thiol (13 mL, 130 mmol) was added and the reaction

mixture and was stirred for fifteen minutes, followed by dropwise addition of boron trifluoride

diethyl etherate (9.5 mL, 77 mmol). The temperature was maintained for three hours. The reac-

tion vessel warmed to room temperature and stirred overnight. After quenching the reaction with

triethylamine, the solvent was evaporated and bubbled through bleach to remove and oxidize any

excess phenyl thiol. The resulting yellow syrup was washed with water and extracted with DCM

(3 x 150 mL). The organic layer was dried over NaSO4, concentrated via rotary evaporator, and

the residual syrup was purified on SiO2 (40% EtOAc:Hexane). A clear brown syrup was recovered

(26.0 g, 92%) 1H NMR (500 MHz, Chloroform-d) δ 7.55 - 7.49 (m, 2H), 7.35 - 7.29 (m, 3H), 5.42

(dd, J = 3.3, 1.1 Hz, 1H), 5.25 (t, J = 10.0 Hz, 1H), 5.05 (dd, J = 10.0, 3.3 Hz, 1H), 4.72 (d, J = 10.0

Hz, 1H), 4.20 (dd, J = 11.3, 7.0 Hz, 1H), 4.12 (dd, J = 11.4, 6.2 Hz, 1H), 3.98 - 3.92 (m, 1H), 2.11

(d, J = 12.3 Hz, 6H), 2.05 (s, 3H), 1.98 (s, 3H); 13C NMR (126 MHz, CDCl3) δ 170.37, 170.18,

170.05, 169.43, 132.54, 132.45, 128.89, 128.15, 86.63, 77.26, 77.01, 76.76, 74.40, 71.99, 67.23,

67.19, 61.62, 20.86, 20.68, 20.65, 20.60.
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Preparation of 2.13: Compound 2.12 (26.0 g, 59.1 mmol) was dissolved in methanol (300

mL), followed by the addition of 1 M sodium methoxide (NaOMe)(10 mL). Sixteen hours later the

reaction was quenched with an excessive amount of Amberlite (highly acidic beads) and stirred

for thirty minutes. The reaction was filtered, washed with MeOH, and concentrated in a 500 mL

RBF. The clear red syrup was further dissolved in dry DMF (200 mL) and the pH of the solution

was lowered to 2.5 by the addition of tosylic acid. The reaction was stirred for two hours on a

rotary evaporator (50◦C) after adding anisaldehyde dimethyl acetal (13.0 mL, 76.3 mmol). The

mixture was quenched with triethylamine and the DMF was pulled off with a high vacuum rotary

evaporator. This resultant syrup was washed with water and extracted with EtOAc (3 x 150 mL).

The concentrated and dried (NaSO4) organic layer was subjected to flash chromatography (50%,

70% EtOAc:Hexane, 10% MeOH). The resulting product was a white powder (13,890 mg, 60%

over two steps).1H NMR (500 MHz, Chloroform-d) δ 7.72 - 7.66 (m, 2H), 7.36 - 7.24 (m, 6H),

6.91 - 6.85 (m, 2H), 5.47 (s, 1H), 4.54 - 4.48 (m, 1H), 4.37 (dd, J = 12.5, 1.6 Hz, 1H), 4.23 - 4.18

(m, 1H), 4.02 (dd, J = 12.5, 1.8 Hz, 1H), 3.72 - 3.66 (m, 2H), 3.55 (q, J = 1.5 Hz, 1H). 13C NMR

(126 MHz, Chloroform-d) δ 160.34, 133.79, 130.70, 130.14, 128.95, 128.23, 127.84, 113.58,

101.31, 87.01, 77.26, 77.21, 77.01, 76.76, 75.31, 73.83, 70.08, 69.27, 68.88, 55.35. HRMS (ESI)

calcd for C20H22O6S [M+H]+: 390.1137, found: 1391.1197.
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Preparation of 2.14: Compound 2.13 (6.50 g, 16.7 mmol) was dissolved in dry DCM (200

mL) and the solution was cooled to 0◦C. Levulinic acid (2.04 mL, 20.0 mmol) and dimethy-

laminopyridine (DMAP)(937 mg, 8.35 mmol) were added and the reaction was allowed to stir for

fifteen minutes, followed by the inclusion of EDCI (4.80 g, 25.1 mmol). The reaction was carefully

monitored for completion or formation of dilevulinic protected byproduct by mass spectrometry

(M.S.) and TLC. When the starting material was consumed, excess pyridine (30 mL) and benzoyl

chloride (BzCl)(9.68 L, 83.5 mmol) were added to the reaction. The next morning the pyridine

was pulled off via high vacuum rotary evaporation and the brown syrup was was washed with wa-

ter and extracted with DCM (3 x 150mL). The organic layer was dried over NaSO4, concentrated

via rotary evaporator, and the residual syrup was purified on SiO2 (30%, 40% EtOAc:Hexane). A

white powder was recovered (5.61 g, 78%). 1H NMR (500 MHz, Chloroform-d) δ 8.05 - 7.99

(m, 2H), 7.62 - 7.55 (m, 3H), 7.50 - 7.42 (m, 2H), 7.38 - 7.22 (m, 6H), 6.92 - 6.86 (m, 2H), 5.57

(d, J = 9.9 Hz, 1H), 5.45 (s, 1H), 5.18 (dd, J = 10.0, 3.4 Hz, 1H), 4.86 (d, J = 9.8 Hz, 1H), 4.42

- 4.35 (m, 2H), 4.03 (dd, J = 12.3, 1.6 Hz, 1H), 3.63 (q, J = 1.4 Hz, 1H), 2.62 - 2.35 (m, 4H);

13C NMR (126 MHz, Chloroform-d) δ 206.10, 172.02, 164.90, 160.20, 133.85, 133.26, 131.23,

130.20, 129.86, 129.66, 128.89, 128.76, 128.45, 128.17, 127.91, 113.48, 101.03, 85.33, 78.56,

77.27, 77.02, 76.76, 73.55, 73.25, 69.84, 69.05, 67.29, 67.10, 55.35, 37.77, 29.44, 28.26. HRMS

(ESI) calcd for C32H32O9S [M+H]+: 592.1767, found: 593.1840.
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Preparation of 2.15: A solution of 2.14 (1.70 g, 2.94 mmol), water (20 mL), and glacial

acetic acid (80 mL) was stirred overnight at room temperature. Upon completion the water and

acetic acid were pulled off via high vacuum rotary evaporation. The light yellow slurry was

quenched with saturated NaHCO3 and the product was extracted with EtOAc (3 x 50 mL). The

organic phase was dried over NaSO4, concentrated, and the yellow syrup was loaded onto a bed of

SiO2 and was partially purified with a 2.5%, 5% MeOH: DCM eluent wash. This stable diol inter-

mediate was dissolved in pyridine (40 mL). Benzoyl chloride (4.10 mL, 29.38 mmol) was added

and the reaction mixture was stirred for sixteen hours. The pyridine was removed via high vacuum

rotary evaporator. The dark brown residue was dissolved in water and washed with DCM (3 x 50

mL). The resultant syrup was loaded onto a silica gel column and the product was eluted out in

30% EtOAc:Hexanes. A clear light brown syrup was collected (1.60 g, 80%). 1H NMR (500 MHz,

Chloroform-d) δ 8.06 - 7.94 (m, 5H), 7.66 - 7.53 (m, 4H), 7.51 - 7.40 (m, 5H), 7.35 - 7.29 (m, 2H),

7.28 - 7.20 (m, 4H), 5.84 (dd, J = 3.3, 1.1 Hz, 1H), 5.58 (t, J = 9.9 Hz, 1H), 5.38 (dd, J = 9.9, 3.3

Hz, 1H), 4.96 (d, J = 10.0 Hz, 1H), 4.60 (dd, J = 11.5, 7.1 Hz, 1H), 4.40 (dd, J = 11.5, 5.5 Hz, 1H),

4.33 - 4.26 (m, 1H), 2.59 - 2.27 (m, 4H). 13C NMR (126 MHz, Chloroform-d) δ 206.10, 172.02,

164.90, 160.20, 133.85, 133.26, 131.23, 130.20, 129.86, 129.66, 128.76, 128.45, 128.17, 127.91,

113.48, 101.03, 85.33, 77.27, 77.02, 76.76, 73.55, 73.25, 69.84, 69.05, 67.29, 67.10, 55.35, 37.77,

29.44, 28.26. HRMS (ESI) calcd for C38H34O10S [M+NH4]+: 682.1873, found: 700.2211.
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Preparation of 2.16: Fully protected galactose 2.15 (600 mg, 0.879 mmol) was dissolved

in an acetone/water solution (20mL/3mL), followed by the portion wise addition of NBS (469 mg,

2.64 mmol). Subsequent equivalents of NBS were added until the reaction was completed (moni-

tored by TLC). Upon completion, the reaction was quenched with solid NaHCO3, and the acetone

was evaporated off. The remaining mixture was dissolved in water, washed with DCM (3 x 50 mL),

dried with NaSO4, concentrated, and subjected to flash chromatography (30% EtOAc:Hexanes).

The white powder (440 mg, 0.746 mmol) was dissolved in DCM (25 mL). Solid potassium car-

bonate (1320 mg, 9.55 mmol) was added, followed by the addition of excess trichloroacetonitrile

(1.12 mL, 11.2 mmol). Once setup, the reaction was stirred for sixteen hours at room tempera-

ture. In the morning, the potassium carbonate was filtered and washed with EtOAc (100 mL). The

filtrate was dried off at or below 30◦C en vacuo. This pale yellow solid was loaded onto a bed

of silica gel and was eluted with 25% EtOAc/Hexane. The two anomeric isomers were collected,

combined, and concentrated at or below 30◦C (424 mg, 89% from two steps). HRMS (ESI) calcd

for C34H30Cl3NO11 [M+H]+: 733.0884, found: 573.2294 (fragment).

Preparation of 2.17d: With the donor synthesized, each sulfatide product was made by
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the coupling of the appropriate ceramide followed by the deprotection of the levulinic protecting

group, installation of the sulfate, and finally the global removal of the esters to make the appropriate

sulfatide. Due to the shared synthetic route, one synthetic series will be described followed by the

analytical data of the final sulfatides. Donor 2.16 (150 mg, 0.205 mmol) was stirred for one hour at

room temperature in the presence of ceramide 2.10 (156 mg, 0.226 mmol), 4 angstrom molecular

sieves (400 mg), and dry DCM (5 mL). The vessel was cooled to -10◦C (acetone/ice bath), followed

by the dropwise addition of trimethylsilyltriflate (9 µL, 51.3 µmol). The reaction temperature was

maintained for two hours then quenched by the dropwise addition of TEA. The molecular sieves

were filtered and washed with EtOAc by means of a plug silica gel column. The filtrate was dried

over NaSO4, concentrated, and subsequently loaded onto a silica gel column. Purification was

achieved with a 20%, 30% EtOAc/Hexane eluent system (124 mg, 48%). 1H NMR (500 MHz,

Chloroform-d) δ 8.17 (d, J = 7.7 Hz, 2H), 8.00 (dd, J = 7.8, 4.5 Hz, 3H), 7.64 (d, J = 7.5 Hz, 1H),

7.55 (m, J = 15.6, 7.4 Hz, 4H), 7.44 (q, J = 7.5 Hz, 5H), 5.83 (m, 2H), 5.73 (s, 1H), 5.60 (d, J =

9.2 Hz, 1H), 5.57 - 5.51 (s, 1H), 5.42 - 5.27 (m, 5H), 4.69 (d, J = 7.8 Hz, 1H), 4.60 (d, J = 11.3,

1H), 4.37 (dd, J = 11.3, 6.2 Hz, 1H), 4.31 (m, J = 10.4, 7.1, 3.5 Hz, 1H), 4.24 (m, 1H), 4.10 (m,

1H), 3.57 (m, 2H), 2.68 - 2.30 (m, 6H), 2.11 - 1.84 (m, 12H), 1.76 (t, J = 7.7 Hz, 2H), 1.28 (m,

J = 20.6, 7.4 Hz, 50H), 0.88 (t, J = 6.8 Hz, 6H). 13C NMR (126 MHz, Chloroform-d) δ 205.86,

205.69, 205.67, 172.61, 172.59, 171.78, 171.73, 171.67, 169.70, 169.65, 166.01, 165.99, 165.97,

165.73, 165.65, 165.56, 165.36, 137.46, 137.03, 133.74, 133.58, 133.51, 133.43, 133.35, 133.17,

130.07, 130.03, 130.01, 130.00, 129.94, 129.90, 129.88, 129.85, 129.79, 129.77, 129.74, 129.50,

129.31, 129.28, 129.20, 128.99, 128.94, 128.77, 128.70, 128.65, 128.61, 128.56, 128.53, 128.50,
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128.49, 128.46, 128.43, 128.41, 128.39, 128.37, 124.86, 124.72, 101.73, 101.13, 90.93, 77.30,

77.25, 77.05, 76.79, 73.59, 71.33, 71.27, 70.99, 69.86, 69.68, 69.40, 69.15, 67.84, 67.70, 67.37,

66.54, 62.34, 62.03, 60.38, 50.30, 50.18, 37.80, 37.71, 37.70, 36.82, 36.46, 32.32, 32.14, 31.93,

31.91, 29.83, 29.81, 29.78, 29.73, 29.71, 29.68, 29.66, 29.62, 29.59, 29.54, 29.53, 29.51, 29.49,

29.47, 29.45, 29.43, 29.41, 29.39, 29.38, 29.36, 29.32, 29.28, 29.24, 29.21, 29.02, 28.83, 27.95,

27.87, 27.25, 27.23, 27.21, 25.65, 25.49, 22.70, 22.69, 21.10, 21.04, 14.20, 14.18, 14.14, 14.13,

14.12. HRMS (ESI) calcd for C76H111NO14S [M+H]+: 1261.8005, found: 391.1197.

Preparation of 2.18d: A 1 M solution of hydrazine was freshly prepared in dry tetrahydra-

furan (THF). A portion (77 µL, 77 µmol) of this was stirred with glacial acetic acid (102 µL, 102

µmol) for five minutes. This mixture was added to a RBF that contained compound 2.17d and

dry THF:Methanol (10:1, 11 mL). After one hour the reaction was completed by the observance

of product and the complete disappearance of starting material via M.S. The solvent was dried

of en vacuo at or below 30◦C. The white slurry was quenched with saturated NaHCO3 solution,

followed by the extraction of product in DCM washes (3 x 15 mL). The DCM washes were dried

over NaSO4, evaporated, and purified via flash chromatography (30% EtOAc:Hexane). The white

powder product collected was isolated in excellent yield (65 mg, 95%). 1H NMR (500 MHz,

Chloroform-d) δ 8.16 (d, J = 7.8 Hz, 2H), 8.03 (m, 4H), 7.65 - 7.40 (m, 9H), 5.75 - 5.69 (m, 1H),

5.62 (d, J = 9.1 Hz, 1H), 5.40 - 5.24 (m, 5H), 4.65 (d, J = 7.8 Hz, 1H), 4.57 (dd, J = 11.4, 6.8
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Hz, 2H), 4.40 (dd, J = 11.5, 6.0 Hz, 2H), 4.35 - 4.26 (m, 1H), 4.20 - 4.08 (m, 3H), 4.06 (dd, J =

9.9, 3.4 Hz, 1H), 3.59 (dd, J = 9.9, 3.8 Hz, 1H), 2.88 - 2.84 (m, 1H), 1.96 (m, 11H), 1.77 (t, J =

7.6, 2H), 1.40 - 1.05 (m, 54H), 0.88 (t, J = 6.8 Hz, 6H). 13C NMR (126 MHz, Chloroform-d) δ

172.67, 172.65, 171.15, 169.81, 169.72, 166.72, 166.37, 166.35, 166.06, 137.00, 133.67, 133.63,

133.57, 133.53, 133.33, 130.15, 130.12, 130.08, 130.03, 129.92, 129.90, 129.87, 129.86, 129.85,

129.81, 129.77, 129.72, 129.66, 129.45, 129.40, 129.08, 129.02, 128.67, 128.60, 128.57, 128.53,

128.49, 128.46, 128.43, 128.40, 128.36, 124.81, 124.71, 101.48, 100.83, 77.30, 77.24, 77.04,

76.79, 73.57, 73.54, 73.44, 71.55, 71.50, 71.41, 71.39, 70.41, 67.34, 62.45, 60.39, 50.37, 36.80,

36.49, 32.31, 32.13, 31.94, 31.91, 29.81, 29.78, 29.74, 29.73, 29.71, 29.68, 29.66, 29.62, 29.58,

29.55, 29.53, 29.51, 29.46, 29.41, 29.38, 29.36, 29.33, 29.31, 29.28, 29.25, 29.21, 29.18, 29.00,

28.83, 27.23, 27.22, 25.64, 25.51, 22.70, 21.14, 21.06, 21.03, 14.19, 14.17, 14.12. HRMS (ESI)

calcd for C71H105NO12 [M+H]+: 1163.7637, found: 1164.7714.

Preparation of 2.19d: Glycolipid 2.18d (65 mg, 55.9 µmol) was dissolved in dry pyridine

(1.30 ml) followed by the addition of sulfur trioxide pyridine complex (125 mg, 0.782 mmol).

The reaction was stirred at room temperature for fourteen hours, followed by TLC (indicating

the completion of the reaction). The solvent was removed en vacuo, and the remaining slurry was

dissolved in saturated NaHCO3, washed with DCM (3 x 10 mL), dried (NaSO4), and concentrated.

The residue was chromatographed (SiO2, methanol/DCM 5%, 10%) to afford product 2.19d (55
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mg, 80%). 1H NMR (500 MHz, Methanol-d4) δ 8.16 - 8.08 (m, 3H), 8.01 (d, J = 7.6 Hz, 2H), 7.66

- 7.39 (m, 10H), 6.11 (d, J = 3.3 Hz, 1H), 5.63 (dd, J = 14.5, 7.2 Hz, 1H), 5.57 (dd, J = 10.2, 7.8

Hz, 1H), 5.37 - 5.24 (m, 5H), 4.95 (dd, J = 10.2, 3.4 Hz, 2H), 4.90 (d, J = 7.9 Hz, 2H), 4.32 - 4.25

(m, 2H), 3.92 (dd, J = 10.1, 5.7 Hz, 2H), 3.66 (dd, J = 10.0, 5.1 Hz, 2H), 2.02 (q, J = 6.4 Hz, 5H),

1.95 (t, J = 7.5 Hz, 2H), 1.90 (d, J = 8.1 Hz, 6H), 1.48 - 1.14 (m, 54H), 0.89 (t, J = 6.8 Hz, 6H). 13C

NMR (126 MHz, Methanol-d4) δ 175.99, 171.51, 167.54, 167.46, 167.03, 138.22, 134.57, 134.37,

134.32, 131.37, 131.23, 131.10, 131.02, 130.98, 130.89, 130.87, 130.78, 129.69, 129.58, 129.48,

125.73, 101.95, 76.54, 74.96, 72.99, 71.85, 71.20, 64.27, 51.91, 49.54, 49.37, 49.20, 49.03, 48.86,

48.69, 48.52, 37.08, 33.37, 33.13, 33.11, 30.88, 30.87, 30.84, 30.82, 30.72, 30.68, 30.66, 30.55,

30.50, 30.39, 30.36, 30.31, 30.21, 30.08, 28.18, 28.16, 27.01, 23.79, 21.16, 14.53. HRMS (ESI)

calcd for C71H104NO15S- [M+H]+: 1242.7132, found: 1244.7279.

Preparation of 2.1d: Sulfated glycolipid 2.19d (15 mg, 12.1 µmol) was dissolved in an

anhydrous 1:1 solution of THF and methanol (5 mL). Freshly prepared 1 M sodium methoxide

was added (0.150 mL) to the reaction flask and the reaction was stirred for one hour at room

temperature. Reaction completion was verified via mass spectrometry and TLC. Upon completion,

the solvent was removed en vacuo and the resulting residue was washed with water (3 x 2 mL), and

diethyl ether (3 x 2 mL) (solid was washed via centrifugation, the solvents washes were decanted

off and saved, just in case of partial dissolution in water). The purified compound was a white
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powder (8.17 mg, 76%). 1H NMR (500 MHz, DMSO-d6) δ 7.44 (d, J = 9.0 Hz, 1H), 5.51 (dt, J =

13.9, 6.6 Hz, 1H), 5.32 (m, 3H), 5.07 (d, J = 2.6 Hz, 1H), 4.83 (d, J = 5.4 Hz, 1H), 4.57 (t, J = 5.7

Hz, 1H), 4.41 (d, J = 4.6 Hz, 1H), 4.14 (d, J = 7.6 Hz, 1H), 3.97 - 3.89 (m, 3H), 3.74 (tt, J = 8.8,

4.5 Hz, 1H), 3.56 - 3.33 (m, 6H), 1.96 (m, 8H), 1.42 (d, J = 6.6 Hz, 2H), 1.22 (s, 54H), 0.84 (t, J =

6.8 Hz, 6H). 13C NMR (126 MHz, DMSO-d6) δ 172.17, 131.73, 131.69, 130.07, 104.77, 79.47,

75.35, 71.39, 69.71, 69.26, 66.68, 60.55, 53.66, 40.48, 40.41, 40.32, 40.24, 40.15, 40.07, 39.98,

39.81, 39.65, 39.48, 36.08, 32.23, 31.76, 31.74, 29.60, 29.58, 29.56, 29.53, 29.51, 29.46, 29.30,

29.28, 29.24, 29.19, 29.16, 29.15, 29.03, 29.00, 27.00, 26.98, 25.82, 22.55, 14.38. HRMS (ESI)

calcd for C48H90NO11S- [M+H](Neg. mode): 888.6240, found: 888.6293.

NMR and M.S. data of Compound 2.1a

1H NMR (500 MHz, DMSO-d6) δ 7.47 (d, J = 8.7 Hz, 1H), 5.52 (dt, J = 14.8, 6.6 Hz, 1H),

5.41 - 5.32 (m, 1H), 5.06 (d, J = 2.6 Hz, 1H), 4.85 (d, J = 5.4 Hz, 1H), 4.59 (dd, J = 6.3, 5.1 Hz,

1H), 4.43 (d, J = 4.6 Hz, 1H), 4.14 (d, J = 7.7 Hz, 1H), 3.97 - 3.85 (m, 3H), 3.76 (m, 1H), 3.53 -

3.47 (m, 3H), 3.47 - 3.38 (m, 3H), 3.35 (m, 1H) 2.01 (t, J = 7.5 Hz, 2H), 1.92 (m, 2H), 1.44 (q,

J = 7.2, 6.7 Hz, 2H), 1.22 (m, 30H), 0.84 (t, J = 6.9 Hz, 6H). 13C NMR (126 MHz, DMSO-d6)

δ 172.25, 131.72, 104.73, 79.48, 75.36, 71.41, 69.69, 66.67, 63.52, 60.54, 36.05, 32.21, 31.75,

31.70, 29.55, 29.51, 29.46, 29.22, 29.18, 29.16, 29.11, 29.06, 25.80, 22.57, 22.55, 14.41. HRMS

(ESI) calcd for C32H60NO11S- [M+H]+: 666.3893, found: 668.4038.

NMR data of Compound 2.1b

1H NMR (500 MHz, DMSO-d6) δ 7.47 (d, J = 8.7 Hz, 1H), 5.50 (dd, J = 14.6, 7.3 Hz, 1H),

5.34 (dd, J = 15.5, 7.1 Hz, 1H), 4.83 (d, J = 5.4 Hz, 1H), 4.58 (t, J = 5.9 Hz, 1H), 4.41 (d, J =
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4.6 Hz, 1H), 4.13 (d, J = 7.7 Hz, 1H), 3.93 (m, 3H), 3.74 (m, 1H), 3.52 - 3.46 (m, 3H), 3.43 (m,

3H), 3.33 (m, 2H), 2.00 (t, J = 7.4 Hz, 2H), 1.91 (m, 2H), 1.47 - 1.42 (m, 2H), 1.40 (m, 2H), 1.21

(m, 46H), 0.83 (t, J = 6.8 Hz, 6H). 13C NMR (126 MHz, DMSO-d6) δ 172.22, 131.72, 131.69,

104.71, 79.46, 75.35, 71.41, 69.67, 69.29, 66.67, 60.53, 53.64, 40.47, 40.39, 40.30, 40.22, 40.13,

40.06, 39.97, 39.89, 39.80, 39.63, 39.47, 36.08, 32.24, 31.77, 31.76, 29.61, 29.60, 29.57, 29.55,

29.51, 29.49, 29.46, 29.44, 29.26, 29.24, 29.20, 29.18, 25.82, 22.55, 22.54, 14.37. HRMS (ESI)

calcd for C40H76NO11S- [M+H]+: 778.5145, found: 780.5313.

NMR data of Compound 2.1c Due to a server outage, various spectroscopic data was unable

to be recovered (department wide), due to this missing data should be here.

Preparation of 2.20d: With the donor 2.16 synthesized, each sulfatide product was made by

the coupling of the appropriate ceramide followed by the removal of the levulinic protecting group,

installation of the sulfate, and finally the global removal of the esters to make the appropriate

sulfatide. Due to the shared synthetic route, one synthetic series will be described followed by

the analytical data of the final sulfatides. Donor 2.16 (150 mg, 0.205 mmol) was stirred for one

hour at room temperature in the presence of ceramide 2.10 (168 mg, 0.226 mmol), 4 angstrom

(400 mg), and dry DCM (5 mL). The vessel was cooled to -10◦C (acetone/ice bath), followed by

the dropwise addition of trimethylsilyltriflate (9 µL, 51.3 µmol). The reaction temperature was

maintained for two hours then quenched by the dropwise addition of TEA. The M.S. were filtered
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and washed with EtOAc by means of a plug silica gel column. The filtrate was dried over NaSO4,

concentrated, and subsequently loaded onto a silica gel column. Purification was achieved with a

20%, 30% EtOAc/Hexane eluent system (100 mg, 37%). 1H NMR (500 MHz, Chloroform-d) δ

8.20 - 8.14 (m, 2H), 8.00 (m, 4H), 7.67 - 7.61 (m, 2H), 7.61 - 7.49 (m, 4H), 7.45 (m, 3H), 5.95 (d,

J = 9.3 Hz, 1H), 5.82 (dd, J = 3.2, 1.1 Hz, 1H), 5.50 (dd, J = 10.3, 7.7 Hz, 1H), 5.40 - 5.31 (m, 3H),

5.13 (dd, J = 8.0, 3.1 Hz, 1H), 4.95 (dt, J = 10.1, 3.2 Hz, 1H), 4.68 (d, J = 7.7 Hz, 1H), 4.59 (dd, J

= 11.3, 6.6 Hz, 1H), 4.40 - 4.31 (m, 2H), 4.22 (m, 1H), 4.06 (dd, J = 9.7, 2.8 Hz, 1H), 3.56 (dd, J =

9.6, 3.3 Hz, 1H), 2.63 - 2.46 (m, 3H), 2.46 - 2.32 (m, 3H), 2.06 - 1.98 (m, 8H), 1.93 (s, 2H), 1.88

- 1.71 (m, 4H), 1.65 (s, 4H), 1.46 - 1.05 (m, 52H), 0.88 (t, J = 6.9 Hz, 6H). 13C NMR (126 MHz,

Chloroform-d) δ 205.71, 172.73, 171.74, 170.80, 169.61, 165.96, 165.60, 165.32, 133.74, 133.56,

133.38, 130.12, 129.89, 129.82, 129.73, 129.29, 129.19, 128.91, 128.77, 128.59, 128.52, 100.74,

77.26, 77.21, 77.01, 76.75, 73.09, 72.34, 71.22, 70.95, 69.83, 67.74, 67.00, 62.05, 47.45, 37.71,

36.35, 31.92, 29.82, 29.78, 29.75, 29.74, 29.72, 29.70, 29.67, 29.63, 29.57, 29.53, 29.38, 29.35,

29.33, 29.21, 28.53, 27.88, 27.24, 27.22, 25.61, 25.38, 22.70, 22.69, 21.07, 20.78, 14.12. HRMS

(ESI) calcd for C78H115NO16 [M+H]+: 1321.8216, found: 1322.8216.

Preparation of 2.21d: A 1 M solution of hydrazine was freshly prepared in dry THF. A

portion (59 µL, 59 µmol) of this was stirred with glacial acetic acid (78 µL, 78 µmol) for five

minutes. This mixture was added to a RBF that contained compound 2.20d (60 mg, 0.045 mmol)
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and dry THF:Methanol (10:1, 11 mL). After one hour the reaction was completed by the obser-

vance of product and the complete disappearance of starting material via M.S. The solvent was

dried of en vacuo at or below 30◦C. The white slurry was quenched with saturated NaHCO3 solu-

tion, followed by the extraction of product in DCM washes (3 x 15 mL). The DCM washes were

dried over NaSO4, evaporated, and purified via flash chromatography (30% EtOAc:Hexane). The

white powder product collected was isolated in excellent yield (50 mg, 91%). 1H NMR (500 MHz,

Chloroform-d) δ 8.20 - 8.14 (m, 2H), 8.08 - 7.99 (m, 4H), 7.67 - 7.41 (m, 8H), 5.93 (d, J = 9.2

Hz, 1H), 5.76 (dd, J = 3.5, 1.1 Hz, 1H), 5.38 - 5.27 (m, 3H), 5.11 (dd, J = 8.0, 3.2 Hz, 1H), 4.93

(dt, J = 10.0, 3.2 Hz, 1H), 4.66 (d, J = 7.8 Hz, 1H), 4.56 (dd, J = 11.4, 6.8 Hz, 2H), 4.37 (m, 3H),

4.19 - 4.08 (m, 3H), 4.04 (dd, J = 9.6, 3.0 Hz, 1H), 3.60 (dd, J = 9.6, 3.3 Hz, 1H), 2.65 (d, J =

5.8 Hz, 2H), 2.12 - 1.97 (m, 12H), 1.64 (d, J = 18.7 Hz, 2H), 1.58 - 1.52 (m, 2H), 1.46 - 1.13 (m,

54H), 0.88 (t, J = 6.9 Hz, 6H). 13C NMR (126 MHz, Chloroform-d) δ 172.77, 170.83, 169.62,

166.50, 166.26, 166.05, 133.71, 133.62, 133.37, 130.19, 129.90, 129.89, 129.84, 129.72, 129.41,

129.32, 128.97, 128.71, 128.58, 128.52, 100.43, 77.27, 77.22, 77.01, 76.76, 73.58, 73.08, 72.36,

71.56, 71.45, 70.26, 67.04, 62.40, 60.39, 47.55, 36.39, 31.94, 31.92, 29.82, 29.79, 29.75, 29.73,

29.72, 29.71, 29.69, 29.68, 29.67, 29.63, 29.57, 29.54, 29.38, 29.33, 29.21, 28.52, 27.24, 27.23,

25.60, 25.40, 22.70, 21.06, 20.74, 14.21, 14.13. HRMS (ESI) calcd for C73H109NO14 [M+H]+:

1223.7848, found: 1224.8077.
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Preparation of 2.22d: Glycolipid 2.18d (40 mg, 33.0 µmol) was dissolved in dry pyri-

dine (8 mL) followed by the addition of sulfur trioxide pyridine complex (72.8 mg, 0.456 mmol).

The reaction was stirred at room temperature for fourteen hours, followed by TLC (indicating the

completion of the reaction). The solvent was removed en vacuo, and the remaining slurry was dis-

solved in saturated NaHCO3, washed with DCM (3 x 10 mL), dried (NaSO4), and concentrated.

The residue was chromatographed (SiO2, methanol/DCM 5%, 10%) to afford product 2.19d (30

mg, 70%). 1H NMR (500 MHz, Methanol-d4) δ 8.12 (m, 4H), 8.03 - 7.99 (m, 2H), 7.67 - 7.40 (m,

9H), 6.10 (d, J = 3.2 Hz, 1H), 5.54 (dd, J = 10.2, 7.9 Hz, 1H), 5.34 (dd, J = 5.5, 4.3 Hz, 2H), 5.17

(dd, J = 8.4, 3.3 Hz, 1H), 4.98 - 4.88 (m, 3H), 4.47 - 4.36 (m, 3H), 4.28 (m, 1H), 3.96 - 3.89 (m,

1H), 3.73 (dd, J = 10.2, 3.4 Hz, 1H), 2.03 (q, J = 6.4 Hz, 4H), 1.96 (s, 3H), 1.93 (s, 3H), 1.86 - 1.79

(m, 2H), 1.66 - 1.38 (m, 6H), 1.37 - 1.11 (m, 56H), 0.89 (t, J = 6.9 Hz, 6H). 13C NMR (126 MHz,

Methanol-d4) δ 174.27, 170.97, 170.01, 166.11, 166.02, 165.52, 132.91, 129.90, 129.77, 129.67,

129.56, 129.52, 129.46, 129.43, 129.42, 129.33, 128.25, 128.12, 128.03, 100.13, 72.56, 71.51,

70.38, 62.86, 48.08, 48.03, 47.91, 47.85, 47.74, 47.57, 47.40, 47.23, 47.06, 35.54, 31.68, 31.66,

29.42, 29.38, 29.34, 29.30, 29.23, 29.20, 29.09, 29.05, 29.03, 28.93, 28.91, 28.84, 28.81, 27.87,

26.71, 26.70, 25.40, 25.12, 22.34, 19.54, 19.40, 13.06. HRMS (ESI) calcd for C73H108NO17S-

[M+H]+: 1302.7343, found: 1304.8101.

Preparation of 2.2d: Sulfated glycolipid 2.22d (4 mg, 12.1 µmol) was dissolved in an
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anhydrous 1:1 solution of THF and methanol (3 mL). Freshly prepared 1 M sodium methoxide was

added (80 µL) to the reaction flask and the reaction was stirred for one hour at room temperature.

Reaction completion was verified via mass spectrometry and TLC. Upon completion, the solvent

was removed en vacuo and the resulting residue was washed with water (3 x 1 mL), and diethyl

ether (3 x 2 mL) (solid was washed via centrifugation, the solvents washes were decanted off and

saved, just in case of partial dissolution in water). The purified compound was a white powder

(2.60 mg, 93%). 1H NMR (500 MHz, DMSO-d6) δ 7.57 (d, J = 8.7 Hz, 1H), 5.30 (td, J = 4.4, 2.1

Hz, 2H), 5.03 (d, J = 2.5 Hz, 1H), 4.54 (m, 2H), 4.41 (d, J = 4.8 Hz, 1H), 4.13 (m, 2H), 3.92 (dd, J

= 8.9, 3.5 Hz, 3H), 3.86 (t, J = 5.0 Hz, 1H), 3.55 - 3.46 (m, 2H), 3.46 - 3.38 (m, 3H), 3.34 (m, 3H),

2.04 (td, J = 7.3, 3.7 Hz, 3H), 1.96 (q, J = 6.4 Hz, 4H), 1.43 (m, 5H), 1.31 - 1.16 (m, 52H), 0.83

(t, J = 6.8 Hz, 6H). Due to a server outage, various spectroscopic data was unable to be recovered

(department wide), due to this missing data should be here. HRMS (ESI) calcd for C48H92NO12S-

[M+H]+: 906.6346, found: 908.6496.

NMR data of Compound 2.2a

1H NMR (500 MHz, DMSO-d6) δ 7.59 (d, J = 8.9 Hz, 1H), 5.05 (d, J = 2.5 Hz, 1H), 4.60

(t, J = 5.4 Hz, 2H), 4.44 (d, J = 4.8 Hz, 1H), 4.17 (m, 2H), 3.97 - 3.89 (m, 3H), 3.85 (dd, J =

10.3, 5.7 Hz, 1H), 3.57 - 3.47 (m, 3H), 3.47 - 3.30 (m, 4H), 2.05 (t, J = 7.3 Hz, 2H), 1.45 (m, 3H),

1.22 (m, 31H), 0.84 (td, J = 7.0, 1.2 Hz, 6H). 13C NMR (126 MHz, DMSO-d6) δ 172.33, 104.58,

79.47, 75.37, 74.44, 71.04, 69.65, 69.27, 66.68, 60.53, 50.75, 40.47, 40.39, 40.30, 40.22, 40.13,

40.06, 39.97, 39.89, 39.80, 39.70, 39.63, 39.47, 36.01, 31.78, 31.75, 31.68, 29.68, 29.66, 29.57,

29.55, 29.52, 29.47, 29.16, 29.12, 29.03, 25.87, 25.82, 22.56, 22.54, 14.41. HRMS (ESI) calcd for
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C32H62NO12S- [M+H]+: 684.3998, found: 686.4190.

NMR data of Compound 2.2b

1H NMR (500 MHz, DMSO-d6) δ 7.18 (d, J = 8.8 Hz, 1H), 4.64 (d, J = 2.5 Hz, 1H), 4.19 -

4.12 (m, 2H), 4.02 (d, J = 4.6 Hz, 1H), 3.75 (dd, J = 10.5, 7.2 Hz, 2H), 3.53 (d, J = 8.5 Hz, 3H),

3.47 (s, 1H), 3.15 - 3.10 (m, 3H), 3.08 - 3.01 (m, 3H), 2.91 (m, 1H), 1.65 (td, J = 7.1, 3.1 Hz,

2H), 1.08 - 1.01 (m, 6H), 0.83 (m, 44H), 0.44 (t, J = 6.6 Hz, 6H). (not correctly shifted to solvent).

13C NMR (126 MHz, DMSO-d6). δ 172.29, 104.61, 79.46, 75.38, 74.28, 71.02, 69.67, 69.37,

66.70, 60.55, 50.79, 40.57, 40.48, 40.40, 40.31, 40.24, 40.14, 40.07, 39.98, 39.90, 39.81, 39.64,

39.48, 36.00, 31.75, 31.51, 29.70, 29.68, 29.61, 29.59, 29.58, 29.56, 29.54, 29.53, 29.48, 29.42,

29.40, 29.17, 25.91, 25.81, 22.55, 22.54, 14.39. HRMS (ESI) calcd for C40H78NO12S- [M+H]+:

796.5250, found: 798.5396.

NMR data of Compound 2.2c Due to a server outage, various spectroscopic data was unable

to be recovered (department wide), due to this missing data should be here.

Preparation of 2.25: Diacylated intermediate 2.13a, isolated during the synthesis of 2.13,

(5.00 g, 18.4 mmol) was dissolved in DMF (150 mL), followed by the addition of imidazole (5.00

g, 73.5 mmol), and tert-butylchlorodiphenylsilane (9.55 mL, 36.8). The reaction was warmed

to 50◦C. After disappearence of the starting material (via TLC), the reaction was quenched with

methanol and the reaction was concentrated by high pressure vacuum rotary evaporation. Pyridine
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(50 mL) was then added to dissolve the reaction mixture, followed by the addition of benzoyl

chloride (8.54 mL, 73.6 mmol) and DMAP (225 mg, 1.84 mmol). After completion, the reaction

was concentrated by high pressure vacuum rotary evaporation. A NaHCO3/DCM (3 x 50 mL)

workup was carried out, dried (NaSO4), concentrated, and loaded onto a silica gel column. This

very non-polar product was purified via a pure hexane, 5%, 10 % EtOAc:Hexane eluent system.

1H NMR (500 MHz, Chloroform-d) δ 7.95 (dd, J = 7.8, 3.7 Hz, 2H), 7.86 - 7.19 (m, 28H), 6.04

(q, J = 3.3 Hz, 1H), 5.70 - 5.55 (m, 2H), 4.96 (dd, J = 9.7, 3.6 Hz, 1H), 4.12 (m, 1H), 3.88 (m, 1H),

3.78 (m, 1H), 1.00 (d, J = 3.6 Hz, 9H).

Preparation of 2.26: Fully protected compound 2.25 (500 mg, 0.608 mmol) was dissolved

in an acetone/water solution (20mL/3mL), followed by the portion wise addition of NBS (325 mg,

1.82 mmol). Subsequent equivalents of NBS were added until the reaction was completed (moni-

tored by TLC). Upon completion, the reaction was quenched with solid NaHCO3, and the acetone

was evaporated off. The remaining mixture was dissolved in water, washed with DCM (3 x 50 mL),

dried with NaSO4, concentrated, and subjected to flash chromatography (20% EtOAc:Hexanes).

The white powder (437 mg, 0.599 mmol) was dissolved in DCM (25 mL). Solid potassium carbon-

ate (1320 mg, 9.55 mmol) was added, followed by the addition of excess trichloroacetonitrile (1.20

mL, 11.98 mmol). Once setup, the reaction was stirred for sixteen hours at room temperature. In

the morning, the potassium carbonate was filtered and washed with EtOAc (100 mL). The filtrate
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was dried off at or below 30◦C en vacuo. This pale yellow solid was loaded onto a bed of silica gel

and was eluted with 15% EtOAc/Hexane. The two anomeric isomers were collected, combined,

and concentrated at or below 30◦C (500 mg, 98% from two steps).

Preparation of 2.27: Donor 2.26 (240 mg, 0.275 mmol), palmitic ceramide (145 mg, 0.250

mmol), and 4 angstrom molecular sieves (600 mg) were stirred together for one hour in dry DCM

(5 mL). The vessel was cooled to -10◦C (acetone/ice bath), followed by the dropwise addition of

trimethylsilyltriflate (25 µL, 0.141 mmol). The reaction temperature was maintained for two hours

then quenched by the dropwise addition of TEA. The molecular sieves were filtered and washed

with EtOAc by means of a plug silica gel column. The filtrate was concentrated and subsequently

loaded onto a silica gel column. Purification was achieved with a 10%, 15% EtOAc/Hexane eluent

system. Very bad separation! Concentrated partially purified product and preceded with the next

step. HRMS (ESI) calcd for C79H109NO12Si [M+H]+: 1291.7719, found: 1292.7719.

Preparation of 2.28: Compound 2.27 was dissolved in DCM (5 mL) and ACN(30 mL) and

placed in a plastic centrifuge tube (with the appropriate stir bar). To this tube was added 10 mL
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of hydrofluoric acid (48%). The reaction was monitored by TLC for formation of product 2.11.

Every thirty minutes, more hydrofluoric acid was added as needed. Once the starting material was

completely consumed, the reaction was quickly and carefully quenched on a bed of solid NaHCO3

in a separate plastic container (equipped with the appropriate stir bar). Water, DCM, and solid

NaHCO3 were slowly added until a neutral or basic pH was reached. The water/DCM workup

was filtered to remove excess undissolved NaHCO3. The water was washed with DCM (6 x 100

mL) and the organic layer was dried over NaSO4, concentrated (water bath was 30◦C or below to

minimize acetal migration), and subjected to flash chromatography (40%, 50% EtOAc/Hexane).

The column yielded a white powder compound (65 mg, 21% over two steps). Note: this reaction

if done slowly, left overnight, heated up, or purified slowly can and will result in migration of

the 2-acetyl group to the primary alcohol. It is essential that the chemist quench this reaction

immediately after completion. 1H NMR (500 MHz, Chloroform-d) δ 8.12 (dd, J = 8.2, 1.4 Hz,

2H), 8.00 - 7.94 (m, 2H), 7.80 (dd, J = 8.2, 1.5 Hz, 2H), 7.67 - 7.59 (m, 1H), 7.56 - 7.47 (m, 3H),

7.47 - 7.36 (m, 3H), 7.25 (t, J = 7.8 Hz, 2H), 5.84 - 5.71 (m, 3H), 5.68 - 5.57 (m, 2H), 5.44 - 5.34

(m, 2H), 4.76 (d, J = 7.8 Hz, 1H), 4.35 (d, J = 6.3 Hz, 1H), 4.02 (q, J = 6.8 Hz, 2H), 3.87 - 3.83

(m, 1H), 3.70 - 3.61 (m, 2H), 2.54 (s, 1H), 2.07 - 1.95 (m, 5H), 1.86 (t, J = 7.6 Hz, 2H), 1.48 -

1.11 (m, 32H), 0.88 (t, J = 6.8 Hz, 6H). 13C NMR (126 MHz, Chloroform-d) δ 172.75, 170.11,

166.55, 165.47, 165.43, 137.22, 133.77, 133.50, 133.35, 130.11, 129.73, 129.71, 129.15, 128.84,

128.74, 128.69, 128.54, 128.33, 124.62, 101.53, 77.27, 77.02, 76.77, 74.36, 73.82, 71.49, 70.25,

68.87, 67.91, 60.90, 50.65, 36.56, 32.33, 31.93, 29.72, 29.71, 29.69, 29.67, 29.66, 29.56, 29.53,

29.37, 29.28, 29.23, 29.01, 25.53, 22.70, 21.21, 14.12.
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Preparation of 2.29: Glycolipid 2.28 (47 mg, 0.045 mmol) was dissolved in dry pyridine

(3 mL) followed by the addition of sulfur trioxide pyridine complex (108 mg, 0.679 mmol). The

reaction was stirred at room temperature for fourteen hours, followed by TLC (indicating the com-

pletion of the reaction). The solvent was removed en vacuo, and the remaining slurry was dissolved

in DCM, washed with saturated NaHCO3, dried (NaSO4), and concentrated. The residue was chro-

matographed (SiO2, MeOH/DCM 5%, 10%) to afford product 2.32 (47 mg, 94%). 1H NMR (500

MHz, Methanol-d4) δ 8.09 - 8.03 (m, 2H), 7.98 - 7.92 (m, 2H), 7.74 - 7.62 (m, 3H), 7.53 (m, 3H),

7.42 (m, 3H), 7.25 (t, J = 7.9 Hz, 2H), 5.92 (d, J = 3.1 Hz, 1H), 5.75 - 5.64 (m, 3H), 5.42 - 5.28 (m,

2H), 5.01 (d, J = 7.5 Hz, 1H), 4.47 (t, J = 6.3 Hz, 1H), 4.32 (m, 1H), 4.25 - 4.14 (m, 2H), 4.05 (m,

1H), 3.77 - 3.71 (m, 1H), 2.05 - 1.91 (m, 5H), 1.47 (m, 2H), 1.34 - 1.18 (m, 32H), 0.89 (t, J = 6.9

Hz, 6H). 13C NMR (126 MHz, Methanol-d4) δ 174.74, 170.28, 165.57, 165.15, 136.72, 133.33,

133.02, 129.49, 129.34, 129.24, 129.22, 129.11, 128.90, 128.40, 128.20, 127.97, 124.39, 100.15,

73.48, 71.94, 71.61, 70.21, 68.57, 66.99, 65.41, 50.85, 50.76, 48.09, 47.92, 47.75, 47.58, 47.41,

47.24, 47.07, 35.74, 35.68, 31.93, 31.67, 29.42, 29.41, 29.40, 29.38, 29.36, 29.27, 29.22, 29.08,

29.07, 28.87, 28.80, 28.65, 25.63, 22.33, 19.87, 13.05.
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Preparation of 2.23: Sulfated glycolipid 2.29 (15 mg, 0.0126 mmol) was dissolved in an

anhydrous 1:1 solution of THF and methanol (3 mL). Freshly prepared 1 M sodium methoxide

was added (0.100 mL) to the reaction flask and the reaction was stirred for one hour at room

temperature. Reaction completion was verified via mass spectrometry and TLC. Upon completion,

the solvent was removed en vacuo and the resulting residue was washed with water (3 x 1 mL), and

diethyl ether (3 x 2 mL) (solid was washed via centrifugation, the solvents washes were decanted

off and saved, just in case of partial dissolution in water). The purified compound was a white

powder (7 mg, 72%). 1H NMR (500 MHz, DMSO-d6) δ 7.51 (d, J = 9.1 Hz, 1H), 5.37 - 5.31 (m,

1H), 4.90 - 4.81 (m, 2H), 4.64 (d, J = 5.2 Hz, 1H), 4.47 (d, J = 4.7 Hz, 1H), 3.95 (d, J = 4.9 Hz,

1H), 3.88 - 3.72 (m, 3H), 3.57 (t, J = 3.9 Hz, 1H), 3.52 (t, J = 6.2 Hz, 1H), 3.39 - 3.32 (m, 2H), 3.30

- 3.23 (m, 3H), 2.00 (q, J = 7.2 Hz, 2H), 1.95 - 1.86 (m, 2H), 1.42 (m, 3H), 1.22 (m, 45H), 0.83

(t, J = 6.9 Hz, 6H). Due to a server outage, various spectroscopic data was unable to be recovered

(department wide), due to this missing data should be here.

Preparation of 2.30: Donor 2.26 (307 mg, 0.351 mmol), palmitic ceramide (239 mg, 0.320
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mmol), and 4 angstrom molecular sieves (700 mg) were stirred together for one hour in dry DCM

(5 mL). The vessel was cooled to -10◦C (acetone/ice bath), followed by the dropwise addition

of trimethylsilyltriflate (0.032 mL, 0.176 mmol). The reaction temperature was maintained for

two hours then quenched by the dropwise addition of triethyl amine. The molecular sieves were

filtered and washed with EtOAc by means of a plug silica gel column. The filtrate was concentrated

and subsequently loaded onto a silica gel column. Purification was achieved with a 10%, 15%

EtOAc/Hexane eluent system. Very bad separation! Concentrated partially purified product and

did the next step. HRMS (ESI) calcd for C81H113NO14Si [M+H]+: 1351.7930, found: 1352.8007.

Preparation of 2.31: Compound 2.30 was dissolved in DCM (5 mL) and ACN (30 mL) and

placed in a plastic centrifuge tube (with the appropriate stir bar). To this tube was added 5 mL

of hydrofluoric acid (48%). The reaction was monitored by TLC for formation of product 2.11.

Every thirty minutes, more hydrofluoric acid was added as needed. Once the starting material was

completely consumed, the reaction was quickly and carefully quenched on a bed of solid NaHCO3

in a separate plastic container (equipped with the appropriate stir bar). Water, DCM, and solid

NaHCO3 were slowly added until a neutral or basic pH was reached. The water/DCM workup

was filtered to remove excess undissolved NaHCO3. The water was washed with DCM (6 x 100

mL) and the organic layer was dried over NaSO4, concentrated (water bath was 30◦C or below to

minimize acetal migration), and subjected to flash chromatography (40%, 50% EtOAc/Hexane).
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The column yielded a white powder compound (82 mg, 21% over two steps). Note: this reaction

if done slowly, left overnight, heated up, or purified slowly can and will result in migration of

the 2-acetyl group to the primary alcohol. It is essential that the chemist quench this reaction

immediately after completion. 1H NMR (500 MHz, Chloroform-d) δ 8.16 - 8.10 (m, 2H), 8.00 -

7.94 (m, 2H), 7.82 - 7.76 (m, 2H), 7.67 - 7.60 (m, 1H), 7.52 (m, 3H), 7.47 - 7.35 (m, 3H), 7.28 -

7.21 (m, 2H), 6.03 (d, J = 9.3 Hz, 1H), 5.81 (dd, J = 3.5, 1.0 Hz, 1H), 5.74 (dd, J = 10.5, 7.8 Hz,

1H), 5.60 (dd, J = 10.4, 3.4 Hz, 1H), 5.20 (dd, J = 7.9, 3.4 Hz, 1H), 5.00 (dt, J = 10.0, 3.2 Hz, 1H),

4.73 (d, J = 7.8 Hz, 1H), 4.38 (m, 1H), 4.29 (dt, J = 13.7, 8.3 Hz, 2H), 4.04 - 3.91 (m, 2H), 3.83

(dt, J = 12.8, 6.6 Hz, 1H), 3.70 - 3.61 (m, 2H), 3.08 (t, J = 7.1 Hz, 1H), 2.07 (s, 3H), 2.04 (d, J =

1.4 Hz, 3H), 1.98 - 1.82 (m, 2H), 1.70 - 1.37 (m, 4H), 1.36 - 1.09 (m, 46H), 0.88 (td, J = 6.7, 3.3

Hz, 6H). 13C NMR (126 MHz, Chloroform-d) δ 222.79, 172.80, 171.13, 170.97, 170.22, 166.45,

165.47, 165.42, 133.76, 133.49, 133.35, 130.90, 130.14, 129.74, 129.71, 129.14, 128.83, 128.80,

128.74, 128.71, 128.53, 128.32, 101.05, 77.27, 77.22, 77.02, 76.77, 74.33, 73.05, 72.68, 71.40,

70.24, 68.80, 67.44, 61.01, 60.39, 47.71, 36.46, 31.94, 29.73, 29.71, 29.68, 29.63, 29.61, 29.56,

29.37, 29.34, 29.23, 28.42, 25.55, 25.44, 22.70, 21.07, 21.05, 20.86, 14.20, 14.12. HRMS (ESI)

calcd for C65H95NO14 [M+H]+: 1113.6753, found: 1114.6828.

Preparation of 2.32: Glycolipid 2.31 (40 mg, 0.036 mmol) was dissolved in dry pyridine
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(2.5 mL) followed by the addition of sulfur trioxide pyridine complex (86 mg, 0.539 mmol). The

reaction was stirred at room temperature for fourteen hours, followed by TLC (indicating the com-

pletion of the reaction). The solvent was removed en vacuo, and the remaining slurry was dissolved

in DCM, washed with saturated NaHCO3, dried (NaSO4), and concentrated. The residue was chro-

matographed (SiO2, MeOH/DCM 5%, 10%) to afford product 2.32 (35 mg, 81%). (Aggregation in

the NMR spectra was observed) 1H NMR (500 MHz, Methanol-d4) δ 8.10 (dq, J = 11.8, 7.5, 6.7

Hz, 2H), 7.97 (dq, J = 11.4, 7.4, 6.4 Hz, 2H), 7.71 (m, 2H), 7.55 (q, J = 8.2, 7.8 Hz, 3H), 7.43 (m,

3H), 7.27 (dt, J = 12.0, 7.7 Hz, 2H), 5.94 (dd, J = 17.1, 7.7 Hz, 1H), 5.68 (dq, J = 20.1, 9.4, 8.5 Hz,

2H), 5.28 - 5.19 (m, 1H), 4.48 (dt, J = 11.7, 7.0 Hz, 1H), 4.40 - 4.32 (m, 1H), 4.27 - 4.13 (m, 2H),

4.07 (q, J = 9.4, 8.1 Hz, 1H), 3.78 (dd, J = 16.2, 9.4 Hz, 1H), 3.33 (s, 2H), 2.16 - 2.00 (m, 6H), 1.89

(d, J = 7.6 Hz, 2H), 1.65 (m, 2H), 1.55 - 1.40 (m, 2H), 1.34 - 1.25 (m, 48H), 0.90 (p, J = 7.9, 7.3

Hz, 6H). 13C NMR (126 MHz, Methanol-d4) δ 173.66, 170.35, 169.56, 164.90, 164.83, 164.46,

132.62, 132.46, 132.31, 128.84, 128.63, 128.56, 128.54, 128.48, 128.41, 128.19, 127.67, 127.55,

127.49, 127.26, 99.14, 71.98, 71.33, 70.83, 70.76, 69.55, 67.82, 66.28, 64.67, 47.46, 47.39, 47.28,

47.22, 47.16, 47.10, 47.05, 46.93, 46.88, 46.76, 46.71, 46.61, 46.55, 46.53, 46.43, 46.37, 34.86,

31.04, 30.95, 28.76, 28.71, 28.65, 28.59, 28.52, 28.42, 28.37, 28.34, 28.15, 28.12, 27.21, 24.74,

24.46, 21.69, 21.63, 18.94, 18.92, 13.09, 12.37. HRMS (ESI) calcd for C65H94NO17S- [M+H]+:

1192.6248, found: 1194.6446.
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Preparation of 2.24: Sulfated glycolipid 2.32 (35 mg, 0.0294 mmol) was dissolved in an

anhydrous 1:1 solution of THF and methanol (8 mL). Freshly prepared 1 M sodium methoxide

was added (0.400 mL) to the reaction flask and the reaction was stirred for one hour at room

temperature. Reaction completion was verified via mass spectrometry and TLC. Upon completion,

the solvent was removed en vacuo and the resulting residue was washed with water (3 x 2 mL), and

diethyl ether (3 x 2 mL) (solid was washed via centrifugation, the solvents washes were decanted

off and saved, just in case of partial dissolution in water). The purified compound was a white

powder (16.8 mg, 72%). 1H NMR (500 MHz, DMSO-d6) δ 7.69 (d, J = 9.1 Hz, 1H), 4.86 - 4.84

(m, 1H), 4.73 - 4.70 (m, 1H), 4.62 (d, J = 5.7 Hz, 1H), 4.53 (d, J = 4.6 Hz, 1H), 4.24 (d, J =

7.0 Hz, 1H), 4.12 - 4.07 (m, 1H), 3.95 - 3.80 (m, 3H), 3.66 - 3.51 (m, 3H), 3.36 - 3.29 (m, 2H),

2.11 (m, 2H), 1.54 - 1.43 (m, 4H), 1.28 (m, 44H), 0.90 (t, J = 6.9 Hz, 6H). 13C NMR (126 MHz,

DMSO-d6) δ 172.47, 104.79, 74.08, 73.43, 73.31, 71.03, 71.02, 70.08, 68.83, 65.67, 50.71, 40.48,

40.40, 40.31, 40.23, 40.14, 40.07, 39.98, 39.90, 39.81, 39.64, 39.48, 36.01, 31.75, 31.37, 29.72,

29.69, 29.62, 29.61, 29.59, 29.57, 29.55, 29.53, 29.49, 29.44, 29.17, 29.15, 25.92, 25.86, 22.55,

14.38. HRMS (ESI) calcd for C40H78NO12S- [M+H]+: 796.5250, found: 798.5397.

Preparation of 2.34: Compound 2.14 (2.25 g, 3.80 mmol) was diluted in a 4:1 glacial acetic

acid:water solution (100 mL) and stirred overnight at room temperature. The next morning the

solvent was removed en vacuo and the remaining white slurry was dissolved in DCM (50 mL)
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and added to a saturated NaHSO4 solution (50 mL). The aqueous phase was extracted with DCM

(2 x 25 mL), followed by the organic layer being dried (NaSO4) and concentrated under reduced

pressure. The off white solid was dissolved in dry pyridine (100 mL), followed by the addition

of tosyl chloride (1.93 g, 10.1 mmol) at 0◦C. The reaction warmed to room temperature after

three hours and the reaction stirred overnight. In the morning, benzoyl chloride (1.76 mL, 15.2

mmol) was added. Two hours later the solvent was removed via a high vacuum rotary evaporator,

followed by a DCM (3 x 75 mL):water (75 mL) workup. The dark brown slurry was subjected to

flash chromatography (25% EtOAc:Hexane) to give pure product 2.34 (1.91 g, 52%) and useful

dibenzoylated product (25% yield). 1H NMR (500 MHz, Chloroform-d) δ 8.04 - 7.97 (m, 2H),

7.84 - 7.78 (m, 2H), 7.71 (d, J = 8.1 Hz, 2H), 7.65 - 7.56 (m, 2H), 7.54 - 7.26 (m, 9H), 7.20 (d, J

= 8.0 Hz, 2H), 5.70 - 5.65 (m, 1H), 5.45 (t, J = 9.9 Hz, 1H), 5.28 (dd, J = 10.0, 3.2 Hz, 1H), 4.87

(d, J = 9.9 Hz, 1H), 4.27 - 4.15 (m, 2H), 4.02 (dd, J = 9.9, 5.5 Hz, 1H), 2.49 (qt, J = 18.4, 6.9 Hz,

2H), 2.32 (d, J = 3.6 Hz, 2H), 2.04 (s, 3H), 1.91 (s, 3H). 13C NMR (126 MHz, Chloroform-d) δ

205.67, 171.56, 165.15, 165.06, 145.11, 134.22, 133.98, 133.64, 133.46, 132.06, 130.91, 129.97,

129.89, 129.88, 129.23, 128.86, 128.82, 128.64, 128.56, 128.49, 128.44, 127.97, 110.00, 85.77,

77.28, 77.23, 77.03, 76.77, 74.63, 72.31, 67.63, 67.48, 66.64, 60.38, 37.64, 29.36, 27.86, 21.61,

21.05, 14.20. HRMS (ESI) calcd for C38H36O11S [M+Na]+: 732.1699, found: 750.2032.

Preparation of 2.35: Compound 2.34 (1.80 g, 2.46 mmol) and sodium azide (959 mg, 14.8



2.5 Experimental Procedures 79

mmol) were dissolved in a 9:1 solution of DMF:water (40 mL). The RBF (connected to a con-

denser) was heated to 100◦C. This reaction was completed in one hour (evidenced by TLC). The

water and DMF were pulled off on a high vacuum rotary evaporator, followed by a water:DCM (3

x 50 mL) workup. The dried (NaSO4) and concentrated organic layer was loaded onto a silica gel

column (25% EtOAc:Hexane) (991 mg, 67%). 1H NMR (500 MHz, Chloroform-d) δ 8.07 - 7.94

(m, 2H), 7.93 - 7.87 (m, 2H), 7.67 - 7.55 (m, 4H), 7.55 - 7.28 (m, 7H), 5.66 (d, J = 3.2 Hz, 1H),

5.54 (t, J = 9.9 Hz, 1H), 5.31 (dd, J = 10.0, 3.2 Hz, 1H), 4.91 (d, J = 9.9 Hz, 1H), 4.05 - 3.98 (m,

1H), 3.57 (dd, J = 13.0, 8.0 Hz, 1H), 3.27 (dd, J = 13.0, 4.6 Hz, 1H), 2.58 - 2.26 (m, 4H), 1.91

(s, 3H). 13C NMR (126 MHz, Chloroform-d) δ 205.65, 171.67, 165.49, 165.13, 134.62, 133.75,

133.47, 130.63, 130.00, 129.91, 129.32, 128.87, 128.71, 128.68, 128.65, 128.52, 85.72, 77.27,

77.21, 77.01, 76.76, 76.47, 72.57, 68.55, 67.64, 50.98, 37.67, 29.35, 27.91.

Preparation of 2.36: Azide 2.35 (730 mg, 1.21 mmol) was dissolved in 10 mL of MeOH.

To this flask was added 0.213 mL of thioacetic acid (3.03 mmol), 0.350 mL of 2,6-lutidine (3.03

mmol), and 126 mg of ruthenium trichloride (0.605 mmol). The reaction was stirred for 18 hours.

The ruthenium trichloride was filtered off and the dark red solution was concentrated en vacuo and

loaded onto a silica gel column (50%, 70% EtOAc:Hexane, then 5%, 10% MeOH:DCM elution

profile). The isolated compound was formed in 60% yield (445 mg).
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Preparation of 2.37: Amide 2.36 (427 mg, 0.688 mmol) was dissolved in an acetone/water

solution (22mL/3mL), followed by the portion wise addition of NBS (367 mg, 2.06 mmol). Subse-

quent equivalents of NBS were added until the reaction was completed (monitored by TLC). Upon

completion, the reaction was quenched with solid NaHCO3, and the acetone was evaporated off.

The remaining mixture was dissolved in water (50 mL), washed with DCM (3 x 50 mL), dried

with NaSO4, concentrated, and subjected to flash chromatography (5% MeOH:DCM). The white

powder (437 mg, 0.599 mmol) was dissolved in DCM (25 mL). Solid potassium carbonate (1.50

g, 10.9 mmol) was added, followed by the addition of excess trichloroacetonitrile (1.03 mL, 10.3

mmol). Once setup, the reaction was stirred for sixteen hours at room temperature. In the morning,

the potassium carbonate was filtered and washed with EtOAc (100 mL). The filtrate was dried off

at or below 30◦C en vacuo. This pale yellow solid was loaded onto a bed of silica gel and was

eluted with 2.5%, 5 % MeOH:DCM. The two anomeric isomers were collected, combined, and

concentrated at or below 30◦C (300 mg, 65% from two steps).

Preparation of 2.38: Donor 2.37 (200 mg, 0.298 mmol), nervonic ceramide (230 mg, 0.397
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mmol), and 4 angstrom molecular sieves (700 mg) were stirred together for one hour in dry DCM

(6 mL). The vessel was cooled to -10◦C (acetone/ice bath), followed by the dropwise addition

of trimethylsilyltriflate (0.032 µL, 0.176 mmol). The reaction temperature was maintained for

two hours then quenched by the dropwise addition of triethyl amine. The molecular sieves were

filtered and washed with EtOAc by means of a plug silica gel column. The filtrate was concentrated

and subsequently loaded onto a silica gel column. Purification was achieved with a 70%, 80%

EtOAc/Hexane eluent system. Isolated 60 mgs of coupled product (19% yield). 1H NMR (500

MHz, Chloroform-d) δ 8.16 (d, J = 7.8 Hz, 2H), 8.01 (d, J = 7.8 Hz, 2H), 7.66 (t, J = 7.5 Hz, 1H),

7.55 (m, 3H), 7.45 (t, J = 7.7 Hz, 2H), 5.76 (dt, J = 14.2, 6.6 Hz, 1H), 5.65 (d, J = 3.5 Hz, 1H),

5.59 - 5.48 (m, 2H), 5.40 - 5.22 (m, 3H), 4.68 (d, J = 7.8 Hz, 1H), 4.31 (m, 1H), 4.13 (dd, J = 9.8,

3.0 Hz, 1H), 4.02 (dd, J = 8.6, 3.9 Hz, 1H), 3.64 - 3.55 (m, 2H), 3.22 (dd, J = 13.1, 3.9 Hz, 1H),

2.60 - 2.46 (m, 2H), 2.46 - 2.29 (m, 2H), 2.08 - 1.91 (m, 9H), 1.70 (q, J = 7.5 Hz, 4H), 1.42 - 1.22

(m, 48), 0.88 (t, J = 6.8 Hz, 6H). 13C NMR (126 MHz, Chloroform-d) δ 205.66, 172.56, 171.74,

169.87, 165.73, 165.35, 137.18, 133.89, 133.65, 130.08, 129.94, 129.81, 129.12, 128.82, 128.76,

128.73, 128.64, 128.55, 128.52, 124.85, 101.18, 77.28, 77.23, 77.03, 76.77, 73.79, 73.52, 70.91,

69.73, 68.51, 67.55, 50.75, 50.12, 37.78, 37.70, 37.68, 36.41, 32.32, 31.94, 31.93, 29.73, 29.70,

29.68, 29.66, 29.57, 29.54, 29.51, 29.50, 29.38, 29.29, 29.20, 29.00, 27.92, 27.85, 25.47, 22.70,

21.18, 14.13. HRMS (ESI) calcd for C63H96N2O13 [M+H]+: 1088.6912, found: 1089.6925.



2.5 Experimental Procedures 82

Preparation of 2.39: A 1 M solution of hydrazine was freshly prepared in dry THF. A

portion (48 µL, 48 µmol) of this was stirred with glacial acetic acid (64 µL, 64 µmol) for five

minutes. This mixture was added to a RBF that contained compound 2.20d (40 mg, 0.037 mmol)

and dry THF:Methanol (10:1, 11 mL). After one hour the reaction was completed by the obser-

vance of product and the complete disappearance of starting material via M.S. The solvent was

dried of en vacuo at or below 30◦C. The white slurry was quenched with saturated NaHCO3 solu-

tion, followed by the extraction of product in DCM washes (3 x 15 mL). The DCM washes were

dried over NaSO4, evaporated, and purified via flash chromatography (70%, 80% EtOAc:Hexane).

This compound did not separate well from the starting material. The mixture was dried off and

used in the next step. 1H NMR (500 MHz, Chloroform-d) δ 8.15 (d, J = 7.7 Hz, 2H), 8.05 (d, J

= 7.7 Hz, 2H), 7.68 - 7.48 (m, 5H), 7.46 (t, J = 7.7 Hz, 2H), 5.75 (dt, J = 14.3, 6.8 Hz, 1H), 5.58

- 5.53 (m, 2H), 5.39 - 5.30 (m, 2H), 5.26 (t, J = 7.3 Hz, 1H), 4.66 (d, J = 7.8 Hz, 1H), 4.32 (dq, J

= 10.2, 3.6 Hz, 1H), 4.12 (ddd, J = 13.1, 9.9, 3.5 Hz, 2H), 3.94 (dd, J = 8.6, 3.7 Hz, 1H), 3.67 -

3.48 (m, 3H), 3.25 (dd, J = 13.1, 3.6 Hz, 2H), 1.98 (d, J = 18.6 Hz, 5H), 1.73 (t, J = 7.6 Hz, 3H),

1.41 - 1.04 (m, 45H), 0.88 (t, J = 6.9 Hz, 6H). 13C NMR (126 MHz, Chloroform-d) δ 172.61,

172.53, 169.88, 166.50, 166.40, 137.19, 133.87, 133.69, 130.13, 129.82, 129.25, 128.76, 128.74,

128.70, 128.63, 128.58, 124.77, 100.82, 77.27, 77.22, 77.02, 76.76, 73.90, 73.78, 73.40, 71.35,

71.04, 67.54, 51.02, 50.19, 36.46, 36.42, 32.30, 31.94, 29.73, 29.69, 29.68, 29.65, 29.56, 29.53,

29.50, 29.45, 29.37, 29.33, 29.28, 29.19, 28.98, 25.49, 22.70, 21.15, 14.12. HRMS (ESI) calcd for

C58H90N2O11 [M+H]+: 990.6545, found: 991.6784.



2.5 Experimental Procedures 83

Preparation of 2.40: Partially purified glycolipid 2.37 (theoretical-0.037 mmol) was dis-

solved in dry pyridine (2 mL) followed by the addition of sulfur trioxide pyridine complex (868

mg, 0.555 mmol). The reaction was stirred at room temperature for fourteen hours, followed by

TLC (indicating the completion of the reaction). The solvent was removed en vacuo, and the

remaining slurry was dissolved in DCM, washed with saturated NaHCO3, dried (NaSO4), and

concentrated. The residue was chromatographed (SiO2, MeOH/DCM 5%, 10%, 15%) to afford

product 2.32 (25 mg, 63% over two steps). 1H NMR (500 MHz, Methanol-d4) δ 8.17 - 8.08 (m,

4H), 7.65 (t, J = 7.5 Hz, 2H), 7.56 (m, 4H), 7.46 (t, J = 7.7 Hz, 3H), 5.93 (d, J = 3.3 Hz, 1H), 5.65

(dt, J = 14.2, 6.8 Hz, 2H), 5.53 (dd, J = 10.2, 7.9 Hz, 2H), 5.39 - 5.24 (m, 3H), 4.89 (dd, J = 13.9,

7.4 Hz, 2H), 4.35 - 4.27 (m, 2H), 4.19 (dd, J = 8.4, 3.6 Hz, 2H), 3.97 (dd, J = 10.1, 5.8 Hz, 2H),

3.67 (dd, J = 10.1, 5.4 Hz, 2H), 3.44 (dd, J = 13.1, 8.4 Hz, 2H), 3.35 (dd, J = 8.8, 4.3 Hz, 2H), 2.00

- 1.89 (m, 9H), 1.42 (m, 4H), 1.28 (d, J = 6.2 Hz, 48H), 0.90 (t, J = 6.9 Hz, 6H). 13C NMR (126

MHz, Methanol-d4) δ 175.99, 171.63, 167.42, 167.14, 138.26, 134.66, 134.36, 131.35, 131.26,

131.09, 130.88, 129.73, 129.51, 125.63, 101.75, 76.44, 75.15, 74.95, 71.81, 67.93, 52.39, 51.68,

49.54, 49.37, 49.20, 49.03, 48.86, 48.85, 48.69, 48.52, 37.04, 33.38, 33.13, 30.87, 30.86, 30.84,

30.82, 30.80, 30.71, 30.66, 30.54, 30.53, 30.51, 30.33, 30.20, 30.07, 26.99, 23.79, 21.23, 14.50.
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Preparation of 2.33: Sulfated glycolipid 2.32 (25 mg, 0.0234 mmol) was dissolved in an

anhydrous 1:1 solution of THF and methanol (5 mL). Freshly prepared 1 M sodium methoxide

was added (0.200 mL) to the reaction flask and the reaction was stirred for one hour at room

temperature. Reaction completion was verified via mass spectrometry and TLC. Upon completion,

the solvent was removed en vacuo and the resulting residue was washed with water (3 x 2 mL), and

diethyl ether (3 x 2 mL) (solid was washed via centrifugation, the solvents washes were decanted

off and saved, just in case of partial dissolution in water). The purified compound was a white

powder (12.5 mg, 66%). 1H NMR (500 MHz, DMSO-d6) δ 7.40 (d, J = 9.0 Hz, 1H), 5.51 (dt, J =

15.5, 6.6 Hz, 2H), 5.38 - 5.30 (m, 2H), 5.07 (d, J = 2.6 Hz, 1H), 4.82 (d, J = 5.4 Hz, 1H), 4.70 (d,

J = 4.9 Hz, 1H), 4.21 (d, J = 7.7 Hz, 1H), 4.02 - 3.92 (m, 2H), 3.87 (t, J = 4.5 Hz, 2H), 3.79 - 3.73

(m, 1H), 3.64 (dd, J = 8.7, 4.1 Hz, 1H), 3.52 - 3.38 (m, 4H), 3.23 - 3.18 (m, 1H), 2.00 (s, 3H), 1.95

- 1.86 (m, 2H), 1.50 - 1.36 (m, 4H), 1.22 (m, 46H), 0.83 (t, J = 6.8 Hz, 6H). 13C NMR (126 MHz,

Chloroform-d) δ 172.79, 170.90, 170.01, 165.78, 165.75, 165.65, 165.51, 165.09, 164.92, 133.57,

133.48, 133.43, 133.30, 133.21, 129.90, 129.87, 129.83, 129.79, 129.76, 129.73, 129.69, 129.27,

129.06, 128.88, 128.84, 128.80, 128.66, 128.49, 128.44, 128.30, 128.28, 128.26, 101.08, 100.92,

77.28, 77.02, 76.77, 76.43, 74.73, 73.47, 73.03, 72.72, 72.52, 72.39, 72.17, 72.05, 71.78, 69.88,

69.43, 68.32, 67.85, 63.20, 61.35, 47.47, 36.28, 34.13, 31.93, 29.76, 29.75, 29.73, 29.71, 29.68,

29.66, 29.64, 29.61, 29.58, 29.53, 29.49, 29.44, 29.37, 29.29, 29.21, 29.15, 28.27, 25.80, 25.61,
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25.42, 24.84, 22.70, 21.08, 20.98, 20.89, 14.13. HRMS (ESI) calcd for C42H79N2O11S- [M+H]+:

819.5410, found: 820.5321.

Preparation of 2.42: Diacylated intermediate 2.13a, isolated during the synthesis of 2.13,

(4.23 g, 10.8 mmol) was dissolved in dry DCM (50 mL), followed by the addition of pyridine

(3.50 mL, 43.4 mmol). The reaction was cooled to -10◦C. Triflic anhydride (2.01 mL, 11.9 mmol)

was added dropwise to the cooled solution. After disappearence of the starting material (via TLC),

acyl chloride (2.31 mL, 32.5 mmol) was added to the reaction. After forty minutes the reaction

was allowed to warm to room temperature. One hour later the reaction was diluted with saturated

NaHCO3 (50 mL), and washed with DCM (3 x 50 mL). The organic layer was dried over NaSO4,

concentrated (water bath was 30◦C or below).

Preparation of 2.43: The crude solid 2.42 was dissolved in dry DMF (50 mL), followed by

the addition of tetrabutylammonium nitrate (9.34 g, 33.4 mmol). This mixture was stirred overnight

at 60◦C. The next morning, the mixture was dissolved in cold saturated sodium chloride (50 mL)

and washed with DCM (3 x 50 mL). The organic layer was dried over NaSO4, concentrated, and

subjected to flash chromatography (35% EtOAc:Hexane). The three step process yielded 2.5 g



2.5 Experimental Procedures 86

of product (54%). Due to a server outage, various spectroscopic data was unable to be recovered

(department wide), due to this missing data should be here.

Preparation of 2.44: Alcohol 2.43 (550 mg, 1.27 mmol) and dry pyridine (5.13 mL, 63.6

mmol) were dissolved in dry DCM (20 mL). The vessel was cooled to -10◦C, at which point triflic

anhydride (0.642 mL, 3.82 mmol) was added dropwise. After two hours the reaction was warmed

to room temperature, two hours later the reaction mixture was diluted with DCM (25 mL) and 1 M

HCl (50 mL). The mixture was washed with DCM (2 x 50 mL) and the organic phase was collected.

The organic layer was then subjected to a saturated NaHCO4 (100 mL) : DCM workup (2 x 50 mL).

The organic layer was dried over NaSO4, concentrated, and dried over high vacuum in preparation

for the next step. Crude 2.44 was dissolved in dry DMF (20 mL). Potassium thioacetate (581 mg,

5.09 mmol) was added and the reaction was stirred overnight at 50◦C. The next day the solvent

was pulled off via high vacuum rotary evaporator, the dark reddish brown sludge was dissolved

in water (100 mL) and washed with DCM (3 x 50 mL). The organic layer was dried over NaSO4,

concentrated, and subjected to flash chromatography (25% EtOAc:Hexane). A light brown powder

was isolated. (500 mg, 80% over two steps). 1H NMR (500 MHz, Chloroform-d) δ 7.62 - 7.55

(m, 2H), 7.34 - 7.22 (m, 5H), 6.91 - 6.84 (m, 2H), 5.43 (s, 1H), 5.14 (t, J = 9.9 Hz, 1H), 4.78 (d,

J = 9.5 Hz, 1H), 4.34 (dd, J = 12.3, 1.6 Hz, 1H), 4.05 (d, J = 10.1 Hz, 2H), 3.99 (dd, J = 12.4, 1.7

Hz, 1H), 3.66 (q, J = 1.4 Hz, 1H), 2.31 (s, 3H), 2.05 (s, 3H). 13C NMR (126 MHz, Chloroform-d)
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δ 194.83, 169.23, 160.16, 133.35, 131.71, 130.01, 128.76, 127.95, 127.71, 113.51, 101.27, 86.93,

77.27, 77.21, 77.01, 76.76, 75.62, 71.19, 69.04, 66.73, 55.34, 48.41, 30.54, 21.05, 20.82, 14.20.

Preparation of 2.45: A solution of 2.44 (1,620 mg, 3.31 mmol), water (10 mL), and glacial

acetic acid (40 mL) was stirred overnight at room temperature. Upon completion the water and

acetic acid were pulled off via high vacuum rotary evaporation. The light yellow slurry was

quenched with excess saturated NaHCO3 and the product was extracted with DCM (3 x 50 mL).

The organic phase was dried over NaSO4, concentrated, and then dissolved in pyridine (50 mL).

Acetic anhydride (1.25 mL, 13.2 mmol) and DMAP (40 mg, 0.331 mmol) were added and the

reaction mixture was stirred for sixteen hours. The pyridine was removed via high vacuum rotary

evaporator. The dark brown residue was dissolved in water and washed with DCM (3 x 50 mL).

The resultant syrup was loaded onto a silica gel column and the product was eluted out in 30%

EtOAc:Hexanes. A clear light brown syrup was collected (1100 mg, 73%). 1H NMR (500 MHz,

Chloroform-d) Due to a server outage, various spectroscopic data was unable to be recovered (de-

partment wide), due to this missing data should be here. [M+NH4]+: 456.0913, found: 474.1305.
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Preparation of 2.46: Thioacetate 2.45 (568 mg, 1.25 mmol) was dissolved in acetic acid

(20 mL). One equivalent of N-iodosuccinimide (280 mg, 1.25 mmol) was added. The reaction was

monitored via TLC. More N-iodosuccinimide was added every thirty minutes if necessary. Once

complete, The acetic acid was pulled off via a high vacuum rotary evaporator. The yellow solid

was subjected to a NaHCO3 (50 mL) : DCM (3 x 50 mL) workup. The organic layer was dried over

sodium sulfate (NaSO4), concentrated via rotary evaporator, and placed on a high vacuum system

in preparation for the second step of the reaction. This intermediate was dissolved in dry DCM (15

mL), followed by the slow addition of hydrobromic acid solution (33 wt. % in acetic acid)(6 mL).

Upon completion, the acetic acid/HBr/DCM was pulled off via a high vacuum rotary evaporator.

The solid was subjected to a NaHCO3 (50 mL) : DCM (3 x 50 mL) workup. The organic layer

was dried over sodium sulfate (NaSO4), concentrated via rotary evaporator, and subjected to flash

chromatography (20%, 25% EtOAc:Hexane). The product was stored in the fridge for the next

reaction (346 mg, 70%).

Preparation of 2.47: Bromide donor 2.46 (143 mg, 0.336 mmol), palmitic ceramide (130
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mg, 0.224 mmol), and 4 angstrom molecular sieves (500 mg) were stirred together in DCM (8 mL)

at 0◦C. After one hour, silver triflate (87 mg, 0.336 mmol) was added to the reaction. After four

hours, the reaction was filtered through a bed of silica gel (washed with EtOAc). The filtrate was

concentrated, and subjected to flash chromatography (30% EtOAc:Hexane). The isolated product

was a white powder (95 mg, 46%). 1H NMR (500 MHz, Chloroform-d) δ 5.77 (dt, J = 15.4, 6.7

Hz, 1H), 5.67 (d, J = 9.1 Hz, 1H), 5.37 (m, 1H), 5.29 (dd, J = 3.2, 1.2 Hz, 1H), 5.25 (t, J = 7.0 Hz,

1H), 4.99 (dd, J = 11.8, 7.6 Hz, 1H), 4.49 (d, J = 7.7 Hz, 1H), 4.32 (m, 1H), 4.16 - 4.06 (m, 2H),

4.06 - 3.95 (m, 2H), 3.95 - 3.89 (m, 1H), 3.59 (dd, J = 10.1, 4.5 Hz, 1H), 2.32 (s, 3H), 2.15 (s,

3H), 2.04 (t, J = 4.6 Hz, 15H), 1.62 - 1.56 (m, 2H), 1.37 - 1.20 (m, 47H), 0.88 (t, J = 6.9 Hz, 6H).

13C NMR (126 MHz, Chloroform-d) δ 193.68, 172.65, 171.13, 170.37, 169.90, 169.62, 137.10,

124.61, 102.02, 77.26, 77.21, 77.01, 76.76, 73.77, 73.28, 68.64, 67.85, 66.95, 61.80, 60.39, 50.53,

46.79, 36.85, 32.33, 31.93, 30.51, 29.72, 29.69, 29.67, 29.66, 29.56, 29.52, 29.44, 29.37, 29.34,

29.28, 29.00, 25.70, 22.70, 21.13, 21.05, 20.74, 20.70, 20.59, 14.21, 14.12.

Preparation of 2.48: Glycolipid 2.47 (83 mg, 0.0897 mmol) was dissolved in an anhydrous

1:1 solution of THF and methanol (10 mL). Freshly prepared 1 M sodium methoxide was added

(0.300 mL) to the reaction flask and the reaction was stirred for one hour at room temperature.

Reaction completion was verified via mass spectrometry and TLC. Upon completion, the solvent

was removed en vacuo and the resulting residue was subjected to flash chromatography (5%, 10%,
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20% MeOH:DCM). The purified compound was a white powder (40 mg, 63%). 1H NMR (500

MHz, DMSO-d6) δ 7.41 (d, J = 9.1 Hz, 1H), 5.51 (dd, J = 14.7, 7.3 Hz, 1H), 5.34 (dd, J = 15.4,

7.2 Hz, 1H), 5.13 (d, J = 4.4 Hz, 1H), 4.79 (d, J = 5.5 Hz, 1H), 4.69 (d, J = 6.5 Hz, 1H), 4.54 (t, J =

5.6 Hz, 1H), 4.07 (d, J = 7.4 Hz, 1H), 4.00 - 3.91 (m, 2H), 3.91 - 3.84 (m, 1H), 3.78 (m, 1H), 3.49

(m, 3H), 3.43 - 3.30 (m, 3H), 2.95 (dd, J = 11.2, 2.9 Hz, 1H), 1.97 (dt, J = 42.8, 6.8 Hz, 6H), 1.22

(m, 46H), 0.84 (t, J = 6.7 Hz, 6H). 13C NMR (126 MHz, DMSO-d6) δ 172.32, 131.89, 131.81,

106.02, 77.94, 71.16, 68.76, 66.59, 61.24, 60.36, 53.50, 40.66, 40.57, 40.49, 40.40, 40.33, 40.24,

40.16, 40.07, 39.99, 39.90, 39.73, 39.64, 39.57, 36.07, 32.19, 31.73, 29.57, 29.56, 29.52, 29.51,

29.47, 29.45, 29.42, 29.25, 29.23, 29.14, 25.82, 22.51, 14.33.

Preparation of 2.41: To a solution of 2.48 (30 mg, 42.0 µmol), sodium acetate (3.44 mg,

42.0 µmol), and acetic acid (1.5 mL) was added 33 % wt./v. hydrogen peroxide (35 µL, 0.377

mmol). The reaction was maintained at 80◦C for five hours at which point the solution was con-

centrated and subjected to flash chromatography. A very polar eluent method (0.5:5:95, 1:10:90,

1:20:80 ammonium hydroxide:MeOH:DCM) was employed to purify the compound (4 mg, 13 %)

(had to do multiple columns to purify the compound, each column resulted in a loss of material, 13

% yield is indictive of the pure isolated compound). 1H NMR (500 MHz, DMSO-d6) δ 7.45 (d, J

= 8.9 Hz, 1H), 5.57 (dd, J = 14.5, 7.4 Hz, 1H), 5.42 (dd, J = 15.5, 6.9 Hz, 1H), 5.18 (s, 1H), 4.92 -

4.83 (m, 2H), 4.66 (d, J = 6.0 Hz, 1H), 4.28 (d, J = 7.4 Hz, 1H), 4.06 (d, J = 2.4 Hz, 1H), 3.97 (m,
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2H), 3.86 - 3.72 (m, 3H), 3.61 - 3.43 (m, 4H), 2.03 (m, 4H), 1.49 (m, 2H), 1.29 (m, 46H), 0.91 (t, J

= 6.8 Hz, 6H). 13C NMR (126 MHz, DMSO-d6) δ 172.15, 131.65, 131.62, 109.99, 105.01, 77.93,

71.60, 68.89, 66.90, 64.82, 62.63, 60.41, 53.79, 40.57, 40.48, 40.41, 40.31, 40.24, 40.15, 40.07,

39.98, 39.90, 39.81, 39.65, 39.48, 36.07, 32.21, 31.75, 29.58, 29.54, 29.52, 29.49, 29.47, 29.40,

29.22, 29.19, 29.17, 29.16, 25.76, 22.54, 14.39. HRMS (ESI) calcd for C40H76NO10S- [M+H]+:

762.5195, found: 764.5095.

Preparation of 2.50: Compound 2.14a (1.00 g, 2.11 mmol) was dissolved in dry pyridine

(20 mL) at 0◦C. One equivalent of benzoyl chloride was added to the flask. Upon completion, the

solvent was removed in vacuo. The brown syrup was dissolved in water, washed with DCM (3

x 50 mL), dried with NaSO4, concentrated, and subjected to flash chromatography. A pale clear

syrup was collected (1.21 g, 99%). 1H NMR (500 MHz, Chloroform-d) δ 8.04 (m, 4H), 7.63 -

7.55 (m, 2H), 7.46 (t, J = 7.3 Hz, 6H), 7.22 - 7.16 (m, 1H), 7.11 (t, J = 7.7 Hz, 2H), 5.64 (t, J = 9.9

Hz, 1H), 5.10 (dd, J = 9.8, 3.1 Hz, 1H), 4.89 (d, J = 10.1 Hz, 1H), 4.66 (t, J = 6.3 Hz, 2H), 4.31 (t,

J = 3.5 Hz, 1H), 4.07 - 4.01 (m, 1H), 2.98 (d, J = 4.6 Hz, 1H), 2.56 - 2.47 (m, 2H), 2.47 - 2.38 (m,

2H), 2.12 (s, 3H). 13C NMR (126 MHz, Chloroform-d) δ 207.82, 171.75, 166.31, 165.26, 133.30,

133.20, 133.18, 132.10, 129.88, 129.77, 129.75, 129.52, 128.78, 128.44, 128.41, 127.74, 86.87,

77.24, 76.98, 76.73, 76.16, 75.07, 67.92, 66.96, 63.64, 38.24, 29.62, 28.27.
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Preparation of 2.51: Compound 2.50 (510 mg, 0.882 mmol) was dissolved in DCM (10

mL), followed by the addition of phenyl chlorothionoformate (244 µL, 1.76 mmol) and DMAP

(301 mg, 2.47 mmol). After completion, a NaHCO3/DCM(3 x 50 mL) workup was carried out,

dried (NaSO4), concentrated, and loaded onto a silica gel column (eluent 20% EtOAc:Hexanes).

Preparation of 2.52: The recovered powder was dissolved in dry benzene (5 mL) in a flame-

dried RBF that was connected to a condenser. Tributyl tin hydride (376 µL, 1.42 mmol) was

added to the reaction vessel, and the mixture was degassed and stirred for 15 minutes. After the 15

minutes, AIBN (58 mg, 0.353 mmol) was added and the reaction was heated to 80◦C. After two

hours, the reaction was cooled to room temperature, the solvent was evaporated off, and the syrup

was subjected to a a NaHCO3/DCM (3 x 50 mL) workup. The resultant syrup was loaded onto a

bed of silica gel and separated by a 20% EtOAc:Hexane wash. The solid formed was collected and

analyzed (450 mg, 91% over two steps).
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Preparation of 2.53: Fully protected galactose 2.52 (180 mg, 0.320 mmol) was dissolved

in an acetone/water solution (20mL/3mL), followed by the portion wise addition of NBS (170 mg,

0.961 mmol). Subsequent equivalents of NBS were added until the reaction was completed (moni-

tored by TLC). Upon completion, the reaction was quenched with solid NaHCO3, and the acetone

was evaporated off. The remaining mixture was dissolved in water, washed with DCM (3 x 50 mL),

dried with NaSO4, concentrated, and subjected to flash chromatography (30% EtOAc:Hexanes).

The white powder was dissolved in DCM (25 mL). Solid potassium carbonate (700 mg) was added,

followed by the addition of excess trichloroacetonitrile (0.640 mL, 6.4 mmol). Once setup, the re-

action was stirred for sixteen hours at room temperature. In the morning, the potassium carbonate

was filtered and washed with EtOAc (100 mL). The filtrate was dried off at or below 30◦C en vacuo.

This pale yellow solid was loaded onto a bed of silica gel and was eluted with 25% EtOAc/Hexane.

The two anomeric isomers were collected, combined, and concentrated at or below 30◦C (160 mg,

82% from two steps).

Preparation of 2.54: Donor 2.53 (160 mg, 0.261 mmol) was stirred for one hour at room

temperature in the presence of ceramide 2.11d (216 mg, 0.313 mmol), 4 angstrom molecular sieves

(750 mg), and dry DCM (5 mL). The vessel was cooled to -10◦C (acetone/ice bath), followed by

the dropwise addition of trimethylsilyltriflate (23 µL, 0.130 mmol). The reaction temperature was

maintained for two hours then quenched by the dropwise addition of TEA. The molecular sieves
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were filtered and washed with EtOAc by means of a plug silica gel column. The filtrate was dried

over NaSO4, concentrated, and subsequently loaded onto a silica gel column. Purification was

achieved with a 20%, 30% EtOAc/Hexane eluent system (170 mg, 57%). 1H NMR (500 MHz,

Chloroform-d) δ 8.04 (dd, J = 19.3, 7.8 Hz, 4H), 7.58 (td, J = 7.2, 4.6 Hz, 2H), 7.46 (q, J = 8.3

Hz, 4H), 5.70 (d, J = 15.3 Hz, 1H), 5.55 (d, J = 9.2 Hz, 1H), 5.37 - 5.27 (m, 3H), 5.25 - 5.13

(m, 3H), 4.52 (d, J = 7.6 Hz, 1H), 4.42 (dd, J = 10.5, 5.0 Hz, 2H), 4.24 (m, 1H), 4.04 - 3.94 (m,

2H), 3.49 (dd, J = 9.9, 3.8 Hz, 1H), 2.66 - 2.57 (m, 2H), 2.54 - 2.47 (m, 2H), 2.06 - 1.91 (m,

10H), 1.78 - 1.68 (m, 4H), 1.39 - 1.18 (m, 56H), 0.87 (t, J = 6.8 Hz, 6H). 13C NMR (126 MHz,

Chloroform-d) δ 205.86, 172.52, 171.92, 169.69, 166.13, 165.45, 136.91, 133.42, 133.26, 129.87,

129.85, 129.74, 129.68, 129.62, 129.43, 128.54, 128.49, 128.47, 128.43, 124.82, 101.04, 77.24,

77.18, 76.98, 76.73, 73.58, 72.90, 70.43, 69.75, 67.22, 65.74, 60.34, 50.28, 37.77, 36.39, 32.64,

32.24, 31.90, 31.88, 29.78, 29.75, 29.71, 29.69, 29.65, 29.62, 29.59, 29.55, 29.50, 29.36, 29.34,

29.29, 29.24, 29.17, 28.96, 28.04, 27.21, 27.19, 25.45, 22.66, 21.00, 14.17, 14.08. HRMS (ESI)

calcd for C69H107NO12 [M+H]+: 1141.7793, found: 1142.7913.

Preparation of 2.55: A 1 M solution of hydrazine was freshly prepared in dry THF. A

portion of this was stirred with glacial acetic acid for five minutes. This mixture was added to

a RBF that contained compound 2.54 (170 mg, 0.148 mmol) and dry THF:Methanol (10:1, 11

mL). After one hour the reaction was completed by the observance of product and the complete
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disappearance of starting material via M.S. The solvent was dried off en vacuo at or below 30◦C.

The white slurry was quenched with saturated NaHCO3 solution, followed by the extraction of

product in DCM washes (3 x 15 mL). The DCM washes were dried over NaSO4, evaporated, and

purified via flash chromatography (30% EtOAc:Hexane). The white powder product collected was

isolated in excellent yield (130 mg, 85%). 1H NMR (500 MHz, Chloroform-d) δ 8.05 (dd, J =

7.9, 3.4 Hz, 4H), 7.58 (t, J = 7.4 Hz, 2H), 7.45 (q, J = 7.2 Hz, 4H), 5.73 - 5.64 (m, 1H), 5.59 (d,

J = 9.1 Hz, 1H), 5.34 (t, J = 4.8 Hz, 2H), 5.22 (t, J = 7.3 Hz, 1H), 4.92 (t, J = 8.4 Hz, 1H), 4.50

(d, J = 7.7 Hz, 1H), 4.42 (t, J = 5.2 Hz, 2H), 4.25 (m, 1H), 4.00 (m, 2H), 3.94 - 3.88 (m, 1H),

3.52 (dd, J = 10.0, 3.8 Hz, 1H), 2.05 - 1.97 (m, 5H), 1.97 - 1.91 (m, 4H), 1.73 (m, 2H), 1.39 -

1.20 (m, 56H), 0.87 (t, J = 6.7 Hz, 6H). δ 172.67, 169.72, 166.56, 166.21, 136.90, 133.52, 133.24,

129.87, 129.84, 129.76, 129.70, 129.67, 129.65, 129.49, 128.55, 128.46, 124.75, 100.75, 77.24,

77.08, 76.99, 76.74, 73.58, 69.96, 69.76, 67.14, 65.99, 50.37, 36.43, 35.41, 32.24, 31.90, 31.87,

29.77, 29.74, 29.70, 29.69, 29.67, 29.64, 29.61, 29.58, 29.54, 29.49, 29.35, 29.33, 29.29, 29.24,

29.22, 29.16, 28.95, 27.20, 27.19, 25.48, 22.65, 20.97, 14.07. HRMS (ESI) calcd for C64H101NO10

[M+H]+: 1043.7425, found: 1044.7501.

Preparation of 2.56: Glycolipid 2.55 (130 mg, 0.125 mmol) was dissolved in dry pyri-

dine (5 mL) followed by the addition of sulfur trioxide pyridine complex (397 mg, 2.49 mmol).

The reaction was stirred at room temperature for fourteen hours, followed by TLC (indicating the
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completion of the reaction). The solvent was removed en vacuo, and the remaining slurry was dis-

solved in saturated NaHCO3, washed with DCM (3 x 10 mL), dried (NaSO4), and concentrated.

The residue was chromatographed (SiO2, methanol/DCM 5%, 10%) to afford product 2.19d (127

mg, 91%). 1H NMR (500 MHz, Methanol-d4) δ 8.07 (t, J = 8.5 Hz, 4H), 7.60 (dt, J = 19.7, 7.4

Hz, 2H), 7.47 (dt, J = 21.1, 7.7 Hz, 4H), 5.60 (dd, J = 14.7, 7.2 Hz, 1H), 5.33 (q, J = 7.1, 6.0 Hz,

1H), 5.29 - 5.20 (m, 2H), 5.03 (t, J = 8.7 Hz, 2H), 4.87 (m, 6H), 4.75 (td, J = 10.7, 5.4 Hz, 2H),

4.68 (d, J = 7.9 Hz, 1H), 4.45 (q, J = 4.9, 4.0 Hz, 2H), 4.29 - 4.19 (m, 2H), 4.06 (dd, J = 11.5, 5.6

Hz, 2H), 3.85 (dd, J = 10.1, 5.6 Hz, 2H), 3.56 (dd, J = 10.0, 5.2 Hz, 1H), 3.32 (d, J = 19.5 Hz,

6H), 2.67 - 2.58 (m, 2H), 2.03 (q, J = 6.4 Hz, 5H), 1.95 - 1.84 (m, 8H), 1.42 (dd, J = 16.2, 7.8

Hz, 2H), 1.39 - 1.14 (m, 60H), 0.89 (t, J = 6.7 Hz, 6H). 13C NMR (126 MHz, Methanol-d4) δ

174.45, 170.10, 166.22, 166.08, 136.73, 132.96, 132.77, 130.09, 129.81, 129.69, 129.44, 129.42,

129.26, 128.24, 128.01, 124.27, 100.54, 74.76, 73.55, 73.36, 69.76, 66.49, 65.87, 50.44, 48.44,

48.10, 48.04, 47.93, 47.87, 47.76, 47.70, 47.59, 47.53, 47.42, 47.25, 47.07, 35.66, 35.61, 33.57,

31.89, 31.68, 31.65, 29.43, 29.42, 29.40, 29.38, 29.37, 29.35, 29.27, 29.22, 29.21, 29.20, 29.08,

29.06, 29.04, 28.94, 28.91, 28.85, 28.77, 28.75, 28.63, 26.73, 26.72, 25.53, 22.33, 19.69, 13.07.

HRMS (ESI) calcd for C64H100NO13S- [M]+: 1122.6921, found: 1122.6849 (neg ion mode).

Preparation of 2.49: Sulfated glycolipid 2.19d (97 mg, 0.0864 mmol) was dissolved in an

anhydrous 1:1 solution of THF and methanol (5 mL). Freshly prepared 1 M sodium methoxide was
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added (0.3 mL) to the reaction flask and the reaction was stirred for one hour at room temperature.

Reaction completion was verified via mass spectrometry and TLC. Upon completion, the solvent

was removed en vacuo and the resulting residue was washed with water (3 x 2 mL), and diethyl

ether (3 x 2 mL) (solid was washed via centrifugation, the solvents washes were decanted off and

saved, just in case of partial dissolution in water). The purified compound was a white powder (72

mg, 96%). 1H NMR (500 MHz, DMSO-d6) δ 7.44 (d, J = 8.9 Hz, 1H), 5.50 (dd, J = 14.6, 7.4 Hz,

1H), 5.31 (dt, J = 10.0, 5.9 Hz, 3H), 4.84 (s, 1H), 4.70 (s, 1H), 4.18 - 4.07 (m, 2H), 3.86 (t, J =

7.7 Hz, 1H), 3.73 (dt, J = 8.4, 4.2 Hz, 2H), 3.41 - 3.36 (m, 2H), 3.31 (m, 1H), 3.04 (t, J = 8.3 Hz,

1H), 1.96 (m, 4H), 1.41 (m, 2H), 1.21 (m, 56H), 0.83 (t, J = 6.8 Hz, 6H). 13C NMR (126 MHz,

DMSO-d6) δ 172.19, 131.70, 131.67, 130.06, 130.05, 104.46, 76.57, 74.27, 72.48, 71.44, 69.26,

64.08, 53.71, 40.61, 40.52, 40.45, 40.35, 40.28, 40.19, 40.11, 40.02, 39.94, 39.85, 39.69, 39.59,

39.52, 36.09, 34.18, 32.21, 31.75, 31.72, 29.57, 29.56, 29.53, 29.50, 29.48, 29.42, 29.39, 29.29,

29.27, 29.23, 29.19, 29.16, 29.13, 29.03, 28.99, 27.00, 26.98, 25.80, 22.53, 14.36. HRMS (ESI)

calcd for C48H90NO10S- [M]+: 872.6291, found: 872.6181 (neg ion mode).

2.6 Immunological methods

Note: all immunological testing was carried out under the direction of Albert Bendelac and Erin

Adams at the University of Chicago.

Human subjects

Blood samples were obtained following a protocol approved by the Institutional Review
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Board. Written informed consent was received from all participants prior to inclusion in the

study.46

CD1d production and sulfatide loading

Human CD1d was expressed by the baculovirus method in Hi5 insect cells. Purified CD1d at

1 mg/mL was incubated for 1 hour with a 10-fold molar excess of bovine brain sulfatides (Matreya)

in HEPES-buffered saline, pH 7.2, at 37 C. 4 µg of sulfatide-loaded CD1d, and 4 µg of unloaded

control CD1d, were run on an pH 3-9 isoelectroic-focusing gel (GE Healthcare) using the PhastGel

system (GE Healthcare).46

Flow cytometry

CD1d-lipid tetramers were produced by incubating 0.011 mg of CD1d with 0.0017 mg of

lipid antigens in 0.020 mL PBS at 37◦C overnight. CD1d-lipid complexes were then incubated

with streptavidin-APC (Invitrogen, CA) for 2 hours at room temperature in a 0.110 mL reaction at

4:1 molar ratio.46

Fluorochrome labeled monoclonal antibodies against human CD3 (HIT3a), TCR Vδ1 (TS8.2),

TCR αβ (IP26), and TCR γδ (B1) were purchased from eBioscience, BD Biosciences, Immunotech,

and Thermo Scientific. Samples were analyzed on an LSRII (BD Bioscience), or sorted on a FAC-

SAria (BD Bioscience) with doublet exclusion and DAPI staining of dead cells in most experi-

ments. Data was analyzed using FlowJo (Tree Star).46

For CD1d-Sulfatide+ cells enrichment, human PBMCs were isolated from blood by cen-

trifugation over Ficoll-Paque (GE healthcare, NJ, USA). Cells stained with allophycocyanin con-

jugated CD1d-Sulfatide tetramer on ice for 1 hour, before enrichment with anti-allophycocyanin
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conjugated beads and the autoMACS cell separator (Miltenyi Biotech).46

Generation of CD1d-sulfatide tetramer+ clones

CD1d-sulfatide tetramer+ cells were enriched by MACS and sorted as single cells in 96

well plates with feeder cells consisting of irradiated (4500 rad) allogeneic PBMC (5x105/well) and

irradiated (10,000 rad) EBV transformed cells (5x103/well) in RPMI1640 medium containing 8%

FCS (Biowest), 2% AB human serum (Atlanta Biologicals), 0.055 mM 2-ME, 2mM L-glutamine

(Cellgro), 1mM sodium pyruvate (Invitrogen), 1mM nonessential amino acids (Invitrogen), 0.001

mg/ml PHA and 100 U/ml human IL-2. Cells were restimulated every 2-3 weeks according to the

same protocol.46

TCR sequencing

Total RNA was isolated from sorted CD1d-sulfatide+CD3+Vδ1+ cells using a combina-

tion of Trizol (Invitrogen) and the RNeasy Mini Kit (Qiagen) and was reverse-transcribed with

Superscript III (Invitrogen) using oligo-d(T). TCR sequences were amplified by PCR with the

following primers (18): 5′-ctgtcaacttcaagaaagcagcgaaa -3′ (Vδ1), 5′- tgggagagatgacaatagcaggatc

-3′ (Cδ ), 5′- cgcaaggacaaggaacaacttgagatt -3′ (Vγ2), 5′- ctatgacgtctccaccgcaagg -3′ (Vγ3), 5′- cg-

gaagcacaaggaacttgagaat -3′ (Vγ4), 5′- ggtggagctggatattgatactacga -3′ (Vγ5), 5′- gcaagcacagggaa-

gagccttaaattta -3′ (Vγ8), 5′- tggtgaagtcatacagttcctggtg -3′ (Vγ9), and 5′- gaatcgtgttgctcttcttttcttgcc

-3′ (Cγ). For sequencing, PCR products were subcloned using Topo TA Cloning Kit (Invitrogen,

CA) and randomly selected clones were processed for sequencing (Applied Biosystems 3730XL).

Sequences were analysed using the IMGT tools (http://imgt.cines.fr/).46

Recombinant TCRs and CD1d-binding assay
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The DP10.7 TCR γ and δ variable domains were fused to the TCR constant domains from

β and α chains, respectively, and the hybrid ectodomains were cloned into the pET28a vector and

expressed in BL21 Escherichia coli cells. The resultant inclusion bodies were solubilized in 7 M

guanidine HCl and refolded as a heterodimer by dilution with 50 mM Tris pH 8.0 in the presence of

10:1 reduced:oxidized glutathione (Sigma). The protein was purified by Ni-NTA chromatography

(Qiagen) followed by Superdex 200 size exclusion chromatography (Amersham). For production

by the baculovirus method in Hi5 insect cells, both the DP10.7 TCR and AB18.1 γ and δ variable

domains were fused to αβ TCR constant domains, as above, then cloned into the pACGP67a

vector (Pharmingen) and produced as a heterodimer by the baculovirus expression system in High

FiveTM insect cells as described [13]. Human CD1d and β2M were cloned into the pACGP67a

vector for baculovirus expression in High FiveTM cells, with CD1d containing a C-terminal 6x

His tag, allowing for heterodimer purification over Ni-NTA resin. CD1d was purified by Superdex

200 size exclusion chromatography, loaded with a tenfold molar excess of bovine brain sulfatides

(Matreya) and then purified by MonoQ anion exchange chromatography (Amersham). For the

native gels, equimolar amounts of the TCRs and either unloaded or sulfatide-loaded CD1d were

combined at a total protein concentration of 1 mg/mL and incubated for 15 min at RT. A total of

0.004 mL of the complexes were loaded on a 12.5% homogenous gel (GE Healthcare), along with

the same amount of noncomplexed TCRs and CD1d proteins as controls. The gels were run using

the PhastGel system (Pharmacia Biotech) and stained with PhastGel Blue R (Amersham) at 0.02%

in 3:1:6 methanol:acetic acid:water. Gels were destained with 3:1:6 methanol:acetic acid:water for

imaging.46



Chapter 3

Synthesis and Trafficking Studies of a

BODIPY-Appended Sulfatide Analog

3.1 Introduction

The presence of sulfatide-specific T cells in the blood of healthy individuals, presented in chapter 2,

raised several interesting questions. How could these autoreactive T cells escape thymic deletion,

especially since high concentrations of sulfatide were reproducibly measured in healthy human

serum?59,62 Are these T cells responsible for the increased frequency of sulfatide-reactive T cells

in the blood of MS patients? Do they play a significant role in MS pathogenesis? These results

and subsequent questions motivated research in this area.

We were particularly interested in solving the paradoxical presence of high-affinity TCR

sulfatide-reactive γδ T cells. During our investigation, Cernadas et al. published research suggest-

101
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ing that the trafficking pattern of CD1b, unlike that of CD1a, impaired sulfatide presentation.63 As

described in section 1.2.1, CD1a trafficks through early and recycling endosomes on its way to the

cell surface, whereas CD1b and CD1d are localized in the late endosome and lysosome where mi-

crobial lipids accumulate during infections.12,13,21 It has been shown that CD1a does not contain a

tyrosine based cytoplasmic tail motif unlike the other isoforms of CD1. It has been suggested that

this difference allows CD1a to traffick distinctly from CD1b and d.63

Motivated by their preliminary findings that dendritic cells pulsed with sulfatide maintained

the ability to stimulate CD1a four times longer than CD1b, Cernadas et al. used CD1b/a chimeric

molecules, CD1a molecules that expressed the cytoplasmic tail of CD1b, to traffick sulfatide. Di-

rect staining of exogenously added sulfatide with a sulfatide-specific monoclonal antibody demon-

strated sulfatides accumulate exclusively in the early endocytic compartment rather than in the late

endosome/lysosome, an intriguing observation that led to their hypothesis that defective presenta-

tion by CD1b, which recycled to the late endosome/lysosome, results from a mismatch of traffick-

ing patterns.63 An alternative explanation might be that the trafficking of CD1-sulfatide complexes

to the late endosome/lysosome impaired their expression on the cell surface, for example due to

fast dissociation in the acidic environment. It is also possible that the sulfatide-specific antibody

may not be able to detect sulfatide in the lysosome secondary to antigenic epitope changes. This

paper’s surprising conclusion motivated us to test the intracellular trafficking of human CD1d to

hopefully understand the posed paradoxical sulfatide-reactive T cell question.

With the synthesized sulfatides from chapter 2, we were able to do similar immunological

testing of sulfatide with chimeric CD1d/a molecules instead of CD1b/a chimeric molecules. We
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Figure 3.1 Novel azido-sulfatide variant 3.1 and BODIPY-appended sulfatide variant 3.2

also synthesized a novel synthetic variant of sulfatide, azido-sulfatide (with an azide on C′′6, Figure

3.1). Unlike the sulfatide-specific antibody method, azido-sulfatide can be imaged post trafficking

in the presence of a BODIPY appended-alkyne (synthesized in house, also commerically avail-

able). The strained eight-membered ring allows for quantitative copper-free click chemistry to the

azido-sulfatide to give BODIPY-appended sulfatide variant 3.2. This florescence detected method

showed that azido-sulfatide accumulated in the late endosome/lysosome compartment like CD1d.

Despite correction of the trafficking mismatch, azido-sulfatide was still poorly presented by CD1d

compared with CD1d/a. We conclude therefore that defective presentation of sulfatide by CD1d

could be a consequence of the recycling of CD1d-sulfatide complexes in late endosome/lysosome

compartments.

3.2 Synthesis of 6-azido-sulfatide 3.1

The synthetic design for 3.1 was quite simple since we had previously installed an azide at the 6-

hydroxyl position during the synthesis of 2.34. Scheme 3.1 demonstrates that we simply converted

2.35 into a Schmidt glycosylation donor. 3.2 was coupled with a c(16:0) ceramide to yield 3.3. Due

to the disarming effect of the azide, the coupling reaction suffered from extremely poor yields. Suf-
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ficient 3.3 was isolated, though, to continue the synthesis. Next, the levulinic group was selectively

removed with hydrazine and acid to give 3′′-hydroxyl compound 3.4. In dry pyridine, compound

3.4 formed fully protected 3′′-sulfo-sulfatide 3.5 in the presence of sulfur trioxide-pyridine com-

plex. Global removal with sodium methoxide in THF and methanol afforded 6′′-azido-sulfatide

3.1.

Scheme 3.1 Representative synthesis of sulfatide 3.1

3.3 Results

3.3.1 Presentation of sulfatide by CD1d-expressing cells

Our first set of experiments compared the stimulatory properties of a variety of our sulfatides bound

to either wild-type CD1d or chimeric CD1d/a. Indeed, Figure 3.2(A) shows that every CD1d/a
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bound sulfatide tested had enhanced presentation and stimulation when compared to wild-type

CD1d. In contrast, and as expected, presentation of α-GalCer by CD1d/a molecules to an NKT cell

clone was greatly impaired. The CD1d/a study did not verify if a mismatch of trafficking patterns

trafficked CD1-sulfatide complexes to the late endosome/lysosome instead of the lysosome. We

tested the hypothesis that sulfatide presentation on the cell surface was impaired by imaging our

novel synthetic variant of sulfatide, azido-sulfatide (3.1), which, unlike sulfatide, accumulated

in the late endosome/lysosome compartment like CD1d (Figure 3.2(B)). Localization of azido-

sulfatide in the lysosome and late endosome is most likely due to fast dissociation of sulfatide

from CD1d in the acidic environment of the lysosome. Our data affirms that the sulfatide-specific

antibody did not detect sulfatide in the lysosome most likely to antigenic epitope changes. Despite

correction of the trafficking mismatch of CD1, azido-sulfatide was still poorly presented by CD1d

compared with CD1d/a (Figure 3.2(A)). These data therefore conclude that defective presentation

of sulfatide by CD1d could be a consequence of the recycling of CD1d-sulfatide complexes in late

endosome/lysosome compartments.
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Figure 3.2 (A) Hela cells expressing WT CD1d molecules or chimeric CD1d/a molecules were
pulsed with BOVINE sulfatide or αGC overnight at indicated concentrations. Cells were washed
and cocultured with sulfatide specific γδ T cells (for sulfatide) or mouse hybridoma DN32.D3
(crossreactive to human CD1d-αGalCer) overnight. Human IFNγ (human T cell clone) or mouse
IL2 (hybridoma) were measured in supernatants. Results are representative of three experiments
where the concentration of sulfatide giving 50% of maximum stimulation was 3.6 fold less for
CD1d/a than for CD1d on average. (B) Top row, intracellular location of exogenously adminis-
tered bovine sulfatide (5 µg/ml) incubated for 24 hours with Hela.CD1d cells before staining with
anti-sulfatide Ab O4 (green) and anti-Lamp1 (red). Results represent two separate experiments.
Bottom row, Hela.CD1d cells incubated with sulfatide C16:0 or azido-sulfatide C16:0 (each at 5
µg/ml) for 24 hours before staining with alkyne-Bodipy (green) and LysoTracker (red). (Results
represent two separate experiments. Bars, 5 µM.
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3.3.2 Discussion

From an immunopathological perspective, it was remarkable that autoreactive T cells could be

brightly stained by tetramers and self-antigens. The slow decay of tetramer staining further pre-

dicted that the affinity of interactions between the Vδ1 TCRs and their target antigens would be

highly significant. Indeed, SPR studies (section 2.3.5) from the two cloned γδ TCRs measured

affinities for our CD1d-sulfatide complexes in the micromolar range.

The presence of TCRs with such high affinity for self antigens was especially intriguing since

sulfatides are abundantly represented not only in the brain and other organs, but also in the normal

serum of human and other mammalian species where studies have reported concentrations reach-

ing the micromolar range.59,62 These considerations coupled with Cernadas’s report that CD1b

poorly presented sulfatide when compared to CD1a, led us to investigate the cell biology of sul-

fatide loading onto CD1d molecules.63 Our chimeric CD1d/a results mirrored previously reported

results for chimeric CD1b/a. With the help of its fused intracytoplasmic CD1a tail, CD1d/a showed

superior presentation of sulfatide compared with wild type CD1d. Thus, the trafficking patterns of

CD1d and CD1b impaired their ability to present sulfatide at the cell surface. This property was

independent of the accumulation of sulfatide in early endocytic compartment because it was also

observed with azidosulfatide, a novel sulfatide analog which accumulated in the lysosome.

Therefore, we propose that the main impediment to sulfatide presentation by CD1d is the

trafficking of this glycoprotein to the late endosome/lysosome. This conclusion is consistent with

previous demonstrations that sulfatides are efficiently loaded at the cell surface,47 and suggest that

the CD1d-sulfatide complexes may be promptly dissociated in the lysosomal compartment. Irre-
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spective of the fine mechanism involved, the decreased presentation of sulfatide by CD1 molecules

recycling to late endosome and lysosome mitigates the autoimmune potential of sulfatide reactive

T cells and may explain the persistence of CD1d-restricted T cells with high affinity for this anti-

gen in healthy individuals. In contrast, we speculate that high affinity CD1d-sulfatide-specific T

cells might be deleted because they would cross the threshold of tolerance in the presence of high

endogenous levels of sulfatide. Thus, tetramer-based approaches to identify sulfatide-specific T

cells might be more appropriate for CD1b- and CD1d- restricted T cells than for CD1a-restricted

T cells.

3.4 Experimental Procedures

Preparation of 3.3: Fully protected galactose 2.35 (300 mg, 0.587 mmol) was dissolved in an

acetone/water solution (17mL/2mL), followed by the portion wise addition of NBS (313 mg, 1.76

mmol). Subsequent equivalents of NBS were added until the reaction was completed (monitored

by TLC). Upon completion, the reaction was quenched with solid NaHCO3, and the acetone was

evaporated off. The remaining mixture was dissolved in water, washed with DCM (3 x 50 mL), the

organic layer was dried with NaSO4, concentrated, and subjected to flash chromatography (30%

EtOAc:Hexanes). The partially purified white powder was dissolved in trichloroacetonitrile (18
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mL). Solid potassium carbonate (1.50 g, 10.9 mmol) was added. Once setup, the reaction was

stirred for sixteen hours at room temperature. In the morning, the potassium carbonate was filtered

and washed with EtOAc (100 mL). The filtrate was dried off at or below 30◦C en vacuo. This pale

yellow solid was loaded onto a bed of silica gel and was eluted with 25% EtOAc/Hexane. The two

anomeric isomers were collected, combined, and concentrated at or below 30◦C (161 mg, 43%

from two steps).

Preparation of 3.4: Donor 3.2 (161 mg, 0.252 mmol), palmitic ceramide (133 mg, 0.023

mmol), and 4 angstrom M.S. (600 mg) were stirred together for one hour in dry DCM (5 mL). The

vessel was cooled to -10◦C (acetone/ice bath), followed by the dropwise addition of trimethylsi-

lyltriflate (0.025 mL, 0.141 mmol). The reaction temperature was maintained for two hours then

quenched by the dropwise addition of triethyl amine. The molecular sieves were filtered and

washed with EtOAc by means of a plug silica gel column. The filtrate was concentrated and

subsequently loaded onto a silica gel column. Purification was achieved with a 20%, 25%, 30%

EtOAc/Hexane eluent system. A white powder was collected (35 mg, 14%). 1H NMR (500 MHz,

Chloroform-d) δ 8.15 (t, J = 7.0 Hz, 2H), 8.01 (d, J = 7.8 Hz, 2H), 7.65 (d, J = 7.5 Hz, 1H), 7.62

- 7.42 (m, 5H), 5.80 - 5.71 (m, 1H), 5.65 (d, J = 3.5 Hz, 1H), 5.60 - 5.49 (m, 2H), 5.34 (m, 2H),

5.27 (t, J = 7.4 Hz, 1H), 4.68 (d, J = 7.8 Hz, 1H), 4.32 (m, 1H), 4.13 (dd, J = 9.7, 3.0 Hz, 1H),

4.02 (dd, J = 8.6, 3.9 Hz, 1H), 3.63 - 3.55 (m, 2H), 3.22 (dd, J = 13.2, 3.9 Hz, 1H), 2.54 (dt, J
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= 19.7, 6.8 Hz, 2H), 2.38 (dt, J = 14.0, 6.7 Hz, 2H), 2.02 (s, 3H), 1.99 (d, J = 6.4 Hz, 2H), 1.93

(s, 3H), 1.70 (t, J = 7.7 Hz, 2H), 1.41 - 1.12 (m, 46H), 0.88 (t, J = 6.8 Hz, 6H). 13C NMR (126

MHz, Chloroform-d) δ 205.66, 172.56, 171.74, 169.87, 165.73, 165.35, 137.18, 133.89, 133.65,

130.08, 129.94, 129.81, 129.12, 128.82, 128.76, 128.73, 128.64, 128.55, 128.52, 124.85, 101.18,

77.28, 77.23, 77.03, 76.77, 73.79, 73.52, 70.91, 69.73, 68.51, 67.55, 50.75, 50.12, 37.78, 37.70,

37.68, 36.41, 32.32, 31.94, 31.93, 29.73, 29.70, 29.68, 29.66, 29.57, 29.54, 29.51, 29.50, 29.38,

29.29, 29.20, 29.00, 27.92, 27.85, 25.47, 22.70, 21.18, 14.13. HRMS (ESI) calcd for C61H92N4O12

[M+NH4]+: 1072.6712, found: 1089.6925.

Preparation of 3.5: A 1 M solution of hydrazine was freshly prepared in dry THF. A portion

(44 µL, 44 µmol) of this was stirred with glacial acetic acid (59 µL, 59 µmol) for five minutes.

This mixture was added to a RBF that contained compound 3.4 (35 mg, 32.6 µmol) and dry

THF:Methanol (10:1, 5.5 mL). After one hour the reaction was completed by the observance of

product and the complete disappearance of starting material via M.S. The solvent was dried of

en vacuo at or below 25◦C. The white slurry was quenched with saturated NaHCO3 solution,

followed by the extraction of product in DCM washes (3 x 15 mL). The DCM washes were dried

over NaSO4, evaporated, and purified via flash chromatography (30% EtOAc:Hexane). The white

powder product collected was isolated in excellent yield (30 mg, 94%). 1H NMR (500 MHz,

Chloroform-d) δ 8.15 (d, J = 7.7 Hz, 2H), 8.05 (d, J = 7.7 Hz, 2H), 7.62 (dt, J = 23.1, 7.5 Hz, 2H),
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7.53 (t, J = 7.6 Hz, 2H), 7.46 (t, J = 7.7 Hz, 2H), 5.78 - 5.71 (m, 1H), 5.60 - 5.53 (m, 2H), 5.38

- 5.30 (m, 2H), 5.26 (t, J = 7.3 Hz, 1H), 4.66 (d, J = 7.8 Hz, 1H), 4.32 (m, 1H), 4.12 (ddd, J =

13.1, 9.9, 3.5 Hz, 2H), 3.94 (dd, J = 8.7, 3.7 Hz, 1H), 3.61 (dd, J = 9.9, 4.0 Hz, 1H), 3.55 (dd, J =

13.2, 8.6 Hz, 1H), 3.25 (dd, J = 13.1, 3.6 Hz, 1H), 2.00 (s, 3H), 1.97 (d, J = 7.5 Hz, 2H), 1.73 (m,

J = 7.7 Hz, 2H), 1.25 (dd, J = 9.2, 4.6 Hz, 48H), 0.88 (t, J = 6.8 Hz, 6H). 13C NMR (126 MHz,

Chloroform-d) δ 172.61, 172.53, 169.88, 166.50, 166.40, 137.19, 133.87, 133.69, 130.13, 129.82,

129.25, 128.76, 128.74, 128.70, 128.63, 128.58, 124.77, 100.82, 77.27, 77.22, 77.02, 76.76, 73.90,

73.78, 73.40, 71.35, 71.04, 67.54, 51.02, 50.19, 36.46, 36.42, 32.30, 31.94, 29.73, 29.69, 29.68,

29.65, 29.56, 29.53, 29.50, 29.45, 29.37, 29.33, 29.28, 29.19, 28.98, 25.49, 22.70, 21.15, 14.12.

HRMS (ESI) calcd for C56H86N4O10 [M+NH4]+: 974.6344, found: 975.6420.

Preparation of 3.6: Glycolipid 3.5 (30 mg, 30.8 µmol) was dissolved in dry pyridine (2 mL)

followed by the addition of sulfur trioxide pyridine complex (73 mg, 0.462 mmol). The reaction

was stirred at room temperature for fourteen hours, followed by TLC (indicating the completion

of the reaction). The solvent was removed en vacuo, and the remaining slurry was dissolved

in DCM, washed with saturated NaHCO3, dried (NaSO4), and concentrated. The residue was

chromatographed (SiO2, MeOH/DCM 5%, 10%) to afford product 2.32 (25 mg, 77%). 1H NMR

(500 MHz, Methanol-d4) δ 8.17 - 8.08 (m, 3H), 7.69 - 7.62 (m, 1H), 7.56 (m, J = 25.0, 7.5 Hz,

4H), 7.46 (m, J = 7.7 Hz, 2H), 5.93 (d, J = 3.3 Hz, 1H), 5.64 (m, 1H), 5.53 (dd, J = 10.2, 7.8 Hz,
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1H), 5.28 (m, 1H), 4.94 - 4.86 (m, 2H), 4.35 - 4.28 (m, 1H), 4.19 (dd, J = 8.5, 3.6 Hz, 1H), 3.97

(dd, J = 10.1, 5.8 Hz, 1H), 3.67 (dd, J = 10.1, 5.4 Hz, 1H), 3.44 (dd, J = 13.1, 8.4 Hz, 1H), 3.34

(dd, J = 13.2, 3.7 Hz, 2H), 1.98 - 1.89 (m, 5H), 1.41 (m, J = 14.4, 7.1 Hz, 4H), 1.28 (m, J = 5.5

Hz, 46H), 0.90 (t, J = 6.9 Hz, 6H). 13C NMR (126 MHz, Methanol-d4) δ 175.99, 171.63, 167.42,

167.14, 138.26, 134.66, 134.36, 131.35, 131.26, 131.09, 130.88, 129.73, 129.71, 129.51, 125.63,

101.75, 76.44, 75.15, 74.95, 71.81, 71.66, 67.93, 52.39, 51.68, 49.54, 49.52, 49.49, 49.37, 49.35,

49.34, 49.32, 49.30, 49.25, 49.20, 49.17, 49.16, 49.15, 49.13, 49.12, 49.10, 49.09, 49.08, 49.07,

49.03, 49.00, 48.98, 48.97, 48.96, 48.86, 48.85, 48.83, 48.81, 48.81, 48.80, 48.72, 48.69, 48.66,

48.65, 48.64, 48.52, 37.04, 33.38, 33.13, 30.87, 30.86, 30.84, 30.82, 30.80, 30.78, 30.76, 30.74,

30.71, 30.69, 30.66, 30.54, 30.53, 30.51, 30.33, 30.20, 30.07, 26.99, 23.79, 21.23, 14.50.

Preparation of 3.1: Sulfated glycolipid 3.5 (12 mg, 11.4 µmol) was dissolved in an anhy-

drous 1:1 solution of THF and methanol (3 mL). Freshly prepared 1 M sodium methoxide was

added (0.100 mL) to the reaction flask and the reaction was stirred for one hour at room temper-

ature. Reaction completion was verified via mass spectrometry and TLC. Upon completion, the

solvent was removed en vacuo and the resulting residue was washed with water (3 x 1 mL), and

diethyl ether (3 x 2 mL) (solid was washed via centrifugation, the solvents washes were decanted

off and saved, just in case of partial dissolution in water). The purified compound was a white

powder (4 mg, 44%). 1H NMR (500 MHz, DMSO-d6) δ 7.40 (d, J = 8.5, 4.1 Hz, 1H), 5.50 (m,
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1H), 5.36 (m, 1H), 5.07 (d, J = 2.6 Hz, 1H), 4.82 (d, J = 5.4 Hz, 1H), 4.70 (d, J = 4.9 Hz, 1H),

4.21 (d, J = 7.7 Hz, 1H), 4.01 - 3.91 (m, 2H), 3.87 (m, 2H), 3.77 (m, 1H), 3.66 - 3.62 (m, 1H),

3.51 - 3.36 (m, 3H), 3.21 (dd, J = 12.8, 4.0 Hz, 1H), 2.00 (t, J = 7.4 Hz, 2H), 1.93 - 1.89 (m, 2H),

1.46 - 1.37 (m, 2H), 1.22 (m, 46H), 0.83 (t, J = 6.8 Hz, 6H). 13C NMR (126 MHz, DMSO-d6)

δ 172.22, 131.79, 131.68, 129.50, 104.41, 78.88, 73.93, 71.41, 69.45, 69.10, 67.53, 63.53, 53.50,

51.31, 40.57, 40.48, 40.41, 40.32, 40.24, 40.15, 40.07, 39.98, 39.90, 39.81, 39.65, 39.48, 36.07,

32.22, 31.75, 29.58, 29.56, 29.54, 29.53, 29.49, 29.47, 29.42, 29.36, 29.23, 29.19, 29.17, 29.14,

25.80, 22.54, 14.39, 14.38. HRMS (ESI) calcd for C40H75N4O10S- [M+H](neg ion): 803.5209,

found: 803.5671.

3.5 Immunological experimentals

Note: all immunological testing was carried out under the direction of Albert Bendelac and Erin

Adams at the University of Chicago.

Confocal microscopy

Hela.CD1d cells (a gift of Dr. Steven Porcelli, were pulsed with 20 µg/ml sulfatide overnight,

washed and fixed with 4% paraformaldehyde for 20 minutes. Cells were permeabilized with 0.05%

saponin and blocked with 10% donkey serum for 30 minutes. Sulfatide was stained antibody O4

(mouse IgM supernatant, generously provided by Dr. Joan Boggs, Hospital for Sick Children,

Toronto) and anti-Lamp1 (10 µg/ml; Abcam, MA) for 1 hour. Secondary antibodies were goat

anti mouse IgM DyLight 549 and donkey anti-rabbit IgG (H+L) DyLight 649 diluted 1:200 and
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added for 30 minutes at room temperature. For confocal imaging of azido-sulfatide, azido-sulfatide

C16:0 (5 µg/ml) was added to Hela.CD1d cells overnight. After washing, cells were incubated

with Alkyne-Bodipy (5 µg/ml) in culture medium for 1h at 37◦C and LysoTracker Red (0.001

mM; Invitrogen, CA) was added for the last 10 minutes. Samples were examined by confocal

microscopy (FV1000, Olympus) with a 60x oil objective. Data were analyzed using Adobe Pho-

toshop and ImageJ.

Sulfatide stimulation

Hela.CD1d and Hela.CD1d/a cells (provided by Dr. Steven Porcelli, Albert Einstein College

of Medicine, NY) and sorted to express similar levels of surface CD1d were plated at 5x104 cells

per well and pulsed with lipids at different concentrations overnight, washed and cocultured with

sulfatide-specific αβ T cells (1x105 per well) or DN32.D3 (5x104 cells per well) overnight. Cy-

tokines released in medium were measured by BD Cytometric Beads Array human Th1/Th2/Th17

kit and mouse IL2 Flex Set.



Chapter 4

Synthesis and Evaluation of Lyso Glycolipid

Analogs

4.1 Introduction

As introduced in Chapter 1, over the past decade, multiple NKT cell antigens have been discov-

ered. However, after attempting to verify and reproduce the proposed stimulatory activity, many

antigenic NKT cell candidates have given inconsistent results. For example, Fischer et al. pre-

sented PIM4 (Figure 1.6), isolated from Mycobacterium bovis bacillus, as an exogenous NKT cell

antigen.19 However, two years later, Kinjo et al. synthesized PIM4 and found that it did not stim-

ulate NKT cells.64 In 2004, Ortaldo et al. presented results suggesting that β -GalCer was a type

I NKT cell antigen.65 Also a recent publication in Nature Immunology, reported the stimulatory

properties of β -glucosylceramide (β -GluCer).66 In contrast, our labs have used these proposed
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antigens as negative controls (i.e., they do not stimulate NKT cells).

Surprised by the recently published results that β -glucosylceramides were endogenous NKT

cell antigens, we and our collaborators began experimentation to attempt to explain the disparity

between the Brenner group’s observation that β -GluCer stimulated NKT cells and our multiple

observations that β -GluCer showed no stimulatory activity.66 The β -GluCer used by the Brenner

group (C12 and C24:1) was synthetic and was obtained from Avanti Polar Lipids Inc. We pur-

chased a small amount of β -GluCer (24:1) from Avanti to see if we could reproduce the reported

results. In support of the published results, the β -GluCer from Avanti weakly stimulated NKT

cells (unpublished data, Luc Teyton’s lab).

One possible explanation for this result is that there are stimulatory contaminations present

in the commercial sample. Considering both β -GluCer and β -GalCer, likely contaminants are

the alpha anomers, that is, the potent NKT cell antigens, α-GluCer and α-GalCer respectively.23

Generally, before glycosylation, the 2-hydroxyl on the sugar is protected with an ester that can

participate in anchimeric assistance (Figure 4.1). During glycosylation, this ester intramolecularly

attacks the 1-carbon to give species 3. In theory, the reversible conversion of 2 to 3 effectively

shields the α-anomer from forming. However, in practice, small amounts of α-anomer are always

formed during glycosylation. In the synthesis of β -GalCer and β -GluCer, global removal of the es-

ter protecting groups occurs directly after glycosylation. Although the anomers are diastereomers

of each other, their similar polarities make complete separation of the two difficult. Therefore,

α-anomer contamination is not only possible, but is routinely observed.
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Figure 4.1 Mechanism of glycosylation anomerization of GluCer (24:1). Intramolecular
attack at the anomeric position (2) by the 2-benzoyl ester forms species 3. Interconver-
sion between compound 1 and compound 3, promotes nucleophilic attack to form the
β -glycolipid.

Due to the likelihood of α-anomer contamination, we further analyzed the Avanti sample

by NMR to assess purity. NMR analysis did not detect any α contaminants or any relevant con-

taminations. Due to the high potency of the α-anomer, the detection limits of NMR are insuf-

ficient to prove the lack of α-GluCer. We then subjected the sample to flash chromatography

and we fractionated the sample by differing eluents with increasing polarity (5% MeOH/DCM,

10% MeOH/DCM, 20% MeOH/DCM, 40% MeOH/DCM, 25:65:2 MeOH:DCM:H2O, 25:65:4

MeOH:DCM:H2O, and 65:25:10 MeOH:DCM:H2O)). These fractions were sent to the Teyton

lab (The Scripps Research Institute), where high performance TLC was carried out (Figure 4.2).

Each fraction was then tested for stimulatory activity, with multiple fractions producing substantial

stimulatory responses, even those fractions lacking β -GluCer (unpublished data).

High resolution mass spectrometry analysis of the fractions that showed stimulatory activity

(fractions 6 and 7) suggested the presence of lysed version of α- or β -GluCer. Lyso-ceramides,
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Figure 4.2 High performance TLC of fractionated commercial β -GluCer. Each numbered
lane(10 µg of material per lane) roughly represents the following eluents (in ascend-
ing order) 5% MeOH/DCM, 10% MeOH/DCM, 20% MeOH/DCM, 40% MeOH/DCM,
25:65:2 MeOH:DCM:H2O, 25:65:4 MeOH:DCM:H2O, and 65:25:10 MeOH:DCM:H2O

as shown in Figure 4.3, are ceramides that are lacking the fatty acyl chain, the common name for

the lyso version of β -GluCer is β -glucopsychosine (lyso version of β -GalCer = β -psychosine).

In vivo, lyso-ceramides are formed via ceramidase enzymes that produce lyso-gluco and lyso-

galactosylceramides. In vivo, five ceramidases have been found, two expressed in the lysosome

(acid ceramidase (ASAH1) and N-acylamidehydrolase (NAAA)) and three others expressed in

epidermal cells (alkaline ceramidase 1-3).67,68 Poor handling of glycolipids could be a source of

the small β -glucopsychosine contaminations.

Figure 4.3 Representative structure of β -GalCer and β -psychosine

Following this preliminary analysis of the commercial β -GluCer, we wanted to test if lyso-
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glycosylceramides were NKT cell antigens. We hypothesized that if lyso-glycosylceramides are

stimulatory, then the observed stimulatory activity of β -GalCer and β -GluCer was due to enzy-

matic degradants (i.e. enzymatically degraded lyso-glycosylceramides) in the samples, but that

if lyso-glycosylceramides are not stimulatory, then the observed stimulatory activity was due to

chemical contaminants (i.e. contaminants introduced during glycolipid synthesis) present in the

tested samples. To test this hypothesis we synthesized a broad panel of lyso-gluco and lyso-

galactosylceramides (as well as new batches of β -Gal and -GluCer and α-Gal and GluCer) and

tested them for stimulatory activity. Figure 4.4 represents the initial synthetic targets. α- and β -

psychosine and glucopsychosine were selected as plausible lyso degradants of α and β -Gal and

-GluCer (as well as their sphingosine counterparts). We chose compound 4.5 and compound 4.6

as lysed versions of possible chemical contaminants. Compound 4.5 would be made if the di-

astereomer of sphingosine were used during the synthesis of α-GalCer(24:1), and compound 4.6

would be formed if the 2-hydroxyl group was the unprotected alcohol in the glycosylation acceptor.

Lastly, compounds 4.7 and 4.8 were synthesized lysed β -anomers of the potent NKT cell antigen,

PBS57.

4.2 Synthesis of lyso-ceramides

4.2.1 Synthesis of β -psychosine 4.1a and β -glucopsychosine 4.2a

The syntheses of lyso glycolipids are relatively straightforward. Starting with commercially avail-

able phytosphingosine (Scheme 4.1), we performed a copper catalyzed diazo transfer to oxidize
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Figure 4.4 Initial synthetic lyso targets

the amine to an azide.69 To simplify the purification process, a quick workup was performed fol-

lowed by the addition of pyridine, DMAP, and acetic anhydride. These two steps yielded acylated

compound 4.9. Removal of the esters with sodium methoxide resulted in azide 4.10. Dissolving

4.10 in a minimal amount of pyridine at room temperature and carefullying adding TDS-Cl, selec-

tively protected the primary alcohol of the azido-phytosphingosine. After complete conversion to

the primary alcohol protected product, addition of excess acetic anhydride afforded fully protected

phytosphingosine 4.11. Acidic cleavage of the silyl ether, produced our azido-phytosphingosine

coupling acceptor 4.12 (used in the synthesis of 4.1a - 4.4a (Note: this reaction if done slowly, left

overnight, heated up, or purified slowly can and will result in migration of the 2-acetyl group to

the primary alcohol. It is essential that the chemist quench this reaction immediately after comple-
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tion.)).

Scheme 4.1 Synthesis of phytosphingosine acceptor 4.11

Unlike the synthesis of sulfatide, the sugar donor is straightforward to synthesize (Scheme

4.2(A)). After obtaining undesirable glycosylation yields from a peracylated galactosyl Schmidt

donor, we opted for a more activated donor by synthesizing the perbenzoylated Schmidt donor

4.15. This was synthesized by installation of a thio-phenol at the anomeric position, followed

by a traditional 2-step process that replaced the thiophenol with a trichloroacetimidate moiety.

Schmidt coupling conditions70 were carried out towards the successful conversion of donor 4.15

and acceptor 4.12 to glycolipid 4.16. The 2′-benzoate participated in anchimeric assistance dur-

ing glycosylation, which effectively shielded the bottom face of the sugar to give primarily the β

anomer. Global removal of the ester protecting groups cleanly afforded compound 4.17. Reduc-

tion of the azide with palladium hydroxide and hydrogen gave the final β -psychosine 4.1a. The

synthesis of 4.2a was uncomplicated due to its mirrored synthetic route to 4.1a. Scheme 4.2(B)

outlines the synthesis of β -glucopsychosine.
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Scheme 4.2 Synthesis of β -psychosine 4.1a and β -glucopsychosine 4.2a
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4.2.2 Synthesis of α-psychosine 4.3a and α-glucopsychosine 4.4a

The synthesis of 4.3a (Scheme 4.3(A)) started from compound 2.12. Removal of the acetates with

sodium methoxide left naked hydroxyls that were protected with benzyl bromide to give perbenzy-

lated compound 2.23. Transformation of the thio phenyl to a hydroxyl group at the anomeric po-

sition was quickly accomplished with n-bromosuccinimide with water and acetone as the solvent.

Using donor 4.24 and acceptor 4.12 under David Gin’s coupling conditions71 resulted in com-

pound 4.25. In this case the anomeric effect biased towards the α-anomer product 4.25. The acetyl

groups were removed with sodium methoxide in methanol. One-pot removal of the benzyl groups

and reduction of the azide were initially attempted with traditional hydogenation conditions (palla-

dium on carbon, H2, 350 p.s.i.). These classic conditions reduced the azide, but the newly formed

amine poisoned the catalyst. Switching to palladium hydroxide alleviated this problem, and suc-

cesfully produced α-psychosine 4.3a. Scheme 4.3(B) outlines the synthesis of β -glucopsychosine

4.4a. The synthetic route is identical to that of compound 4.3a.
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Scheme 4.3 Synthesis of α-psychosine 4.3a and α-glucopsychosine 4.4a
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4.2.3 Synthesis of the β -sphingo-psychosine diastereomer 4.5 and the β -

sphingo-glucopsychosine analog 4.6

As discussed in section 2.2.1, during the synthesis of ceramide a small amount of the diastereomer

(2.7b) is formed. The absence of chelating agents causes the pentadecyne to attack the Re face in

accordance with the Felkin-Ahn model. Small amounts of pentadecyne attack the Si face and form

the anti-Felkin-Ahn product 2.7b.

Figure 4.5 Formation of the diastereomeric sphingosine precursor 2.7b. The absence
of chelating agents causes the pentadecyne to attack the Re face in accordance with the
Felkin-Ahn model to give compound 2.7. Small amounts of pentadecyne attack the Si
face and form the anti-Felkin-Ahn product 2.7b.

With isolated compound 2.7b in hand, we subjected it to dissolving metal conditions to give

sphingosine 4.31. The amine of 4.31 was oxidized to an azide via a copper-catalyzed diazo trans-

fer reaction.69 TDS-Cl selectively protected the primary alcohol of the azido-phytosphingosine,

followed by the addition of excess acetic anhydride which gave fully protected sphingosine 4.34.

Hydrofluoric acid efficiently cleaved the TDS group to produce the desired azido-sphingosine cou-

pling acceptor 4.35 (see procedure for discussion of the migration problem). We followed Schmidt

glycoslation conditions70 and subsequent deprotections of the ester protecting groups, which gave

compound 4.37. Due to the double bond present in the sphingosine, a zinc reduction step was

employed instead of a hydrogenation to afford compound 4.5.
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Scheme 4.4 Synthesis of β -sphingo-GluCer diastereomer 4.5

Although a very unlikely synthetic contaminant, we decided to synthesize the β -sphingo-

psychosine analog 4.6 nonetheless. This compound could be formed in two different ways. If

during the selective protection of the primary hydroxyl, the secondary alcohol was instead pro-

tected, then after acetylation and acidic cleavage of the silyl ether, donor 2.11m would be formed.

The other, and more likely way to form acceptor 2.11m would be acetyl migration (via a stable

6-membered ring intermediate) during the workup, purification, or storage (Figure 4.6. The latter

migration is routinely observed.
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Figure 4.6 Acetyl migration mechanism under acidic conditions.

This synthesis of the appropriate acceptor required azide formation,69 acetylation, and re-

moval of the acetates from compound 2.8 to give compound 4.38. Next, we protected the primary

hydroxyl with one equivalent of acetic anhydride, which gave us acceptor 4.39. Following Schmidt

coupling conditions,70 with donor 4.15, the desired glycolipid (4.40) was formed. Global depro-

tection of the esters, followed by azide reduction afforded compound 4.6.
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Scheme 4.5 Synthesis of β -sphingo-GluCer analog 4.6

During the synthesis of acceptor 4.39, we selectively protected the primary hydroxyl of

4.38 with TDS, acetylated the 3-hydroxyl, and removed the silyl ether group to give us azido-

sphingosine acceptor 4.44. This acceptor was used in the synthesis of 4.7 and 4.8.

4.2.4 Synthesis of N-acyl β -sphingo-psychosine (4.7) and β -sphingo-glucopsychosine

analogs (4.8)

The synthesis of N-acyl β -sphingo-psychosine (4.7) and β -sphingo-glucopsychosine analogs (4.8)

is outlined in Scheme 4.6. Due to the similarities of the synthetic routes of 4.7 and 4.8, only



4.2 Synthesis of lyso-ceramides 129

Scheme 4.6(A) will be described. Starting from compound 2.13, we removed the acetyl groups

with sodium methoxide in methanol. After quenching and drying off the solvent, we installed

a tosyl group at the 6-hydroxyl position, followed by global protection with benzoyl chloride to

afford compound 4.45. An azido moiety replaced the tosyl group via an SN2 reaction. We utilized

ruthenium trichloride and thioacetic acid to convert the azide to an N-acyl moiety to give compound

4.47. With 4.47 in hand, we transformed it to a Schmidt coupling donor (4.48), and coupled it to

acceptor 4.44. The glycolipid was globally deprotected, followed by reduction of the azide to

give lyso-galactosylceramide 4.7. Scheme 4.6(B) followed the same synthetic route towards the

synthesis of lyso-glucosylceramide 4.8.
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Scheme 4.6 Synthesis of N-acyl β -sphingo-psychosine (4.7) and β -sphingo-
glucopsychosine analogs (4.8)
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4.3 Results and Discussion

4.3.1 α-psychosine and α-glucopsychosine stimulate iNKT cells

All proposed lyso-glycosylceramides were successfully synthesized. These compounds were sub-

jected to a iNKT cell activation assay to test for iNKT cell stimulatory properties. A mouse iNKT

cell hybridoma DN32.D3 was incubated with each synthetic lyso-glycosylceramide and DC3.2

cells, a dendritic cell line expressing CD1d. Twenty-four hours later, cell culture supernatents

were collected and analyzed for IL-2 concentrations. Each assay was performed at the Scripps

Research Institute, under the direction of Luc Teyton. Of the eight lyso-glycosylceramides tested,

only α-psychosine (4.3a) and α-glucopsychosine (4.4a) provided potent stimulatory activity.

4.3.2 The L363 antibody binds to α-psychosine and α-glucopsychosine

After the initial analysis of the commercial β -GluCer, Teyton and coworkers incubated the sample

with an antibody called L363. Discovered by Porcelli and coworkers, L363, along with L317, are

monoclonal antibodies specific to the CD1d-α-GalCer complex. They showed no reactivity with

non-loaded CD1d, nor did they bind to CD1d-bound iGB3.72 Teyton and coworkers observed that

treatment of the commercial β -GluCer with L363 effectively blocked the stimulatory activity (un-

published data). These results would suggest that an α-glycolipid was the stimulatory contaminant

in the commercial samples.

To verify these results, we examined the binding of L363 antibody against our panel of α

and β gluco- and galactosylceramides via surface plasmon resonance. Our results, presented in



4.3 Results and Discussion 132

Figure 4.7, show that L363 binds not only to α-GalCer (CD1d-bound), but also to α-psychosine,

α-glucopsychosine, and α-GluCer. No binding affinity to L363 was observed with their β coun-

terparts. We can also glean from the data that L363 has a strong preference for galactose when

compared to glucose. Recently, the crystal structure of CD1d-α-GalCer in complex with L363

was solved. A study of the crystal structure provides rationals for our experimental data. For

example, L363 forms a hydrogen bonding interaction with the 4′′-hydroxyl group of α-GalCer,

this hydrogen bond most likely explains why galactose binds better than glucose.73 These binding

data, combined with previous studies,72,73 further characterize the antigen repertoire of L363 and

further validate that the commercial β -GluCer has an α contaminant.
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Figure 4.7 L363 binds α-galactosyl and -glucosylceramide-CD1d complexes. SPR bind-
ing data of various synthetic glycolipids. All tested α-linked glycolipids showed mea-
surable binding to the L363 antibody, while no measurable binding affinity was observed
for the various β -glycosylceramides. These analyses were performed using the Biacore
T200 Biaevaluation global analysis software using subtracted sensorgrams (L363 anti-
body - Control antibody).

4.3.3 Observed anomerization from β -sphingopsychosine to α-sphingopsychosine

We have observed an interesting phenomenon with synthetic β -GluCer prepared in our laboratory.

Initially, NKT cell assays performed on the batch resulted in no observed stimulatory activity.

After being stored for a long period of time (6 months), NKT cell assays were again performed



4.3 Results and Discussion 134

resulting in stimulation of NKT cells. Taken in context with our reported analysis of the com-

mercial β -GluCer, this phenomenon posed an alternative explanation for the presence of an α-

contaminant. Can β -glycosylceramides undergo spontaneous anomerization? Figure 4.8, shows a

proposed mechanism of this process. Typically at neutral pH, anomerization has not been reported

to occur to glycolipids, but under acidic conditions anomerization could occur. In our proposed

mechanism, the amide proton interacts with a hydrogen-bonded water molecule which allows the

carbohydrate ring to open and the formed hydroxide to be stabilized by the amide proton. Refor-

mation of the water molecule, and attack at the anomeric position, would produce either the α or

β -GalCer (24:1), depending on what face of the aldehyde was attacked.

Figure 4.8 Proposed mechanism of spontaneous anomerization of β -GluCer(24:1)

If we could positively observe spontaneous anomerization, not only would this be a viable

means of alpha-contamination, but a possible occurrence in the body. Introduced in section 4.1,

β -psychosine and β -glucopsychosine are synthesized in vivo via ceramidases expressed in the

lysosome.67,68 It is possible that under physiologically-unique controlled conditions (acidic en-

vironment of the lysosome) anomerization might occur. With the knowledge that α-psychosine

and α-glucopsychosine are NKT cell antigens, and that CD1d is localized in the lysosome, these

antigens may be endogenous and could play a pivitol role in NKT cell biology.
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To address the viability of anomerization, we performed annomerization studies on β -GalCer

(24:1, sphingosine), and β -sphingopsychosine. We dissolved β -GalCer (24:1, sphingosine), and

β -sphingopsychosine in three different solvent systems and at pH 4.5 and pH 7 (25:75 DMSO:pH

7 buffered water, 25:75 DMSO:pH 4.5 buffered water, 12.5:12.5:75 MeOH:THF:pH 7 buffered

water, 12.5:12.5:75 MeOH:THF:pH 4.5 bluffered water, 0.5:99.5 Tween 20:pH 7 buffered water,

and 0.5:99.5 Tween 20:pH 4.5 buffered water). We chose pH 7 and pH 4.5 to mimic physiological

neutral pH and the pH of the lysosome, respectively.67 These samples were stirred and heated at

37◦C for six days. After a six day period, the samples were tested via the NKT cell assay de-

scribed in section 4.3.1. Figure 4.9 shows the only stimulatory results observed. These data show

that anomerization of the β -sphingopsychosine to the α-sphingopsychosine occured in DMSO at

pH 4.5. These preliminary results warrant further experimentation into spontaneous anomeriza-

tion. If anomerization is consistently observed in this forthcoming study, then further sub-cellular

localization, degradation, and trafficking studies will need to be pursued to verify if anomerization

is a mode of action in the production of α-lyso-ceramides in vivo.
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Figure 4.9 Data shows that β -sphingopsychosine loaded onto DC3.2 cells stimulated
DN32.D3 T cells. The analyzed concentrationof IL-2 in the supernatents is represented.

4.4 Conclusion

Purification and analysis of commercially available β -GluCer directed us towards the discovery of

stimulatory NKT cell antigens, α-psychosine, and α-glucopsychosine. L363, a CD1d-α-GalCer

specific antibody, blocked the stimulatory activity of Avanti’s β -GluCer (unpublished data ac-

quired at the Teyton lab). These data led us to speculate that a stimulatory α-linked contaminant

was present in the commercial β -GluCer sample. To verify this idea, SPR binding studies were

performed on the binding affinity of CD1d-bound synthetic glycosylceramides with the L363 anti-

body. These studies revealed that α-psychosine, α-glucopsychosine, and α-GluCer all measurably

bind to the L363 antibody, whereas no binding affinity was observed with their β counterparts.

Following this study, we wanted to see if anomerization between α- and β -GalCer (24:1, sphingo-
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sine) as well as α- and β -sphingopsychosine were possible. Preliminary data suggest that under

acidic conditions anomerization of β -sphingopsychosine to α-sphingopsychosine occurs. These

studies warrant further investigations to determine the presence and/or role of α-psychosine and

α-glucopsychosine in vivo.

4.5 Experimental Procedures

Preparation of 4.9: First, fresh triflic azide was made by the following procedure. Triflic anhy-

dride (3.18 mL, 18.9 mmol) and sodium azide (6.14 g, 94.5 mmol) were dissolved in water (20

mL) and DCM (20 mL) at 0◦C for two hours. Dissolved copper sulfate hydrate (151 mg, 0.947

mmol) and potassium carbonate (1.95 g, 14.2 mmol) in water (65 mL). This light blue solution was

added to a large 2 liter flask that contained phytosphingosine (3.00 g, 9.46 mmol), DCM (100 mL)

and MeOH (900 mL). To this reaction was added dropwise the triflic azide (just the DCM layer).

The reaction was left overnight. In the morning the solvent was pulled off. To the blue slush was

added acetic anhydride (8.04 mL, 85.2 mol), DMAP (288 mg, 2.37 mmol), and pyridine (200 mL).

After a few hours the reaction was completed. The pyridine was pulled off via high vacuum rotary

evaporator. A EtOAc:water (3 x 100 mL:100 mL) workup was performed. The organic layer was

dried over NaSO4, concentrated via rotary evaporator, and the residual solid was purified on SiO2

(20% EtOAc:Hexane). A white powder was recovered (3.16 g, 71% over two steps).
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Preparation of 4.10: Azide 4.9 (1.88 g, 4.00 mmol) was dissolved in an anhydrous 1:1

solution of THF and methanol (25 mL).Freshly prepared 1 M sodium methoxide was added (0.5

mL) to the reaction flask and the reaction was stirred for one hour at room temperature. Reac-

tion completion was verified via mass spectrometry and TLC. Upon completion, the solvent was

removed en vacuo and the resulting residue was loaded onto a bed of silica gel and subjected to

chromatography (5%, 10% MeOH:DCM). The purified compound was a white powder (1.25 g,

90%).

Preparation of 4.11: Compound 4.10 (2.16 g, 4.61 mmol) was dissolved in a minimal

amount of anhydrous pyridine (40 mL). Chloro(dimethyl)thexylsilane (1.35 mL, 6.91 mmol) was

added to the reaction flask. The reaction was monitored by mass spec for formation of the monosi-

lated product. Every hour, more chloro(dimethyl)thexylsilane was added as needed. Once the

starting material was completely consumed or presence of the di or tri silated was found, excess

acetic anhydride (2.61 mL, 21.8 mmol) was added. After positive confirmation of completion of

the reaction, the pyridine was evaporated via a high vacuum rotary evaporator. The dark syrup

was dissolved in water and washed with DCM. The organic layer was concentrated down and sub-

jected to flash chromatography (5%, 10% EtOAc/Hexane). The column yielded a white powder
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compound (2.00 g, 78%).

Preparation of 4.12: Compound 4.11 (250 mg, 0.452 mmol) was dissolved in DCM (3 mL)

and ACN (27 mL) and placed in a plastic centrifuge tube (with the appropriate stir bar). To this tube

was added 3 mL of hydrofluoric acid (48%). The reaction was monitored by TLC for formation

of product 2.11. Every thirty minutes, more hydrofluoric acid was added as needed. Once the

starting material was completely consumed, the reaction was quickly and carefully quenched on

a bed of solid NaHCO3 in a separate plastic container (equipped with the appropriate stir bar).

Water, DCM, and solid NaHCO3 were slowly added until a neutral or basic pH was reached. The

water/DCM workup was filtered to remove excess undissolved NaHCO3. The water was washed

with DCM (6 x 100 mL) and the organic layer was dried over NaSO4, concentrated (water bath

was 30◦C or below to minimize acetate migration), and subjected to flash chromatography (20%,

25% EtOAc/Hexane). The column yielded a white powder compound (146 mg, 76%). Note: this

reaction if done slowly, left overnight, heated up, or purified slowly can and will result in migration

of the 2-acetyl group to the primary alcohol. It is essential that the chemist quench this reaction

immediately after completion. 1H NMR (300 MHz, Chloroform-d) δ 5.23 - 5.10 (m, 2H), 3.90

(dd, J = 7.6, 3.8 Hz, 1H), 3.75 - 3.67 (m, 1H), 3.66 - 3.57 (m, 1H), 2.15 (s, 3H), 2.10 (s, 3H), 1.67

(s, 2H), 1.29 (m, 25H), 0.96 - 0.86 (m, 3H).
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Preparation of 4.15: Fully protected galactose 4.14 (200 mg, 0.291 mmol) was dissolved

in an acetone/water solution (20mL/3mL), followed by the portion wise addition of NBS (0.291

mmol). Subsequent equivalents of NBS were added until the reaction was completed (monitored

by TLC). Upon completion, the reaction was quenched with solid NaHCO3, and the acetone was

evaporated off. The compound was dissolved in DCM (25 mL). Solid potassium carbonate (750

mg) was added, followed by the addition of excess trichloroacetonitrile (291 µL, 2.91 mmol).

Once setup, the reaction was stirred for sixteen hours at room temperature. In the morning, the

potassium carbonate was filtered and washed with EtOAc (100 mL). The filtrate was dried off at

or below 30◦C en vacuo. This pale yellow solid was loaded onto a bed of silica gel and was eluted

with 15% EtOAc/Hexane. The two anomeric isomers were collected, combined, and concentrated

at or below 30◦C (170 mg, 79% from two steps)..

Preparation of 4.16: Donor 4.15 (100 mg, 0.135 mmol), azide 4.12 (50 mg, 0.113 mmol),

and 4 angstrom molecular sieves (450 mg) were stirred together for one hour in dry DCM (5

mL). The vessel was cooled to -10◦C (acetone/ice bath), followed by the dropwise addition of

trimethylsilyltriflate (13 µL, 0.176 mmol). The reaction temperature was maintained for two hours
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then quenched by the dropwise addition of triethyl amine. The M.S. were filtered and washed with

EtOAc by means of a plug silica gel column. The filtrate was concentrated and subsequently

loaded onto a silica gel column. Purification was achieved with a 10%, 20% EtOAc/Hexane eluent

system. Isolated 60 mgs of coupled product (53% yield). 1H NMR (500 MHz, Chloroform-d) δ

8.13 - 8.06 (m, 2H), 8.05 - 7.98 (m, 2H), 7.98 - 7.93 (m, 1H), 7.81 - 7.74 (m, 2H), 7.66 - 7.59 (m,

1H), 7.56 (td, J = 7.3, 1.3 Hz, 1H), 7.54 - 7.34 (m, 6H), 7.29 - 7.20 (m, 2H), 5.99 (d, J = 1.2 Hz,

1H), 5.81 (dd, J = 10.3, 7.9 Hz, 1H), 5.61 (dd, J = 10.4, 3.4 Hz, 1H), 5.11 - 5.02 (m, 2H), 4.91 (d,

J = 7.9 Hz, 1H), 4.69 (dd, J = 11.2, 6.3 Hz, 1H), 4.47 - 4.31 (m, 2H), 4.16 - 4.04 (m, 1H), 3.93

(dd, J = 9.9, 2.9 Hz, 1H), 3.70 (m, 1H), 2.03 (m, J = 9.2 Hz, 6H), 1.98 (s, 3H), 1.55 (d, J = 6.7

Hz, 2H), 1.26 (m, 24H), 0.88 (t, J = 6.9 Hz, 3H). 13C NMR (126 MHz, Chloroform-d) δ 171.14,

170.23, 169.45, 166.02, 165.56, 165.49, 165.01, 133.61, 133.32, 133.29, 133.20, 130.05, 129.79,

129.76, 129.34, 128.93, 128.70, 128.67, 128.65, 128.52, 128.49, 128.48, 128.32, 128.30, 128.27,

100.77, 77.25, 77.00, 76.80, 76.74, 72.34, 71.93, 71.67, 71.41, 69.58, 68.48, 67.93, 61.90, 60.39,

60.23, 31.91, 29.68, 29.66, 29.64, 29.62, 29.55, 29.51, 29.46, 29.35, 29.32, 25.35, 22.68, 21.04,

20.85, 20.72, 14.18, 14.11. HRMS (ESI) calcd for C56H67N3O14 [M+H]+: 1005.4623, found:

1023.4751.

Preparation of 4.17: Azide 4.16 (60 mg, 0.0597 mmol) was dissolved in 20 mL of anhy-

drous methyl alcohol. Freshly prepared 1 M sodium methoxide was added to the reaction flask and
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the reaction was stirred for one hour at room temperature. Reaction completion was verified via

mass spectromety and TLC. Upon completion, the solvent was removed en vacuo and the resulting

residue was subjected to flash chromatography (20% MeOH:DCM). The purified compound was

a white powder (25 mg, 83%). 1H NMR (500 MHz, Methanol-d4) δ 4.28 (d, J = 7.6 Hz, 1H),

4.11 - 4.06 (m, 1H), 3.97 - 3.90 (m, 1H), 3.86 - 3.70 (m, 4H), 3.59 - 3.44 (m, 5H), 1.57 (q, J = 8.2,

7.1 Hz, 2H), 1.41 - 1.26 (m, 24H), 0.89 (t, J = 6.8 Hz, 3H). HRMS (ESI) calcd for C24H47N3O8

[M+H]+: 505.3633, found: 523.3736.

Preparation of 4.1: Pd(OH)2 (a spatula tip) was added to a solution of compound 4.17 (25

mg, 0.0495 mmol) in MeOH:CHCl3 (4 mL, 1:1) at rt. The reaction vessel was charged with H2 gas

(3x vacuum-H2 flushes) and the resulting mixture stirred overnight. Filtration through Celite and

removal of the solvent under reduced pressure left a residue which was purified by flash column

chromatography (40% MeOH in CHCl3) to afford psychosine 4.2(17 mg, 72%) as a white powder.

1H NMR (500 MHz, Methanol-d4) δ 4.32 (d, J = 7.3 Hz, 1H), 4.09 - 4.04 (m, 2H), 3.84 (d, J =

2.9 Hz, 1H), 3.75 (m, 2H), 3.67 (dt, J = 8.6, 4.7 Hz, 1H), 3.62 - 3.48 (m, 4H), 3.48 - 3.44 (m, 1H),

1.56 (m, 2H), 1.41 - 1.26 (m, 24H), 0.89 (t, J = 6.8 Hz, 3H). 13C NMR (126 MHz, Methanol-d4) δ

103.11, 75.50, 73.25, 71.89, 71.81, 71.03, 68.92, 65.27, 61.22, 53.64, 48.11, 48.05, 47.94, 47.88,

47.77, 47.71, 47.68, 47.60, 47.43, 47.26, 47.09, 33.99, 31.65, 29.40, 29.37, 29.34, 29.05, 24.85,

22.31, 13.03. HRMS (ESI) calcd for C24H49NO8 [M+H]+: 479.3458, found: 480.3529.
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Preparation of 4.20: Fully protected glucose 4.19 (288 mg, 0.419 mmol) was dissolved in an

acetone/water solution (20mL/3mL), followed by the portion wise addition of NBS (0.419 mmol).

Subsequent equivalents of NBS were added until the reaction was completed (monitored by TLC).

Upon completion, the reaction was quenched with solid NaHCO3, and the acetone was evaporated

off. The resultant slurry was dissolved in DCM (25 mL). Solid potassium carbonate (750 mg) was

added, followed by the addition of excess trichloroacetonitrile (503 µL, 5.03 mmol). Once setup,

the reaction was stirred for sixteen hours at room temperature. In the morning, the potassium

carbonate was filtered and washed with EtOAc (100 mL). The filtrate was dried off at or below

30◦C en vacuo. This pale yellow solid was loaded onto a bed of silica gel and was eluted with

15% EtOAc/Hexane. The two anomeric isomers were collected, combined, and concentrated at or

below 30◦C (257 mg, 83% from two steps).

Preparation of 4.21: Donor 4.20 (125 mg, 0.169 mmol), azide 4.12 (108 mg, 0.254 mmol),

and 4 angstrom molecular sieves (500 mg) were stirred together for one hour in dry DCM (5

mL). The vessel was cooled to -10◦C (acetone/ice bath), followed by the dropwise addition of

trimethylsilyltriflate (16 µL, 0.0.845 mmol). The reaction temperature was maintained for two
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hours then quenched by the dropwise addition of TEA. The molecular sieves were filtered and

washed with EtOAc by means of a plug silica gel column. The filtrate was concentrated and subse-

quently loaded onto a silica gel column. Purification was achieved with a 15%, 20% EtOAc/Hexane

eluent system. 127 mgs of coupled product was isolated (75% yield). 1H NMR (500 MHz,

Chloroform-d) δ 8.06 - 8.00 (m, 2H), 7.93 (m, 4H), 7.85 - 7.79 (m, 2H), 7.59 - 7.46 (m, 3H),

7.46 - 7.24 (m, 7H), 5.91 (t, J = 9.6 Hz, 1H), 5.70 (t, J = 9.7 Hz, 1H), 5.54 (dd, J = 9.7, 7.8 Hz,

1H), 5.08 - 4.98 (m, 2H), 4.93 (d, J = 7.8 Hz, 1H), 4.65 (dd, J = 12.2, 3.2 Hz, 1H), 4.51 (dd, J =

12.2, 5.1 Hz, 1H), 4.18 (m, 1H), 4.03 (dd, J = 10.5, 7.7 Hz, 1H), 3.88 (dd, J = 10.5, 3.1 Hz, 1H),

3.66 (m, 1H), 1.98 (m, J = 14.2 Hz, 6H), 1.52 (q, J = 6.6, 6.0 Hz, 2H), 1.24 (d, J = 8.9 Hz, 24H),

0.88 (t, J = 6.8 Hz, 3H). 13C NMR (126 MHz, Chloroform-d) δ 170.21, 169.45, 166.10, 165.78,

165.11, 164.87, 133.44, 133.24, 133.19, 133.15, 129.82, 129.75, 129.73, 129.51, 129.27, 128.72,

128.39, 128.30, 128.27, 100.59, 77.25, 77.20, 76.99, 76.74, 72.82, 72.40, 72.29, 71.96, 71.67,

69.52, 68.61, 62.99, 60.22, 31.92, 29.69, 29.66, 29.65, 29.62, 29.55, 29.46, 29.35, 29.31, 25.33,

22.69, 20.84, 20.66, 14.12. HRMS (ESI) calcd for C56H67N3O14 [M+H]+: 1005.4623, found:

1023.4756.

Preparation of 4.22: Azide 4.20 (75 mg, 0.0746 mmol) was dissolved in 20 mL of anhy-

drous MeOH. Freshly prepared 1 M sodium methoxide was added to the reaction flask and the

reaction was stirred for one hour at room temperature. Reaction completion was verified via mass
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spectrometry and TLC. Upon completion, the solvent was removed in vacuo and the resulting

residue was subjected to flash chromatography (20% MeOH:DCM). The purified compound was

a white powder (37.0 mg, 98%). 1H NMR (300 MHz, Methanol-d4) δ 4.35 (d, J = 7.7 Hz, 1H),

4.13 (dd, J = 10.7, 7.9 Hz, 1H), 4.03 - 3.78 (m, 3H), 3.77 - 3.66 (m, 1H), 3.64 - 3.54 (m, 2H), 3.46

- 3.18 (m, 4H), 1.76 - 1.66 (m, 1H), 1.66 - 1.53 (m, 2H), 1.34 (d, J = 11.2 Hz, 23H), 0.98 - 0.87 (m,

3H). 13C NMR (75 MHz, Methanol-d4) δ 102.86, 76.66, 76.63, 74.53, 73.67, 71.24, 70.16, 68.26,

62.88, 61.32, 48.46, 48.18, 47.89, 47.61, 47.33, 47.04, 46.76, 32.57, 31.70, 29.42, 29.39, 29.10,

25.33, 22.36, 13.07. HRMS (ESI) calcd for C24H47N3O8 [M+H]+: 505.3633, found: 523.3610.

Preparation of 4.2: Pd(OH)2 (a spatula tip) was added to a solution of compound 4.22 (37

mg, 0.130 mmol) in MeOH:CHCl3 (4 mL, 1:1) at rt. The reaction vessel was charged with H2 gas

(3x vacuum-H2 flushes) and the resulting mixture stirred overnight. Filtration through Celite and

removal of the solvent under reduced pressure left a residue which was purified by flash column

chromatography (40% MeOH in CHCl3) to afford psychosine 4.2 (27 mg, 77%) as a white powder.

1H NMR (500 MHz, Methanol-d4) δ 4.35 (d, J = 7.8 Hz, 1H), 4.06 (d, J = 6.6 Hz, 2H), 3.90 (dd,

J = 11.8, 2.2 Hz, 1H), 3.67 (dd, J = 11.7, 5.6 Hz, 2H), 3.58 (dd, J = 8.9, 4.2 Hz, 1H), 3.46 (dt, J =

8.7, 4.2 Hz, 1H), 3.42 - 3.21 (m, 4H), 1.55 (m, 2H), 1.41 - 1.26 (m, 24H), 0.89 (t, J = 6.9 Hz, 3H).

13C NMR (126 MHz, Methanol-d4) δ 102.63, 76.66, 76.38, 73.42, 71.91, 71.81, 70.05, 65.38,

61.05, 53.48, 48.21, 48.09, 48.04, 47.92, 47.88, 47.87, 47.85, 47.82, 47.79, 47.75, 47.73, 47.71,
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47.69, 47.69, 47.68, 47.67, 47.66, 47.64, 47.61, 47.58, 47.53, 47.52, 47.50, 47.45, 47.41, 47.24,

47.07, 33.98, 31.65, 29.40, 29.37, 29.35, 29.33, 29.05, 24.83, 22.31, 13.02. HRMS (ESI) calcd for

C24H49NO8 [M+H]+: 479.3458, found: 480.3518.

Preparation of 4.24: Fully protected galactose 4.23 (936 mg, 1.58 mmol) was dissolved in

an acetone/water solution (30mL/5mL) and cooled to -10◦C (Due to the armed sugar, this reaction

has to be done at cold temperatures, or one will end up with a variety of byproducts), followed

by the portion wise addition of NBS (141 mg, 0.79 mmol). Subsequent equivalents of NBS were

added until the reaction was completed (monitored by TLC). Upon completion, the reaction was

quenched with solid NaHCO3, and the acetone was evaporated off. The remaining mixture was

dissolved in water, washed with DCM (3 x 50 mL), dried with NaSO4, concentrated, and subjected

to flash chromatography (30% EtOAc:Hexanes). The white powder was dried collected for the next

reaction (600 mg, 75%).

Preparation of 4.25: Under nitrogen, 2,4,6-Tri-tert-butylpyrimidine (204 mg, 0.820 mmol),

phenyl sulfoxide (118 mg, 0.585 mmol), and 3 angstrom molocular sieves (250 mg) were added
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to a stirred solution of donor 4.24 (151 mg, 0.281 mmol) dissolved in 4.5 mL of anhydrous DCM.

The combined mixture was stirred at room temperature for one hour. The flask was then cooled

to -60◦C, at which point triflic anhydride (0.055 mL, 0.328 mmol) was added dropwise to the

solution. The vessel was allowed to warm to -40◦C at which point acceptor 4.12 (100 mg, 0.234

mmol) dissolved in 0.5 mL of DCM was added dropwise. The reaction then warmed up to room

temperature and was quenched by the addition of TEA. Filtration through a bed of silica gel (ethyl

acetate as the eluent) followed by removal of the solvent left a residue which was purified by flash

column chromatography (15% ethyl acetate in hexane) to afford glycolipid 4.25 as a white powder

(170 mg, 76%). 1H NMR (500 MHz, Chloroform-d) δ 7.41 - 7.23 (m, 20H), 5.12 - 5.05 (m, 2H),

4.94 (d, J = 11.5 Hz, 1H), 4.89 - 4.67 (m, 6H), 4.56 (d, J = 11.5 Hz, 1H), 4.46 (d, J = 11.9 Hz, 1H),

4.40 (d, J = 11.9 Hz, 1H), 4.04 (dd, J = 9.7, 3.6 Hz, 1H), 4.00 - 3.91 (m, 3H), 3.88 (dd, J = 10.9, 2.9

Hz, 1H), 3.80 (dd, J = 5.8, 2.9 Hz, 1H), 3.60 (dd, J = 10.9, 8.4 Hz, 1H), 3.55 - 3.42 (m, 3H), 2.01

(s, J = 3.9 Hz, 6H), 1.57 (d, J = 4.7 Hz, 2H), 1.25 (d, J = 5.5 Hz, 23H), 0.88 (t, J = 6.8 Hz, 3H).

13C NMR (126 MHz, Chloroform-d) δ 170.25, 169.64, 138.83, 138.67, 138.54, 137.92, 128.37,

128.32, 128.28, 128.26, 128.21, 127.82, 127.72, 127.70, 127.59, 127.57, 127.51, 127.43, 99.07,

78.64, 77.26, 77.20, 77.00, 76.75, 76.45, 75.15, 74.71, 73.41, 73.27, 73.17, 72.26, 72.18, 69.99,

69.22, 68.41, 60.84, 31.92, 29.69, 29.67, 29.65, 29.63, 29.56, 29.51, 29.48, 29.36, 25.31, 22.69,

20.92, 20.71, 14.13. HRMS (ESI) calcd for C56H75N3O10 [M+H]+: 949.5452, found: 967.5865.
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Preparation of 4.26: Azide 4.25 (81 mg, 85.3 µmol) was dissolved in 20 mL of anhy-

drous MeOH. Freshly prepared 1 M sodium methoxide was added to the reaction flask and the

reaction was stirred for one hour at room temperature. Reaction completion was verified via mass

specromety and TLC. Upon completion, the solvent was removed in vacuo and the resulting residue

was subjected to flash chromatography (20% ethyl acetate:hexane). The purified compound was

a white powder (71 mg, 96%). 1H NMR (500 MHz, Chloroform-d) δ 7.69 - 7.62 (m, 5H), 7.50

- 7.40 (m, 8H), 7.40 - 7.23 (m, 7H), 4.91 (dd, J = 11.6, 8.4 Hz, 2H), 4.81 - 4.63 (m, 4H), 4.59

- 4.46 (m, 2H), 4.42 (d, J = 11.9 Hz, 1H), 4.16 (dd, J = 10.6, 3.4 Hz, 1H), 4.08 - 3.89 (m, 4H),

3.81 (dd, J = 10.6, 3.8 Hz, 1H), 3.77 - 3.72 (m, 1H), 3.60 (m, 1H), 3.56 - 3.44 (m, 2H), 3.39 (d,

J = 7.1 Hz, 1H), 2.31 (d, J = 5.3 Hz, 1H), 1.52 (m, 2H), 1.25 (s, 24H), 0.88 (t, J = 6.8 Hz, 3H).

13C NMR (126 MHz, Chloroform-d) δ 145.60, 138.45, 138.32, 137.91, 137.84, 131.03, 129.31,

129.29, 129.29, 129.28, 129.21, 128.45, 128.41, 128.39, 128.23, 128.19, 128.13, 127.95, 127.80,

127.73, 127.63, 127.61, 127.58, 124.82, 124.77, 124.69, 99.22, 79.21, 77.26, 77.20, 77.00, 76.75,

75.83, 75.22, 74.77, 74.68, 74.21, 73.41, 72.91, 72.80, 70.05, 69.13, 68.85, 59.97, 32.68, 31.92,

29.70, 29.68, 29.66, 29.65, 29.64, 29.36, 25.82, 22.69, 14.13. HRMS (ESI) calcd for C52H71N3O8

[M+H]+: 865.5241, found: 883.5685.
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Preparation of 4.3: Pd(OH)2 (a spatula tip) was added to a solution of compound 4.26 (120

mg, 0.130 mmol) in MeOH:CHCl3 (5 mL, 1:1) at rt. The reaction vessel was charged with H2 gas

(3x vacuum-H2 flushes) and the resulting mixture stirred overnight. Filtration through Celite and

removal of the solvent under reduced pressure left a residue which was purified by flash column

chromatography (40% MeOH in CHCl3) to afford compound 4.3 (35 mg, 57%) as a white powder.

(aggreagation was observed in the NMR spectra) 1H NMR (500 MHz, Pyridine-d5) δ 5.43 (s, 1H),

4.99 (dd, J = 10.8, 3.5 Hz, 1H), 4.76 (m, 1H), 4.66 (m, 3H), 4.54 (s, 1H), 4.51 - 4.32 (m, 5H), 4.18

- 4.11 (m, 1H), 3.62 (d, J = 3.3 Hz, 1H), 2.26 (m, J = 7.1, 3.9 Hz, 1H), 1.89 - 1.82 (m, 1H), 1.79

(dd, J = 9.2, 4.3 Hz, 1H), 1.64 - 1.58 (m, 1H), 1.24 (d, J = 11.4 Hz, 21H), 0.87 (t, J = 6.9 Hz, 3H).

13C NMR (126 MHz, pyridine) δ 100.18, 72.63, 71.66, 71.01, 69.93, 69.34, 69.27, 64.50, 61.15,

53.41, 34.02, 30.70, 28.79, 28.64, 28.57, 28.51, 28.50, 28.20, 28.19, 24.67, 21.52, 12.87. HRMS

(ESI) calcd for C24H49NO8 [M+H]+: 479.3458, found: 480.3446.

Preparation of 4.28: Fully protected glucose 4.27 (2.38 g, 3.76 mmol) was dissolved in an

acetone/water solution (40mL/5mL) and cooled to -10◦C, followed by the portion wise addition



4.5 Experimental Procedures 150

of NBS (335 mg, 1.88 mmol). Subsequent equivalents of NBS were added until the reaction was

completed (monitored by TLC). Upon completion, the reaction was quenched with solid NaHCO3,

and the acetone was evaporated off. The remaining mixture was dissolved in water, washed with

DCM (3 x 50 mL), dried with NaSO4, concentrated, and subjected to flash chromatography (10%

EtOAc:Hexanes). The white powder was dried collected for the next reaction (1.70 g, 84%).

Preparation of 4.29: 2,4,6-Tri-tert-butylpyrimidine (204 mg, 0.820 mmol), phenyl sulfox-

ide (118 mg, 0.585 mmol), and 3 angstrom molocular sieves (250 mg) were added to a stirred

solution of donor 4.28 (151 mg, 0.281 mmol) dissolved in 4.5 mL of anhydrous DCM. The com-

bined mixture was stirred at room temperature for one hour. The flask was then cooled to -60◦C,

at which point triflic anhydride (55 microliter, 0.328 mmol) was added dropwise to the solution.

The vessel was allowed to warm to -40◦C at which point ceramide 4.12 (100 mg, 0.234 mmol),

dissolved in 0.5 mL of DCM, was added dropwise. The reaction then warmed up to room tem-

perature and was quenched by the addition of TEA. Filtration through a bed of silica gel (ethyl

acetate as the eluent) followed by removal of the solvent left a residue which was purified by flash

column chromatography (15% EtOAc:Hexanes) to afford glycolipid 4.29 as a white powder (150

mg, 68%). 1H NMR (500 MHz, Chloroform-d) δ 7.69 - 7.62 (m, 6H), 7.50 - 7.40 (m, 9H), 7.39 -

7.23 (m, 5H), 5.12 (t, J = 5.6 Hz, 2H), 4.92 (d, J = 11.1 Hz, 2H), 4.86 - 4.70 (m, 4H), 4.63 - 4.51
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(m, 3H), 4.41 (d, J = 7.7 Hz, 1H), 4.16 - 4.03 (m, 2H), 3.80 - 3.68 (m, 3H), 3.68 - 3.57 (m, 3H),

3.51 - 3.43 (m, 2H), 2.09 - 2.00 (m, 6H), 1.64 - 1.57 (m, 2H), 1.36 - 1.22 (m, 24H), 0.88 (t, J = 6.8

Hz, 3H). 13C NMR (126 MHz, Chloroform-d) δ 170.25, 169.59, 145.62, 138.55, 138.50, 138.06,

138.02, 131.04, 131.03, 129.48, 129.37, 129.34, 129.32, 129.30, 129.27, 128.38, 128.37, 128.35,

128.34, 127.99, 127.98, 127.94, 127.92, 127.86, 127.77, 127.74, 127.72, 127.70, 127.63, 127.60,

127.55, 124.85, 124.80, 124.78, 124.77, 124.76, 124.75, 124.73, 124.67, 109.99, 103.15, 84.58,

82.28, 77.71, 77.28, 77.22, 77.02, 76.77, 75.61, 75.03, 74.98, 73.47, 73.44, 72.40, 71.84, 68.83,

68.48, 60.75, 60.37, 31.92, 29.69, 29.67, 29.65, 29.63, 29.59, 29.56, 29.48, 29.41, 29.35, 25.38,

25.35, 22.69, 21.04, 20.93, 20.78, 14.20, 14.12. HRMS (ESI) calcd for C56H75N3O10 [M+H]+:

949.5452, found: 967.5740.

Preparation of 4.30: Azide 4.29 was dissolved in 20 mL of anhydrous methyl alcohol.

Freshly prepared 1 M sodium methoxide was added to the reaction flask and the reaction was stirred

for one hour at room temperature. Reaction completion was verified via mass spectrometry and

TLC. Upon completion, the solvent was removed in vacuo and the resulting residue was subjected

to flash chromatography (20% ethyl acetate:hexane). The purified compound was a white powder

(132 mg, 91%). 1H NMR (500 MHz, Chloroform-d) δ 7.66 (dd, J = 7.8, 1.8 Hz, 1H), 7.49 - 7.43

(m, 1H), 7.39 - 7.24 (m, 16H), 7.18 - 7.11 (m, 2H), 4.95 - 4.88 (m, 1H), 4.83 (dd, J = 11.2, 8.7 Hz,
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3H), 4.72 (d, J = 3.7 Hz, 1H), 4.62 (dd, J = 21.2, 12.1 Hz, 2H), 4.54 - 4.44 (m, 3H), 4.17 - 4.09 (m,

2H), 3.95 (t, J = 9.3 Hz, 1H), 3.83 (m, 1H), 3.79 - 3.54 (m, 6H), 3.06 (d, J = 5.8 Hz, 1H), 2.39 (d, J

= 5.2 Hz, 1H), 1.63 - 1.56 (m, 2H), 1.55 - 1.48 (m, 1H), 1.41 (m, 2H), 1.35 - 1.23 (m, 22H), 0.89 (t,

J = 6.9 Hz, 3H). 13C NMR (126 MHz, Chloroform-d) δ 138.50, 138.14, 137.76, 137.72, 131.04,

129.31, 128.55, 128.54, 128.44, 128.39, 128.38, 128.36, 128.34, 128.11, 128.08, 128.07, 127.94,

127.90, 127.78, 127.76, 127.73, 127.71, 127.65, 127.63, 98.44, 82.05, 79.33, 77.49, 77.26, 77.21,

77.00, 76.75, 75.73, 74.97, 74.81, 73.83, 73.48, 72.48, 70.87, 68.28, 68.14, 60.49, 60.38, 32.61,

31.92, 29.70, 29.68, 29.66, 29.64, 29.36, 25.81, 22.69, 21.04, 14.19, 14.12. HRMS (ESI) calcd for

C52H71N3O8 [M+H]+: 865.5241, found: 883.5621.

Preparation of 4.4: Pd(OH)2 (a spatula tip) was added to a solution of azide 4.29 (35 mg,

0.0405 mmol) in MeOH:CHCl3 (5 mL, 1:1) at rt. The reaction vessel was charged with H2 gas

(3x vacuum-H2 flushes) and the resulting mixture stirred overnight. Filtration through Celite and

removal of the solvent under reduced pressure left a residue which was purified by flash column

chromatography (40% MeOH in CHCl3) to afford amine 4.4 (35 mg, 57%) as a white powder.

(aggreagation was observed in the NMR) 1H NMR (500 MHz, Pyridine-d5) δ 5.42 (d, J = 3.7 Hz,

1H), 4.94 (dd, J = 10.7, 3.5 Hz, 1H), 4.78 (t, J = 9.2 Hz, 1H), 4.73 - 4.64 (m, 2H), 4.50 - 4.34 (m,

3H), 4.29 (dd, J = 11.8, 5.3 Hz, 1H), 4.19 (t, J = 9.3 Hz, 1H), 4.12 (m, 2H), 3.62 (s, 1H), 2.27 -
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2.22 (m, 1H), 1.88 - 1.80 (m, 1H), 1.80 - 1.72 (m, 1H), 1.58 (m, 1H), 1.42 - 1.21 (m, 22H), 0.88

(t, J = 6.8 Hz, 3H). 13C NMR (126 MHz, pyridine) δ 100.05, 73.72, 73.19, 72.56, 72.52, 70.96,

70.39, 64.65, 61.12, 53.46, 33.98, 30.70, 28.78, 28.63, 28.57, 28.50, 28.19, 24.66, 21.52, 12.87.

HRMS (ESI) calcd for C24H49NO8 [M+H]+: 479.3458, found: 480.3437

Preparation of 4.31: All glassware was flame dried under a vacuum to evaporate off any

microscopic water that had collected in the flasks from moisture in the air. Ethyl amine (10 mL)

was condensed in a two-neck flame-dried RBF that was cooled to -78◦C (acetone:dry ice bath).

Hexane-washed lithium (117 mg, 16.9 mmol) was added to the ethyl amine and stirred for half an

hour. After the solution turned a dark blue color, compound 2.7 (492 mg, 1.13 mmol) was dissolved

in anhydrous THF (15 mL), cooled to -78◦C, and transferred via cannula into the dissolving metal

solution. The reaction was maintained at -78◦C for four hours. The reaction was quenched with

solid ammonium chloride and raised to room temperature (at which point the solution turned a

creamy yellow color). The quenched reaction stirred overnight in a hood to allow any excess ethyl

amine to evaporate. The next day the excess THF was removed via rotary evaporator and the

slurry was dissolved in water and extracted with diethyl ether (4 x 25 mL). This ether layer was

dried over NaSO4, impregnated with silica gel, and loaded dry onto a column. A very polar eluent

method (0.5:5:95, 1:10:90, 1:15:85 ammonium hydroxide:MeOH:DCM) was employed to purify

the compound (317 mg, 94%).
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Preparation of 4.32: First, fresh triflic azide was made by the following procedure. Triflic

anhydride (358 µL, 2.12 mmol) and sodium azide (689 mg, 10.6 mmol) were dissolved in water

(20 mL) and DCM (20 mL) at 0◦C for two hours. Dissolved copper sulfate hydrate (17 mg, 0.106

mmol) and potassium carbonate (219 mg, 1.59 mmol) in water (5 mL). This light blue solution

was added to a large 2 liter flask that contained sphingosine, and MeOH (95 mL). To this reaction

was added dropwise the triflic azide (just the DCM layer). The reaction was left overnight. In the

morning the solvent was pulled off. Upon completion, the solvent was removed en vacuo and the

resulting residue was loaded onto a bed of silica gel and subjected to chromatography (25%, 30%

EtOAc:Hexanes). A white powder was recovered (243 g, 70% over two steps).

Preparation of 4.33: Compound 4.10 (240 mg, 0.738 mmol) was dissolved in a minimal

amount of anhydrous pyridine (5 mL). TDS-Cl (145 µL, 0.738 mmol) was added to the reaction

flask. The reaction was monitored by mass spec for formation of the mono-silated product. Every

hour, more chloro(dimethyl)thexylsilane was added as needed.



4.5 Experimental Procedures 155

Preparation of 4.34: Once the compound 4.33 was completely consumed or presence of the

di or tri silated was found, excess acetic anhydride (279 µL, 2.95 mmol) was added. After positive

confirmation of completion of the reaction, the pyridine was evaporated via a high vacuum rotary

evaporator. The dark syrup was dissolved in water and washed with DCM. The organic layer was

concentrated down and subjected to flash chromatography (5%, 10% EtOAc/Hexane). The column

yielded a white powder compound (418 mg, 82%).

Preparation of 4.35: Compound 4.34 (162 mg, 0.318 mmol) was dissolved in DCM (2 mL)

and ACN (20 mL) and placed in a plastic centrifuge tube (with the appropriate stir bar). To this tube

was added 0.5 mL of hydrofluoric acid (48%). The reaction was monitored by TLC for formation

of product 4.35. Every thirty minutes, more hydrofluoric acid was added as needed. Once the

starting material was completely consumed, the reaction was quickly and carefully quenched on

a bed of solid NaHCO3 in a separate plastic container (equipped with the appropriate stir bar).

Water, DCM, and solid NaHCO3 were slowly added until a neutral or basic pH was reached. The

water/DCM workup was filtered to remove excess undissolved NaHCO3. The water was washed

with DCM (6 x 25 mL) and the organic layer was dried over NaSO4, concentrated (water bath

was 30◦C or below to minimize acetal migration), and subjected to flash chromatography (20%,

25% EtOAc/Hexane). The column yielded a white powder compound (78 mg, 67%). Note: this

reaction if done slowly, left overnight, heated up, or purified slowly can and will result in migration

of the 2-acetyl group to the primary alcohol. It is essential that the chemist quench this reaction
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immediately after completion. 1H NMR (500 MHz, Chloroform-d) δ 5.86 (dd, J = 14.8, 6.8 Hz,

1H), 5.47 - 5.34 (m, 2H), 3.68 - 3.52 (m, 3H), 2.11 (s, 3H), 2.05 (m, 2H), 1.25 (s, 23H), 0.88 (t, J =

6.9 Hz, 3H). 13C NMR (126 MHz, Chloroform-d) δ 170.21, 138.09, 123.93, 77.24, 77.19, 76.99,

76.74, 74.32, 65.92, 61.64, 32.26, 31.91, 29.67, 29.65, 29.64, 29.56, 29.40, 29.34, 29.12, 28.65,

22.68, 21.08, 14.11.

Preparation of 4.36: Donor 4.15 (75 mg, 0.101 mmol), azide 4.35 (56 mg, 0.152 mmol), and

4 angstrom molecular sieves (300 mg) were stirred together for one hour in dry DCM (3 mL). The

vessel was cooled to -10◦C (acetone/ice bath), followed by the dropwise addition of trimethylsilyl-

triflate (9 µL, 0.051 mmol). The reaction temperature was maintained for two hours then quenched

by the dropwise addition of TEA. The molecular sieves were filtered and washed with EtOAc by

means of a plug silica gel column. The filtrate was concentrated and subsequently loaded onto a

silica gel column. Purification was achieved with a 10%, 15%, 20% EtOAc/Hexane eluent system.

74 mgs of coupled product was isolated (77% yield). 1H NMR (500 MHz, Chloroform-d) δ 8.10

(dt, J = 7.2, 1.4 Hz, 2H), 8.03 (dd, J = 8.1, 1.5 Hz, 2H), 7.98 - 7.91 (m, 2H), 7.78 (dd, J = 8.2, 1.4

Hz, 2H), 7.66 - 7.61 (m, 2H), 7.57 (td, J = 7.2, 1.4 Hz, 2H), 7.53 - 7.34 (m, 6H), 7.28 - 7.21 (m,

2H), 5.97 (d, J = 3.4, 1H), 5.80 (m, 1H), 5.71 (dd, J = 15.5, 6.8 Hz, 1H), 5.57 (dd, J = 10.4, 3.5

Hz, 1H), 5.29 - 5.21 (m, 1H), 4.87 (d, J = 8.0 Hz, 1H), 4.65 (dd, J = 11.4, 6.9 Hz, 1H), 4.42 (dd, J

= 11.4, 6.2 Hz, 1H), 4.34 (dd, J = 8.7, 5.2 Hz, 1H), 4.30 - 4.23 (m, 1H), 4.19 - 4.03 (m, 2H), 3.76



4.5 Experimental Procedures 157

(m, 1H), 3.70 - 3.64 (m, 1H), 2.05 (m, 5H), 1.41 - 1.34 (m, 2H), 1.26 (q, J = 7.3 Hz, 22H), 0.87

(td, J = 6.9, 2.2 Hz, 3H). 13C NMR (126 MHz, Chloroform-d) δ 171.11, 170.75, 170.44, 165.96,

165.57, 165.53, 165.01, 139.96, 136.39, 133.59, 133.35, 133.25, 133.15, 130.05, 129.77, 129.74,

129.71, 129.69, 129.67, 129.46, 129.38, 128.95, 128.73, 128.67, 128.64, 128.49, 128.47, 128.41,

128.33, 128.31, 128.26, 127.22, 123.55, 97.55, 78.36, 77.25, 77.20, 77.00, 76.74, 72.63, 71.74,

71.40, 69.59, 68.06, 64.53, 63.69, 63.28, 62.98, 62.08, 60.37, 32.32, 32.28, 31.91, 29.70, 29.67,

29.65, 29.64, 29.62, 29.57, 29.44, 29.41, 29.34, 29.25, 29.15, 28.86, 28.77, 22.67, 21.03, 20.73,

20.70, 14.18, 14.10. HRMS (ESI) calcd for C54H63N3O12 [M+H]: 945.4412, found: 963.4771.

Preparation of 4.37: Azide 4.36 (64 mg, 67.6 µmol) was dissolved in 10 mL of anhydrous

methyl alcohol and 5 mL of THF. Freshly prepared 1 M sodium methoxide (0.1 mL) was added to

the reaction flask and the reaction was stirred for one hour at room temperature. Reaction comple-

tion was verified via mass spectrometry and TLC. Upon completion, the solvent was removed en

vacuo and the resulting residue was subjected to flash chromatography (20% ethyl acetate:hexane).

The purified compound was a white powder (29 mg, 88%). 1H NMR (500 MHz, Methanol-d4) δ

5.84 (dt, J = 15.4, 6.8 Hz, 1H), 4.34 (dd, J = 8.7, 6.4 Hz, 1H), 4.28 (d, J = 7.7 Hz, 1H), 3.82 - 3.66

(m, 3H), 3.62 (dd, J = 11.7, 6.8 Hz, 1H), 3.56 - 3.46 (m, 3H), 3.46 - 3.39 (m, 2H), 2.15 - 2.07 (m,

2H), 1.38 - 1.26 (m, 24H), 0.89 (t, J = 6.8 Hz, 3H). 13C NMR (126 MHz, Methanol-d4) δ 138.07,

132.10, 125.53, 99.51, 76.72, 75.35, 73.60, 70.97, 68.95, 66.69, 61.45, 61.20, 53.37, 48.20, 48.09,
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48.03, 47.92, 47.89, 47.86, 47.85, 47.83, 47.81, 47.75, 47.69, 47.66, 47.58, 47.52, 47.41, 47.24,

47.07, 32.00, 31.65, 29.37, 29.35, 29.34, 29.33, 29.17, 29.05, 28.80, 28.67, 22.31, 13.01. HRMS

(ESI) calcd for C24H45N3O7 [M+H]: 487.3258, found: 505.3642.

Preparation of 4.5: Compound 4.37 (29 mg, 0.0595 mmol) was dissolved in 4 mL of 1:1

THF:MeOH. 150 mg of granular zinc and 0.5 mL of glacial acetic acid were added to the flask. The

mixture was sonicated for 30 minutes. Upon completion the solvent was transferred to a separate

RBF and the solvent was dried off via a high vacuum rotary evaporator. Next, the compound

was dissolved in 4 mL of 1:1 THF:MeOH. This solution was basified with concentrated NaOH

(until pH 12) and stirred for one hour. Upon completion the solvent was dried off via a high

vacuum rotary evaporator and the material was loaded onto a small silica gel column and subjected

to a polar eluent system (25:65:2 MeOH:DCM:H2O, 25:65:4 MeOH:DCM:H2O, and 65:25:10

MeOH:DCM:H2O). The resultant compound was a white powder (24 mg, 87%). 1H NMR (500

MHz, Methanol-d4) δ 5.89 (dt, J = 14.5, 6.8 Hz, 1H), 5.41 (dd, J = 15.5, 7.7 Hz, 1H), 4.40 (dd, J =

7.9, 4.3 Hz, 1H), 4.39 (m, 1H), 4.24 (d, J = 7.7 Hz, 1H), 3.82 - 3.72 (m, 2H), 3.72 - 3.64 (m, 2H),

3.62 - 3.57 (m, 1H), 3.57 - 3.50 (m, 1H), 3.48 - 3.41 (m, 2H), 3.06 (dt, J = 9.2, 4.6 Hz, 1H), 2.11

(q, J = 7.2 Hz, 2H), 1.43 (m, 2H), 1.30 (d, J = 9.7 Hz, 22H), 0.90 (t, J = 6.8 Hz, 3H). 13C NMR

(126 MHz, Methanol-d4) δ 137.51, 124.66, 99.92, 77.22, 75.44, 73.42, 71.03, 68.96, 61.30, 60.79,

55.97, 48.19, 48.08, 48.05, 48.02, 47.91, 47.89, 47.87, 47.85, 47.77, 47.73, 47.70, 47.69, 47.68,
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47.66, 47.65, 47.65, 47.63, 47.62, 47.60, 47.56, 47.54, 47.53, 47.52, 47.52, 47.51, 47.50, 47.50,

47.49, 47.48, 47.48, 47.47, 47.45, 47.44, 47.43, 47.42, 47.39, 47.36, 47.35, 47.34, 47.34, 47.33,

47.33, 47.32, 47.31, 47.29, 47.26, 47.22, 47.17, 47.07, 47.05, 32.03, 31.65, 29.38, 29.37, 29.34,

29.20, 29.05, 28.94, 28.78, 22.31, 13.00. HRMS (ESI) calcd for C24H47NO7 [M+H]: 461.3353,

found: 462.3424.

Preparation of 4.38: First, fresh triflic azide was made by the following procedure. Triflic

anhydride (4.85 mL, 28.8 mmol) and sodium azide (9.36 g, 144 mmol) were dissolved in water

(40 mL) and DCM (40 mL) at 0◦C for two hours. Dissolved copper sulfate hydrate (230 mg, 144

mmol) and potassium carbonate (2.98 g, 21.6 mmol) in water (40 mL). This light blue solution

was added to a large 2 liter flask that contained sphingosine (4.30 g, 14.4 mmol), and MeOH (950

mL). To this reaction was added dropwise the triflic azide (just the DCM layer). The reaction

was left overnight. In the morning the solvent was pulled off. Upon completion, the solvent was

removed en vacuo and the resulting residue was loaded onto a bed of silica gel and subjected to

chromatography (30% MeOH:DCM). The purified compound was a white powder (2.40 g, 45%,

over two steps(sphingosine formation)).

Preparation of 4.39: One equivalent of acetic anhydride (2,780 µL, 29.52 mmol) was added
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to a solution of compound 4.38 in pyridine. A catalytic amount of DMAP was added to the mixture.

After positive confirmation of reaction completion, the pyridine was evaporated via a high vacuum

rotary evaporator. The dark syrup was dissolved in water and washed with DCM. The organic

layer was concentrated down and subjected to flash chromatography (10%, 15% EtOAc/Hexane).

The column yielded a white powder compound. 1H NMR (500 MHz, Chloroform-d) δ 5.85 - 5.76

(m, 1H), 5.51 (m, 1H), 4.27 (dd, J = 11.7, 3.6 Hz, 1H), 4.19 - 4.10 (m, 2H), 3.67 (m, 1H), 2.11

(s, 3H), 2.08 - 2.02 (m, 2H), 1.43 - 1.19 (m, 23H), 0.88 (t, J = 6.9 Hz, 3H). 13C NMR (126 MHz,

Chloroform-d) δ 170.77, 136.44, 127.19, 77.24, 77.19, 76.99, 76.73, 72.63, 64.52, 63.69, 32.28,

31.91, 29.67, 29.66, 29.64, 29.57, 29.44, 29.34, 29.15, 28.86, 22.67, 20.73, 14.10.

Preparation of 4.40: Donor 4.15 (95 mg, 0.129 mmol), azide 4.35 (71 mg, 0.193 mmol),

and 4 angstrom molecular sieves (300 mg) were stirred together for one hour in dry DCM (3

mL). The vessel was cooled to -10◦C (acetone/ice bath), followed by the dropwise addition of

trimethylsilyltriflate (12 µL, 0.0645 mmol). The reaction temperature was maintained for two

hours then quenched by the dropwise addition of TEA. The molecular sieves were filtered and

washed with EtOAc by means of a plug silica gel column. The filtrate was concentrated and

subsequently loaded onto a silica gel column. Purification was achieved with a 10%, 15%, 20%

EtOAc/Hexane eluent system. Isolated 120 mgs of coupled product (99% yield). 1H NMR (500
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MHz, Chloroform-d) δ 8.09 (d, J = 7.6 Hz, 2H), 8.00 (dd, J = 16.8, 7.7 Hz, 4H), 7.78 (d, J = 7.7

Hz, 2H), 7.66 - 7.34 (m, 9H), 7.28 - 7.21 (m, 3H), 6.00 (d, J = 3.5 Hz, 1H), 5.81 (dd, J = 10.4,

7.8 Hz, 1H), 5.67 (dd, J = 14.8, 7.2 Hz, 1H), 5.60 (dd, J = 10.4, 3.5 Hz, 1H), 5.40 - 5.26 (m, 2H),

4.89 (d, J = 7.9 Hz, 1H), 4.69 (dd, J = 11.2, 6.4 Hz, 1H), 4.41 (dd, J = 11.3, 6.8 Hz, 1H), 4.33

(t, J = 6.7 Hz, 1H), 4.12 (q, J = 7.1 Hz, 1H), 4.00 (dd, J = 10.6, 6.4 Hz, 1H), 3.76 (dd, J = 10.6,

4.6 Hz, 1H), 3.58 (q, J = 5.5 Hz, 1H), 2.08 - 1.91 (m, 5H), 1.34 - 1.21 (m, 24H), 0.87 (t, J = 6.8

Hz, 3H). 13C NMR (126 MHz, Chloroform-d) δ 169.48, 166.00, 165.52, 165.49, 165.11, 138.08,

137.68, 133.59, 133.31, 133.27, 133.19, 130.01, 129.83, 129.77, 129.75, 129.34, 129.26, 128.97,

128.70, 128.64, 128.50, 128.47, 128.42, 128.32, 128.27, 123.94, 123.80, 101.32, 77.25, 77.20,

77.00, 76.75, 74.32, 73.67, 71.63, 71.39, 69.55, 68.25, 67.95, 65.92, 63.41, 61.85, 61.65, 60.38,

32.26, 32.21, 31.91, 29.69, 29.67, 29.66, 29.64, 29.59, 29.56, 29.40, 29.35, 29.14, 29.12, 28.65,

28.63, 22.68, 21.04, 20.98, 14.19, 14.11.

Preparation of 4.41: Azide 4.36 (120 mg, 0.127 mmol) was dissolved in 15 mL of anhy-

drous methyl alcohol. Freshly prepared 1 M sodium methoxide (0.5 mL) was added to the reaction

flask and the reaction was stirred for one hour at room temperature. Reaction completion was veri-

fied via mass spectrometry and TLC. Upon completion, the solvent was removed en vacuo and the

resulting residue was subjected to flash chromatography (5%, 10%, 15% MeOH/DCM). The puri-
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fied compound was a white powder (49 mg, 79%). 1H NMR (500 MHz, Methanol-d4) δ 5.77 (dt,

J = 15.9, 6.7 Hz, 1H), 5.54 (m, 1H), 4.27 - 4.17 (m, 2H), 3.94 (dd, J = 10.4, 7.3 Hz, 1H), 3.83 (d, J

= 3.3 Hz, 1H), 3.74 (p, J = 4.6 Hz, 3H), 3.57 - 3.43 (m, 4H), 2.06 (q, J = 7.1 Hz, 2H), 1.45 - 1.36

(m, 2H), 1.29 (d, J = 7.5 Hz, 22H), 0.89 (t, J = 6.8 Hz, 3H). 13C NMR (126 MHz, Methanol-d4) δ

103.69, 75.29, 73.55, 71.75, 71.06, 68.83, 68.48, 65.91, 60.98, 48.10, 47.93, 47.92, 47.76, 47.58,

47.41, 47.24, 47.07, 31.96, 31.66, 29.38, 29.37, 29.34, 29.21, 29.06, 28.87, 28.80, 22.32, 13.03.

HRMS (ESI) calcd for C24H45N3O7 [M+H]: 487.3258, found: 505.3607.

Preparation of 4.6: Compound 4.37 (49 mg, 0.101 mmol) was dissolved in 4 mL of 1:1

THF:MeOH. 300 mg of granular zinc and 0.5 mL of glacial acetic acid were added to the flask. The

mixture was sonicated for 30 minutes. Upon completion the solvent was transferred to a separate

RBF and the solvent was dried off via a high vacuum rotary evaporator. Next, the compound

was dissolved in 4 mL of 1:1 THF:MeOH. This solution was basified with concentrated NaOH

(until pH 12) and stirred for one hour. Upon completion the solvent was dried off via a high

vacuum rotary evaporator and the material was loaded onto a small silica gel column and subjected

to a polar eluent system (25:65:2 MeOH:DCM:H2O, 25:65:4 MeOH:DCM:H2O, and 65:25:10

MeOH:DCM:H2O). The resultant compound was a white powder (34 mg, 73%). HRMS (ESI)

calcd for C24H47NO7 [M+H]: 461.3353, found: 462.3420.
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Preparation of 4.42: Compound 4.38 (2.40 g, 7.38 mmol) was dissolved in a minimal

amount of anhydrous pyridine (15 mL). TDS-Cl (2.17 mL, 11.1 mmol) was added to the reac-

tion flask. The reaction was monitored by mass spec for formation of the mono-silated product.

Every hour, more chloro(dimethyl)thexylsilane was added as needed.

Preparation of 4.43: Once compound 4.39 was completely consumed or the presence of the

di or tri silated was found, excess acetic anhydride (2.78 mL, 29.5 mmol) was added. After positive

confirmation of completion of the reaction, the pyridine was evaporated via a high vacuum rotary

evaporator. The dark syrup was dissolved in water and washed with DCM. The organic layer was

concentrated down and subjected to flash chromatography (5%, 10% EtOAc/Hexane). The column

yielded a white powder compound (3.02 g, 80%). 1H NMR (500 MHz, Chloroform-d) δ 5.81 (d,

J = 15.3 Hz, 1H), 5.43 (d, J = 15.3 Hz, 1H), 5.34 (dd, J = 8.3, 3.3 Hz, 1H), 3.67 - 3.54 (m, 3H),

2.08 (s, 3H), 2.07 - 2.00 (m, 2H), 1.25 (m, 23H), 0.92 - 0.84 (m, 18H), 0.10 (d, J = 4.5 Hz, 6H).

13C NMR (126 MHz, Chloroform-d) δ 169.67, 138.25, 123.24, 77.25, 77.20, 76.99, 76.74, 73.91,

65.50, 62.43, 34.11, 32.31, 31.92, 29.68, 29.66, 29.60, 29.45, 29.36, 29.11, 28.76, 25.10, 22.69,

21.18, 20.19, 20.16, 18.47, 14.12, -3.63.
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Preparation of 4.44: Compound 4.43 (3.00 g, 5.89 mmol) was dissolved in DCM (20 mL)

and ACN (100 mL) and placed in a plastic centrifuge tube (with the appropriate stir bar). To this

tube was added 10 mL of hydrofluoric acid (48%). The reaction was monitored by TLC for for-

mation of product 4.35. Every thirty minutes, more hydrofluoric acid was added as needed. Once

the starting material was completely consumed, the reaction was quickly and carefully quenched

on a bed of solid NaHCO3 in a separate plastic container (equipped with the appropriate stir bar).

Water, DCM, and solid NaHCO3 were slowly added until a neutral or basic pH was reached. The

water/DCM workup was filtered to remove excess undissolved NaHCO3. The water was washed

with DCM (6 x 25 mL) and the organic layer was dried over NaSO4, concentrated (water bath was

30◦C or below to minimize acetal migration), and subjected to flash chromatography (20%, 25%

EtOAc/Hexane). The column yielded a white powder compound (2.00 g, 92%). Note: this reaction

if done slowly, left overnight, heated up, or purified slowly can and will result in migration of the

2-acetyl group to the primary alcohol. It is essential that the chemist quench this reaction imme-

diately after completion. 1H NMR (500 MHz, Chloroform-d) δ 5.85 (dt, J = 15.4, 6.8 Hz, 1H),

5.48 (m, 1H), 5.35 (dd, J = 8.1, 5.0 Hz, 1H), 3.72 - 3.61 (m, 2H), 3.59 - 3.52 (m, 1H), 2.09 (s, 3H),

2.05 (m, 2H), 1.42 - 1.18 (m, 23H), 0.88 (t, J = 6.9 Hz, 3H). 13C NMR (126 MHz, Chloroform-d)

δ 169.91, 138.54, 123.30, 77.24, 76.99, 76.73, 74.09, 65.80, 61.91, 32.31, 29.68, 29.67, 29.65,

29.63, 29.56, 29.40, 29.33, 29.12, 29.11, 28.67, 22.67, 21.08, 14.10.
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Preparation of 4.45: Compound 4.14 was diluted in methanol. To this flask was added

sodium methoxide. The next morning the reaction was quenched by the addition of excess am-

berlight strongly acidic beads. After quenching, the beads were filtered of and the solvent was

removed en vacuo. The light orange solid was dissolved in dry pyridine, followed by the addition

of tosyl chloride at 0◦C. The reaction warmed to room temperature after three hours and the re-

action stirred overnight. In the morning, benzoyl chloride was added. Two hours later the solvent

was removed via a high vacuum rotary evaporator, followed by a DCM (3 x 75 mL):water (75

mL) workup. The dark brown slurry was subjected to flash chromatography to give product 4.45.

HRMS (ESI) calcd for C40H34O10S2 [M+H]+: 738.1593, found: 725.2009.

Preparation of 4.46: Compound 4.45 (8.00 g, 10.9 mmol) and sodium azide (3.50 g, 54.3

mmol) were dissolved in a 9:1 solution of DMF:water (200 mL). The RBF (connected to a con-

denser) was heated to 100◦C. This reaction was stirred overnight (evidenced by TLC). The water

and DMF were pulled off on a high vacuum rotary evaporator, followed by a water:DCM (3 x

150 mL) workup. The dried (NaSO4) and concentrated organic layer was loaded onto a silica gel

column (15% EtOAc:Hexane) (7.45 g, 80%). 1H NMR (500 MHz, Chloroform-d) δ 8.02 - 7.96
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(m, 2H), 7.87 - 7.81 (m, 2H), 7.78 - 7.72 (m, 2H), 7.63 (m, 3H), 7.58 - 7.50 (m, 1H), 7.48 - 7.36

(m, 8H), 7.28 - 7.20 (m, 2H), 5.83 (dd, J = 3.2, 1.1 Hz, 1H), 5.74 (t, J = 9.9 Hz, 1H), 5.54 (dd, J

= 9.9, 3.2 Hz, 1H), 5.01 (d, J = 9.9 Hz, 1H), 4.16 - 4.09 (m, 1H), 3.61 (dd, J = 13.0, 8.1 Hz, 1H),

3.32 (dd, J = 13.0, 4.3 Hz, 1H). 13C NMR (126 MHz, Chloroform-d) δ 165.48, 165.34, 165.12,

134.80, 133.65, 133.37, 133.37, 133.29, 130.39, 129.98, 129.94, 129.80, 129.76, 129.74, 129.27,

128.89, 128.84, 128.73, 128.68, 128.65, 128.60, 128.57, 128.44, 128.42, 128.28, 85.56, 77.27,

77.21, 77.01, 76.76, 76.65, 73.05, 68.72, 67.63, 51.07. HRMS (ESI) calcd for C33H27N3O7S

[M+H]+: 609.1570, found: 627.1952.

Preparation of 4.47: Azide 4.46 (1.63 g, 2.68 mmol) was dissolved in 15 mL of MeOH. To

this flask was added 473 µL of thioacetic acid (6.71 mmol), 777 µL of 2,6-lutidine (671 mmol),

and 278 mg of ruthenium trichloride (1.34 mmol). The reaction was stirred for 18 hours. The ruthe-

nium trichloride was filtered off and the dark red solution was concentrated en vacuo and loaded

onto a silica gel column (50%, 70% EtOAc:Hexane, then 5%, 10% MeOH:DCM elution profile).

The isolated compound was formed in 41% yield (695 mg). 1H NMR (500 MHz, Chloroform-d)

δ 8.01 - 7.95 (m, 2H), 7.93 - 7.87 (m, 2H), 7.79 - 7.73 (m, 2H), 7.67 - 7.50 (m, 4H), 7.50 - 7.32

(m, 7H), 7.28 - 7.19 (m, 3H), 6.01 (t, J = 6.3 Hz, 1H), 5.81 - 5.74 (m, 2H), 5.53 (dd, J = 9.9, 3.2

Hz, 1H), 5.00 (d, J = 10.0 Hz, 1H), 4.12 (m, 2H), 3.67 (dt, J = 13.6, 6.6 Hz, 1H), 3.27 (dt, J = 13.5,

6.6 Hz, 1H), 2.03 (d, J = 18.6 Hz, 3H). 13C NMR (126 MHz, Chloroform-d) δ 170.42, 166.18,
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165.43, 165.19, 133.90, 133.77, 133.37, 133.30, 131.00, 130.00, 129.80, 129.78, 129.72, 129.22,

128.91, 128.63, 128.49, 128.43, 128.29, 109.99, 85.55, 77.25, 77.19, 76.99, 76.74, 75.27, 73.06,

69.17, 67.90, 60.37, 39.26, 23.29, 21.04, 14.19. HRMS (ESI) calcd for C35H31NO8S [M+H]+:

625.1770, found: 626.1958.

Preparation of 4.48: Amide 2.36 (685 mg, 1.10 mmol) was dissolved in an acetone/water

solution (20mL/5mL), followed by the portion wise addition of NBS (600 mg, 3.30 mmol). Sub-

sequent equivalents of NBS were added until the reaction was completed (monitored by TLC).

Upon completion, the reaction was quenched with solid NaHCO3, and the acetone was evaporated

off. The remaining mixture was dissolved in water (50 mL), washed with DCM (3 x 50 mL),

dried with NaSO4, concentrated, and subjected to flash chromatography (5% MeOH:DCM). The

white powder was dissolved in DCM (25 mL). Solid potassium carbonate (1.50 g, 10.9 mmol) was

added, followed by the addition of excess trichloroacetonitrile (2.20 mL, 20.2 mmol). Once setup,

the reaction was stirred for sixteen hours at room temperature. In the morning, the potassium

carbonate was filtered and washed with EtOAc (100 mL). The filtrate was dried off at or below

30◦C en vacuo. This pale yellow solid was loaded onto a bed of silica gel and was eluted with

2.5%, 5% MeOH:DCM. The two anomeric isomers were collected, combined, and concentrated

at or below 30◦C (684 mg, 92% from two steps). HRMS (ESI) calcd for C29H26NO8 (fragment)

[M+H]: 516.1653, found: 516.1658.
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Preparation of 4.49: Donor 2.48 (53 mg, 0.0784 mmol), aceptor 4.44 (43 mg, 0.118 mmol),

and 4 angstrom molecular sieves (250 mg) were stirred together for one hour in dry DCM (3

mL). The vessel was cooled to -10◦C (acetone/ice bath), followed by the dropwise addition of

trimethylsilyltriflate (7 µL, 0.0392 mmol). The reaction temperature was maintained for two hours

then quenched by the dropwise addition of TEA. The molecular sieves were filtered and washed

with EtOAc by means of a plug silica gel column. The filtrate was concentrated and subsequently

loaded onto a silica gel column. Purification was achieved with a 70%, 80% EtOAc/Hexane eluent

system. 1H NMR (500 MHz, Chloroform-d) δ 8.14 - 8.07 (m, 3H), 7.97 (d, J = 7.7 Hz, 2H), 7.79

(d, J = 7.7 Hz, 2H), 7.64 (t, J = 7.5 Hz, 1H), 7.51 (td, J = 7.9, 7.3, 2.7 Hz, 3H), 7.40 (dt, J = 17.6,

7.6 Hz, 3H), 7.25 (d, J = 9.7 Hz, 3H), 6.28 (t, J = 6.3 Hz, 1H), 5.82 (dd, J = 10.4, 7.9 Hz, 1H), 5.76

(d, J = 3.3 Hz, 1H), 5.64 (dd, J = 15.0, 6.8 Hz, 1H), 5.52 (dd, J = 10.4, 3.3 Hz, 1H), 5.41 - 5.27 (m,

2H), 4.78 (d, J = 8.0 Hz, 1H), 4.08 (t, J = 7.0 Hz, 1H), 3.90 (dd, J = 10.3, 7.0 Hz, 1H), 3.83 - 3.73

(m, 2H), 3.66 - 3.61 (m, 1H), 3.19 - 3.12 (m, 1H), 2.04 (s, 3H), 1.93 (q, J = 6.9 Hz, 2H), 1.63 (m,

2H), 1.33 - 1.20 (m, 20H), 0.87 (t, J = 6.8 Hz, 3H). 13C NMR (126 MHz, Chloroform-d) δ 177.05,

170.72, 169.54, 166.65, 165.53, 165.12, 138.72, 133.89, 133.37, 133.27, 130.11, 129.76, 129.73,

128.73, 128.61, 128.38, 128.32, 122.50, 101.28, 77.25, 77.20, 76.99, 76.74, 74.26, 71.74, 71.39,

69.65, 69.09, 68.51, 63.09, 38.86, 32.27, 31.91, 29.69, 29.66, 29.64, 29.59, 29.55, 29.39, 29.35,

29.16, 28.63, 23.27, 22.68, 21.08, 14.11. HRMS (ESI) calcd for C49H62N3O11 [M+H]: 882.4415,
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found: 883.4361.

Preparation of 4.50: Azide 4.49 was dissolved in 5 mL of anhydrous methyl alcohol and

5 mL of THF. Freshly prepared 1 M sodium methoxide (0.3 mL) was added to the reaction flask

and the reaction was stirred for one hour at room temperature. Reaction completion was verified

via mass spectrometry and TLC. Upon completion, the solvent was removed en vacuo and the

resulting residue was subjected to flash chromatography (5%, 10% MeOH:DCM). The purified

compound was a white powder (19 mg, 46% over two steps). 1H NMR (500 MHz, Methanol-d4)

δ 5.76 (dt, J = 15.4, 6.8 Hz, 1H), 5.52 - 5.47 (m, 1H), 4.21 (dd, J = 7.5, 3.5 Hz, 2H), 3.87 (dd, J =

10.0, 6.6 Hz, 1H), 3.75 - 3.61 (m, 3H), 3.58 - 3.42 (m, 4H), 2.07 (q, J = 7.2 Hz, 2H), 1.96 (s, 3H),

1.40 (q, J = 7.1 Hz, 2H), 1.29 (d, J = 9.6 Hz, 20H), 0.90 (t, J = 6.8 Hz, 3H). 13C NMR (126 MHz,

Methanol-d4) δ 172.39, 134.46, 128.17, 103.69, 73.32, 72.99, 72.14, 70.81, 69.12, 68.61, 65.89,

48.19, 48.08, 48.02, 47.91, 47.87, 47.85, 47.81, 47.77, 47.74, 47.70, 47.70, 47.69, 47.68, 47.66,

47.64, 47.63, 47.62, 47.60, 47.59, 47.57, 47.51, 47.47, 47.43, 47.40, 47.23, 47.06, 39.84, 31.99,

31.65, 29.37, 29.35, 29.33, 29.32, 29.19, 29.05, 28.83, 28.79, 22.31, 21.11, 13.01. HRMS (ESI)

calcd for C26H48N4O7 [M+H]: 528.3523, found: 529.3641.
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Preparation of 4.7: Compound 4.50 (19 mg, 0.0360 mmol) was dissolved in 3 mL of 1:1

THF:MeOH. 100 mg of granular zinc and 0.4 mL of glacial acetic acid were added to the flask. The

mixture was sonicated for 30 minutes. Upon completion the solvent was transferred to a separate

RBF and the solvent was dried off via a high vacuum rotary evaporator. Next, the compound

was dissolved in 3 mL of 1:1 THF:MeOH. This solution was basified with concentrated NaOH

(until pH 12) and stirred for one hour. Upon completion the solvent was dried off via a high

vacuum rotary evaporator and the material was loaded onto a small silica gel column and subjected

to a polar eluent system (25:65:2 MeOH:DCM:H2O, 25:65:4 MeOH:DCM:H2O, and 65:25:10

MeOH:DCM:H2O). The resultant compound was a white powder (15 mg, 83%). 1H NMR (500

MHz, Methanol-d4) δ 5.78 (m, 1H), 5.50 (dd, J = 15.3, 7.1 Hz, 1H), 4.21 (d, J = 7.5 Hz, 1H), 4.09

(t, J = 6.7 Hz, 1H), 3.85 (t, J = 9.0 Hz, 1H), 3.82 - 3.71 (m, 2H), 3.57 - 3.43 (m, 4H), 3.41 - 3.34

(m, 1H), 2.10 (q, J = 7.5 Hz, 2H), 1.96 (s, 3H), 1.42 (q, J = 6.9 Hz, 2H), 1.30 (d, J = 10.1 Hz, 20H),

0.90 (t, J = 6.9 Hz, 3H). 13C NMR (126 MHz, Methanol-d4) δ 172.42, 134.43, 128.71, 103.24,

73.21, 73.19, 70.91, 69.18, 54.95, 48.20, 48.09, 48.08, 48.03, 48.03, 47.91, 47.90, 47.86, 47.84,

47.82, 47.81, 47.80, 47.79, 47.78, 47.76, 47.74, 47.71, 47.70, 47.69, 47.69, 47.68, 47.67, 47.66,

47.66, 47.65, 47.64, 47.63, 47.62, 47.61, 47.59, 47.57, 47.40, 47.23, 47.18, 47.12, 47.06, 39.89,

32.01, 31.66, 29.38, 29.35, 29.25, 29.23, 29.06, 28.96, 28.92, 22.32, 21.14, 13.02. HRMS (ESI)

calcd for C26H50N2O7 [M+H]: 502.3618, found: 503.3739.
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Preparation of 4.51: Compound 4.14 (7.11 g, 16.2 mmol) was diluted in methanol (100

mL). To this flask was added sodium methoxide (5 mL). The next morning the reaction was

quenched by the addition of excess amberlight strongly acidic beads. After quenching, the beads

were filtered of and the solvent was removed en vacuo. The light orange solid was dissolved in dry

pyridine (100 mL), followed by the addition of tosyl chloride (3.08 g, 16.2) at 0◦C. The reaction

warmed to room temperature after three hours and the reaction stirred overnight. In the morning,

benzoyl chloride (11.3 mL, 97.2 mmol) was added. Two hours later the solvent was removed via a

high vacuum rotary evaporator, followed by a DCM (3 x 75 mL):water (75 mL) workup. The dark

brown slurry was subjected to flash chromatography to give product 4.51. HRMS (ESI) calcd for

C40H34O10S2 [M+H]+: 738.1593, found: 725.1709.

Preparation of 4.52: : Compound 4.45 and sodium azide (3.16 g, 48.6 mmol) were dis-

solved in a 9:1 solution of DMF:water (200 mL). The RBF (connected to a condenser) was heated

to 100◦C. This reaction was stirred overnight (evidenced by TLC). The water and DMF were pulled

off on a high vacuum rotary evaporator, followed by a water:DCM (3 x 150 mL) workup. The dried

(NaSO4) and concentrated organic layer was loaded onto a silica gel column (15% EtOAc:Hexane)

(7.00 g, 71% over three steps). HRMS (ESI) calcd for C33H27N3O7S [M+H]+: 609.1570, found:

627.1957
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Preparation of 4.53: Azide 4.52 (183 mg, 0.300 mmol) was dissolved in 5 mL of MeOH. To

this flask was added 53 µL of thioacetic acid (0.75 mmol), 87 µL of 2,6-lutidine (0.75 mmol), and

31 mg of ruthenium trichloride (0.15 mmol). The reaction was stirred for 18 hours. The ruthenium

trichloride was filtered off and the dark red solution was concentrated en vacuo and loaded onto

a silica gel column (50%, 70% EtOAc:Hexane, then 5%, 10% MeOH:DCM elution profile). The

isolated compound was formed in 59% yield (118 mg). 1H NMR (500 MHz, Chloroform-d) δ 7.93

(m, 4H), 7.78 (dd, J = 8.1, 1.5 Hz, 2H), 7.54 - 7.44 (m, 4H), 7.42 - 7.28 (m, 7H), 7.28 - 7.20 (m,

2H), 6.05 (m, 1H), 5.87 (t, J = 9.5 Hz, 1H), 5.46 (t, J = 9.7 Hz, 1H), 5.36 (t, J = 9.8 Hz, 1H), 5.02

(d, J = 10.0 Hz, 1H), 3.96 - 3.84 (m, 2H), 3.24 - 3.16 (m, 1H), 2.02 (s, 3H). 13C NMR (126 MHz,

Chloroform-d) δ 171.12, 170.03, 165.66, 165.59, 165.09, 133.82, 133.54, 133.39, 133.25, 133.22,

133.20, 133.11, 131.61, 129.86, 129.73, 129.70, 129.66, 129.06, 129.03, 129.01, 128.72, 128.61,

128.45, 128.43, 128.41, 128.39, 128.33, 128.33, 128.26, 128.22, 85.69, 77.34, 77.09, 76.83, 73.94,

70.63, 70.13, 60.37, 40.04, 23.20, 21.04, 14.18.

Preparation of 4.54: Amide 4.53 (118 mg, 0.189 mmol) was dissolved in an acetone/water

solution (22mL/3mL), followed by the portion wise addition of NBS. Subsequent equivalents of
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NBS were added until the reaction was completed (monitored by TLC). Upon completion, the

reaction was quenched with solid NaHCO3, and the acetone was evaporated off. The remaining

mixture was dissolved in water (50 mL), washed with DCM (3 x 50 mL), dried with NaSO4,

concentrated, and subjected to flash chromatography (5% MeOH:DCM). The white powder (437

mg, 0.599 mmol) was dissolved in DCM (25 mL). Solid potassium carbonate (1.50 g, 10.9 mmol)

was added, followed by the addition of excess trichloroacetonitrile (1.03 mL, 10.3 mmol). Once

setup, the reaction was stirred for sixteen hours at room temperature. In the morning, the potassium

carbonate was filtered and washed with EtOAc (100 mL). The filtrate was dried off at or below

30◦C en vacuo. This pale yellow solid was loaded onto a bed of silica gel and was eluted with

2.5%, 5% MeOH:DCM. The two anomeric isomers were collected, combined, and concentrated

at or below 30◦C (95 mg, 75% from two steps). HRMS (ESI) calcd for C35H31NO8S [M+H]+:

625.1770, found: 626.1893.

Preparation of 4.55: Donor 2.37 (95 mg, 0.141 mmol), acceptor 4.44 (77 mg, 0.211 mmol),

and 4 angstrom molecular sieves (400 mg) were stirred together for one hour in dry DCM (5

mL). The vessel was cooled to -10◦C (acetone/ice bath), followed by the dropwise addition of

trimethylsilyltriflate (13 µL, 70.5 µmol). The reaction temperature was maintained for two hours

then quenched by the dropwise addition of TEA. The molecular sieves were filtered and washed

with EtOAc by means of a plug silica gel column. The filtrate was concentrated and subsequently
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loaded onto a silica gel column. Purification was achieved with a 70%, 80% EtOAc/Hexane eluent

system. Isolated 45 mgs of coupled product (36%). 1H NMR (500 MHz, Chloroform-d) δ 7.98 -

7.90 (m, 4H), 7.81 (d, J = 7.6 Hz, 2H), 7.52 (td, J = 7.2, 5.1 Hz, 2H), 7.40 (dq, J = 23.0, 7.6 Hz,

7H), 7.32 - 7.24 (m, 4H), 5.84 (t, J = 9.7 Hz, 1H), 5.54 - 5.36 (m, 4H), 4.82 (d, J = 7.9 Hz, 1H),

3.94 (m, 1H), 3.90 - 3.77 (m, 2H), 3.65 (dd, J = 10.6, 6.1 Hz, 1H), 3.55 - 3.47 (m, 1H), 2.10 -

1.94 (m, 8H), 1.34 - 1.21 (m, 24H), 0.88 (t, J = 6.8 Hz, 3H). HRMS (ESI) calcd for C49H62N3O11

[M+H]: 882.4415, found: 883.4377.

Preparation of 4.56: Azide 4.55 (45 mg, 51.0 µmol) was dissolved in 7.5 mL of anhydrous

methyl alcohol and 7.5 mL of THF. Freshly prepared 1 M sodium methoxide (0.15 mL) was added

to the reaction flask and the reaction was stirred for one hour at room temperature. Reaction com-

pletion was verified via mass spectrometry and TLC. Upon completion, the solvent was removed

en vacuo and the resulting residue was subjected to flash chromatography (5%, 10% MeOH:DCM).

The purified compound was a white powder (25 mg, 93%). 1H NMR (500 MHz, Methanol-d4) δ

5.67 (dt, J = 14.3, 6.7 Hz, 1H), 5.46 - 5.38 (m, 1H), 4.17 (d, J = 7.7 Hz, 1H), 4.09 (t, J = 6.4 Hz,

1H), 3.77 (dd, J = 10.6, 6.9 Hz, 1H), 3.64 - 3.47 (m, 3H), 3.34 - 3.16 (m, 2H), 3.07 (dt, J = 29.9,

8.9 Hz, 2H), 1.98 (q, J = 7.2 Hz, 2H), 1.88 (s, 3H), 1.31 (q, J = 7.0 Hz, 2H), 1.20 (d, J = 8.2 Hz,

22H), 0.84 - 0.77 (m, 3H). 13C NMR (126 MHz, Methanol-d4) δ 170.98, 132.94, 126.64, 101.64,

74.48, 72.97, 72.12, 70.60, 69.79, 67.24, 64.29, 46.57, 46.40, 46.34, 46.23, 46.17, 46.06, 46.00,
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45.89, 45.83, 45.72, 45.55, 38.70, 30.47, 30.45, 30.14, 27.86, 27.84, 27.82, 27.81, 27.68, 27.54,

27.32, 27.27, 20.80, 19.53, 11.52. HRMS (ESI) calcd for C26H48N4O7 [M+H]: 528.3523, found:

529.3648.

Preparation of 4.8: Compound 4.56 (24 mg, 45.5 µmol) was dissolved in 4 mL of 1:1

THF:MeOH. 150 mg of granular zinc and 0.5 mL of glacial acetic acid were added to the flask. The

mixture was sonicated for 30 minutes. Upon completion the solvent was transferred to a separate

RBF and the solvent was dried off via a high vacuum rotary evaporator. Next, the compound

was dissolved in 4 mL of 1:1 THF:MeOH. This solution was basified with concentrated NaOH

(until pH 12) and stirred for one hour. Upon completion the solvent was dried off via a high

vacuum rotary evaporator and the material was loaded onto a small silica gel column and subjected

to a polar eluent system (25:65:2 MeOH:DCM:H2O, 25:65:4 MeOH:DCM:H2O, and 65:25:10

MeOH:DCM:H2O). The resultant compound was a white powder (17 mg, 76%). 1H NMR (500

MHz, Methanol-d4) δ 5.79 (dt, J = 14.3, 6.8 Hz, 1H), 5.49 (dd, J = 15.3, 7.3 Hz, 1H), 4.26 (dd, J

= 7.9, 3.4 Hz, 1H), 4.08 (t, J = 6.8 Hz, 1H), 3.87 - 3.76 (m, 2H), 3.59 (d, J = 2.6 Hz, 1H), 3.41 -

3.26 (m, 4H), 3.20 (dd, J = 9.3, 7.8 Hz, 1H), 3.13 (t, J = 9.3 Hz, 1H), 3.04 (q, J = 5.5, 4.4 Hz, 1H),

2.09 (q, J = 7.1 Hz, 2H), 1.97 (s, 3H), 1.42 (m, 2H), 1.30 (d, J = 10.2 Hz, 22H), 0.90 (t, J = 6.8 Hz,

3H). 13C NMR (126 MHz, Methanol-d4) δ 172.49, 134.58, 128.60, 102.83, 75.98, 74.74, 73.59,

71.38, 54.84, 48.19, 48.07, 48.07, 48.05, 48.04, 48.02, 48.01, 47.98, 47.96, 47.95, 47.94, 47.93,
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47.90, 47.87, 47.85, 47.83, 47.82, 47.81, 47.80, 47.79, 47.78, 47.77, 47.76, 47.75, 47.73, 47.69,

47.69, 47.67, 47.66, 47.65, 47.63, 47.62, 47.61, 47.59, 47.56, 47.50, 47.39, 47.22, 47.05, 40.17,

31.99, 31.65, 29.36, 29.33, 29.21, 29.04, 28.95, 28.89, 22.30, 21.07, 13.00. HRMS (ESI) calcd for

C26H50N2O7 [M+H]: 502.3618, found: 503.3712.

4.6 Immunological Methods

Note: all immunological testing was carried out under the direction of Albert Bendelac and Erin

Adams at the University of Chicago.

T cell activation assay

T cell hybridoma cells were cultured in RPMI supplemented with 10% FCS, 2 mM L-

glutamine, 20mM HEPES, and non-essential amino acids. Antigen presentation assays were car-

ried out using 5-20 x 103 DC 3.2 cells or 1 x 105 splenocytes and 4 x 104 T cells per well in 96

well tissue culture plates in triplicates. Cell culture supernatants were collected 24 hours later for

determination of IL-2 concentrations using an IL-2-dependent NK cell line reporter system.

Cells and cell lines, DC maturation

DN32.D3 and TBA.7 cells have been described extensively in other publications and are

commonly used as representative of type 1 semi-invariant Vα14 NKT cells for the former, and

type 2 non-Vα14 NKT cell for the latter. DC3.2 cells are a dendritic cell line expressing CD1d

and susceptible to differentiation induced by TLR ligands and cytokine such as LPS and TNF.

Maturation of DC3.2 was carried over periods of 16-24h. It is to be noted that beyond 24h, the
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capacity of matured DC cells to stimulate NKT cells in a way that is sensitive to L363 or L317

antibody blocking diminishes. It is also important to notice that the optimal display of the ligand

at the cell surface of DC3.2 cells is sensitive to cell density.

Antibodies and antibody production/purification

L363 (IgG2a) and L317 (IgG1) antibodies were a generous gift from Steve Porcelli. In most

experiments, the anti-MHC class II antibodies MKD6 (anti-I-Ad, IgG2a) and 14.4.4s (anti-I-Ek,

IgG2a) were used as a control. All antibodies were produced in serum-free Ultradoma media

(Lonza*) in individual bioreactors. Purification was carried out on HiTrap protein A or G columns

(GE Healthcare*).

Surface plasmon resonance (SPR)

A Biacore T200 instrument (GE Healthcare, USA) was used for SPR measurements. Mea-

surements were performed using single cycle protocols to avoid repeated use of regeneration buffer

on the immobilized ligands. Immobilization of target antibodies was carried out using classical

amine coupling chemistry. 250 to 1,000 RU of antibody was immobilized in each flow cells. All

mCD1-lipid complexes were purified after loading to ensure maximal homogeneity and avoid the

presence of small amounts of aggregated material. Concentrations ranging from 1 to 10mM were

used for each CD1-lipid complex. Flow cell one was used as our negative control and used for

subtraction from experimental flow cells. Global analysis of subtracted sensorgrams was carried

out using the T200 analysis software. Illustration was done after transfer of the data to an Excel

spreadsheet.
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List of Abbreviations

Chapter 1 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

BCR B-Cell receptor

TCR T-cell receptor

NK Natural killer

CD class of differentiation

APM Antigen presenting molecule

MHC Major Histocapatibilty complex

CTL Cytotoxic T cells

NKT Natural Killer T

iNKT Invariant Natural Killer T

α-GalCer α-galactosylceramide

iGB3 Isoglobotrihexosylceramide
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Chapter 1 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

PE Phosphotidyl ethanolamine

PC Phosphotidyl choline

TH T-helper

INF Interferon

IL Interleukin

Chapter 2 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

CGT Ceramide galactosyltransferase

CST Cerobroside sulfotransferase

MS Multiple sclerosis

EAE Experimental autoimmune encephalomyetis

PMP Para methoxy phenyl

ASA Arylsulfatase A

WT Wild type

MACS Magnetic-activated cell sorting

FACS Fluorescent-activated cell sorting

SPR Surface plasmon resonance

IEF Isoelectrofocusing

PMBC Peripheral blood mononuclear cell

PCR Polymerase chain reaction

SEM Scanning Electron Microscopy



188

Chapter 2 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

NHA N,O-dimethyl hydroxyamine-HCl

NMM 4-methyl morpholine

EDCI 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide

DMP Dimethoxy propane

DMF Dimethyl formamide

LAH Lithium aluminum hydride

THF Tetrahydrofuran

HOBt Hydroxybenzotriazol

TDS-Cl Chloro(dimethyl)thexylsilane

M.S. Mass spectrometry

RBF Round bottom flask

DMAP Dimethylaminopyridine

ACN Acetonitrile

NBS n-Bromosuccinimide

TBDPS-Cl tert-butylchlorodiphenylsilane

Chapter 3 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

BODIPY boron-dipyrromethene

Chapter 4 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

β -GluCer β -glucosylceramide

ASAH1 Acid ceramidase

NAAA N-acylamidehydrolase
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NMR spectra
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