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ABSTRACT 
 

Deposition and Characterization of Hydrophobic Coatings 
 
 

Vipul Gupta 
Department of Chemistry and Biochemistry, BYU 

Master of Science 
 
 

Hydrophobic coatings find application in various sectors of the economy including to 
electronics, textiles, optical devices, and in scientific and commercial equipment. These different 
applications demand that different hydrophobic coatings posses a range of properties that may 
include smoothness or roughness, thicknesses on the order of a monolayer or a micron, 
robustness or the ability to dissolve quickly, transparency or opacity, water resistance or water 
permeability, electrical conductivity, oleophobicity, etc. However, whatever the final/desired 
properties, deposition via dry-deposition processes offers significant advantages, including 
greater reproducibility, increased environmental friendliness, and cost effectiveness on an 
industrial scale. Herein I explore the chemical vapor deposition of silanes and the 
characterization of a commercial, hydrophobic coating to better prepare and understand 
hydrophobic coatings on different materials.  

 
One of the characterization techniques I used frequently in these studies is X-ray 

photoelectron spectroscopy (XPS). Accordingly, in Chapter 2 of this thesis I discuss this 
technique vis-à-vis the chemical shifts it detects, which reflect the oxidation states of materials 
being probed. In particular, I discuss a recommendation made over a decade ago by Gion 
Calzaferri for ‘fixing’ the problem of oxidation numbers as applied to organic materials and 
show how XPS confirms his suggestion. 

 
In Chapter 3 I introduce hydrogen as an etch/cleaning gas for silicon wafers. I first show 

that, like argon and oxygen plasmas, hydrogen plasmas will effectively clean silicon wafers. 
However, I then show that hydrogen plasma treatment leads to a silicon surface that is 
chemically different than those prepared with the other plasmas and that undergoes silanization 
to a greater extent – the resulting surfaces have higher water contact angles and thicknesses. 

 
In Chapter 4 I study the deposition of a potential barrier layer for water, which was 

prepared from an aza silane: N-n-butyl-aza-2,2-dimethoxysilacyclopentane (1) in a molecular 
layer deposition (MLD)-like process using either water or ammonium hydroxide as the second 
half reactant. This molecule has the interesting property of undergoing self-limiting growth, 
where the termination of this growth is accelerated by use of an ammonium hydroxide catalyst. 
Interestingly, films of 1 are considerably thicker on nylon than on silicon, which is explained by 
nylon acting as a water reservoir in the reaction. 

 
In Chapter 5 I show the careful characterization of the hydrophobic coating on an Apple 

iPod nano, which was probed by ToF-SIMS, wetting, and XPS. I could identify that the coating 



 

is only applied to the touchscreen of the device. SIMS suggested that the fluorinated coating 
contains oxygen, which should add to its biodegradability. 

 
Finally, in Chapter 6 I make recommendation for future work in these areas. 
 
 

Keywords: Chemical Vapor Deposition, hydrophobic coatings, water resistive barrier layer, 
oxidation states, silanes, XPS, glow discharge cleaning, YES 1224 P, MLD, Calzaferri approach. 
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Chapter 1 Introduction 

 

1.1 Overview  

My research has focused on the deposition and characterization of hydrophobic and/or barrier 

silane coatings on both inorganic and organic surfaces through dry deposition techniques. I have 

also studied the hydrophobic coating of a commercial electronic device. Hydrophobic coatings 

are used in various sectors of the economy, where their application is viewed as particularly 

important for textiles, electronics, optical devices, and various pieces of scientific, consumer, and 

industrial equipment. These different applications demand that different hydrophobic coatings 

posses a range of properties that may include smoothness or roughness, thicknesses on the order 

of a monolayer or a micron, robustness/abrasion resistance or the ability to dissolve quickly, 

transparency/invisibility or opacity, water resistance or water permeability, electrical 

conductivity, oleophobicity, etc. However, whatever the final properties, deposition via dry-

deposition processes offers significant advantages, including greater reproducibility, increased 

environmental friendliness, and cost effectiveness on an industrial scale. Herein I explore the 

chemical vapor deposition of silanes and the characterization of a commercial, hydrophobic 

coating to better prepare and understand hydrophobic coatings on different materials.  

 

Chemical vapor deposition (CVD) and atomic or molecular layer deposition (ALD or MLD) 

involve deposition of a desired chemical onto a surface by exposing the surface to the vapors of 

chemicals under vacuum conditions. Gas phase deposition is a form of dry processing, which 

allows its use on water sensitive devices. The vacuum lowers the boiling points of chemicals so 

that lower temperatures can be employed in their deposition. Vacuum conditions are often 
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cleaner and more reproducible than solution-based depositions. CVD, ALD, and MLD are of 

importance, both in research laboratories and in industry, because they are: (1) Environmentally 

friendly, as they minimize the amount of solvent and other chemical waste generated, (2) User 

friendly, as the direct interaction of the user with the chemicals is minimized, (3) Ensure surface 

purity, as the process takes place under vacuum, which eliminates many possible contaminants, 

and (4) Allow uniform, often conformal, surface coverage, as vapors at low pressure can 

penetrate deeply into textured/patterned/inhomogeneous/high aspect ratio materials.  

 

Silanes can be viewed as derivatives of the molecule silane, SiH4, from which they also 

derive their name. They often possess one or more hydrolytically sensitive moieties, e.g., Si-

OCH3, Si-OCH2CH3, or Si-Cl, which can condense with surface silanol (SiOH) groups to form 

siloxane (Si-O-Si) linkages.  They were chosen as a preferred class of molecules for study 

because they offer various advantages ranging from: (1) Formation/polymerization of highly 

robust coatings via strong siloxane bonds, (2) Ease of control of various surface properties and/or 

thickness, (3) Creation of coatings that are amenable to characterization using a variety of 

surface analytical techniques, and (4) Are commercially available with many chain lengths and 

functional groups. These advantages have led to their widespread adoption, e.g., amino1-3 and 

epoxy4, 5 silanes are used in biosensors and for DNA immobilization, fluorosilanes6, 7 and to a 

lesser extent alkyl silanes8 impart hydrophobicity and oleophobicity to surfaces, some silanes are 

used as coupling agents,9 and some in UV protective coatings.10 Silanes are also used extensively 

as stationary phases for high performance liquid chromatography and thin layer 

chromatography.11, 12 
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I employed a variety of surface characterization tools in my work, including X-ray photoelectron 

spectroscopy (XPS), time-of-flight secondary ion mass spectrometry (ToF-SIMS), spectroscopic 

ellipsometric (SE), contact angle goniometry, and atomic force microscopy (AFM). The use of 

multiple analytical techniques helps us to piece together a more complete and informative picture 

of a surface/material because each technique has its particular strengths and limitations.  

 

X-ray photoelectron spectroscopy, also known as electron spectroscopy for chemical analysis 

(ESCA), was invented in the mid 1960s by Kai Siegbahn, who also received a Nobel prize for 

his efforts. Since then it has been extensively used for the analysis of all kinds of different 

surfaces and materials including metals,13, 14 polymers,15, 16 semiconductors,17 and ceramics.18 

XPS, as the name implies, uses X-rays to eject core electrons from the elements present at a 

surface/near surface region of a material. The binding energies of ejected electrons are calculated 

on the basis of the conservation of energy as per Equation 1, where hυ is the energy of the X-

rays, B.E is the binding energy of the photoelectrons, K.E. is the kinetic energy of the electrons, 

which is measured by the instrument, and ϕ is the work function of the instrument, which is a 

small correction to the equation. The binding energies of the elements allow identification of all 

elements, except H and He, which the technique does not detect. It is significant that binding 

energies are affected by the chemical environments, i.e., oxidation states, of the atoms they come 

from. The use of XPS to determine the oxidation states of the elements, and in particular carbon, 

is explained in more detail in Chapter 2. The surface sensitivity of XPS comes from the inability 

of photoelectrons to travel more than ca. 10 nm in materials, which ensures the detection of 

electrons from only the upper most region of a surface, i.e., the technique is highly surface 
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sensitive. Thus, XPS is a useful method for studying surface hydrophobicity, as explained in 

Chapters 2 – 5. 

 

hυ = B. E + K. E +  ϕ                                 (1) 

 

ToF-SIMS, or time-of-flight secondary ion mass spectroscopy, is a form of surface mass 

spectrometry. Honig, Liebl and Slodzian did pioneering work in the field of ToF-SIMS19, 20 and 

after fifty years of development, ToF-SIMS is widely used in different areas of science and 

technology including semiconductors, metals, polymers, and for biological analysis. ToF-SIMS 

employs a high energy beam of ions (~ 25 KeV) that bombard a surface and yield large numbers 

of neutral fragments as well as some secondary ions. The secondary ions produced by this ion 

bombardment are analyzed by a time-of-flight mass detector, which helps give the technique its 

name. The mass spectra generated from the secondary ions can be interpreted to provide 

information about the surfaces from which they come. ToF-SIMS analysis can be performed in 

two different modes: static and dynamic. Static SIMS is used for surface analysis of the upper ca. 

2.5 nm of materials, and dynamic SIMS is used for depth profiling. Because of the large amount 

of information obtained in ToF-SIMS, principal components analysis (PCA) and other 

chemometric techniques can be used to interpret SIMS data sets from different samples (see 

Chapter 3).  

 

Contact angle goniometry uses a liquid, typically water or hexadecane (HD), to probe surface 

hydrophobicity/hydrophillicity and/or oleophobicity/oleophilicity, respectively. A drop of the 

probe liquid is placed on a surface, and its sessile, advancing, or receding angle is measured by 
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drawing a tangent to the drop using the surface as a horizontal axis (Fig. 1.1). From this 

measurement, Young’s equation (Eq. 2) may be used to determine the surface free energy. 

Young’s equation is based on the principle that a body comes to rest when the vector sum of the 

forces acting on it are equal.  The higher the contact angle, the lower the surface energy, i.e., the 

more hydrophobic or oleophobic the surface is.  Contact angle goniometry is one of the easiest, 

most rapid, empirical, and inexpensive surface analytical techniques.  

 

   

 Figure 1.1 Schematic of the contact angle measurement. 

 

    γsv =  γsl +  γlvcosθ                             (2) 

 

Spectroscopic ellipsometry (SE) is a non-contact, surface sensitive, optical technique that is used 

to measure film thicknesses, roughnesses, optical constants, etc. In a typical SE experiment, 

polarized light, of a range of wavelengths, containing both p- and s- components is directed onto 

a surface at an oblique angle. After reflection, the ratio of the amplitudes and the phase 

difference between the p- and s- components of the light are determined. These measurements 

give ψ and Δ, respectively. A model is then constructed of the material in question and Fresnel’s 

laws are used to predict ψ and Δ for the model. Regression can then be used to find film 

thicknesses and other properties. The typical model I used in my work was an air/SiO2/Si 
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construct, which used the optical constants from the instrument software for SiO2 and Si and was 

adequate and appropriate for the very thin films I typically studied. 

 

AFM or Atomic Force Microscopy is a powerful technique for surface mapping that can give 

topographies with a lateral resolution of <1 nm and a height resolution of < 1 Å. AFM was 

invented in 1986 by Binnig,21 and since then has been widely used to study both conductive and 

non-conductive surfaces/materials as the technique depends on the contact forces between a tip 

and the sample, and not on the sample conductivity. It can even be used used on soft, biological 

samples22 because of the low degree of damage caused in its tapping (tip oscillating) mode. AFM 

can also be operated in contact mode, which provides high-resolution images by maintaining a 

constant force between the surface and the tip, but this mode can scratch or damage surfaces,23-25 

and can also move particles around on surfaces to distort surface information. Tapping mode 

solves most of the above-mentioned problems by oscillating the tip over the surface, and hence 

minimizing the time of contact between the tip and the surface.26, 27 The atomic force between the 

tip and surface can be calculated from the deflection of the cantilever and spring constant of the 

tip as per Equation 3,28 where F is the force, Stip is the spring constant of the tip, and the Zdeflection 

is the deflection of the cantilever. 

 

    F =  Stip  ×  Zdeflection                                   (3) 

1.2 Chapter 2  

In Chapter 2, which has a strong tutorial flavor, I have tried to introduce some of the basic 

concepts of XPS and oxidation states. The understanding I gained in Chapter 2 helped with XPS 

data interpretation throughout the dissertation – I used XPS frequently in my work (see Chapters 
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3 – 5). In particular, Chapter 2 demonstrates the application of XPS (a core electron 

spectroscopy) in assigning oxidation states to organic molecules. Historically, the assignment of 

oxidation states to organic species has been problematic. However, in 1999, Calzaferri proposed 

a simple but elegant approach for assigning oxidation states to organic molecules on the basis of 

the relative electronegativities of carbon and hydrogen. Unfortunately, his proposal appears to 

have been largely ignored. In Chapter 2 I validate the Calzaferri approach using XPS.  

1.3 Chapter 3 

In this chapter, I describe a new in situ method for plasma cleaning Si/SiO2, which is rapid, 

environmentally and user friendly, not corrosive to surfaces, and which also enhances the silane 

loading of surfaces. We opted for Si/SiO2 substrates because they are readily available, relatively 

inexpensive, allow through characterization, e.g., allow ellipsometry, and resemble glass in their 

surface chemical properties. That is, the results from this chapter should be applicable to fields 

where glass substrates are employed. This chapter is before the other chapter on silane deposition 

because surface cleaning is generally the first step in any deposition technique and this technique 

was used in the subsequent work. 

1.4 Chapter 4 

In this chapter I describe a process for deposition of a multilayer hydrophobic coating, which not 

only imparts hydrophobicity to a surface, but that also imparts water resistance and limits the 

penetration of water to the underlying surface. Here I have explored a small organosilane as a 

precursor for a molecular layer deposition (MLD)-like process to form smooth, water resistive, 

inorganic-organic barrier layers on both inorganic and organic substrates. In particular, I show 

that sequential exposure of a surface to N-n-butyl-aza-2,2-dimethoxysilacyclopentane (1), and 

either water or aqueous ammonium hydroxide results in thin barrier layers that may be 
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appropriate for some micro or nano devices. Interestingly, the deposition of 1 appears to be self-

limiting, which may make it useful where ultrathin films of controllable dimensions and 

uniformity are needed.  

1.5 Chapter 5 

Finally, in chapter 5 I have tried to utilize the knowledge gained in the previous chapters to 

analyze a hydrophobic/oleophobic coating on a commercial Apple iPod nano device. A thorough 

characterization of its several parts was conducted using ToF-SIMS, wetting, and XPS. This 

study shows that a protective, fluorinated coating is on its touchscreen, but interestingly not on 

other parts of the device. SIMS, in particular, suggests the use of oxygen within the fluorinated 

coating, which may increase its biodegradability/ environmental friendliness. 
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Chapter 2 General Agreement of Calzaferri’s Recommendation for Oxidation Numbers in 

Organic Compounds with Core Level (C 1s) Binding Energies from X-ray Photoelectron 

Spectroscopy 

 

2.1 Abstract 

The traditional assignment of oxidation numbers to organic molecules is problematic. 

Accordingly, in 1999, Calzaferri proposed a simple and elegant solution that is based on the 

similar electronegativities of carbon and hydrogen: hydrogen would be assigned an oxidation 

number of zero when bonded to carbon. Here I show that X-ray photoelectron spectroscopy 

(XPS), a core electron spectroscopy that is sensitive to oxidation states of elements, confirms his 

suggestion. In particular, in this work I: (i) list the typical rules for assigning oxidation numbers, 

(ii) discuss the traditional assignment of oxidation numbers to organic molecules, (iii) review 

Calzaferri’s solution, (iv) introduce X-ray photoelectron spectroscopy (XPS), (v) show the 

consistency of Calzaferri’s suggestion with XPS results, (vi) provide supporting examples from 

the literature, (vii) provide examples from my own research, and (viii) further confirm the 

Calzaferri suggestion/photoelectron spectroscopy results by discussing two well-known 

reactions. We end by re-echoing Calzaferri’s suggestion that the traditional rules for assigning 

oxidation numbers to organic molecules be modified. 

2.2 Introduction 

Oxidation numbers are widely taught in general chemistry. They comprise a useful bookkeeping 

tool for recognizing oxidation-reduction (redox) reactions, and for identifying the species that are 

oxidized or reduced in them. Oxidation numbers are often applied in inorganic chemistry. For 

example, hydride (H-), hydrogen (H2), and the hydrogen ion (H+) have oxidation numbers of -1, 



 14 

0, and +1, respectively, where these numbers correlate/can be viewed as being consistent with 

the very different chemistries of these three types of hydrogen. A number of articles have been 

published in this journal on the topic of oxidation states and oxidation numbers, including 

discussions of the rules for assigning oxidation numbers.1-16  

 

Herein we first give a brief review of the traditional rules for assigning oxidation numbers. For 

inorganic species, these rules provide reasonable correlations between oxidation numbers and 

observed chemistry, as was noted for hydrogen above. However, when applied to organic 

molecules, these rules often lead to unusual, and sometimes unchemical, predictions. A few 

years ago, Calzaferri recognized this problem and made a simple suggestion to allow oxidation 

numbers to be assigned to organic species in a more sensible manner. Because of the similar 

electronegativities of carbon and hydrogen, hydrogen would be assigned an oxidation number of 

zero when bonded to carbon. In this report we show that results from X-ray photoelectron 

spectroscopy, a core electron spectroscopy that is sensitive to oxidation states of elements,17, 18  

support Calzaferri’s recommendation. Various organic redox reactions (the addition of water to 

fumarate and the pinacol rearrangement) are also shown to make more sense when interpreted in 

this way, as compared to with the traditional rules. We repeat Calzaferri’s recommendation that 

his approach be adopted for organic or biochemical redox reactions.  

2.3 Experimental 

X-ray photoelectron spectroscopy (XPS) was performed at the Pacific Northwest National 

Laboratory (PNNL) in the Environmental Molecular Sciences Laboratory (EMSL) using a 

Physical Electronics Quantera Scanning X-ray Microprobe (Chanhassen, MN). This system uses 

a focused, monochromatic Al Kα X-ray (1486.7 eV) source for excitation, a spherical section 
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analyzer, and a 32 element multichannel detection system. A 98 W X-ray beam focused to 100 

μm (diameter) was rastered over a 1.3 mm x 0.1 mm rectangle on the sample. The X-ray beam is 

at normal incidence to the sample and the photoelectron detector is at 45° off-normal. High 

energy resolution spectra were collected using a pass-energy of 69.0 eV with a step size of 0.125 

eV.  For the Ag 3d5/2 reference line, these conditions produced a FWHM of 1.2 eV. All samples 

were analyzed as received. 

 

The PET was obtained from Goodfellow Cambridge Ltd., Ermine Business Park, Huntingdon, 

England. The film was 0.1 mm thick and biaxially orientated. 

2.4 Results and Discussion 

2.4.1. Assignment of Oxidation Numbers to Inorganic Compounds 
 

In general chemistry classes at Brigham Young University, oxidation numbers are taught with 

the following mnemonic: ‘NAFHOP’. The rules corresponding to the letters in this mnemonic 

are given in order of importance; once an oxidation number has been assigned to an atom there is 

no need to go further. 

 

Neutral species have oxidation numbers of zero; elemental species have oxidation numbers of 

zero, e.g., elemental Au, Ag, K, B, F (F2), C, and O (O2) have oxidation numbers of zero and we 

can represent metallic/elemental Au and Ag as Au(0) and Ag(0), respectively. In addition: (i) the 

charge of a monatomic ion is its oxidation number, e.g., the oxidation numbers of I- and Fe3+ are 

-1 and +3, respectively, (ii) the sum of the oxidation numbers on the atoms in a polyatomic ion 
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must sum to the charge on the ion, and obviously (iii) the sum of the oxidation numbers on the 

atoms in a neutral, polyatomic molecule must sum to zero. 

Alkali and alkaline earth metals have oxidation numbers of +1 and +2, respectively, in their 

compounds. 

 

Fluorine has an oxidation number of -1 in its compounds. The other halogens also have oxidation 

numbers of -1 in their compounds, unless they are bonded to each other or to oxygen. If they are 

bonded to each other the more electronegative halogen gets the oxidation number of -1. 

Examples: (i) in BrCl3, Br and Cl are assigned oxidation numbers of +3 and -1, respectively, and 

(ii) in SiCl4, Si and Cl are assigned oxidation numbers of +4 and -1, respectively. 

 

Hydrogen has an oxidation number +1 in all its compounds, unless it is bonded to a metal, in 

which case its oxidation number is -1. For example, the oxidation numbers of N and H in NH3 

are -3 and +1, respectively, and the oxidation numbers of NaH are +1 and -1, respectively. 

 

With a few exceptions, oxygen has an oxidation number of -2 in its compounds. For example, 

the oxidation numbers of K, Mn, and O in KMnO4 are +1, +7, and -2, respectively, and the 

oxidation numbers of Os and O in OsO4 are +8 and -2, respectively. By Rules ‘N.’ and ‘H.’ 

above, the oxidation numbers of H and O in H2O2 are +1 and -1, respectively. 

 

When main group atoms are not covered by the rules above, oxidation states are assigned using 

the periodic table, based on the gain or loss of electrons needed for the species to obtain noble 

gas configuration. Of course this is the reasoning behind most of the rules in this list. 
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Accordingly, the oxidation number of S in PbS should be -2, so the oxidation number of Pb must 

by +2 by Rule ‘N.’ 

These rules are typical of those found in most general chemistry textbooks,19-23 and apply quite 

well to most inorganic compounds. Other mnemonics used to help teach redox chemistry 

include: ‘OIL RIG’ (oxidation is loss of electrons; reduction is gain of electrons), ‘LEO says 

GER’ (loss of electrons is oxidation, gain of electrons is reduction), and ‘ROLR’ (Right-

Oxidation-Left-Reduction)7 

2.4.2. Assignment of Oxidation Numbers to Organic Compounds 
 

Calzaferri24 noted some of the unusual results that stem from assigning oxidation numbers to 

organic molecules using the typical rules taught in general chemistry (see above). In particular, 

the problems come from assigning hydrogen an oxidation number of +1 when bonded to carbon. 

Some of these consequences are presented in the examples below in a little more detail than 

Calzaferri originally gave, and the structures of the molecules discussed are given in Figure 2.1 

with the carbon atoms in question in bold. 

 

Example 1. When assigned in the traditional fashion, the oxidation numbers of the central carbon 

atoms in the series of alkanes: methane (CH4), ethane (CH3CH3), propane (CH3CH2CH3), 2-

methylpropane (CH3CH(CH3)2), and 2,2-dimethylpropane (CH3C(CH3)3) are -4, -3, -2, -1, and 0, 

respectively. Here we see a wider range of oxidation numbers for five chemically similar carbon 

atoms (all are in alkanes, sp3 hybridized, and bonded only to C or H), compared to a narrower 

range of oxidation states (-1 to +1) for the three very different types of hydrogen listed above. 
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Example 2. When assigned in the traditional fashion, the oxidation numbers for the carbon atoms 

bonded to oxygen in the series of alcohols: CH3OH, CH3CH2OH, CH3CHOH(CH3), and 

CH3COH(CH3)2, are -2, -1, 0, and +1, respectively. A tenet of modern organic chemistry is that 

a given functional group behaves similarly in different organic molecules. Thus, it is hard to see 

how the carbon atoms bonded to oxygen in these alcohols should be so chemically different as to 

merit such different oxidation states. 

 

Example 3. When assigned in the traditional fashion, the oxidation numbers of the carbon atoms 

bonded to oxygen in CH3C(O)H (acetaldehyde) and CH3C(O)CH3 (acetone) are +1 and +2, 

respectively. While aldehydes and ketones do have somewhat different chemistries, they are 

based on the carbonyl group and so it is questionable whether these different oxidation numbers 

reflect a substantial difference in oxidation states. Also using the conventional rules, the carbon 

atoms in the carboxyl groups in formic acid (HCOOH) and acetic acid (CH3COOH) show 

different oxidation numbers: +2 and +3, respectively. It is again hard to understand how the same 

functional group could show these different oxidation states. Further problems with these 

examples arise when one considers that methyl (-CH3) groups are electron donating, so the 

carbon atoms in the carbonyl group of acetone and in the carboxyl group of acetic acid might be 

expected to have a slightly lower oxidation states than acetaldehyde and formic acid (not higher 

as predicted by the traditional rules), respectively. 

 

In 1969 Jorgensen also discussed the anomaly of assigning oxidation states to homopolar 

bonds.25 
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2.4.3. Calzaferri’s Solution 
 

In his paper on oxidation numbers in biochemistry, Halkides noted that: “Oxidation numbers are 

assigned as if the more electronegative atom in a bond owned the electrons completely.”8  

Calzaferri recognized the contradiction between this objective and the common practice of 

assigning hydrogen an oxidation state of +1 when bonded to carbon. His solution was simple, 

elegant, and a reflection of reality. Because of the similar Pauling electronegativities26 of carbon 

(2.55) and hydrogen (2.20), he recommended that hydrogen be assigned an oxidation number of 

zero when bonded to carbon. Although beyond the scope of this paper, it is noteworthy that he 

also recommended an oxidation state of zero for hydrogen bonded to silicon (1.90), germanium 

(2.01), and boron (2.04).  

 

Calzaferri’s suggestion resolves the problems in the examples above. In Example 1 (Figure 2.1), 

if the hydrogen atoms have oxidation numbers of zero, then so do the carbon atoms, and each 

carbon can be represented as C(0). This result is clearly consistent with the identical 

hybridizations, similar reactivities, and nonpolar natures of these hydrocarbons. Indeed, we don’t 

expect hydrogen bonding from C-H groups, but traditionally (and inconsistently) assign the same 

oxidation number to hydrogen whether it is bonded to N, O, or F, which do exhibit hydrogen 

bonding, or to carbon. In Example 2, all carbon atoms bonded to hydroxyl groups have oxidation 

numbers of +1: C(I),  which is chemically reasonable, and all the other carbon atoms in these 

alcohols have oxidation numbers of zero. Note here that Calzaferri’s suggestion did not change 

the assignment of +1 to H when it is bonded to oxygen. In Example 3, the carbonyl carbons in 

both compounds have oxidation numbers of +2: C(II), and the carbon atoms in both carboxylic 

acids have oxidation numbers of +3: C(III). Interestingly, the number of oxygen-carbon bonds on 
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a carbon atom in these examples (alkane: 0, alcohol: 1, carbonyl: 2, carboxyl: 3) is the oxidation 

state of that carbon atom, where an increase in the number of oxygen-carbon bonds at a carbon 

atom should increase its oxidation state. These results are also consistent with organic redox 

chemistry: alcohols can be oxidized to aldehydes or ketones, and aldehydes undergo oxidation to 

carboxylic acids. This approach further predicts that carbon atoms bonded to oxygen in ethers 

should be (like alcohols): C(I), and for carbon in carbonates or carbon dioxide, which have four 

oxygen-carbon bonds: C(IV). 

2.4.4. Overview of X-ray Photoelectron Spectroscopy 
 

X-ray photoelectron spectroscopy (XPS), also known as electron spectroscopy for chemical 

analysis (ESCA), utilizes the photoelectric effect and analysis of the kinetic energy distribution 

of the emitted photoelectrons to probe the electronic states and chemical composition of samples. 

The depth of the analyzed region varies with the electron mean free path, which is a function of 

the photoelectron energy. For a conductive sample in good electrical contact with the analyzer 

the kinetic energy of the ejected photoelectron (Ek) is given by the following equation: 

 

     Ek = hv - Eb - ØA      (1) 

 

where hv is the energy of the incident X-rays and ØA is the analyzer work function, which is 

generally quite small compared to Ek and Eb. Note the conservation of energy in Equation 1: the 

energy of the X-ray (hv) is equal to the sum of the binding and kinetic energies of the electron, 

with a small correction for the spectrometer.  
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Figure 2.1 Oxidation states of different alkanes (Example 1), alcohols (Example 2), and an 
aldehyde, a ketone, and two carboxylic acids (Example 3).  The first oxidation number in each 
parentheses was obtained using the traditional rules. The second number is derived from the 
modification proposed by Calzaferri. 



 22 

XPS is performed under high vacuum due to the limited mean free path of the photoelectrons in 

air and the need to preserve many samples in a pristine state for analysis. Volatile molecules like 

those in Figure 2.1 are incompatible with high vacuum conditions and thus difficult to analyze 

using conventional XPS. Nevertheless, XPS is extremely useful for the analysis of many organic 

materials, including polymers,27 monolayers,28 and organic materials/nanomaterials,29e.g., carbon 

nanotubes.30, 31  

 

The X-rays employed in most standalone XPS instruments are soft, i.e., Mg Kα = 1253.6 eV and 

Al Kα = 1486.6 eV. Nevertheless, these energies greatly exceed those in a typical covalent bond 

(ca. 4 eV), and are sufficient to eject core electrons from atoms. Using Equation 1, binding 

energies of atoms are calculated from EK values measured by the electron energy analyzer. XPS 

is a nearly universal analysis technique – it can detect all elements except hydrogen and helium. 

But even though H cannot be detected, per se, its bonding often strongly affects XPS spectra.32 

No two atoms yield photoelectrons with exactly the same pattern of binding energies so atoms 

can be uniquely identified. XPS is also surface sensitive because the photoelectrons that are 

generated by the impinging X-rays cannot travel more than 2 – 3 mean free paths (MFP) in a 

material. Although the MFP is material and electron energy dependent, it is safe to say that at the 

kinetic energies expected for photoelectrons generated during XPS, the technique can only probe 

on the order of 10 nm (roughly three MFPs in many cases) into a material. The X-rays 

themselves travel much deeper. Two types of spectra are typically taken in XPS analyses: survey 

and narrow. Survey spectra cover a wide range of binding energies, e.g., 0 – 1100 eV, and are 

used to identify the various elements present in a sample. Narrow scans generally focus on a 

smaller, e.g., ca. 20 eV, region of a spectrum and allow information about the chemical 
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(oxidation) states of materials to be determined (see below). Accordingly, survey scans are 

typically taken at low energy resolution, while narrow scans are at high resolution. Thus, narrow 

scans enable the detection of changes in binding energy due to different oxidation states of the 

elements, known as chemical shifts. The C 1s narrow scan provides important information about 

the oxidation states of organic materials. The binding energy of a C 1s electron ejected from an 

sp3 carbon atom bonded only to other carbon and hydrogen atoms (C-C,H) is at about 285.0 eV. 

Two general effects, a primary one and a secondary one, determine the binding energies of 

photoelectrons. The first is the shell structure of the atom and the nuclear charge, i.e., electrons 

will have higher binding energies if they are (i) closer to the nucleus, and (ii) attracted by a 

higher Z nucleus. While smaller in magnitude, the second effect, the chemical shift, is 

chemically more important. This effect is a result of changes in electron density around an atom 

that arise because of its chemical binding. For example, if atom A is bonded to a more 

electronegative atom, atom B, then atom A will lose some electron density to atom B. Due to this 

interaction, the remaining electrons in atom A will ‘feel’ the nuclear charge to a greater extent 

and be more strongly attracted to the nucleus. Accordingly, the binding energies of the electrons 

on atom A will increase. Depending on the number and electronegativity of the atoms bonded to 

an atom, the resulting chemical shifts may be 1 – 5 eV. Thus, the effects of oxidation and 

reduction in XPS are clear. When an atom is oxidized (or reduced), it loses (or gains) electron 

density, and its photoelectrons are chemically shifted to higher (or lower) binding energies. Peak 

fitting is commonly performed on XPS narrow scans to help identify the oxidation states of a 

given atom. Organic materials are usually fit with Gaussian or Gaussian-Lorentzian (Pseudo 

Voigt) lineshapes.33, 34 Different oxidation states of an atom are typically assigned based on 

literature precedent, which is considerable, or using prior experience with a sample. 
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Figure 2.2 Illustration of X-ray photoelectron spectroscopy (XPS).  
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2.4.5. Consistency of Calzaferri’s Recommendation with Results from Core Electron 
Spectroscopy  
 

Because XPS has been around for decades and the functional groups in the molecules in Figure 

2.1 are common, sufficient data/experience in the field exist to allow C 1s narrow scans to be 

reasonably predicted for the molecules in the examples in Figure 2.1. 

 

Predicted C 1s Binding Energy Shifts of the Molecules in Example 1 (Figure 2.1) Carbon atoms 

bonded only to carbon or hydrogen, such as the sp3 carbons in Example 1 show essentially the 

same C 1s binding energy by XPS.35-37 In other words, all the carbon atoms in Example 1 would 

be experimentally found to be in essentially the same oxidation state, which is consistent with 

Calzaferri’s recommendation and not with the conventional approach for assigning oxidation 

numbers to organic molecules. 

 

Predicted C 1s Binding Energy Shifts of the Molecules in Example 2 (Figure 2.1) When carbon 

is bonded to oxygen, the electron density around the carbon atom decreases because of oxygen’s 

higher electronegativity. Accordingly, it is well known, and consistent with Calzaferri’s 

suggestion, that each oxygen bond to carbon will increase the C 1s binding energy by ca. 1.2 – 

1.5 eV (for an alcohol the shift is ca. 1.5 – 1.8 eV).38 Accordingly, one would expect one C 1s 

signal from methanol that would be chemically shifted ca. 1.5 eV from a C-C,H signal (the C(0) 

signal). The other alcohols in Example 2 would show two signals. One would be derived from 

carbon atoms bonded only to other carbon or hydrogen atoms and one from carbon atoms 

bonded to oxygen, which would be shifted to higher EB by ca. 1.5 eV vs. C(0). The ratios of the 

peak areas from these signals would be representative of the number of carbon atoms in each 
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oxidation state. For CH3CH2OH, (CH3)2CHOH, and (CH3)3COH, the ratios of the signals from 

C-C,H and C-O would be 1:1, 2:1, and 3:1, respectively. 

 

Predicted C 1s Binding Energy Shifts of the Molecules in Example 3 (Figure 2.1) A carbonyl 

(C=O) has two carbon-oxygen bonds, and a carboxyl (COOH) has three. Accordingly, the C 1s 

signal from a carbonyl carbon, whether from an aldehyde or a ketone, is shifted ca. 2.4 – 3.0 

eV39 from C(0), and the C 1s signal from a carboxyl carbon is shifted ca. 3.6 – 4.5 eV.40 These 

observations are consistent with the +2 and +3 oxidation states predicted by Calzaferri for 

carbonyl and carboxyl groups, respectively.  

 

For the carbonate group, ROC(O)OR’, the chemical shift continues to increase vs. C(0) – it is ca. 

5.5 – 6.7 ev.41-43 This is consistent with the four C-O bonds to carbon in this functional group, 

the +4 oxidation state for this carbon predicted by Calzaferri, and the increased electron 

withdrawl expected from more oxygen around a carbon atom. 

2.4.6. Examples from the Literature 
 

The literature contains many examples of C 1s spectra of organic materials that confirm the 

analysis presented herein. A few examples follow. 

 

XPS was performed on different polyethers, including polyethylene glycol (PEG, (CH2CH2O)n), 

polypropylene glycol (PPG, (CH2CHCH3O)n), and polytetramethylene glycol (PTMG, 

(CH2CH2CH2CH2O)n).33 According to Calzaferri’s recommendation, PEG should show carbon 

in a single oxidation state: +1, PPG should show carbon atoms in two oxidation states: 0 and +1 

in a 1:2 ratio, respectively, and PTMG should also show carbon atoms in the C(0) and C(I) 
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oxidation states, but in a 1:1 ratio. All of these predictions were confirmed by XPS. For PPG, the 

peak positions were 285.0 eV for C(0) and 286.5 eV for C(I), showing the expected splitting of 

ca. 1.5 eV with the expected area ratios. The same peak splitting was observed for the two 

signals in the C 1s spectrum of PTMG, which had essentially equal areas. These results agree 

very well with Calzaferri’s predictions. In contrast, the traditional approach for assigning 

oxidation numbers would put the three carbon atoms in the PPG repeat unit into three different 

oxidation states, which is chemically unreasonable and inconsistent with the experimental 

results. 

 

Muir and coworkers42 studied bisphenol A polycarbonate, peak fitting the C 1s spectrum into 

signals due to: aromatic (sp2) carbon atoms bonded only to carbon or hydrogen at 284.5 eV, 

aliphatic (sp3) carbon bonded only to carbon or hydrogen (C-C,H, C(0)) at 285.0 eV, the carbon 

atoms in the aromatic rings bonded to oxygen at 286.2 eV (consistent with the expected chemical 

shift of ca. 1.2 eV for C(I) vs. C(0)), and the carbonate carbon (C(IV)) at 290.4 eV, which is also 

chemically shifted in a reasonable way (see structure of this polymer in Figure 2.3). A discussion 

of the small chemical shift here between sp2 and sp3 carbon is beyond the scope of this paper. 

The ratio of these peak areas is in accordance with these different types of carbon atoms: 

10:3:2:1. Calzaferri’s suggestion is in reasonable agreement with these results; it places all the 

carbon atoms in bisphenol A polycarbonate at an oxidation state of zero, except the two 

connected by a single bond to oxygen (+1) and the carbonate carbon (+4). If the traditional 

method of assigning oxidation numbers is applied to polycarbonate, the carbon atom between the 

two aromatic rings is in an oxidation state of 0, those in the methyl groups attached to it are at -3, 
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and those in the aromatic ring (not bonded to oxygen) are at -1. It would be hard to justify these 

different assignments. 

 

A few more of the many examples in the literature of C 1s spectra of organic materials include 

the C 1s spectra of: poly(methyl methacrylate) and poly(ether ether ketone),44 suberoyl chloride 

chemisorbed onto scribed silicon,45 oxidized carbon nanotubes,46 and oxidized graphene.47 All of 

these examples are consistent with Calzaferri’s suggestion. 

 

 

 

Figure 2.3 Bisphenol A polycarbonate. 

 

2.4.7. Example of the C 1s Spectrum of Polyethylene Terephthalate 
 

Figure 2.4 shows the structure and corresponding C 1s XPS spectrum of polyethylene 

terephthalate (PET) that was taken in my laboratory. The structure of PET suggests that there are 

carbon atoms in three different oxidation states in this polymer. One oxidation state is for carbon 

atoms bonded only to other carbon atoms or to hydrogen atoms. Another is in carbon bonded to 

one oxygen atom, and the third is from carbon bonded thrice to oxygen in the carboxyl group. 

Once again, Calzaferri’s prediction of oxidation numbers agrees with this analysis and with the 

photoelectron spectroscopy. (The small secondary shift on carbons adjacent to carboxyl groups is 

beyond the scope of this work and not considered here.) Carbon atoms bonded only to other 

carbon atoms or hydrogen (those in the aromatic ring) would have oxidation states of 0 (C(0)). 
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Those bonded to one oxygen atom (in the ethylene unit) would have oxidation numbers of +1 

(C(I)), and those in the carboxyl groups would have oxidation numbers of +3 (C(III)). The peak 

positions and areas in the C 1s spectrum of polyethylene terephthalate are in reasonable 

agreement with this analysis. The C(I) signal is chemically shifted by +1.6 eV from the C(0) 

signal, and the C(III) signal is chemical shifted by +2.40 eV from the C(I) signal. The ratio of the 

peak areas for the C(0), C(I), and C(III) signals are 0.62, 0.20, and 0.17, respectively, which is in 

reasonably good agreement with the 3:1:1 ratio predicted by theory. The conventional rules for 

assigning oxidation numbers to organic molecules would give the four inner carbon atoms of the 

aromatic ring (bonded only to carbon or hydrogen) and the two carbon atoms in the ethylene unit 

(bonded once to oxygen) the same oxidation state of -1, which is not reasonable. 

2.4.8. Application to the Addition of Water to Fumarate and to the Pinacol Rearrangement  
 

Recently in this journal, Halkides8 and Shibley14 discussed the conventional use of oxidation 

numbers in organic and bioorganic reactions. 

 

Halkides described the addition of water to fumarate to form malate (see Figure 2.5). Based on 

the sum of traditionally assigned oxidation numbers on the carbon atoms of each molecule, he 

concluded that no net oxidation of was occurring. In contrast, the Calzaferri/photoelectron 

spectroscopy approach suggests that fumarate is being oxidized. One CH= group is clearly being 

oxidized to form a HC-OH moiety, and XPS would easily confirm the resulting chemical shift. 

Again, Calzaferri’s approach more fully reflects reality. 

 

Shibley14 described the pinacol rearrangement using the traditional assignment of oxidation 

numbers (see Figure 2.6) as neither an oxidation nor a reduction because the oxidation level for 
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the molecule stays constant. Calzaferri’s approach nicely shows that the carbon atoms bonded to 

–OH groups in the starting material are in a +1 oxidation state, and that these two carbon atoms 

take oxidation states of 0 and +2 in the product. While it is true that overall the oxidation state of 

the molecule does not change, as observed by Shibley, there most clearly is an oxidation and a 

reduction taking place here, which would be apparent by XPS. 

2.5 Recommendation 

It does not appear that Calzaferri’s recommendation has been widely adopted; his paper from 

1999 has only been lightly cited and we are unaware of the implementation of his 

recommendation in any textbooks. He suggested the following changes to the traditional rules for 

assigning oxidation numbers: 

 

“For hydrogen: 0 in combination with C, Si, Ge, and also B, +1 in combination with nonmetals, -

1 in combination with metals” 

 

These changes would allow the reasonable use of oxidation numbers in organic chemistry and 

biochemistry. His recommendation makes sense based on atom electronegativities, and it is also 

consistent with photoelectron spectroscopy results. This more reasonable and logical approach 

should resonate with students. We echo and encourage the implementation of his suggestion. 
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Figure 2.4 Chemical structure and C 1s XPS spectrum of polyethylene terephthalate (PET). The 
peak fitting shows different oxidation states for the different carbons: carbon bonded only to 
carbon or hydrogen (C(0)), carbon with a single bond to oxygen (C(I)), and carbon in a carboxyl 
group (C(III)). The π - π* signal is commonly seen in the XPS of aromatic ring-containing 
materials. It is from a HOMO  LUMO transition in the ring excited by the exiting photoelectron. 
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Figure 2.5 Addition of water to fumarate to make malate. 

 

 

 

 

 

 

Figure 2.6 The pinacol rearrangement reaction.  
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2.6 Conclusions 

 
In 2011 Loock,13 writing in this journal, provided the following definition of oxidation states: 

“The oxidation state of an atom in a compound is given by the hypothetical charge of the 

corresponding atom or ion that is obtained by heterolytically cleaving its bond such that the atom 

with the higher electronegativity in a bond is allocated all electrons in the bond. Bonds between 

like atoms (having the same formal charge) are cleaved homolytically.” Calzaferri’s suggestion 

clearly fits this definition and provides an excellent solution to the problem of oxidation numbers 

in organic chemistry and biochemistry. X-ray photoelectron spectroscopy confirms the 

reasonableness of his proposal. 

2.7 Acknowledgment 

 
We acknowledge the Department of Chemistry and Biochemistry and the College of Physical 

and Mathematical Sciences at Brigham Young University for their support of this work. We also 

acknowledge EMSL, a national scientific user facility sponsored by the Department of Energy’s 

Office of Biological and Environmental Research located at Pacific Northwest National 

Laboratory, for helping with this work.  

 



 34 

2.8 References 

1. Birk, J. P., The computer as student: An application of artificial intelligence. Journal 

of Chemical Education 1992, 69, (4), 294. 

2. Eggert, A.; Middlecamp, C.; Kean, E., CHEMPROF: An intelligent tutor for general 

chemistry. Journal of Chemical Education 1991, 68, (5), 403. 

3. Holleran, E. M.; Jespersen, N. D., Elementary oxidation-number rules. Journal of 

Chemical Education 1980, 57, (9), 670. 

4. Packer, J. E.; Woodgate, S. D., Assigning oxidation numbers. Journal of Chemical 

Education 1993, 70, (8), 691. 

5. Woolf, A. A., Oxidation numbers and their limitations. Journal of Chemical Education 

1988, 65, (1), 45. 

6. Kauffman, J. M., Simple method for determination of oxidation numbers of atoms in 

compounds. Journal of Chemical Education 1986, 63, (6), 474. 

7. Stonestreet, R. H., Oxidation number for fluorine (the author responds). Journal of 

Chemical Education 1972, 49, (4), 300. 

8. Halkides, C. J., Assigning and Using Oxidation Numbers in Biochemistry Lecture 

Courses. Journal of Chemical Education 2000, 77, (11), 1428. 

9. Feinman, R. D., Ethanol Metabolism and the Transition from Organic Chemistry to 

Biochemistry. Journal of Chemical Education 2001, 78, (9), 1215. 

10. Holder, D. A.; Johnson, B. G.; Karol, P. J., A Consistent Set of Oxidation Number Rules 

for Intelligent Computer Tutoring. Journal of Chemical Education 2002, 79, (4), 465. 

11. Steinborn, D., The Concept of Oxidation States in Metal Complexes. Journal of 

Chemical Education 2004, 81, (8), 1148. 



 35 

12. Chirik, P. J., Preface: Forum on Redox-Active Ligands. Inorganic Chemistry 2011, 50, 

(20), 9737-9740. 

13. Loock, H.-P., Expanded Definition of the Oxidation State. Journal of Chemical 

Education 2010, 88, (3), 282-283. 

14. Shibley, I. A.; Amaral, K. E.; Aurentz, D. J.; McCaully, R. J., Oxidation and Reduction 

Reactions in Organic Chemistry. Journal of Chemical Education 2010, 87, (12), 1351-1354. 

15. Parkin, G., Valence, Oxidation Number, and Formal Charge: Three Related but 

Fundamentally Different Concepts. Journal of Chemical Education 2006, 83, (5), 791. 

16. Cox, A. L.; Cox, J. R., Determining Oxidation-Reduction on a Simple Number Line. 

Journal of Chemical Education 2002, 79, (8), 965. 

17. Kötz, R.; Neff, H.; Stucki, S., Anodic Iridium Oxide Films: XPS‐Studies of Oxidation 

State Changes and. Journal of The Electrochemical Society 1984, 131, (1), 72-77. 

18. Wang, S.; Chia, P.-J.; Chua, L.-L.; Zhao, L.-H.; Png, R.-Q.; Sivaramakrishnan, S.; Zhou, 

M.; Goh, R. G. S.; Friend, R. H.; Wee, A. T. S.; Ho, P. K. H., Band-like Transport in Surface-

Functionalized Highly Solution-Processable Graphene Nanosheets. Advanced Materials 

2008, 20, (18), 3440-3446. 

19. Stoker, H. S., Introduction to Chemical Principles. New Jersey, 1999. 

20. Peter Atkins, T. O., Jonathan Rourke, Mark Weller, Fraser Armstrong, Shriver and 

Atkins Inorganic Chemistry. W.H. Freeman and Company: New York, 2006. 

21. Theodore L. Brown, H. E. L. J., Bruce E. Bursten, Catherine J. Murphy, Patrick M. 

Woodward, Chemistry The Central Science. 12th ed.; Prentice Hall: IL, 2012. 

22. Brian B. liard, R. C., University Chemistry. Mc-Graw-Hill Higher Education.: New York, 

2009. 



 36 

23. John McMurry, R. C. F., Chemistry. 4th ed.; Prentice Hall: New Jersey, 2004. 

24. Calzaferri, G., Oxidation Numbers. Journal of Chemical Education 1999, 76, (3), 362. 

25. Jorgensen, C. K., Oxidation Number and Oxidation States. Springer Verlag New York 

Inc., 1969, 1969. 

26. Pauling, L., The nature of the chemical bond. 3rd ed.; Cornell University: New York, 

1960. 

27. Saini, G.; Yang, L.; Lee, M. L.; Dadson, A.; Vail, M. A.; Linford, M. R., Amino-Modified 

Diamond as a Durable Stationary Phase for Solid-Phase Extraction. Analytical Chemistry 

2008, 80, (16), 6253-6259. 

28. Zhang, F.; Sautter, K.; Larsen, A. M.; Findley, D. A.; Davis, R. C.; Samha, H.; Linford, M. 

R., Chemical Vapor Deposition of Three Aminosilanes on Silicon Dioxide: Surface 

Characterization, Stability, Effects of Silane Concentration, and Cyanine Dye Adsorption. 

Langmuir 2010, 26, (18), 14648-14654. 

29. Zhang, F.; Gates, R. J.; Smentkowski, V. S.; Natarajan, S.; Gale, B. K.; Watt, R. K.; 

Asplund, M. C.; Linford, M. R., Direct Adsorption and Detection of Proteins, Including 

Ferritin, onto Microlens Array Patterned Bioarrays. Journal of the American Chemical 

Society 2007, 129, (30), 9252-9253. 

30. Jensen, D. S. K., S.S.; Vail, M.A.; DAdson, A.E.; Engelhard, M.H.; Linford, M.R. , XPS of a 

Multiwalled Carbon Nanotube Forest Grown via Chemical Vapor Deposition from Iron 

Catalyst Nanoparticles. Submitted to Surface Science Spectra. 

31. Jensen, D. S., Engelhard, M.; Zhu, Z.; Shutta; Linford, M.R. , Jensen, D.S., Engelhard, M.; 

Zhu, Z.; Shutta; Linford, M.R. “Multi-Instrument Characterization of the Surfaces and 



 37 

Materials in Microfabricated, Carbon Nanotube-Templated Thin Layer Chromatography 

Plates. Submitted to Surface and Interface Analysis. 

32. Kerber, S. J.; Bruckner, J. J.; Wozniak, K.; Seal, S.; Hardcastle, S.; Barr, T. L. In The 

nature of hydrogen in x-ray photoelectron spectroscopy: General patterns from hydroxides to 

hydrogen bonding, Mineapolis, Minnesota (USA), 1996; AVS: Mineapolis, Minnesota (USA), 

1996; pp 1314-1320. 

33. Hearn, M. J.; Ratner, B. D.; Briggs, D., SIMS and XPS studies of polyurethane surfaces. 

1. Preliminary studies. Macromolecules 1988, 21, (10), 2950-2959. 

34. Navaneetha Pandiyaraj, K.; Selvarajan, V.; Deshmukh, R. R.; Gao, C., Adhesive 

properties of polypropylene (PP) and polyethylene terephthalate (PET) film surfaces 

treated by DC glow discharge plasma. Vacuum 2008, 83, (2), 332-339. 

35. Ton-That, C.; Shard, A. G.; Teare, D. O. H.; Bradley, R. H., XPS and AFM surface studies 

of solvent-cast PS/PMMA blends. Polymer 2001, 42, (3), 1121-1129. 

36. Liston, E. M.; Martinu, L.; Wertheimer, M. R., Plasma surface modification of 

polymers for improved adhesion: a critical review. Journal of Adhesion Science and 

Technology 1993, 7, (10), 1091-1127. 

37. Gerenser, L. J., XPS studies of in situ plasma-modified polymer surfaces. Journal of 

Adhesion Science and Technology 1993, 7, (10), 1019-1040. 

38. López, G. P.; Castner, D. G.; Ratner, B. D., XPS O 1s binding energies for polymers 

containing hydroxyl, ether, ketone and ester groups. Surface and Interface Analysis 1991, 

17, (5), 267-272. 



 38 

39. Ameen, A. P.; Ward, R. J.; Short, R. D.; Beamson, G.; Briggs, D., A high-resolution X-ray 

photoelectron spectroscopy study of trifluoroacetic anhydride labelling of hydroxyl groups: 

demonstration of the Œ≤ shift due to Óó∏OC(O)CF3. Polymer 1993, 34, (9), 1795-1799. 

40. Akhter, S.; Zhou, X. L.; White, J. M., XPS study of polymer/organometallic interaction: 

Trimethyl aluminum on polyvinyl alcohol polymer. Applied Surface Science 1989, 37, (2), 

201-216. 

41. Heuer, J. K.; Stubbins, J. F., An XPS characterization of FeCO3 films from CO2 

corrosion. Corrosion Science 1999, 41, (7), 1231-1243. 

42. Muir, B. W.; Mc Arthur, S. L.; Thissen, H.; Simon, G. P.; Griesser, H. J.; Castner, D. G., 

Effects of oxygen plasma treatment on the surface of bisphenol A polycarbonate: a study 

using SIMS, principal component analysis, ellipsometry, XPS and AFM nanoindentation. 

Surface and Interface Analysis 2006, 38, (8), 1186-1197. 

43. Descostes, M.; Mercier, F.; Thromat, N.; Beaucaire, C.; Gautier-Soyer, M., Use of XPS in 

the determination of chemical environment and oxidation state of iron and sulfur samples: 

constitution of a data basis in binding energies for Fe and S reference compounds and 

applications to the evidence of surface species of an oxidized pyrite in a carbonate medium. 

Applied Surface Science 2000, 165, (4), 288-302. 

44. Tsougeni, K.; Vourdas, N.; Tserepi, A.; Gogolides, E.; Cardinaud, C., Mechanisms of 

Oxygen Plasma Nanotexturing of Organic Polymer Surfaces: From Stable Super Hydrophilic 

to Super Hydrophobic Surfaces. Langmuir 2009, 25, (19), 11748-11759. 

45. Lua, Y.-Y.; Fillmore, W. J. J.; Yang, L.; Lee, M. V.; Savage, P. B.; Asplund, M. C.; Linford, 

M. R., First Reaction of a Bare Silicon Surface with Acid Chlorides and a One-Step 



 39 

Preparation of Acid Chloride Terminated Monolayers on Scribed Silicon. Langmuir 2005, 

21, (6), 2093-2097. 

46. Xing, Y.; Li, L.; Chusuei, C. C.; Hull, R. V., Sonochemical Oxidation of Multiwalled 

Carbon Nanotubes. Langmuir 2005, 21, (9), 4185-4190. 

47. Mattevi, C.; Eda, G.; Agnoli, S.; Miller, S.; Mkhoyan, K. A.; Celik, O.; Mastrogiovanni, D.; 

Granozzi, G.; Garfunkel, E.; Chhowalla, M., Evolution of Electrical, Chemical, and Structural 

Properties of Transparent and Conducting Chemically Derived Graphene Thin Films. 

Advanced Functional Materials 2009, 19, (16), 2577-2583. 

 

 

  



 40 

Chapter 3 Improved Silane deposition on Hydrogen Plasma – Treated Silicon Dioxide 

 

3.1 Abstract 

We describe a method for plasma cleaning silicon surfaces that removes adventitious 

organic contamination and enhances silane deposition. As shown by wetting, ellipsometry, 

and XPS, hydrogen, oxygen, and argon plasmas effectively clean Si/SiO2 surfaces. However, 

only hydrogen plasmas appear to enhance subsequent low-pressure chemical vapor 

deposition of silanes in a commercial tool. Chemical differences between the surfaces were 

confirmed via (i) deposition of two different silanes: octyldimethylmethoxysilane and 

butyldimethylmethoxysilane, as evidenced by spectroscopic ellipsometry and wetting, and 

(ii) a principle components analysis (PCA) of ToF-SIMS data taken from the different 

plasma-treated surfaces. AFM shows no increase in surface roughness after H2 or O2 

plasma treatment of Si/SiO2. The effects of surface treatment with H2/O2 plasmas in 

different gas ratios, which should allow greater control of surface chemistry, and the 

duration of the H2 plasma (complete surface treatment appeared to take place quickly) are 

also presented. We believe that this work is significant because of the importance of silanes 

as surface functionalization reagents, and in particular because of the increasing 

importance of gas phase silane deposition. 

3.2 Introduction 

Silanes are widely used as surface modification agents – they are perhaps the most widely 

used surface functionalization agents. They can be viewed as derivatives of the molecule 

silane, SiH4, from which they derive their name. They often possess one or more 
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hydrolytically sensitive moieties, e.g., Si-OCH3, Si-OCH2CH3, or Si-Cl, that can condense with 

surface silanols (SiOH groups) to form siloxane (Si-O-Si) linkages. Amino1-3 and epoxy4, 5 

terminated silanes are used in biosensors and for DNA immobilization, fluorosilanes6, 7 and 

to a lesser extent alkyl silanes8 impart hydrophobicity and oleophobicity to surfaces, some 

silanes are used as coupling agents,9 and some in UV protective coatings.10 Silanes are used 

extensively as stationary phases for high performance liquid chromatography and thin 

layer chromatography.11, 12 A great deal of surface chemistry has been explored on 

chemisorbed silane layers.13, 14  

  

Many, if not most, substrates are cleaned before silane deposition, e.g., the RCA cleans are 

commonly used for cleaning Si/SiO2, glass, and/or fused silica (amorphous silica).15 These 

cleans generally consist of mixtures of water, concentrated H2O2, and concentrated acids, 

e.g., HCl, or bases, e.g., NH4OH. Cleaning removes organic contamination to expose (and 

perhaps simultaneously create) reactive silanols. Other important cleaning solutions 

include piranha solution, which is a mixture of concentrated H2SO4 and H2O2, and is a 

variant of the RCA cleans, and dilute, aqueous HF.  Note that all of these cleaning solutions 

are extremely dangerous and should be handled with great care. 

 

The aqueous cleaning solutions mentioned above work well, require only relatively 

inexpensive reagents available in most chemistry laboratories and/or stockrooms, and can 

be employed in simple glass or plastic (as appropriate) vessels. Nevertheless, they are (i) 

incompatible with a number of interesting applications, including the coating of consumer 

electronic devices or other surfaces that are chemically sensitive, (ii) require special 
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handling – they are dangerous, and (iii) lend themselves more to batch than continuous 

and/or large scale processing. As a result, other surface cleaning procedures, e.g., plasmas, 

have been explored and implemented.16-19 Plasma cleaning uses an activated gas, often 

oxygen, argon, or air, as an etching/cleaning medium. In an appropriate pressure range, 

application of energy to the gas results in its breakdown, yielding a plasma that usually 

contains a complex mixture of ions, electrons, radicals, and excited molecules. The exact 

effects of these species on surfaces depends on multiple factors, including the power 

applied to the plasma, the chemical nature of the plasma gas or gases, the pressure of the 

gas (it determines mean free paths), the length of time the plasma energy is applied, the 

chemistry of the substrate, the temperature of the chamber, and even the geometry of the 

chamber and location of the substrate within it. But in spite of their complexity and the 

obvious need to maintain specialized equipment to generate them, plasmas enjoy a number 

of advantages over wet cleans. They (i) are amenable to large batch processing and 

sometimes even continuous processes, (ii) can be more easily applied to chemically 

sensitive surfaces, (iii) can clean surfaces very quickly – within minutes and often even 

seconds, (iv) generate very little, if any, waste, (v) generally require no rinsing or drying 

after cleaning, and (vi) are typically much safer than the liquid cleans considered above.20 

Plasma cleaning/etching can often be used as an in situ technique that can be integrated 

into larger processes. Plasma systems, including those incorporated into heated chemical 

vapor deposition systems, are increasingly common.1, 7, 21  

 

Plasma cleaning may take place by the following possible processes: (i) A sputter-off 

mechanism, in which excited ions, electrons, or neutral atoms have sufficient energy to 
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break bonds in the system, e.g., Si-C, Si-H, Si-O, C-C, or C-H bonds, leading to sputtering 

from the surface, (ii) an evaporative mechanism, in which plasma ions react with surface 

contaminants to form volatile products, e.g., CO2, O2, OH, etc., or (iii) A lift off mechanism, in 

which ions, electrons or neutral atoms achieve sufficient energy to remove underlying 

oxide, which sweeps away organic contamination on top of it.22 These mechanisms are not 

distinct – they usually take place simultaneously with one predominating. For the gases 

employed in this study, Ar works predominantly by a sputter-off mechanism (the mass of H 

or H2 is too low for it to work effectively in this regime), oxygen by the evaporative 

mechanism, and hydrogen by the lift-off mechanism.22 Note also that plasma treatment of 

Si/SiO2 surfaces with oxygen at high powers may not only clean, but cause additional 

growth of silicon oxide,23 and (ii) the commonly used O2 or air plasmas lack the ability to 

introduce silanol groups onto silicon oxide surfaces, and may even remove some of them, 

which reduces their value as a cleaning method prior to silane deposition. 

 

Surface silanol groups are generally important for silane deposition,24-28 becoming critical 

for reactions with monofunctional silanes,29 and under anhydrous conditions. They are 

somewhat less important for di- and trifunctional silanes, which can polymerize and thus 

may be deposited on surfaces that have few or perhaps even no silanol groups.30 In the case 

of polyfunctional silanes, the amount of water present at a surface and/or in solution must 

be carefully controlled to avoid excessive condensation/polymerization.31 As noted, the 

RCA cleans, including piranha solution, may introduce silanol groups onto silicon surfaces, 

but traditional air or oxygen plasma cleans should not. Accordingly, an extra hydration step 
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may be advisable or necessary after plasma cleaning if surface silanization is to be 

performed. Ideally, the cleaning and hydration steps would occur simultaneously. 

 

Herein we describe the use of a hydrogen plasma as a precursor to silane deposition under 

controlled conditions at 100 °C using low-pressure chemical vapor deposition (CVD)32-34 – 

gas phase silanizations are increasingly viewed as the most controllable technique for 

depositing these reagents.7, 35-39 This method appears to simultaneously remove 

adventitious organic impurities and introduce silanol groups at silicon surfaces. To the best 

of our knowledge it is unique – we are unaware of another study that shows the H2 plasma 

treatment of a surface for silane deposition. Addition of silanols to H2 plasma-treated 

Si/SiO2 is evidenced by higher degrees of deposition for two monomethoxysilanes, 

compared to surfaces treated with other plasma gases (Ar, O2, and mixtures of H2 and O2). 

Differences in the surface chemistries of Si/SiO2 shards cleaned with different plasmas are 

suggested by a principal components analysis (PCA) of time-of-flight secondary ion mass 

spectrometry (ToF-SIMS) data. 

3.3 Experimental 

3.3.1 Plasma Cleaning 
 

Silicon wafers (p-type, <100>) were from Montco Silicon Technologies, San Jose, CA. 

Argon,40 oxygen,41 hydrogen,42 and H2/O2 plasmas were generated in the enclosed chamber 

of a YES 1224P tool (Yield Engineering Systems, Livermore, CA) using 100 W RF power and 

20 sccm flow rate of the process gas at 0.30 Torr base pressure. The ratio of H2 to O2 was 

controlled using mass flow controllers. The walls of the 1224P are grounded. For our work, 
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three perforated plates, or shelves: active (A), ground (G), and float (F), were positioned in 

the chamber with a plate configuration of AG_F. The underscore signifies a 

space/unoccupied position, the spacings between possible positions in the chamber are 2 

cm, and the A plate was at the highest available position in the chamber. Silicon samples, ca. 

2.5 cm x 2.5 cm, were loaded on the center of the float plate, where the plasma does not 

appear to oxidize Si/SiO2.23 

3.3.2 CVD of Monomethoxysilanes 
 

Two well-known silanes that can only dimerize, not polymerize, 

octyldimethylmethoxysilane and butyldimethylmethoxysilane (both from Gelest, 

Morrisville, PA), were used to test the priming/cleaning effects of the different etch gases, 

effectively probing the density of available silanol groups. Test shards of Si/SiO2 for these 

experiments were ca. 1 in2. The cleanliness of Si/SiO2 shards after 60 s of plasma exposure 

was confirmed by measuring the thickness of the native oxide layer by spectroscopic 

ellipsometry and confirming that the water contact angle was below 6°. Chemical vapor 

deposition (CVD) was performed after in situ plasma cleaning. A CVD cycle consisted first 

of a 0.3 mL injection of a monomethoxysilane using the micropump assembly of the 

plasma/CVD instrument (YES 1224 P), where the reagent was vaporized in a vacuum flask 

at the side of the main chamber at 120 °C, after which the vapors were allowed to react 

with the Si/SiO2 surfaces in the main chamber for 10 min at 100° C. After reaction, the 

silane was removed via at least 3 (often 6) pump/purge cycles (introduction of N2 and 

evacuation) through a liquid N2 cold trap. This cleaning/CVD process was repeated for Ar, 

O2, and H2 gases, and also mixtures of H2 and O2, after which ellipsometric thicknesses and 
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water contact angles were measured. To reduce the effects of cross contamination between 

runs, the chamber was plasma cleaned after every run for 5 min with O2 at 100 W. To 

minimize the variability in the results, runs for a particular experiment were often 

performed in a random order on the same day. Overall, the data for this work were 

collected over a period of months. 

3.3.3 Ellipsometry and Wetting 

 
Film thicknesses were determined by spectroscopic ellipsometry: M-2000D, J.A. Woollam, 

Lincoln, NE, light sources: deuterium and quartz tungsten halogen lamps, angle of incidence 

of light: 75°, wavelength range: 200 nm – 1000 nm. Thicknesses were determined based on 

an Si/SiO2/air model using the optical constants (n(λ) and k(λ)) provided in the instrument 

software: si_jaw and sio2_jaw, for silicon and silica, respectively. Initial and final water 

contact angles were measured with a contact angle goniometer: Model 100-00 Contact 

Angle Goniometer, Ramé-Hart, Netcong, NJ, fitted with a syringe filled with high purity 

water.  

3.3.4 Time-of-flight secondary ion mass spectrometry (ToF-SIMS)  

 
ToF-SIMS was performed immediately after surface treatment with an ION-TOF (Münster, 

Germany) TOF-SIMS IV instrument with monoisotopic 25 keV 69Ga+ primary ions in 

“bunched mode.” The primary ion (target) current was typically 1.8 μA, with a pulse width 

of 20 ns before bunching. The raster area of the beam was 100 × 100 μm2.  The peak areas 

of signals from H-, O-, OH-, SiO-, SiOH-, SiO2-, SiO2H-, SiO3-, and SiO3H- were measured with 

the instrument software (version 4.1) and normalized with respect to O- as the reference 

peak.  
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3.3.5 Principal Components Analysis (PCA) of ToF-SIMS  
 

Data Peak areas were organized into a data matrix in Microsoft Excel. The matrix was then 

exported to the PLS_Toolbox 4.2 (Eigenvector Research, Inc., Wenatchee, WA) in Matlab, 

which autoscaled the data and performed PCA. No other preprocessing was necessary as 

the data were already normalized. Autoscaling is a column operation that consists of 

subtraction of the mean of the column of numbers from each number (mean centering), 

followed by division of the numbers in a column by the standard deviation of those 

numbers. Autoscaling seemed like an appropriate preprocessing method given our interest 

in understanding the effects of all the variables, independent of their magnitudes. 

3.3.6 Atomic Force Microscopy  
 

Atomic force microscopy (AFM) in tapping mode was performed on bare silicon substrates 

and plasma-treated silicon surfaces using a Dimension 3100 AFM (Veeco, Plainview, NY) 

using a tip with an Al reflective coating (OTESPA, 42 N/m, 300kHz, Bruker, Madison, WI) 

over a 5 µm x 5 µm area with a height scale of 10 nm. 

3.3.7 X-ray Photoelectron Spectroscopy (XPS) 
 

 XPS was performed with an SSX-100 X-ray photo- electron spectrometer with a 

monochromatic Al Kα source (1486.6 eV) and a hemispherical analyzer. 
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3.4 Results and Discussion 

3.4.1 Cleaning efficiency of different etch gases  
 

Many surface deposition processes are sensitive to sample cleanliness; a relatively thick 

layer of hydrocarbon contamination will block surface silanol groups that are important in 

silane film growth. Plasma etch gases, such as oxygen, argon, and hydrogen are expected to 

remove organic contamination from surfaces.43, 44 Figure 3.1 shows the advancing water 

contact angles of silicon shards before and after plasma treatment at 100 W with O2, Ar, or 

H2. These silicon surfaces had been exposed to the laboratory environment for some time 

and showed fairly thick contamination layers. In all cases, the water contact angles dropped 

to below 15° within half a minute of plasma treatment, i.e., the surfaces were wet with 

water. A concomitant decrease in thickness was observed by spectroscopic ellipsometry 

(SE), leaving the surfaces with an apparent native oxide thickness of ca. 2 nm. X-ray 

photoelectron spectroscopy (XPS) of the samples also showed a considerable decrease in 

the carbon 1s signal after surface cleaning. Surface roughnesses by AFM of the Si/SiO2 

surfaces remained essentially constant before and after plasma treatment at ca. 1.0 – 2.0 Å 

or lower on the hydrogen and oxygen plasma treated surfaces. While AFM after Ar plasma 

treatment was not performed the roughness was assumed to be similarly low. 

3.4.2 Chemical vapor deposition of n-alkyldimethylmethoxysilanes  
 

Depositions of two different monofunctional silanes on plasma treated Si/SiO2 were 

studied. Monofunctional (monomethoxy) silanes were chosen because they cannot 

polymerize, which could complicate the results. Figure 3.2a shows a plot of the water 
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contact angles of Si/SiO2 surfaces plasma treated with H2, O2, or Ar, and then exposed to gas 

phase octyldimethylmethoxysilane (the ‘C8 silane’). The C8 silane has a C8 chain that should 

yield a moderately hydrophobic surface and facilitate comparison of the different surface 

plasma treatments. After reaction, the surfaces treated with the hydrogen plasma have 

noticeably higher water contact angles (ca. 70°), suggesting greater deposition of the 

moderately hydrophobic C8 silane, compared to those treated with either oxygen or argon 

(ca. 56°). The ellipsometric thicknesses of the C8 silane layers deposited on the plasma-

treated surfaces (Figure 3.2b) are consistent with the wetting results, showing greater 

thicknesses for the H2 plasma/C8 silane treated surfaces (ca. 2.8 Å), compared to the O2 or 

Ar treated surfaces (increases in thickness of ca. 1.8 Å). 

 

Deposition of a second silane, butyldimethylmethoxysilane (the ‘C4 silane’), was also 

studied using the same deposition procedure used for the C8 silane. This surface reaction is 

also expected to increase surface hydrophobicity and leave a film of measurable thickness. 

Figure 3.2 shows the results of exposing H2, O2, and Ar plasma-treated surfaces to the C4 

silane. In all cases, increases in water contact angles and thicknesses, compared to 

unreacted samples, indicate deposition of a film. As expected, water contact angles and 

ellipsometric thicknesses are lower than for the reactions with the C8 silane. Of greater 

importance, however, the H2 plasma/C4 silane-treated surface again shows a higher contact 

angle and film thickness than the surfaces treated with the other plasmas. Also as before, 

the O2 and Ar treated surfaces showed similar contact angles and thicknesses. Results from 

depositions of the C8 and C4 silanes on Si/SiO2 are consistent with the H2  
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Figure 3.1 Representative water contact angle measurements of Si/SiO2 surfaces before (top 
lines, ‘dirty’) and after (lower lines, ‘clean’) treatment with H2 (solid lines), O2 (dashed lines), and 
Ar (dash dotted lines). 
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Figure 3.2 (a) Advancing water contact angles, and (b) ellipsometric thicknesses of 
octyldimethylmethoxysilane (C8) (solid lines) and butyldimethylmethoxysilane (C4) (dashed 
lines) silane monolayers on Si/SiO2 surfaces treated with H2, O2, and Ar plasmas. Different lines 
represent different runs/sets of experiments with the 1224P instrument. 
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plasma introducing additional silanol groups onto silicon surfaces, the O2 plasma removing 

a few of them or simply exposing them, and the Ar plasma exposing them.  

3.4.3 Plasma treatment of Si/SiO2 with H2/O2 plasmas  
 

The results shown above leave little doubt that an H2-treated surface more effectively 

primes an Si/SiO2 surface for silane deposition than an O2-treated surface. Accordingly, it 

was of interest to determine whether a plasma struck from a mixture of H2 and O2 might be 

even more effective for this purpose, or whether it might offer benefits not available with 

pure H2 or O2. (H2 and O2 are expected to react under these conditions to produce water, 

and this exothermic reaction is potentially dangerous. If attempting this chemistry, 

especially at higher pressures, one must insure that the reaction is carefully controlled and 

that appropriate precautions are taken.) Figure 3.3 shows water contact angles and film 

thicknesses for the C4 and C8 silanes deposited on surfaces primed with H2/O2 plasmas with 

different compositions. The general trend in these data is a decrease in water contact 

angles and ellipsometric thicknesses as the amount of oxygen is increased in the plasma. 

Thus, H2/O2 gas mixtures do not increase surface reactivity compared to H2 plasmas.  

However, they do appear to offer the user greater control in surface priming, with a higher 

concentration of oxygen leading to a lower surface silane density. 

3.4.4 Effects of H2 plasma exposure time on silane deposition 
 

Deposition of the C8 silane was used to study the effect of the duration of the hydrogen 

plasma on silane loading. In this study, Si/SiO2 surfaces were plasma treated for 30, 60, 90, 

and 120 s. Table 1 gives the water contact angles and thicknesses of the resulting C8 films, 
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which are identical to within experimental error. That is, plasma exposure/surface 

saturation appears to be complete after 30 s, or if the hypothesis of this paper is correct, 

introduction of silanol groups is rapid and complete after this period of time. Note that 

these results do not agree exactly with those in Figure 3.2 because they were performed on 

a different silicon wafer – the results obtained herein are reproducible and consistent for a 

given wafer, but results from different wafers from different cassettes and/or vendors may 

not be directly comparable. 

3.4.5 Principal Components Analysis of Time-of-Flight Secondary Ion Mass Spectrometry (ToF-
SIMS) Data  
 

While wetting and spectroscopic ellipsometry confirm surface cleaning and are rapid and 

convenient tools for surface analysis, they are not as chemically specific as other 

techniques, such as ToF-SIMS, which yields characteristic secondary ions from surfaces. 

Accordingly, ToF-SIMS was used to probe silicon shards directly after plasma treatment 

with O2, H2, or Ar. For better comparison of the spectra, which are often complex, a 

chemometrics tool, principal components analysis (PCA), was used to analyze a series of 

peak areas from peaks that were common to all the negative ion spectra. Chemometrics 

tools, including PCA, have been widely used in SIMS data analysis.45-48 The first two 

principal components (PCs), i.e., PC1 and PC2, captured almost all of the variation in the 

data (98.55%): 78.98% and 19.57%, respectively. Obviously no higher PCs needed to be 

considered in this model. 
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Figure 3.3 (a) Advancing water contact angles and (b) ellipsometric thicknesses of Si/SiO2 
surfaces treated with 100% H2, 80% H2/20% O2, 60% H2/40% O2, 40% H2/60% O2, 20% H2/80% 
O2, 100% O2, and 100% Ar (for comparison), followed by reaction with the C8 (solid lines) and 
C4 (dashed lines) silanes. 
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One outlying point (sample spectrum) was removed from the analysis, with the remaining 

points falling within 95% confidence limits in the plot of Q residuals vs. Hotelling T2, i.e., 

none of the remaining points appear to be outliers. The plot of PC2 vs. PC1 (Figure 3.4) 

showed a clear separation between the spectra from surfaces treated with O2, H2, and Ar 

plasmas, i.e., these surfaces appear to be chemically different, which was expected from the 

silanization results obtained herein. In particular, the H2 and O2-treated samples were 

easily differentiated from the Ar-treated samples on PC1, but not from each other, while 

they were clearly different from each other on PC2. The loadings for PC1 and PC2 were also 

analyzed. In particular, the loadings on PC2 suggested that the H2 plasma-treated samples 

showed more SiO-, SiOH-, SiO2-, and SiO2H- than the O2 and Ar plasma-treated samples. 

Interestingly, the trends in Figure 3.2 correlate well with the scores on PC2 in the ToF-SIMS 

PCA analysis – the O2 and Ar surfaces are similar to each other, but different from the H2 

plasma treated surface. In summary, SIMS shows chemical differences between the 

different plasma treated samples. 

 

Table 3.1 Advancing water contact angles and film thicknesses for Si/SiO2 surfaces treated with 
a hydrogen plasma for 30, 60, 90, and 120 s and then reacted with the C8 silane.  

Exposure Time (s) Advancing Water 
Contact Angles 
(Degrees) 

Film Thicknesses 
(Angstroms) 

30 59 3.32 

60 63 3.52 
90 60 3.38 
120 56 3.27 
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3.5 Conclusion 

Plasma cleaning silicon surfaces with hydrogen, oxygen, and argon removes adventitious 

organic contamination, and plasma cleaning with hydrogen enhances subsequent silane 

deposition. Chemical differences between the surfaces were confirmed by (i) deposition of 

two alkyldimethylmethoxysilanes, and (ii) a PCA analysis of ToF-SIMS data taken from the 

different plasma-treated surfaces. AFM showed no increase in surface roughness after H2 or 

O2 plasma treatment of Si/SiO2. The effects of surface treatments with H2/O2 plasmas in 

different gas ratios, which showed that increased oxygen decreased subsequent surface 

reactivity, and the duration of the H2 plasma, which showed that surface priming was 

complete after 30 s, are presented. We believe that this work is significant because of the 

importance of silanes as surface functionalization reagents, and in particular because of the 

increasing importance of gas phase silane deposition. 

3.6 Appendix 1   

Surface characterization by XPS and AFM, the loadings plots on PC1 and PC2, and the plot 

of Q residuals vs. Hotelling T2 can be found in the appendix 1. 
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Figure 3.4 Scores on PC1 and PC2 in a PCA analysis of peak regions from negative ion ToF-
SIMS spectra from substrates treated with hydrogen, oxygen, and argon plasmas, as indicated 
in the plot. 
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Chapter 4 Self-Terminating Deposition of an Aza Silane in an MLD-Like Process on 

Silicon and Spin-Coated Nylon 

 

4.1 Abstract 

Even a monolayer of a low surface energy species, such as a hydrocarbon or a fluorocarbon, can 

typically impart some measure of hydrophobicity to a surface. However, such a film is often 

insufficient to impart significant water resistance, which generally requires thicker films. Herein 

we explore a small organosilane as a precursor for a molecular layer deposition (MLD)-like 

process to form smooth, water resistive, inorganic-organic barrier layers on both inorganic and 

organic substrates. In particular, we show that sequential exposure of a surface to N-n-butyl-aza-

2,2-dimethoxysilacyclopentane, and either water or aqueous ammonium hydroxide results in thin 

barrier layers. Interestingly, the deposition of 1 appears to be self-limiting to a few nanometers, 

which may make it useful where ultrathin films of controllable dimensions and uniformity are 

needed. Thin films were characterized using spectroscopic ellipsometry, water contact angle 

goniometry, X-ray photoelectron spectrosocopy, and atomic force microscopy. Film thicknesses 

on nylon were much higher than on silicon, and, interestingly, films prepared in the presence of 

‘catalyst’ were thinner than those prepared with water. Test circuits coated only with a 

fluorosilane showed higher penetration of water compared to those coated with the barrier layer 

followed by the fluorosilane. 

4.2 Introduction 

 
Water resistance and repellency are important topics in the consumer electronics and textile 

industries, where the continued need for such coatings and barriers is driven by the convenience 
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and protection they provide. A very thin film, even a monolayer, of a low surface energy species, 

such as a hydrocarbon or a fluorocarbon, is typically enough to impart some measure of 

hydrophobicity to a surface. However, such ultrathin films are often insufficient to create 

interfaces with significant water resistance. A better solution will often involve a thicker, 

impermeable barrier layer.1 Commonly employed barrier layers include paralyne,2-7 an organic 

material, and various inorganic materials, i.e., different metals and metal oxides.8-13 The paralyne 

coating has been reported as a barrier layer for organic thin film transistors,14 organic light 

emitting diodes and solar cells,3 and implantable medical devices6. It provides good water 

resistance, especially when it is few microns thick,14 encapsulation,3 biocompatibility,6, 7 and 

chemical stability.3 Nevertheless, it does not adhere well to many inorganic substrates, which 

makes it prone to peeling and allows lateral transport of water from edges.3 It may also require 

an additional inorganic barrier for full efficacy,4 and layers of paralyne actually absorb water and 

hence may hamper the purpose of water resistance.3 

 

Metal oxide barrier layers have been used to prevent corrosion of metals,8, 9 and in polymer 

packaging10 and coating.11, 12 Metal oxides can provide a good mechanical barrier for water and 

other species from the environment, and adhere well to most inorganic substrates.4, 8  

Nevertheless, when they are deposited by sputtering they are mostly limited to line of sight 

deposition,13 and thicker coatings of metal oxides may crack, enhancing permeation of water.8 In 

addition, some metal oxide coatings are not transparent,10 which is less than preferred for 

consumer applications. 
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A possible solution to these issues might involve the use of inorganic-organic hybrid materials 

with inorganic moieties that might impart durability, scratch resistance, and improved adhesion 

to inorganic substrates, and organic moieties that could provide increased flexibility and 

chemical compatibility with other applications.8 For example, Ormocer®10, 15-18 is an inorganic-

organic hybrid polymer that has been applied to ceramics, metals, and polymers.15 It shows high 

abrasion resistance,15 is a good barrier to water vapor, oxygen, flavors, etc., and has antistatic 

properties. A disadvantage of Ormocor®, especially for micro and nano applications, is that it is 

deposited by a sol-gel process.  

 

 

 

Figure 4.1 Structure of N-n-butyl-aza-2,2-dimethoxysilacyclopentane, 1. 

 

Here I explore a small organosilane as a precursor for a molecular layer deposition19, 20 (MLD)-

like process to form smooth, water resistive, inorganic-organic barrier layers on both inorganic 

and organic substrates. In particular, I show that sequential exposure of a surface to N-n-butyl-

aza-2,2-dimethoxysilacyclopentane, 1 (see Figure 4.1), and either water or aqueous ammonium 

hydroxide results in thin barrier layers that may be appropriate for some micro or nano devices. 

Interestingly, the deposition of 1 appears to be self-limiting to a few nanometers, which may 

make it useful where ultrathin films of controllable dimensions and uniformity are needed.  
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Each part of molecule 1 serves a useful purpose in its MLD-like deposition and/or in its final 

coating. For example, it would be desirable to have a moiety in molecule 1 that would be highly 

reactive with water, but that would not yield toxic byproducts. Highly reactive silanes often 

contain Si-Cl, Si-Br, or Si-N(CH3)2 groups, which produce toxic species when reacted with 

water, i.e., HCl, HBr, or NH(CH3)2, respectively. Part of the usefulness of molecule 1 is that it 

has a highly reactive Si-N linkage that will not release a toxic small molecule when exposed to 

water. The reaction of 1 with water is an addition reaction that opens the ring to create a species 

that is less volatile than 1, which should help in film formation. The silanol group that is thus 

produced is then free to react with another molecule of 1 by the same ring opening reaction. The 

two methoxy groups on 1 are expected to slowly hydrolyze in the presence of water, and this 

hydrolysis, and also the subsequent condensation/polymerization that will ensue, should be 

catalyzed by the nitrogen atom (secondary amine) in 1, providing some measure of robustness to 

the final films as they cure.21, 22 In addition, one would expect a strong acid-base interaction 

between residual silanol groups and these secondary amines in the final film. Finally, the six 

methylene and one methyl group in the molecule provide a degree of hydrophobicity to films of 

1. However, there are not so many methylene units that the molecule does not have an 

appreciable vapor pressure. The ring structure of the molecule also contributes to its reasonable 

vapor pressure at moderate temperatures, which is essential for deposition on sensitive 

devices/surfaces. 

 

Attempts were made to thoroughly characterize the MLD-like materials prepared in this study. 

Film growth from 1 and water or aqueous NH4OH was monitored and confirmed by 

spectroscopic ellipsometry (SE), water contact angle goniometry, X-ray photoelectron 
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spectroscopy (XPS), atomic force microscopy (AFM), and time-of-flight secondary ion mass 

spectrometry (ToF-SIMS). The water resistivity of coatings of 1 was assayed by water 

immersion tests on specially designed circuits. 

4.3 Experimental 

4.3.1 Materials  
 

N-n-butyl-aza-2,2-dimethoxysilacyclopentane, 1 (Gelest, Morrisville, PA), ammonium 

hydroxide (EMD Chemicals, Gibbstown, NJ), water (18 MΩ resistance, filtered using a Milli-Q 

Water System, Millipore, Billerica, MA), nylon 6 (Sigma Aldrich, St. Louis, MO), nylon 6,6 

(Sigma Aldrich, St. Louis, MO), and formic acid, 99% (Mallinckrodt, Phillipsburg, NJ) were 

used as received. Silicon wafers used in the direct deposition of 1 were 5”, P type, <1-0-0>, 0.01-

0.02 ohm-cm, 605-645 µm, single side polished epi wafers (WRS Materials, San Jose, CA). 

Silicon wafers used for spin coating of nylon films and subsequent deposition of 1 were 2", P 

type, <1-0-0>, 0-100 ohm-cm, 280 µm, test grade (University Wafer, South Boston, MA). 

4.3.2 Deposition of 1  
 

Alternating deposition of 1 and either water or aqueous ammonium hydroxide in a molecular 

layer deposition (MLD)-like fashion was performed in a YES 1224P deposition system (Yield 

Engineering Systems, Livermore, CA). The ammonia in aqueous NH4OH is believed to act as a 

catalyst for hydrolysis of the methoxy groups in 1. The oven temperature was 55 °C, many 

consumer electronic devices will not withstand higher temperatures for significant amounts of 

time, and the vapor flasks were set at 80 °C. Samples were first plasma treated in the 1224P with 

oxygen and hydrogen plasmas for 60 s each at 0.5 Torr base pressure with a flow rate of 20 sccm 
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for each gas. The active plate was at the highest available position in the chamber, the ground 

plate was 2 cm below the active plate (at the next available position in the chamber), and the 

float plate was located 4 cm (two positions) below the ground plate. Samples were placed on the 

float plate, where there should be essentially no oxidation of the material during plasma 

treatment, only cleaning.23 After plasma treatment, thicknesses were measured ex situ using 

spectroscopic ellipsometry (SE) and these thicknesses were used as the initial thicknesses of the 

silica (native oxide) or of the spin coated nylon films to determine subsequent film growth.  

 

After ellipsometry, the samples were returned to their positions on the float plate and the system 

was pumped down to 0.5 Torr. At this base pressure, 0.3 ml of 1 was injected into a vapor flask 

and the resulting vapors were introduced into the deposition chamber for 10 min. After 

evacuation for 5 min, the base pressure was again achieved, which was followed by injection of 

1 ml of water or ammonium hydroxide into a different vapor flask and the exposure of the 

surface to these vapors for 10 min. After completion of one AB cycle, i.e., exposure to 1 (A), 

followed by exposure to water or ammonium hydroxide (B), the system was purged three times 

with dry nitrogen before the cycle was repeated. This ‘AB’ sequence was repeated different 

numbers of times to grow barrier layers of different thicknesses. 

4.3.3 Spin coating of nylon  
 

A 1% solution of a 1:1 mixture of nylon 6,6 and nylon 6 in formic acid was used for spin coating 

nylon onto silicon wafers. Accordingly, a 2” silicon wafer was first air plasma treated for 120 s 

in a plasma cleaner (PDC-32 G, Harrick Plasma, Ithaca, NY). Plasma-treated silicon wafers were 

then placed on the chuck of a spin coater ((WS-400B-6NPP/LITE, Laurell Technologies 
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Corporation, North Wales, PA), covered/wetted with an excess of solution, and spun at 3,000 

rpm for 30 s.  

4.3.4 Deposition of a hydrophobic layer 
 

A hydrophobic film of (tridecafluoro-1,1,2,2-tetrahydrooctyl)trimethoxysilane (F-13 silane) 

(Gelest, Morrisville, PA) was deposited by chemical vapor deposition onto barrier layers of 1. 

That is, thin films of 1 were placed in a home-built chemical vapor deposition oven, the oven 

was pumped down to 1 Torr (the base pressure) followed by injection of 0.3 mL of ammonium 

hydroxide. The oven temperature was 55 °C. Ammonium hydroxide appears to serve to: (i) 

complete any remaining crosslinking of the underlying barrier layer of 1, and (ii) facilitate 

subsequent bonding of the F-13 silane to itself and the layer of 1. After the vapors of NH4OH 

had sat in the chamber for 10 min., and without evacuating the chamber, 0.2 mL of the F-13 

silane was injected into the oven and allowed to react in vapor form with the surface for 10 min. 

The chamber was then purged three times with dry nitrogen.  

4.3.5 Ellipsometric Thickness  
 
 
Thicknesses were measured with an M-2000 ellipsometer ( J.A. Woollam, Co. Lincoln, NE). 

Measurements were taken at an incidence angle of 75°, which is near the Brewster angle for 

silicon. At the Brewster angle of a material, no p-polarized light is reflected, which leads to 

enhanced sensitivity for the ellipsometric measurement. The wavelength range was 200 – 1000 

nm, although for nylon-on-silicon films, the data were range selected from 600 to 1000 nm in the 

analysis. The experimental data for bare silicon wafers were fitted to an air/SiO2/Si model, and 

the optical constants of silica (SiO2.jaw) and silicon (Si.jaw) were taken from the instrument 

software. Using this model and these optical constants, the thickness of the silicon native oxide 



 72 

layer was found to be ca. 1.8 nm, which varied slightly from sample to sample. For spin-coated 

nylon samples, a model consisting of air/Cauchy layer/SiO2/Si was used. In this model, the 

thickness/optical constants of the SiO2 native oxide layer and Si substrate layers had previously 

been determined and were fixed, so the only unknowns were the film thickness and the A, B, and 

C parameters of the Cauchy layer, which has k = 0 over all wavelengths and: 

 

    n(λ) = A + B/λ2 + C/λ4      (1) 

 

These models gave reasonably small MSE (error) values and very reproducible results. 

4.3.6 Surface Characterization 
 

 Water contact angles were measured with a Model 100-00 contact angle goniometer from 

Ramé-Hart (Netcong, NJ) that was fitted with a syringe filled with high purity water. X-ray 

photoelectron spectroscopy (XPS) was performed on different thicknesses of the barrier layer 

prepared from 1 using a Surface Science SSX-100 X-ray photoelectron spectrometer (serviced 

by Service Physics, Bend, OR) with a monochromatic Al Kα source, a hemispherical analyzer, 

and a take-off angle of 35°. Survey scans were recorded with an 800 µm x 800 µm spot and a 

resolution of 4. Narrow scans were recorded with a 200 µm x 200 µm spot and a resolution of 2. 

A flood gun for charge compensation was operated at 4 eV and peaks were referenced to the C 

1s hydrocarbon signal at 284.6 eV. Atomic force microscopy (AFM) was performed in 

tapping mode on barrier layers using a Dimension 3100 AFM (Veeco, Plainview, NY) using 

a tip with an Al reflective coating (OTESPA, 42 N/m, 300kHz, Bruker, Madison, WI) over a 5 

µm x 5 µm area with a height scale of 25 nm. Time-of-flight secondary ion mass spectrometry 

(ToF-SIMS) was performed with an ION-TOF (Münster, Germany) TOF-SIMS IV instrument 
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with monoisotopic 25 keV 69Ga+ primary ions in “bunched mode.” The primary ion (target) 

current was typically 1.8 μA, with a pulse width of 20 ns before bunching. The raster area of the 

beam was 100 × 100 μm2.   

4.3.7 Water Immersion Test  
 

Specially designed circuits containing two interdigiated electrodes that were separated by a small 

gap and which made them non-conductive initially, were used for these tests. The circuits were 

then able to conduct when immersed in a solution of an electrolyte (tap water). After immersion, 

the voltage was ramped from 0 V to 8 V in 2 min. The amount of current across the electrodes 

was used as a quantitative measure of the effectiveness of the barrier layer over them.  

4.4 Results and Discussion 

4.4.1 Overview of MLD-like deposition of N-n-butyl-aza-2,2-dimethoxysilacyclopentane, 1, and 
water 
 

 It was believed that deposition of 1 and water would follow an MLD-like process,19 with 1 

reacting with silanol groups on silica, followed by hydrolysis (and perhaps) condensation of the 

methoxy groups on 1, and more 1 reacting with silanol groups in the film (see Figure 4.2). 

Interestingly, repeated deposition of 1 and water (or ammonium hydroxide) led to the expected 

film growth for the first few cycles, but ultimately appeared to reduce the number of reactive 

sites so that self-termination of the process occurred. 

4.4.2 Alternating deposition of 1 and H2O on Si/SiO2. 
 

The deposition of bilayers of 1 and water on Si/SiO2 was monitored ex situ by SE, XPS, wetting, 

AFM, and ToF-SIMS. In this case, XPS is a particularly useful analysis tool because of the 
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presence of the nitrogen heteroatom, which is unique to the deposition of 1 and gives chemical 

specificity to the analysis. XPS survey spectra of films of 1 on Si/SiO2 show only the elements 

expected: Si, C, O, and N. The XPS C 1s narrow scan suggested carbon bonded to oxygen or 

nitrogen (relatively small chemical shifts), but no signals that might be attributed to carbonyl, 

carboxyl, or aromatic (shake-up peak) carbon.  

 

All of the characterization techniques yielded data that were consistent with significant growth of 

the film initially; film growth appeared to proceed in a roughly linear fashion for the first four 

cycles leading to a film thickness of ca. 2.3 nm, an N/Si ratio by XPS of ca. 0.2, and a modest 

increase in film roughness to ca. 0.7 nm (see Figure 4.3). AFM imaging at different spots on the 

surfaces suggested complete, pin-hole free coverage of films of 1. Contact angles, which are very 

surface sensitive, were nearly the same for all films made with 2 – 10 bilayers of 1 and water and 

showed the films to be moderately hydrophobic (θa ~ 75°), suggesting that a similar chemistry 

and no significant increase in roughness is present at the film-air interfaces of the surfaces 

probed. Negative ion ToF- SIMS of films with 2 – 10 bilayers of 1 and water showed a signal 

from CN-, which is typical of nitrogen-containing organic materials.22 This peak was not present 

on the uncoated surfaces. 

 

Linear fits (dashed lines) to the first three data points (0, 2, and 4 cycles) in the plots of the SE, 

XPS, and AFM results are shown in Figure 4.3. The fits for the SE and XPS data were 

constrained to pass through the origin (y = mx), while the fit to the AFM data was not (y = mx + 

b), although (analogous to the SE and XPS data) its y-intercept turned out to have almost the 

same value as the first point. In all cases, the first part of the film growth with 1 and H2O is 
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approximately linear, although in each case, the data point corresponding to two cycles is above 

the fit line and the data point at four cycles is below it, suggesting curvature in the data and a 

slowing of the growth. That the film growth is not continuing in a linear fashion is shown clearly 

at six cycles, where the difference between the linear fit lines and data points becomes 

noticeable. As the number of cycles continues, this deviation becomes extreme, and growth 

appears to stop altogether. Given the highly reactive nature of 1, these results suggest that the 

number of reactive sites in the films is decreasing with film growth. The overall SE, XPS and 

AFM data in Figure 4.3 could be fit quite well to an empirical function of the form y = a(1-e-bx) + 

offset, which is consistent with an asymptotic/self-terminating/controllable deposition of the 

film. 

4.4.3 Alternating deposition of 1 and NH4OH on Si/SiO2 
 

It was of interest to know whether the presence of a catalyst in the gas phase (NH3) would allow 

continued growth of 1 to take place, or whether it might more quickly induce the self-limiting 

behavior seen in the growth of 1 and H2O. This approach seemed reasonable because ammonium 

hydroxide and amines have previously been used as catalysts for liquid-phase silane 

deposition,21, 24, 25 and various amines, but to the best of our knowledge not ammonia, have 

similarly been used to catalyze the gas-phase deposition of silanes.25-27 Thus, the presence of 

NH3 from ammonium hydroxide would be expected to accelerate the hydrolysis of the methoxy 

groups in films of 1. Figure 4.4 shows the characterization of films of 1 and NH4OH on Si/SiO2 

by SE and wetting. Interestingly, the effects previously shown in the deposition of 1 and H2O on 

Si/SiO2 (Figure 4.3) seem to be accelerated, i.e., the films terminate faster – to a thickness of ca. 

1.5 nm instead of ca. 2.5 nm. This result would be consistent with a decreased number of active 
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sites in the growing films as a result of an increased degree of hydrolysis and crosslinking 

between chemisorbed molecules of 1. The contact angles of surfaces prepared from 1 and  
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Figure 4.2 Possible growth mechanism of N-n-butyl-aza-2,2-dimethoxysilacyclopentane, 1, and 
water on Si/SiO2. 
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Figure 4.3 Characterization of films of 1 and water on Si/SiO2 as a function of the number of 
deposition cycles by (a) Spectroscopic ellipsometry, with the resulting thicknesses fitted to an 
empirical function of the form: y = a(1-e-bx) + offset (offset = 0), a = 2.9 ± 0.2 and b = 0.4 ± 0.08 
with R2 = 0.98, and the first three points fit to y = mx with m= 0.60 and R2 = 0.99; (b) XPS, with 
the data (the N/Si ratio) fitted to the same function as above (offset = 0): a = 0.242 ± 0.002  and 
b = 0.43 ±  0.02 with R2 = 0.995, and the first three points fit to y = mx with m = 0.54 and R2 = 
0.98;  (c) Contact angle goniometry (advancing and receding water contact angles); and (d) 
AFM with the resulting roughnesses fitted to the same type of function as above (offset = 0.25), 
a = 0.73 ±  0.05 and b = 0.23 ±  0.04 with R2 = 0.99, and the first three points fit to y = mx + b 
with m = 0.11, b = 0.26, and R2 = 0.99. 
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Figure 4.4 Characterization of films of 1 and NH4OH on Si/SiO2 substrates as a function of the 
number of deposition cycles by (a) spectroscopic ellipsometry (data fit to the function y = a(1-e-

bx), a = 1.61 ± 0.07 and b = 0.96 ± 0.14  with R2 = 0.992), and (b) wetting (advancing and 
receding water contact angles). 
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NH4OH are essentially the same as those prepared from 1 and H2O (see Figures 4.3 and 4.4), 

suggesting that all the films share a similar chemistry. Thus, the choice of the half-reactant (H2O 

or NH4OH) in the deposition of 1 can be used to control film thickness.  

4.4.4 Alternating deposition of 1 and H2O on nylon 
 
 
Thin film deposition onto both inorganic and organic substrates, especially polymeric materials, 

is of technological interest. Accordingly, deposition of 1 was studied on spin-coated nylon 

substrates that had undergone the same plasma treatment as the Si/SiO2 substrates used above –

the majority of the nylon film was still present after the plasma treatment, where Si/SiO2 and 

Si/SiO2/nylon substrates were positioned side by side in the chamber during deposition of 1 and 

H2O or NH4OH. Figure 4.5 shows SE and wetting characterization of film growth of 1 and water 

on nylon. There are two immediate and obvious differences between these results and the 

comparable results on the Si/SiO2 substrate (Figure 4.3). The first is that a much thicker film is 

deposited on nylon than on Si/SiO2. While after 10 cycles the film of 1 and H2O on Si/SiO2 was 

approximately 2.5 nm, the film thickness of 1 and H2O on the nylon substrate is greater than 30 

nm. A second difference is that while film growth appears to be slowing, it does not appear to 

have reached an asymptote after 10 cycles on the nylon substrate. Advancing water contact 

angles of the 1/H2O films on the two substrates are similar – they are only a few (ca. 5) degrees 

higher on the nylon substrate. Receding water contact angles on the two substrates are also quite 

similar. We have previously reported that a nylon film can act as a reservoir of water in 

deposition of a fluorosilane film, where this water acts as a reactant in silane condensation and 

film growth.28 We again attribute the significantly greater film thickness of 1 and H2O on nylon 

to this effect. 
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4.4.5 Alternating deposition of 1 and NH4OH on nylon  
 

Deposition of 1 and NH4OH (compared to H2O) on nylon followed the same trend as deposition 

of these species on Si/SiO2. That is, the presence of the catalyst again limited film growth (this 

time to ca. 13 nm), although this time there was much more evidence for self-termination of the 

film. These results can again be explained by a model of increased hydrolysis of methoxy groups 

on 1, followed by condensation of the resulting silanols, leading to fewer available reactive sites  
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Figure 4.5 Characterization of films of 1 and H2O on nylon substrates as a function of number of 
deposition cycles by (a) spectroscopic ellipsometry (data fit to the function y = a(1-e-bx), a = 40.1 
± 3.9 and b = 0.18 ± 0.03 with R2 = 0.99), and (b) wetting (advancing and receding water 
contact angles). 
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Figure 4.6 Characterization of films of 1 and NH4OH on nylon substrates as a function of the 
number of deposition cycles by (a) spectroscopic ellipsometry (data fit to the function y = a(1-e-

bx), a = 14.0 ± 0.8 and b = 1.84 ± 0.00 with R2 = 0.93), and (b) wetting (advancing and receding 
water contact angles). 
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on the surface, and ultimately termination of film growth. Advancing and receding water contact 

angles on these films were again similar to those found on all films of 1 reported in this work. 

4.4.6 Alternating deposition of 1 and H2O as a barrier layer on a test circuit  
 

A film of 1 and H2O, with a fluorosilane deposited on top of it for added hydrophobicity, was 

deposited on a test circuit to determine whether the film would show water-resistive properties. 

The quality of the film would be determined based on the amount of current that would pass 

when the circuit was immersed in water – the less current the better. As expected, control circuits 

coated only with the fluorosilane showed higher currents than the other films (see Figure 4.7), 

which were coated with 1/H2O followed by the fluorosilane. Also as expected, 4 cycles of 1/H2O 

+ fluorosilane proved to be a better barrier layer than 2 cycles of 1/H2O + fluorosilane. These 

results are consistent with films of 1/H2O showing some ability to act as a barrier against water. 

4.5 Acknowledgment 
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Figure 4.7 Water Immersion test on specially designed circuits coated with different numbers of 
barrier layers of 1 and H2O and a fluorosilane. The BYU 3 and BYU 6 coatings are just the 
fluorosilane, BYU 1 and BYU 7 consist of two cycles of 1 and H2O followed by the fluorosilane, 
and BYU 2 consists of four cycles of 1 and H2O followed by the fluorosilane. 
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Chapter 5 Data and Device Protection: A ToF-SIMS, Wetting, and XPS Study of an Apple 

iPod Nano 

5.1 Introduction 

Many people have digital pictures, family movies, and other documents of importance that they 

wish to pass on to their posterity. Long-term data storage is an important topic for these 

consumers. For the past few years some of us have worked actively in this area, developing a 

durable DVD1 that is now sold commercially by MillenniataTM as the ‘M-DISC’.  

 

An important aspect of data longevity is exposure to water, dirt, fingerprints, and smudges that 

may compromise the integrity of the information within a device and/or its ability to function. 

Accordingly, hydrophobic and oleophobic coatings have been applied to various consumer 

electronic devices to protect them. Here we report a ToF-SIMS, wetting, and XPS study of an 

Apple iPod nano device that shows a protective coating on its touchscreen, but interestingly not 

on other parts of the device. SIMS, in particular, suggests the use of a fluorinated coating with 

oxygen in it.     

 

ToF-SIMS, wetting, and XPS were performed as described previously,2 where the SIMS 

negative ion spectra were calibrated to the H-, C-, CH2
-, O-, F-, and C3F7O- peaks. A fine nickel 

mesh was placed just over the surfaces to help reduce charging. XPS and SIMS were performed 

on all parts of commercially obtained Apple iPod nano devices (8 GB, MC525LL/A) shown in 

Figure 1, which were cut into pieces prior to analysis so that each analysis could be performed on 

a fresh, unanalyzed piece of the device. The nanos showed good resistance to their 

environments– they played continuously while immersed under 6” of water for ca. two hours  
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Figure 5.1 Images of an Apple iPod nano. (a) touchscreen, (b) back cover, (c) clip, (d) metal 
sheet, (e) circuit, and (f) circuit 

 
 
 
 
 
 
 

Table 5.1 Advancing and Receding water and hexadecane (HD) contact angles. The first entry 
in each cell comes from one iPod and the second from a different device. ‘y’ or ‘n’ signifies 
whether roll-off of the probe droplet occurred. 
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before failing. The coating on the touchscreen appears to be important for device function. When 

it was removed/altered by plasma treatment, the device only survives ca. 30 min while playing 

under 6” of water. 

5.2 Results and Discussion 

Table 1 gives the advancing and receding contact angles of water and hexadecane on the nano. 

The touchscreen is obviously the most hydrophobic and oleophobic region, showing high 

advancing and receding water and hexadecane contact angles. This is also the only spot on the 

device where there is ‘roll-off’ of water and hexadecane drops, i.e., where these liquids will roll 

off the surface when it is tilted. 

 

Fluorinated hydrocarbons provide one way of lowering surface free energies and obtaining 

hydrophobic and oleophobic materials. Accordingly, various areas on the iPod were probed by 

XPS to determine whether a fluorinated material was responsible for the high water contact 

angles observed on the device, especially on the touchscreen. XPS is a reasonable technique for 

probing for fluorine; XPS is ca. four times more sensitive to fluorine than to carbon. 

Interestingly, the touchscreen is the only part of the device that shows an intense fluorine signal 

(Figure 2a). Other regions showed little or no F (see Figure 2b and area ratios in its caption). The 

C 1s narrow scan from the touchscreen is consistent with a fluorinated hydrocarbon, as 

evidenced by the peak at higher binding energy that is separated by ca. 7 eV from the other 

carbon peak.3 None of the other C 1s narrow scans from other parts of the device showed 

chemically shifted peaks that are consistent with fluorinated carbon. As expected, the narrow F 

1s scan from the touchscreen showed a single, Gaussian-like peak. Small signals from Si and Al  
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Figure 5.2 XPS spectra of (a) touchscreen, F1s/C1s area ratio: 2.58, and (b) back cover, 
F1s/C1s area ratio: 0.01. Insets show C 1s spectra. 
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were observed in all of the survey spectra from all parts of the device, except the touchscreen, 

which showed only Si. 

 

Both positive and negative ion SIMS were also performed on the nano. The positive ion 

spectrum of the touchscreen showed a series of intense peaks, all with roughly equal intensities, 

corresponding to CF+, CF3
+, C2F4

+, C2F5
+, and C3F7

+. This set of peaks provides an additional 

and compelling confirmation of the presence of a fluoropolymer on the touchscreen. In the 

negative ion mode, the touchscreen showed an intense F- signal that dominated the low-mass 

region of the spectrum. Interestingly, a series of peaks containing C, F, and O also appeared to be 

present, including C3O2F5
-, C3OF7

-, C5O2F10
-, C5O2F11

-, C6O3F11
-, C6O2F12

-, and C6O2F13
-. Other 

regions of the nano showed very little fluorine – the low-mass regions of their negative ion 

spectra were typically dominated by H-, with a few other small signals due to CH-, O-, and OH-. 

These observations are consistent with XPS, i.e., that a fluoropolymer is present on the 

touchscreen and not on other parts of the device.  

 

The SIMS spectra from the touchscreen were compared to those from an ultrathin (ca. 0.8 nm) 

film of a fluorinated silane: (CH3O)3SiCH2CH2(CF2)5CF3. In the positive ion spectrum of this 

silane film, four peaks of roughly equal intensity: Si+, CF+, CF2
+, and CF3

+, dominated the low-

mass region of the spectrum. Note that while the CF2
+ peak was also present in the spectrum of 

the touchscreen, its intensity was noticeably lower than the intensities of the CF+ and CF3
+ peaks. 

An addition difference between the positive ion spectra of the touchscreen and silane film is that 

only low intensity C2F4
+, C2F5

+, and C3F7
+ signals were produced by the fluorinated silane film. 

Even more dramatic differences were observed in the negative ion spectrum of the silane 
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monolayer. To wit, it showed none of the oxygen-containing negative ions produced by the 

touchscreen. A general principle of SIMS is that molecular fragments produced by the technique 

generally come from atoms that were bonded together in the material. Thus, these spectral 

differences suggest that the fluorinated film on the nano touchscreen consists of segments of 

fluorinated carbons interspersed with oxygen atoms, perhaps via ether linkages. Such oxygen 

may improve the biodegradability of the films. It may also help in cationization in SIMS, leading 

to the heavier fluorocarbon ions observed from the touchscreen. 

5.3 Conclusions 

 
To protect their device, Apple coats the front panel of their iPod nano with a fluorocarbon 

polymer. Interestingly, no other part of the device has this coating. 

5.4 Acknowledgment 

We thank P2i (Abingdon, England) for their support of this work. 

 

  



 94 

5.5 References 

1. Jonathan Abbott, Travis L. Niederhauser, Douglas P. Hansen, Raymond T. Perkins, David A. 

Bell, Erik C. Bard, Barry M. Lunt, Mark O. Worthington, C. Michael Miller, Daniel F. Hyatt, 

Matthew C. Asplund, Guilin Jiang, Matthew R. Linford, Richard R. Vanfleet and Robert C. 

Davis, ACS Applied Materials and Interfaces 2010, 2(8), 2373 -2376. 

2. Saini, Sautter, Hild, Pauley, Linford J. Vac. Sci. Technol. A. 2008, 26(5), 1224–1234. 

3. Ferraria, da Silva, Botelho do Rego Polymer 2003, 44, 7241–7249. 

 

  

http://pubs.acs.org/action/doSearch?action=search&author=Abbott%2C+Jonathan&qsSearchArea=author
http://pubs.acs.org/action/doSearch?action=search&author=Niederhauser%2C+Travis+L.&qsSearchArea=author
http://pubs.acs.org/action/doSearch?action=search&author=Hansen%2C+Douglas+P.&qsSearchArea=author
http://pubs.acs.org/action/doSearch?action=search&author=Perkins%2C+Raymond+T.&qsSearchArea=author
http://pubs.acs.org/action/doSearch?action=search&author=Bell%2C+David+A.&qsSearchArea=author
http://pubs.acs.org/action/doSearch?action=search&author=Bell%2C+David+A.&qsSearchArea=author
http://pubs.acs.org/action/doSearch?action=search&author=Bard%2C+Erik+C.&qsSearchArea=author
http://pubs.acs.org/action/doSearch?action=search&author=Lunt%2C+Barry+M.&qsSearchArea=author
http://pubs.acs.org/action/doSearch?action=search&author=Worthington%2C+Mark+O.&qsSearchArea=author
http://pubs.acs.org/action/doSearch?action=search&author=Miller%2C+C.+Michael&qsSearchArea=author
http://pubs.acs.org/action/doSearch?action=search&author=Hyatt%2C+Daniel+F.&qsSearchArea=author
http://pubs.acs.org/action/doSearch?action=search&author=Asplund%2C+Matthew+C.&qsSearchArea=author
http://pubs.acs.org/action/doSearch?action=search&author=Jiang%2C+Guilin&qsSearchArea=author
http://pubs.acs.org/action/doSearch?action=search&author=Linford%2C+Matthew+R.&qsSearchArea=author
http://pubs.acs.org/action/doSearch?action=search&author=Vanfleet%2C+Richard+R.&qsSearchArea=author
http://pubs.acs.org/action/doSearch?action=search&author=Davis%2C+Robert+C.&qsSearchArea=author
http://pubs.acs.org/action/doSearch?action=search&author=Davis%2C+Robert+C.&qsSearchArea=author


 95 

Chapter 6 Conclusions and Future Work 

 

My work on validating the Calzaferri suggestion for assigning oxidation states to organic 

molecules using a well-documented and well-known core-electron spectroscopy (XPS), 

reemphasizes the importance of his work. I hope this study will encourage more chemists to use 

his suggestion, particularly in their teaching. Indeed, the Calzaferri approach should allow the 

greater application of oxidation numbers to organic and biological reactions. I further hope this 

work will inspire others to employ other analytical techniques to resolve/elucidate other 

underlying concepts of chemistry. Throughout my work I have tried to explore some of the many 

possible applications of XPS and other surface analytical techniques; I hope XPS will continue to 

be applied in non-traditional ways to solve important scientific problems. Similarly ToF-SIMS 

has played an important role in my work and might find use in other areas of chemistry. For 

example, the different energies and chemical natures of primary ion beams might be able to 

differentiate between the different types of bonds in adsorbates, which might later help to 

elucidate surface structures or to influence the direction of reactions/ syntheses.  

 

My work on introducing a new plasma etch gas for specifically functionalizing the surface to 

enhance silane loading as an in-situ 'dry' clean, opens up new opportunities for surface scientists. 

My study shows that glow discharge cleaning can not only be used for effective cleaning of 

inorganic surfaces, but that it could also be used to specifically functionalize the same, which is 

an area that does not appear to have been extensively studied. Other etch gases such as ozone, 

ammonia or specifically synthesized gases might find use for surface oxidation, amination or in 

other surface modifications, where these modifications will typically be rapid. This approach will 
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not only save time, money and energy, but it might also lead to more controllable processes and 

new advances in the field of surface science. I personally feel that in the near future, plasmas will 

find many uses in various fields of technology, as they intrinsically provide all the basic 

components of a chemical reaction i.e. both energy and reactants. The one thing that needs to be 

taken care of at the moment is the control of the resultant chemical reactions, and my work 

demonstrate the same, i.e., that plasma reactions can be controlled to a significant extent. I hope 

this work will inspire others to investigate other possible surface or chemical reactions, which 

could be achieved with the successful use of plasmas. 

 

My work on the deposition of a nano-scale, smooth, conformal, and self limiting multilayers of a 

hydrophobic barrier film provides a new dimension to hydrophobic coatings, which not only rely 

on hydrophobicity but also provide a mechanical barrier towards water. These coatings may find 

applications in various fields, including electronics, semiconductors, microfabrication, etc. This 

work provides a new stage for coupling two well-known dry deposition process i.e. CVD and 

ALD/MLD, and hence enjoys the benefits of both, while perhaps overcoming the limitations of 

each. This work opens up new possibilities of experimenting with different precursor molecules 

and chemistries to put down a thick, water resistive barrier layer on different substrates. The use 

of inorganic-organic hybrid molecules allows one to provide a coating with both mechanically 

and chemically resistance roperties. Both CVD and ALD have been explored to a great extent, 

but separately. I hope this attempt to unite the two techniques, might bring out some new 

applications in both the fields. 
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My work on characterizing the apple iPod nano for its hydrophobic and oleophobic nature has 

led to the interesting finding that these devices are only coated on their touchscreens and not the 

other parts of the device, and the coating appears to be prepared from an oxygen-containing 

fluoropolymer precursor. This characterization study gives a future direction for an effective, 

biodegradable and an economical hydrophobic coating on electronic devices. This study also 

demonstrates the usefulness of various surface analytical techniques for investigation of surface 

coatings and shows how they can complement each other. This study emphasizes the joint 

capabilities of XPS and ToF-SIMS for structural elucidation of surface coatings. I hope this 

study will encourage other workers in surface science to exploit the benefits of using multiple 

techniques to extract the maximum information possible about surfaces and interfaces.  
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I. Appendix 1 

A1.1 Supporting Information for: Chapter 3.  Improved Silane Deposition on Hydrogen 

Plasma-Treated Silicon Dioxide 
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Figure I.1 XPS spectra of Si/SiO2 shards (a) Before plasma treatment (b) After 30 s oxygen 
plasma treatment (c) After 30 s argon plasma treatment (d) After 30 s hydrogen plasma 
treatment. These spectra indicate a substantial decrease in the amount of carbon 
(representative of hydrocarbon contamination) after 30 s plasma treatments with three plasma 
etch gases. The pump down in our XPS chamber is slow and may introduce hydrocarbon 
contamination onto clean (high free energy) surfaces. A small amount of fluorine contamination 
was also seen in a few cases
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(a)                                                          (b) 

.                            

(c)                                                            (d) 

                            

Figure I.2 AFM images (a) Before H2 plasma treatment Rq = 1.22 Å (b) After 60 s H2 Plasma 
treatment Rq = 1.27 Å. (c) Before O2 plasma treatment Rq = 1.8 Å (d) After 60 s O2 Plasma 
treatment Rq = 0.9 Å. These results indicate no change in surface roughness after hydrogen or 
oxygen plasma treatment.  
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(a) 

 

(b) 

 

Figure I.3 (a) Loadings on PC1 and (b) PC2 from PCA analysis of ToF-SIMS data. 
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Figure I.4 Plot of Q Residuals vs. Hotelling T2. 
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