
Brigham Young University Brigham Young University

BYU ScholarsArchive BYU ScholarsArchive

Theses and Dissertations

2013-11-07

An Incremental Trace-Based Debug System for Field-An Incremental Trace-Based Debug System for Field-

Programmable Gate-Arrays Programmable Gate-Arrays

Jared Matthew Keeley
Brigham Young University - Provo

Follow this and additional works at: https://scholarsarchive.byu.edu/etd

 Part of the Electrical and Computer Engineering Commons

BYU ScholarsArchive Citation BYU ScholarsArchive Citation
Keeley, Jared Matthew, "An Incremental Trace-Based Debug System for Field-Programmable Gate-Arrays"
(2013). Theses and Dissertations. 3880.
https://scholarsarchive.byu.edu/etd/3880

This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion
in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please
contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.

http://home.byu.edu/home/
http://home.byu.edu/home/
https://scholarsarchive.byu.edu/
https://scholarsarchive.byu.edu/etd
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F3880&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=scholarsarchive.byu.edu%2Fetd%2F3880&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/3880?utm_source=scholarsarchive.byu.edu%2Fetd%2F3880&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu,%20ellen_amatangelo@byu.edu

An Incremental Trace-Based Debug System for

Field-Programmable Gate-Arrays

Jared M. Keeley

A thesis submitted to the faculty of
Brigham Young University

in partial fulfillment of the requirements for the degree of

Master of Science

Brad L. Hutchings, Chair
Brent E. Nelson

Michael J. Wirthlin

Department of Electrical and Computer Engineering

Brigham Young University

November 2013

Copyright © 2013 Jared M. Keeley

All Rights Reserved

ABSTRACT

An Incremental Trace-Based Debug System for
Field-Programmable Gate-Arrays

Jared M. Keeley
Department of Electrical and Computer Engineering, BYU

Master of Science

Modern society increasingly relies upon integrated circuits (ICs). It can be very costly if
ICs do not function properly, and large portions of designer effort are spent on their verification.
The use of field-programmable gate arrays (FPGAs) for verification and debug of ICs is increasing.
FPGAs are faster than simulation and cost less than fabricating an ASIC prototype. However, the
major challenge of using FPGAs for verification and debug is observability. Designers must use
special techniques to observe the values of FPGA’s internal signals.

This thesis proposes a new method for increasing the observability of FPGAs and demon-
strates its feasibility. The new method incrementally inserts trace buffers controlled by a trigger
into already placed-and-routed FPGA designs. Incremental insertion allows several drawbacks of
typical trace-based approaches to be avoided such as influencing the placing and routing of the
design, large area overheads, and slow turnaround times when changes must be made to the instru-
mentation. It is shown that it is possible to observe every flip flop in Xilinx Virtex-5 designs using
the method, given that enough trace buffer capacity is available.

We investigate factors that influence the results of the method. It is shown that making the
trace buffers wide may lead to routing failures. Congested areas of the circuit must be avoided
when placing the trigger or this may also lead to routing failures. A drawback of the method is that
it may increase the minimum period of the design, but we show that pipelining can reduce these
effects. The method proves to be a promising way to observe thousands of signals in a design,
potentially allowing designers to fully reconstruct the internal values of an FPGA over multiple
clock cycles to assist in verification and debug.

Keywords: FPGAs, verification, debug, incremental synthesis, observability

ACKNOWLEDGMENTS

I would like to thank Dr. Brad Hutchings for guiding me to the topic of this thesis and

through its research and writing. His wisdom and patience has been greatly appreciated. I could

not have done this work without him.

I am grateful for Dr. Aaron Hawkins and the IMMERSE undergraduate research program.

He introduced me to the world of college research and it helped me discover the field of engineering

I enjoy.

Thanks to all my colleagues in the BYU Configurable Computing Lab, past and present.

They have been there to help me with random questions and problems along the way, and my work

relied on tools developed by the CCL lab.

I also thank my brother Ben for helping me find spelling and grammar mistakes in this

paper. I wish him success as he continues studying English and editing.

I am grateful for all assistance from my family, committee members, and friends. Many

have been great examples to me, especially my father who works hard to provide and care for his

family.

Finally, and most importantly, I thank my wife Katie for her love and support. She has

encouraged me in this work even though it often meant spending long days and evenings without

me. She is a great mother to our children and an inspiration to me.

TABLE OF CONTENTS

LIST OF TABLES . vi

LIST OF FIGURES . vii

NOMENCLATURE . viii

Chapter 1 Introduction . 1
1.1 Motivation . 1
1.2 Preview of Approach . 2
1.3 Contributions . 4
1.4 Outline . 5

Chapter 2 Background and Related Work . 7
2.1 FPGA Architecture . 7

2.1.1 Virtex-5 Overview . 7
2.1.2 CLB Tiles . 8
2.1.3 Interconnect Tiles . 8
2.1.4 BRAM Tiles . 9

2.2 Xilinx Design Flow . 10
2.2.1 Design Entry and Synthesis . 10
2.2.2 NGDBuild . 10
2.2.3 MAP . 11
2.2.4 PAR . 11
2.2.5 BitGen . 11

2.3 Incremental Synthesis . 11
2.3.1 XDL . 12
2.3.2 RapidSmith . 12

2.4 Related Work . 12
2.5 Commercial Debug Tools . 16

Chapter 3 Trace Buffer and Trigger Implementation 18
3.1 Trace Buffer Implementation . 18
3.2 Trigger Implementation . 20

Chapter 4 Incremental Trace Insertion . 23
4.1 Trace Insertion . 23
4.2 Placement . 26
4.3 Routing . 28

Chapter 5 Primary Results . 31
5.1 Test Methodology . 31
5.2 Runtime Proportions . 33

iv

5.3 Runtime . 35
5.4 Minimum Period . 37

Chapter 6 Influences on Routing . 40
6.1 Trace Buffer Width . 40
6.2 Trigger Width . 41
6.3 Routing Order . 44
6.4 Congestion . 46

Chapter 7 Improving Timing with Pipelining . 48
7.1 Pipelining Methodology . 48
7.2 Pipelining Results . 50

Chapter 8 Conclusion . 52
8.1 Summary . 52
8.2 Future Work . 53

REFERENCES . 55

Appendix A Placement Examples . 58
A.1 Placement Screenshots . 58

v

LIST OF TABLES

5.1 Benchmarks . 32
5.2 Benchmark Compile Times . 37

6.1 Trigger Sizes . 42

vi

LIST OF FIGURES

1.1 Block diagram of proposed debug system . 3

2.1 Xilinx design flow . 10
2.2 FPGA debug flow . 14

3.1 Trace buffer diagram . 19
3.2 Trigger diagram . 21

4.1 Design flow with incremental trace insertion . 25

5.1 Pie chart showing runtime proportions of the steps of trace insertion 34
5.2 Runtimes for instrumentation . 36
5.3 Percent of maximum traces routed vs. runtime . 36
5.4 Minimum periods before and after instrumentation 38

6.1 Trace buffer width routing failures . 41
6.2 Trigger signals vs. runtime . 43
6.3 Routing order impact on runtime . 45
6.4 Routing order impact on period . 45
6.5 Routing failures due to congestion . 46

7.1 Pipeline example . 49
7.2 Minimum period with pipelining . 50

A.1 Placement of bgm . 59
A.2 Placement of LU8PEEng . 60
A.3 Placement of stereovision0 . 61
A.4 Placement of stereovision1 . 62
A.5 Placement of LU32PEEng . 63

vii

NOMENCLATURE

API Application programming interface
ASIC Application-specific integrated circuit
BRAM Block random access memory
CAD Computer-aided design
CLB Configurable logic block
DSP Digital signal processing
ELA Embedded logic analyzer
FIFO First in, first out
FPGA Field-programmable gate array
HDL Hardware description language
IC Integrated circuit
ICAP Internal configuration access port
ISE Integrated software environment
JTAG Joint test action group
LUT Look up table
NCD Native circuit description
NGD Native generic database
PAR Place and route
PIP Programmable interconnect point
RAM Random-access memory
RT L Register-transfer level
SRL Shift register LUT
UCF User constraint file
XDL Xilinx design language

viii

CHAPTER 1. INTRODUCTION

1.1 Motivation

Integrated circuits (ICs) have revolutionized the world of electronics. Today they are used

in virtually all electronic equipment. Computers, mobile phones, and other digital home appliances

are wide spread and an important part of modern societies and use ICs. It is critical that ICs

function correctly or there can be costly or even deadly consequences. For example, the Pentium

FDIV bug purportedly cost Intel $475 million to replace the flawed ICs as announced in 1995 [1].

Several people died due to flaws in the Therac-25, a radiation therapy machine. One of the Therac-

25’s problems was that it lacked hardware interlocks that had been present on past models of the

machine [2]. These incidents highlight the importance of performing proper verification of ICs.

Verification is an important part of IC product development and FPGAs are increasingly

being used to do it. A worldwide study and survey commissioned by Mentor Graphics found

that over half of all designer effort is spent performing functional verification [3]. The study also

found that in 2010, 55% of the industry used Field-programmable gate array (FPGA) prototyping

for verification, an increase from 41% in 2007. FPGAs are an attractive platform for verification

and debug because they are much faster than simulation and cost less than fabricating an ASIC

prototype. IBM engineers reported that full chip-level testing using a multi-FPGA prototype is

100,000 times faster than software simulation [4]. With such a large difference in speed, designers

can perform tests on FPGAs that involve a greater number of clock cycles than they could test with

simulation. An ASIC prototype could achieve even greater speeds than an FPGA, but FPGAs have

other advantages over ASIC prototypes. The lead time of fabricating an ASIC can be weeks or

even months and can easily cost over 1 million USD [5]. An FPGA can be available immediately

and costs much less than an ASIC, so many designers may find that the advantages of performing

verification on an FPGA outweigh the disadvantages.

1

The major disadvantage of using FPGAs for verification or debug is observability, the abil-

ity to see FPGAs’ internal values. Observability is key to verifying behavior and tracking down the

cause of bugs. Simulators can provide full observability into all signals of a circuit, but on FPGAs

and other physical prototypes only a small subset of signals can be observed through the external

pins. A common solution to this problem is to record a larger subset of signals in embedded logic

analyzers (ELAs) that are added to the FPGA design. ELAs provide more observability than a

standard logic analyzer which can typically only observe the external pins.

ELAs improve observability but have several disadvantages. First, ELAs use resources of

the FPGA. This could be a problem if there are not enough resources for the ELA. Second, the

ELAs may influence the placement, routing, and timing of the circuit being instrumented. In a

typical design flow the ELAs are placed and routed by the same processes as the rest of the circuit,

and it was shown in [6] that this changes the results and may change the timing of paths in the

circuit. The minimum period of the circuit may change if paths have greater delay than before.

Finally, making changes to the ELAs, such as the signals they are observing, often requires a

recompilation of the design in typical flows. Recompilation can take hours for large designs which

is prohibitive of making frequent changes to the ELAs.

1.2 Preview of Approach

The purposes of this work is to present and demonstrate the feasibility of a new trace-based

approach for improving FPGA observability that overcomes existing disadvantages of trace-based

approaches by using incremental techniques. Here we give a brief preview of the approach which

will be described in further detail in later chapters.

Similar to typical ELAs, our approach uses trace buffers and a trigger unit. Trace buffers

are formed from a memory resource on the FPGA. Trace buffers record a limited-size history of

the signals connected to them during regular device operation. This enables designers to run the

device normally and extract the signal history observed by the trace buffers with techniques like

device readback [7] for off-line analysis. Logic on the chip is used as a trigger to halt the trace

buffers’ recording and notify designers that the data should be extracted. The trigger allows the

trace buffers to continuously record data until certain conditions are met. The trigger conditions

can be determined by the designer, such as waiting for a subset of signals to be equal to some

2

Figure 1.1: Block diagram of the proposed debug system.

value or for some signal to change within a certain interval of another signal. Designers verify

functionality or hunt bugs by properly adjusting the trigger conditions and examining trace buffer

data.

Figure 1.1 illustrates our proposed approach. In our approach, multiple trace buffers are

distributed to observe and record nearby user signals. Distributing the trace buffers reduces the

distance signals must be routed and improves circuit timing. Including more trace buffers will

allow more signals to be observed. A centralized trigger unit controls the operation of all the

trace buffers with a single output signal that halts their recording when necessary. The trigger unit

requires a region of logic to detect conditions. We try to find a large enough region of logic as close

to the center of the design as possible to improving timing performance. However, for the trigger

unit size we tested, the trigger unit typically had to be placed on an edge of the user design to find

3

enough unused logic resources. The resources that the user design requires are known because this

entire system is inserted incrementally after the user design has already been placed and routed.

In this work, a Xilinx Virtex-5 FPGA [8] is used to demonstrate the approach and collect

all data. We perform incremental insertion in the Virtex-5 with RapidSmith [9], an open-source

set of tools and APIs that can incrementally modify Xilinx FPGAs by editing XDL files. The

RapidSmith tools and the implementation details of the trace buffers and trigger presented in this

thesis are specific to Xilinx FPGAs. The results and challenges of using the approach may differ

between architectures. However, the approach could be used on any FPGA where it is possible

to incrementally insert (place and route) additional logic and memory components in an already

existing circuit.

Our proposed approach has several predicted advantages:

• It has no impact on the placement or routing of the user circuit.

• It requires no area from the perspective of the user circuit.

• It has no impact on timing if the delay of the inserted paths is less than that of the critical

paths in the user circuit.

• It enables faster turn-around time for changing the observed signals or modifying the trigger

unit or trace buffers compared to traditional flows.

• It increases FPGA observability by taking full advantage of all leftover trace buffer capacity.

These advantages are possible because the debug system is inserted after the user circuit has been

placed and routed. We restrict our approach to only using FPGA resources left over by the user

circuit so that placement, routing, and area of the original circuit is not affected. If the designer

wants to make changes to the debug system they only have to rerun trace insertion and the steps

that follow.

1.3 Contributions

The approach described in this thesis has two unique characteristics: (1) it is completely

incremental and (2) a centralized trigger unit controls all the trace buffers. No other approach was

4

found that possesses both of these characteristics. We show that most of the approach’s advan-

tages, discussed in the previous section, do hold. Implementation details and challenges of using

the approach on a Xilinx Virtex-5 FPGA are described. We demonstrate how to create a trace

buffer from a single block RAM in the Virtex-5, and show what control circuitry is required. The

tools developed to do this work are the first to demonstrate the capability in a commercial FPGA

to reclaim all unused memory blocks for use as trace buffers and to incrementally insert a central-

ized trigger unit to control all of them. We also contribute the answers to the following research

questions:

• What percentage of user signals can be observed with this approach?

• How long does it take to change the observable set of signals?

• What is the timing impact of inserting a centralized trigger unit and distributed trace buffers

in an existing circuit?

• How does the routing problem differ between the trace buffers and trigger unit?

Our results show that 100% of the flip-flops in a Virtex-5 circuit can be observed if there

is enough trace buffer capacity. We chose to observe flip-flops because, with a knowledge of the

circuit, the values of other nets could be calculated based on the values of the flip-flops. The time

it takes to insert the trigger unit and trace buffers or change the observed signals is a few minutes

at most. This is a faster turn-around time than recompiling the whole design which can take hours.

The approach does significantly impact the minimum period of some designs, but has no impact

on designs with a sufficiently large period. It also shows that placing and routing the trigger unit

presents different challenges than the trace buffers. These challenges can be overcome even in

circuits that utilize a large percentage of FPGA resources.

1.4 Outline

The remainder of this thesis is organized as follows. Chapter 2 discusses background in-

formation and related work. Chapter 3 reveals the implementation details of the trace buffer and

trigger unit. Chapter 4 presents the process for inserting the trace buffers and trigger unit into a

placed and routed FPGA design. Chapter 5 presents the primary results of my approach such as

5

runtime and impact on timing. Chapter 6 explores different design and algorithm options that in-

fluence the results. Chapter 7 presents the effects of using pipelining in an effort to improve timing.

Chapter 8 concludes the thesis.

6

CHAPTER 2. BACKGROUND AND RELATED WORK

This chapter describes the Xilinx Virtex-5 FPGA architecture, Xilinx design flow, and some

methods of incrementally modifying Xilinx FPGA designs. These topics will help readers better

understand the contributions of later chapters. Related work in FPGA debug and commercial debug

tools are also described, especially those using incremental methods.

2.1 FPGA Architecture

Field-programmable gate arrays (FPGAs) are integrated circuits fabricated to be configured

by a designer after manufacturing. FPGAs are composed of reconfigurable logic, memory, and

routing interconnect that can be configured to perform a huge variety of tasks. FPGAs can be

reconfigured an unlimited number of times such that the same FPGA can be used for one task and

later be reprogrammed for a different task. They are different from application-specific integrated

circuits (ASICs) which are typically hard-wired for one task. However, the flexibility of FPGAs

comes with some drawbacks. An ASIC consumes less area and power and operates faster than the

equivalent circuit would on an FPGA.

The specifics of a FPGA’s architecture vary among vendors and product families. Many

modern FPGA architectures include more than just logic, memory, and routing. Other fixed func-

tional units are added such as DSP and block memories to boost performance or add new capabil-

ities. This work targets the Xilinx Virtex-5 architecture and this section describes the aspects of

that architecture that are important for our debug system.

2.1.1 Virtex-5 Overview

The FPGA architecture used for this study is the Xilinx Virtex-5. The Virtex-5 architecture

was chosen because it was the newest architecture fully supported by the RapidSmith CAD tools

used to perform routing [9]. We do not believe our results would change significantly with newer

7

Virtex architectures because many of the features we use have remained the same in the newer

architectures such as six input look-up tables (LUTs) and 36 kilobit block RAMs (BRAMs).

The Virtex-5 is an island-style FPGA arranged in a two dimensional grid of tiles. There

are multiple types of tiles in the grid. Besides their location, tiles of the same type are typically

identical. The types of tiles that are important for our work are CLB, BRAM, and interconnect

tiles. Each of these types of tiles is described in more detail in the sections that follow this one.

An important feature of the Virtex-5 for our work is its support of readback [7]. Readback

allows users to read the current state of the FPGA’s memory through JTAG, SelectMAP, or ICAP

interfaces. This is done by sending a sequence of commands to the FPGA, and the FPGA will

respond by dumping the contents of memory to the interface. There are two types of readback:

Readback Verify and Readback Capture. Readback Verify allows the user to read the current

values of all block RAM, SRL16, and LUT RAM instances in the device. Readback Capture is a

superset of Readback Verify and allows the current state of the CLB and IOB registers to be read

in addition to the memory elements read by Readback Verify.

2.1.2 CLB Tiles

Configurable logic blocks (CLBs) contain some of the most commonly used elements of

the FPGA: look up tables (LUTs) and flip-flops. Each CLB occupies a single tile of the FPGA and

is divided into two entities called slices. Each slice contains 4 LUTs, 4 storage elements, and a few

other gates useful for specific functions. LUTs are the basic units of the FPGA’s programmable

logic. The Virtex-5 LUTs have 6 available inputs and can implement any 6-input logic function.

The storage elements can be configured as flip-flops or latches, but we shall commonly refer to

them as flip-flops. The output of each flip-flop is directly connected to an output pin of the slice.

Most of the output and input pins of the slice are connected to an interconnect tile that is located

adjacent to the CLB tile. In Chapter 3 we describe how slices are used to create a trigger unit.

2.1.3 Interconnect Tiles

Interconnect tiles are the primary location for routing resources and each is paired with

a non-interconnect tile. In Xilinx FPGAs, wire segments can be connected together by pro-

8

grammable interconnect points (PIPs). Each interconnect tile contains hundreds of PIPs for con-

necting different wires. The wires span Manhattan distances ranging from 2 to 18 interconnect tiles

away. Each interconnect tile also has connections to the tile it is paired with. The paired tile uses

the interconnect tile to connect to resources in other tiles. For example, by properly programming

the PIPs the output of the flip-flop can be connected to another FPGA resource many tiles away or

it could simply be connected to one of the input pins of its own tile. Signals that must be connected

to a distant resource may have to pass through multiple interconnect tiles to reach the destination.

2.1.4 BRAM Tiles

The Virtex-5 contains block random access memories (BRAMs) that can store up to 36K

bits of data. Each BRAM actually occupies five Virtex-5 tiles and has five interconnect tiles associ-

ated with it for routing. The BRAMs support different configurations that offer different trade-offs

of data width and depth. A wider configuration will not be able to store as many entries. Read

and write operations on the BRAM require just one clock edge. The BRAMs are dual-port and

both ports can be used to read or write simultaneously. The BRAM can also operate in a simple

dual-port mode where one port is read-only and the other is write-only and both can still be used

simultaneously.

The BRAMs have built-in FIFO support so that a single BRAM can be used to implement

a FIFO [8]. Dedicated logic in the BRAM eliminates the need for other FPGA logic to track the

read address, write address, and status of a FIFO. The only control signals that must be generated

external to the FIFO are the read and write enable. The FIFO has full, almost full, almost empty,

and empty status signals. The offsets of what to consider almost full and almost empty are param-

eterizable. The FIFOs can also be parameterized for different widths (number of data input bits)

and depths (number of entries in the FIFO). 72 bits by 512 entries is the widest configuration and

others include 36 x 1024, 18 x 2048, 9 x 4096, and 4 x 8192. The Virtex-5 FIFOs cannot be written

to when they are full or read when they are empty. Attempting to do so will cause an error signal

to be asserted and the contents of the FIFO will not be changed. These features of the BRAM are

important for our trace buffer implementation.

9

Figure 2.1: Xilinx design flow.

2.2 Xilinx Design Flow

The Xilinx design flow plays an important part in our study. We use it to compile circuits

for the Virtex-5 FPGA. We also modify the flow so that we may insert our debug system after the

original circuit has been placed and routed. In this section we describe each of the steps in the

Xilinx design flow. Our modifications to this flow shall be described in Chapter 4.

2.2.1 Design Entry and Synthesis

Typically, a circuit to be implemented on a FPGA is initially described by the designer

in a HDL such as Verilog or VHDL. When the HDL description is ready it is synthesized into a

netlist form. A netlist is a collection of basic elements of logic (BELs) and a list of connections

(nets) between them. When using Xilinx tools, synthesis is usually performed by Xilinx Syn-

thesis Technology (XST) which will create the netlist in a proprietary format with the extension

NGC. However, the netlist may also be synthesized using alternative means into an EDIF file and

subsequent steps of the design flow will accept EDIF format as well as NGC.

2.2.2 NGDBuild

NGDBuild begins the process of technology mapping the netlist to a specific FPGA archi-

tecture. In this step, the BELs of the netlist are converted to a logical description of the design

made up of Xilinx primitives. The result is output in the form of a Xilinx Native Generic Database

(NGD) file. NGDBuild also adds user constraints to the design. User constraints are input to

NGDBuild as a user constraint file (UCF). The UCF allow designers to specify minimum clock

period, locations of I/O pads, area constraints, and other constraints.

10

2.2.3 MAP

Xilinx technology mapping is completed by MAP. MAP uses the NGD file from the pre-

vious step to map the logical description of the circuit to components in the target Xilinx FPGA.

When MAP completes the design exists as a netlist of Xilinx primitives such as slices, BRAMs,

and IOBs. For the Xilinx Virtex-5 architecture the MAP step also places the components of the

design. The placer will assign each component a physical site on the device while respecting any

user constraints. The placement is optimized to achieve better timing results. The result of MAP is

a native circuit description (NCD) file, a fully technology mapped and placed netlist of the design.

2.2.4 PAR

After MAP places a circuit, the next step of the design flow is to route the circuit using

PAR. Routing assigns the nets of the design to physical wires in the FPGA. Routing is optimized

to meet timing constraints. Similar to MAP, the output of PAR is a NCD file, but this one has been

updated with all the routing information.

2.2.5 BitGen

The bit generation (BitGen) process converts a placed and routed NCD file into a BIT file

that can be used to configure the FPGA. After this step is complete the user may load the BIT file

into the appropriate FPGA to form the circuit. Designers can now test the circuit on the FPGA to

verify it functions correctly using techniques like the ones described in this paper.

2.3 Incremental Synthesis

The goal of incremental synthesis is to modify the functionality of an existing circuit with

minimal changes to its current placement and routing [10]. In this section we focus on how a

Xilinx design may be incrementally modified with XDL and RapidSmith. The tools and techniques

described here are used to incrementally insert our debug system.

11

2.3.1 XDL

The Xilinx Design Language (XDL) is a human-readable ASCII format description of a

circuit. Xilinx provides command line tools to convert proprietary Xilinx NCD files into XDL files

and vice versa. A circuit may be modified by editing the XDL file. The edited XDL file can be

converted back into an NCD file which can be used in the Xilinx tool flow. NCD files are output

after several stages of the Xilinx tool flow: map, place, and route. It is possible to convert the NCD

files from any of these stages to an XDL file so that incremental changes may be made. Placement,

routing, and parameters like FIFO width can all be modified in the XDL file [11].

2.3.2 RapidSmith

RapidSmith is an open-source set of tools and APIs that enable CAD tool creation for Xil-

inx FPGAs [9]. RapidSmith is written in Java and allows designers to write Java code for their own

placers and routers as well. RapidSmith performs placement and routing through modifications to

XDL files. To demonstrate our method we created a placer and router that uses the RapidSmith

API. This placer and router was created for the specific purpose of incrementally inserting trace

buffers and a trigger unit after PAR.

2.4 Related Work

A major challenge of debugging circuits on FPGAs is observability. A limited number of

signals may be observed on an FPGA’s pins using an external logic analyzer but this is often inad-

equate and some of the pins may be used already. Methods to observe a larger number of signals

can be divided into two broad categories: scan-based and trace-based. The method proposed in this

paper is trace-based and incremental so that will be the focus of this section, but first scan-based

debug methods shall be described.

Scan-based debug approaches capture the state of an FPGA for inspection by serially shift-

ing it out over an external pin or an interface such as JTAG. The state of the FPGA is the values in

all memory elements on the chip, such as flip-flops and embedded memory blocks. Some FPGAs

have built in support for serially shifting out the FPGA’s state. For example, this is possible in the

Xilinx Virtex-5 FPGAs used in this paper via the readback feature [7]. In [12] it was shown how

12

readback data can be used for debugging in a combined simulation/hardware execution environ-

ment built on JHDL [13]. If an FPGA does not have built in support it may be added by wiring up

the memory elements in such a way that their data can be serially shifted out when a control signal

is asserted. However, [14] showed that the average overhead for full scan is 84% additional area.

A challenge with scan-based approaches is that as devices increase in size and density the time

required to shift the entire FPGA state out proportionally increases [15]. Scan-based approaches

cannot observe the value of all state elements every clock cycle unless the circuit is halted each

clock cycle, which would significantly increase operation time.

In a typical trace-based approach a designer pre-inserts trace buffers controlled by a trigger,

also called embedded logic analyzers, into the circuit before compilation. The signals to trace must

also typically be selected before compilation. The trace buffers allow a window of the history of

the chosen signals to be recorded as the circuit operates in real-time. For devices with readback

capability the data in the trace buffers can be extracted using readback for off-line analysis. Trace-

based debug does have the disadvantage of requiring FPGA resources which can influence the

placement and routing of the circuit [6] and limit the number of signals that can be observed.

Another disadvantage is that the circuit may have go through a time-consuming recompilation if

the designer wishes to change the signals being observed or parameters of the trace buffers or

trigger.

This paper proposes an incremental trace-based debug approach that enhances the observ-

ability of FPGA signals. Incremental synthesis allows us to overcome some of the disadvantages of

trace-based approaches such as influencing the placing and routing of the original circuit. Instru-

menting the circuit with incremental synthesis also allows us to avoid influencing the placement

and routing of the original circuit because instrumentation is not included in the compilation of

the original circuit. The goal of incremental synthesis is to modify the functionality of a placed-

and-routed circuit while preserving as much of the original solution as possible. FPGAs are well

suited for incremental synthesis because there is often unused logic and routing resources leftover

after a circuit has been compiled. Another disadvantage we can avoid with incremental synthesis

is recompilations of the entire circuit whenever changes are made to the instrumentation. Fig-

ure 2.2 demonstrates how incremental synthesis allows us to avoid a full compile of the circuit

when adding or making changes to the instrumentation of a circuit. Incremental compile offers

13

Figure 2.2: Design and debug flow demonstrating how incremental changes reduce time between
debug iterations.

an alternate path out of the instrument step, and allows designers to more quickly test the circuit

again.

Graham et al. [16] demonstrated the use of incremental techniques to change signals being

observed without recompiling the entire design. They put unconnected embedded logic analyzers

in the FPGA prior to placing and routing, and afterwards used low-level bitstream modification

to connect them to the desired signals. This reduces turnaround time between debug iterations so

that designers may more quickly observe different sets of signals. Graham et al. also anticipated

that an updated version of their techniques could insert the entire trace buffer into the circuit with

bitstream modifications. The envisioned updated techniques would be similar in concept to those

in this thesis. However, their techniques relied upon the JBits API that was provided by Xilinx

for Virtex-II FPGAs, but similar APIs have not been provided for other commercial FPGAs. Also,

the centralized trigger unit system used in this work is different from ELAs used by Graham et

al. which each had their own trigger unit. Graham’s system may not scale well for observing

thousands of nets, and only 128 nets were observed in their tests.

Poulos et al. [17] also used bitstream modifications to raise debug productivity. They con-

nected signals that the designer might want to observe to multiplexer (mux) by changing the design

prior to synthesis. The muxes connected the signals to FPGA pins that could be observed by an

external logic analyzer. If the designer wanted to change the signals that were being observed a

14

bitstream modification could change what is passed through the muxes. This approach does not

use trace buffers like us, nor does it avoid influencing the placing and routing of the original circuit.

The work of Poulus et al. has some similarities to the work done later by Hung and Wilton in [18]

which did use trace buffers. At compile time, Hung and Wilton embedded an overlay network

which multiplexes almost all signals of a circuit into trace buffers. The muxes in this network were

formed of unused routing muxes within the FPGA fabric rather than logic resources. At debug

time, the network would be configured by setting a small number of routing bits to select signals

to observe. The trigger to control the trace buffers was assumed to be specified by the designer

manually or driven from an external pin, so incrementally inserting the trigger was not explored as

it is in this paper.

Two unique characteristics of incremental trace buffer insertion were identified by Hung

and Wilton [6, 19]: (1) the trace buffers only observe and do not modify the functionality of the

original circuit and (2) a trace can be observed at any trace buffer. The first characteristic is

important because it means trace buffers can be inserted without changing any placement or routing

of the original circuit. The trigger unit also has this characteristic because it only influences the

functionality of the trace buffers and nothing in the original circuit. The second characteristic

indicates that routing traces to trace buffers has a many-to-many flexibility. The many traces can

be routed to any of the many free trace buffer input pins, so for each trace all trace buffer input

pins are potential sinks. As long as each trace is connected to a trace buffer it shall be observed

and recorded. However, this characteristic does not hold for the trigger unit because, in addition to

observing signals, it is watching for these signals to meet certain conditions. We assume to detect

these conditions the trigger unit requires each input signal to be routed to a specific pin/port so

that it is connected to the proper logic. This assumption is a worst case scenario because some

comparisons do not require a specific order for the logic, e.g. equality comparisons, but arithmetic

comparisons do have this requirement. Thus, each trigger signal must be routed to a specific pin

but trace buffer inputs may be routed to any appropriate pin.

This paper expands on and demonstrates an application of the work done by Hung and

Wilton in [6, 19], mentioned in the previous paragraph. Hung and Wilton used VPR, an open

source CAD tool that is part of the VTR project [20], to incrementally insert trace buffers into a

custom FPGA architecture based upon the Altera Stratix IV. They found that postmap insertion was

15

98 times faster than premap trace-insertion when reclaiming 75% of the leftover memory capacity

as trace buffers. In addition, postmap insertion had a less than 1% effect of the critical-path delay

of the circuit. They hypothesized that there was no reason why their techniques would not work on

commercial FPGA devices but could not verify this since they did not use a commercial FPGA. In

this paper we demonstrate the feasibility of Hung and Wilton’s incremental trace buffer insertion

techniques on a commercial Xilinx Virtex-5 FPGA. We use the Xilinx ISE tools to map the original

circuit onto the Virtex-5 FPGA and perform postmap trace-insertion by editing the output of these

commercial tools before it is used to generate a bitstream. We also expand upon their techniques by

incrementally inserting a complete debug system that includes a centralized trigger unit to control

the trace buffers.

2.5 Commercial Debug Tools

Commercial debug tools support varying degrees of incremental instrumentation. All seem

to support changing trigger conditions without requiring a full recompile. Beyond this, support for

incremental changes is more varied. Some use other techniques besides incremental changes to

avoid full recompiles. This section describes the techniques used by Tektronix Certus, Synopsys

Identify, Xilinx Chipscope Pro, and Altera SignalTap II.

Tektronix Certus improves observability into multi-FPGA prototyping platforms at the

RTL-level but has little support for incremental features [21]. Instead, Certus avoids the need

to recompile by instrumenting such a large number of signals that it is unlikely you will need to

modify them. Certus also automatically identifies influential nets that should be observed. Like

Certus, our results show that our proposed system can instrument a large number of signals in some

benchmarks but it is all inserted incrementally.

Synopsys Identify allows hardware to be debugged at the RTL-level [22]. Instrumentation

is added into the circuit prior to compilation. Identify allows users to change the signals being

probed without a full recompile. Our proposed system does not require anything to be added to the

circuit before compilation like Identify does.

Xilinx Chipscope Pro requires that cores be inserted into the design before the implemen-

tation stage [23]. Some parameters of the cores can be changed incrementally. Trigger and data

signals can be changed incrementally using FPGA Editor. Xilinx also supports partial reconfig-

16

uration via partitions that may allow the designer to avoid a full recompile but there are some

limitations to using it in conjunction with Chipscope Pro [24]. Thus, Chipscope Pro has a lot of in-

cremental capabilities but they may require extra design effort such as running a separate program

or setting up partitions.

Altera SignalTap II has the most support for incremental changes. SignalTap II uses parti-

tioning to allow designers to add it to the design or make change to its settings [25]. The partitions

make so only portions of the design have to be recompiled rather than the entire design. This is

similar to partial reconfiguration of Xilinx designs, but seems to be more integrated into the Signal-

Tap II flow or at least better documented. Our proposed system does not require partitioning to

achieve its results like SignalTap II and Chipscope Pro.

In conclusion, our debug system is unique among both past academic and commercial

systems. Many do not include the capability to incrementally insert or alter the entire debug system

without influencing the original circuit. Those that have included or envisioned this capability did

not include a centralized trigger unit or investigate its impact. Also, some past academic work did

not use a commercial FPGA for their data as we do.

17

CHAPTER 3. TRACE BUFFER AND TRIGGER IMPLEMENTATION

This chapter explains the two types of components that are used to create our proposed

debug system: trace buffers and trigger units. The proposed system has multiple trace buffers

and one trigger unit to control them and was shown earlier in Figure 1.1. This chapter focuses

on describing the purpose and desired behavior of these components. It also discusses how the

desired behavior is achieved in the Xilinx Virtex-5 architecture. The implementation details also

reveal how the system as a whole works.

3.1 Trace Buffer Implementation

The purpose of the trace buffers is to observe signals in the FPGA and record a history of

their values. Designers can access the history recorded in the trace buffers by halting the operation

of the FPGA and reading back the trace buffer’s data. The recorded history assists designers in

debugging the circuit they have implemented on the FPGA. It allows them to identify what took

place in the circuit and verify that it matches the specified functionality of the circuit.

The desired behavior for a trace buffer is that during each clock cycle the current values of

the traces connected to its data input pins are stored and if the trace buffer is full the oldest value

is removed. The trace buffer should do this continuously until it is halted by the trigger unit or the

entire FPGA is halted. This behavior is identical to the behavior of a queue or FIFO that ejects

the oldest entry when it is full and there is a new entry. As described in Chapter 2, the BRAMs

in Virtex-5 FPGAs have built in support for FIFO behavior. However, the behavior of the FIFO

does not match the desired trace buffer behavior. A Virtex-5 FIFO will not allow a new value to

be written if the FIFO is full. It does not automatically remove the oldest entry when there is a

new entry. The oldest entry may be removed by performing a read of the FIFO. Thus, some small

adjustments are necessary to allow the FIFO to operate as a trace buffer that is continuously written

each clock cycle.

18

Figure 3.1: Trace buffer diagram

Figure 3.1 shows how a trace buffer can be implemented from a single Virtex-5 FIFO. Due

to the widths available for Virtex-5 FIFOs, a trace buffer can have up to 72 traces, but we typically

use 36 for reasons explained in Chapter 6. The FIFO’s almost full signal is connected to its read

enable pin. The almost full signal warns when the FIFO is almost out of space. Routing this

signal to the FIFO’s read enable pin makes it so each clock cycle the oldest value will be removed

from the FIFO as long as it remains almost full. The FIFO can be read and written at the same

time so the trace buffer can continuously write signal values as we desire. Using the almost full

signal simplifies implementation because it eliminates the need for additional logic to control the

read enable pin. The FIFO also requires some signals be tied off to VCC and GND but this is

easily accomplished because there are many VCC and GND tieoffs available throughout Virtex-5

FPGAs.

The trigger unit controls and halts the trace buffer via the write enable pin. The trigger unit

holds write enable high to allow the trace buffer to record signal values. It halts the trace buffer by

19

driving write enable low. This will halt trace buffer writes. Reads will also stop when the FIFO

is no longer almost full. We configured almost full to alert us when there is only one free entry

remaining in the trace buffer. Thus, the reads will halt as soon as there are two free entries in the

trace buffer. The FIFO never reaches full capacity and blocks a write because reads and writes

happen at the same rate until it is halted by the trigger. The downside is that the trace buffer cannot

use its full capacity but this only results in the loss of two units of depth. This is the cost of using

the almost full signal to control reads, but it is worth the cost because of how much it simplifies

implementation.

3.2 Trigger Implementation

In this work we investigate the use of a single global trigger unit to control all the trace

buffers. This is done via a single output signal from the trigger unit that connects to the write

enable pin of each trace buffer as was shown in Figure 3.1. The advantage of this approach is that

it simplifies the incremental insertion and is easily scaled to any number of trace buffers. The only

influence adding more trace buffers has on the trigger unit is more fanout on the output signal. The

area of the trigger logic is completely independent from the number of trace buffers.

We make several assumptions of what the trigger unit will require to fulfill its purpose

while also achieving good timing performance. First, we assume the trigger condition will be

based on some of the circuit’s user signals. Thus, some number of user signals will be inputs to

the trigger unit. We assume the inputs will be connected to flip-flops to improve performance. The

flip-flops will then drive logic gates that have have been arranged to detect the trigger condition,

and some flip-flops may be required to improve performance or hold state values for the logic.

The logic will control the output value of the trigger unit which we also assume to be driven by

a flip-flop for better performance. Everything we need to implement the trigger unit is available

in the slices of the Virtex 5. The slices contain LUTs that can perform the logic and they contain

flip-flops. Finally, we assume that all the slices used to implement the trigger unit will be located

in the same region of the FPGA as each other. Locating the slices close to each other will improve

timing performance and make it simpler to route the internal signals of the trigger unit. This final

assumption means that our trigger unit will be centralized rather than distributed throughout the

FPGA like the trace buffers.

20

Figure 3.2: Trigger unit diagram

A sample trigger unit was created that fits all of our assumptions as shown in Figure 3.2.

The sample trigger unit checks if the value of its inputs matches a parameterizable constant. Each

of the inputs is connected to a flip-flop. It also contains a counter to allow a configurable delay

between detecting the equality and halting the trace buffers. The counter allows a designer to

configure how many clock cycles the trace buffers will continue to record after the equality is

detected. Finally, some logic that is monitoring the counter and comparator controls the value

of the flip-flop that drives the output signal that is connected to all the trace buffers. The sample

trigger unit was compiled with Xilinx ISE 14.4 and used 91 slices on the Virtex-5 when the number

of input traces was 256, which we refer to as the input width. The number of slices the sample

trigger unit required is used later in the paper to determine how many slices to reserve for a trigger

unit.

We do not wish to restrict our results to a single trigger unit, so we use a placeholder that

could represent any number of trigger units. Formulating a single trigger unit that would work in

all situations and designs is beyond the scope of this work, and may even be undesirable because

one of the advantages of FPGAs is that they can be reprogrammed for any trigger event [26]. In

our tests it does not matter if the trigger unit is functional or not. The important thing is that we

account for the area and timing impact caused by placing the trigger unit and routing signals to

it. The area impact is determined based off the area of the sample trigger unit described in the

previous paragraph. An area of unused slices is found in the already placed-and-routed user circuit

21

and the area is reserved for the placement of the trigger unit. The timing impact is investigated by

routing the trigger unit’s inputs and output. Routing the internal signals is not necessary because

the external signals have much greater path length and delay. The inputs to the trigger unit are

routed to flip-flops within the reserved area. Likewise, the output signal originates from a flip-

flop source pin in the reserved area. The circuit’s clock signal is also routed to the flip-flops, so

that timing results can be calculated using the Xilinx TRACE tool. The placeholder trigger unit

accounts for area and timing, and avoids implementing any specific internal details which will vary

according to designer needs.

22

CHAPTER 4. INCREMENTAL TRACE INSERTION

This chapter describes our proposed method for increasing FPGA observability to simplify

debug and verification. The previous chapter described how the components necessary to form our

debug system are implemented. In this chapter we shall describe how those components are incre-

mentally inserted into a design. First, an overview of our proposed method is given that describes

how it fits into the Xilinx design flow. Then the two major steps of incrementally synthesizing the

debug system are described: placement and routing.

4.1 Trace Insertion

To increase the observability of FPGA circuits, we propose trace buffers and a trigger unit

be inserted incrementally into already placed-and-routed designs. We shall refer to the already

placed-and-routed design as the original circuit or user circuit and the trace buffers and trigger

that are incrementally inserted as the debug system. Nets from the the original circuit shall be

incrementally connected to the trace buffers to be observed and recorded. The trigger unit shall

control the trace buffers and allow them to record until trigger conditions specified by the designer

are met. We propose incrementally inserting the debug system because it will reduce the impact

on the original circuit’s area, placement, routing, and timing.

From the perspective of the original circuit, the debug system has no area overhead. The

original circuit will already be placed-and-routed and thus will already have claimed whatever area

of the FPGA it needs. The debug system is inserted into whatever FPGA area has been left unused

by the original circuit. Thus, the debug system has an area but it is area that is of no consequence to

the original circuit because it did not need it. If the debug system were not incrementally inserted

then it would increase the area of the original circuit. Incremental insertion allows us to adjust the

size of the debug system to fit into whatever the original circuit does not use. The amount of trace

buffers and trigger logic we can insert will be influenced by the area of the original circuit. If the

23

original circuit used a lot of BRAMs then there will be less available for trace buffers. Likewise, if

the original circuit utilizes a high percentage of slices then we may be limited in the type of trigger

unit we can insert. The debug system does not influence the area of the original circuit but the

reverse is not true; the original circuit influences the area of the debug system.

The goal of incremental synthesis is generally to modify the functionality of an existing

circuit with minimal changes to its current placement and routing. Our goal is different than

this “general-purpose incremental synthesis” because we only desire to observe signals. General-

purpose incremental synthesis does not guarantee that the placement and routing of the original

circuit will be preserved. However, we do make that guarantee for our method. The placement and

routing of the trace buffers and trigger unit is restricted to resources unused by the existing circuit.

The original circuit will be left completely intact. When the debug system is removed the circuit

will be exactly the same as it was originally. This allows designers to instrument a circuit without

influencing the placing or routing of the circuit.

Restricting our method to unused FPGA resources also reduces impact on timing. All

the paths and timing of the original circuit are preserved. However, the minimum period may

temporarily change while the debug circuitry is included. The minimum period of the circuit

will change if any of the paths we add have delays greater than those of the critical paths in the

original circuit. The paths we added would then become the critical paths and the minimum period

would increase. The chance of this occurring increases as the minimum period of the original

circuit decreases. This change in the minimum period would only apply while the debug system is

included in the circuit. After the debug system is removed the circuit’s minimum period will return

to its original value if inserting the system caused a change.

Figure 4.1 shows the Xilinx design flow with the addition of incremental trace insertion.

The Xilinx design flow was described previously in Chapter 2. Our proposed method is inserted

between the PAR and BitGen stages. When inserting instrumentation, the NCD representation of

the circuit produced by the PAR process is converted to an XDL file. Trace insertion modifies

the XDL file to insert the trace buffers and trigger unit and creates a new XDL that includes the

modifications. This XDL file can be converted back to an NCD and the normal Xilinx flow may

continue. BitGen can create a BIT file that can configure the FPGA with the circuit that includes

24

Figure 4.1: Incremental trace insertion in the Xilinx design flow.

the debug system. The ncd2xdl and the xdl2ncd conversion are done with the XDL command line

tool included with Xilinx installations as described in Chapter 2.

An advantage of the incremental synthesis approach is decreased turn-around time between

debug iterations. Turn-around time is reduced because the whole compilation process does not

have to be rerun to make changes to the signals or logic being used for debug. This can take hours

for large designs. With incremental synthesis, the signals being instrumented can be changed in

minutes. Only the trace insertion, xdl2ncd, and BitGen steps need to run again. This is possible

because the changes are made to the XDL file output from the ncd2xdl step. Other changes can

also be made such as modifying the trigger logic or input width of the trigger unit or trace buffers.

Thus, designers can more quickly perform debug iterations that observe different signals or trigger

on different conditions.

The trace insertion step shown in Figure 4.1 performs the techniques that are the subject

of this work. The trace buffers and trigger unit are inserted incrementally in this step for the

25

purpose of increasing observability. As shown in the figure, an XDL file representing the circuit

to instrument is one of the inputs to trace insertion. There are some additional user inputs that are

not shown. Trace insertion requires two lists: a list of the nets to trace and a list of the nets to

connect to the trigger unit’s inputs. There are also other parameters of trace insertion that can be

adjusted such as trace buffer width, trigger width, or number of trigger unit slices. The nets being

traced shall be referred to as trace nets and the nets being connected to the trigger unit’s inputs

shall be referred to as trigger nets. The following sections describe how placement and routing

are performed in trace insertion and it is shown how these steps differ for trace buffers and trigger

units.

4.2 Placement

The placement step will find BRAMs and slices that the original circuit did not use and

consider them for placing the trace buffers and trigger unit. The number of trace buffers to place is

determined by two things: the length of the trace netlist passed to trace insertion and the number

of available BRAM sites. The placer will attempt to place just enough trace buffers so that every

trace net may be connected to a data input pin. If there are not enough available BRAM sites to

place enough trace buffers then all the available sites will be used and nets will be trimmed off the

end of the list until the number of nets is low enough to fit into the available capacity. The number

of trigger nets is determined by the size of the trigger netlist. The placer must be told how many

slices to reserve for the trigger unit. We do not trim the trigger netlist like the trace netlist if there

is not enough capacity because if there is not enough slices to place all of the trigger unit then it

will not function properly. Each of the trace buffers is independent from the others, but the slices

of the trigger unit are not independent from each other and we cannot simply trim some of them.

If the trigger unit could not be placed then the designer will have to create a smaller trigger unit

that can fit into the available space.

After it has been determined how many trace buffers to place, the next problem is where to

place them. Minimum clock period will be better if nets do not have to be routed long distances

to reach a trace buffer. Thus, it is desirable that the trace buffers to be distributed through out the

circuit in locations close to the sources of the nets that will be observed. To accomplish this, a

random trace net is chosen for each trace buffer that needs to be placed. The trace buffer is placed

26

in the closest available BRAM site to the source of the chosen net. This placement method ensures

that the trace buffers are distributed throughout the circuit and put in locations that will be a short

distance from at least one trace net.

The trigger unit requires different placement considerations than the trace buffers. An

important distinction between the trigger unit and the trace buffers is that the former is centralized

while the latter is distributed. Each trace buffer requires only a single BRAM site on the FPGA

but the trigger unit requires multiple slices. These slices must all be in the same region of the

FPGA for good performance and to simplify the routing within the trigger unit. Nets from various

locations in the circuit need to be routed to the trigger unit just like the trace buffers. The trace

buffers could use randomly selected nets to choose placement sites since they were distributed, but

the trigger unit is a single centralized component and is unlikely to achieve good performance if

its placement is based off one random net. Instead, it is desirable for the trigger unit to be placed

in a location that is centrally located in comparison to the various nets that will be connected to it.

The placement algorithm of the trigger unit proceeds as follows. The center of the trigger

nets is found by averaging the locations of the source of each net to be connected to the trigger

unit. Available slices are then sorted by their distance from the center. Each slice is then processed

in sorted order to find a region containing enough unused slices to place the trigger unit. The

sorted order guarantees it will be as close to the center as possible. A breadth first search is used

when processing each slice to see if enough unused slices are in the same region as it. When an

appropriate region has been found for the trigger unit, each slice in the region will be configured

one-by-one to form the trigger unit. As stated earlier, in our tests we only configure the flip-flops

connected to the inputs and outputs of the trigger unit and do not implement the internal logic and

signals. An alternative to individually configuring each slice would be to place a hard macro in the

area using tools such as HMFlow [27] but this is not investigated in this paper.

A maximum congestion factor can also be specified to the placement algorithm for the

trigger unit. The placer will not consider slices for trigger unit placement if the interconnect tile

associated with that slice is above the specified maximum congestion. In this work, congestion is

determined by the number of used routing nodes in the interconnect tile. RapidSmith uses nodes

to represent routing resources of the FPGA and the connections between them are represented as

edges [9]. The nodes and edges form a routing graph which routers can use to find paths between

27

resources. An interconnect tile is highly congested if a large number of its nodes are used. The

used nodes represent used routing resources that are unavailable to other nets which makes it more

difficult to route through the tile. Later we show congestion can cause the router to fail to route

some trigger input signals.

Examples of the placer’s results may be found in Appendix A. The examples are screen-

shots taken from Xilinx FPGA Editor. In them the trace buffers can be seen distributed throughout

the FPGA as we described. The trigger units of each example are near the edge of the original

circuit where enough unused slices could be found for the trigger unit.

4.3 Routing

The routing step will route all necessary signals for the trace buffers and trigger unit to

function properly. The nets that must be routed include: trace nets, trigger nets, the trigger output

that controls the trace buffers, a clock for the flip-flops and trace buffers, and some local nets

required for the trace buffer. The number of trace nets that must be routed will vary depending on

the benchmark as discussed in the previous section. The number is dependent on how many nets

need to be traced and how many unused BRAM sites there are. For most of the benchmarks the

number of trace nets is over 5000. The trigger unit is usually a fixed size with 256 inputs based

upon the sample trigger unit described in Chapter 3 except when we examine the effects of trigger

width. The trigger output is a single net that must fanout to each trace buffer, so the number of

pins it must be routed to will vary with the number of trace buffers. The clock must be routed to

each trace buffer and each slice of the trigger unit that contains flip-flops. The local nets required

for the trace buffer were described in Chapter 3, and include the almost full signal that connects to

the read enable pin and some nets that must be tied off to VCC. In addition to routing all these nets

the router must avoid the already existing routing of the circuit.

A maze router was created based upon the one developed for RapidSmith [27]. The created

router uses a directed search to find a path from a net’s existing connections to a given sink pin. If

a net has no existing connections then it will find a path from the net’s source pin to the sink. The

router works by evaluating routing nodes and placing them in a priority queue so that those more

likely to lead to the sink will be evaluated first. There is some special logic for the clock net so that

28

it will use the dedicated clock routing on the FPGA. RapidSmith contains functions that process

the XDL file and mark used routing resources so that the router will not use them.

The router only performs a single pass over all the nets, permanently routing each one as

it goes. No rip-up and reroute is performed so once a net is routed the resources it used will be

unavailable to the remaining nets. Thus, the order the nets are routed in will affect the result. Later

we investigate two orders for routing the trace nets: random and sorted by distance from the nearest

trace buffer. A more advanced routing algorithm that performs multiple passes could be used, but

the results presented in Chapter 5 indicate that the simple maze router is sufficient and its single

pass shortens runtime.

Before routing begins some routing nodes are reserved for the trace buffer and trigger sink

pins, as was also done in [27]. Typically sink pins are only accessible from one routing node in an

interconnect tile, so for each sink pin the routing node from which it is accessed is reserved. If no

nodes were reserved we found that some routes used nodes that were required by other routes to

reach sink pins. The first-come, first-served nature of the router’s single pass causes this and makes

it impossible to complete the routes to some sink pins. Reserving nodes prevents this problem. The

reserved nodes can only be used by a net that is being routed to the pin they are reserved for. Thus,

the router is prevented from using nodes that are the only way to reach sink pins that are not part

of the current route.

The routing problem for the trace nets has a unique many-to-many flexibility [6, 19]. A

trace net can be connected to any trace buffer data input pin to make it observable. It does not

matter which trace buffer or data pin. Therefore, all the available trace buffer data input pins are

potential sinks for each trace net. Given this flexibility, we choose to route traces to the nearest

trace buffer with an available pin. The particular trace buffer and pin to route a trace net to is

decided when it is time to route the net. This makes the routing order of the trace nets important

and we investigate the effects of routing order in Chapter 6.

The trigger nets do not have the same flexibility as the trace nets. We assume the trigger

nets must be routed to specific input pins on the trigger unit unlike the trace nets which can be

routed to any appropriate pin on any trace buffer. This assumption is justified because the trigger

logic that each input drives may be unique and not allow for nets to be interchanged with each

other. There may be certain types of logic where it would be possible to interchange nets between

29

different input pins, but these would be special cases and are not investigated. We use the worst

case scenario so that our results may be representative of a wider variety of trigger units. Thus,

the trigger unit requires each net in the trigger netlist be routed to a specific input pin which is

determined by its postion in the list.

We skip routing the trigger unit’s internal signals. It would not be necessary to route these

signals if HMFlow [27] is used to insert a trigger hard macro. The hard macro would include all

of the internal routing. The trigger unit in our tests is a placeholder as described in Chapter 3. The

placeholder does not include the internal signals of the trigger unit. If the internal signals were

routed with our router then we anticipate it would add only a small overhead compared to all the

other signals that are being routed. The overhead would be small because the internal signals of

the trigger unit are only routed short distances. The area allocated for the trigger unit should be

sufficient for all internal routing.

30

CHAPTER 5. PRIMARY RESULTS

This chapter describes our methodology for testing the feasibility of our proposed incre-

mental trace-based debug system. Routability is the primary concern but receives little attention

because all routes are successfully completed in all cases presented in this chapter. The results of

the tests are presented and demonstrate the proposed system is feasible and can observe thousands

of signals. We present the runtimes of the incremental insertion on a set of benchmarks and the

effects on minimum period.

5.1 Test Methodology

To demonstrate the feasibility of our proposed debug system we investigate the effects of

using it to trace up to 100% of the flip-flops and latches in five benchmark circuits (when trace

buffer capacity permits). We chose to trace the flip-flops and latches because given the values

of them the other intermediate values of a circuit could be calculated using techniques like those

in [28–30]. Also, the flip-flops and latches are guaranteed to be accessible because all slice registers

are connected to interconnect tiles. For one of the benchmarks the number of unused BRAMs is

not enough to trace all signals. In this case, and when we are not tracing 100% of the state signals,

a random subset is chosen. Signal selection techniques such as those in [28–31] could be used

when selecting a subset, but as in [6] we decided to take multiple random samples to gain an

understanding of our techniques when applied to any register a designer may wish to observe.

Runtime and minimum period are the metrics presented. The runtime is the time it takes to

place and route the trace buffers and trigger unit. The time was determined by storing the current

system time between major steps in the program and then comparing the times after routing has

completed. The minimum period was determined by the Xilinx ISE Trace tool, which analyzes the

timing of the FPGA circuit. The number of routing failures is also monitored to verify routability,

but is not presented in this chapter because it is zero in all cases for the settings used in this chapter.

31

Table 5.1: Uninstrumented Benchmark Summary (values in bold
indicate constraining resource on signals traced)

Circuit LUTs FFs Slices BRAMs DSPs IOBs Signals Traced Max Traces
bgm 14446 5069 6311 0 22 289 5069 10728

LU8PEEng 18233 5498 7843 45 16 216 5498 9108
stereovision0 5069 7783 2615 0 0 366 7783 10728
stereovision1 3871 5874 2204 0 152 278 5874 10728
LU32PEEng 63504 18521 19095 165 64 216 4788 4788

Total Available 81920 81920 20480 298 320 840 - 10728

If there were routing failures this would be important to report because the debug system may not

be able to function properly if certain nets are not routed. In Chapter 6 other settings are explored

that do result in routing failures.

Important characteristics of the benchmarks are shown in Table 5.1. The benchmarks cir-

cuits were synthesized, placed, and routed with the Xilinx ISE tools for the Virtex-5 ML510 em-

bedded development platform which contains a XC5VFX130T FPGA. These benchmark circuits

are available as part of the VTR project [20] and represent realistic, sizable, heterogeneous designs

that include a Monte Carlo simulation for a financial application, bgm, and linear system solvers,

LU8PEEng and LU32PEEng. The “total available” row in the table lists the maximum number of

elements available on the XC5VFX130T. This table assumes a trace buffer width of 36 is being

used, so “max traces” is calculated by multiplying the number of unused BRAMs by 36. The

values in bold indicate the limiting factor on the number of signals traced for each benchmark.

LU32PEEng is the only benchmark where the number of unused BRAMs is insufficient to trace

all flip-flops. It is also the largest circuit with over 93% slice utilization.

For the tests in this chapter there are several parameters we keep constant. The width of

trace buffers is fixed at 36, meaning 36 traces can be connected to each trace buffer. At this width

the trace buffers have a depth of 1024. The traces are routed in a random order. The trigger unit

is fixed at 256 inputs and 100 slices. These parameters were chosen for the trigger unit based off

of the sample trigger unit that was described in Chapter 3. The sample trigger unit only required

91 slices when compiled for the Virtex-5 with Xilinx ISE. We have increased this by about 10%

to 100 slices to model the requirements for a trigger unit that has slightly more logic than the

sample trigger unit. The trigger unit slices are placed in locations where the original circuit has not

32

used any routing in the interconnect tile associated with the slice to avoid routing congestion. The

effects of changing these parameters will be explored in the next chapter.

For most tests the results presented are the averages of multiple runs. There is variation

between runs due to several parts of trace insertion being random, including: selection of trigger

inputs, selection of traces (when not tracing all flip-flops), placement of trace buffers, and the order

traces are routed in. Other parts of the trace insertion are also influenced by the outcomes of the

random parts. For example, the placement of the trigger unit is based upon the trigger inputs so

it may vary in location with different inputs. The randomization can be controlled via the random

seed, so that results may be reproduced if necessary.

We assume the slices of the trigger unit must all be placed within the same region. This

ensures the trigger unit has good timing performance and its internal signals only have to be routed

short distances. One of the benchmarks required some special adjustments to make this possible.

The placer could not find a large enough region to place the trigger unit in LU32PEEng with-

out intervention due to the high percentage of slice utilization. To enable successful trigger unit

placement in LU32PEEng, we used the Xilinx PROHIBIT constraint to reserve a region of slices

on the edge of the FPGA. This violates our goal to not interfere with the placing of the original

circuit but demonstrates what is necessary to use our techniques on a circuit that utilizes a large

percentage of the FPGA and requires a large trigger unit. PROHIBIT does not prevent the use of

routing resources in the reserved region and we did find that routes passed through the prohibited

region. Thus, we could not place the trigger unit in a region with no used routing like the other

benchmarks. For LU32PEEng we allow the slices of the trigger unit to be placed in locations even

if there may be routing congestion. None of the other benchmarks require these extra steps to

place the trigger unit so they do meet our goal of not interfering with the placement of the original

circuit.

5.2 Runtime Proportions

First we examine what proportion of runtime is taken by each step of the placer and router.

Here is a brief description of each step:

33

Figure 5.1: Pie chart showing proportion of total runtime for each step of trace insertion process.

• Initialization: uses the XDL input to mark used FPGA resources and reserves some resources

for specific sink pins.

• Placer: places the trigger unit and trace buffers.

• Clock Routing: routes the circuit’s clock signal to all inserted trace buffers and flip-flops.

• Trigger Routing: routes all of the trigger unit’s input signals.

• Enable Routing: routes the trigger unit’s output signal to all trace buffers and routes local

trace buffer nets such as the almost full signal to read enable.

• Trace Routing: routes all of the trace buffer data inputs.

The time each step took was calculated by storing the current system time before and after each

step and calculating the difference.

Figure 5.1 shows the runtime proportions based on the average runtimes from five bench-

marks. The settings for these runs were described in the previous section. The runtime is domi-

nated by the trace routing and clock routing. Trace routing was expected to take longer because the

number of trace pins is an order of magnitude greater than the number of pins for the other types of

nets that must be routed. However, the proportion of time spent routing the clock is unexpectedly

34

large considering the number of pins the clock must be routed to is on the same order of magnitude

as the enable or trigger pins. This is probably because of the special considerations in the router’s

code to make the clock use the dedicated clock routing resources of the Virtex-5. There may be

ways to improve the clock routing code so that it runs faster.

Initialization, placement, trigger routing, and enable routing combined consume less than

5% of the total runtime. Initialization’s runtime depends mostly on the size of the original circuit

because it must process the XDL and mark used resources. For larger circuits it may take a slightly

larger proportion of the runtime than the average shown here. The placement step is faster than

any of the other steps even though it performs a breadth first search to find a location for the trigger

unit and other operations to place all the components that are needed. With such a small runtime,

optimizing the speed of placement would do little good until the runtime of the routing steps is

much better. The trigger routing only takes 1% of the total runtime. This result is not unexpected

because the size of the trigger unit for this test was fixed at 256 inputs which is considerably smaller

than the thousands of trace inputs. If the number of trigger inputs and trace inputs were the same

then we expect their proportions would be nearly equal. On the other hand, enable routing taking

only 1% is unexpected when you compare it to the clock routing. The clock and enable routing are

similar because both involve routing a single signal to a large number of pins. This demonstrates

again that the clock routing step could be optimized to run faster.

These results indicate that the number of trace buffers and traces will have the largest

influence on runtime. Reducing the number of traces will decrease the size of the trace routing

problem, which took the largest proportion of the time. It can also reduce the number of locations

the clock must be routed to if trace buffers are eliminated, so it also influences the second largest

step. Initialization, placement, and enable routing would also be simplified by these reductions,

but are of less consequence since they already take a low proportion of the runtime.

5.3 Runtime

Figure 5.2 shows the total runtime for each of the benchmarks when the maximum number

of trace buffer inputs are routed. First it should be noted that all benchmarks were able to suc-

cessfully route all flip-flops to trace buffers or use all trace buffer capacity if there was not enough

for all flip-flops. This is an interesting result and demonstrates that the Virtex-5 architecture has

35

Figure 5.2: Trace insertion runtime for each of the benchmarks when the maximum number of
flip-flops are traced.

Figure 5.3: Percent of flip-flops traced vs. the trace insertion runtime.

enough routing resources to support our method. Most of the benchmarks take about a minute

for the entire PAR process. LU32PEEng takes much longer although it has a lower number of

traces than most the benchmarks. This must be due to the large number of resources used by

36

Table 5.2: Benchmark compile times in minutes and seconds.

Circuit bgm LU8PEEng stereovision0 stereovision1 LU32PEEng
Compile time 11:18 29:00 10:14 25:10 54:20

Insertion runtime 0:51 1:01 1:25 1:02 4:37
Difference 10:27 27:59 8:49 24:08 49:43

LU32PEEng. The directed search of the router takes longer to find routes because so many of the

routing resources are already used.

It was shown earlier in Figure 5.1 that routing the traces and the clock dominate the trace

insertion runtime. Due to that dominance, changing the number of traces and trace buffers should

significantly change runtime. Figure 5.3 shows how the runtime varies when different percentages

of the maximum number of traces are routed for four of the benchmarks. As expected the total

runtime is significantly lower when there are less traces and trace buffers. The runtime increases

linearly as the number of traces is increased.

All the runtimes are less than the time it would take to recompile the entire circuit. Large

and complicated circuits are known to take hours to recompile. The compile times of the bench-

marks used in this work are shown in Table 5.2. The table also shows the average trace insertion

runtimes from Figure 5.2 and the difference between the compile time and insertion runtime. None

of compile times are in hours but even the shortest times are longer than all the runtimes for trace

insertion, so incremental insertion decreases turn around time for even these circuits. Also, if in-

cremental insertion were not used then the compile times would be higher than the values shown

in the table because the Xilinx tools would have to place and route the trace buffers and trigger unit

in addition to the original circuit.

5.4 Minimum Period

In this section we examine how our method affects the minimum period that the circuits can

operate at. Figure 5.4 shows the minimum period of each benchmark before and after instrumenta-

tion. The period after instrumentation is the average of ten runs of trace insertion. LU8PEEng and

LU32PEEng have minimum periods of about 80ns before instrumentation and they stay the same

after instrumentation. The bgm benchmark has a minimum period of 15.541ns and instrumentation

37

Figure 5.4: The minimum period of each benchmark before and after instrumentation.

increases this on average by about 9%. The stereovision benchmarks’ minimum periods increase

much more than the other benchmarks. Stereovision1 jumps from a minimum period of 5.918ns

to 16.131ns on average, an increase over 272%. The percentage is even greater for stereovision0

which goes from 4.126ns to 13.549ns, over 328%. Ideally there would be no change in minimum

period.

The minimum period increases if the delay of any of the paths we insert is greater than the

original minimum period. In other words, if a path we insert becomes the new critical path the

minimum period changes. Circuits with a higher minimum period are less likely to experience any

increase because the inserted paths may be longer without becoming a critical path. Thus, there

was not a change in the periods of LU8PEEng and LU32PEEng. The bgm benchmark sometimes

had an increase in its minimum period and sometimes did not. The variation in periods is due to

the randomization in trace buffer placement. The stereovision benchmarks have small minimum

periods so new critical paths were created when trace insertion was performed.

The Xilinx TRACE tool can be used to analyze critical paths. The stereovision benchmarks

were analyzed to determine the critical path. The critical path is the control signal that is an output

of the trigger unit and input to the trace buffers. The trigger unit is often placed near the edge of

the FPGA because closer to the center there are not enough free slices to place it. The trace buffers

38

are spread throughout the FPGA, so some are located a long distance from the trigger unit. The

critical path is between the trigger unit and one of the distant trace buffers.

We believe pipelining can be used on the critical paths to avoid increasing the minimum

period of the design. Flip-flops could be incrementally added as needed in unused locations along

the critical paths to reduce delay. The TRACE results show that the trigger output should be

pipelined first since it is the current critical path. In Chapter 7 we investigate the use of pipelining.

39

CHAPTER 6. INFLUENCES ON ROUTING

In this chapter we present several investigations into parameters that may affect routing

performance. We measure routing performance with three metrics: number of routing failures,

routing runtime, and minimum period of the routed design. A routing failure is when the router

cannot find a path for a given net and sink pin. Ideally, the number of routing failures should be

zero. Likewise, the minimum period of the design should ideally have zero change compared to

the minimum period of the original circuit. We also seek to reduce the runtime of the router, but

we consider the other two metrics to be of greater importance. The benchmarks used in Chapter

5 are also used in this chapter. The parameters investigated in this chapter include: trace buffer

width, trigger width, routing order, and congestion.

6.1 Trace Buffer Width

In this section we present the results of investigating the effects of trace buffer width on

routing. The BRAMs used to implement our trace buffers in the Virtex-5 support different con-

figurations of data width as described in Chapter 2. Wider trace buffers will allow more signals

to be observed. However, wider trace buffers also require more signals to be routed to the same

interconnect tiles of the FPGA. In some cases there may not be enough routing resources for all

signals to be routed to the same trace buffer. Thus, routing failures are more likely when wider

trace buffers are used.

We want to use the greatest trace buffer width that will result in no routing failures. The

available widths include: 72, 36, 18, 9 and 4. We investigated them starting with the widest and

then continuing in descending order if necessary. It is not necessary to continue after we find the

greatest width that can be used without causing routing failures. We inserted the debug system into

each benchmark ten times for a given width to obtain an average due to the randomness in trace

insertion described in Chapter 5.

40

Figure 6.1: Average routing failures for trace buffer widths of 36 and 72.

Figure 6.1 shows the average routing failures for widths of 36 and 72. Where a failure

is a route between a source and a single sink that the router is not able to complete. It was not

necessary to tests width less than 36 because there were no routing failures when a width of 36 is

used. However, when 72 width trace buffers were used there were trace routing failures for some

benchmarks. We attribute these routing failures to routing congestion in the vicinity of the trace

buffer. If the failures were due to routing congestion elsewhere then the failures should occur for

smaller widths too but they did not.

Due to these results we use a trace buffer width of 36 in all other tests in this paper. Another

option we did not explore would be to use trace buffers of different widths. For example, 36 width

could be used in highly congested area and 72 in areas with lower congestion. Further tests would

be necessary to determine how much congestion to allow near 72 width trace buffers. These results

may differ for different architectures if there are changes in the routing channel width. In [19] it

was shown that greater channel width increases routability.

6.2 Trigger Width

In Chapter 5 it was shown how varying the number of traces influenced runtime. Here we

examine how varying the number of trigger signals influences runtime. We consider the number

41

Table 6.1: The number of trigger unit slices for different widths.

Trigger Width 0 4 8 16 32 64 128 256 512 1024 2048
Sample Trigger Slices 0 6 6 10 15 29 51 91 177 351 690

Simulated Slices 0 6 7 11 16 32 56 100 195 386 759

of trigger signals to be the trigger width. Changing the trigger width is different from changing

the trace buffer width, as the previous section did. When the trace buffer width increases less

trace buffers are required to observe a set number of signals. On the other hand, when the trigger

width increases more slices are required to form the trigger unit because more flip-flops and logic

is required.

Using Xilinx ISE we compiled the sample trigger unit with different widths. Table 6.1

shows the widths that were used and the number of slices the sample trigger unit required. We

increase the sample trigger slices by approximately 10% to simulate trigger units that require more

logic than our sample. The “simulated slices” row shows the number of slices used in our tests for

each width. The greatest width we used was 2048 because ISE was unable to compile the sample

trigger unit when a width of 4096 was attempted. ISE was able to place the sample trigger with a

width of 4096, but routing failed because ISE could not route all the carry signals. A trigger width

of 0 represents a single user signal being used to control the trace buffers. This may occur if the

trigger unit is included in the original circuit or if all that is needed is that single signal.

The LU32PEEng benchmark was not included in these tests because it required reservation

of slices to fit even the 256 wide trigger unit that is used in other tests. To fit larger trigger units

in LU32PEEng would require reserving even more slices which would influence the placement

and routing of the original circuit even more. Influencing or changing the placement and routing

of the original circuit is something we want to avoid. Circuits that use a large percentage of the

FPGA will be limited to smaller trigger units. All of the benchmarks used were able to successfully

complete trace insertion without any placement or routing errors.

Figure 6.2 shows the runtimes for different trigger widths. The runtime increases exponen-

tially with the number of trigger signals, but it is mostly flat until the widths are 1024 or higher.

This results is different from what was seen in Chapter 5 for traces, which had a linear increase

in runtime as the number increased. The exponential increase comes because of the additional

42

Figure 6.2: Trigger signals influence on runtime.

clock routing that is required with more slices. For example, 1024 trigger signals require at least

256 slices for 1024 flip-flops, so there are 256 more components for the clock to be routed to.

1024 traces only require 29 trace buffers which is an order of magnitude less components for the

clock. In some cases the additional trigger signals also complicate the trace routing. For example,

LU8PEEng has a particularly long runtime when there are 2048 signals. Closer analysis of the

runtime shows that trace routing still took the largest portion of the time with an average of 74.6

seconds. This is notable because that is clearly longer than the trace runtime when there were less

trigger signals, so it has become more difficult for the router to route the traces due to the increase

in trigger signals. Trigger routing and clock routing took averages of 59.6 and 43.7 seconds re-

spectively for LU8PEEng at 2048 trigger width. The other steps of trace insertion experience little

change due to the number of trigger signals and only take a few seconds combined.

Designers should avoid using trigger units that require thousands of input signals if runtime

is an issue. For the benchmarks used in our tests runtime did not increase much if the number of

inputs signals was 512 or below. Beyond that the runtime increases quickly due to the exponential

43

curve. However, improving the clock router may eliminate the exponential increase in runtime or

at least keep the increase flat for even larger number of signals. Designers should also keep in mind

the amount of slices the original design uses. None of the benchmarks used here had a problem

placing trigger units of hundreds of slices, but we excluded the LU32PEEng benchmark because

large trigger units cannot be placed in it without reserving slices which influences the original

circuit.

6.3 Routing Order

As explained in Chapter 4, the router used in this paper does not perform any rip-up and

reroute. Once a net is routed the resources it used are unavailable for other nets. Thus, if nets are

routed in a different order the result may be different. Trace nets will be routed to different pins

depending on the routing order because of how we have taken advantage of the flexible nature of

the trace routing problem. We do not decide what particular pin to route a trace net to until it is

time to route the net. For example, if net A and B are both being routed to the same trace buffer that

has pin 1 and 2 available, then whichever net is routed first will be routed to pin 1 and the second

will be routed to pin 2. The order the trace nets are routed in can even change the trace buffer that

nets are routed to. If net A used the last available pin on the trace buffer then net B would have to

be routed to a different trace buffer. Due to this, we investigated if the order of routing the nets to

the trace buffers has a significant impact on the resulting minimum period or runtime. The routing

order of the trigger nets does not change what pins the trigger nets are routed to because each net

has to be routed to a particular pin, so the routing order of the trigger nets was not explored.

Two routing orders were examined: random and sorted by distance from the nearest trace

buffer as suggested in [6]. In theory sorting the nets such that the nets that are furthest from a trace

buffer are routed first should lead to a better minimum period and reduced runtime for the router.

The sorted order guarantees that the most distant nets will find pins available on the nearest trace

buffer. Without this guarantee the nets might have to be routed to a more distant trace buffer if

other nets use all the pins on the nearest trace buffer. A longer routing distance may cause a worse

minimum period due to wire delay and the runtime of the router may be longer.

Figure 6.3 and 6.4 show the average runtime and period after ten runs for four benchmarks.

There is not a significant difference between sorted and random, but on average random has a

44

Figure 6.3: Comparison of the runtimes for random and sorted routing orders.

Figure 6.4: Comparison of the minimum periods for random and sorted routing orders.

slightly lower runtime and minimum period. This is surprising due to the previous discussion of

how the sorted order guarantees the nets that are the furthest from any trace buffer can be routed

to the nearest one. Perhaps since the trace buffers are distributed it is a rare event, even with

a random order, for a net’s routing distance to increase significantly even when its nearest trace

buffer is unavailable. Also, the routing distance for nets that are very close to a particular trace

45

Figure 6.5: Used nodes allowed in interconnect tiles vs. the average number of routing failures
across all benchmarks.

buffer may increase more than distant nets when that trace buffer is unavailable. Due to these

results all other tests in this paper route in a random order unless stated otherwise.

6.4 Congestion

We investigated how routing congestion affects the routability of the trigger unit. We define

congestion based on the number of used routing nodes. RapidSmith uses nodes to represent the

routing resources of the FPGA and the connections between them are represented as edges [9].

These nodes and edges form a routing graph which routers can use to find paths between resources.

An interconnect tile of the FPGA is highly congested if a large number of its nodes are used. The

used nodes cannot be used by other nets and make it more difficult to route additional nets through

the tile.

Figure 6.5 plots the used routing nodes allowed when placing the trigger unit against the

number of failed routes. In each column the total number of routing failures across all the bench-

marks is shown for the amount of “used nodes allowed” shown below the column. If 0 used nodes

are allowed this indicates that a slice will not be used for trigger unit placement if its accompa-

nying interconnect tile has any used nodes. As the number of used nodes increases this means

46

we allow the trigger unit slices to be placed in locations where the already placed-and-routed cir-

cuit has used some of the routing nodes in the accompanying interconnect tile. The final column,

off, means congestion is not considered during placement so the interconnect tile may have any

number of used nodes. The benchmarks have no routing failures until the number of used nodes

allowed is 48 or 64. At this point the routing congestion starts to be too much for all signals to

route successfully on most the benchmarks.

LU32PEEng is an exception to this trend. As noted in Chapter 5, LU32PEEng must reserve

some slice locations so that the trigger unit can be placed. We did not have to do this for any of the

other benchmarks. However, reserving the slices does not prevent the Xilinx ISE tools from routing

through the interconnect tiles that neighbor them. The placer is not able to find a placement for the

trigger unit in LU32PEEng until 80 used nodes are allowed. This means the original circuit has

already used a number of routing resources where the trigger unit is placed. Even when any number

of used nodes are allowed by turning off congestion detection, the router is able to successfully

route LU32PEEng. Due to these results, for all other tests in this paper LU32PEEng is placed with

congestion detection off but all the other benchmarks are placed with 0 used nodes allowed.

47

CHAPTER 7. IMPROVING TIMING WITH PIPELINING

In this chapter we demonstrate that pipelining may be used to reduce our method’s impact

on minimum period. Ideally trace insertion should not change the minimum period of the circuit.

If minimum period increases then the circuit must run at slower speeds. This chapter only proves

the feasibility of using pipelining to reduce the delay of the paths we insert. We do not achieve

the ideal but we believe further pipelining could allow trace insertion to avoid increasing minimum

period in the majority of circuits.

7.1 Pipelining Methodology

In Chapter 5 we saw that some circuits will have a large increase in minimum period due

to trace insertion. In particular, the minimum period of the stereovision0 and stereovision1 bench-

marks increased by over 3x in some cases. An increase in minimum period is undesirable because

the circuit will have to run at slower speeds and verification will take longer. To address this

problem we explore the use of pipelining.

Pipelining is a commonly used method to reduce the delay of a path. Figure 7.1 shows

a path before and after it has been pipelined. The path begins at a source flip-flop and ends at a

sink flip-flop and initially it has a long delay. We are primarily only concerned by delay that is the

result of path length, but path delay is also caused by including logic elements on the path. Paths

begin and end at memory elements; in the figure flip-flops are used but BRAMs and other memory

elements could also be sources or sinks on paths. The bottom path of the figure shows the same

path with a pipeline flip-flop in the middle. The path has now been broken into two shorter delays

rather than one long delay. The disadvantage is that an additional clock cycle will be required for

signals to travel from the source to the sink. However, it may not matter that an additional cycle is

required and the clock may be able to run faster as a result of pipelining.

48

Figure 7.1: A path before and after a pipeline flip-flop has been added to it.

Our trace insertion method increases the minimum period of a circuit when it creates new

critical paths. A critical path is a path whose delay exceeds the delay of all other paths. The critical

path determines the minimum period at which the circuit can operate. Values will not be transferred

over the path correctly if its delay is not respected. The stereovision benchmarks experienced large

increases in minimum period because the existing period was not long enough to support the path

delays we needed for trace insertion. Some of the paths we inserted became new critical paths for

the circuit.

Analysis with the Xilinx Trace tool showed that the critical path in the stereovision bench-

marks after trace insertion was the control signal that travels from the trigger unit to all the trace

buffers. We shall refer to this signal as the control signal in this chapter. There is no logic on

the path of the control signal, so most of its delay comes from path length. It was not surprising

that the control signal became a critical path because some trace buffers are located significant

distances from the trigger unit. We demonstrate the feasibility of pipelining by doing it on the path

49

Figure 7.2: Minimum period before trace insertion and after with and without pipelining.

of the control signal. If pipelining is feasible and successful then we should see a reduction in the

minimum period.

We propose pipelining the control signal with two stages on every path. Where a path is

the route between the the control signals source pin and one of its sink pins. The example shown

in Figure 7.1 was a one stage pipeline. A two stage pipeline would have two pipeline flip-flops

between the source and sink. The distributed nature of the trace buffers helps us plan in advance a

pipelining strategy. We take an average of the trace buffer’s locations to determine the point that

could be considered their center. A flip-flop shall be placed as close to this center as possible to

form the first stage of the pipeline. After the first stage the control signal shall fanout to four flip-

flops placed in the four quarters of the FPGA. The output of each of the four second stage flip-flops

shall be routed to the trace buffers in its quarter of the FPGA. This is a simple yet effective way to

pipeline the control signal to the trace buffers distributed throughout the FPGA. It may be possible

to get better results by using even more stages or dividing the second stage into more than four, but

this pipeline method should be sufficient to see if pipelining can improve the minimum period.

7.2 Pipelining Results

Figure 7.2 shows the several minimum periods of the stereovision benchmarks. The first bar

is the original minimum period of the uninstrumented circuit. The second is the minimum period

50

after trace insertion with no pipelining as was done in Chapter 5. The third bar is the minimum

period after trace insertion with pipelining averaged over 20 runs. The minimum period is observed

to improve by pipelining, so pipelining is a feasible way to reduce the delay of inserted paths.

Stereovision0’s average period dropped from 13.549ns to 11.476ns, an improvement of over 15%.

Likewise, stereovision1’s average period dropped from 16.131ns to 12.411ns, an improvement of

over 23%. These circuits’ could benefit from further pipelining because they are still more than 2x

the original period.

The period with our minimal pipelining is still significantly greater than the original be-

cause other inserted paths have now become the critical path. We again used the Xilinx Trace

tool to identify the critical paths on the pipelined circuits. For stereovision0 the critical path is

now a path of the pipeline, typically a path from a second stage pipeline register to a trace buffer.

This indicates that the control signal will benefit from further pipelining. For stereovision1 the

critical path is now typically a trace signal path. Thus, to further improve the minimum period of

stereovision1 some of the traces should be the next paths pipelined.

Pipelining some paths of the debug system may require additional considerations. The

control signal was simple to pipeline because adding a few cycles to the path of this signal does

not matter. The only effect of these additional cycles is the trace buffers halting a few cycles later,

but the trace buffer depth is sufficient that the cycles when the trigger condition occurred will still

be captured. Pipelining trace paths would be more complicated. If only some trace paths are

pipelined then their data will be some number of cycles off the data from other signals. One way

to solve this might be to pipeline all traces with an same number of stages. However, it would be

difficult to pipeline all traces in this manner since there are so many of them and there are limited

flip-flops available in useful locations for pipelining. A better way to solve this problem would be

to realign the data during off-line analysis. This could be done by having the trace insertion step

create a log of traces that were pipelined and the number of stages in their pipelines. This log could

be used during analysis to line up the extracted trace buffer data to the correct clock cycles.

51

CHAPTER 8. CONCLUSION

8.1 Summary

FPGAs are a increasingly being used for IC verification. They run faster than simulation

and cost less than fabricating ASIC prototypes. However, the major disadvantage of performing

verification on FPGAs is a lack of signal observability.

In this thesis we have investigated a new incremental trace-based method for increasing the

observability of FPGAs. The method incrementally inserts trace buffers and a trigger unit in an

already placed-and-routed FPGA circuit. A unique characteristic of the method is the centralized

trigger unit that controls all the distributed trace buffers. This simplifies incremental insertion and

allows the method to easily scale to any number of trace buffers. Advantages of this incremental

method include not affecting the placing and routing of the user’s circuit, taking full advantage of

leftover BRAMs to observe more signals, and decreasing the turn-around time when changes are

made to the debug system.

We demonstrated the method could instrument 100% of the flip-flops given that enough

trace buffer capacity exists. This was done on a commercial Xilinx Virtex-5 FPGA, further distin-

guishing this work from others. Some pitfalls had to be avoided to achieve this result and avoid

routing errors. First, we found that some benchmarks could not route all traces when using the

widest trace buffer configuration. We also found that in most circuits the trigger unit should not

be placed in locations with high routing congestion. When the trace buffers are configured prop-

erly and the trigger unit placement accounts for congestion no routing failures occur even when

thousands of signals are observed by trace buffers.

The time it takes to perform the method was less than five minutes for all benchmarks.

Most of the benchmarks only took about one minute. This means that a designer could insert or

change circuit instrumentation for debug relatively fast. These runtimes are much smaller than the

52

hours it can take to recompile large designs in flows where changing the signals being observed

requires a complete recompile.

One drawback of our method is that it can increase minimum period for some circuits.

This occurs if the delay of any of the paths we insert is greater than the current minimum period.

The two benchmarks with the smallest periods experienced large increases in their periods. Those

benchmarks with a minimum period of 20 ns or greater had little or no change. We demonstrated

that pipelining can be used to improve the minimum period if needed.

In this thesis we also noted how the trigger unit and trace buffers differ in placement and

routing. Each trace buffer only requires a single BRAM which simplifies placement. The routing

problem for the trace buffers has a many-to-many flexibility because nets that must be observed

can be routed to any available trace buffer pin. On the other hand, the trigger unit is more difficult

to place because it requires a region of unused slices. The trigger unit also does not have routing

flexibility like the trace buffers because inputs must be connected to specific pins to create the

correct logic. Due to the more complicated placement and routing of the trigger unit it may require

reserved slices in designs that use a large percentage of the FPGA as one of our benchmarks did.

8.2 Future Work

We believe there are many opportunities to build upon the methods presented in this thesis.

For example, we showed that pipelining could reduce impact on minimum period. More work on

incremental pipelining is needed so that we and others doing similar work can avoid increasing

minimum period.

CAD tools could be created that simplify the effort required for designers to use our meth-

ods. The process of interpreting the trace buffer data readback from the FPGA could be greatly

simplified by tools. Waveforms could be constructed from the data and signals could be more eas-

ily associated with their data. Tools could also be made that simplify the process of inserting trace

buffers and a trigger unit for designers.

Another area for possible future work is in reconstructing the values of signals that were

not observed by the trace buffers based off of the values of signals that were. With a gate-level

knowledge of the circuit this may be straight forward for many signals. For example, if it is known

that the value of a signal is the OR of two signals we are observing then it could be reconstructed

53

during analysis based off of the other two signals. The reconstruction effort would need to know

what optimizations had occurred during synthesis in order to properly reconstruct signals. Ways to

enable collaboration between synthesis and reconstruction would need to be explored. Reconstruc-

tion would be particularly useful when all signals in a design cannot be observed or the designer

wants to eliminate the need to observe all signals. If all the state values within an FPGA can be

reconstructed we predict it could enable time-saving features for debugging, such as the ability to

restore the FPGA to a desired state to quickly reproduce errors.

54

REFERENCES

[1] Nicely, T. R., 2011. Pentium fdiv flaw faq. 1

[2] Leveson, N. G., and Turner, C. S., 1993. “An investigation of the therac-25 accidents.”
Computer, 26(7), pp. 18–41 ID: 1. 1

[3] Foster, H., 2011. Challenges of design and verification in the soc era. 1

[4] Asaad, S., Bellofatto, R., Brezzo, B., Haymes, C., Kapur, M., Parker, B., Roewer, T., Saha,
P., Takken, T., and Tierno, J., 2012. “A cycle-accurate, cycle-reproducible multi-fpga system
for accelerating multi-core processor simulation.” In Proceedings of the ACM/SIGDA inter-
national symposium on Field Programmable Gate Arrays, FPGA ’12, ACM, pp. 153–162.
1

[5] Kottolli, A., 2006. “The economics of structured-and standard-cell-asic designs.” Technical
Solutions Engineer, Open-Silicon. 1

[6] Hung, E., and Wilton, S. J. “Incremental trace-buffer insertion for fpga debug.”. 2, 13, 15,
29, 31, 44

[7] Xilinx, 2012. Virtex-5 fpga configuration user guide, Oct. 19. 2, 8, 12

[8] Xilinx, 2012. Virtex-5 fpga user guide. 4, 9

[9] Lavin, C., Padilla, M., Lamprecht, J., Lundrigan, P., Nelson, B., and Hutchings, B., 2011.
“Rapidsmith: Do-it-yourself cad tools for xilinx fpgas.” In Field Programmable Logic and
Applications (FPL), 2011 International Conference on, pp. 349–355 ID: 1. 4, 7, 12, 27, 46

[10] Brand, D., Drumm, A., Kundu, S., and Narain, P., 1994. “Incremental synthesis.” In Proceed-
ings of the 1994 IEEE/ACM international conference on Computer-aided design, ICCAD ’94,
IEEE Computer Society Press, pp. 14–18. 11

[11] Beckhoff, C., Koch, D., and Torresen, J., 2011. “The xilinx design language (xdl): Tuto-
rial and use cases.” In Reconfigurable Communication-centric Systems-on-Chip (ReCoSoC),
2011 6th International Workshop on, pp. 1–8 ID: 1. 12

[12] Hutchings, B. L., and Nelson, B. E., 2001. “Unifying simulation and execution in a design
environment for fpga systems.” Very Large Scale Integration (VLSI) Systems, IEEE Transac-
tions on, 9(1), pp. 201–205 ID: 1. 12

[13] Hutchings, B., Bellows, P., Hawkins, J., Hemmert, S., Nelson, B., and Rytting, M., 1999.
“A cad suite for high-performance fpga design.” In Field-Programmable Custom Computing
Machines, 1999. FCCM ’99. Proceedings. Seventh Annual IEEE Symposium on, pp. 12–24
ID: 1. 13

55

[14] Wheeler, T., Graham, P., Nelson, B. E., and Hutchings, B., 2001. “Using design-level scan to
improve fpga design observability and controllability for functional verification.” In Proceed-
ings of the 11th International Conference on Field-Programmable Logic and Applications,
FPL ’01, Springer-Verlag, pp. 483–492. 13

[15] Iskander, Y. S., Patterson, C. D., and Craven, S. D., 2011. “Improved abstractions and
turnaround time for fpga design validation and debug.” In Field Programmable Logic and
Applications (FPL), 2011 International Conference on, pp. 518–523 ID: 1. 13

[16] Graham, P., Nelson, B., and Hutchings, B., 2001. “Instrumenting bitstreams for debugging
fpga circuits.” In Field-Programmable Custom Computing Machines, 2001. FCCM ’01. The
9th Annual IEEE Symposium on, pp. 41–50 ID: 1. 14

[17] Poulos, Z., Yang, Y., Anderson, J., Veneris, A., and Le, B., 2012. “Leveraging reconfigura-
bility to raise productivity in fpga functional debug.” In Design, Automation & Test in Europe
Conference & Exhibition (DATE), 2012, pp. 292–295 ID: 1. 14

[18] Hung, E., and Wilton, S. J. E., 2013. “Towards simulator-like observability for fpgas: a
virtual overlay network for trace-buffers.” In Proceedings of the ACM/SIGDA international
symposium on Field programmable gate arrays, FPGA ’13, ACM, pp. 19–28. 15

[19] Hung, E., and Wilton, S. J. E., 2012. “Limitations of incremental signal-tracing for fpga
debug.” In Field Programmable Logic and Applications (FPL), 2012 22nd International
Conference on, pp. 49–56 ID: 1. 15, 29, 41

[20] Rose, J., Luu, J., Yu, C. W., Densmore, O., Goeders, J., Somerville, A., Kent, K. B., Jamieson,
P., and Anderson, J., 2012. “The vtr project: architecture and cad for fpgas from verilog
to routing.” In Proceedings of the ACM/SIGDA international symposium on Field Pro-
grammable Gate Arrays, FPGA ’12, ACM, pp. 77–86. 15, 32

[21] Synopsys, 2011. Identify: Simulator-like visibility into hardware debug. 16

[22] Tektronix, 2012. Certus asic prototyping debug solution, Sep. 16

[23] Xilinx, 2012. Chipscope pro software and cores user guide, Oct. 16

[24] Xilinx, 2013. Partial reconfiguration user guide, April 26. 17

[25] Altera, 2013. Quartus ii handbook version 13.0, May. 17

[26] Ko, H. F., and Nicolici, N., 2009. “Resource-efficient programmable trigger units for post-
silicon validation.” In Test Symposium, 2009 14th IEEE European, pp. 17–22 ID: 1. 21

[27] Lavin, C., Padilla, M., Lamprecht, J., Lundrigan, P., Nelson, B., and Hutchings, B., 2011.
“Hmflow: Accelerating fpga compilation with hard macros for rapid prototyping.” In Field-
Programmable Custom Computing Machines (FCCM), 2011 IEEE 19th Annual International
Symposium on, pp. 117–124 ID: 1. 27, 28, 29, 30

[28] Ko, H. F., and Nicolici, N., 2009. “Algorithms for state restoration and trace-signal selection
for data acquisition in silicon debug.” Computer-Aided Design of Integrated Circuits and
Systems, IEEE Transactions on, 28(2), pp. 285–297 ID: 1. 31

56

[29] Prabhakar, S., and Hsiao, M., 2009. “Using non-trivial logic implications for trace buffer-
based silicon debug.” In Asian Test Symposium, 2009. ATS ’09., pp. 131–136 ID: 1. 31

[30] Cheng, W., Chuang, C., and Liu, C. J., 2006. “An efficient mechanism to provide full visibil-
ity for hardware debugging.” In Circuits and Systems, 2006. ISCAS 2006. Proceedings. 2006
IEEE International Symposium on, pp. 4 pp.–814 ID: 1. 31

[31] Hung, E., and Wilton, S. J. E., 2011. “Speculative debug insertion for fpgas.” In Field
Programmable Logic and Applications (FPL), 2011 International Conference on, pp. 524–
531 ID: 1. 31

57

APPENDIX A. PLACEMENT EXAMPLES

A.1 Placement Screenshots

The figures shown in this appendix are screenshots from Xilinx FPGA editor. They are

examples of what circuits look like after we have placed trace-buffers and a trigger in them. The

BRAMs used as trace-buffers are highlighted in green and the trigger slices are highlighted in red.

The components in blue are the original circuit.

58

Figure A.1: FPGA Editor screenshot of the placement of bgm

59

Figure A.2: FPGA Editor screenshot of the placement of LU8PEEng

60

Figure A.3: FPGA Editor screenshot of the placement of stereovision0

61

Figure A.4: FPGA Editor screenshot of the placement of stereovision1

62

Figure A.5: FPGA Editor screenshot of the placement of LU32PEEng

63

	An Incremental Trace-Based Debug System for Field-Programmable Gate-Arrays
	BYU ScholarsArchive Citation

	Title Page
	Abstract
	Table of Contents
	LIST OF TABLES
	LIST OF FIGURES
	NOMENCLATURE
	Chapter 1 Introduction
	1.1 Motivation
	1.2 Preview of Approach
	1.3 Contributions
	1.4 Outline

	Chapter 2 Background and Related Work
	2.1 FPGA Architecture
	2.1.1 Virtex-5 Overview
	2.1.2 CLB Tiles
	2.1.3 Interconnect Tiles
	2.1.4 BRAM Tiles

	2.2 Xilinx Design Flow
	2.2.1 Design Entry and Synthesis
	2.2.2 NGDBuild
	2.2.3 MAP
	2.2.4 PAR
	2.2.5 BitGen

	2.3 Incremental Synthesis
	2.3.1 XDL
	2.3.2 RapidSmith

	2.4 Related Work
	2.5 Commercial Debug Tools

	Chapter 3 Trace Buffer and Trigger Implementation
	3.1 Trace Buffer Implementation
	3.2 Trigger Implementation

	Chapter 4 Incremental Trace Insertion
	4.1 Trace Insertion
	4.2 Placement
	4.3 Routing

	Chapter 5 Primary Results
	5.1 Test Methodology
	5.2 Runtime Proportions
	5.3 Runtime
	5.4 Minimum Period

	Chapter 6 Influences on Routing
	6.1 Trace Buffer Width
	6.2 Trigger Width
	6.3 Routing Order
	6.4 Congestion

	Chapter 7 Improving Timing with Pipelining
	7.1 Pipelining Methodology
	7.2 Pipelining Results

	Chapter 8 Conclusion
	8.1 Summary
	8.2 Future Work

	References
	Appendix A Placement Examples
	A.1 Placement Screenshots

