
Brigham Young University Brigham Young University 

BYU ScholarsArchive BYU ScholarsArchive 

Theses and Dissertations 

2013-03-08 

Toward Scalable Human Interaction with Bio-Inspired Robot Toward Scalable Human Interaction with Bio-Inspired Robot 

Teams Teams 

Daniel Sundquist Brown 
Brigham Young University - Provo 

Follow this and additional works at: https://scholarsarchive.byu.edu/etd 

 Part of the Computer Sciences Commons 

BYU ScholarsArchive Citation BYU ScholarsArchive Citation 
Brown, Daniel Sundquist, "Toward Scalable Human Interaction with Bio-Inspired Robot Teams" (2013). 
Theses and Dissertations. 3776. 
https://scholarsarchive.byu.edu/etd/3776 

This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion 
in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please 
contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu. 

http://home.byu.edu/home/
http://home.byu.edu/home/
https://scholarsarchive.byu.edu/
https://scholarsarchive.byu.edu/etd
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F3776&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsarchive.byu.edu%2Fetd%2F3776&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/3776?utm_source=scholarsarchive.byu.edu%2Fetd%2F3776&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu,%20ellen_amatangelo@byu.edu


Toward Scalable Human Interaction with Bio-Inspired Robot Teams

Daniel S. Brown

A thesis submitted to the faculty of
Brigham Young University

in partial fulfillment of the requirements for the degree of

Master of Science

Michael A. Goodrich, Chair
Jeffrey C. Humpherys

Tony R. Martinez

Department of Computer Science

Brigham Young University

March 2013

Copyright c© 2013 Daniel S. Brown

All Rights Reserved



ABSTRACT

Toward Scalable Human Interaction with Bio-Inspired Robot Teams

Daniel S. Brown
Department of Computer Science, BYU

Master of Science

Bio-inspired swarming behaviors provide an effective decentralized way of coordinating
robot teams. However, as robot swarms increase in size, bandwidth and time constraints
limit the number of agents a human can communicate with and control. To facilitate scalable
human interaction with large robot swarms it is desirable to monitor and influence the
collective behavior of the entire swarm through limited interactions with a small subset of
agents. However, it is also desirable to avoid situations where a small number of agent failures
can adversely affect the collective behavior of the swarm. We present a robust bio-inspired
model of swarming that exhibits distinct collective behaviors and affords limited human
interaction to estimate and influence these collective behaviors. Using a simple naive Bayes
classifier, we show that the global behavior of a swarm can be detected with high accuracy
by sampling local information from a small number of agents. We also show that adding a
bio-inspired form of quorum sensing to a swarm increases the scalability of human-swarm
interactions and also provides an adjustable threshold on the swarm’s vulnerability to agent
failures.

Keywords: Human robot interaction, Bio-inspired swarms, Observation effort, Quorum sensing
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Chapter 1

Introduction

In nature, multi-agent groups achieve remarkable feats: ant colonies find the shortest

path to distant food sources, flocks of birds swoop and dive in perfect formation, and colonies

of bees efficiently evaluate potential nest sites and decide on the best location. Despite the

limited intelligence and abilities of each individual agent, a collective intelligence is achieved

that is greater than the sum of its parts [1]. Applying principles from biological systems

to create bio-inspired robot teams leverages the decentralized behaviors found in nature to

create scalable and robust teams that are amenable to human interaction [2].

In many situations, such as search and rescue, military operations, and space explo-

ration, it is desirable to have a robust robot team that is amenable to human interaction.

Bio-inspired robot swarms are typically characterized by a large number of agents with

limited abilities and are ideally suited for accomplishing dangerous or uncertain tasks where

communication is limited and agent failures are likely. As these bio-inspired teams grow in

size, bandwidth and time constraints make it increasingly difficult for a human to interact

with every individual agent. Thus, there is a need for scalable human-swarm interactions

that allow a human to monitor and influence the collective behavior of the swarm through

interactions with a subset of the swarm. Additionally, because many swarm applications

involve dangerous or uncertain environments, we desire swarms that have limited vulnerability

to agent failure—we want the collective behavior of the swarm to be unresponsive to small

numbers of agent failures.
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This thesis will focus on two major problems that impede scalable human interaction

with large bio-inspired robot swarms. First, how can we accurately detect and estimate the

collective state of a robot swarm using limited information from a subset of the swarm?

Second, how can we increase the scalability of human influence over the collective behavior

of a swarm while limiting the vulnerability of the swarm to agent failures?

Much of the current research involving bio-inspired teams has either involved centralized

control through global information or has assumed that agents can explicitly communicate

with one another [3] [4] [5]. Some exceptions are Couzin et al. [6] and Conradt et al. [7] who

show that that a limited number of individuals with a preferred direction can influence the

direction of collective movement in a swarm with no explicit communication. Couzin’s work

[8] [6] has been generalized by our lab (BYU HCMI Lab) to provide methods for leading

multiple group types and switching between distinct group behaviors [9]. However, our

previous work assumes perfect knowledge of the collective behavior of the swarm.

This thesis demonstrates the use of a Bayesian network to detect the collective behavior

of a robot swarm using information from only a limited number of agents. We assume that

no explicit communication occurs between agents. To simulate swarming behaviors we use

a model of robot swarming behavior previously developed by our lab [9]. This model has

two fundamental attractors: a flock and a torus. Using local information from a subset of

agents, we use a naive Bayes classifier to accurately detect whether the group is in one of

these two attractors by using a small sample of agent angular velocities and local agent

densities. We also use local information from a subset of the agents to estimate and predict

the collective centroid and heading of the swarm. In addition, we argue that the idea of

estimating global properties of a system from local observations is applicable to other swarm

systems by examining group type classification for a model developed by Couzin et al. [8]

and discussing how these ideas could also be applied to a physicomimetics model [10].

Finally, this thesis demonstrates that adding a biologically inspired quorum sensing

mechanism to a swarm increases the scalability of human-swarm interactions and limits the
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vulnerability of the swarm to agent failures. By comparing the performance of a swarm using

quorum sensing with the performance of a swarm without quorum sensing we show that

quorum sensing reduces the number and duration of human interactions needed to influence

the collective behavior of a swarm and allows human-swarm interactions to scale better to

larger swarm sizes. Additionally, we demonstrate that the use of quorum sensing reduces the

vulnerability of the swarm to agent failures by limiting the swarm’s responsiveness if less

than a certain threshold of agents change their behavior.
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Chapter 2

Related Work

2.1 Models of swarming behavior

Bio-inspired swarm models have been explored by researchers in a wide variety of fields

including computer science, engineering, physics, and biology. These models are typically

capable of either flocking [3, 5, 11, 12] or cyclic behavior [13, 14], and in some cases can

exhibit multiple group behaviors depending on the model parameters used [8, 15, 16].

Couzin et al. [6] and Conradt et al. [7] explore leading a flock with a small number of

informed agents. Couzin et al. show that their method of leading a flock scales well as group

size increases, but do not consider leading a torus or changing group types.

In the controls community much research focuses on consensus protocols [4] for flocking,

but we have not found any research involving switching between attractors without commu-

nication or centralized control. Olfati-Saber [3] uses global information and communication

with local neighbors to form a robust flock and proves that a leader agent can lead the group

through global information. Su et al. [17] extend Olfati-Sabers work by eliminating the need

for global information and show that only a subset of informed individuals are needed to

influence the flock to move with a desired velocity.

Some work has been done with communication-free flocking, but this work typically

creates flocks that can be controlled by one or a few agents, which makes the flock vulnerable

to leader failure. Gervasi and Prencipe [18] study distributed coordination and control

without any communication or shared reference frame, but require that all agents can identify

the leader agent and can be efficiently controlled by a single agent. Jadbabaie [5] provides
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mathematical results on the convergence of the Vicsek flocking model [12] to a single group

direction as well as convergence conditions for the group to converge in the limit to a

single leader’s direction. LeBlanc [19] provides a consensus protocol that requires limited

communication, but provides conditions for reaching consensus in the presence of adversaries.

This thesis builds on previous work done in the BYU-HCMI lab. We focus on a simple

swarm model1 we have developed [9]. In this model, agents react to neighbors within three

different zones: repulsion, orientation, and attraction. There is no explicit communication—

agents only react to visual cues from nearby agents. Each agent follows three basic rules: (1)

avoid neighbors within a certain repulsion zone, (2) move in the same direction as neighbors

in a larger orientation zone, and (3) stay close to neighbors beyond the orientation zone.

From these three simple rules the model produces two fundamental attractors: a moving flock

group type and a stationary rotating torus group type which may rotate either clockwise or

counterclockwise. These group types are shown in Figure 2.1.

Previous work in our lab shows that flock and torus group types can be led by a subset

of informed individuals and that human influence over at least 30% of the swarm allows

human-influenced switches between group types [9]. We will use these results as a baseline

when we analyze the performance of our proposed swarm model with quorum sensing.

2.2 Types of swarm behavior

Most research on swarm behaviors focuses on flocking. However, there are other types of

swarm behavior seen in the literature. Couzin’s model [8] has four group types: swarm, torus,

dynamic parallel group, and highly parallel group, where the last two group types are simply

two different flavors of flocking. Strömbom [15] demonstrates that attractive forces between

agents is sufficient to form swarms, flocks, and mills (torus-like formations where agents do

not all rotate in the same direction). Strömbom also shows that adding a blind spot creates

two additional group types: a torus and an interweaving chain-like structure. Romero et al.

1This model is explained in detail in Section 3.1
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(a) Counterclockwise torus (b) Clockwise torus

(c) Flock

Figure 2.1: 100 agents in the three different group types formed by our model. The agents’
headings are represented by straight lines emanating from the center of each agent.

[16] present a swarm model that produces a swarm, a torus, a flock, and a flock that rotates

around a stationary point.

If we restrict our attention to models without centralized control, global information, or

explicit inter-agent communication, the group types mentioned above are the only group types

we have found in the literature that emerge from swarm models capable of exhibiting multiple

behaviors. This thesis focuses on the two group types we feel could be most realistically

applied to actual robots: the torus and the flock; other group types are interesting, but often

result agent trajectories that would likely result in collisions between actual robots. Because

of the large void in the center, we hypothesize that a torus could be used for perimeter

monitoring or convoy protection. Because the flock group type provides a more agile and
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mobile group type, we hypothesize that a flock could be used for quickly moving a swarm

from one location to another.

2.3 Detection and estimation of collective behavior

This thesis uses samples of local information from individual agents to detect and estimate the

collective behavior of a swarm. Other researchers have investigated similar topics, but have

generally relied only on positional data. Wirz et al. [20] propose an approach for detecting

collective patterns in crowds using body-worn sensors. Sadilek and Kautz [21] consider the

task of inferring high-level human interactions and intentions using location information from

noisy GPS data. Laube et al. [22] propose an algorithm for the decentralized detection of

flocking in mobile networks through the exchange of information tokens. Gudmundsson et al.

develop efficient approximation algorithms for detecting flocking, leadership, and convergence

using moving point object data [23, 24]. Eagle et al. [25–27] show how data from mobile

phones can be used to infer and analyze social network structures and group behaviors. Tang

et al. [28] explore scalable learning of collective behaviors in social networks using edge

clustering schemes.

2.4 Heterogeneous teams and quorum sensing

Several researchers have studied the effects of heterogeneity and quorum sensing on multi-

agent interactions. Wu [29, 30] investigates the importance and role of heterogeneity in robot

teams and shows that increased agent variation in task allocation problems can increase

stability. Kumar [31] uses mathematical models of bio-inspired foraging tasks and quorum

sensing to develop control strategies for redistributing agents among multiple sites but does

not investigate human influence over the agent behaviors. This thesis will investigate the

benefits of adding quorum sensing to a bio-inspired swarm in terms of scalability and limited

vulnerability.
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Chapter 3

The Model

3.1 Swarm model

The experiments and simulations in this thesis will build upon on a model of swarming that

we have produced in our lab [9]. We have chosen to focus on this model because it can form

both flock and torus group types, is similar to many biological models of swarming behavior,

and has dynamics similar to those of actual robots. Our model consists of a set of N agents

with nonholonomic dynamics for agent i given by

ẋi = s · cos(θi)

ẏi = s · sin(θi) (3.1)

θ̇i = ωi

where [xi, yi]
T ∈ R2 is the agent’s position, θi ∈ [−π, π] is the agent’s angular heading, s is

the constant agent speed, and wi is the agent’s angular velocity. For simplicity we define

vi = [cos(θi), sin(θi)]
T (3.2)

ci = [x, y]T . (3.3)

Further, let A(t) = aij(t) denote the sensory adjacency matrix where aij(t) = 1 means that

agent j is visible to agent i at time t. Each aij(t) is determined at time t according to
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a Bernoulli random variable with parameter pij(t) = min
(
1, 1/dij(t)

)
where dij(t) is the

Euclidean distance between agents i and j at time t.

Agents react to neighbors within three different zones: repulsion, orientation, and

attraction. The neighbors in these zones are determined by

nri = {j : ‖ci − cj‖ ≤ Rr, aij = 1} (3.4)

noi = {j : ‖ci − cj‖ ≤ Ro, aij = 1} (3.5)

nai = {j : aij = 1} (3.6)

where nri , n
o
i , and nai are the sets of agent i’s neighbors in the regions of repulsion, orientation,

and attraction, respectively. Throughout this thesis, ‖ · ‖ is used to denote the standard

Euclidean norm. The parameters Rr and Ro are the associated radii of repulsion and

orientation. The angular velocity ωi is determined by first computing the repulsion, orientation,

and attraction vectors

uri = −
∑
nr
i

cj − ci
‖cj − ci‖2

(3.7)

uoi =
vi +

∑
no
i
vj

‖vi +
∑

no
i
vj‖

(3.8)

uai =

∑
na
i
(cj − ci)

‖
∑

na
i
(cj − ci)‖

. (3.9)

Next, the desired heading vector ui is computed as ui = uri +uoi +uai . Finally, angular velocity,

ωi, is computed as

ωi = k(atan2(uyi , u
x
i )− θi) (3.10)

where k is a positive gain and atan2(uyi , u
x
i ) is the two argument variation of the arctangent

that places the angle in the correct quadrant by considering the signs of the y and x
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components of ui. Because we limit (atan2(uyi , u
x
i )−θi) to the interval [−π, π], the magnitude

of ωi is bounded by kπ.

3.2 Group metrics

In order to define the two different attractors of our model we use two metrics of group

behavior described in [8], namely, group angular momentum, mgroup, and group polarization,

pgroup. Group angular momentum is a measure of the degree of rotation of the group about

the group centroid and is calculated as

mgroup(t) =
1

N

∣∣∣∣∣
N∑
i=1

det([ric(t) vi(t)])

∣∣∣∣∣ . (3.11)

The vector ric(t) is a unit vector pointing from the group centroid to the position of agent i

and is given by

ric(t) =
ci(t)− cg(t)
‖ci(t)− cg(t)‖

(3.12)

cg(t) =
1

N

N∑
i=1

ci(t) (3.13)

where cg(t) is the group centroid. The term det([ric(t) vi(t)]) is the determinant of the 2× 2

matrix [ric(t) ci(t)] with columns ric(t) and vi(t) and is a two-dimensional analogue of the

cross product. The group angular momentum is a value between 0 and 1. This can be seen

by examining det([a b]) where a, b,∈ R2 and the vectors a and b are both unit vectors. Let φ

be the angle between them such that a = R(φ)b where R(φ) is the rotation matrix

R(φ) =

cosφ − sinφ

sinφ cosφ

 . (3.14)
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Thus,

det([a b]) = a1b2 − a2b1 (3.15)

= a1(a1 sinφ+ a2 cosφ)− a2(a1 cosφ− a2 sinφ) (3.16)

= sinφ(a2
1 + a2

2) (3.17)

The term a2
1 + a2

2 = 1 since a is a unit vector, so we see that −1 ≤ det([a b]) ≤ 1 with

maximum and minimum values when φ = π/2 and φ− π/2, respectively. Thus, the mgroup

of a swarm reaches a maximum value of 1 if all the agents are rotating around the group

centroid in the same direction with vi orthogonal to ric and a minimum value of 0 when the

agents are aligned in the same direction and evenly spaced around the centroid or when half

of the agents rotate clockwise and the other half rotate counterclockwise around the group

centroid.

Group polarization measures the degree of alignment among individuals within the

group and is calculated as

pgroup(t) =
1

N

∣∣∣∣∣
N∑
i=1

vi(t)

∣∣∣∣∣ . (3.18)

The pgroup of a swarm reaches a maximum value of 1 when all the agents have the same

heading and has a minimum value of 0 when agent headings are evenly distributed in the

interval [−π, π].

3.3 Group types

Our model produces two group types: a torus and a flock. Snap shots of these group types

are shown on page 7 in Figure 2.1. A torus is characterized by pgroup close to 0, mgroup close

to 1, and a relatively stationary group centroid. A flock is characterized by pgroup close to 1,
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mgroup close to 0, and a moving centroid. Specifically, we define the group type, typeg, as

typeg =


torus, if mgroup > 0.75 and pgroup < 0.25

flock, if mgroup < 0.25 and pgroup > 0.75.

(3.19)

3.4 Simulating the model

Simulations were run using the following discrete-time approximation of the dynamics in

Equation (3.1)

θi(t+ 1) = θi(t) + ωi(t) ·∆t

xi(t+ 1) = xi(t) + s · cos(θi(t+ 1)) ·∆t (3.20)

yi(t+ 1) = yi(t) + s · sin(θi(t+ 1)) ·∆t

with simulation time step ∆t = 0.1 seconds. This time step is in the range of update times

(approximately 1-100 Hz) for many common robotic sensors (see Appendix H of [32]) and

leads to a tractable simulation time.
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Chapter 4

Model Analysis

Before beginning the main body of this thesis, we first present several empirical and

theoretical results regarding our swarm model that will be used in subsequent sections.

4.1 Hysteresis

To investigate the collective memory of our swarm model, we followed the methodology used

by Couzin et al. [8]. We fixed the radius of repulsion, Rr = 1, and experimented with slowly

increasing and decreasing the radius of orientation, Ro. The parameter Ro was incremented or

decremented by 1 unit every 1000 time steps and the results were averaged over 15 replicates.

Model parameters other than Ro were N = 100, k = 0.5, and s = 5. The results shown in

Figure 4.1 consist of the average mgroup and pgroup calculated one time step before the radius

of orientation was incremented or decremented. As can be seen, the group behavior depends

on the previous history of the group, even though the individual agents have no explicit

knowledge of what that history is. Interestingly, when decreasing the radius of orientation,

the flock does not ever switch to a torus but simply remains a flock until Ro = 0 at which

point the flock turns into an unoriented cyclic group.

From these results we see that the hysteresis in our model precludes switching between

the flock and torus group types by increasing or decreasing the parameter Ro—the only way

to go from a flock to a torus is to change the group to a cyclic group and then increase

Ro to get a torus. Because we are interested in human-influenced switching between group

types, but do not want to switch group types by drastically changing global parameters, we
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Figure 4.1: The average change in group momentum and polarization as the radius of
orientation is increased and decreased.
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ideally want to find a sort of “tipping point” between the torus and flock group types, i.e., a

set of parameters that can exhibit both the flock and torus group types equally well. This

would allow a human to influence the collective behavior of the swarm without needing to

slide up and down the hysteresis curve and without worrying about globally broadcasting

parameter changes or using some kind of consensus protocol to have agents change their

radius of orientation.

4.2 Tipping point

We desire to be able to switch between the torus and flock attractors without changing model

parameters. To determine parameter values that allow both group types to emerge we ran

a series of simulations using N = 100, k = .5, s = 5, Rr = 1 and varied the the radius of

orientation. Simulations were run for 200 seconds with a time step size of ∆t = 0.1. The

radius of orientation was varied from 0 to 30 in 1-unit increments. One hundred simulations

were performed for each value of Ro. For each iteration, agents were given random initial

positions uniformly distributed over a 10 × 10 square centered at the origin. Agents were

also given random initial headings.

The percentage of trials that converged to a torus and to a flock were calculated for

each value of Ro and are shown in Figure 4.2. As can be seen in the figure, the value Ro = 8

resulted in an approximately equal proportion of torus and flock group types. Figure 2.1

(shown on page 7) shows a counterclockwise torus, a clockwise torus, and a flock formed with

the parameter values listed above and Ro = 8.

Using Ro = 8 allows distinct group types to emerge from the same model parameters.

The only differences between simulations were the initial headings and initial positions of the

agents at the beginning of each simulation. This provides evidence that we can change the

collective behavior of the swarm by influencing some of the agents in the collective to change

their position and heading without requiring parameter rebroadcasting or communication
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Figure 4.2: Probability of a swarm forming a flock or a torus as a function of radius of
orientation.

between the agents. For the remainder of this thesis we use the parameters N = 100, k = 0.5,

s = 5, Rr = 1, and Ro = 8 unless otherwise specified.

4.3 Analysis of the torus attractor

Our model produces two fundamental group types, a flock and a torus. In this section, we

provide an argument that the torus group type is a formal attractor of our model. We first

consider a system based only on attraction (ui = uai ) and prove it converges to a stable cycle.

Next we consider a system with both attraction and orientation dynamics (ui = uai + uoi ) and

derive an equation for the radius of a torus formed by attraction and orientation dynamics.

4.3.1 Analysis of attraction-only dynamics

We assume a complete agent topology (aij = 1 ∀ i 6= j). Using this assumption the desired

direction of travel for agent i is

ui =

∑N
j 6=i(cj − ci)

‖
∑N

j 6=i(cj − ci)‖
. (4.1)
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Because the denominator is a positive scalar, it does not affect the direction of ui and can be

ignored because the agent dynamics only depend on the direction of ui. Thus, we can write

ui as

ui =
N∑
j 6=i

(cj − ci) (4.2)

=
N∑
j=1

(cj − ci) (4.3)

=

(
N∑
j=1

cj

)
−Nci. (4.4)

Multiplying by any positive scalar will preserve direction so we multiply ui by 1/N to get

ui = cg − ci (4.5)

where cg is the group centroid. Therefore, for each agent i, ui points toward the group

centroid.

Change of Variables

Consider an agent that is attracted toward the group centroid cg. The agent’s dynamics are

given by

ẋ = s · cos θ

ẏ = s · sin θ (4.6)

θ̇ = ω.

where ω = kα and α = atan2(ux, uy) − θ. We want to analyze our model in terms of the

agent’s distance from the centroid and the angle α = atan2(ux, uy)− θ which is the difference

between the agent’s current heading θ and the heading that would take it directly toward the

17



r

y

x

Figure 4.3: Coordinates for an agent (blue) attracted toward the centroid (red).

centroid. We assume a stationary group centroid at the origin and, using a method similar

to [13], we perform the change of variables

r =
√
x2 + y2 (4.7)

α = ψ + π − θ (4.8)

where r is the distance from the group centroid and ψ = arctan
(
y
x

)
. Figure 4.3 shows how

these variables relate to each agent. Deriving an equation for ṙ we have

ṙ =
xẋ+ yẏ√
x2 + y2

(4.9)

= cosψẋ+ sinψẏ (4.10)

= s(cosψ cos θ + sinψ sin θ) (4.11)

= −s(cosψ cos(ψ − α) + sinψ sin(ψ − α)). (4.12)
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Using the identity cos u cos v + sinu sin v = cos(u− v) we have

ṙ = −s cosα. (4.13)

We now derive an equation for α̇

α̇ =
d

dt
arctan

(y
x

)
− θ̇ (4.14)

=
xẏ − yẋ
x2 + y2

− kα (4.15)

=
s

r2
(x sin θ − y cos θ)− kα (4.16)

=
s

r
[cosψ sin(α− ψ) + sinψ cos(α− ψ)]− kα. (4.17)

Using the identity cos u sin v + sinu cos v = sin(u+ v) we have

α̇ =
s

r
sinα− kα. (4.18)

Thus, we have

ṙ = −s cosα (4.19)

α̇ =
1

r
s sinα− kα (4.20)

which describe an agent’s dynamics in terms of its distance from the centroid, r, and the

desired change in heading, α.

Stability of Equilibrium Points

Setting ṙ and α̇ equal to 0 and solving for the equilibrium points of (4.19) and (4.20) we get

req =
2s

kπ
, αeq = ±π

2
(4.21)

19



where we have restricted α to be in the interval [−π, π]. These two equilibria define a

clockwise and counterclockwise orbit about the fixed centroid with radius r = 2s/kπ.

We now investigate the stability of the equilibria through a local linearization of

equations (4.19) and (4.20) around the equilibrium points. If we define f1 := −s cosα and

f2 :=
s

r
sinα− kα, the Jacobian matrix is


∂f1

∂r

∂f1

∂α
∂f2

∂r

∂f2

∂α

 =

 0 s sinα

− s

r2
sinα

s

r
cosα− k

 . (4.22)

Evaluating the Jacobian at req = 2s/kπ and αeq = π/2 and letting ω = kαeq we have

 0 s sinα

− s

r2
sinα

s

r
cosα− k


∣∣∣∣∣∣∣
(req ,αeq)

=

 0 s

−k
2π2

4s
−k

 . (4.23)

Solving for the eigenvalues we have

λ =
k

2
(−1± i

√
π2 − 1). (4.24)

Since k > 0, both eigenvalues have negative real parts and nonzero imaginary parts. Therefore

the equilibrium point is locally asymptotically stable [33]. Linearizing about the other

equilibrium point

r =
2s

kπ
, α = −π

2
(4.25)

gives the same result.

This indicates that for a stationary group centroid, all agents converge to either a

clockwise or counterclockwise orbit about the group centroid with a fixed radius r = 2s/kπ.

This behavior is shown in Figure 4.4. Thus we argue that the torus group type is a fundamental

attractor of our dynamic system. The addition of orientation and repulsion forces to the
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Figure 4.4: A cyclic group formed by an attraction only swarm. The group centroid is marked
by an ‘x’.

model creates an oriented torus with collision avoidance and also allow the flock group type

to form.

4.3.2 Analysis of attraction and orientation dynamics

In the previous section we argued that the torus group type is a stable attractor of our

model with attraction-only dynamics. In this section we investigate the radius of a torus

with attraction and orientation dynamics, i.e., ui = uai + uoi .

Lemma 1. (sin θ + cos θ)/(cos θ − sin θ) = tan(π/4 + θ)

Proof. Starting with the right side of the equality to prove, we have

tan(π/4 + θ) =
sin(π/4 + θ)

cos(π/4 + θ)
(4.26)

=
sin(π/4) cos θ + cos(π/4) sin θ

cos(π/4) cos θ − sin(π/4) sin θ
(4.27)

=

1√
2
(cos θ + sin θ)

1√
2
(cos θ − sin θ)

(4.28)

=
sin θ + cos θ

cos θ − sin θ
(4.29)
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where the second line results from using the trigonometric identities:

cosu cos v ∓ sinu sin v = cos(u± v)

sinu cos v ± cosu sin v = sin(u± v).

Lemma 2. (sin θ − cos θ)/(cos θ + sin θ) = tan(−π/4 + θ)

Proof. The proof is almost identical to the proof for Lemma 1.

Theorem 1. The angular velocity of an agent in a well balanced attraction-orientation torus

with a complete topology is one-half the angular velocity of an agent in an attraction-only

torus.

Proof. We have previously shown that the angular velocity of an agent in an attraction-only

torus is ω = ±kπ/2. When we add orientation, ω becomes

ω = k(atan2(u)− θ) = k(atan2(uo + ua)− θ). (4.30)

To simplify this term we assume a well balanced torus, i.e.,

uo =

cos θ

sin θ

 . (4.31)

This basically means that we assume the agents are nicely spaced around the torus so that

when we compute

uoi =
vi +

∑
no
i
vj

‖vi +
∑

no
i
vj‖

(4.32)

the velocity vectors of the neighbors cancel out and we are left with uoi = vi.
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We also assume a complete topology. Thus,

ω = k

atan2


cos θ

sin θ

+
cg − pi
‖cg − pi‖

− θ
 . (4.33)

Without loss of generality, we assume that cg = [0, 0]T . To simplify the math, we also assume

that the angles are such that atan2 = arctan. Therefore, the atan2 term in Equation (4.33)

simplifies to

atan2


cos θ

sin θ

− pi
‖pi‖

 = arctan

 sin θ − y√
x2+y2

cos θ − x√
x2+y2

 (4.34)

= arctan

(
sin θ − sinψ

cos θ − cosψ

)
(4.35)

= arctan

(
sin θ ∓ cos θ

cos θ ± sin θ

)
(4.36)

where we have once again used the change of variables r =
√
x2 + y2, x = r cosψ, and

y = r sinψ (see Figure 4.3) to obtain (4.35). To arrive at (4.36) we use that fact that as an

agent moves along its circular trajectory

ψ = ±π/2 + θ (4.37)

where the sign depends on whether the agent is in a clockwise or counterclockwise orbit,

respectively. Thus,

cosψ = cos(±π/2 + θ) = ∓ sin θ (4.38)

and

sinψ = sin(±π/2 + θ) = ± cos θ. (4.39)
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Finally, by Lemma 1 and Lemma 2 we have

atan2


cos θ

sin θ

+− pi
‖pi‖

 = arctan(tan(±π/4 + θ)) (4.40)

= ±π/4 + θ (4.41)

Therefore the angular velocity of an agent in an attraction-orientation torus is

ω = k(±π/4 + θ − θ) (4.42)

= ±kπ/4. (4.43)

which is one-half the angular velocity of an attraction-only torus.

Corollary 1. The radius of an attraction-orientation torus with agent speed s and angular

velocity gain k is 4s/kπ, which is twice the radius of an attraction-only torus.

Proof. Given the constant angular velocity ω the time for an agent to complete one full

revolution is 2π/ω. The distance traveled is
2π

ω
· s which is equal to the circumference of the

agent’s orbit. Thus,

2πs

ω
= 2πr (4.44)

and the radius of the torus is

r =
s

ω
(4.45)

=
4s

kπ
. (4.46)

Thus, because the angular velocity of an attraction-only torus is twice as large as the angular

velocity of an attraction-orientation torus, the radius of an attraction-orientation torus is

twice the length of an attraction-only torus.
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4.4 Analysis of the flock attractor

The previous section showed that attraction dynamics along with a stationary centroid result

in a stable cyclic behavior. Based on these results we propose that the torus group type is

fundamentally caused by the attraction dynamics in the model and that the orientation and

repulsion dynamics simply cause agents in a torus to rotate in the same direction and avoid

collisions. In this section we propose that the flock group type is fundamentally caused by

the orientation dynamics in our model, with attraction and repulsion simply causing the flock

to stay cohesive but avoid collisions.

Consider a system with only orientation dynamics (ui = uoi ). The angular velocity θ̇

becomes

θ̇i = k

(
atan2

(
vyi +

∑
j

vyj , v
x
i +

∑
j

vxj

)
− θi

)
. (4.47)

We can approximate the right-hand side of Equation (4.47) using the following form of angular

averaging

θ̇i = k

(
θi +

∑
j θj

ni + 1
− θi

)
= k

(θi +
∑

j θj)− (ni + 1)θi

ni + 1

=
k

ni + 1

∑
j

(θj − θi) (4.48)

where ni is the number of neighbors of agent i. When the underlying orientation graph is

connected, (4.48) is known to cause all agents to converge to a common heading (see Chapter

2 in [34]). Thus, agents following the dynamics in Equation (4.48) will converge to a stable

flock.

It may seem that the flock is simply a torus with an extremely large radius. However,

the model dynamics contain no explicit reason for the flock to turn in one direction more

often than the other. To verify this empirically, we ran 10 simulations for 1,000,000 time

steps where the initial conditions were set to form a flock by setting all initial headings to

25



Figure 4.5: The trajectories of five simulations run for 100,000 seconds each with initial
conditions set to form a flock starting close to the origin.

θ = 0 with randomly placed initial positions within a 10× 10 area centered at the origin. We

plotted the trajectories of the centroids of several simulations to see whether there is any

kind of pattern in the movement of a flock that appears torus-like. The trajectories of five of

the simulations are shown in Figure 4.5.

These trajectories show that the movement of the flock is surprisingly random, and

there does not appear to be any evidence that the flocks move in large circles. To confirm

this observation we picked a single simulation and computed the distribution over the change

in heading for the group. This was done using consecutive group centroid measurements to

compute the group turning direction, ∆θg(t), as follows

∆θg(t) = atan2(cg(t+ ∆t)− cg(t))− atan2(cg(t)− cg(t−∆t)) (4.49)

where cg is the group centroid. Figure 4.6 shows the distribution over ∆θg for one of the

simulations. Other simulations were almost identical. There appears to be no preference for

the group to turn either right or left and the data appears to be normally distributed with
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Figure 4.6: The distribution of ∆θg over a single run for 100,000 seconds each with initial
conditions set to form a flock. N = 100, Ro = 8.

zero mean. Therefore, based on our mathematical and empirical analysis, we conclude that

the flock is a second distinct attractor of our swarm model.

4.5 Summary

We have shown that the swarm model presented in Section 3.1 exhibits hysteresis which

makes it difficult to change the collective behavior of the swarm through parameter changes.

We then demonstrated a set of parameters for the model that allow both a flock and a torus

to form with equal probability to facilitate changing the collective behavior of the group

with out requiring global parameter broadcasts or inter-agent communication. Finally, we

presented results that support our claim that the model has two fundamental attractors.

We claim that a torus is fundamentally caused by attraction dynamics, and that a flock is

fundamentally caused by orientation dynamics. Because our model uses both attraction and

orientation, both group types can emerge. Which group type emerges depends on the initial

conditions of the model as well as the radius of orientation which determines the relative

strength of attraction or orientation on the individual agents.
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Chapter 5

Measuring Human-Swarm Interactions

An important part of this thesis will involve measuring and quantifying human-

swarm interactions. Several researchers have proposed metrics for measuring human-robot

and human-swarm interactions. Olsen and Goodrich propose two metrics of human-robot

interaction: interaction time and neglect time [35]. Interaction time is defined as the time

it takes for a human to bring a robot’s performance to some desired level. Neglect time

is defined as the time it takes for the robot’s performance to fall below some threshold

when left unattended. We will focus mainly on applying the notion of interaction effort

to human-swarm interactions, but note that other work [36] also investigates the notion of

neglect time when applied to human-swarm interactions.

5.1 Interaction effort

Kerman proposes a metric for measuring human-swarm interaction called interaction effort

[36]. Interaction effort measures the number and duration of interactions required to bring a

robot swarm’s performance to some desired level. It is defined as

IE = M · IT (5.1)

where we use M as the number of agents receiving human influence and IT as the interaction

time. In this thesis we specifically define interaction time as the time it takes to reduce the

performance error of the swarm below some desired threshold. When controlling a robot

swarm, we measure the performance error as the swarm’s collective deviation from some
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desired behavior. For example, this could be the difference between the actual and desired

group type, group centroid, or group heading.

5.2 Observation effort

When observing samples from individual agents we want to measure the “effort” required to

determine the collective state of a swarm. We propose observation effort as a measure of the

bandwidth and time required to estimate a global or collective property of a swarm. In this

thesis we first focus on classifying the collective group type of a swarm. For classification

tasks, we define observation effort as the effort required to obtain a classification accuracy

above a certain threshold. Observation effort is calculated in terms of the number of agents

sampled and the length of time they are sampled and is measured in units of agents · seconds.

Mathematically, we define observation effort as

OE = Z ·OT (5.2)

where Z is the number of observed agents and OT is the observation time, the time required

to obtain a certain classification accuracy.

We also investigate using local samples from individual agents to estimate global

properties such as the group heading and group centroid. In this case we do not have an easy

way of measuring accuracy and instead measure the error of our estimate. Thus, we define a

metric similar to observation effort and call it estimation effort. Estimation effort (EE) is

defined as

EE = Z · ET (5.3)

where Z is the number of observed agents and ET is the estimation time, the time required

to reduce the estimation error below some threshold.
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Chapter 6

Characterization of Collective Behavior

In this chapter we examine several global indicators of the collective behavior of a

swarm and show how to classify these behaviors using local information from a small number

of agents. We present a naive Bayes classifier for detecting stable group types that achieves

high accuracy while requiring low observation effort. Finally, we present evidence for neglect

benevolence [37], the benefit of waiting for collective behaviors to stabilize before interacting

with the swarm, when classifying collective behaviors. Estimating the centroid and heading

of a swarm is investigated later in Chapter 7.

6.1 Global indicators of collective behavior

In Section 3.2 we introduced two different global measurements of collective behavior that

can be used to determine the group type (flock or torus) of a swarm: group polarization

and group momentum. However, neither of these measurements take into account the graph

structure of the agent interactions. We propose using the Fiedler eigenvalue of the underlying

graph topology formed by agent interactions as another way of measuring differences in a

swarm’s collective behavior. The underlying graph topology in multi-agent systems is known

to be important for the convergence of consensus protocols and the speed of consensus is

directly related to the magnitude of the Fiedler eigenvalue [4]. The Fiedler eigenvalue, νn−1,

is defined as the second smallest eigenvalue of the graph Laplacian and is a measure of

the connectedness of the graph [38]. The Laplacian L of an undirected graph is defined as
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Figure 6.1: The average Fiedler eigenvalue over 100 simulations of a flock and a torus. Results
show that the graph structure of the two group types are markedly different.

L = D − A where A is the adjacency matrix induced by the agent interactions and D is the

diagonal matrix with agent degrees along the diagonal.

Figure 6.1 shows the average Fiedler eigenvalues per simulation tick for flock and

torus group types started from random initial conditions. Because the agent interactions are

stochastic, the underlying graph is directed. To create an undirected graph representation of

the swarm we used the radius of orientation Ro = 8 to determine the neighborhood of each

agent where Aij = 1 if and only if ‖pi − pj‖ < Ro. The figure shows that there are some

transient dynamics for the first 300 ticks while the group types stabilize. After stabilizing,

the torus Fiedler eigenvalue is relatively constant, whereas the flock Fiedler eigenvalue is

much larger and has more variation. These results indicate that the Fiedler eigenvalue is a

good measure of the topological difference between the flock and the torus attractors of our

swarm model.

31



6.2 Local classification

Our model produces two stable group types: the flock group type and the torus group type.

We have discussed three global features that distinguish between these group types: group

polarization, group momentum, and the Fiedler eigenvalue. These metrics require collecting

information about every agent in the swarm and do not appear useful in the context of

scalable human-swarm interactions, where we assume we can only interact with a small

percentage of the agents. However, there are related local measures that can be used instead.

The group polarization and momentum are related to the individual agent headings and

angular velocities, respectively. The Fiedler eigenvalue, νn−1, of a graph is related to the

degree sequence (d1, d2, . . . , dn) of the graph by the following relationship [38]

0 ≤ νn−1 ≤
n

n− 1
δ ≤ n

n− 1
d̄ (6.1)

where δ = min(d1, d2, . . . , dn), d̄ = 1
n

∑n
i di, and the degree of an agent is given by the number

of neighbors it interacts with. This relationship shows that νn−1 is bounded above by the

minimum and average degree, which can both be estimated by sampling individual agent

degrees.

We propose that a small sample of agent angular velocities and numbers of neighbors

(degrees) provides sufficient information to detect the group type of the swarm. Angular

velocity from a few agents is used to determine whether the agents are turning at approximately

the same rate (torus) or moving straight (flock). The degree, or number of neighbors, of

a few agents indicates whether the swarm’s graph structure has high (flock) or low (torus)

connectivity. We have chosen to focus on these two features because neither require any kind

of localization or shared frame of reference—they only require that an agent knows how fast

it is turning and how many other agents are nearby. We assume that the angular velocity is

estimated using a single-axis gyroscope, or using dead reckoning. We further assume that the

32



GROUP 
TYPE

Angular 
Velocity

# Neighbors

z z

Figure 6.2: Bayesian network for group type classification using samples of local information
from Z agents.

number of neighbors is estimated using some kind of computer vision system. We leave the

details as future work.

6.3 Bayesian classification of swarm group type

We make the Naive Bayes assumption that all features are conditionally independent given

the group type resulting in the graphical model shown in Figure 6.2. Using the two local

features discussed in Section 6.2, number of neighbors and angular velocity, we compute the

Bayesian optimal decision of the actual group type, typeg as follows

typeg = argmax
type

P (type)
OT∏
ts=1

Z∏
i=1

P
(
di(ts)

∣∣ type)P(ωi(ts) ∣∣ type) (6.2)

where type ∈ {clockwisetorus, counterclockwisetorus, flock}, OT is the observation time,

Z is the number of agents sampled, and di(ts) and ωi(ts) are the degree and angular velocity

of agent i sampled at time ts, respectively. Equation (6.2) selects the group type that has

maximum probability given the prior probabilities of the group types and the observed local

features in Figure 6.2, namely, agent degrees and angular velocities. The individual likelihoods

P
(
d
∣∣ type) and P

(
ω
∣∣ type) are learned from training data.
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6.4 Group type classification data sets

To evaluate the accuracy of group type classification we created a training and a test set,

both consisting of simulations for the flock and torus group types. We then evaluated the

accuracy of several different classifiers. All simulations used the parameters discussed in

Section 4.2.

6.4.1 Training data

To obtain data to model the numbers of neighbors and angular velocities of the flock and

torus group types we ran three experiments: one for the flock, one for the clockwise torus,

and one for the counterclockwise torus. Each experiment consisted of 100 replicates of 100

seconds each. For the flock simulations each agent’s initial heading was set to θ = 0 and the

agents’ starting locations were randomly chosen in the interval [−10, 10]× [−10, 10]. These

parameters were used because we found that they ensured that the swarm formed a flock.

The initial positions for the torus simulations were also chosen randomly, but the initial

headings were chosen such that

θi = atan2(yi, xi)±
π

2
(6.3)

where the sign of π/2 was chosen depending on the desired orientation of the torus. This was

done to ensure that the swarm formed a torus. For each simulation we let the group type

stabilize for 25 seconds and then recorded the number of neighbors and angular velocity for

each agent in the group.

6.4.2 Test data

We created a test set by running 100 replicates with random initial headings and positions

so that each simulation could produce either a flock or a torus. Out of the 100 simulations,

53 formed a torus and 47 formed a flock where the convergence was checked using the final
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Mean Standard Deviation
Counterclockwise Torus 10.1172 2.8638

Clockwise Torus 10.1061 2.8592
Flock 28.9906 7.7746

Table 6.1: The sample mean and standard deviation for the distributions of number of
neighbors over natural group types.

mgroup and pgroup for each replicate. A simulation was labeled as a torus if mgroup > 0.75 and

pgroup < 0.25. A simulation was labeled as a flock if mgroup < 0.25 and pgroup > 0.75.

6.5 Description of classifiers

In the following sections we examine several different classifiers and compare the resulting

classification accuracy and observation effort of each classifier. We first look at the problem

of classifying the swarm’s group type as either a flock or a torus, ignoring the rotation of the

torus. We investigate the classification accuracy and observation effort when only using the

number of neighbors as a feature, when only using absolute angular velocity as a feature, and

when using both features together. We then look at the problem of classifying the swarm’s

group type as either a flock, a clockwise torus, or a counterclockwise torus. We investigate the

classification accuracy and observation effort when only using angular velocity as a feature

and when using both the number of neighbors and angular velocity as features.

6.6 Classification using number of neighbors

We first consider the problem of group type classification using only the number of neighbors

as a feature. Using our training data we computed sample means and sample standard

deviations of the different group types as shown in Table 6.1. As expected, we see that

because of the symmetry in the model, the statistics for counterclockwise and clockwise

torus group types are essentially identical. Because of this symmetry, we arbitrarily chose

to use the statistics for the counterclockwise torus as typifying the statistics for a general
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Figure 6.3: Distributions over an agent’s number of neighbors in torus and a flock. N = 100
agents.

torus formation, regardless of the orientation. The actual sampled numbers of neighbors

in the training data are plotted as histograms in Figure 6.3 where the frequencies have

been normalized to obtain probabilities. This figure shows visually that each distribution

has a unique mean and standard deviation and that that there is some overlap between

the distributions, mainly between 10 and 20 neighbors. Because sampling the number of

neighbors of agents in the swarm gives us no information about the orientation of the torus,

we will only be able to perform a binary classification to detect whether the swarm is in the

flock or torus formation.
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6.6.1 Naive Bayes formulation

To perform classification using only samples of number of neighbors, we used the following

reduced version of Equation (6.2) to determine the group type

typeg = argmax
type∈{torus,flock}

P (type)
OT∏
ts=1

Z∏
i=1

P
(
di(ts)

∣∣ type) (6.4)

= argmax
type∈{torus,flock}

OT∑
ts=1

Z∑
i=1

logP
(
di(ts)

∣∣ type) (6.5)

where di(ts) is the degree or number of neighbors of agent i at sample time ts, OT is the

observation time, and Z is the number of distinct agents sampled. The second line results from

using log probabilities and from the fact that our test data was produced using simulation

parameters that have an equal chance of producing a flock or torus. Thus, we assume

P (torus) = P (flock) = 1/2. Logarithms are used to avoid loss of precision.

To use Equation (6.5) we need to estimate the likelihood P
(
d
∣∣ type) of an agent

having a certain number of neighbors d, given that the group is in a torus or a flock formation.

To do this we use a simple maximum likelihood estimate using normalized counts from the

training data. This results in the estimate

P (d | type) =
Count(d, type)∑N−1
j=0 Count(j, type)

. (6.6)

where d is the number of neighbors and type ∈ {torus, flock}.

6.6.2 Classification accuracy and observation effort

Because the test data is generated from simulations that started at random initial conditions,

there can be a large amount of transient behavior before the group type stabilizes. To give

ample time for a group type to form we gave the simulations 90 seconds to form and used the

last 10 seconds (100 time steps) for computing the classification accuracy and observation
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Figure 6.4: Group type classification accuracy as the number of agents sampled, Z, increases
for different observation times, OT . Results are for classifying whether the group type is a
torus or flock using the number of neighbors as the only feature. N = 100 agents.

effort. We experimented with values of Z ranging from 1 to 10 and OT ranging from 1 to

100. Figures 6.4 and 6.5 show the classification accuracy over different values of Z and OT .

Figure 6.4 shows that, as Z increases, the accuracy quickly reaches 100% on the test

set. Furthermore increasing the observation time OT for a particular value of Z tends to also

increase the accuracy. It is surprising that, once 5 or more agents are sampled, the detection

algorithm correctly classified every group type in the test set regardless of the length of

observation time. Also interesting to note is that when sampling for 15 time steps, data from

only 2 agents was sufficient to achieve 100% accuracy on the test set.

Figure 6.5 shows the classification accuracy as a function of observation time for Z

between 1 and 5. Interestingly, the results show that for Z = 1 increasing the observation

time is not beneficial past an observation time of 5 and that the accuracy varies between

87 and 88% for Z = 1 and OT ≥ 5. The reason for this is explored further in Section
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Figure 6.5: Group type classification accuracy as observation time, OT , increases for different
numbers of agents sampled, Z. Results are for classifying whether the group type is a torus
or flock using the number of neighbors as the only feature. N = 100 agents.

6.6.3. The variations in accuracy occur because the number of neighbors is stochastic so

the classifier may switch back and forth between classifying the swarm as a torus or as a

flock as new samples are added. For Z > 1 we see that increasing observation time resulted

in 100% accuracy for OT ≥ 15. Additionally sampling 5 or more agents resulted in perfect

classification accuracy even for OT = 1. These results show that even for a severely limited

bandwidth of Z = 2, very high accuracy can be achieved if time constraints allow sampling

the agents several times. These results also show that if more bandwidth is available, then

high accuracy can be achieved even faster by simply taking a small number of samples from

multiple agents.

To compute the observation effort for group type detection using the number of

neighbors, we computed the observation time needed to first reach a certain accuracy µ for

a given number of agents sampled. If the accuracy never reached the threshold µ then the

observation effort was deemed infinite. The results of this analysis are shown in Figure 6.6.
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Figure 6.6: Observation effort for group type classification over different accuracy thresholds
µ when using the number of neighbors sampled from Z agents. Using Z = 1 never resulted
in the desired accuracy so the observation effort was infinite and is not shown. Results are
for N = 100 agents.

Analyzing the observation effort shown in Figure 6.6 we see that the observation effort is

strictly increasing and identical for Z ≥ 5 for µ = 90, 95, and 100%. The larger observation

efforts for Z = 2, 3, and 4 are because the accuracy did not reach 100% on the test set until

OT = 15. The sharp drop off from Z = 4 to 5 is because for Z ≥ 5, 100% accuracy was

achieved using only one sample from each agent. Table 6.2 summarizes the values of Z that

minimized observation effort for the different thresholds µ.

µ = 90% µ = 95% µ = 100%
Minimum OE 2 3 5

Corresponding Z 2 3 5

Table 6.2: Values of Z that minimized observation effort for µ = 90, 95, and 100% accuracy
on the test set using only the number of neighbors as a feature.

We see that there is an exact correspondence between OE and Z. It makes sense that

there is a linear relationship between OE and Z because samples from a single agent will
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typically be very similar over a short period of time. On the other hand, sampling from more

agents will result in local samples from different areas of the swarm, so increasing Z rather

than OT results in a more uniform sampling of the swarm resulting in better classification

accuracy.

6.6.3 Error analysis

We performed a detailed error analysis on a few of the results for group type classification

using only the number of neighbors. We summarize some of the main results here and refer

the reader to Appendix B.1 for more details.

We found that using only the number of neighbors as a feature results in a classification

bias toward misclassifying a flock as a torus when Z = 1 or 2. Examining the simulations

from the test set that were incorrectly classified, we found that the main reason that a flock

is often misclassified as a torus turns out to be the long thin tail that often forms behind

a flock when agents start from random initial conditions. As shown in Figure 6.7, when

sampled agents are in the tail they have fewer neighbors and our classifier selects torus as

the most likely group type. It should be noted, however, that given enough time the flock

will fully clump together eliminating the long tail and forming a flock similar to that shown

in Figure 2.1(c). We also found several instances where misclassifications occurred because of

the inherent noise caused by our stochastic topology—agents occasionally have a much larger

(or smaller) number of neighbors than is typical for a certain group type.

Based on these common common errors when sampling only a few agents, we see that

adding in additional information about the agent’s angular velocity would appear to improve

the probability of detection. Additionally, as shown by the results in figures 6.4 and 6.5,

we see that increasing the number of agents sampled provides a large increase in accuracy,

but because agents in a long tail will take time to catch up to the group, simply sampling

one agent multiple times does not have a significant impact on accuracy. These results also

show that our classification method based on an agent’s number of neighbors is robust to
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Figure 6.7: An agent sampled (the green disc) from the long tail of flock has fewer neighbors
(the 2 red triangles) than those in the main clump of the flock resulting in the misclassification
of the flock as a torus.

Mean Standard Deviation
Counterclockwise Torus 0.3829 0.2001

Clockwise Torus -0.3829 0.1996
Flock -0.0004 0.6869

Table 6.3: The sample mean and standard deviation for the distributions of angular velocity
shown in Figure 6.8

the inherent noise caused by our stochastic topology as long as we can sample from multiple

agents.

6.7 Classification using angular velocity

The angular velocities from the training data are plotted as histograms in Figure 6.8. The

cut-off for angular velocity, as mentioned in Section 3.1, is kπ which in our case works out to

be π/2 ≈ 1.5708. This is the reason for the sharp cut-offs shown in Figure 6.8. The sample

means and sample standard deviations of each group type in the training data are reported

in Table 6.3.
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Figure 6.8: Distributions over an agent’s angular velocity (radians/second) in a clockwise
torus, counterclockwise torus, and a flock. Simulation parameters were N = 100, Ro = 8,
Rr = 1, s = 5, k = 0.5.

The statistics for the angular velocity of a flock are very intuitive; the average is

almost zero and the there is a large deviation caused by agents moving around in the swarm.

The statistics for the counterclockwise and clockwise torus are less intuitive, but make sense

after doing some analysis. As shown in Section 4.3.2, when orientation is added to attraction

the angular velocity is ±kπ/4 ≈ ±0.3927. Accounting for the effects of the random topology

and repulsion we see that a sample mean of 0.3829 is very close to our theoretical result and

provides a good sanity check for the results we have obtained. Because of the symmetry in

the model we also see that the distributions for the clockwise and counterclockwise torus

formations are simply mirror images of each other.

When using samples of angular velocity we have two choices, we can take the absolute

angular velocity and perform binary classification between a flock and a torus or we can use
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Figure 6.9: Distributions over an agent’s absolute angular velocity (radians/second) in a
torus and a flock. Simulation parameters were N = 100, Ro = 8, Rr = 1, s = 5, k = 0.5.

Sample Mean Sample Standard Deviation
Torus 0.3996 0.1644
Flock 0.5608 0.3967

Table 6.4: The sample mean and variance of the absolute angular velocity of agents in a flock
and torus.

signed angular velocities to actually detect the rotation of the torus. We first consider using

only absolute angular velocity as a feature.

6.7.1 Absolute angular velocity

Figure 6.9 shows a histogram of the absolute angular velocities for the flock and torus

formations. Table 6.4 shows the sample mean and standard deviations. We used the

following classification scheme

typeg = argmax
type∈{torus,flock}

OT∑
ts=1

Z∑
i=1

logP
(
|ωi(ts)|

∣∣ type) (6.7)
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where ωi(ts) is angular velocity of agent i at sampling time ts. To obtain an estimate of

P
(
|ω|
∣∣ type), we first tried using normal distributions to model the angular velocity, but

found that simply discretizing the angular velocity and using normalized counts achieved

better accuracy. For this reason we only report the latter results. Additionally, discretizing

the angular velocity distributions allows us to easily combine angular velocity (a continuous

feature) with number of neighbors (a discrete feature). To discretize angular velocity we

binned the data every 0.1 radians from 0 to 1.6 creating a discretization of 16 bins. This

corresponds to bin widths of 5.7296 degrees/second. We took each sample of angular velocity

for each group type from the training data, took the absolute value, and then created a

discrete probability distribution by binning all of the training data and normalizing the

counts to compute probabilities.

6.7.2 Classification accuracy and observation effort

The resulting classification accuracies using discretized absolute angular velocity are shown

in figures 6.10 and 6.11. Figure 6.10 shows that there is a definite increase in accuracy as Z

and OT increase but that the classification accuracy is lower than for number of neighbors.

Figure 6.11 shows that increasing observation time when sampling absolute angular velocity

increases classification accuracy more than when sampling the number of neighbors, but that

it does not reach 100% very quickly. Interestingly for Z = 1, increasing the observation time

raises the accuracy from 69% to 98%, whereas for number of neighbors the accuracy for Z = 1

started at 82% accuracy but only increased to 88% when observation time was increased.

Our previous error analysis showed that this occurred because occasionally the single agent

sampled from the swarm was in the long thin tail of the flock as shown in Figure 6.7. Because

the simulations were only run for 100 seconds this did not allow enough time for the tail to

catch up to the main body of the flock and resulted in low samples of numbers of neighbors

for the entire simulation. On the other hand, agents in the tail of a flock move in a relatively

45



1 2 3 4 5 6 7 8 9 10

0.7

0.75

0.8

0.85

0.9

0.95

1

NumberZofZAgentsZSampledZ=Z)

C
la

ss
if

ic
at

io
n

ZA
cc

u
ra

cy

OT=1
OT=2
OT=5
OT=10
OT=15

Figure 6.10: Group type classification accuracy as the number of agents sampled, Z, increases
for different observation times, OT . Results are for classifying whether the group type is a
torus or flock using absolute angular velocity as the only feature. N = 100 agents.
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Figure 6.11: Group type classification accuracy as observation time, OT , increases for different
numbers of agents sampled, Z. Results are for classifying whether the group type is a torus
or flock using absolute angular velocity as the only feature. N = 100 agents.
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Figure 6.12: Observation effort for group type classification for different accuracy thresholds
when sampling absolute angular velocity from Z. Results are for N = 100 agents.

µ = 90% µ = 95% µ = 100%
Minimum OE 6 8 22

Corresponding Z 8 3 11

Table 6.5: Values of Z that minimized observation effort (OE) for µ = 90, 95, and 100%
accuracy on the test set using only absolute angular velocity as a feature.

straight line in order to catch up with the body of the flock. Thus, absolute angular velocity

samples are close to zero and result in a higher classification accuracy over time when using

absolute angular velocity as a feature with Z = 1.

Figure 6.12 shows the observation effort for group type classification using absolute

angular velocity. Analyzing the observation effort shown in Figure 6.12 we see that there is

much more variation in observation effort over the test set when sampling angular velocity

than was found when sampling the number of neighbors. Additionally, we see that for Z = 1

the observation effort is finite for µ = 90% and µ = 95%. Table 6.5 summarizes the values of

Z that minimized observation effort for the different thresholds µ. Unlike classification when

using number of neighbors, we see that there is not a strict linear relationship between OE
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and Z. Additionally, we see that the observation effort required when using only absolute

angular velocity is significantly higher than classification using only the number of neighbors.

The reader is referred to Appendix B.2 for more details on the classification errors.

6.8 Combining number of neighbors and absolute angular velocity

The previous sections showed that both the number of neighbors and the absolute angular

velocity can be used individually to classify a swarm’s group type. We also showed that using

only number of neighbors as a feature requires a smaller observation effort than using only

absolute angular velocity. We investigated using both features in one classifier to see if we

could achieve higher accuracy than using them individually. However, we found that the

resulting classification accuracy and observation effort were nearly identical to those reported

in Section 6.6.2 when using the number of neighbors as the only feature. Based on these

results and the results from Sections 6.6 and 6.7, we conclude that using only the number of

neighbors as a feature is sufficient for accurate group type classification with low observation

effort if only torus or flock distinction is required.

6.9 Classifying group type and rotation

We next turn to the task of classifying the orientation of the torus group type. We define two

rotations for the torus: counterclockwise and clockwise. Despite the high accuracy and low

observation effort that results from using the number of neighbors to classify the group type,

sampling numbers of neighbors gives us no information regarding the collective rotation of

the swarm. Thus, sampling angular velocity becomes a critical feature if we want to classify

group type rotation.

To determine the true orientation of a swarm we checked the group momentum and

group polarization to determine whether it was a torus and then computed the sum of the

sign of the final angular velocities. If that sum was less than zero we designated the group

type as a clockwise torus and if the sum was positive we designated the group type as a
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Figure 6.13: Group type classification accuracy as the number of agents sampled, Z, increases
for different observation times, OT . Results are for classifying the group type and rotation
using angular velocity as the only feature. N = 100 agents.

counterclockwise torus. We examined our test set and found that out of the 53 simulations

that formed a torus, 26 formed a clockwise torus and 27 formed a counterclockwise torus.

6.9.1 Classification using only angular velocity

We first investigated how well angular velocity does in classifying between a flock and the two

possible rotations for a torus. Once again we discretized angular velocity values using bins

widths of .1 radians from -1.6 radians to 1.6 radians resulting in 32 bins. The classification

accuracies are shown in figures 6.13 and 6.14. Examining Figure 6.13 we see that classification

accuracy increases quickly as Z increases and reaches 100% accuracy for OT > 1 for Z ≥ 8.

Figure 6.14 shows that increasing OT increases the classification accuracy for all values of Z.

Additionally, we see that for all Z values shown, the accuracy reaches 100% as OT increases.

Interestingly, the classification accuracy when using signed angular velocity to detect group
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Figure 6.14: Group type classification accuracy as observation time, OT , increases for different
numbers of agents sampled, Z. Results are for classifying the group type and rotation using
angular velocity as the only feature. N = 100 agents.

µ = 90% µ = 95% µ = 100%
Minimum OE 3 4 22

Corresponding Z 3 4 11

Table 6.6: Values of Z that minimized observation effort (OE) for µ = 90, 95, and 100%
accuracy on the test set using only angular velocity as a feature.

type and group rotation is actually better than using absolute angular velocity to distinguish

between a flock and a torus.

The observation effort is shown in Figure 6.15. We see that the observation effort is

actually defined for Z = 1 for all thresholds µ which was not the case for either number of

neighbors or absolute angular velocity. Table 6.6 summarizes the values of Z that minimized

observation effort for the different thresholds µ. The reader is referred to Appendix B.3 for a

more detailed error analysis.
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Figure 6.15: Observation effort when classifying group type and rotation using angular
velocity sampled from Z agents and for different accuracy thresholds µ. Results are for N =
100 agents.

6.10 Combining angular velocity and number of neighbors to classify group

type and rotation

For this final classifier we used both the number of neighbors and the discretized angular

velocity as features in order to classify the group type and torus rotation. The classification

accuracy results are shown in figures 6.16 and 6.17. These results show that adding number

of neighbors as a feature dramatically increases the accuracy as number of agents sampled

increases. It is interesting to note that, while combining angular velocity and the number of

neighbors allows tri-group type detection with very high accuracy for small OT , Figure 6.17

shows that the classification accuracy never rises above 89% when Z = 1. Thus, we run into

the same problem we had when doing binary group type classification: sampling a single

agent in the tail of a flock lowers the classification accuracy. However, the results show that

this classifier achieves a higher accuracy than the other classifiers we have considered, as long

as we can sample from more than one agent.
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Figure 6.16: Group type classification accuracy as the number of agents sampled, Z, increases
for different observation times, OT . Results are for classifying the group type and rotation
using both angular velocity and number of neighbors. N = 100 agents.
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Figure 6.17: Group type classification accuracy as observation time, OT , increases for different
numbers of agents sampled, Z. Results are for classifying the group type and rotation using
both angular velocity and number of neighbors. N = 100 agents.
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Figure 6.18: Observation effort when classifying group type and rotation using angular
velocity and number of neighbors sampled from Z agents and for different accuracy thresholds
µ. Observation for µ = 90% and µ = 95% are identical. Results are for N = 100 agents.

The observation effort is shown in Figure 6.18. The observation effort shown in

Figure 6.18 is also interesting. The observation effort is identical for µ = 90% or µ = 95%,

and for Z ≥ 5 there is no difference between the observation effort for any of the three

thresholds examined. As with our other classifiers that used number of neighbors, observation

effort for Z=1 is undefined. Table 6.7 summarizes the values of Z that minimized observation

effort for the different thresholds µ. Interestingly, we see that the observation effort required

µ = 90% µ = 95% µ = 100%
Minimum OE 2 2 5

Corresponding Z 2 2 5

Table 6.7: Values of Z that minimized observation effort (OE) for µ = 90, 95, and 100%
accuracy on the test set using angular velocity and the number of neighbors as features.

to classify three group types using angular velocity and number of neighbors with µ = 95%

is actually lower than the observation effort for classifying two group types using only the

number of neighbors. Comparing the results in Table 6.7 with the previous results shown
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in tables 6.2, 6.5, and 6.6, we see that using the number of neighbors and angular velocity

achieves the lowest observation effort for group type classification.

6.11 Neglect benevolence for group type classification

In this section and the following section we investigate how group type classification accuracy

changes depending on when we sample from agents. Walker and Lewis use the term neglect

benevolence [37] to denote the benefit of waiting for a swarm to stabilize before interacting

with the swarm. Because the torus and flock group types exhibit transient behaviors and take

time to fully form, this section investigates whether our model exhibits neglect benevolence

when classifying the collective behavior of a swarm.

Group momentum and group polarization are good indicators of the current behavior

of a swarm, but they don’t tell us anything about group spatial structure. For instance, a

flock will have a high polarization and low momentum regardless of whether or not it has a

long tail. Additionally, a torus may have a high momentum and low polarization before agents

have spaced out evenly around its perimeter. To investigate these properties we calculate the

coverage gap [36] and group elongation [39] of the swarm. The coverage gap of a swarm is

a measure of the dispersion of the agents around the group centroid. The coverage gap is

defined as the largest angular gap in the swarm relative to the group centroid. The details

of how to compute the coverage gap are shown in Algorithm 1. When the coverage gap is

minimized we know the torus is fully formed because agents will be maximally dispersed

around the torus perimeter. The group elongation, ζg, of a swarm is defined as

ζg(t) = max
i,j
‖ci(t)− cj(t)‖. (6.8)

This tells us the length of the smallest bounding square that will fully enclose the swarm.

To allow the group types of our model to fully form, we ran 100 simulations for 400

seconds with random initial headings and positions. We visually checked all the simulations
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Algorithm 1 Coverage gap calculation

Input: the agent positions, positions
cg ← 1

N

∑
i positionsi

r ← (positions− cg)
coverageGap ← 0
for i = 1 : N do

angle(i) = atan2(r(i, 2), r(i, 1))
end for
angle← sort(angle)
for i = 1 : N − 1 do

if |angle(i)− angle(i+ 1)| > coverageGap then
coverageGap ← |angle(i)− angle(i+ 1)|

end if
end for
if |angle(N)− angle(1)− 2π| > coverageGap then

coverageGap ← |angle(1)− angle(N) + 2π|
end if
return coverageGap

Mean Standard Deviation Max
Flock Elongation 14.8854 units 1.6211 units 19.2876 units
Torus Elongation 31.3510 units 1.0317 units 34.9779 units

Flock Gap 0.3177 rad (≈ 18.2 deg) 0.0767 rad (≈ 4.4 deg) 0.5403 rad (≈ 31 deg)
Torus Gap 0.2575 rad (≈ 14.8 deg) 0.0548 rad (≈ 3.1 deg) 0.4538 rad (≈ 26 deg)

Table 6.8: Statistics for group elongation and coverage gap for a fully formed flock and torus.

and found that every simulation had converged to either a flock or a torus by the end of the

simulation and that there were no tails in any of the flock simulations. We then used the

final state of each simulation to compute the average group elongation and coverage gap for a

flock and a torus. Out of the 100 simulation runs there were 59 torus formations and 41 flock

formations that formed from random initial conditions. The means and standard deviations

for the group elongation and coverage gap are shown in Table 6.8.

We used the maximum flock and torus elongation and the maximum flock and torus

coverage gap after 400 seconds as the upper bound on when a group has fully formed. Using

this information we computed how long it took each flock and torus simulation to fully form

from random starting conditions by measuring the amount of time it took before the group

55



Mean Standard Deviation Max
Flock Elongation Stabilization Time 204.75 seconds 72.39 seconds 339.2 seconds
Torus Elongation Stabilization Time 41.31 seconds 11.3 seconds 81.8 seconds

Flock Gap Stabilization Time 41.32 seconds 42.28 seconds 168.2 seconds
Torus Gap Stabilization Time 28.22 seconds 14.26 seconds 70.1 seconds

Table 6.9: Statistics for the time required for a flock or a torus to fully form when using
either the group elongation or the group coverage gap as a measure of how well the group
has formed. The times reported were calculated by finding the first time that the group
elongation or coverage gap was below the corresponding maximum value reported in Table
6.8.

elongation or coverage gap dropped below the upper bound. Table 6.9 shows the results

for group elongation stabilization time and coverage gap stabilization time. We waited 10

seconds before checking the coverage gap and elongation so that the effect of the initial

placement was mitigated.

The results in Tables 6.8 and 6.9 show that the torus elongation is about twice as

large as the flock elongation when both are fully formed. We also see that it takes almost

5 times longer for a flock to fully form than for a torus, when started from random initial

conditions. As discussed in Section 6.6.3, this is because a flock typically has long tail of

agents trying to catch up to the main body of the flock. Because of the natural movement

of agents in the flock, the main body of the flock moves slower than an individual agent so

agents in the tail eventually catch up to the flock if given enough time.

We also investigated how pgroup and mgroup change over time for the flock and the

torus. The average pgroup and mgroup over time is plotted in Figure 6.19. Figures 6.20 and

6.21 also show the average group elongation and coverage gap for the same simulations.

We see in Figure 6.19 that the torus and flock formations form quickly, usually in about 50

seconds, in terms of mgroup and pgroup. However, looking at figures 6.20 and 6.21 we see that

the torus elongation stabilizes after about 50 seconds and the coverage gap stabilizes after
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Figure 6.19: Average group angular momentum (mgroup) and group polarization (pgroup) for
a flock and a torus started from random initial conditions.

about 75 seconds. As noted before, the time until the flock elongation stabilizes is much

longer than for a torus.
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Figure 6.20: Average group elongation over time for a flock and a torus started from random
initial conditions.
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Figure 6.21: Average group coverage gap over time for a flock and a torus started from
random initial conditions.
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Figure 6.22: Neglect benevolence for classifying between clockwise torus counterclockwise
torus and flock using one sample (OT = 1) of the number of neighbors and the angular
velocity from Z agents. Sample Time represents the simulation time at which the samples
were taken, or in other words the time before any samples were taken.

Based on these results, we decided to compare classification accuracies for waiting

to sample until after 5, 50, 100, 150, 200, 250, 300, and 350 seconds of simulation time

have passed. We used the classifier discussed in Section 6.10 to classify both the group type

and rotation of the swarm using both the number of neighbors and the angular velocity as

features.

The classification results are shown in Figure 6.22. We see that our classifier does

exhibit neglect benevolence as shown by the general increase in accuracy as the initial

sampling time increases. Accuracy increases dramatically between initial sample times of

5 and 50 seconds. This corresponds with our earlier analysis that distinct group types are

usually formed after 50 seconds, although flocks will often still have long tails. Additionally,

when samples were taken after waiting 350 seconds, just sampling once from one agent was

sufficient to achieve 100% accuracy on the test set.
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6.12 Classification during transient behavior

The results of the previous section show that allowing a group type to fully form has a

large impact on classification accuracy. In this section we investigate more thoroughly how

our classifier performs in the presence of transient behaviors. To do this we evaluated the

classification accuracy at 5 second intervals from 5 to 100 seconds of simulation time. We

started sampling after 5 seconds of simulation time to mitigate the effects of initial positions

and headings and to allow the group type to begin forming. This resulted in 20 different

classification accuracies that we can compare to see how accuracy changes as the different

group types emerge. By 100 seconds all the group types will be formed—flocks will be formed,

but will have tails—and as shown in previous sections, we can achieve good classification

accuracies.

We used the final version of our classifier (as discussed in Section 6.10) that uses

both the number of neighbors and the angular velocity of sampled agents to classify between

the clockwise torus, counterclockwise torus, and flock group types. Because of the transient

behavior of the swarm at the beginning of the simulation we decided to fix OT = 1 and

increase the sample size only by sampling from different agents. For an emerging group type,

newer samples should contain more information than the previous samples, so we classified

the group behavior based only on the most recent samples taken. We compared values of Z

equal to 1, 2, 5 and 10.

The classification results are shown in Figure 6.23. We see that the classifier performs

extremely poorly when sampling once after only 5 seconds of simulation time. The likely

reason for this is that many times an elongated flock-like transient forms and then flips into a

torus. While the distribution over number of numbers for the elongated group is similar to a

torus, detecting the future rotation is difficult the classifier performs poorly. Also, simulations

that actually form flocks tend to start off with a large group elongation (see Figure 6.20)
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Figure 6.23: Accuracy for classifying between clockwise torus counterclockwise torus and
flock using one sample (OT = 1) of the number of neighbors and the angular velocity from Z
agents.

resulting in agents having fewer neighbors and the group type being initially classified as a

torus.

We examined the classification errors for sampling after 10 seconds with Z = 1 and

found that 89 out of the 100 total simulations were classified as a torus when, in fact, only 41

of the simulations eventually formed into flocks. However, if we wait for 30 seconds before

sampling and use Z = 5 we see a significant improvement in classification accuracy. Thus,

we conclude that while it is highly beneficial to wait for group types to form, group types

can be classified with moderate accuracy early in the simulation while only sampling from a

small percentage of the agents. The confusion matrices for Z = 1 at time 10 and Z = 5 at

time 30 are included in Appendix B.4.
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Number of Neighbors
N Group Type Mean Standard Deviation

100
Torus 10.1172 2.8638
Flock 28.9906 7.7746

200
Torus 19.1990 4.1436
Flock 47.1909 12.1803

300
Torus 27.0929 5.2523
Flock 62.3854 15.8488

400
Torus 34.3937 6.2799
Flock 75.9801 19.0570

Table 6.10: The sample mean and standard deviation for the distributions of number of
neighbors as the size of the swarm, N , increases.

6.13 Potential scalability to larger group sizes

To investigate the potential scalability of group type classification to larger swarms without

actually replicating the previous analyses, we calculated statistics for the number of neighbors

and angular velocity of agents in a flock and torus of size N = 200, 300, and 400 with

Ro = 8, k = .5 and s = 5. 100 replicates were performed for each parameter setting and each

simulation was run for 100 seconds. The first 25 seconds were ignored to allow the group to

stabilize.

Tables 6.10 and 6.11 show the mean and standard deviation for N = 100–400. These

results show that the distributions over an agent’s number of neighbors and angular velocity

continue to be distinct for larger group sizes. Based on these results we hypothesize that

accurate group type classification from limited samples is possible with low observation effort

for larger groups. Future work should validate this claim.

6.14 Summary

We have demonstrated that the collective behavior of a swarm can be accurately classified

using samples from a small percentage of agents in a swarm. Our results show that using a

classifier based only on the number of neighbors is sufficient to achieve high classification
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Angular Velocity
N Group Type Mean Standard Deviation

100
Torus 0.3829 0.2001
Flock -0.0004 0.6869

200
Torus 0.3805 0.2494
Flock -0.0005 0.7225

300
Torus 0.3704 0.3196
Flock 0.0002 0.7399

400
Torus 0.3601 0.3726
Flock 0.0001 0.7517

Table 6.11: The sample mean and standard deviation for the distributions of angular velocity
as the size of the swarm, N , increases.

accuracy and low observation effort for discriminating between flock and torus group types.

Angular velocity works well for discriminating between a flock, a clockwise torus, and a

counterclockwise torus; however, using a classifier based only on sampling angular velocity

appears to be beneficial only when bandwidth is severely limited. If observing multiple

agents is possible, we have shown that combining samples of the number of neighbors with

samples of angular velocity achieves higher classification accuracy and lower observation

effort on the test set than any other classifier described in this chapter. We showed that

our classifier is robust to group types that are not fully formed, the inherent noise from our

stochastic topology, and the precision loss that occurs when discretizing angular velocity.

Additionally, we demonstrated the existence of neglect benevolence when performing group

type classification.
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Chapter 7

Estimation of Collective State

In Chapter 6 we demonstrated that, with high accuracy and low observation effort, the

group type of a swarm can be classified using samples of a few agents’ number of neighbors

and angular velocity. The classification was done using only features that did not require self

localization or any kind of global reference frame. In this chapter we relax that assumption

and assume that, in addition to the number of neighbors and angular velocity, we can

sample agent positions and headings. Using this new information we propose several ways of

estimating the group centroid and group heading of the swarm using a limited number of

local samples. We first present results for estimating the group heading and centroid of a

flock and then present results for estimating the centroid of a torus. We assume that the

group type has already been detected using the methods discussed in the previous chapter.

7.1 Collective state estimation for a flock

Because the flock group type is characterized by agents forming a tight cluster and all moving

in the same direction, we can use relatively simple and straightforward estimates of the group

centroid and group heading.
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7.1.1 Centroid estimation

To estimate the centroid of a flock, we simply find the centroid of the observable agents and

use this to calculate ĉg, an estimate for the actual group centroid cg, as follows

ĉg =
1

Z

Z∑
i=1

ci. (7.1)

We measure the error as

error = ‖ĉg − cg‖ (7.2)

where cg is the actual group centroid. To empirically measure this error, we used 100

simulations for 100 seconds each and tracked the error between the estimated centroid from

sampling Z agents and the actual group centroid. Each simulation consisted of N = 100

agents. We ignored the first 25 seconds to allow the flock to stabilize.

The resulting average errors and 95% confidence intervals are shown in Figure 7.1.

These results show that we can almost always get within about 7 units of the actual group

centroid by sampling 1 agent and will on average be within 3.3542 units of the actual centroid.

If we increase the number of agents sampled to 5 agents we have an average error of 1.4556

units. With 10 agents the error decreases to 1.0429 units. As expected, the error steadily

drops off as more agents are sampled; however, it is interesting to note that as the number of

agents sampled increases we see diminishing returns in the amount of error reduction per

new agent sampled. Thus, we can obtain good group centroid estimates without having to

resort to sampling from a large percentage of the group.

7.1.2 Heading estimation

Successive estimates of a flock’s centroid give us one way to estimate the velocity and heading

of the swarm. In this section we investigate another way of estimating the heading of a swarm

using samples of individual agent headings. Following the notation used in [8], we define the
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Figure 7.1: Flock centroid error for different values of Z. Results are for 100 replicates of 100
simulation ticks each for a flock formation. Dots represent the average error and error bars
represent 95% confidence intervals for the error. N = 100 agents.

group direction vector of a swarm as

dg(t) =
1

N

N∑
i=1

vi(t). (7.3)

Using this notation we define the group heading θg as

θg = atan2(dyg(t), d
x
g(t)) (7.4)

where dg(t) = [dxg(t), d
y
g(t)]

T is calculated using Equation (7.3).

To estimate (7.4) we simply use the following vector-based average computed from

sampled agent velocities/headings as follows

θ̂g(t) = atan2

(
Z∑
i=1

vyi (t),
Z∑
i=1

vxi (t)

)
= atan2

(
Z∑
i=1

sin(θi(t)),
Z∑
i=1

cos(θi(t))

)
(7.5)

where vi = [vxi , v
y
i ]
T = [sin(θi), cos(θi)]

T is the velocity vector of agent i.
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Figure 7.2: Mean absolute error (in radians) between the vector-based estimate of flock
heading, θ̂g, and actual flock heading for different numbers of sampled agents. Error bars
show 95% confidence intervals. N = 100 agents.

7.1.3 Error analysis for sample group heading

The average error for the vector-based estimator in (7.5) and the 95% confidence intervals for

the absolute error between θ̂g and θg are shown in Figure 7.2. When sampling only one agent

there is a mean absolute error of 0.2269 radians (≈ 13.0001 degrees) with a 95% confidence

interval of [0.0091, 0.6526] radians (≈ [0.5237, 37.3915] degrees). This large range is due to

the noise in individual samples. On the other hand, if we can sample 10% of the swarm (10

agents), the mean absolute error drops to only 0.0687 radians (≈ 3.9381 degrees) and the 95%

confidence interval for the error is [0.0026, 0.1947] radians (≈ [0.1509, 11.1564] degrees). If we

have enough bandwidth to sample 50% of the flock then the mean absolute deviation between

the estimated and actual group headings is only 0.0224 radians (≈ 1.2822 degrees) and the

95% confidence error interval is only [.0009, 0.0639] radians (≈ [0.0515, 3.6635] degrees). These

results show that while more bandwidth is always desirable, even with limited bandwidth we

can obtain reasonably good estimates of the group heading of a flock as it changes over time.
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7.2 Estimation effort for a flock

We want a way to measure the estimation effort required to obtain low error estimates of

the group centroid and group heading of a flock. Similar to observation effort, we define

estimation effort as

EE = Z · ET (7.6)

where ET is the estimation time, defined as the time to reduce the estimation error below a

certain threshold ε. However, because we are estimating time-varying quantities, sampling

for a longer period of time will not necessarily improve the accuracy of an estimate because

older samples will no longer represent good estimates of the current location of the centroid.

We deal with this problem by estimating the parameters of a linear equation for the

group centroid cg as a function of time. If we assume that the centroid is moving along a

relatively linear trajectory we can write an equation for cg(t) as

cg(t) = vg · t+ c0 (7.7)

where vg = sg[cos θg, sin θg]
T is the group velocity vector with group speed sg and c0 is the

starting location of the swarm. We now can use least squares to find estimates v̂g and ĉ0 of

the parameters vg and c0, respectively. Once we have obtained parameter estimates v̂g and

ĉ0 we can calculate an estimate of the group heading

θ̂g = atan2(v̂yg , v̂
x
g ). (7.8)

We can additionally estimate the the group centroid at some time in the near future using

Equation (7.7). Because we are estimating a trajectory we can use successive samples to

obtain a more accurate estimate of the centroid and heading of a flock.

In practice, recursive least squares [40] or some other online algorithm could also be

used for cases where we need quick recursive updates as we obtain new samples or where the
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trajectory is changing and may not be always linear. However, to demonstrate the concept of

estimation effort, we simply use linear least squares and assume a linear trajectory hypothesis

although other hypotheses could also be used.

Because the trajectory of a flock over a long time period is very random (see Figure

4.5), we simply look at short 100 time step (10 second) intervals. While there is still some

random movement, we found that breaking up the trajectory into these smaller intervals

allowed us to use a linear approximation that closely approximated the actual trajectory of

the flock.

7.2.1 Experiment

As an experiment, we ran 10 simulations with 100 agents starting from random initial

conditions but with initial headings all equal to the same random angle between 0 and 2π.

We recorded the agent positions and used these positions as noisy estimates of the actual

group centroid. These samples were used to find parameters to Equation (7.7) using least

squares. We defined the true group heading over the time interval [t0, T ] as

θg = atan2(cyg(T )− cyg(t0), cxg(T )− cxg(t0)) (7.9)

where T = t0 + 100 for our simulations. We then measured the error in predicted group

heading and initial group centroid as

errorθg = |θg − θ̂g| (7.10)

and

errorcg = ‖cg(t0)− ĉ0‖. (7.11)
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7.2.2 Results

To calculate the estimation error and estimation time, we partitioned each simulation into

10 consecutive 10-second intervals. This resulted in one hundred 10-second intervals over

which we computed the accuracy of using linear least squares to estimate the parameters in

Equation (7.7). Figure 7.3 shows that increasing Z decreases the average estimation error for

both c0 and θg, but with diminishing returns.

Interestingly, increasing ET causes the estimation error for c0 to slightly increase on

average. We investigated this phenomenon and found that this was because small values of

ET correspond to samples closer to c0, while larger values of ET result in a better fit for the

slope of the line (vg) because the points are dispersed over a wider area but has the effect of

slightly increasing the error for c0.

The initial rise in error in Figure 7.3(b) when Z = 1 is due to the fact that a single

agent will often move from one side of the swarm to the other in an oscillating pattern causing

predictions based on this one agent to sometimes get worse before they get better as more

samples are taken. Figure 7.4 shows the same error results, this time as a function of Z. This

figure makes clear that sampling from more agents is always better, but that most of the

reduction in error happens with the first 20 agents. Thus, sampling from a subset of the

agents provides good estimates of the collective state of the swarm.

Figure 7.5(a) shows that, not surprisingly, the estimation effort for estimating the

initial group centroid is linear in the number of agents sampled because, as shown in Figure

7.3, increasing the estimation time did not have a significant effect on the initial centroid

estimation error. Additionally, we see that the slope of the estimation effort curve for c0 is 2

because at least two observations are needed to fit a line to the data. Figure 7.5(b) shows

that a long estimation time is required to obtain a small group heading error; however, to get

an estimate within 5 degrees requires a only a few samples on average.
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Figure 7.3: Mean absolute error versus ET for estimating c0 and θg for a flock, using linear
regression for different values of Z. The error in 7.3(b) in in measured in radians.

71



(a) Estimating c0

(b) Estimating θg

Figure 7.4: Mean absolute error versus Z for estimating c0 and θg for a flock, using linear
regression for different values of ET .
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(a) Estimating c0

(b) Estimating θg

Figure 7.5: Estimation effort to get the estimation error for c0 and θg below the threshold ε.
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7.3 Collective state estimation for a torus

The two key global properties that we want to estimate for a torus are the group centroid

and the group rotation.

7.3.1 Group rotation

We define the group rotation as

rotationg = sgn

(
N∑
i=1

sgn(ωi)

)
(7.12)

where

sgn(x) =


−1, if x < 0

0, if x = 0,

1, if x > 0.

(7.13)

Thus, rotationg = −1 means that the majority of the group is turning to the right

and has a clockwise rotation. If rotationg = 1, then the majority of the group is turning

to the left and has a counterclockwise rotation. Finally, if rotationg = 0, then the group

rotation is undefined. We assume that the torus rotation has already been determined using

the classifier described in Section 6.10.

7.3.2 Centroid estimation

The group centroid for a torus is more complicated to estimate than for a flock. Given a

sample of agent positions we can calculate a naive estimate of the group centroid by averaging

the sampled agent positions

ĉg =
1

Z

Z∑
i=1

ci. (7.14)

However, this will only be accurate if enough agents are sampled and if the agents are well

spaced around the torus perimeter. If we sample a small number of agents that are close

74



together this will result in an inaccurate estimate. To better estimate the centroid of a torus

from limited samples we offset the positions of sampled agents by a vector orthogonal to

their velocity where the projection direction is determined by an agent’s angular velocity.

To find the vector orthogonal to the agent velocity, we need to rotate the current

velocity vector by ±π/2 depending on the angular velocity of the agent. The rotation matrix

R(θ) will rotate a vector by θ and is given by

R(θ) =

cos θ − sin θ

sin θ cos θ

 . (7.15)

Thus, given an agent’s heading θ with ω > 0 (counterclockwise rotation) the vector orthogonal

to the agent’s heading in the estimated direction of the centroid is

R
(π

2

)
·

cos θ

sin θ

 =

0 −1

1 0

 ·
cos θ

sin θ

 =

− sin θ

cos θ

 (7.16)

and for ω < 0 (clockwise rotation) we have

R
(
−π

2

)
·

cos θ

sin θ

 =

 0 1

−1 0

 ·
cos θ

sin θ

 =

 sin θ

− cos θ

 . (7.17)

Thus, to estimate the centroid of the torus we simply multiply the unit orthogonal vector by

the estimated torus radius r̂ and add this vector to the agent’s position giving an estimate of

the centroid for agent i as

ĉig = ci + sgn(ωi) · r̂ ·

− sin θi

cos θi

 (7.18)
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where the sign of ω takes care of the issue of rotation. If we sample from more than one

agent, we can combine multiple estimates to get the following estimate of the group centroid

ĉg =
1

Z

Z∑
i=1

ĉig. (7.19)

7.3.3 Torus radius

Based on our theoretical analysis performed in Section 4.3.2, we know that the steady state

radius of a torus with attraction and orientation dynamics is 4s/kπ. Using this as our

estimated torus radius we have the following estimate of the group centroid

ĉig = ci + sgn(ωi) ·
4s

kπ
·

− sin θi

cos θi

 (7.20)

where sgn(ω) insures that the vector will be projected in the correct direction.

7.3.4 Error analysis

To see the difference between using the fixed-radius estimate (7.20) and the naive centroid

estimate (7.14), we used 100 simulations that were initialized to form a torus. We left out the

first 25 seconds to allow the torus to fully form. We then calculated the mean absolute error

for each method using different numbers of sampled agents. The mean absolute errors for

the fixed radius estimates are shown in Figure 7.6 along with the error of the naive centroid

estimates. We see that the naive centroid estimate performs better than the fixed radius

estimate only if more than 85% of the swarm is sampled. When sampling fewer than 20% of

the swarm, there is a large difference in error between the two estimates, and we see that

the radius-based estimate provides centroid estimates that have much lower error even when

sampling from a single agent (1% of the swarm). Additionally, sampling 20 or 30% of the

swarm using the radius-based estimator yields mean absolute errors that are only slightly
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Figure 7.6: Mean absolute error of fixed-radius estimates and naive estimates over samples
from 100 simulations leaving out the first 25 seconds for different values of Z. Results for
N = 100 agents.

larger than the errors obtained by the same estimator when sampling more than 50% of the

swarm. Thus, high accuracy estimates of the group centroid are possible using only local

samples from a few agents.

7.4 Estimation effort for a torus

In this section we examine the estimation effort for estimating the centroid of a torus. Because

the torus centroid is relatively stationary we can simply take successive centroid estimates

over time and average them to obtain a better estimate of the group centroid. To investigate

the estimation effort for estimating the centroid of a torus, we used the same 100 torus

simulations used in the previous section and looked at values of Z between 1 and 50 and

values of ET between 1 and 100. We have seen in Figure 7.6 that increasing Z decreases

our estimation error. Figure 7.8 shows that increasing estimation time also tends to reduce

the estimation error, but that this reduction shrinks as Z is increased. Figure 7.8 shows the

estimation effort for estimating the centroid of a torus. We see that estimates within 1 or 2

77



Figure 7.7: Mean absolute error versus estimation time for estimating the centroid of a torus
using samples from Z agents. Results are for N = 100 agents.

units can be achieved with low estimation effort, but that getting estimates within 0.5 units

requires either sampling from many agents or sampling from a few agents for a long time.

7.5 Summary

We have shown that if agent positions and headings can be sampled, then the actual position

and heading of the swarm can be estimated. While we did not explicitly estimate the group

velocity, we note that the velocity of a swarm can be estimated using successive estimates

of the group centroid. We demonstrated that accurate estimates of the group centroid and

heading can be obtained using samples from a small percentage of the swarm. We also showed

how the concept of estimation effort can be applied to estimating the group heading and

centroid of a flock and the group centroid of a torus.
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Figure 7.8: Estimation effort required to estimate the centroid of a torus using samples from
Z agents with an average error less than the threshold ε. Results are for N = 100 agents.
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Chapter 8

Classifying the Collective Behavior of Other Models

To demonstrate that the methods used for group type classification in Chapter 6

generalize to other multi-agent systems, we consider two additional models of swarming

behavior that exhibit distinct collective behaviors caused by local agent interactions. We first

consider group type classification for a bio-inspired model proposed by Couzin [8]. We then

discuss how group type classification could be applied to a physics-based swarm model [10].

8.1 Couzin’s Model

Couzin’s model [8] is similar to the swarm model introduced in Section 3.1, but has several

key differences: (1) it produces three distinct group types: a swarm, a torus, and a flock, (2)

agents have a blind spot, (3) it uses a fixed maximum turning rate instead of using integrator

dynamics, (4) it uses non-stochastic and non-overlapping behavior zones to create a metric

topology with a maximum sensing range Ra, and (5) it adds explicit noise to the individual

agent headings.

The agent dynamics in Couzin’s model are similar to ours; agents repel from neighbors

within a repulsion radius Rr, orient with agents within an orientation zone Ro, and attract to

agents within an attraction zone Ra. The model consists of N agents that move at a constant

speed s, have a vision range of α radians, and can turn at most β radians per second. Agents

update their heading and position every ∆t seconds. We refer the reader to [8] for the model

specifics. The simulations reported below use the following simulation parameters N = 100,

Rr = 1, Ra = 15, s = 3 units/second, α = 5π/3 radians, and β = 1.4 radians. We used
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∆t = 0.1 seconds and added η ∈ U(−0.2, 0.2) radians/second of noise to the individual agent

headings, where U(·, ·) is the continuous uniform distribution.

8.1.1 Tipping points

To find parameter settings that can exhibit multiple group types, we performed an experiment

similar to the one discussed in Section 4.2, but for Couzin’s model. We ran a series of 100

replicates for values of Ro between 1 and 10 in 0.5 unit increments. We then used the results

of the final state of the simulation after 100 seconds to determine what group type had

formed. Each replicate was started from random initial conditions. We determined the group

types as follows

typeg =


swarm, if mgroup < 0.3 and pgroup < 0.3

torus, if mgroup > 0.6 and pgroup < 0.3

flock, if mgroup < 0.3 and pgroup > 0.6

(8.1)

Because the group types in Couzin’s model do not form as clearly as in our model, these

conditions are more relaxed than the conditions for distinguishing between a flock and a

torus found in Section 3.19.

Figure 8.1 shows the probability of each group type forming for each value of Ro

that was simulated. We see that there is not a tipping point between the swarm and torus

group types. This is because once the radius of orientation is greater than the radius of

repulsion, the agents start orienting with each other and form a torus. This can be seen

by the immediate jump in the probability of forming a torus and the immediate drop in

the probability of forming a swarm when Ro is increased from 1 to 1.5. As the radius of

orientation is increased past 1.5, the torus stabilizes and then, for high enough values of Ro,

flocks become the dominant group type. We see that Ro = 6 is the approximate tipping point

between the torus and flock formations.
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Figure 8.1: Probability of Couzin’s model producing a swarm, a torus, and a flock for different
values of Ro.

Figure 8.2 shows the percentage of simulations that converged to one of the group

types for different values of Ro. This figure shows that some of the simulations never formed

into a swarm, torus, or flock. We examined the simulations that didn’t meet any of the

criteria in Equation 8.1 and found that they either formed a noisy torus with agents rotating

in the both directions (for Ro = 1.5) or formed something in between a flock and a torus,

with most of the agents clumped up but still moving around in circles. We also checked for

fragmentation by looking at the positions of the agents at the end of each the simulation and

checking to see if the underlying interaction graph formed by the radius of attraction was

connected. We found that only two of the simulations fragmented. These two simulations

were not used in the following analysis.
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Figure 8.2: The percentage of simulations that converged to either a swarm, torus, or flock.

8.1.2 Classification features

While there are many possible features that could be used in group type classification we

chose to use the same features used in Chapter 6, namely, number of neighbors and angular

velocity.

We used data from the simulations used to investigate the tipping points to calculate

the distributions over angular velocity for a swarm, a torus, and a flock. We used the

100 replicates with Ro = 1, the 98 replicates that formed a clockwise or counterclockwise

torus when Ro = 2, and the 99 replicates that formed a flock and did not fragment when

Ro = 8.5 to model the swarm, clockwise and counterclockwise torus, and flock, respectively.

To determine whether the torus was rotating clockwise or counterclockwise we looked at the

final angular velocity of each agent for each replicate. If the majority of the agents were

turning counterclockwise we designated the simulation as a counterclockwise torus. If the

majority of the agents were turning clockwise we designated the simulation as a clockwise
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Figure 8.3: Distributions over an agent’s number of neighbors in a swarm, torus, and flock
formed by Couzin’s model.

torus. We found that there were 47 clockwise torus simulations, and 51 counterclockwise

torus simulations.

Figure 8.3 shows the distribution over number of neighbors in a swarm, torus, and

flock. We see that the distributions in Couzin’s model are similar. This is because all

three group types tend to be tightly packed with the torus lacking the large void that is

found in our model. There are, however, some slight differences between the distributions.

Figure 8.4 shows discretized distributions over angular velocity in a swarm, clockwise torus,

counterclockwise torus, and flock. Once again we see that there is not as clear a distinction

in Couzin’s model as in our model, but that there are still salient differences.

8.1.3 Torus and flock classification

We created a test set of 100 simulations using Ro = 6 to test the accuracy of a naive Bayes

classifier using the number of neighbors and angular velocity as features. Using Ro = 6 will
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Figure 8.4: Distributions over an agent’s angular velocity (radians/second) in a swarm, torus,
and flock formed by Couzin’s model.

form either a flock or a torus with approximately equal probability so we have one of three

possible group types: a clockwise torus, a counterclockwise torus, or a flock. Figures 8.5 and

8.6 show how the classification accuracy changes as the number of agents sampled and the

observation time changes.

We see that the classification accuracies for Couzin’s model (shown in Figure 8.5) are

much lower than for our model (see Figure 6.16), but that sampling more than 10 agents with

enough observation time provides very high classification accuracies. The lower accuracies

are to be expected given the distributions of the features; however, the results do show that

an accuracy above 80% is achievable when sampling from a small number of agents.

We calculated the observation effort for thresholds µ = 90%, µ = 95%, and µ = 100%.

These results are shown in Figure 8.7. Table 8.1 summarizes the values of Z that minimized

observation effort for the different thresholds µ. We see that more observation effort is needed
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Figure 8.5: Classification accuracy for Couzin’s model using an agent’s number of neighbors
and angular velocity as features. Results are for distinguishing between a flock, a clockwise
torus, and a counterclockwise torus.
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Figure 8.6: Classification accuracy for Couzin’s model using the number of neighbors and the
angular velocity sampled as a function of OT . Results are for distinguishing between a flock,
a clockwise torus, and a counterclockwise torus.
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Figure 8.7: Observation effort calculated for Couzin’s model using the number of neighbors
and the angular velocity sampled from Z agents.

µ = 90% µ = 95% µ = 100%
Minimum OE 27 48 552

Corresponding Z 27 24 24

Table 8.1: Values of Z that minimized observation effort in Figure 8.7 for µ = 90, 95, and
100% accuracy on the test set.

to classify group types in Couzin’s model than in our model (compare with Table 6.7), but

we also see that 100% accuracy on the test set can be achieved by sampling less than 30% of

the swarm if the observation time is long enough.

Error analysis

We found that the low classification accuracy of 30.9% for Z = 1 and OT = 1 was because

most of the flock simulations were misclassified as either a clockwise or counterclockwise torus.

Increasing the number of samples by letting Z = 5 and OT = 5 results in a dramatic increase

in accuracy to 73.2%, but the majority of the errors still come from misclassifying the flock

group type as a torus (see Appendix B.5 for more details). Interestingly, when Z = 5 and
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OT = 5, there are no misclassifications between the clockwise and counterclockwise torus.

Thus, our chosen features discriminate well between torus types, but do not discriminate as

well between a flock and a torus. Future work should investigate whether different features

provide better group type classification and lower observation effort for Couzin’s model.

8.1.4 Swarm, torus, and flock classification

Couzin’s model has a tipping point between the torus and flock group types, but not between

the swarm and torus group types. Because of this there is no single set of parameters that

will form either a swarm or torus with equal probability. However, it is still interesting to see

if group type classification can be done with high accuracy when the swarm can be in more

than three group types. To test the classification accuracy in this case, we created a test

set with 100 simulations of a swarm (Ro = 1), 100 simulations of a torus (Ro = 2), and 100

simulations of a flock (Ro = 8.5). The values of Ro were chosen to ensure a high likelihood of

every simulation forming the desired group type. All other parameters were kept the same as

before, and each simulation was started with random initial positions and headings.

Before computing the accuracy of the classifier we checked each simulation’s final mgroup

and pgroup to see if the desired group type had formed. We also checked the final positions

of the agents to check for group fragmentation. We found that none of the simulations

fragmented for any of the parameter settings. For Ro = 1, all 100 of the simulations formed

a swarm. For Ro = 2, 93 of the simulations formed a torus, 4 simulations formed a flock, and

3 simulations failed to converge to a distinct group type. For Ro = 8.5, 98 of the simulations

formed a flock and 2 never formed a distinct group type. In the subsequent analysis we

use only the simulations that fully formed a group type. This results in a test set of 295

simulations.

Figure 8.8 shows classification accuracy as a function of Z for several different values

of OT . We see that the classification accuracies with three group types are lower than with

two possible group types. As before, we see that more samples increases accuracy, and that
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Figure 8.8: Classification accuracy as a function of Z using angular velocity and number of
neighbors as features. Results are for distinguishing between a swarm, a clockwise torus, a
counterclockwise torus, and a flock.

µ = 85% µ = 90% µ = 95%
Minimum OE 36 80 205

Corresponding Z 40 24 41

Table 8.2: Values of Z that minimized observation effort in Figure 8.10 for µ = 90, 95, and
100% accuracy on the test set.

more samples are needed to reach high classification accuracies with Couzin’s model than for

classification using our model.

Figure 8.9 shows classification accuracy as a function of OT . We see that accuracy

tends to increase as the observation time is increased, but never reaches 100% on the test set

for values of Z ≤ 30. Figure 8.10 shows the observation effort for classifying between four

group types. Because of the lower classification accuracies, we computed the observation

effort using the thresholds µ = 85%, µ = 90%, and µ = 95%. Table 8.2 summarizes the

values of Z that minimized observation effort for the different thresholds µ. From these
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Figure 8.9: Classification accuracy as a function of OT using angular velocity and number of
neighbors as features. Results are for distinguishing between a swarm, a clockwise torus, a
counterclockwise torus, and a flock.

Figure 8.10: Observation effort required to classify the swarm, clockwise torus, counter-
clockwise torus, and flock group types in Couzin’s model for different classification accuracy
thresholds.
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results we see that four group types can be classified with reasonable accuracy if enough

agents are sampled. However, we see that increasing the number of group types leads to

higher observation effort and lower accuracies overall.

Error analysis

We examined the classification errors for a couple of values of Z and OT (see Appendix B.6

for details) and found that most of the errors came from from misclassifying a group type as

a swarm or misclassifying a swarm as another group type. We also found that the largest

number of these errors occur between the flock and swarm group types. This reflects the

similarity between the distributions for the number of neighbors and angular velocity of a

flock and of a swarm as seen in figures 8.3 and 8.4.

8.2 Physicomimetics model

In this section we briefly discuss how group type classification could be applied to a model

based on physics rather than biology. Physicomimetics is a distributed control law that uses

physics-based forces to control a swarm [10]. The physicomimetics model is fundamentally

different from our model and Couzin’s model in several ways: (1) agents only attract and

repel from one another, (2) agents can accelerate, (3) agents have no blind spot, (4) the

model includes friction, (5) there is no limitation on the acceleration or velocity of the agents.

Previous work in our lab has identified three different group types that form based on

different parameters: isotropic, anisotropic, and structured [41]. Snapshots of these collective

structures are shown in Figure 8.11. We see that, while these group types are different

than the the group types exhibited by our model and by Couzin’s model, there are still

fundamental global differences between these group types. We hypothesize that the collective

group types shown in Figure 8.11 can be estimated from local samples of individual agents.

However, different features than the ones previously examined in this thesis would likely be
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(a) Isotropic (b) Anisotropic

(c) Structured

Figure 8.11: Three different group types in a physicomimetics particle swarm model.
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needed to obtain accurate classification. Based on the spatial structure of the group types,

features that appear promising include the minimum distance between any two agents, group

elongation, a measure of how well the sampled agent positions fit a circle, agent acceleration,

and local agent density.

8.3 Discussion

In Chapter 6 we demonstrated that highly accurate group type classification was possible

using only local samples from a few agents in the swarm. In Chapter 7 we showed that low

error estimates of the group centroid and heading of a swarm can be achieved using local

samples of position and heading from a small subset of the agents in the swarm. To show that

these ideas are applicable to other swarm models, this chapter has examined two additional

models of swarming: Couzin’s model [8] and the physicomimetics model [10]. Both models

can produce several distinct group types depending on the model parameters and initial

conditions. For Couzin’s model, we have shown that accurate group type classification is

possible using samples of local information from a small number of agents. While we did not

actually perform classification on the physicomimetics model, we described several potential

features for classifying group types in this model. We hypothesize that most self-propelled

particle models that produce distinct group types will be amenable to collective behavior

classification and estimation techniques similar to those described in this thesis.
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Chapter 9

Quorum Sensing

This final chapter addresses the goal of increasing the scalability of human-swarm

interactions while limiting the vulnerability of a swarm to agent failures. We show that adding

a biologically inspired quorum sensing mechanism to a swarm achieves this goal. To facilitate

a discussion of quorum sensing, we define a simple taxonomy of agent types. An agent’s type

determines how it responds to human influence, external influence, and other agents. We

divide agents into two classes: human-aware agents who can respond to human input and

human-blind agents who do not respond to human input. In this chapter we explore the

properties of a swarm in which we have both human-aware agents and human-blind agents.

Specifically, we investigate a particular kind of human-aware agent called a stakeholder and a

particular kind of human-blind agent called a type-aware agent [42].

9.1 Stakeholders

Stakeholders are influenced by both the human and by other agents. Each stakeholder has a

priority parameter ρ ∈ [0, 1] that determines the priority of human influence over influence

from other agents. If ρ is high, then the stakeholder is responds more to human influence

than to its neighbors. If ρ is low, then the stakeholder is influenced more by its neighbors

than by human influence.
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Stakeholders can be led in two different ways: attraction and orientation [36]. Stake-

holders that are led by attraction have the desired direction

ui = usai + uoi + uri (9.1)

where

usai =
ρq̂i + (1− ρ)uai
‖ρq̂i + (1− ρ)uai ‖

, (9.2)

q̂i =
q − ci
‖q − ci‖

, (9.3)

q ∈ R2 is a reference input generated by the human, ρ ∈ [0, 1] is priority parameter, and uai ,

uoi , u
r
i are the usual attraction, orientation, and repulsion influences described previously in

Equations (3.7),(3.8), and (3.9). Stakeholders that are led by orientation have the desired

direction

ui = uai + usoi + uri (9.4)

where

usoi =
ρq̂i + (1− ρ)uoi
‖ρq̂i + (1− ρ)uoi‖

. (9.5)

Thus, the only difference between leading a stakeholder by attraction and leading a stakeholder

by orientation is whether the human influences a stakeholder’s attraction vector, uai or

orientation vector, uoi . It is important to note that an agent is only considered a stakeholder

if it is receiving human input. Thus, throughout the remainder of this thesis, when we use

the word stakeholder we refer to an agent that is currently being influenced by the human.

Following the notation used in [36] we use M to denote the number of stakeholders, i.e., the

number of agents receiving human influence.
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9.2 Type-aware agents

Type-aware agents are influenced by both human-aware agents and human-blind agents, but

are not influenced by the human. Type-aware agents have an awareness parameter α ∈ [0, 1]

that determines the degree of type awareness of the agent. If α is high, then the type-aware

agent is influenced more by human-aware agents than by other human-blind agents. If α

is low, then the type-aware agent is influenced more by other human-blind agents and less

by human-aware agents. For the remainder of this chapter we assume that in the quorum

sensing swarm model, agents are either stakeholders or type-aware agents. Thus for a swarm

of size N with M stakeholders, we have N −M type-aware agents.

Type-aware agents follow the normal agent dynamics described in Section 3.1 unless one

or more of their neighbors are stakeholders. We use quorum sensing to adjust the awareness

parameter αi for each type-aware agent i in the swarm. Quorum sensing is used in biological

systems to regulate the emergence of different behaviors depending on external thresholds

[43][44]. To incorporate quorum sensing we define a quorum threshold Qi on the number

of neighbors of type-aware agent i that are stakeholders. If type-aware agent i has more

than Qi stakeholder neighbors, then it will temporarily increase its type awareness by setting

αi = αmaxi , and maintain this increased type awareness until the number of stakeholders

within its sensing range falls below Qi, at which point the agent sets αi = αmini . We use αmaxi

and αmini to denote the maximum and minimum awareness for agent i. The parameter αmaxi

determines how much agent i is influenced by stakeholder neighbors if it senses a quorum.

The parameter αmini determines how much agent i is influenced by stakeholder neighbors if it

does not sense a quorum. Thus, if we let Ni = {j | aij = 1} represent the set of neighbors of

agent i, and S be the set of stakeholders in the swarm, then for any type-aware agent i we

have

αi =


αmaxi , if Qi < |Ni ∩ S|

αmini , if |Ni ∩ S| ≤ Qi.

(9.6)
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The desired direction vector of type-aware agent i is

ui =
utai
‖utai ‖

+
utoi
‖utoi ‖

+ uri (9.7)

where

utai = αi

∑
j∈Ni∩S(cj − ci)

‖
∑

j∈Ni∩S(cj − ci)‖
+ (1− αi)

∑
j∈Ni\S(cj − ci)

‖
∑

j∈Ni\S(cj − ci)‖
(9.8)

and

utoi = αi
vi +

∑
j∈Ni∩S vj

‖vi +
∑

j∈N∩S vj‖
+ (1− αi)

vi +
∑

j∈Ni\S vj

‖vi +
∑

j∈Ni\S vj‖
(9.9)

and Ni \ S represents the set of all non-stakeholder neighbors of agent i and uri is given by

Equation (3.7). Thus, the type-aware agent’s attraction and orientation vectors are weighted

between neighbors that are stakeholders and neighbors that are not stakeholders by the

parameter αi.

The effect of increasing α is to increase the influence stakeholders have over type-aware

agents, thereby amplifying human influence over the swarm. Because this amplification only

happens when there are Qi or more stakeholders in a type-aware agent’s sensing neighborhood,

the threshold Qi acts as a nonlinear switch that increases the responsiveness of the swarm

once enough agents are influenced by the human. We demonstrate empirically that this

nonlinear switch based on the threshold Qi increases the scalability of human influence over a

swarm by decreasing interaction effort. We also demonstrate empirically that the embedded

quorum response limits the vulnerability of the swarm to agent failure.

9.3 Switching between attractors under human influence

To demonstrate the increased scalability and limited vulnerability afforded by quorum sensing

we consider the task of using stakeholders to change the collective behavior of the swarm.

In particular we consider using human influence to switch group types. In this section we

use the quorum sensing swarm model (i.e., a swarm made up of stakeholders and type-aware
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agents) to switch from a flock to a torus and from a torus to a flock. We compare the results

of leading the stakeholders by attraction and leading the stakeholders by orientation using

different numbers of stakeholders, M , and using different stakeholder priorities, ρ.

We ran 10 simulations for M = 10 to 100 in increments of 10 and ρ = 0.1 to 1 in

increments of 0.1, and gave each simulation 25 seconds to stabilize before human influence

was applied. We gave the swarm 200 seconds to switch group types, then removed the human

influence and gave the swarm 50 seconds to stabilize. For each simulation, we calculated

the percentage of swarms that switched given the specific number of stakeholders receiving

human influence, M , and stakeholder priority value, ρ, and also the percentage of trials that

stayed switched after the human influence was removed.

To limit the number of parameters in these simulations we set αmini = 0, αmaxi = 1,

and Qi = 0 ∀i—we investigate the effect of higher quorum thresholds later in this chapter

and refer the reader to Appendix C.2 for a sensitivity analysis over different values of αmax

and αmin. We calculated the number of trials that switched by simply keeping track of the

group angular momentum and polarization throughout the simulation. The group type of

the swarm was determined using the following definition

type =


torus, if pgroup < 0.25 and 0.75 < mgroup

flock, if mgroup < 0.25 and 0.75 < pgroup.

(9.10)

After 200 seconds of human influence, if the desired group type has formed, as defined by

(9.10), then we counted that simulation as a successful switch. If the swarm remained in the

new group type for 50 seconds after the human influence was released, then we counted that

simulation as having successfully remained.

When switching from a flock to a torus, all agents were given random initial positions

and initial headings θi = 0, ∀i. After allowing the group to stabilize for 25 seconds, the

constant input q̂ = cg(25) + [0, 10]T was applied to each stakeholder to cause the group to

turn and form a torus. When switching from a torus to a flock, all agents were given random
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(a) Lead by attraction (b) Lead by attraction

(c) Lead by orientation (d) Lead by orientation

Figure 9.1: Switching from flock to torus using quorum sensing.

initial positions and initial headings θi = atan2(cxi , c
y
i ) +π/2 to form a counterclockwise torus.

After letting the group stabilize, an arbitrarily large constant control input, q̂ = [10, 000, 0]T ,

was applied to the stakeholders to cause them to form a flock. The results of switching from

flock to torus and from torus to flock where stakeholders are led by attraction and led by

orientation are shown in figures 9.1 and 9.2.
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9.3.1 Switching from flock to torus

We see that when switching from a flock to a torus (see Figure 9.1), leading stakeholders

by attraction causes the group to switch consistently for 0.5 < ρ < 1 and 20 < M < 100.

There is a noticeable drop in the number of simulations that switched and remained for ρ = 1

and high values of M . We investigated this and found that the agents tended to form a

single tightly packed clump that rotated the desired torus centroid. Because the agents never

spread out into a full torus, when the control input was removed the group returned to a

flock formation.

When leading stakeholders by orientation, we found a large discrepancy between the

number of simulations that switched to a torus and the number of simulations that remained

as a torus (see figure 9.1(c) and 9.1(d)). Examining these simulations, we found that leading

stakeholders by orientation often caused stakeholders to rotate in different directions around

the desired torus centroid preventing mgroup from dropping below 0.25. When the control

input was removed the agents oriented themselves to rotate in the same direction, resulting in

a higher percentage of simulations that remained a torus than switched to a torus. Because

of the problems with agents rotating in different directions, we only lead stakeholders by

attraction when switching from a flock to a torus for the remainder of this thesis. Future

work should examine whether lead by orientation can be adjusted to provide better switching

probability while under human influence.

9.3.2 Switching from torus to flock

When switching from a torus to a flock (see Figure 9.2), leading stakeholders by orientation

worked much better than leading stakeholders by attraction. We examined these results

and found that leading stakeholders by attraction was successful in causing the agents to

switch from a torus to a flock. However, the attraction input q̂ caused the stakeholders to

slowly pull away from the rest of the group causing the flock to elongate. Thus, when the

human influence was removed, the flock was unstable and usually flipped back on itself and
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reformed a torus. Figures 9.2(a) and 9.2(b) show that except for simulations with ρ = 0.5,

simulations that switched to a flock usually switched back to a torus. Using leadership by

orientation eliminated this phenomenon and caused the agents to form a less elongated flock

that remained in the flock formation after human influence was removed (see figures 9.2(c)

and 9.2(d)). Based on these results we only lead stakeholders by orientation when switching

from a torus to a flock for the remainder of this thesis.

The results for switching from a flock to a torus and from a torus to a flock using

the quorum sensing model closely match the results found by Kerman [36] who used only

stakeholders—no type-aware agents or quorum sensing—to switch between group types. We

will refer to the model used by Kerman as simply the stakeholder model.

9.4 Scalability of the quorum sensing model compared to the stakeholder model

To demonstrate that quorum sensing increases the scalability of human-swarm interactions,

we compare the quorum sensing model with the stakeholder model [9], which uses only

stakeholders and no type-aware agents. To investigate the scalability of these two models we

repeated the above experiment using both the stakeholder model and the quorum sensing

model for swarm sizes of N = 100, 200, 300, and 400 agents. We used the same parameters

as before and varied M from 10 to N/2 in 10 agent increments. When switching from torus

to flock, we led the M stakeholders by orientation. When switching from flock to torus, we

led the M stakeholders by attraction. As the size of the swarm increases, the difference in

scalability between the two models is very distinct. Figures 9.3 and 9.4 show plots of the the

probability of switching and remaining switched for N = 400 (plots of the results for N = 200

and N = 300 are included in Appendix C.1). In both figures we see that the quorum sensing

model can switch group types for much smaller numbers of human-influenced agents, M .
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(a) Lead by attraction (b) Lead by attraction

(c) Lead by orientation (d) Lead by orientation

Figure 9.2: Switching from torus to flock using quorum sensing.
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(a) Stakeholder switch from torus to flock (b) Stakeholder switch from torus to flock

(c) Quorum sensing switch from torus to flock (d) Quorum sensing switch from torus to flock

Figure 9.3: Switch from a torus to a flock using the stakeholder model and the quorum
sensing model. Stakeholders are led by orientation. Results are shown for N=400.
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(a) Stakeholder switch from flock to torus (b) Stakeholder switch from flock to torus

(c) Quorum sensing switch from flock to torus (d) Quorum sensing switch from flock to torus

Figure 9.4: Switch from a flock to torus using the stakeholder model and the quorum sensing
model. Stakeholders are led by attraction. Results are shown for N=400 agents.
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Figure 9.5: Minimum number of stakeholders, M , needed to switch from torus to flock where
stakeholders are led by orientation (t2fo) and to switch from flock to torus where stakeholders
are led by attraction (f2ta). Results compare the stakeholder model with the quorum sensing
model.

We plotted the minimum number of agents needed to switch group types and have

100% of the simulations remain in the new group type for N = 100, 200, 300, and 400.

Figures 9.5 and 9.6 show the minimum number of human-influenced agents, M , required to

have the swarm switch group types and remain switched and the corresponding minimum

percentage of total group size needed to switch group types and remain switched, respectively.

Results are shown for switching from a torus to a flock where M of the agents are led by

orientation (t2fo) and for switching from a flock to a torus where M of the agents are led by

attraction (f2ta). We see group type switching using the quorum sensing model scales much

better to higher group sizes. As the size of the group, N , increases the number of agents that

the human needs to interact with stays relatively constant for the quorum sensing model,

but rapidly increases for the stakeholder model.
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Figure 9.6: Minimum percentage of total agents that need to be stakeholders to switch from
torus to flock where the stakeholders are led by orientation (t2fo) and to switch from flock to
torus where the stakeholders are led by attraction (f2ta). Results compare the stakeholder
model with the quorum sensing model.

9.5 Limited vulnerability

We now investigate whether using a quorum threshold allows us to limit the vulnerability of

the swarm. We define limited vulnerability as the requirement that a swarm has an upper

bound on the number of agents that can fail and not adversely affect the collective behavior.

There is a trade-off between the responsiveness and the vulnerability of a robot swarm. A

swarm that is highly responsive to changes in behavior made by only a few agents implies

that if an adversary compromises a small percentage of the agents, or if a small percentage of

the agents fail, then the swarm will be vulnerable to performing unwanted behaviors. This

section demonstrates that quorum sensing provides a way to balance the responsiveness and

vulnerability of a swarm to agent failure.

To demonstrate that quorum sensing provides a way to limit the vulnerability of

a swarm, we ran a series of experiments with a nonzero quorum threshold Q where M
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human-influenced stakeholders attempt to cause the group type to switch. We experimented

with values of Q between 0 and 6 and values of M between 0 and 50. Because of the large

number of parameters in our model we restricted our analysis to parameter settings that

reliably allow the collective to switch between group types and remain switched. We used

ρ = 0.7 when switching from a flock to a torus and ρ = 0.5 when switching from a torus

to a flock. Based on our earlier results we chose to lead the agents by orientation when

switching to a flock and to lead the agents by attraction when switching to a torus. We ran

10 replicates of each M and Q combination and used αmax = 1 and αmin = 0. We simulated

each replicate once with the quorum sensing model and once with the stakeholder model.

We chose to compare the two models using interaction time, IT . In this case, IT

is the time required to cause the collective to switch from one group behavior to another.

Because we are interested in the time it takes to fully switch into a different group type we

define IT as the first time that the group polarization and angular momentum are above or

below a required threshold and stay above or below that threshold for the remainder of the

simulation. Specifically, when switching from torus to flock

ITt2f = min{t′ : ∀t > t′, pgroup(t) > 0.75 and mgroup(t) < 0.25} (9.11)

and when switching from a flock to a torus

ITf2t = min{t′ : ∀t > t′, pgroup(t) < 0.25 and mgroup(t) > 0.75}. (9.12)

9.5.1 Switching from torus to flock

We plotted the probability of the swarm switching from a torus to a flock and the average

IT for the trials that did switch in Figure 9.7. Figure 9.7(a) shows that the probability of

switching from a torus to a flock decreases as Q increases. If we consider the stakeholders as

malfunctioning or adversarial agents, then these results show that the quorum threshold Q
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(a) Probability of switching from torus to flock
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and remained a flock when the human influence was released

Figure 9.7: Switch from a torus to a flock using only stakeholders and using quorum sensing
with Q=0–6. The M stakeholders are led by orientation. N = 100.
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provides a tunable parameter that controls the vulnerability/responsiveness of the swarm. By

choosing a value for Q that is sufficiently high, we can limit the responsiveness of the swarm

and prevent the swarm from switching group types unless there are sufficient agents making

the change. Alternatively, if the goal is to have a swarm that is highly responsive, a low

quorum threshold provides controlled switches with fewer agents and with lower interaction

time than are required for the stakeholder model. Thus, the quorum threshold Q provides

mechanism for changing the responsiveness and vulnerability of the swarm depending on the

nature of the desired swarm application. For time-sensitive or low bandwidth tasks, a low

quorum threshold provides a way to quickly change the collective behavior of a swarm with

limited interaction effort. For dangerous or uncertain environments, a high quorum threshold

limits the vulnerability of the swarm to agent failure.

9.5.2 Switching from flock to torus

The probability of the swarm switching from a flock to a torus and the average IT for

the trials that did switch are shown in Figure 9.7. Figure 9.8(b) shows that the quorum

sensing model can switch from a flock to a torus group type for smaller values of M than the

stakeholder model. Additionally, we see that changing the quorum threshold Q allows us

to limit the vulnerability of the swarm by increasing or decreasing the probability that the

swarm will be responsive to a certain number of agents changing their behavior. Interestingly,

when M = 45 or 50, the stakeholder model actually has a smaller average interaction time

than the quorum sensing model. Additionally, as Q increases, the interaction time decreases

for large enough M . This is a reversal of the trend seen in Figures 9.7(b) for switching from

a torus to a flock.

We investigated this interesting phenomenon and found that it resulted from using

αmax = 1 combined with a low Q. This is because when αmax = 1, type-aware agents will

ignore all of their neighbors except for neighbors that are human-aware. When Q is low and

M is high, agents will almost always have at least one human-aware stakeholder in their
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(a) Probability of switching from flock to torus
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(b) Average interaction time of simulations that switched from a flock to a torus
and remained a torus when the human influence was released

Figure 9.8: Switch from a flock to a torus using only stakeholders and using quorum sensing
with Q = 0–4. The M stakeholders are led by attraction. N=100.
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neighborhood and so will ignore the rest of their neighbors. This results in the type-aware

agents ignoring each other which causes the agents to form clumps around the torus perimeter

which raises pgroup above 0.25 and prevents the torus from fully forming until the human

influence is released. On the other hand, because the stakeholder model has no quorum

sensing or type-awareness, the agents space nicely around the torus and do not form clumps

resulting in a stable pgroup value less than 0.25 early on in the simulation thus resulting in a

lower interaction time.

This can be seen visually in Figure 9.9 where we have plotted the pgroup resulting

from a single simulation of the stakeholder model and a single simulation the quorum sensing

model for the task of switching from a flock to a torus. Figure 9.9 shows that while the

quorum sensing model provides a smoother change, the pgroup never drops low enough to

qualify as a torus until after the human influence is released (t = 225). This also explains

why increasing Q decreases IT . Increasing Q makes it less likely for type-aware agents to

increase their type-awareness and therefore less likely to ignore many of their neighbors and

form clumps. The reader is referred to Appendix C.2 for an empirical analysis on the effects

of changing αmax.

9.6 Summary

We have shown that quorum sensing increases the scalability of human-swarm interactions.

We have additionally shown that the quorum threshold Q provides mechanism for limiting

the vulnerability of a swarm. The majority of the analysis in this chapter has focused on

homogeneous parameters for quorum sensing. We also experimented with heterogeneous

values of Qi, α
max
i , and αmini , where the parameter value for agent i is drawn from a probability

distribution. We found that the quorum sensing model was robust to this heterogeneity and

that adding parameter heterogeneity actually slightly decreases the minimum number of

stakeholders needed to allow reliable switching between group types (see Appendix C.3).
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Figure 9.9: Group polarization over time for one simulation of switching between flock to
torus using the stakeholder model and using the quorum sensing model. Human influence is
applied at t = 25 and released at t = 225.
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Chapter 10

Conclusions and Future Work

This thesis focused on two major problems that impede scalable human interaction

with large bio-inspired robot swarms. First, how can we accurately detect and estimate the

collective state of a robot swarm using limited information from a subset of the swarm?

Second, how can we increase the scalability of human influence over the collective behavior

of a swarm while limiting the vulnerability of the swarm to agent failures?

We have presented a bio-inspired model of swarming that requires no explicit com-

munication between agents and exhibits two fundamental attractors: a flock and a torus.

Using this model, we showed that even if agents are not capable of determining their location

or heading, we can accurately classify the group behavior of the swarm using local samples

from individual agents. We showed that sampling the number of neighbors and the angular

velocity of only 5% of the swarm is sufficient to achieve 100% classification accuracy on a

test set of 100 simulations of our model. We additionally showed the existence of neglect

benevolence [37] when classifying the collective behavior of our model and provided evidence

that our method of detecting group type from limited samples will scale to larger swarm

sizes. When agents are capable of localization, we demonstrated that low error estimates of

the actual group centroid and group heading can be found using a limited number of samples

of local information from agents in the group.

To better evaluate human-swarm interactions, we introduced two metrics, observation

effort and estimation effort, and used them to compare different classification and estimation

techniques. We also considered two different swarm models and showed how our methods
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for group type classification generalize to other multi-agent systems that exhibit distinct

collective behaviors. We hypothesize that this methodology of estimating global properties

from local samples is applicable to many other systems where global properties emerge from

individual agent interactions.

Finally, we addressed the problem of increasing the scalability of human-swarm

interactions while limiting the swarm’s vulnerability to agent failures. We demonstrated how

to incorporate a bio-inspired form of quorum sensing into an existing swarm model. We

then compared human-influenced group type switching using our quorum sensing model and

the previously developed stakeholder model [36]. We showed that quorum sensing increases

the scalability of human-swarm interactions while also providing a mechanism for limiting

the vulnerability of the swarm to agent failure through a quorum threshold. Thus, the

quorum threshold provides a tunable parameter that allows a human to choose the desired

responsiveness, and corresponding vulnerability, of a swarm depending on the application.

10.1 Future work

Future work should investigate how well the group type classification methods described in this

thesis scale to larger swarm sizes and also investigate how human or environmental influences

affect classification accuracy. Group type classification and collective state estimation should

also be applied to additional swarm models that exhibit emergent behaviors.

We have derived a theoretical result for the maximum speed of a moving torus (see

Appendix D). Future work should examine how this result could be incorporated into group

type classification. We have also performed a preliminary analysis of the discrete-time

approximation error in an attraction-based version of our swarm model (see Appendix E). A

more thorough analysis for our full model should be performed to determine the sensitivity

to simulation step size and other model parameters.

Future work should also include designing algorithms that allow agents to change their

quorum thresholds over time, and performing user studies with simulated or actual robots.
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These user studies should investigate how the ideas of observation effort, estimation effort,

and quorum sensing directly impact human-swarm interactions and should also investigate

potential applications for swarms with multiple behaviors.

One potential application for the work described in this thesis is the area of plume

tracing, where a swarm of agents attempt to locate the source of a chemical leak. If agents

form a flock as they collectively follow the chemical gradient and form a torus around the

source, then our group type classification and estimation techniques would allow us to detect

when the swarm has found a potential leak and estimate the location of the leak.
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Appendix A

Classification using number of neighbors and absolute angular velocity

The classification accuracies and observation effort for our swarm model when using

number of neighbors and absolute angular velocity are shown in Figures A.1, A.2, and A.3.

The results were nearly identical to classification using only number of neighbors.
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Figure A.1: Probability of group type detection as the number of agents sampled, Z, increases
for different observation times, OT . For N = 100 agents.

116



10 20 30 40 50 60 70 80 90 100
0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

ObservationATimeA(OT)

C
la

ss
if

ic
at

io
n

AA
cc

u
ra

cy

Z=1
Z=2
Z=3
Z=4
Z=5

Figure A.2: Probability of group type detection as observation time, OT , increases for
different numbers of agents sampled, Z. For N = 100 agents.

Figure A.3: Observation effort over Z and for different accuracy thrsholds µ. Using Z = 1
never resulted in the desired accuracy so the observation effort is infinity. The results for
µ = 90% aand µ = 95% were identical. Results are for N = 100 agents.
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Appendix B

Results for classification error analysis

B.1 Error analysis for classification using only the number of neighbors

For Z = 1 and OT = 1 the confusion matrix is given in Table B.1. These results show that

using only the number of neighbors has a classification bias toward predicting torus as the

swarm group type when only one sample is used but still achieves a remarkably high accuracy

of 82% accuracy. If we add an additional sample from a different agent (Z = 2), the resulting

confusion matrix is shown in Table B.2. This provides a large improvement by decreasing

the error by 66.67% and raising the total accuracy to 94%.

If, instead of increasing Z, we keep Z = 1 and sample twice from the same agent, we get

the confusion matrix shown in Table B.3. This result shows that additional samples corrected

the misclassifications of a torus as a flock, but only slightly improved the misclassification

of a flock as a torus. The error was decreased by 27.78% and the total accuracy improved

to 87%. When we compare these results to the results for Z = 2 and OT = 1 we see, as

noted earlier, that additional samples from a single agent do not help as much as additional

Estimated Class
Flock Torus Total

Actual Class
Flock 32 15 47
Torus 3 50 53
Total 35 65 100

Table B.1: Confusion matrix for Z = 1 and OT = 1 using only the number of neighbors as a
feature.
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Estimated Class
Flock Torus Total

Actual Class
Flock 42 5 47
Torus 1 52 53
Total 43 57 100

Table B.2: Confusion matrix for Z = 2 and OT = 1 using only the number of neighbors as a
feature.

Estimated Class
Flock Torus Total

Actual Class
Flock 34 13 47
Torus 0 53 53
Total 34 66 100

Table B.3: Confusion matrix for Z = 1 and OT = 2 using only the number of neighbors as a
feature.

samples from a different agent. Additionally it is interesting to note that values of OT > 2

did not provide more than 1% improvement over the accuracy obtained when OT = 2.

Examining the simulations from the test set that were incorrectly classified, we found

that the main reason that flocks are often classified as a torus for Z = 1 turns out to be

the long thin tail that often forms behind a flock when agents start from random initial

conditions. As shown in Figure 6.7, when sampled agents are in the tail they have fewer

neighbors and our detection algorithm predicts torus as the most likely group type. Another

reason is that the agent sampled may be on the edge of the swarm (see Figure B.1) which

also can result in a low number of neighbors. It should be noted, however, that given enough

time the flock will fully clump together eliminating the long tail and forming a flock similar

to that shown in Figure 2.1(c). However, these results show that our classification method

performs well even when the flock group type has not fully formed.

We also investigated the torus formations that were misclassified as flocks. Figure B.2

shows one misclassified example. Notice that in this case the group type has fully formed,

but because of the inherent noise caused by our stochastic topology, agents occasionally have

a much larger (or smaller) number of neighbors than is typical for a certain group type. In
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Figure B.1: An agent sampled (the green disc) from the edge of the flock has fewer neighbors
(the 16 red triangles) than those in the main clump of the flock resulting in the misclassification
of the flock as a torus.

Predicted
Flock Torus Total

Actual
Flock 29 18 47
Torus 13 40 53
Total 42 58 100

Table B.4: Confusion matrix for Z = 1 and OT = 1 using only absolute angular velocity as a
feature.

this instance, the sampled agent had 17 neighbors at the time of sampling which is more

likely for a flock than for a torus (see Figure 6.3) resulting in a misclassification.

B.2 Error analysis for classificiation using only absolute angular velocity

The confusion matrix for Z = 1 and OT = 1 is shown in Table B.4. We see that there are

approximately equal misclassifications. If we set Z = 2 and OT = 1, (see Table B.5) we have

a slight improvement from 69% to 72% accuracy, but, while the number of misclassifications

of a torus as a flock decreased, there was a slight increase in the number of flocks misclassified
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Figure B.2: Torus that was misclassified as a flock. The agent has 17 neighbors. Figure 6.3
shows that the probability of an agent having 17 neighbors is more likely for a flock than for
a torus resulting in a misclassification of the torus using one sample from one agent.

Predicted
Flock Torus Total

Actual
Flock 28 19 47
Torus 9 44 53
Total 37 63 100

Table B.5: Confusion matrix for Z = 2 and OT = 1 using only absolute angular velocity as a
feature.
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Predicted
Flock Torus Total

Actual
Flock 29 18 47
Torus 12 41 53
Total 41 59 100

Table B.6: Confusion matrix for Z = 1 and OT = 2 using only absolute angular velocity as a
feature.

Predicted
Flock Torus Total

Actual
Flock 44 3 47
Torus 1 52 53
Total 45 55 100

Table B.7: Confusion matrix for Z = 5 and OT = 5 using only absolute angular velocity as a
feature.

as a torus. If we sample twice with the same agent, (see Table B.6) we only have a slight

improvement over a single sample from a single agent. However, Table B.7 shows that

increasing Z to 5 and OT to 5 dramatically improves accuracy to 96%.

B.3 Error analysis for classification using angular velocity

In the following confusion matrices we abbreviate clockwise as (cw) and counterclockwise as

(ccw). The confusion matrix for Z=1 and OT =1 is shown in Table B.8. If we let Z = 2 and

OT = 1 (see Table B.9) there is a large improvement from 71% to 79% accuracy. If we let

OT = 2 and Z = 1 (see Table B.10) there is only a slight increase in accuracy compared to

Predicted
Flock CCW Torus CW Torus Total

Actual
Flock 28 13 6 47

CCW Torus 6 21 0 27
CW Torus 4 0 22 26

Total 38 34 28 100

Table B.8: Confusion matrix for Z = 1 and OT = 1 using only angular velocity to classify
group type and rotation.
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Predicted
Flock CCW Torus CW Torus Total

Actual
Flock 30 9 8 47

CCW Torus 1 26 0 27
CW Torus 3 0 23 26

Total 34 25 31 100

Table B.9: Confusion matrix for Z = 2 and OT = 1 using only angular velocity to classify
group type and rotation.

Predicted
Flock CCW Torus CW Torus Total

Actual
Flock 27 12 8 47

CCW Torus 3 24 0 27
CW Torus 4 0 22 26

Total 26 39 35 100

Table B.10: Confusion matrix for Z = 1 and OT = 2 using only angular velocity to classify
group type and rotation.

sampling one agent for one time step. Finally, increasing Z to 5 and OT to 5 we reach 99%

accuracy over the test set with just one flock misclassified as a torus as shown in Table B.11.

B.4 Error analysis for classification during transient behaviors

The confusion matrix for Z = 1 at time 10 is shown in Table B.12. The confusion matrix for

Z = 5 at simulation time 30 is shown in Table B.13

Predicted
Flock CCW Torus CW Torus Total

Actual
Flock 46 1 0 47

CCW Torus 0 27 0 27
CW Torus 0 0 26 26

Total 19 41 40 100

Table B.11: Confusion matrix for Z = 5 and OT = 5 using only angular velocity to classify
group type and rotation.
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Predicted
Flock CCW Torus CW Torus Total

Actual
Flock 8 17 16 41

CCW Torus 1 10 16 27
CW Torus 2 18 12 32

Total 11 45 44 100

Table B.12: Confusion matrix for group type classification when sampling angular velocity
and number of neighbors with Z = 1 and OT = 1 after 10 seconds of simulation.

Predicted
Flock CCW Torus CW Torus Total

Actual
Flock 30 4 7 41

CCW Torus 0 24 3 27
CW Torus 0 6 26 32

Total 30 34 36 100

Table B.13: Confusion matrix for group type classification when sampling angular velocity
and number of neighbors with Z = 5 and OT = 1 after 30 seconds of simulation.

B.5 Error analysis for two-group classification in Couzin’s model

When Z = 1 and OT = 1 we have the confusion matrix shown in Table B.14. The confusion

matrix for Z = 5 and OT = 5 is shown in Table B.15. Table B.16 shows the confusion matrix

for Z = 15 and OT = 15.

Predicted
Flock CCW Torus CW Torus Total

Actual
Flock 5 21 24 50

CCW Torus 6 13 4 23
CW Torus 6 6 12 24

Total 17 40 40 97

Table B.14: Confusion matrix for classifying group types in Couzin’s model with Ro = 6
sampling angular velocity and number of neighbors for Z = 1 and OT = 1.
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Predicted
Flock CCW Torus CW Torus Total

Actual
Flock 29 10 11 50

CCW Torus 1 22 0 23
CW Torus 4 0 20 24

Total 34 31 32 97

Table B.15: Confusion matrix for classifying group types in Couzin’s model with Ro = 6
sampling angular velocity and number of neighbors for Z = 5 and OT = 5.

Predicted
Flock CCW Torus CW Torus Total

Actual
Flock 45 3 2 50

CCW Torus 2 21 0 23
CW Torus 3 0 21 24

Total 34 31 32 97

Table B.16: Confusion matrix for classifying group types in Couzin’s model with Ro = 6
sampling angular velocity and number of neighbors for Z = 15 and OT = 15.

B.6 Error analysis for three-group classification for Couzin’s model

The confusion matrix for Z = 1 and OT = 1 is shown in Table B.17. For both the flock

and swarm we see that the misclassifications outnumber the accurate classifications. The

misclassifications are lower for the clockwise and counterclockwise torus, but are still very

high. Thus, one sample from a single agent tells very little about the group type with an

overall accuracy on the test set of just 31.53%. However, if we let Z = 5 and OT = 5 (see

Table B.18) the overall accuracy jumps to 55.59%. If we let Z = 15 and OT = 15 (see Table

B.19) the accuracy rises to 85.42% overall and we see that all but one misclassification results

from misclassifying a group type as a swarm (fourth column) or misclassifying a swarm as

another group type (fourth row).
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Predicted
Flock CCW Torus CW Torus Swarm Total

Actual

Flock 19 31 35 17 102
CCW Torus 4 30 11 5 50
CW Torus 2 11 28 2 43

Swarm 8 39 37 16 100
Total 33 111 111 40 295

Table B.17: Confusion matrix for classifying all four group types in Couzin’s model, sampling
angular velocity and number of neighbors for Z = 1 and OT = 1.

Predicted
Flock CCW Torus CW Torus Swarm Total

Actual

Flock 49 16 8 29 102
CCW Torus 3 41 0 6 50
CW Torus 2 3 30 8 43

Swarm 11 16 29 44 100
Total 65 76 67 87 295

Table B.18: Confusion matrix for classifying all four group types in Couzin’s model, sampling
angular velocity and number of neighbors for Z = 5 and OT = 5.

Predicted
Flock CCW Torus CW Torus Swarm Total

Actual

Flock 83 1 0 18 102
CCW Torus 0 49 0 1 50
CW Torus 0 0 39 4 43

Swarm 9 6 4 81 100
Total 92 56 43 104 295

Table B.19: Confusion matrix for classifying all four group types in Couzin’s model, sampling
angular velocity and number of neighbors for Z = 15 and OT = 15.
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B.7 Tables of classifier accuracies

For comparison between different classifiers discussed in Chapter 6, we have included the

accuracies that resulted from using Z ∈ [1, 2, . . . , 10] and OT ∈ [1, 2, . . . , 10] in Tables B.20,

B.21, B.22, and B.23. The results for group type classification using Couzin’s model are

shown in Table B.24.

Observation Time (OT)
1 2 3 4 5 6 7 8 9 10

Z

1 82 87 86 87 87 87 87 87 88 88
2 94 96 96 95 95 96 96 95 97 98
3 97 97 97 97 97 97 98 98 98 99
4 98 99 99 99 99 99 99 99 99 99
5 100 100 100 100 100 100 100 100 100 100
6 100 100 100 100 100 100 100 100 100 100
7 100 100 100 100 100 100 100 100 100 100
8 100 100 100 100 100 100 100 100 100 100
9 100 100 100 100 100 100 100 100 100 100
10 100 100 100 100 100 100 100 100 100 100

Table B.20: Percent accuracy for using only number of neighbors to predict the unoriented
group type of a swarm.

Observation Time (OT)
1 2 3 4 5 6 7 8 9 10

Z

1 69 70 73 72 75 74 81 79 79 81
2 72 77 80 80 79 87 88 90 91 90
3 82 84 91 94 91 92 96 98 98 97
4 89 90 89 92 95 95 96 97 98 98
5 89 93 93 94 96 98 98 98 98 97
6 93 94 94 97 97 97 97 97 97 98
7 94 95 95 97 98 98 99 99 98 98
8 95 97 98 99 100 100 100 100 100 100
9 95 98 100 100 100 100 100 100 100 100
10 96 99 100 100 100 100 100 100 100 100

Table B.21: Percent accuracy for using only angular velocity to predict the unoriented group
type of a swarm.
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Observation Time
1 2 3 4 5 6 7 8 9 10

Z

1 71 73 78 78 82 85 85 83 85 90
2 79 80 84 87 88 93 95 97 97 97
3 90 91 92 95 97 97 98 99 99 99
4 96 95 95 97 96 99 99 100 100 100
5 95 96 98 98 99 99 99 99 99 100
6 97 96 98 99 100 100 100 100 100 100
7 99 98 99 99 99 99 100 100 100 100
8 98 100 100 100 100 100 100 100 100 100
9 98 100 100 100 100 100 100 100 100 100
10 99 100 100 100 100 100 100 100 100 100

Table B.22: Percent accuracy for using only angular velocity to predict the group type and,
in the case of the torus, orientation of the swarm.

Observation Time
1 2 3 4 5 6 7 8 9 10

Z

1 84 85 86 86 87 88 88 88 88 89
2 95 96 97 97 95 97 98 97 98 99
3 97 98 98 97 98 98 98 98 98 100
4 99 99 99 99 99 99 99 99 99 99
5 100 100 100 100 100 100 100 100 100 100
6 100 100 100 100 100 100 100 100 100 100
7 100 100 100 100 100 100 100 100 100 100
8 100 100 100 100 100 100 100 100 100 100
9 100 100 100 100 100 100 100 100 100 100
10 100 100 100 100 100 100 100 100 100 100

Table B.23: Percent accuracy for using both angular velocity and number of neighbors to
predict the group type and, in the case of the torus, orientation of the swarm.

128



Observation Time (OT)
1 2 3 4 5 6 7 8 9 10

Z

1 30.93 36.08 38.14 36.08 38.14 44.33 43.30 39.18 36.08 39.18
2 45.36 40.21 43.30 46.39 44.33 51.55 51.55 53.61 56.70 56.70
3 48.45 52.58 59.79 56.70 58.76 60.82 62.89 65.98 62.89 61.86
4 56.70 59.79 60.82 61.86 63.92 67.01 70.10 72.16 73.20 73.20
5 56.70 60.82 65.98 72.16 73.20 72.16 72.16 73.20 73.20 73.20
6 55.67 60.82 62.89 68.04 69.07 70.10 68.04 70.10 72.16 71.13
7 58.76 65.98 70.10 69.07 69.07 68.04 73.20 73.20 74.23 75.26
8 63.92 70.10 74.23 74.23 75.26 76.29 75.26 74.23 76.29 74.23
9 58.76 68.04 73.20 76.29 75.26 76.29 74.23 74.23 73.20 72.16
10 68.04 72.16 76.29 76.29 81.44 78.35 80.41 80.41 78.35 77.32

Table B.24: Percent accuracy for using only number of neighbors to predict the oriented
group type for Couzin’s model.
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Appendix C

Supplementary Results for Quorum Sensing

C.1 Scalability

Figures C.1–C.4 compare the scalability of the quorum sensing model with the stakeholder

model for N = 200 and N = 300.

C.2 Sensitivity analysis

We ran a series of simulations for values of αmax between 0 and 1 with Q = 0 and took

the average over 10 replicates. Values of αmin less than 0.5 did not allow reliable switching

between group types so we do not report those results. For 0.5 ≤ αmax ≤ 1, the average

interaction time required to switch from a flock to a torus is shown in Figure C.5. We see

that for 0.5 ≤ αmax ≤ 0.7 the interaction time is less than that of the stakeholder model

when M = 45 and M = 50, additionally we see that when αmax = 0.6 the collective behavior

can switch for M ≥ 30 and the interaction time is minimized for these values of M . Because

higher values of αmax have much higher interaction times and work for similar values of M ,

we chose to restrict the analysis in the subsequent sections to αmax = 0.6.

To see the effect this has on interaction time for different values of Q, we replicated

Figure 9.8(b) using αmin = 0.6 instead of 1. The results for switching from a flock to

a torus are shown in Figure C.6. From this figure we see that using αmax = 0.6 makes
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(a) Stakeholder switch from torus to flock (b) Stakeholder switch from torus to flock

(c) Quorum sensing switch from torus to flock (d) Quorum sensing switch from torus to flock

Figure C.1: Switch from a torus to a flock using only stakeholders and using stakeholders
and type aware agents. Stakeholders are led by orientation. N=200.
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(a) Stakeholder switch from flock to torus (b) Stakeholder switch from flock to torus

(c) Quorum sensing switch from flock to torus (d) Quorum sensing switch from flock to torus

Figure C.2: Switch from a flock to torus using only stakeholders and using stakeholders and
type aware agents. Stakeholders are led by attraction. N=200.
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(a) Stakeholder switch from torus to flock (b) Stakeholder switch from torus to flock

(c) Quorum sensing switch from torus to flock (d) Quorum sensing switch from torus to flock

Figure C.3: Switch from a torus to a flock using only stakeholders and using stakeholders
and type aware agents. Stakeholders are led by orientation. N=300.
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(a) Stakeholder switch from flock to torus (b) Stakeholder switch from flock to torus

(c) Quorum sensing switch from flock to torus (d) Quorum sensing switch from flock to torus

Figure C.4: Switch from a flock to torus using only stakeholders and using stakeholders and
type aware agents. Stakeholders are led by attraction. N=300.
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Figure C.5: Average interaction time to switch from flock to torus for stakeholder model,
and quorum sensing model for Q = 0 and 0.1 ≤ αmax ≤ 1.

the interaction time for the quorum sensing model lower than the interaction time for the

stakeholder model. Additionally, this figure shows that the quorum sensing model allows for

the vulnerability/responsiveness of the model to be adjusted by changing Q. If Q = 2 the

model will not reliably switch behaviors unless 50 or more agents receive human influence.

Once the human controls 50 agents we see that the interaction time is about 10 seconds faster

than the stakeholder model with the same number of stakeholders.

We also looked at different values of αmax for switching from a torus to a flock. Figure

C.7 shows that αmax has less impact on switching from a torus to a flock than it does for

switching from a flock to a torus. For every value of αmax shown, the interaction time is very

similar with αmax = 0.5 performing the worst and αmax = 0.8 having the largest region of

switching. There is no clear winner in terms of switching region or interaction time. In the

following analysis, we chose to focus on αmax = 0.8 because it allowed group type switches

over the largest range of M and had reasonably low average interaction times.
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Figure C.6: Average interaction time to switch from flock to torus for stakeholder model,
and quorum sensing model for ρ = 0.7, Q = 0, 1, 2, αmax = 0.6, and αmin = 0.
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Figure C.7: Average interaction time to switch from torus to flock for stakeholder model,
and quorum sensing model for Q = 0 and 0.1 ≤ αmax ≤ 1.
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Figure C.8: Average interaction time to switch from flock to torus for stakeholder model,
and quorum sensing model for Q = 2, αmax = 0.6, and 0.1 ≤ αmin ≤ 0.5.

To study the sensitivity of the model to different values of αmin we ran two sets

of simulations, one for switching from flock to torus and one for switching from torus to

flock, and varied αmin. For the flock to torus simulation we used αmaxi = 0.6, Qi = 2, and

αmaxi ∈ [0.1, 0.5], ∀i. We ran 10 replicates for each value of αmin in 0.1 unit increments.

The results are shown in Figure C.8. We see that increasing αmin has the general effect of

lowering interaction time as well as increasing the switching region. When αmin = αmax

this is equivalent to setting Q = 0. Thus αmin provides an additional way to adjust the

responsiveness/vulnerability of the swarm. The results for switching from torus to flock are

shown in Figure C.9. These results also show that increasing αmin decreases the interaction

time and increases the switching region over M .
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Figure C.9: Average interaction time to switch from torus to flock for stakeholder model,
and quorum sensing model for Q = 2, αmax = 0.8, and 0 ≤ αmin ≤ 0.7.

C.3 Effects of heterogeneous parameters

We also investigated the behavior of the quorum sensing model when there is variation in

the model parameters. We started by running a set of simulations using the quorum sensing

model with homogeneous model parameters. For switching from flock to torus we used

αmax = 0.6, αmin = 0.2, and Q = 2, for all agents. For switching from a torus to a flock we

used αmax = 0.8, αmin = 0.2, and Q = 2, for all agents. The results for the homogeneous

parameter sets as M and ρ are varied are shown in figures C.10(a), C.10(b), C.11(a), and

C.11(b). To investigate the effects of using heterogeneous parameters we ran the same

simulations but with heterogeneous parameters. For switching from flock to torus we used

αmaxi ∼ N (0.6, 0.05), αmini ∼ N (0.2, 0.05), and Qi ∼ DU(0, 4), ∀i. For switching from torus

to flock we used αmaxi ∼ N (0.8, 0.05), αmini ∼ N (0.2, 0.05), and Qi ∼ DU(0, 4), ∀i, where

N (µ, σ) is the normal distribution parameterized by mean µ and standard deviation σ, and

DU(a, b) is the discrete uniform distribution over integers in the interval [a, b]. The results for

the heterogeneous parameter sets are shown in figures C.10(c), C.10(d), C.11(c), and C.11(d).
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(a) Homogeneous (b) Homogeneous

(c) Heterogeneous (d) Heterogeneous

Figure C.10: Switch from flock to torus using quorum sensing with homogeneous and
heterogeneous parameters.

Examining these results we see that the model is quite robust to parameter variation and

noise and that adding heterogeneous parameters actually decreases the minimum M needed

to allow reliable switching for both switching from flock to torus and switching from torus to

flock.
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(a) Homogeneous (b) Homogeneous

(c) Heterogeneous (d) Heterogeneous

Figure C.11: Switch from torus to flock using quorum sensing with homogeneous and
heterogeneous parameters.
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Appendix D

Maximum Speed of a Torus

This section investigates the theoretical upper limit on the speed of a torus. Although

the torus group type is usually relatively stationary, there is always a small random drift to

the torus. Additionally, if human or environmental influences affect the individual agents in

the torus, the torus centroid may change more rapidly. If we wish to have the torus move

in some direction it is helpful to know how fast the torus can move to determine whether

switching to a flock formation is necessary. Additionally, if we are unsure of the collective

behavior of the agents in the swarm, but have an estimate of the velocity of the group

centroid, then we could compare this estimate with the upper limit on the speed of a torus

to gain insight into the group type of the swarm.

We can think of the torus formation as a rotating disc of radius r. If we consider one

agent moving along the perimeter of the torus and if we assume the torus is itself moving (i.e.

the centroid of the torus has a certain velocity) then we can think of the agent’s trajectory

as the cycloid shown in Figure D.1.

The parametric equations that govern the motion of a cycloid generated by a circle of

radius r and parameterized by θ, the angle through which the rolling circle has rotated, are

x = r(θ − sin θ) (D.1)

y = r(1− cos θ). (D.2)
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Figure D.1: Idealized trajectory of an agent represented as a cycloid generated by a circle of
radius r that has rotated through the angle θ.

To determine the distance that the agent travels we must calculate the length of the parametric

curve defined by D.1 and D.2 above. The arc length of a parametric curve, L, parameterized

by θ is defined as

L =

∫ b

a

√
(
dx

dθ
)2 + (

dy

dθ
)2 dθ. (D.3)

So, the length of one arch of the cycloid is

L =

∫ 2π

0

√
(r(1− cos θ))2 + (r sin θ)2 dθ

= r

∫ 2π

0

√
2− 2 cos θ dθ

= r

∫ 2π

0

√
4 sin2 θ

2
dθ

= 8r.
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Assuming that the agent has a speed of s units per second, we want to find the speed

of the centroid of the torus, storus. The time taken for the agent to traverse the arc length is

8r/s. The center of the disc, or centroid of the torus, has traveled 2πr units, therefore

max(storus) =
2πr

8r/s
=
π

4
s. (D.4)

Thus, the upper limit on the speed of a torus is approximately three-fourths the speed of an

individual agent.
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Appendix E

Discrete-Time Approximation Error for Attraction-Only Dynamics

In this chapter we examine the error between our discrete-time approximation and the

actual continuous dynamics for a the simplified case of attraction only dynamics. We show

that the error between the continuous-time model and the discrete-time approximation can

be quantified in terms of the time step, the agent speed, and the gain on an agent’s angular

velocity. We will also show that the radius of the torus can be controlled using the gain on

agent angular momentum.

We consider the behavior of a swarm with continuous attraction-only dynamics

ċi = s · vi (E.1)

θ̇i = wi (E.2)

where ci = [xi, yi]
T ∈ R2 is the ith agent’s position, vi = [cos(θi), sin(θi)]

T is a unit velocity

vector for agent i, θi ∈ [−π, π] is the angular heading of the agent, s is the constant agent

speed, and wi is the angular velocity.

Because we are restricting our analysis to attraction-only dynamics, the desired heading

vector ui is computed as

ui = uai . (E.3)

Therefore, the angular velocity, wi, is

wi = k
(
θdi − θi

)
(E.4)
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where θdi = atan2(uai ) is the desired orientation of agent i. If we assume a complete topology,

then θdi = atan2(ric) where ric = cg − ci and cg is the group centroid. As shown previously,

the resulting group behavior is a cyclic group with radius of

r =
2s

kπ
. (E.5)

E.1 Approximation error

The discrete-time dynamics of our system are

ci(t+ 1) = ci(t) + s · vi(t)∆t (E.6)

θi(t+ 1) = θi(t) + kαi(t)∆t (E.7)

where c is the agent position, αi(t) = θdi (t) − θi(t), (adjusted so the agent moves in the

appropriate direction) and ∆t is the discretized time step.

Because this is only an approximation of the continuous dynamics we want to quantify

the error between our approximation and the actual continuous model. As the simulation

time step ∆t approaches 0, the simulation values will match the continuous values described

above. For the discrete case, the agent trajectories will be discrete approximations of the

circle and can therefore be viewed as regular polygons inscribed inside of a circle. The length

of the sides of the polygon l will be the distance traveled at each time step so l = s∆t. At

each time step the agent will compute α, change its direction to be closer to θd and then

move a distance of l in the direction θ(t+ 1).

Given an n-gonal approximation of a circle we can use a little trigonometry to calculate

the radius of the circle r. The radius of this circle will also be the radius of the orbit of an

agent following the n-gonal discrete-time orbit. Consider the diagram in Figure E.1. Given

the number of sides n we have that
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Figure E.1: N-gonal approximation of a circle

φ =
2π

n
. (E.8)

Examining the right triangle formed by drawing a line from the center of the polygon

perpendicular to one of the edges we have that

l

2
= r sin

φ

2
= r sin

π

n
. (E.9)

As previously noted, the agent moves l = s∆t units per time step. Substituting this for l in

Equation E.9 and solving for r we have

r =
s∆t

2 sin(π/n)
(E.10)

and conversely, solving for n we have

n =
π

sin−1(s∆t/2r)
. (E.11)
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These equations require that we know n in order to compute r and vice versa. We

would like an equation that only depends on ∆t, α, and s. To achieve this goal we first note

that the time taken for an agent to complete an orbit of the centroid is

toribit =
2π

kα
(E.12)

and that the distance traveled by the agent is

d = s · 2π

kα
. (E.13)

These equations are true regardless of whether the agents move in continuous or discrete

time. We also know that the length of a side l equals s∆t. Therefore the number of sides n

is given by dividing d, the perimeter of the n-gon shown in Figure E.1, by l. Thus

n =
d

l
=

2π

kα∆t
. (E.14)

We now have an equation for n that doesn’t depend on r which is good, but we would

like to get rid of the α as well. In the continuous case we know that agents in the stable cycle

have α = π/2; however, in the discrete case there will be some error. To calculate the error it

helps to consider Figure E.2

An agent’s heading is represented in Figure E.2 as a blue vector. The angle θ̃ represents

the difference between the discrete-time approximation and the continuous model. We can

solve for the magnitude of θ̃ by noting that φ/2 + ψ = π/2 and also that ψ + |θ̃| = π/2.

Therefore

|θ̃| = φ

2
=
π

n
. (E.15)

As agents travel along the n-gonal approximation of the circle, their heading will point in

the same direction as the side that they most recently traversed. Because agents in both the
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Figure E.2: Error in heading (θ̃) for discrete-time simulation

discrete-time and continuous-time models are attracted to the centroid, in the continuous

case, as stated earlier, α = π/2 at equilibrium and in the discrete case

α =
π

2
+
π

n
(E.16)

at equilibrium. Plugging this result into Equation E.14 and solving for n we have the following

equation for the number of sides

n =
4

k∆t
− 2. (E.17)

Plugging this result into Equation E.10 we have the following equation for the radius of the

equilibrium cycle of the discrete-time model

r =
s∆t

2 sin (kπ∆t/(4− 2k∆t))
. (E.18)
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E.2 Error

We can now calculate the error between the discrete- and continuous-time attraction-only

swarm models described in this paper.

r̃ =
2s

kπ
− s∆t

2 sin (kπ∆t/(4− 2k∆t))
(E.19)

α̃ =
π

n
=

kπ∆t

4− 2k∆t
. (E.20)

E.2.1 Analysis of results

We can verify these results by showing that for the continuous model α is in fact equal to

π/2 when the system reaches a stable cycle. The previous results can be verified quite easily.

First we consider our result for θd in the discrete simulation

θd =
π

2
+
π

n
(E.21)

=
π

2
+

π

(4/(k∆t− 2))
(E.22)

=
π

2− k∆t
. (E.23)

If we now take the limit as ∆t approaches zero we have

lim
∆t→0

α = lim
∆t→0

π

2− k∆t
=
π

2
. (E.24)

If we assume a fixed α and s we can also analyze r for the discrete model and let ∆t→ 0.

lim
∆t→0

r = lim
∆t→0

s∆t

2 sin
(

πk∆t
4−2k∆t

) (E.25)

= lim
∆t→0

s

2 cos
(

kπ∆t
4−2k∆t

)((4− 2k∆t)(πk)− (kπ∆t)(−2k)

(4− 2k∆t)2

)−1

(E.26)

=
2s

kπ
(E.27)
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which matches our previous analysis.

E.2.2 Controlling the radius of a swarm through the gain

Our final analysis considers the result of changing the gain k on angular velocity.

lim
k→0

r = lim
k→0

s∆t

2 sin
(

kπ∆t
4−2k∆t

) (E.28)

= ∞. (E.29)

If we take the limit to infinity we get

lim
α→∞

r = lim
α→∞

s∆t

2 sin
(

πk∆t
4−2k∆t

) (E.30)

=
s∆t

2 sin
(
π
−2

) (E.31)

= −s∆t
2
. (E.32)

This value is negative and therefore is not realizable. In fact by examining r we see that

there are discontinuities whenever

sin

(
kπ∆t

4− 2k∆t

)
= 0 or 4− 2k∆t = 0. (E.33)

Solving the latter equation we find that if k = 2/∆t there will be a discontinuity. The former

will be zero when kπ∆t
4−2k∆t

= nπ for n = 0,±2,±4, · · · . Therefore there will be discontinuities

for

k =
4n

(1 + 2n)∆t
for n = 0,±2,±4, · · · . (E.34)

E.3 Simulation results and validation

In order to validate this analysis, we ran a set of simulations using different values for ∆t

with k = 1 and s = 1. Each simulation was run for 200 seconds and 50 agents were used.
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Simulation Theoretical
∆t r θd sides r θd sides
.5 0.5 2.0944 6.0 0.5 2.0944 6
.4 0.5226 1.9635 8.0 0.5226 1.9635 8
.3 0.5481 1.8480 11.333 0.5481 1.8480 11.333
.2 0.5759 1.7453 18.0 0.5759 1.7453 18
.1 0.6055 1.6535 38.0 0.6055 1.6535 38
.01 0.6334 1.5787 397.99 0.6334 1.5787 398
.001 0.6363 1.5716 3998.0 0.6363 1.5716 3998
ε 0.6366 1.5708 ∞

Table E.1: Comparison of simulated results with theoretical results. The last row shows the
values for the continuous case.

The results are shown in Table E.1. These results show that the simulation results match the

theoretical results.

The results were calculated at the end of each simulation. The radius was calculated

by finding the average agent distance from the group centroid. The desired direction change

α was calculated by finding the average of |k(θd − θ)| for all agents. The number of sides

of the n-gonal approximation was calculated using Equation (E.11). The theoretical results

for r, α, and the number of sides were calculated using equations (E.23), (E.18), and (E.17),

respectively.

E.4 Dependence on initial conditions

The above results all depend on the centroid converging to a constant point. When ex-

perimenting with five agents, we noticed that quite often the centroid would not converge,

but would itself travel in a polygonal trajectory. This appears to be related to the initial

conditions of the agents—if the agents are unbalanced, then the centroid will not converge to

a point, but will itself converge to a sort of limit cycle (think of a rolling oval and how its

centroid moves in a circle).

We tracked the centroid for one of the simulations that didn’t converge to a point and

the trajectories are shown in Figure E.3. This simulation used ∆t = .5 which, as shown in
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Figure E.3: Trajectories of a centroid for 5 agents with ∆t = .5. Colors are used to make the
hexagonal shape more apparent.

Table E.1, results in hexagonal agent trajectories. Figure E.3 suggests that not only do the

agents move in hexagonal trajectories, but if the centroid does not converge, then it also

moves in a hexagonal trajectory.

E.5 Discussion

We have demonstrated that the radius of a swarm can be calculated for both the continuous

and discrete cases. The error between the discrete case and the continuous case can be

calculated using the results shown in this paper. Future work should investigate calculating

the discrete-time approximation error for the full swarm model, and also investigate whether

the end behavior of the centroid can be determined if the initial conditions are known.
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