
Brigham Young University Brigham Young University 

BYU ScholarsArchive BYU ScholarsArchive 

Theses and Dissertations 

2013-12-04 

Minimum Rank Problems for Cographs Minimum Rank Problems for Cographs 

Nicole Andrea Malloy 
Brigham Young University - Provo 

Follow this and additional works at: https://scholarsarchive.byu.edu/etd 

 Part of the Mathematics Commons 

BYU ScholarsArchive Citation BYU ScholarsArchive Citation 
Malloy, Nicole Andrea, "Minimum Rank Problems for Cographs" (2013). Theses and Dissertations. 3873. 
https://scholarsarchive.byu.edu/etd/3873 

This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion 
in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please 
contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu. 

http://home.byu.edu/home/
http://home.byu.edu/home/
https://scholarsarchive.byu.edu/
https://scholarsarchive.byu.edu/etd
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F3873&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=scholarsarchive.byu.edu%2Fetd%2F3873&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/3873?utm_source=scholarsarchive.byu.edu%2Fetd%2F3873&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu,%20ellen_amatangelo@byu.edu


Minimum Rank Problems for Cographs

Nicole Andrea Malloy

A thesis submitted to the faculty of
Brigham Young University

in partial fulfillment of the requirements for the degree of

Master of Science

Wayne Barrett, Chair
Stephen Humphries

Rodney Forcade

Department of Mathematics

Brigham Young University

December 2013

Copyright c© 2013 Nicole Andrea Malloy

All Rights Reserved



abstract

Minimum Rank Problems for Cographs

Nicole Andrea Malloy
Department of Mathematics, BYU

Master of Science

Let G be a simple graph on n vertices, and let S(G) be the class of all real-valued
symmetric n× n matrices whose nonzero off-diagonal entries occur in exactly the positions
corresponding to the edges of G. The smallest rank achieved by a matrix in S(G) is called
the minimum rank of G, denoted mr(G). The maximum nullity achieved by a matrix in S(G)
is denoted M(G). For each graph G, there is an associated minimum rank class, MR(G)
consisting of all matrices A ∈ S(G) with rankA = mr(G). Although no restrictions are
applied to the diagonal entries of matrices in S(G), sometimes diagonal entries correspond-
ing to specific vertices of G must be zero for all matrices in MR(G). These vertices are
known as nil vertices (see [6]). In this paper I discuss some basic results about nil vertices in
general and nil vertices in cographs and prove that cographs with a nil vertex of a particular
form contain two other nil vertices symmetric to the first. I discuss several open questions
relating to these results and a counterexample. I prove that for all K3,3,3-free cographs G, the
zero-forcing number Z(G), a graph theoretic parameter, is equal to M(G). In fact this result
holds for a slightly larger class of cographs and in particular holds for all threshold graphs.
Lastly, I prove that the maximum of the minimum ranks of all cographs on n vertices is

⌊
2n
3

⌋
.

Keywords: cographs, edge subdivision, graph theory, minimum rank, nil vertices, symmetric
matrices, threshold graphs, zero forcing
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Chapter 1. Introduction

Cographs have arisen in many diverse areas of mathematics and the sciences. As such,

they have many equivalent characterizations and are known by many names. One charac-

terization is that K1 is a cograph as are all unions and joins of cographs. Equivalently, K1

is a cograph as are all unions of cographs and the complement of any cograph. This char-

acterization gives rise to the name complement reducible graphs. Cographs are also exactly

the graphs that are P4-free. Other names for cographs include D∗-graphs and Hereditary

Dacey graphs. Cographs are perfect graphs, and threshold graphs are a subclass of cographs.

There are also various polynomial time algorithms for identifying and computing parame-

ters of cographs, making cographs very computationally tractable [7]. In this paper I prove

several results about cographs and about structured matrices corresponding to cographs.

For any cograph, and more generally for any simple graph G = (V,E) with vertex set

V = {1, 2, . . . , n}, let S(G) be the set of symmetric n × n matrices A = [aij] such that for

i 6= j, aij 6= 0 if and only if ij ∈ E. There are no restrictions on the diagonal entries. The

minimum rank of G, denoted mr(G), is the smallest rank achieved by a matrix in S(G). The

minimum rank class of G, denoted MR(G), is the class of matrices in S(G) that have rank

equal to mr(G). For small graphs and highly structured graphs it is often straightforward

to determine the minimum rank, and for trees minimum rank is computable [12]. A general

method for determining the minimum rank of any graph, however, is unknown. See [8] for

a survey of minimum rank results from 1960 to 2007. Many other areas of mathematics are

related to minimum rank, including the Graham-Pollack Theorem, singular graphs (those

whose adjacency matrix is singular), and eigensharp graphs [8]. In 2007, Barioli and Fallat

published a result giving the minimum rank of cographs in terms the minimum rank of

certain subgraphs [2].

The minimum rank problem asks for the smallest rank achieved by matrices in S(G). A

related question asks for the structure of the matrices in S(G) that achieve the minimum
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rank mr(G). Recall that matrices in S(G) have unrestricted diagonals. However, sometimes

all matrices in MR(G) have a zero in a particular diagonal entry, or perhaps must have

a nonzero entry. If v is a vertex of G such that the corresponding diagonal entry in every

matrix in MR(G) is zero, v is a nil vertex. If instead the corresponding diagonal entry

in every matrix in MR(G) is nonzero, v is a nonzero vertex. Vertices that are neither

nil nor nonzero are neutral. Nil, nonzero, and neutral vertices were introduced in [4] and

studied extensively in [6]. Another way of studying the structure of matrices in MR(G)

was presented in [3]. The authors gave an alternate proof of a result Hein van der Holst

published in [13]. This result gave a formula for the minimum rank of graphs with a 2-

separation in terms of the minimum rank of various subgraphs and subgraph derivations.

From the alternate method of proof arose another theorem giving the matrices in MR(G)

in terms of matrices in minimum rank classes of subgraphs and subgraph derivations. This

gives a way of determining nil vertices from information about nil vertices in subgraphs. I

prove that cographs with a particular type of nil vertex in fact have two more nil vertices that

are symmetric to the first and form an independent set in an induced K2,3. I also present

various open questions and a counterexample about nil vertices in cographs and prove that

nil vertices are preserved under unions and joins of single vertices and that non-isolated nil

vertices in cographs are preserved under joins with K2.

The zero-forcing number of a graph G, Z(G), is a graph parameter that gives an upper

bound on the maximum nullity of G. While Z(G) = M(G) when G is a tree, in general,

Z(G) and M(G) are not equal. I show that Z(G) = M(G) when G is a K3,3,3-free cograph.

As a result, Z(G) = M(G) for the entire class of threshold graphs.

It is well-known and easy to prove that the largest the minimum rank of a graph on n

vertices can be is n − 1. It follows that a graph on n vertices with k components can have

minimum rank at most n− k. It is equally well-known, but far less easy to prove, that the

class of graphs achieving that upper bound on minimum rank is the class of paths, Pn [9]. I

prove a similar result. Instead of finding the structure of the graphs whose minimum ranks
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achieve a particular bound, I find a bound on the minimum rank of all graphs with a certain

structure, namely cographs. I prove that the minimum rank of a cograph on n vertices is at

most

⌊
2n

3

⌋
, improving on the preceding bounds by a multiplicative constant.

Chapter 2. Basic Definitions and Preliminary Observations

2.1 Graph Theory

Definition 2.1.

A graph G = (V (G), E(G)) is a set of vertices V (G) and a set of edges E(G), consisting

of 2-element subsets of V (G).

Two vertices u and v in a graph G are said to be adjacent if {u, v} ∈ E(G).

The degree of a vertex is the number of vertices to which it is adjacent.

A vertex is said to be isolated if it is not adjacent to any other vertex.

A degree one vertex is call pendent.

A graph H is a subgraph of a graph G if V (H) ⊆ V (G) and E(H) ⊆ E(G).

Let v be a vertex of G. Then G − v is the subgraph of G with vertex set V (G − v) =

V (G) \ { v } and edge set containing { i, j } if and only if i, j 6= v and { i, j } ∈ E(G).

A subgraph H of G is said to be induced if it can be obtained by successively deleting

vertices of G. If H is an induced subgraph of G, it is said to be induced by the set V (H) ⊆

V (G).

Definition 2.2. A graph G is said to be H-free if H is not an induced subgraph of G.

Example 2.3. Let W6 be the 6-wheel graph shown in Figure 2.1a. Deleting vertices 1 and 2

obtains an induced P4. That is, W6−1−2 = P4. On the other hand, the folding stool shown
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in Figure 2.1b is P4-free since deleting any single vertex results in a graph on 4 vertices that

is not P4. Deleting vertex 1 results in S4. Deleting vertex 3 results in a disconnected induced

subgraph, K2 ∪ 2K1. Deleting vertex 4 results in a graph known as the paw. Vertex 2 is

symmetric to vertex 1, and vertex 5 is symmetric to vertex 4.

1

2

3

45

6 3

45

6

(a) The 6-wheel and an induced P4

1 2

3

4 5

1 2

4 5

2

3

4 5

1 2

3

5

(b) The folding stool and induced subgraphs

Figure 2.1: Induced Subgraphs

Definition 2.4. The complement of a graph G is the graph Gc with vertex set V (Gc) = V (G)

and edge set E(Gc) given by {i, j} ∈ E(Gc) if and only if {i, j} /∈ E(G) for i, j ∈ V (G).

Definition 2.5. Given two graphs G and H with V (G) ∩ V (H) = ∅, the union of G and

H, written G ∪H, is the graph (V (G) ∪ V (H), E(G) ∪ E(H)).

Definition 2.6. Given two graphs G and H with V (G) ∩ V (H) = ∅, the join of G and H,

written G ∨H, is the graph with vertex set

V (G ∪H) = V (G) ∪ V (H)

and edge set

E(G ∪H) = E(G) ∪ E(H) ∪ {uv | u ∈ V (G) and v ∈ V (H)}.

Notice that the graph operation union is associative, as is the operation join. Thus it is

consistent to define the union and join of multiple graphs as

r⋃
i=1

Gi =

(
r−1⋃
i=1

Gi

)
∪Gr and

r∨
i=1

Gi =

(
r−1∨
i=1

Gi

)
∨Gr.
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Definition 2.7. Let G1 and G2 be graphs with at least two vertices, each with a vertex

labeled v. The vertex-sum at v of G1 and G2, denoted G1⊕
v
G2, is the graph on |G1|+|G2|−1

vertices obtained by identifying the vertex v in G1 with the vertex v in G2. If G is a graph

that can be written as G1 ⊕
v
G2, then v is said to be a cut-vertex of G.

Definition 2.8. A connected graph is k-connected if at least k vertices must be deleted

before the resulting graph is disconnected or K1.

Definition 2.9. Let G be a graph. A set of vertices of G is called independent (a clique) if

the vertices are pair-wise non-adjacent (adjacent).

Definition 2.10.

• The complete graph on n vertices, Kn, is the graph with every pair of vertices adjacent.

• We use the shorthand notation mK1 for ∪mi=1K1.

• The complete bipartite graph with independent vertex sets of size m and size n is

Km,n = mK1 ∨ nK1.

• The complete tripartite graph with independent vertex sets of size m, n, and r is

Km,n,r = mK1 ∨ nK1 ∨ rK1.

• The star on n vertices, K1,n−1, is denoted Sn.

• The path on n vertices, Pn, is any graph that can be labeled so that V (Pn) =

{1, 2, . . . , n} and E(Pn) = {{1, 2}, {2, 3}, . . . , {n− 1, n}}.

Definition 2.11. A cograph G is defined recursively as follows:

(i) K1 is a cograph.

(ii) If G1 and G2 are cographs, G1 ∪G2 is a cograph.

(iii) If G1 and G2 are cographs, G1 ∨G2 is a cograph.

5



Theorem 2.12. [7] A graph G is a cograph if and only if G is P4-free.

Note that Kn = ∨ni=1K1, Km,n, and Sn are cographs and that Pn is a cograph if and only

if n < 4.

Recall from Example 2.3 that the 6-wheel has an induced P4 and that the folding stool

is P4-free. Thus by Theorem 2.12 the 6-wheel is not a cograph while the folding stool is a

cograph. One can check that the 6-wheel is not the join of cographs, while the folding stool

can be written as 3 ∨ ((1 ∨ 2) ∪ 4 ∪ 5).

Definition 2.13. A threshold graph is defined recursively as follows:

(i) K1 is a threshold graph.

(ii) If G is a threshold graph, G ∪K1 is a threshold graph.

(iii) If G is a threshold graph, G ∨K1 is a threshold graph.

Clearly, all threshold graphs are cographs but not all cographs are threshold graphs.

Definition 2.14. Let G be a cograph and write G = ∨ri=1Gi where the Gi cannot be further

decomposed as a join of proper subgraphs. Note that for disconnected cographs, necessarily

r = 1. Then the Gi are the primary constituents of G. A cograph written in this form is said

to be in standard form, and unless otherwise noted, all cographs will be written in standard

form. Occasionally I will wish to emphasize that a cograph is the join of two subgraphs, in

which case I will write the cograph in the form G∨H and it should not be assumed to have

only 2 primary constituents.

I use the following terminology as found in [2].

Definition 2.15. Let G be a graph. The core of G, denoted Ğ, is the subgraph of G

induced by all non-isolated vertices. The isolated part of G, denoted by G̈, is the subgraph

of G induced by all isolated vertices.

Thus G = Ğ ∪ G̈.

6



Definition 2.16. Let G be a graph. Let H be a subgraph of G such that no subgraph of G

containing H as a proper subgraph is connected. Then H is said to be a component of G.

Note that Ğ and G̈ are not necessarily components of G. Take for example G = K1 ∪

K1 ∪ K2 ∪ K3. The components of G are K1, K1, K2, and K3, while Ğ = K2 ∪ K3 and

G̈ = K1 ∪K1.

2.2 Matrix Theory

Definition 2.17.

Let G be a graph on n vertices. S(G) is the set of all real-valued symmetric n×n matrices

A = [aij] such that when i 6= j, aij = 0 if and only if {i, j} /∈ E(G).

The minimum rank of G, mr(G), is the smallest rank achieved by a matrix in S(G). The

maximum nullity of G, M(G), is the largest nullity achieved by a matrix in S(G).

The minimum rank class of G is the set of matrices

MR(G) = {A ∈ S(G) | rankA = mr(G)}.

There are similar definitions for these concepts over any field. Many of the theorems I

cite hold over more general fields, though I cite them only for the real field.

Observation 2.18. If G is a graph on n vertices, mr(G) + M(G) = n.

Proof. For any n× n matrix A, rankA + nullityA = n.

Observation 2.19. Let G be a disconnected graph with components G1, G2, . . . , Gk. Then

mr(G) =
∑k

i=1 mr(Gi) and M(G) =
∑k

i=1M(Gi).

Proof. Label the vertices of G so that the first |G1| are the vertices of G1, the next |G2|

are the vertices of G2 and so on until the last |Gk| are the vertices of Gk. Let A ∈ S(G).

7



Then A is a block diagonal matrix and we may write A = A1 ⊕ A2 ⊕ · · · ⊕ Ak where each

Ai ∈ S(Gi). Then A ∈MR(G) if and only if Ai ∈MR(Gi) for each i. Let A ∈MR(G).

Then mr(G) = rankA =
∑k

i=1 rankAi =
∑k

i=1 mr(Gi). Thus mr(G) =
∑k

i=1 mr(Gi). To

see that M(G) =
∑k

i=1M(Gi), one can use a similar argument or note that it follows from

Observation 2.18.

Definition 2.20. Let v be a vertex of a graph G. The rank-spread of v in G is rv(G) =

mr(G)−mr(G− v).

Proposition 2.21. [12] Let G be a graph and let v be a vertex of G. Then

mr(G− v) ≤ mr(G) ≤ mr(G− v) + 2.

Equivalently,

0 ≤ rv(G) ≤ 2.

Observation 2.22. If H is an induced subgraph of G, then mr(H) ≤ mr(G).

Proof. By the proposition, mr(G − v) ≤ mr(G). Since induced subgraphs can be obtained

by sucessively deleting vertices, the observation follows by induction.

Theorem 2.23. [11] Let G1 and G2 be graphs on at least two vertices each with a vertex

labeled v and let G = G1 ⊕
v
G2. Then

mr(G) = min{mr(G1) + mr(G2),mr(G1 − v) + mr(G2 − v) + 2}.

Definition 2.24. The join minimum rank of a graph G is jmr(G) = mr(G ∨K1).

Definition 2.25. Let G = ∨ri=1Gi be a cograph. Then G is said to be anomalous if

(i) for each i, jmr(Gi) ≤ 2; and

(ii) K3,3,3 is an induced subgraph of G.

8



Figure 2.2: K3,3,3 = 3K1 ∨ 3K1 ∨ 3K1

The following two results are fundamental to my arguments throughout the paper.

Proposition 2.26. [2, Proposition 3.6] For any graph G,

jmr(G) =


mr(G) if and only if G has no isolated vertices.

mr(G) + 1 if and only if G has exactly one isolated vertex.

mr(G) + 2 if and only if G has two or more isolated vertices.

More compactly,

jmr(G) = mr(G) + min{|G̈|, 2}.

Theorem 2.27. [2, Theorem 4.5] Let G = ∨ri=1Gi, r > 1, be a connected cograph. Then

mr(G) =

 maxi{jmr(Gi)} if G is not anomalous;

3 if G is anomalous.

Example 2.28. Throughout this paper it will be necessary to know the minimum rank

of some basic graphs. To equip the reader I will establish the minimum rank of various

basic graphs here, using methods varying from the definition of minimum rank to high-level

methods such as Theorem 2.27.

Recall that Kn is the complete graph on n vertices, where every pair of vertices is adjacent.

Thus the n× n all ones matrix is in S(Kn). Thus mr(Kn) ≤ 1. If n ≥ 2, mr(Kn) = 1 since

every matrix in S(Kn) has an off-diagonal entry that must be nonzero. If n = 1, however,

9



mr(K1) = 0 since diagonal entries are unrestricted and [0] ∈ S(K1).

Recall that the star Sn = K1 ∨ (n − 1)K1. We will use Proposition 2.26 to compute

mr(Sn). First consider the case n ≥ 3. Then

mr(Sn) = jmr((n− 1)K1) = mr((n− 1)K1) + 2 = 0 + 2 = 2,

where Observation 2.19 shows that mr((n − 1)K1) = mr(∪n−1
i=1 K1) =

∑n−1
i=1 mr(K1) =∑n−1

i=1 0 = 0. Now consider n = 2. Since S2 = K1 ∨K1 = K2, mr(S2) = 1.

Any matrix A ∈ S(Pn) has a tridiagonal structure, or we can relabel so that it does.

Write A =



d1 a 0 . . . 0

a d2 b 0 . . . 0

0 b d3 c
...

0 c
. . . . . . 0

...
...

. . . dn−1 z

0 0 . . . 0 z dn


where ab · · · z 6= 0. By deleting the first row and

last column of A we obtain an upper triangular matrix with all nonzero entries on the

diagonal. Thus rankA ≥ n − 1. By choosing A =



1 −1 0 . . . 0

−1 2 −1 0 . . . 0

0 −1 2 −1
...

0 −1
. . . . . . 0

...
...

. . . 2 −1

0 0 . . . 0 −1 1


, the

Laplacian matrix of Pn, we see that it is possible to choose A so that rankA < n. Thus

mr(Pn) = n− 1.

To illustrate the definition of anomalous, which is so important to Theorem 2.27, I prove

some simple facts about anomalous graphs and then characterize their structure.

Observation 2.29. K3,3,3 is anomalous.

Proof. K3,3,3 = 3K1 ∨ 3K1 ∨ 3K1 and so K3,3,3 is a cograph. The primary constituents are

10



all 3K1, and jmr(3K1) = mr(S4) = 2.

Observation 2.30. K3,3,3 can be an induced subgraph of a non-anomalous graph.

Proof. Consider G = 3K1 ∨ 3K1 ∨ 3K1 ∨ (P3 ∪K1). Certainly K3,3,3 is an induced subgraph.

Since P3 = 2K1∨K1 is a cograph, G is a cograph. Since jmr(P3∪K1) = mr(P3)+1 = 3 > 2,

G is not anomalous.

Proposition 2.31. Let G = ∨ri=1Gi be an anomalous graph. Then for at least three distinct

i, Gi is the union of three or more isolated vertices.

Proof. Since G is anomalous, K3,3,3 is an induced subgraph of G and jmr(Gi) ≤ 2 for each

i. It is sufficient to prove the following three statements concerning the independent sets of

the induced K3,3,3.

(i) Each of the independent sets is contained in a single primary constituent.

(ii) Distinct independent sets cannot be contained in the same primary constituent.

(iii) Each primary constituent containing one of the independent sets is equal to its isolated

part.

The first statement is verified by noticing that vertices from different primary constituents

are adjacent in G.

The second statement follows from the first and the fact that if a constituent contained

two of the independent sets it must then contain K3,3 as an induced subgraph in order for

K3,3,3 to be an induced subgraph of G. Since primary constituents cannot be decomposed

further into a join they must either be K1 or be disconnected. Thus a primary constituent

containing two independent sets would have at least two components, one of which would

contain an induced K3,3. An induced subgraph of this constituent would then be K1 ∪K3,3.

So K1 ∨ (K1 ∪K3,3) would be an induced subgraph of this constituent join K1. So the join

minimum rank of this constituent would be at least mr(K1 ∨ (K1 ∪ K3,3). By Proposition

2.26, mr(K1∨(K1∪K3,3) = mr(K3,3)+1 = 3 since mr(K3,3) = mr(3K1∨3K1) = jmr(3K1) =

11



mr(S4) = 2 by Theorem 2.27. But all the primary constituents must have join minimum

rank at most 2 since G is anomalous. Thus no primary constituent contains more than one

of the independent sets.

Lastly, suppose a primary constituent contained an independent set (of three or more

vertices) and component(s) that were not isolated vertices. Then the minimum rank of the

constituent would be at least 1, and by Proposition 2.26 the join minimum rank of the

constituent would be at least 3. If so, G would not be anomalous.

Corollary 2.32. A cograph G is anomalous if and only if G = G1 ∨ · · · ∨Gk ∨H1 ∨ · · · ∨H`

where the Gi and the Hi together are the primary constituents of G, G̈i = Gi and Ḧi 6= Hi

for each i, k ≥ 3, |G1|, |G2|, |G3| ≥ 3, and mr(Hi) + |Ḧi| ≤ 2 for each i.

Proof. Assume G is anomalous. The conditions k ≥ 3 and |G1|, |G2|, |G3| ≥ 3 are necessary

by the proposition. It remains to show that any primary constituent with join minimum

rank at most 2 can appear as a Gi or an Hi. If J is a graph such that jmr(J) = 1, J = Km

for some m ≥ 1 and so J satisfies mr(J) + |J̈ | ≤ 2. If m > 1, J can appear as an Hi. If

m = 1, J can appear as a Gi. If jmr(J) = 2, either mr(J) = 0 and |J̈ | ≥ 2, or mr(J) = 1

and |J̈ | = 1, or mr(J) = 2 and |J̈ | = 0. In the case mr(J) = 0 and |J̈ | ≥ 2, J can appear as

a Gi. The last two cases satisfy mr(J) + |J̈ | ≤ 2 and J can appear as an Hi.

Now assume G is of the form specified in the corollary. Then K3,3,3 is an induced subgraph;

for appropriate mi, jmr(Gi) = mr(Smi
) ≤ 2; and jmr(Hi) ≤ mr(Hi) + |Ḧi| ≤ 2. Thus G is

anomalous.

Chapter 3. Nil Vertices

I begin this chapter with a discussion of nil vertices as defined in [6] and prove some

basic results, some of which are review from [6] and some of which are new to this work and

relevant to cographs. I then prove that cographs with a degree 2 non-simplicial nil vertex
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must have two other nil vertices symmetric to the first. I discuss one of the earliest results on

nil vertices, which classifies them in graphs with minimum rank two [4]. Since mr(P4) = 3,

graphs with minimum rank two are P4-free and thus a subset of cographs. This result and

my original result lead us to some open questions about nil vertices in cographs, as well as

a counterexample.

3.1 Basic Results

Definition 3.1. [6] Let v be a vertex of a graph G. If the diagonal entry corresponding to

v is zero (nonzero) in every matrix in MR(G), then v is said to be a nil (nonzero) vertex

of G, or nil (nonzero) in G. A vertex that is neither nil nor nonzero is called neutral.

The following illustrate the definition of nil vertices.

Observation 3.2. Every isolated vertex of a graph is nil.

Proof. Let v be an isolated vertex of a graph G and label v as the first vertex. Then every

matrix in S(G) is of the form A =

d1 0T

0 B

, where B ∈ S(G − v). In order for A to have

the smallest possible rank, we must have d1 = 0.

Proposition 3.3. [6, Example 2.13] Let k ≥ 4. Then the pendent vertices of Sk are nil and

the central vertex is neutral.

Proof. We first consider k = 4. Label the vertices of S4 by V (S4) = {1, 2, 3, 4} and E(S4) =

{{ 1, 2 } , { 1, 3 } , { 1, 4 }}. Every matrix in MR(S4) is of the form

A =



d1 a b c

a d2 0 0

b 0 d3 0

c 0 0 d4



13



where a, b and c are not zero and d2, d3, d4 correspond to the pendent vertices of S4. Since

mr(S4) = 2, rankA = 2. If any of d2, d3, or d4 is not 0, then rankA is greater than 2. To see

this, consider the following cases. If all three are nonzero, A has a 3× 3 principal submatrix

with rank 3. If exactly two are nonzero, the 3× 3 principal submatrix corresponding to row

1, the row containing the di = 0, and a row containing a nonzero di has rank 3. If only

one is nonzero we may similarly choose a rank 3 principal submatrix. Hence, every pendent

vertex of S4 is a nil vertex. Further, both



1 1 1 1

1 0 0 0

1 0 0 0

1 0 0 0


and



0 1 1 1

1 0 0 0

1 0 0 0

1 0 0 0


are in MR(S4)

and thus 1 is a neutral vertex. This argument is clearly generalizable to k > 4.

Proposition 3.4. Let v be a vertex of a graph G. Let H be the component of G containing

v. Then v is nil in H if and only if v is nil in G.

Proof. This is clear if G = H, or in other words, if G is connected. Now suppose that G

has more than one component. Then G− V (H) is not the empty graph. A matrix in S(G)

has the form M =

A 0

0 B

, where A ∈ S(G− V (G)) and B ∈ S(H). Since this is a block

diagonal matrix, M has the smallest possible rank exactly when each block has the smallest

possible rank. Thus M ∈MR(G) if and only if A ∈MR(G − V (H)) and B ∈MR(H).

Since v is a vertex of H, the diagonal entry of M corresponding to v is in B. Thus v is nil in

G if and only if the diagonal entry corresponding to v is zero in every matrix in MR(G) if

and only if the diagonal entry corresponding to v is zero in every matrix in MR(H) if and

only if v is nil in H.

Observation 3.5. All vertices of P3 are neutral.

Proof. Consider


1 1 1

1 0 0

1 0 0

, and


0 1 −1

1 1 0

−1 0 −1

 ∈ S(P3). Each matrix has rank 2, hence

each is in MR(P3). Thus P3 has all neutral vertices.
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Though only the first mentions nil vertices, both of the following two theorems can be

used to determine information about nil vertices of a graph when information is known about

nil vertices of certain induced subgraphs.

Theorem 3.6. [4, Theorem 5.2] If H is an induced subgraph of a graph G with mr(H) =

mr(G), then if v is a nil (nonzero) vertex in H, v is also a nil (nonzero) vertex in G.

Theorem 3.6 shows that graphs retain a property from certain types of subgraphs, the

reverse of the usual type of inheritance theorem. In fact, the converse of Theorem 3.6 is

false. Note that mr(P3) = 2 = mr(S4) and that P3 is an induced subgraph of S4. The

pendent vertices of S4 are nil by Proposition 3.3, but the pendent vertices of P3 are neutral

by Observation 3.5.

Definition 3.7. [3] Given a proper subgraph H of a graph G, let H̃ be the graph with

vertex set V (G) and edge set E(H).

The following example illustrates and motivates the definition.

Example 3.8. [3, see Example 1.1] Let ./ be the bowtie graph

1

3

5

4

2

obtained by

identifying G1 =

1

3

5

4

2

and G2 =

1

3

5

4

2

at vertex 3. Then G̃1 =

1

3

5

4

2

and

G̃2 =

1

3

5

4

2

. Clearly a matrix in MR(K3) is the all-ones matrix


1 1 1

1 1 1

1 1 1

 and it

is natural to embed this matrix in two 5 × 5 matrices and add them to obtain a matrix in

MR(./). Let

A =



1 1 1 0 0

1 1 1 0 0

1 1 1 0 0

0 0 0 0 0

0 0 0 0 0


, B =



0 0 0 0 0

0 0 0 0 0

0 0 1 1 1

0 0 1 1 1

0 0 1 1 1


.
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Then rank(A + B) = 2 = mr(G) so that A + B ∈ MR(./). Note that A ∈ MR(G̃1) and

B ∈MR(G̃2).

While it is not always possible to so naturally construct a matrix in MR(G) from

matrices in minimum rank classes corresponding to subgraphs of G, the following theorem

tells us that that we can always do this for graphs with a cut-vertex. There is a similar

theorem in [3] for graphs with a 2-separation. Since we do not need the theorem for 2-

separations in our discussion I do not include it here.

Theorem 3.9. [3, Corollary 3.3] Let G be the vertex-sum at v of G1 and G2, and let Sk+1

be the star subgraph of G formed by the degree k vertex v and all of its neighbors.

(i) If rv(G1) + rv(G2) < 2, then

MR(G) = MR(G̃1) + MR(G̃2).

(ii) If rv(G1) + rv(G2) > 2, then

MR(G) = MR(G̃1 − v) + MR(G̃2 − v) + MR(S̃k+1).

(iii) If rv(G1) + rv(G2) = 2, then

MR(G) =
(
MR(G̃1) + MR(G̃2)

)
∪
(
MR(G̃1 − v) + MR(G̃2 − v) + MR(S̃k+1)

)
.

Example 3.10. As an illustration of the above theorem, consider the graphs

G :

1

3

5

4

2

G1 :

1

2

3 G2 : 3

5

4

noting that G is the vertex-sum at vertex 3 of G1 and G2. Since r3(G1)+r3(G2) = 2+0 = 2,

G illustrates statement 3. Thus any matrix in MR(G) is in either MR(G̃1) + MR(G̃2) or
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MR(G̃1 − 3) + MR(G̃2 − 3) + MR(S̃5), and any matrix obtained as one of these sums is

in MR(G). We demonstrate each type of decomposition with a matrix in MR(G). Note

that mr(G) = mr(K1 ∨ (K2 ∪K1 ∪K1)) = jmr(K2 ∪K1 ∪K1) = mr(K2) + 2 = 3. Consider

the matrices in MR(G)

A =



1 0 1 0 0

0 −1 −1 0 0

1 −1 1 1 1

0 0 1 1 1

0 0 1 1 1


, B =



0 0 1 0 0

0 0 1 0 0

1 1 1 1 1

0 0 1 1 1

0 0 1 1 1


.

We can decompose A as

A =



1 0 1 0 0

0 −1 −1 0 0

1 −1 0 0 0

0 0 0 0 0

0 0 0 0 0


+



0 0 0 0 0

0 0 0 0 0

0 0 1 1 1

0 0 1 1 1

0 0 1 1 1


where the two matrices are respectively in MR(G̃1) and MR(G̃2).

We can decompose B as

B =



0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0


+



0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 1 1

0 0 0 1 1


+



0 0 1 0 0

0 0 1 0 0

1 1 1 1 1

0 0 1 0 0

0 0 1 0 0


where the three matrices are respectively in MR(G̃1 − 3), MR(G̃2 − 3) and

MR(S5).

The following lemma which will be used later provides an example of how Theorem 3.9

is used to prove facts about nil vertices.
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Lemma 3.11. Let G be a graph and v be a nil vertex such that if v is isolated, |G̈| ≥ 3.

Then v is also nil in G ∨K1.

Proof. We begin by proving two trivial cases.

First, suppose that G has no isolated vertices. Then mr(G) = mr(G∨K1) by Proposition

2.26. So G is an induced subgraph of G ∨K1 with mr(G) = mr(G ∨K1). Thus any vertex

that is nil in G is nil in G ∨K1 by Theorem 3.6.

Second, suppose that G has no edges. In other words, G has only isolated vertices. Then

G = G̈ and so v must be isolated. Then by assumption |G| = |G̈| ≥ 3. So G ∨K1 is a star

on |G|+ 1 vertices. Since |G| ≥ 3, by Proposition 3.3 v is nil in G ∨K1.

Lastly, consider the nontrivial case in which G has one or more isolated vertices and one

or more edges. Then G has at least two components. Let u be the vertex in G ∨ K1 that

comes from the K1. Then u is a cut-vertex. Let G1 be the subgraph of G ∨K1 induced by

u and G̈. Let G2 be the subgraph of G ∨K1 induced by u and Ğ. Then G ∨K1 = G1 ⊕
u
G2.

Case 1. Assume that v is not isolated in G. Hence v must be a vertex in G2 − u. Note

that G2 − u is the union of the components of G of size greater than one. Let H be the

component of G containing v. Then H is also a component of G2 − u. By Proposition 3.4,

since v is nil in G, v is nil in H. Again by Proposition 3.4, since v is nil in H, v is nil in

G2−u. Since G2 = (G2−u)∨u and G2−u has no isolated vertices, by the first case above,

v is also nil in G2.

Case 2. Assume that v is one of at least three isolated vertices of G. Then v is a vertex

in G1 − u. By Observation 3.2 v is nil in G1 − u. Since G1 − u consists of all the isolated

vertices of G, G1 = Sk where k = |G̈|+ 1 ≥ 4. Then v is nil in G1 by Proposition 3.3.

Thus in the case that v is a vertex of Gi, v is nil in Gi and in Gi − u. By Theorem 3.9,

any minimum rank matrix for G is in either in MR(G̃1) + MR(G̃2) or in MR(G̃1 − u) +

MR(G̃2 − u) + MR(S̃k+1) where k = |G|. Consider A = [ai,j] ∈MR(G̃1) and B = [bi,j] ∈

MR(G̃2). Let M = [mi,j] = A+B. Then mv,v = av,v + bv,v. First assume that v is a vertex

of G1. Then av,v = 0 since v is nil in G1. Since the only vertex shared by G1 and G2 is u 6= v,
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bv,v = 0. Thus mv,v = 0. The case where v is a vertex of G2 is symmetric. Now consider

C = [ci,j] ∈ MR(G̃1 − u), D = [di,j] ∈ MR(G̃2 − u), and S = [si,j] ∈ MR(S̃k+1). Let

N = [ni,j] = C + D + S. Then nv,v = cv,v + dv,v + sv,v. For variety here we will assume that

v is a vertex of G2. The case in which v is a vertex of G1 is again symmetric. Since v is nil

in G2 − u, dv,v = 0. Since v is not a vertex in G1 − u, cv,v = 0. Thus nv,v = sv,v. Note that

v is a pendent vertex of Sk+1. If v is an isolated vertex of G, by assumption |G| ≥ 3. If v

is not an isolated vertex of G, then G must contain at least two non-isolated vertices. Since

we are assuming that G does contains one or more isolated vertices, then |G| ≥ 3. Thus in

both cases k + 1 ≥ 4 and so the pendent vertices of Sk+1 are nil vertices by Proposition 3.3.

Hence nv,v = sv,v = 0. Thus v is nil in G ∨ u.

The condition that if v is an isolated vertex then |G̈| ≥ 3 is necessary. For an example

in which the lemma fails and |G̈| = 1, consider G = K2 ∪ v. While v is nil in K2 ∪ v by

Observation 3.2, v is not nil in (K2 ∪ v) ∨ K1 =

1

2

3 v . In fact, v is nonzero. To see

this, note that a matrix in S((K2 ∪ v)∨K1) is of the form A =



d1 a b 0

a d2 c 0

b c d3 d

0 0 d dv


. If dv = 0,

rows 2,3, and 4 are linearly independent. Thus rankA ≥ 3. However, by Proposition 2.26

mr((K2 ∪ v) ∨ K1) = jmr(K2 ∪ v) = mr(K2) + 1 = 2. Thus dv 6= 0 in any minimum rank

matrix. Hence v is nonzero.

For an example in which |G̈| = 2, consider G = K2 ∪ v ∪ K1. Note that v is nil in

K2 ∪ v ∪K1. However, v is not nil in the folding stool (K2 ∪ v ∪K1) ∨K1 as will be shown

in Example 3.24.

19



3.2 Structure of Cographs with an Edge Subdivision

In this section I will show that if a cograph G has a nil vertex produced by edge-

subdivision, then in fact G has three nil vertices in an independent set.

Definition 3.12. If G is a graph and e = {v, w} ∈ E(G), subdividing e is the action of

creating a new graph Ge from G by adding a new vertex u, and adjusting the edge set as

shown:

Ge = (V (G) ∪ {u}, (E(G) \ {v, w}) ∪ {{u, v}, {u,w}).

Theorem 3.13. [6, Theorem 4.1] Let G be a connected graph, and Ge be the graph obtained

from G by subdividing an edge e ∈ E(G). Let v be the vertex created by subdividing the edge

e. Then mr(Ge) = mr(G) if and only if v is a nil vertex.

Proposition 3.14. If G is a connected cograph that can be obtained by edge subdivision,

then G is of the form (2K1) ∨ (v ∪H), where H is a cograph and v is the vertex created by

the edge subdivision.

Proof. If G is a cograph that can be obtained by edge subdivision, then the vertex v created

by the edge subdivision has exactly two neighbors, call them u and w. Then u and w are

not adjacent.

We first consider the vertices that are adjacent to either u or v. If x is adjacent to u,

then x − u − v − w is a path of length 4. Since G is a cograph, this cannot be an induced

subgraph by Theorem 2.12. Since x is not adjacent to v, then x must be adjacent to w.

Thus every vertex in G adjacent to u is also adjacent to w. Similarly, any vertex adjacent

to w is also adjacent to u.

We now show that all vertices of G are adjacent to u and w. If a vertex existed that was

not adjacent to u or w, since G is connected we can choose such a vertex y adjacent to a

neighbor x of u and w. Then y − x − u − v is an induced path of length 4. Thus no such

vertices exist. Thus G consists of u, v, w and some subgraph H composed of the remaining
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vertices. Every vertex of H is adjacent to both u and w, as is v. Thus G is the join of v and

H to the vertices u and w. Or, G = (2K1) ∨ (v ∪H). Since H is an induced subgraph of a

cograph, H must be a cograph.

Corollary 3.15. If G is a connected cograph with a non-simplicial degree 2 vertex v, then

G is of the form (2K1) ∨ (v ∪H) where H is a cograph.

Proof. If v is a non-simplicial degree 2 vertex, then v could be obtained by edge subdivision.

Lemma 3.16. Let H be a cograph. Then G = (2K1) ∨ (H ∪K1) is not anomalous.

Proof. Since both 2K1 and H ∪K1 are disconnected graphs, these are exactly the primary

constituents of G. First suppose that H is anomalous. Then K3,3,3 is an induced subgraph

of H. By Observation 2.22

jmr(H ∪K1) = mr((H ∪K1) ∨K1) ≥ mr(H ∪K1) ≥ mr(H) ≥ mr(K3,3,3) = 3.

Since the join minimum rank of one of the primary constituents of G is greater than 2, G is

not anomalous.

Now suppose that H is not anomalous. If K3,3,3 is an induced subgraph of H, then by

the argument above, G is not anomalous. If K3,3,3 is not an induced subgraph of H, then

K3,3,3 is also not an induced subgraph of G. To see this consider each of the vertices of

G that are not vertices of H. Recall G = (2K1) ∨ (H ∪ K1). Label the vertices so that

G = (u ∪ v) ∨ (H ∪ w). Then u and v each are adjacent to all the remaining vertices, so

that neither vertex can be in an independent set of size three or greater. Thus neither u

nor v are vertices of an induced K3,3,3. On the other hand, w is only adjacent to u and v.

Every vertex of K3,3,3 is adjacent to 6 vertices. Thus w is not in an induced K3,3,3. Thus

any induced K3,3,3 lies entirely inside H, which we’ve assumed does not contain an induced

K3,3,3. Thus G does not contain an induced K3,3,3 and so is not anomalous.
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Before stating the next theorem we need some definitions. The motivation for this will

be made clear in Section 3.3.

Definition 3.17. [10] The composition tree of a cograph G is a root tree whose leaves are

the vertices of G. Nodes that are not leaves are labeled to indicate either a join or a union,

and taking joins and unions as indicated results in the graph G.

Definition 3.18. Let G be a cograph. An independent set of vertices of G is called a

fundamental independent set if the vertices are leaves off of the same union node in the

composition tree of G.

1 2
∨

4 ∪

1 2 3

3

4

4 ∨ (1 ∪ 2 ∪ 3)

(a) S4 and its composition tree

1 2

3

4 5

∨

3 ∪

∨ 4 5

1 2

3 ∨ ((1 ∨ 2) ∪ 4 ∪ 5)

(b) The folding stool and its composition tree

Figure 3.1: Cographs and Composition Trees

Example 3.19. Consider the cographs and corresponding composition trees in Figure 3.1.

While vertices 1,4, and 5 form an independent set in the folding stool, they do not form a

fundamental independent set. Vertices 1,2, and 3 do form a fundamental independent set in

S4.

Theorem 3.20. If G is a cograph with a nil vertex v obtained by edge-subdivision, then G

has at least 3 nil vertices. These 3 nil vertices occur as an independent set of an induced

K2,3. Furthermore, the independent set is a fundamental independent set of G.

Proof. If the component of G containing v satisfies the statement then G satisfies the state-

ment. Thus we may assume G to be connected. By Proposition 3.14, we may write

G = (2K1)∨(v ∪H), where H is non-empty since v is a nil vertex and 2K1∨v = P3 has no nil
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vertices by Observation 3.5. The graph from which G was obtained by edge subdivision can

be written as K2 ∨H. Since v is nil, by Theorem 3.13, mr((2K1)∨ (v ∪H)) = mr(K2 ∨H).

By Lemma 3.16, G is not anomalous. So by Theorem 2.27, mr(G) is the maximum of the

join minimum ranks of the primary constituents of G. The primary constituents are 2K1 and

v∪H. Thus mr(G) = max{2, jmr(v∪H)}. Since P3 is an induced subgraph of K1∨ (v∪H),

jmr(v∪H) ≥ mr(P3) = 2 and we have simply mr(G) = jmr(v∪H). By definition, jmr(H) =

mr(K1 ∨H) and jmr(K1 ∨H) = mr(K1 ∨K1 ∨H). Since K1 ∨H has no isolated vertices,

jmr(K1∨H) = mr(K1∨H). Thus jmr(H) = jmr(K1∨H) = mr(K1∨K1∨H) = mr(K2∨H).

Thus we have that jmr(K1 ∪H) = mr(G) = mr(K2 ∨H) = jmr(H). By Proposition 2.26

this occurs exactly when H has at least 2 isolated vertices. Since these two isolated vertices

of H, considered as vertices of G, are only adjacent to the neighbors of v, by symmetry the

two isolated vertices of H are also nil vertices in G. The subgraph of G induced by these

two vertices, v, and the two neighbors of v is a K2,3.

By considering the components of H, we may write v ∪H = H1 ∪ · · · ∪Hk where H1 is

the vertex v and all isolated vertices of H and each Hi for i > 1 is a connected component

of H that has more than one vertex. Thus we have that G = (K1 ∪K1) ∨ (∪ki=1Hi). Note

that the vertices of H1 form a fundamental independent set of size three or greater.

3.3 Nil Vertices: Open Questions and a Counterexample

We begin with some background. The following theorems characterize minimum rank 2

graphs and characterize the nil, nonzero, and neutral vertices of minimum rank 2 graphs.

The graph called the dart is the graph (P3 ∪K1)∨K1. The graph n is K1 ∨ (K2 ∪ 2K1) (see

Example 3.10).

Theorem 3.21. [5, Theorem 9] Let G be a connected graph. Then the following are equiv-

alent:

(i) mr(G) ≤ 2.
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(ii) Gc can be expressed as the union of at most 2 complete graphs and of complete bipartite

graphs.

(iii) G is (P4, dart,n, K3,3,3)-free.

Theorem 3.22. [4, Theorem 5.7] Let G be a connected graph with mr(G) = 2 and write

G = (Kk ∪K` ∪Km1,n1 ∪ · · · ∪Kmr,nr ∪ sK2 ∪ tK1)
c, where k, ` ∈ {0, 3, 4, 5, ...}, s, t ≥ 0, and

none of the Kmi,ni
are K2’s or K1’s. Then the vertices of G corresponding to

• Kk and K` are nil vertices.

• the Kmi,ni
’s are nonzero vertices.

• the K2’s and K1’s are nonzero vertices if k, ` ≥ 3 and neutral vertices otherwise.

Theorem 3.22 shows that nil vertices in minimum rank two graphs come in sets of three

or more. Does this result carry over to the larger class of cographs? Theorem 3.13 classifies

vertices that arise from an edge-subdivision as nil exactly when the minimum rank did not

change after the edge-subdivision. The following example demonstrates that we can use this

to produce graphs with exactly one nil vertex. Since Theorem 3.20 says that a cograph with

a nil vertex produced by edge-subdivision in fact must have three nil vertices, the example

is not a cograph. While it might be possible for a cograph to have a single nil vertex not

arising from edge-subdivision, no such example is known.

Question 1: Is there a cograph with exactly one nil vertex?

Question 1a: Is there a cograph with exactly two nil vertices?

Example 3.23. In Figure 3.2 the graph Ge is obtained from G by subdividing the edge e.

The vertex obtained by edge-subdivision is v. We first show that mr(Ge) = mr(G). To aid

us we will compute the minimum ranks of some subgraphs of G. By Theorem 2.27

mr(paw) = mr((K2 ∪K1) ∨K1) = mr(K2 ∪K1) + 1 = 2.
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eu w

(a) G

vu w

(b) Ge

Figure 3.2: A Single Nil Vertex from Edge-subdivision

Applying Theorem 2.23 to w and using Theorem 2.27 we see that

mr([(u ∪ w) ∨K2]⊕
w
K2) = min

 mr((u ∪ w) ∨K2) + mr(K2) = 2 + 1 = 3

mr(u ∨K2) + mr(K1) + 2 = 1 + 0 + 2 = 3

 = 3.

Using this, applying Theorem 2.23 to u, and using Theorem 2.27 we see that

mr(G) = min


mr(K2) + mr([(u ∪ w) ∨K2]⊕

w
K2) = 1 + 3 = 4

mr(K1) + mr(paw) + 2 = 0 + 2 + 2 = 4

 = 4.

We now compute the minimum rank of some subgraphs of Ge. Applying Theorem 2.23 to

w we find that

mr([(v ∪ w) ∨ 2K1]⊕
w
K2) = min

 mr((v ∪ w) ∨ 2K1) + mr(K2) = 2 + 1 = 3

mr(P3) + mr(K1) + 2 = 2 + 0 + 2 = 4

 = 3.

and

mr([(u∪v∪w)∨2K1]⊕
w
K2) = min

 mr((u ∪ v ∪ w) ∨ 2K1) + mr(K2) = 2 + 1 = 3

mr((u ∪ v) ∨ 2K1) + mr(K1) + 2 = 2 + 0 + 2 = 4

 = 3.

Using this, Theorem 2.23 applied to u, and Theorem 2.27, we see that

mr(Ge) = min


mr(K2) + mr([(u ∪ v ∪ w) ∨ 2K1]⊕

w
K2) = 1 + 3 = 4

mr(K1) + mr([(v ∪ w) ∨ 2K1]⊕
w
K2) + 2 = 0 + 3 + 2 = 5

 = 4.
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So mr(G) = 4 = mr(Ge). Thus by Theorem 3.13 v is a nil vertex. We show that v is the

only nil vertex. Write Ge = K2⊕
u
He⊕

w
K2. Note that ru(K2) = mr(K2)−mr(K1) = 1−0 = 1

and that ru(He⊕
w
K2) = mr([u∪ v∪w)∨ 2K1]⊕

w
K2)−mr([(v∪w)∨ 2K1)⊕

w
K2) = 3− 3 = 0.

So ru(K2) + ru(He ⊕
w
K2) = 1 + 0 = 1. Thus by Theorem 3.9, every minimum rank matrix

for Ge is in MR(K̃2) + MR(H̃e ⊕
w
K2).

We have rw(He) = mr((u ∪ v ∪ w) ∨ 2K1) − mr((u ∪ v) ∨ 2K1) = 2 − 2 = 0 and

rw(K2) = mr(K2) − mr(K1) = 1 − 0 = 1. So rw(He) + rw(K2) = 0 + 1 = 1. Thus

by Theorem 3.9 every minimum rank matrix for He ⊕
w
K2 is in MR(H̃e) + MR(K̃2). It

follows that every minimum rank matrix for Ge is in MR(K̃2) + MR(H̃e) + MR(K̃2), and

conversely. Let A = [ai,j] ∈ MR(K̃2), B = [bi,j] ∈ MR(H̃e), and C = [ci,j] ∈ MR(K̃2).

Let M = [mi,j] = A + B + C. Since every vertex of K2 is nonzero, we can choose au,u so

that mu,u = au,u + bu,u + cu,u 6= 0. Thus u is not nil in Ge. Similarly w is not nil in Ge.

If x is a vertex other than u or w, then at most one of ax,x, bx,x and cx,x is nonzero since x

is a vertex in at most one of K2, He and K2. Thus x is nil in Ge if and only if x is nil in

the appropriate subgraph. Recall that K2 has no nil vertices. By Theorem 3.21 the only nil

vertices of He = K2,3 are u, v and w. Thus v is nil in Ge. We’ve shown that u and w are

not nil in Ge. Thus Ge is a graph with exactly one nil vertex.

One way to answer Questions 1 and 1a would be to produce a cograph with exactly one or

exactly two nil vertices. Of course, another way to answer the questions would be by proving

that nil vertices in cographs come in groups of three or more. We would be looking to extend

Theorem 3.22 in some way to cographs. For minimum rank 2 graphs, the nil vertices are

exactly those vertices in an independent set of size 3 or greater. A simple minimum rank 3

cograph serves to shows that this is not true more generally.

Example 3.24. Consider the folding stool (see Figure 3.1b), 3 ∨ ((1 ∨ 2) ∪ 4 ∪ 5). Vertices

1, 4, and 5 form an independent set of size three. However, they are not nil vertices. By

Proposition 2.26, mr(folding stool) = mr(3 ∨ ((1 ∨ 2) ∪ 4 ∪ 5)) = jmr((1 ∨ 2) ∪ 4 ∪ 5) =
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mr(1 ∨ 2) + 2 = 1 + 2 = 3. Thus



1 1 1 0 0

1 1 1 0 0

1 1 3 1 1

0 0 1 1 0

0 0 1 0 1


∈ MR(folding stool). Since all the

diagonal entries are nonzero, in fact none of the vertices of the folding stool are nil.

Notice that the choice of independent set was somewhat arbitrary. We could have just

as easily been considering the independent set composed of vertices 2, 4, and 5. Thus there

is something less structured about the independent sets in the folding stool as compared to

the independent sets in minimum rank 2 graphs. If we could select only those independent

sets that were “structured enough,” we might have more hope that their vertices would be

nil. This motivates the definition of a fundamental independent set, which we recall here

with the concept of a composition tree. See Figure 3.1 and Example 3.19.

Definition 3.25. The composition tree of a cograph G is a root tree whose leaves are the

vertices of G. Nodes that are not leaves are labeled to indicate either a join or a union, and

taking joins and unions as indicated results in the graph G.

Definition 3.26. Let G be a cograph. An independent set of vertices of G is called a

fundamental independent set if the vertices are leaves off of the same union node in the

composition tree of G.

Proposition 3.27. Let G be a connected graph with mr(G) = 2. Then every nil vertex in

G is in a fundamental independent set of size three or greater.

Proof. By Theorem 3.21, we may write G = (Kk ∪K` ∪Km1,n1 ∪ · · · ∪Kmr,nr ∪ sK2 ∪ tK1)
c,

where k, ` ∈ {0, 3, 4, 5, ...}, s, t ≥ 0, and none of the Kmi,ni
are K2’s or K1’s. By Theorem

3.22 we have that the nil vertices of G correspond to the vertices of the Kk and K`. If

G has at least one nil vertex, then k and ` are not both 0 and so we may assume that

k ≥ 3. Certainly the vertices corresponding to Kk form an independent set of size three
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or greater in G. Since for any graphs G1 and G2 we have that (G1 ∪ G2)
c = Gc

1 ∨ Gc
2,

G = Kc
k ∨Hc = kK1 ∨Hc where H = K` ∪ · · · ∪ tK1. Thus the nil vertices corresponding to

Kk form a fundamental independent set of size three or greater. Similarly, if there are other

vertices nil in G, they will correspond to K` and will form a fundamental independent set of

size three or greater.

Theorem 3.20 shows that in a cograph with a nil vertex produced by edge subdivision,

that nil vertex is part of a fundamental independent set of size three or greater of nil vertices.

Our most basic example of a cograph with nil vertices is S4, and here again the nil vertices

are in a fundamental independent set. If the answer to Questions 1 and 1a were that every

cograph with any nil vertices at all must have at least three nil vertices, we might ask

ourselves the following.

Question 2: Is every nil vertex in a cograph part of a fundamental independent set of

size 3 or greater?

While no answer is known yet, we can produce a counterexample to the converse. That

is, not every vertex of a fundamental independent set of size 3 or greater in a cograph is nil.

∨

∪ ∪

∨
1 2 3

4

5 6

7 8

Figure 3.3: A Counterexample

Example 3.28. Let G = (1 ∪ 2 ∪ 3) ∨ 4 ∨ (5 ∪ 6 ∪ (7 ∨ 8)) (see Figure 3.3). Then G is a

cograph and {1, 2, 3} is a fundamental independent set. We will show that none of 1, 2, 3 are

nil. By Theorem 2.27 and Proposition 2.26,

mr(G) = max{jmr(K1), jmr(3K1), jmr(2K1 ∪K2)} = jmr(2K1 ∪K2) = mr(K2) + 2 = 3.
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Let

M =


1 0 0 2 1 −1 1 1

0 1 0 2 2 2 1 1

0 0 1 −2 3 1 1 1

 .

Let

A = MT


1 0 0

0 1 0

0 0 −1

M =



1 0 0 2 1 −1 1 1

0 1 0 2 2 2 1 1

0 0 −1 2 −3 −1 −1 −1

2 2 2 4 12 4 6 6

1 2 −3 12 −4 0 0 0

−1 2 −1 4 0 4 0 0

1 1 −1 6 0 0 1 1

1 1 −1 6 0 0 1 1



.

Then rankA = 3. Since A ∈ S(G) and mr(G) = 3, A ∈MR(G). The first, second, and

third diagonal entries are nonzero, showing that vertices 1,2, and 3 are not nil.

While unfortunately we cannot identify nil vertices in cographs by identifying fundamen-

tal independent sets from the composition tree, we can say something about how nil vertices

behave relative to the join and union structure of cographs. Notice in this example the fun-

damental independent set does not occur in a primary constituent whose join minimum rank

is the minimum rank of the whole graph. When this occurs the situation is much simpler.

Proposition 3.29. Let G = ∨ri=1Gi be a cograph and let mr(G) = jmr(G1). If v is a nil

vertex of G1 such that either v is not isolated in G1 or |G̈1| ≥ 3, then v is nil in G.

Proof. If r = 1, G = G1 and the statement is trivially true. Assume that r > 1. Let u be

any vertex of ∨ri=2Gi. Then mr(G1 ∨ u) = jmr(G1) = mr(G). Thus G1 ∨ u is an induced

subgraph of G having the same minimum rank. Since v is nil in G1, v is nil in G1 ∨ u by

Lemma 3.11. Thus by Theorem 3.6 v is nil in G.
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While it is not true in general that if v is nil in a cograph G and H is another cograph

that v is nil in G ∨ H, Proposition 3.29 gives sufficient conditions under which this does

occur. By Proposition 3.4 we see that if v is nil in G then v is always nil in G∪H. Thus if v

is nil in a cograph G such that either v is not isolated or |G̈| ≥ 3, and G′ is any cograph that

is formed by taking unions with G and joining cographs with no greater join minimum rank,

then by repeatedly applying Propositions 3.29 and 3.4 we see that v is nil in G′. While this

does help us to identify nil vertices in an infinite though rather limited class of cographs, we

would prefer to have a method that involves examining only graph theoretic properties.

The next theorem replaces the condition on the join minimum ranks of the primary

constituents with a restrictions on the number of vertices. Thus if v is a nil vertex in a

cograph G such that either v is not isolated in G or |G̈| ≥ 3, then v is also nil in any cograph

built up from G by taking unions with cographs or joins with small enough cographs.

Theorem 3.30. Let G = G1 ∨G2 be a connected cograph with |G2| ≤ 2. If v is a nil vertex

of G1 such that either v is not isolated in G1 or |G̈1| ≥ 3, then v is nil in G.

Proof. Note that here we are not requiring G1 and G2 to be primary constituents of G.

If G2 has only one vertex, then G = G1 ∨K1. Then v is nil in G by Lemma 3.11. Now

suppose that G2 has exactly two vertices. Either G2 = 2K1 or G2 = K2. Then jmr(G2) = 1

or 2. Since graphs with minimum rank one do not have nil vertices, jmr(G1) ≥ 2. For the

moment assume that G is not anomalous. Then mr(G) = jmr(G1) by Theorem 2.27. Thus

if u is any vertex in G2, G1 ∨ u is an induced subgraph of G with mr(G1 ∨ u) = mr(G). By

Theorem 3.6, any nil vertex in G1 ∨ u is also nil in G. By Lemma 3.11, v is nil in G1 ∨ u.

Thus v is nil in G.

We now consider the case where G is anomalous. Then mr(G) = 3 and K3,3,3 is an

induced subgraph of G. Note that none of the vertices of G2 can be included in the induced

K3,3,3, since they are each adjacent to every vertex in G1. Thus K3,3,3 is an induced subgraph

of G1. Write G1 in the standard form G1 = ∨ri=1Hi where each Hi is a primary constituent

of G1 and thus also of G. Since G is anomalous, jmr(Hi) ≤ 2 for each i. Thus G1 is itself
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anomalous. So G1 is an induced subgraph of G with mr(G1) = 3 = mr(G). Thus by Theorem

3.6 v is nil in G.

Corollary 3.31. Let G = G1 ∨G2 be a connected cograph that is not 3− connected. Let v

be a nil vertex in G1 such that either v is not isolated in G1 or |G̈1| ≥ 3. Then v is nil in G.

Proof. Since G is not 3-connected, G1 and G2 cannot both have 3 or more vertices. The

only nil vertices in graphs on 1 or 2 vertices are isolated vertices. Since v is in G1, it follows

that G2 must have fewer than 3 vertices. Thus v is nil in G by Theorem 3.30.

Chapter 4. Zero Forcing Number of Cographs

In this section we show that the zero forcing number as defined in [1] is equal to the max-

imum nullity for cographs without an induced K3,3,3. We begin with some basic definitions

and examples.

Definition 4.1.

• Color-change rule: If G is a graph with each vertex colored either white or black, u is

a black vertex of G, and exactly one neighbor v of u is white, then change the color of

v to black.

• Given a coloring of G, the derived coloring is the result of applying the color-change

rule until no more changes are possible.

• A zero forcing set for a graph G is a subset of vertices Z such that if initially the vertices

in Z are colored black and the remaining vertices are colored white, the derived coloring

of G is all black.

• Z(G) is the minimum of |Z| over all zero forcing sets Z ⊂ V (G).
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Example 4.2. We show that Z(Sn) = n− 2 for n ≥ 3. Let Z be the set of all the pendent

vertices of Sn except one. See Figure 4.1 for the case n = 5. The central vertex of Sn is the

only white neighbor of any of the vertices in Z. Applying the color-change rule changes the

central vertex to black. Now, the remaining white pendent vertex is the only white neighbor

of the central vertex. Applying the color-change rule again changes this pendent vertex

black. Thus Z is a zero forcing set for Sn. So Z(Sn) ≤ n− 2. Now suppose that Z ⊂ V (G)

and that |Z| < n − 2. Then at least two pendent vertices are not included in Z. The only

neighbor of a pendent vertex is the central vertex. In order for the color-change rule to apply

to color one of the white pendent vertices black, the white pendent vertex must be the only

white neighbor of the central vertex. So Z is not a zero forcing set. Thus Z(Sn) = n− 2.

Figure 4.1: A minimal zero forcing set for S5

Theorem 4.3. [1, See Proposition 2.4] For any graph G, M(G) ≤ Z(G).

Example 4.4. Strict inequality can occur in Theorem 4.3. By Observation 2.29 and The-

orem 2.27, mr(K3,3,3) = 3. So M(K3,3,3) = 9 − 3 = 6. However, we will show that

Z(K3,3,3) = 7. Consider one of the independent sets of K3,3,3. Call the three vertices of

this independent set u, v, and w. Each of u, v, w is a neighbor of every vertex not in the

same independent set. Thus if u and v are white, no vertex not in the independent set will

be able to force either u or v. Similarly for any two vertices of u, v, w. Thus if Z is a zero

forcing set for K3,3,3, Z must contain at least two vertices from each independent set, as

pictured in Figure 4.2a. However, if Z only contains two vertices from each independent

set, each vertex of Z will have two white neighbors. Hence any zero forcing set for K3,3,3

must contain more than 6 vertices. Thus Z(K3,3,3) ≥ 7. In fact Z(K3,3,3) = 7 as Figure 4.2b

shows.
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(a) Not a zero forcing set (b) A zero forcing set

Figure 4.2: Z(K3,3,3) = 7

While Z(G) is not always equal to M(G), equality does hold for many classes of graphs,

including for all trees [1, Proposition 4.2]. I show that Z(G) = M(G) for another infinite

class of graphs, cographs without an induced K3,3,3.

Observation 4.5. Let G =
⋃k

i=1Gi. Then Z(G) =
∑k

i=1 Z(Gi).

Proof. Let Z be a zero forcing set for G. If v ∈ Z is a vertex of Gi, v cannot force any

vertex of Gj for j 6= i. Thus Z must contain a zero forcing set for Gj for each j. So

Z(G) ≥∑k
i=1 Z(Gi). However, clearly if Z contains a zero forcing set for Gj for each j then

Z is a zero forcing set for G. Thus Z(G) ≤∑k
i=1 Z(Gi). Therefore Z(G) =

∑k
i=1 Z(Gi).

Lemma 4.6. Let G = ∪ki=1Gi. If Z(Gi) = M(Gi) for i = 1, 2, . . . , k, then Z(G) = M(G).

Proof. By Observation 2.19 and Observation 4.5

M(G) = M(∪ki=1Gi) =
k∑

i=1

M(Gi) =
k∑

i=1

Z(Gi) = Z(∪k
i=1Gi) = Z(G).

Definition 4.7. Let G = ∨ri=1Gi be a non-anomalous cograph. If G is connected, a maximum

primary constituent of G is a primary constituent Gi such that jmr(Gi) = mr(G). If G is

disconnected, the maximum primary constituent of G is G.

Lemma 4.8. Let G = ∨ri=1Gi be a connected non-anomalous cograph with maximum primary

constituent G1. If Z(G1) = M(G1), then Z(G) = M(G).
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Proof. Since the zero forcing number is an upper bound on maximum nullity, it suffices to

prove that Z(G) ≤ M(G). We do this by demonstrating a forcing set of size M(G). Since

G is not anomalous, the minimum rank of G is the largest of the join minimum ranks of

its primary constituents. Thus the condition that G1 is a maximum primary constituent is

merely a matter of choice of labeling. Let H = ∨ri=2Gi. Then G = G1 ∨H.

Case 1. Assume |G̈1| = 0. Then jmr(G1) = mr(G1) and so mr(G) = mr(G1). Then

M(G) = |G| −mr(G) = |G1|+ |H| −mr(G1) = M(G1) + |H| = Z(G1) + |H|.

Let Z be a minimal zero forcing set for G1. Then |Z| = Z(G1). The set Z ∪ V (H) is

a forcing set for G ∨ H since the only white neighbors of vertices in G1 are in G1. Thus

Z(G) ≤ Z(G1) + |H| = M(G).

Case 2. Assume |G̈1| = 1. Then jmr(G1) = mr(G1) + 1 and so mr(G) = mr(G1) + 1.

Then

M(G) = |G| −mr(G) = |G1|+ |H| − (mr(G1) + 1) = M(G1) + |H| − 1 = Z(G1) + |H| − 1.

Let Z be a minimal zero forcing set for G1. Let v be the isolated vertex of G1. Since no

other vertex of G1 is adjacent to v, v ∈ Z. Consider (Z \ {v}) ∪ V (H). This is a set of size

M(G). We show that this is a forcing set. Since all vertices of H are colored and v is not a

neighbor of any vertex in G1− v, all white vertices of G1− v can be forced. Then any vertex

of H can force v. Thus Z(G) ≤ Z(G1)− 1 + |H| = M(G).

Case 3. Assume |G̈1| ≥ 2. Then jmr(G1) = mr(G1) + 2 and so mr(G) = mr(G1) + 2.

Then

M(G) = |G| −mr(G) = |G1|+ |H| − (mr(G1) + 2) = M(G1) + |H| − 2.

Let Z be a minimal forcing set for G1. Let u and v be two isolated vertices of G1. Then

u, v ∈ Z. Let w be any vertex of H. Consider (Z \ {v})∪ (V (H) \ {w}). This is a set of size

M(G). We show that this is a forcing set. Since u is adjacent to all vertices of H and no
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other vertices of G1, u can force w. Then as in the preceding case, all vertices of G1− v can

be forced. Then any vertex in H can force v. Thus Z(G) ≤ Z(G1)−1+ |H|−1 = M(G).

Theorem 4.9. Let G be a non-anomalous cograph with a K3,3,3-free maximum primary

constituent. Then Z(G) = M(G).

Proof. We proceed by induction on n = |G|. Clearly, Z(K1) = 1 = M(K1). Thus every

cograph on a single vertex satisfies Z(G) = M(G). Now assume that every non-anomalous

cograph G on fewer than n vertices with a K3,3,3-free maximum primary constituent satisfies

Z(G) = M(G).

Let G be a non-anomalous cograph on n vertices with a K3,3,3-free maximum primary

constituent H.

First assume that G is connected. Then G has at least two primary constituents and so

|H| < n. Since H is K3,3,3-free, by the inductive hypothesis Z(H) = M(H). By Lemma 4.8,

Z(G) = M(G).

Now assume that G is disconnected and write G =
⋃k

i=1Gi. Then by assumption G

is K3,3,3-free. So each component Gi of G is K3,3,3-free. Since |Gi| < n for each i, by the

inductive hypothesis Z(Gi) = M(Gi) for each i. By Lemma 4.6 Z(G) = M(G).

This completes the induction and we see that for every non-anomalous cograph G with

a K3,3,3-free maximum primary constituent, Z(G) = M(G).

Corollary 4.10. Let G be a K3,3,3-free cograph. Then Z(G) = M(G).

Corollary 4.11. Let G be a threshold graph. Then Z(G) = M(G).

Proof. Recall that threshold graphs are built up from K1 by consecutively taking the join

or union with a single vertex. Thus deleting a vertex from a threshold graph is the same

as skipping the corresponding join or union in the process of building the graph. Hence

deleting a vertex from a threshold graph results in a threshold graph. Therefore every

induced subgraph of a threshold graph is a threshold graph.
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Every connected threshold graph has a vertex adjacent to every other vertex. Thus K3,3,3

is not a threshold graph and so every threshold graph must be K3,3,3-free.

Chapter 5. Maximum Minimum Rank of Cographs

The following proposition and theorem are well known results about minimum rank.

Proposition 5.1. Let G be a graph on n vertices. Then mr(G) ≤ n− 1.

Proof. The Laplacian matrix for G is in S(G), has −1’s in every off-diagonal entry cor-

responding to an edge, and for every vertex v has the degree of v in the diagonal entry

corresponding to v. Thus the rows sum to 0 and the Laplacian matrix is singular.

Theorem 5.2. [9] The path on n vertices, Pn, is the only graph on n vertices with minimum

rank n− 1.

Proposition 5.3. Let G be a graph on n vertices with k components. Then mr(G) ≤ n− k.

Proof. Let G1, G2, . . . , Gk be the components of G and let ni be the number of vertices of

Gi for each i. By Proposition 5.1 mr(Gi) ≤ ni − 1 for each i. Thus by Observation 2.19

mr(G) = mr(∪ki=1Gi) =
∑k

i=1 mr(Gi) ≤
∑k

i=1(ni − 1) = n− k.

The bound on the minimum rank of disconnected graphs improves upon the bound for

all graphs by only an additive constant. In this section I prove that the minimum rank of

a cograph on n vertices is bounded by
⌊
2n
3

⌋
, improving on the bound for all graphs by a

multiplicative constant.

Lemma 5.4. Let G be a connected non-anomalous cograph. Then there exists a cograph on

|G| vertices of the form K1 ∨H such that mr(K1 ∨H) ≥ mr(G).
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Proof. Write G = ∨ri=1Gi with labeling so that G1 is a maximum primary constituent of

G. Thus mr(G) = jmr(G1). Since G is connected, r ≥ 2. Let m =
∑r

i=2 |Gi|. Then

|(G1 ∪ (m− 1)K1) ∨K1| = |G|, and mr((G1 ∪ (m− 1)K1) ∨K1) = jmr(G1 ∪ (m− 1)K1) ≥

jmr(G1) = mr(G).

Lemma 5.5. Let G be a disconnected cograph on n vertices. Then there is a connected

cograph on n vertices with minimum rank at least as large.

Proof. Let G1, G2, . . . , Gk be the components of G and let ni = |Gi| for each i. First assume

that G has an isolated vertex, say G1 = K1. Then

mr(K1 ∨ (∪ki=2Gi) ≥ mr(∪ki=2Gi) = mr(K1 ∪ (∪ki=2Gi)) = mr(G).

Now assume that G does not have any isolated vertices and that one of the components

is not anomalous. Let G1 be a non-anomalous component. Applying Lemma 5.4 we may

obtain a cograph on n1 vertices of the form K1 ∨H such that mr(K1 ∨H) ≥ mr(G1). Thus

mr(K1 ∨ (H ∪ (∪k
i=2Gi)) = mr(H ∪ (∪k

i=2Gi)) + min{|Ḧ|, 2}

= mr(H) +
k∑

i=2

mr(Gi) + min{|Ḧ|, 2} = mr(K1 ∨H) +
k∑

i=2

mr(Gi)

≥ mr(G1) +
k∑

i=2

mr(Gi) = mr(G).

Assume every component of G is anomalous. Then by definition and Proposition 2.31

every primary constituent of G1 has join minimum rank at most 2, and three of the primary

constituents consist entirely of (three or more) isolated vertices. Let u and v be two isolated

vertices of the same one of these primary constituents. If G1− u− v is still anomalous, then

mr(G1−u−v) = 3. If G1−u−v is not anomalous, mr(G1−u−v) can be computed by Theorem

2.27 by finding the maximum of the join minimum ranks of the primary constituents. The

join minimum rank of each primary constituent is still at most 2, and there is still a primary

37



constituent with at least 3 isolated vertices. Thus mr(G1 − u− v) = 2.

Since each Gi is anomalous, no Gi is an isolated vertex. Also note that G1 − u − v is

connected and is not a single vertex. So by Proposition 2.26, mr(u ∨ (G − u − v ∪ v)) =

mr(G − u − v) + 1 = mr(G1 − u − v) + 1 +
∑k

i=2 mr(Gi). Since mr(G1 − u − v) ≥ 2 and

mr(G1) = 3, mr(u∨(G−u−v∪v)) ≥ 2+1+
∑k

i=2 mr(Gi) = mr(G1)+
∑k

i=2 mr(Gi) = mr(G).

Thus in all cases there is a connected cograph on n vertices with minimum rank at least

as large as mr(G), where G is disconnected.

Theorem 5.6. Let G be a cograph on n vertices. Then mr(G) ≤
⌊

2n

3

⌋
. Furthermore, for

each n there is a threshold graph for which equality is achievable.

Proof. We first show that the proposed bound is achievable by a threshold graph. We proceed

by induction on n. For n = 1, 2, 3, Pn is a threshold graph with mr(Pn) = n − 1 =
⌊
2n
3

⌋
.

For n = 4, 5, 6, K1 ∨ (Pn−3 ∪ 2K1) is a threshold graph with mr(K1 ∨ (Pn−3 ∪ 2K1)) =

jmr(Pn−3 ∪ 2K1) = mr(Pn−3) + 2 = ((n− 3)− 1) + 2 = n− 2 =
⌊
2n
3

⌋
.

Assume that the proposed bound is achievable by a connected threshold graph for all

i < n. Let Hi be a connected threshold graph on i vertices that achieves the proposed

bound for each i. Let Hn = K1∨ (Hn−3∪2K1). Since union with K1 and joining K1 preserve

threshold graphs, Hn is a threshold graph. By the inductive hypothesis mr(Hn−3) =
⌊
2(n−3)

3

⌋
.

By Proposition 2.26 and since Hn−3 has no isolated vertices, mr(Hn) = jmr(Hn−3 ∪ 2K1) =

mr(Hn−3) + 2 =
⌊
2(n−3)

3

⌋
+ 2 =

⌊
2n
3
− 2
⌋

+ 2 =
⌊
2n
3

⌋
.

We now show that the proposed bound is actually an upper bound. For n = 1, 2, 3,⌊
2n
3

⌋
= n− 1, which is an upper bound for the minimum rank of any graph on n vertices by

Proposition 5.1. For n = 4, 5, 6,
⌊
2n
3

⌋
= n − 2, which is an upper bound for the minimum

rank of any graph on n vertices that is not the path Pn by Theorem 5.2. Let n ≥ 6. Then⌊
2n
3

⌋
≥ 4. Thus any cograph on n vertices that achieves or exceeds the proposed bound is

not anomalous.

We now prove the following claim. The maximum minimum rank achievable by a cograph

on n vertices can be achieved by a cograph of the form K1 ∨ H where H has at most 2
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isolated vertices. Let G be a cograph on n vertices of maximum minimum rank. Since

n ≥ 6 and since we’ve shown that the proposed bound is achievable, mr(G) ≥ 4. Thus G

is not anomalous. By Lemma 5.5, since G has maximum minimum rank, we may choose

G to be connected. By Lemma 5.4 we can obtain a cograph of the form K1 ∨ H which

also has maximum minimum rank. Now suppose that H has more than 2 isolated vertices.

Then mr(K1 ∨ H) = jmr(H) = mr(H̆) + 2. Let v be one of the isolated vertices. Then

mr(H) = mr(H − v). Thus mr(K1 ∨H − v) = jmr(H − v) = mr( ˘H − v) + 2 = mr(H̆) + 2.

Since H−v is disconnected, by Proposition 2.31 K1∨v∨ (H−v) is not anomalous. Thus by

Theorem 2.27, mr(K1 ∨ v ∨ (H − v)) = max { 1, 1, jmr(H − v) } = jmr(H − v) = mr(H̆) + 2.

Let H ′ be v ∨ (H − v). Then mr(K1 ∨H ′) = mr(K1 ∨H) and H ′ has no isolated vertices.

Therefore, we may assume that G = K1 ∨H has maximum minimum rank and |Ḧ| ≤ 2.

Note that for i = 4, 5, 6, Hi constructed above is a connected cograph of maximum

minimum rank equal to
⌊
2i
3

⌋
. Thus we may assume that there is an n > 6 such that for

every i < n there is a connected cograph with maximum minimum rank equal to
⌊
2i
3

⌋
on i

vertices. We’ve shown that we can pick a cograph G on n vertices with maximum minimum

rank of the form K1 ∨H where |Ḧ| ≤ 2. It remains only to show that mr(G) =
⌊
2n
3

⌋
. Since

G = K1 ∨H, |H| = n− 1. Since |Ḧ| ≤ 2

mr(G) = mr(K1 ∨H) = jmr(H) = mr(H) + |Ḧ| = mr(H̆) + |Ḧ|.

Also since |Ḧ| ≤ 2, n− 3 ≤ |H̆| ≤ n− 1. Since H̆ is a cograph on fewer than n vertices, we

can apply the inductive hypothesis in cases as follows.

mr(G) = mr(H̆) + |Ḧ| ≤



⌊
2(n−1)

3

⌋
=
⌊
2n
3
− 2

3

⌋
if |Ḧ| = 0⌊

2(n−2)
3

⌋
+ 1 =

⌊
2n
3
− 1

3

⌋
if |Ḧ| = 1⌊

2(n−3)
3

⌋
+ 2 =

⌊
2n
3

⌋
if |Ḧ| = 2.

Recall that G has maximum minimum rank. Thus H̆ must achieve maximum minimum

rank since otherwise we could choose a different graph and increase the minimum rank of G.
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Thus we actually have the equality mr(G) =
⌊
2n
3

⌋
and we see that regardless of the value

of n, the maximum minimum rank may always be achieved when H has exactly 2 isolated

vertices. Depending on the value of n, the maximum minimum rank may also be achieved

when H has fewer than 2 isolated vertices.
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