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ABSTRACT

A Dynamic Optimization Framework with Model Predictive Control Elements for Long Term
Planning of Capacity Investments in a District Energy System

Jose L. Mojica
Department of Chemical Engineering, BYU
Master of Science

The capacity expansion of a district heating system is studied with the objective of evalu-
ating the investment decision timing and type of capacity expansion. District energy is an energy
generation system that provides energy, such as heat and electricity, generated at central locations
and distributed to the surrounding area. The study develops an optimization framework to find
the optimal investment schedule over a 30 year horizon with the options of investing in traditional
heating sources (boilers) or a next-generation combined heat and power (CHP) plant that can pro-
vide heat and electricity. In district energy systems, the investment decision on the capacity and
type of system is dependent on demand-side requirements, energy prices, and environmental costs.
The main contribution of this work is to formulate the capacity planning over a time horizon as
a dynamic optimal control problem. In this way, an initial system configuration can be modified
by a "controller" that optimally applies control actions that drive the system from an initial state
to an optimal state. The optimal control is a model predictive control (MPC) formulation that not
only provides the timing and size of the capacity investment, but also guidance on the mode of
operation that meets optimal economic objectives with the given capacity.

Keywords: heating, network, capacity, expansion, boilers, energy, controller, optimal, timing, for-
mulation, economic, dependent
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CHAPTER 1. INTRODUCTION

Private and public utilities are confronted with a number of investment options to supply
their growing energy demands; investment in new energy systems must compete with other op-
portunities to improve the financial bottom line of the overall business or institution’s goals [1] .
Stakeholders want the answers to four fundamental questions for the success of the investment:
How much will be earned and when, and how much to spend and when? In the power generation
sector, uncertainty on type, timing and stringency of potential air emission regulations coupled
with uncertainties on fuel prices, future costs, and energy demand inhibit stakeholders from mak-
ing robust investment decision early on [2,3]. Power producers also face the task of balancing
the opposite objectives of economic viability, security of supply, and environmental regulations.
These uncertainties and conflicting objectives that stakeholders face may cause them to make sub-
optimal decisions that delay investments. These suboptimal investments are are usually done in
small increments that in the long term can cost more than if a less uncertain investment option is
taken early on. In like manner, end users of energy like commercial and institutional facilities that
have a large energy demand from buildings also face similar challenges as they try to fulfill their
growing energy needs and simultaneously comply with pressures to reduce their carbon footprint.
One example of those regulations come from EPA Title V of the Clean Air Act, an air operating
permitting program that applies to major emitters of air pollution and some other non-major source
producers [4]. Title V regulations can affect non industrial institutions like hospitals, universities,
or research campuses that produce their own energy for mainly space heating and cooling such
as on-site heating plants. In large building campuses, energy demand is usually supplied through
a combination of heating plants and electricity from the grid. To face those conflicting objec-
tives, a growing number of institutions are turning to more energy efficient combined heat and

power (CHP) plants to meet energy demands. When an on-site CHP system is properly planned,



designed, constructed, and operated, it offers a proven method to lower overall facility energy
consumption and costs, and reduces total overall utility system fuel consumption [5].
Incorporating a CHP system may be a good alternative in leveraging the uncertainties from
the economic and environmental forces to the growing energy demands of the institution. But
in considering such investment, the institution must decide on numerous options like whether to
continue expanding traditional combustion units for heating plants, installing pollution abatement
equipment, reconfiguring the entire space heating/cooling system to an electricity only system,
adding energy storage capabilities, or rather to build a new CHP unit that may reduce the costs
associated with future CO, emissions [3]. With so many options and an uncertain outlook on fuel
costs, demand, and regulations; there is a motivation to optimize the investment and operations
decisions for these types of problems to ensure reasonable return on the investment [6]. An op-
timization approach to solve such problems has been attempted in the past decades that mainly
focuses on characterizing uncertainty in model parameters and key inputs under a linear model
framework. A holistic optimization approach that takes into account multi-objective issues under
uncertainty, system dynamics, and intrinsic non-linear constraints is yet to be fully developed for
capacity expansion and investment planning problems. This work introduces a dynamic multi-
objective optimization approach based on a Model Predictive Control (MPC) framework to find
an optimal long-term planning horizon decision outlook for the capacity of a future CHP plant
to answer the pressing questions timing and capacity of investment. The optimization framework
is applied to an university campus energy system, but the goal of this work is to provide the
optimization methods and modeling knowledge to other energy systems with dynamics, system

uncertainties, and nonlinear constraints that affect the capacity planning over a time horizon.



CHAPTER 2. BACKGROUND

2.1 District Energy Systems and Combined Heat and Power

District energy systems are energy generation systems that provide any combination of
electrical distribution, heating, and cooling, where heating and cooling are generated at central
locations and distributed to the surrounding area. District energy systems take advantage of
economies of scale to efficiently and cost-effectively provide heating, cooling, or electricity for
an immediate surrounding area. Buildings can be supplied by large centrally-located generation
equipment, rather than smaller individual units for each building [7]. District energy systems can
be composed of various energy conversion technologies such as traditional gas or coal boilers,
reciprocating engines, combustion turbines, or industrial processes that generate excess heat. In
addition to the energy conversion technology available, the district energy system may include ther-
mal energy storage to offset demand constraints when thermal energy is not sufficiently available
or shift production to times of the day when it is more cost effective to produce energy. Regardless
of the components that constitute the district energy system, the overall effectiveness of the energy
systems heavily relies on how the components of the energy systems interact with each other [8].
The interaction of the system components will depend on the energy demand, system constraints,
and system dynamics.

One of the most efficient district energy system arrangements is that of a combined heat
and power (CHP) plant, also known as a cogeneration plant. A CHP plant simultaneously produces
heat and generates power from a single fuel source [5]. CHP systems can consist of a number of
individual components like the prime mover, generator, heat recovery, and electrical interconnec-
tion. The prime mover is the type of equipment that drives the overall system and it will typically
identify the CHP system. Prime movers for CHP systems include reciprocating engines, combus-

tion or gas turbines, steam turbines, microturbines, and fuel cells. These prime movers are capable
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Figure 2.1: Generalized Schematic of District Energy System of an university campus. (courtesy
Kody Powell Ph.D., UT Austin).

of burning a variety of fuels, including natural gas, coal, oil, and alternative fuels to produce shaft
power or mechanical energy [9].

In building campuses where electric loads are larger than 1 MW, combustion turbine gen-
erators (CTG) are popular prime movers for CHP considerations. A combustion turbine system
mainly consists of compressor, combustor, and turbine. CTG are commercially available in many
capacities varying from small 1 MW to 100 MW utility scale generators [5]. Martens et al. in
a survey of CHP efficiencies reports that small gas turbines (<10 MWe) have electric efficiencies
lower than 30%, whereas gas turbine based CHP systems between 10 and 40 MW reach electric
efficiencies of 30 to 40%. Gas turbines larger than 40 MW have electric efficiencies of about
35% [10]. The remaining energy from the combustion is discarded in the exhaust where it is then
recovered by a heat recovery boiler. A heat recovery boiler is similar to a typical fuel fired boiler
but instead of using the heat from a separate combustion reaction, the exhaust from the turbine is
the source of heat to make hot water or steam depending on the need of the overall district energy
system [5]. When the heat recovery boiler produces steam, it is called a heat recovery steam gen-
erator (HRSG). If the energy from the exhaust gas from the turbine is not enough to supply the

heating needs of the system, supplemental burners and or extra boilers in parallel maybe needed
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Figure 2.3: CHP versus Separate Heat and Power Production [9].

to supplement the heat recovery boiler. The heat recovery part of the system will have efficien-
cies of traditional boilers of around 80%. Although operating conditions and capacity size have
significant effects on the overall efficiency of a CHP system, the combined processes of power
generation and subsequent heat recovery as illustrated in Figure 2.2 have expected efficiencies of
around 75 percent [10]. Conventional generation to provide electric power and heat separately will
have expected efficiencies of less than 50 percent as illustrated in Figure 2.3 where it compares

conventional generation and a CHP option using a natural gas combustion turbine [9].



District energy systems also extend the opportunities for optimization beyond electrical
generation and distribution, creating the opportunity for a smart and diverse energy network which
provides energy for electrical, heating, and cooling demands [7]. While there is more opportunity
for optimization in these systems, the optimization problems themselves are more complex and
require models of a diverse range of systems. They also have additional constraints which must
be adhered to, including simultaneously meeting other (non-electrical) loads, such as heating and
cooling [7]. While optimization methods have been used to exploit savings in energy and reduc-
tion of operating costs in operating district CHP systems, the same considerations have not been

extended to planning of capacity of district energy systems.

2.1.1 Energy Systems Optimization Under Uncertainty

Decision making in many industries inherently involves consideration of multiple objec-
tives and uncertain outcomes; and in many situations, we must make decisions at different times
and at different levels. Those types of problems are generally referred as multi-objective decision
processes under uncertainty [12].

Investment and planning decisions in power generation systems fit the above description.
As power generation systems become larger and more complex, the number of possible system
configurations and technologies that could possibly meet the designer’s objectives in an optimal
manner increases greatly [13]. The added level of complexity in energy systems usually comes
in the form of more efficient and novel equipment because of motivations to conserve energy
resources due to economic and geo-political justifications and greater efforts in reducing green
house gasses that are increasingly tied to rising global temperatures. In addition, the system may
need to be developed taking into account both the dynamic, economic, and environmental effects
on system performance. Thus, the difficulty of developing the entire system via the formulation
of a single optimization problem is great due to the complexities involved. These complexities are
further heightened with the introduction of uncertainty analysis into the problem, transforming the
problem from a purely deterministic one into a probabilistic one [13].

Subramanyan et al. [14] describes that in the design of a power system there are three basic

types of uncertainties that must be taken into account:



1.) Uncertainty with respect to the model parameters: These parameters are a part of the
deterministic model and not actually subject to randomness. Theoretically their value is an exact
number. The uncertainty results from the impossibility of exactly modeling the physical behavior
of the system.

2.) Uncertainty in the input variables: This kind of uncertainty originates from the random
nature and unpredictability of certain process inputs.

3.) Uncertainty in the initial conditions: These types of uncertainties result due to the
complications in predicting the initial conditions of the operation.

In a capacity expansion or investment planning optimization problem, such as the one pre-
sented here, it may only be necessary to focus on the uncertainty with respect to the model param-
eters and that of the input variables and disturbances. It can be assumed there is little uncertainty
in initial conditions because the status quo of the system is known.

In the past decades the majority of the methods dealing with uncertainties for power gen-
eration systems are related to stochastic mathematical programming [15]. More specifically, op-
erations researchers have developed two main types of solution methods: multi-stage stochastic
programming (MSSP), and stochastic optimal control (SOC). A notable number of studies that ap-
proach the problem of power generation system capacity expansion and investment planning under
uncertainty have been developed as MSSP problems [2, 13, 16]. SOC solution approaches are also
found for similar problems but in much less frequency [17].

MSSP more specifically deals with problems that involve a sequence of decisions reacting
to outcomes that evolve over time. At each stage a decision is made based on currently available
information [12]. In many problems where random variables follow multi-dimensional continuous
distributions it becomes very difficult to numerically solve those problem because it requires mul-
tivariate integration. To avoid this problem, sampling or discrete approximation of the distributions
is done to represent the probable space. Those scenarios are many times modeled as a scenario
tree that represent discrete scenarios to satisfy specified statistical properties [12]. When a scenario
tree is specified, the stochastic program becomes a deterministic equivalent program that is easier
to solve [18]. Although this approach makes the problems much more tractable, it stills begs the

question of how well the scenario tree actually describes the uncertainty in the variables. Defin-



ing a suitable scenario tree is a challenge by itself and still special numerical techniques based on
decomposition, aggregation and parallelization are required to solve large-scale problems [12].

SOC can also be referred as Markov decision process, in which the algorithm searches for
optimal actions to take at generally discrete points in time in the state being occupied [18]. The
actions are taken based on predefined decision rules or policies which are influenced by random
outcomes at each specific state and stage [12, 18]. In this fashion, the solution approach is to
form a backward recursion that results in an optimal decision associated with each state and each
stage [18]. Both MSSP and SOC suffer from the “curse of dimensionality,” but in different ways: in
MSSP because of the large sample space, and in SOC because of the immense state space [12,19].

There are certain criteria that are useful in explaining whether a MSSP approach or a SOC
approach should be employed. MSSP approaches are reported to be more suitable for solving long-
term strategic planning problems, such as capacity planning that have relatively small number
of periods and scenarios [12]. SOC problems are reported to work better in problems such as
production and inventory control where there are relatively many periods and scenarios but a state
space of modest size [12]. This explains the greater use in the literature of MSSP versus SOC for
energy systems infrastructure planning under uncertainty. Although the approach to the solution by
the two methods is different, Cheng et al. demonstrated that the two methodologies are equivalent
in that the decision policy prescribed by SOC is the same as the corresponding optimal decision
found by MSSP [12].

In a similar problem of investment and planning for power generation systems under un-
certainty Fuss et al. used a real options valuation approach to find a solution [19]. They reported
that a MSSP or SOC approach would have resulted in the same outcomes as those obtained in a
real options approach. Their work also reports that the main reason for not using stochastic meth-
ods was the increased computational intensity due to the dimensionality explosion when there are
many periods and scenarios, as well as a modest state space [19].

Other less common, but reported methods in the literature to account for uncertainty in
power generation systems expansion and investment planning problems include fuzzy logic [20]
and Monte Carlo simulations [21]. Others have used a combination of methods to account for
uncertainty. For example, joint probabilistic programming and fuzzy possibility programming was

used by Lou et al. in an optimization approach for power generation planning under uncertainty



in a mixed integer linear programming (MILP) framework [15]. Another combined method to
account for uncertainty was recently reported by Y.F. Li et al. in which a MSSP and fuzzy linear
programming is introduced into a MILP framework [22]. Li et al. report that the benefits of
such formulations lies in that their approach can tackle uncertainties described in terms of interval
values, fuzzy sets, and probability distributions [22]. In energy system planning under uncertainty,
the combined method approach can reflect dynamic decisions for facility-capacity expansions and

energy supply over a multistage context [22].

2.1.2 Dynamic Optimization and Model Predictive Control for Capacity Planning

Dynamic Optimization constitutes a methodology to optimize systems represented by dy-
namic models in the form of differential and algebraic equations (DEA). The optimization algo-
rithms for dynamic optimization may handle nonlinear objective functions and constraints with
continuous or integer variables. Dynamic optimization is an integral part of some advanced con-
trol algorithms such as Model Predictive Control (MPC). MPC is an important advanced control
technique that utilizes explicit process models to predict future response of a plant or system [23].
The process models used in MPC are in many cases dynamic and non-linear and capture the dy-
namic and static interactions between inputs, outputs, and disturbances affecting the system [24].
In control applications of complex chemical and energy processes, MPC technology is extremely
beneficial because the algorithms attempt to optimize not only the present optimal control moves,
but also optimize future system behavior by computing a sequence of future decision variables ad-
justments [23]. MPC’s ability to predict future variable moves through optimization has similarities
to the objectives of capacity planning over a future horizon where economic, environmental, and
operational targets must be achieved while the capacity of the system must be optimally planned
out under the constraints and uncertainty of the system.

Ricardez-Sandoval et al. [26] reviewed different approaches to simultaneously design and
control large systems under process parameter uncertainty. Large systems such as chemical plants
are usually designed based on steady state economic calculations, while the control aspects are
studied independently. The sequential fashion of the approach from design and control give rise to
unforeseen constraints and limitations that can greatly hinder the economic operation of the system

once online. The simultaneous optimization of dynamic control variables and design variables
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Figure 2.4: MPC approach. ysp is the target set point of the system (i.e. energy demand target
or emissions target). 7, number of prediction horizon intervals, and 7}, is the number of control
horizon intervals. y; are the values of the output controlled variables obtained by applying input
manipulated variables u; [25].

can thus greatly reduce the effect of under sizing or over sizing the capacity of the system and
improved profitable operation under different market conditions [26]. From an uncertainty point
of view, the dynamic behavior of system parameters and variables is a factor that must addressed in
power systems optimization [14], thus the explicit inclusion of system dynamics in the optimization
problem as proposed in this work should have a measurable reduction of uncertainty on the optimal
size of the system.

From the previous section on stochastic optimization approaches, there is a lack of literature
that reports on optimization frameworks that use system dynamics for capacity planning of energy
systems. One reason can be attributed to the curse of dimensionality limits found in stochastic pro-
gramming approaches. System dynamics in the formulation of the problem adds complexity and
enlarges the problem, making it even more difficult to solve with current optimization technology.
Another reason could be attributed to the recursive features of stochastic programming which do
not lend itself to a dynamic model form. The motivation to include system dynamics to optimize
capacity planning of energy systems comes from practical experience reported in already planned

and constructed plants in which owners find that the planned capacity is not being fully utilized,

10



not enough, or no longer cost effective given changing economic conditions and the load following

requirements of the system [27].

2.1.3 Multi-objective Optimization in MINLP Framework

Although the MSSP and SOC approaches historically have been able to provide solutions to
planning and scheduling problems under uncertainty, computational expense is one serious draw-
back. When multi-objective options are incorporated in the MSSP problems, solution times even
in the order of days are not uncommon for relatively modest size problems [12]. Science and en-
gineering problems normally feature several and contradictory design and or operation objectives
that can be benefited from using new and integrated ways of solving such problems [28]. One
innovation is solving these types of problems as a multi-objective, mixed integer programming
formulation.

Antunes et al. [29] reports on a multiple-objective mixed integer linear programming model
for power generation expansion planning. One important contribution is the consideration of mod-
ular expansion capacity values. This approach avoids the need to discretize results in a post-
processing phase. In addition their multi-objective MILP approach also focuses on an interac-
tive algorithm that provides decision support in the selection of satisfactory compromise designs
(Pareto front designs) [29]. This is an important matter to consider because it can help identify in
a systematic way the potential compromised solutions that otherwise can be ignored.

Whether the method to account for uncertainty is a stochastic, fuzzy, Monte-Carlo, or a
combination of more than one, the most common optimization framework reported in the litera-
ture is the MILP approach. The disadvantage in a MILP approach lies in cases where the sys-
tem contains non-linear and non-convex constraints in which suboptimal solutions can arise when
solved with methods that assume convexity [6]. The application of a mixed integer non-linear
programming (MINLP) approach has the potential of providing better results when encountering
non-linearity and non-convexity as it is presented in this research.

Gupta and Grossmann in a recent conference proceeding [6] demonstrated the use of
MINLP for optimal development planning of offshore oil and gas fields with complex fiscal rules

and under nonlinear and non-convex features. Although their approach falls short of a multi-

11



objective application, Gutierrez-Limon et al. expand the application of MINLP alongside a multi-
objective optimization approach for scheduling and control for a class of chemical reactors [30].

Historically multi-objective problems in MINLP frameworks have been solved by using a
single objective function that is 