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abstract

Bounding the Norm of Matrix Powers

Daniel A. Dowler
Department of Mathematics, BYU

Master of Science

In this paper I investigate properties of square complex matrices of the form Ak, where A is also
a complex matrix, and k is a nonnegative integer. I look at several ways of representing Ak. In
particular, I present an identity expressing the kth power of the Schur form T of A in terms of the
elements of T, which can be used together with the Schur decomposition to provide an expression
of Ak. I also explain bounds on the norm of Ak, including some based on the element-based
expression of Tk. Finally, I provide a detailed exposition of the most current form of the Kreiss
Matrix Theorem.

Keywords: Matrix Powers, Matrix Norm Bounds, Matrix Power Bounds, Kreiss Matrix Theorem,
Schur Decomposition, Schur Form
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What happens when you take a square matrix, A, raise it to an integer power k, and then take

the norm, ||Ak||? Below there are four matrices and four corresponding graphs of the norm

(2-norm) of their powers. Can you match each matrix to the correct graph of the norm of its

powers? We will revisit this question again later in the thesis. For now, note how similar the

matrices are, yet how differently the graphs of their norms behave.

Figure 1: Examples of Norms of Matrix Powers

1. 2.

3. 4.

V=



0 2 0 0

2 0 0 0

0 0 0 0

0 0 0 2


W=



20
21 0 2 2

0 40
41 0 2

0 0 60
61 0

0 0 0 80
81



X=



20
21 2 0 0

0 40
41 2 0

0 0 60
61 2

0 0 0 80
81


Y =



20
21 0 0 0

0 40
41 0 0

0 0 60
61 0

0 0 0 80
81
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Chapter 1. Introduction

Before we begin discussing norms of matrix powers in detail, perhaps we should begin by asking

what happens when you take a square complex matrix A, and multiply it by itself over and over

again to get Ak? The answer depends on various properties of A. The eigenvalues of A will be of

central importance. In particular, we shall see that if the spectral radius is greater than one, then

at least some of the entries of Ak will diverge in magnitude toward infinity as the power k increases.

On the other hand, if the spectral radius is less than one, all of the entries of Ak will converge to 0

as k tends to infinity. The resolvent of A will also be of great importance. Once this is defined, we

will be able to express Ak as a complex integral. We will be able to use properties of the resolvent

to derive the Kreiss Matrix Theorem (Theorem 3.17), a fundamental result of numerical linear

algebra.

Furthermore, matrix normality—or lack thereof—will also play a key role. We will see that if A

is a normal matrix, then both A and Ak may be decomposed into products of unitary and diagonal

matrices; whereas if A is a nonnormal matrix, then A and Ak may only be decomposed as products

of unitary and upper-triangular matrices. These results will follow from the Spectral Theorem

(Theorem 1.4) and Schur’s Unitary Triangularization Theorem (Theorem 1.5). The difference in

these decompositions, leads to rather different approaches in determining the norm of Ak. When A

is normal, the norm of Ak is rather easy to compute; however, if A is nonnnormal, the difficulty of

direct computation is often so high that we opt for finding a bound, rather than an exact value. As

we will see, the process of developing bounds for the norm ||Ak|| in the case where A is nonnormal,

is no trivial pursuit.

In fact, bounds for ||Ak|| are part of an active area of mathematical research. In this paper I

present several new bounds based on entries from the Schur form of the matrix A. I also provide

a contiguous exposition of the most current version of the Kreiss Matrix Theorem (Theorem 3.17),

whose proof was completed in 1991 with the addition of Spijker’s Lemma (Lemma 3.21). The

theorem gives a lower and upper bound for the supremum of the norm ||Ak||, for all nonnegative

integers k. As the theorem (originally by Heinz-Otto Kreiss [3]) has gone through many iterations

since its debut in 1962, a complete presentation including both the theorem and its proof in the

most current form is lacking in the literature; yet, due to its importance to both theoretical and
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applied mathematics, a unified exposition is quite worthwhile.

In Chapter 4 we revisit Figure 1, to analyze bounds on the norms of powers of the given matrices,

and to finally answer the question of which graph goes with which matrix. Next, we discuss an

example of where the norm of matrix powers is used to determine error in Gauss-Seidel iteration.

Then we investigate the effects of nonnormality in a Markov process. Finally, we look at a random

upper triangular matrix with a particular structure.

1.1 Acknowledgments

While I researched and wrote the material that follows, I have certainly been inspired, guided, and

supported by so many others. Many thanks go to my advisor Jeffrey Humpherys for guiding me

along the way. I would also like to thank my committee members Wayne Barrett and Scott Glasgow

for their time and insights in evaluating my work. My wife, Marquita, and my wonderful children

deserve special recognition for supporting me and loving me through the long hours of study and

work that have gone into the pursuit of a master’s degree. I want to thank all of my professors

who have believed in me, and who have labored to teach me. There are many other friends, family

members, and fellow students who have made my journey brighter. Thank you to all of you for

your friendship and support.

1.2 Eigenvalues and Normal Matrices

We begin with an N×N matrix A with entries from C, the set of complex numbers. We will denote

the set of all such matrices by MN , where the dimension N is from N, the set of natural numbers.

Let A∗ denote the conjugate transpose of A (A∗ = (A)T ). Likewise, given u ∈ CN , where CN

denotes the set of complex N -tuples, let u∗ denote its conjugate transpose. Given a matrix A in

MN , the value λ in C is an eigenvalue of A if and only if there exists a nonzero N × 1 vector x

in CN , such that Ax = λx. The vector x is referred to as an eigenvector corresponding to λ.

The spectrum of the matrix A in MN , denoted σ(A), is the set of all eigenvalues of A. The

spectrum is a subset of C, and it is nonempty. By rearranging the equation Ax = λx, we may

3



write the spectrum as the set,

σ(A) = {λ ∈ C : (λI − A)x = 0 for some x ∈ CN\{0}}

or equivalently,

σ(A) = {λ ∈ C : det(λI − A) = 0}

Here, ‘det’ is the determinant operator. Note that σ(A) 6= ∅, because each matrix in MN has at

least one eigenvalue. The spectral radius of A ∈ MN is the largest magnitude attained by any

eigenvalue of A:

ρ(A) := sup{|λ| : λ ∈ σ(A)}

The characteristic polynomial p of A ∈MN is the complex polynomial defined by,

p(z) := det(zI − A)

To see that this is actually a polynomial, a simple inductive proof is in order. If N is 1, then

p(z) = z − a, which is a polynomial in z of degree 1. Now inductively, suppose that we have

shown that det(zI − A) is in fact a polynomial of degree N , for some integer N ≥ 1, and for all

A ∈MN . Choose B = (bmn) ∈MN+1. By cofactor expansion along the first row of B,

det(zI − B) = (z − b11)C11 −
N∑
j= 1

b1jC1j

where C1j is the 1jth cofactor of B, for j = 1, 2, . . . , N . Recall that C1j is defined as (− 1)1+j times

the determinant of the N × N matrix obtained from B by deleting the 1st row and jth column.

Thus, C1j is a polynomial in z of degree N , by the inductive hypothesis. In particular, (z − b11)C11

is a polynomial of degree (N + 1)× (N + 1). Subtracting each of the other terms in the cofactor

expansion will still yield a polynomial of degree (N + 1)× (N + 1). The roots of the characteristic

polynomial of a matrix A are the eigenvalues of A; this is rather straightforward to show based on

the definition of the spectrum.

As with any other polynomial, we may find coefficeints c0, c1, . . . , cN , such that the characteristic

polynomial p of the matrix A ∈MN may be written as p(z) = cNz
N + cN−1z

N−1 + . . . + c1z + c0.

4



Setting this equal to det(zI − A), and evaluating both sides at z = 0 gives,

c0 = det(−A) = (− 1)N det(A) (1.1)

Though we will not prove it here, it turns out that the coefficient cN is 1, which makes the

characteristic polynomial monic, and thus unique. Another useful result involving the characteristic

polynomial is the Cayley-Hamilton Theorem.

Theorem 1.1 (Cayley-Hamilton Theorem). Let A ∈MN have characteristic polynomial

p(x) = xN + cN−1x
N−1 + . . . + c1x + c0. Then,

p(A) = AN + cN−1A
N−1 + . . . + c1A + c0I = 0

The proof of the Cayley-Hamilton Theorem may be found in the book Matrix Analysis, by Horn

and Johnson [2, p. 86].

Theorem 1.2. Given A ∈MN with all eigenvalues equal to zero, AN = 0.

Proof. Since the eigenvalues of A are zero, the characteristic polynomial of A is given by

p(x) = xN . By the Cayley-Hamilton Theorem,

AN = p(A) = 0

A matrix A ∈ MN is said to be normal if and only if A∗A = AA∗. All matrices without

this property are said to be nonnormal . A normal matrix U is unitary if U∗U = UU∗ = I, or

equivalently, if the columns of U form an orthonormal set. Normal matrices are extremely useful,

since they can be expressed in terms of their eigenvalues and eigenvectors as shown in

Theorem 1.4.

Lemma 1.3. If A ∈MN is normal and invertible, then A−1 is also normal.

Proof. First, note that

AA−1 = I =⇒ (A−1)∗A∗ = I∗ = I =⇒ (A−1)∗ = (A∗)−1

5



Thus the above, coupled with the normality of A implies that,

A−1
(
A−1

)∗
= A−1 (A∗)−1 = (A∗A)−1 = (AA∗)−1 = (A∗)−1 A−1 =

(
A−1

)∗
A−1

Therefore, A−1 is normal.

A matrix A ∈MN is Hermitian if A = A∗ and it is symmetric if A = AT . The reader can

verify that real symmetric matrices (that is, symmetric matrices with entries from the reals) are

Hermitian, and that Hermitian matrices are normal. Additionally, all Hermitian matrices have the

convenience of real eigenvalues. Note that if λ is an eigenvalue of the matrix A, with corresponding

eigenvector x, then Ax = λx, which implies that

x∗A∗ = (Ax)∗ = (λx)∗ = λx∗

In addition, if we assume that A is Hermitian, the following holds:

λx∗x = x∗A∗x = x∗Ax = x∗λx = λx∗x.

Since eigenvectors are nonzero, x∗x is also nonzero, which gives λ̄ = λ.

Regardless of whether A ∈ MN is normal or not, it is easy to prove that the matrices A∗A

and AA∗ will always be Hermitian (and hence normal) with real eigenvalues. Moreover, they are

positive semidefinite, and thus, the eigenvalues are nonnegative. In fact, A∗A and AA∗ always

have the same nonzero eigenvalues with the same multiplicities. Due to their importance, the

square roots of the eigenvalues of AA∗ are referred to as singular values of the matrix A. Since

singular values are always real, they can be ordered; and we are often interested in the largest or

smallest singular value.

Perhaps one of the most useful theorems in linear algebra regarding normal matrices, is the

Spectral Theorem; this theorem allows us to decompose a normal matrix into a product of matrices

that are very easy to work with.
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Theorem 1.4 (The Spectral Theorem). If A ∈Mn is normal, then A is unitarily diagonalizable.

That is,

A = UDU∗ (1.2)

where D is a diagonal matrix with the eigenvalues of A along its diagonal. The columns of U form

an orthonormal set of eigenvectors of A. In fact, each column of U is an eigenvector of A, which

corresponds to the eigenvalue of A located in the equivalent column of D.

Proof. See Horn and Johnson [2, p. 101]

We will see shortly that this spectral decomposition will allow for computationally efficient

matrix multiplication and norm evaluation.

The drawback of the Spectral Theorem is that it only applies to normal matrices. Nonnormal

matrices are not unitarily diagonalizable. Schur’s Unitary Triangularization Theorem (Theorem

1.5) provides a result which applies to all square matrices in MN ; although it is not quite as

structurally convenient as the Spectral Theorem, it is more widely applicable.

Theorem 1.5 (Schur’s Unitary Triangularization Theorem). Given a matrix A ∈MN , with eigen-

values λ1, λ2, . . . , λN , there exists a unitary matrix U, and an upper-triangular matrix T, such

that,

A = UTU∗

Furthermore, the diagonal entries of T are the eigenvalues of A.

Proof. See Horn and Johnson [2, p. 79 - 80]

This form of representing A is referred to as the Schur decomposition. The matrix T is called

the Schur form of A.

1.3 Norms

Informally, a matrix norm is an operator which assigns a nonnegative real number to each matrix

it operates on, much like a ruler might be used to assign lengths to various physical objects. As

such, a matrix norm is a function which takes a matrix as its argument, and it is endowed with

several key properties which we outline more formally below.
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The properties of a matrix norm are based on those of a vector norm . A vector norm,

|| · || : V → (R+∪{0}), takes a vector argument from a vector space V , and maps it to a nonnegative

real value (R+ denotes the positive reals). All vector norms are characterized by four axioms. Given

vectors u,v ∈ V , and scalar α,

Axiom 1: ||u|| ≥ 0

Axiom 2: ||u|| = 0 if and only if u = 0

Axiom 3: ||αu|| = |α| ||u||

Axiom 4: ||u + v|| ≤ ||u|| + ||v||

Observe that Axiom 4 is an analog of the triangle inequality. We can use it to obtain another

useful norm identity: given vectors u and v in V , and a vector norm || · ||,

| ||u|| − ||v|| | ≤ ||u − v||. (1.3)

The proof of inequality (1.3) is straightforward using Axiom 4:

||u|| = ||u − v + v|| ≤ ||u − v|| + ||v||

Now, subtract ||v|| from both sides to get ||u|| − ||v|| ≤ ||u − v||. Interchanging the roles of u

and v in the proof above justifies taking the absolute value.

If we replace u and v in Axioms 1–4 above by the matrices A and B, then the axioms become

the essential four axioms underpinning all matrix norms. Thus, a matrix norm is similar to a vector

norm; however, in the case of a matrix norm, the domain is a space of matrices such as MN . The

same notation is often used for both vector norms and matrix norms. Matrix norms are often

characterized by one additional axiom, called the Sub-Multiplicative Axiom: given matrices A and

B,

Axiom 5: ||AB|| ≤ ||A|| ||B||.

All of the matrix norms that we will consider, will satisfy the Sub-Multiplicative Axiom.

The generality of the axioms above allows for endless variety in defining specific vector and

matrix norms. We will only consider a few which are among the most commonly used. Let the

component-wise representation of u ∈ CN and A ∈MN be u = (u1, u2, . . . , uN )T , and

8



A =

( a11 a12 ... a1N
a21 a22 ... a2N
...

. . .
...

aN1 aN2 ... aNN

)
, respectively.

1.3.1 Vector Norms

.

The 1-norm: ||u||1 :=
N∑

n= 1

|un|

The 2-norm (Euclidean norm): ||u||2 :=

(
N∑

n= 1

|un|2
) 1

2

The ∞-norm: ||u||∞ := max
1≤n≤N

|un|

To justify our calling the identities above norms, we must verify that they satisfy the four vector

axioms. This is a straightforward exercise for Axioms 1 through 3, which we leave to the reader.

Lemma 1.7 below verifies Axiom 4 for the 2-norm. First, we give the famous Cauchy-Schwartz

inequality:

Lemma 1.6 (Cauchy-Schwartz Inequality). Given vectors u, v ∈ CN ,

|u∗v| ≤ ||u|| ||v||

Proof. Based on properties of matrix and vector multiplication, it is easy to verify that v∗v = ||v||22;

thus, this quantity is 0, if and only if v = 0. If v = 0, the inequality holds. Suppose v 6= 0. Let

z = u − u∗v
||v||22

v, and note that z∗v = 0. Taking the conjugate gives z∗v = 0, which implies that

v∗z = 0. Also, note that,

u =
u∗v

||v||22
v +

(
u − u∗v

||v||22
v

)
=

u∗v

||v||22
v + z

This implies that,

||u||22 =

∣∣∣∣∣∣∣∣ u∗v||v||22v + z

∣∣∣∣∣∣∣∣2
2

=

(
u∗v

||v||22
v + z

)∗( u∗v

||v||22
v + z

)
=

(
u∗v

||v||22

)2

v∗v +

(
u∗v

||v||22

)
v∗z +

(
u∗v

||v||22

)
z∗v + z∗z =

(
u∗v

||v||22

)2

v∗v + z∗z

≥
(

u∗v

||v||22

)2

v∗v =
(u∗v)2

||v||22

9



Rearranging terms we get,

||u||22||v||22 ≥ (u∗v)2

Taking the square root of both sides finishes the proof.

Lemma 1.7. Given vectors u = (u1, u2, . . . , uN )T and v = (v1, v2, . . . , vN )T in CN ,

||u + v||2 ≤ ||u||2 + ||v||2.

Proof.

||u2 + v2||22 = (u + v)∗(u + v) = u∗u + u∗v + v∗u + v∗v

≤ ||u||22 + 2 ||u||2 ||v||2 + ||v||22 = (||u||2 + ||v||2)2

The inequality above follows by the Cauchy Schwartz inequality. Taking the square root finishes

the proof.

Norms are important because they provide metrics for comparing one vector to another. This

allows us to extend many single-variable concepts, like convergence and continuity, to multiple

dimension vector spaces. A vector u with ||u|| = 1 is referred to as a unit vector. Given a sequence

of vectors {x(k)}∞k= 1 in a vector space V , and a single vector x in V , we say that the sequence

{x(k)}∞k= 1 converges to x with respect to the norm, || · || if and only if the norm, ||x(k) − x||,

approaches zero as k approaches infinity; that is, given some ε > 0, there exists K ∈ N, such

that ||x(k) − x|| < ε, whenever k ≥ K. This is written more compactly as, ||x(k) − x|| → 0

as k → ∞. The vector x is then referred to as the limit of the sequence {x(k)}∞k= 1 with respect

to the norm || · ||. A subset W ⊂ V is closed (with respect to some particular norm) if and

only if every sequence in W that converges, converges to a vector which is also contained in W .

The subset W is bounded (also with respect to some particular norm) if and only if there exists

some M ∈ R, such that M ≥ ||x||, for every x ∈ W . A subset of vectors W ⊂ V is compact

in V if and only if it is closed and bounded (actually, there is a more abstract definition for the

more general idea of compactness in a topological space, but this is sufficient for vector spaces). A

complex-valued function f defined on a vector space V is continuous at x ∈ V with respect to

10



the norm || · || if and only if for every sequence {x(k)}∞k=0 ⊂ V such that ||x(k) − x|| → 0, it follows

that |f(x(k)) − f(x)| → 0, as n→∞. If f is continuous at every vector of its domain, then we say

f is continuous. By replacing u and v in inequality (1.3) by a convergent sequence and its limit

(respectively), we obtain a proof that vector norms themselves are continuous functions.

Given a matrix A ∈MN and any vector x ∈ CN , since Ax is also a vector we may be interested

in the function f(x) = ||Ax||. In fact, for all the vector norms we have discussed, this function is

continuous! Lemma 1.9 will prove this for the 2-norm, and similar strategies can be used to prove

continuity in the 1 and ∞-norm cases. First, we look at a useful lemma relating convergence of

vector components to convergence of vectors.

Lemma 1.8. The sequence {x(k)}∞k= 0 ⊂ CN , converges to the vector x ∈ CN with respect to the

2-norm if and only if x
(k)
j converges (in the single-variable sense) to xj, for each j = 1, 2, . . . , N ,

where x
(k)
j and xj are the jth components of x(k) and x, respectively.

Proof. First, we prove the forward direction. Fix j ∈ {1, 2, . . . , N}, and suppose that {x(k)}∞k= 0 ⊂

CN converges to the vector x ∈ CN . Then given some ε > 0, there exists K ∈ N, such that for

every k ≥ K,

|x(k)
j − xj |2 ≤

N∑
n= 1

|x(k)
n − xn|2 = ||x(k) − x||22 < ε2

Taking the square root of boths sides shows that the sequence {x(k)
j }∞k=0 converges (in the single

variable sense) to xj . Since j is arbitrary, each component of the sequence {x(k)}∞k= 0 converges to

each respective component of the vector x.

Now, we prove the other direction. Suppose each component sequence {x(k)
n }∞k=0 converges to

the respective component xn for n = 1, 2, . . . , N . By definition of convergence, given ε > 0, there

exists K1,K2, . . . ,KN ∈ N, such that for each n = 1, 2, . . . , N ,

|x(k)
n − xn| <

ε√
N
, whenever k ≥ Kn

Let K = max{K1,K2, . . . ,KN}. Then, for every k ≥ K,

||x(k) − x||22 =

N∑
n= 1

|x(k)
n − xn|2 < N

ε2

N
= ε2

11



Taking the square root finishes the proof.

Now we are ready to discuss the continuity of ||Ax||2.

Lemma 1.9. Given a matrix A ∈MN , the function f : CN → R∪ {0}, defined by f(x) = ||Ax||2

is continuous.

Proof. Suppose that {x(k)}∞k= 0 is a sequence in CN that converges to the vector x. Choose ε > 0.

Denote the mnth entry of the matrix A by amn, and let α = max
1≤m,n≤N

{|amn|}. If α = 0, then

A is the zero matrix. In this case, |f(x(k)) − f(x)| = | ||Ax(k)||2 − ||Ax||2| = 0 < ε, for every

k ∈ N.

Suppose that α > 0. As in the proof of Lemma 1.8, there exists K1,K2, . . . ,KN ∈ N, such

that for each n = 1, 2, . . . , N ,

|x(k)
n − xn| <

ε

αN
, whenever k ≥ Kn

Let K = max{K1,K2, . . . ,KN}. Then for k ≥ K,

|f(x(k)) − f(x)|2 =
∣∣∣ ||Ax(k)||2 − ||Ax||2

∣∣∣2 ≤
∣∣∣∣∣∣Ax(k) − Ax

∣∣∣∣∣∣2
2

=
∣∣∣∣∣∣A(x(k) − x

)∣∣∣∣∣∣2
2

=
N∑

m= 1

∣∣∣∣∣
N∑

n= 1

amn

(
x(k)
n − xn

)∣∣∣∣∣
2

≤
N∑

m= 1

N∑
n= 1

|amn|2
∣∣∣x(k)
n − xn

∣∣∣2 <
N∑

m= 1

N∑
n= 1

α2 ε2

α2N2

= ε2

Taking the square root finishes the proof: f(x) is continuous.

1.3.2 Matrix Norms. Given any vector norm, || · ||v : CN → (R+ ∪ {0}), one way to define a

matrix norm || · || : MN → R ∪ {0} is the following:

||A|| := sup
||u||= 1

||Au||v (1.4)

where A ∈ MN . Matrix norms generated in this manner are referred to as operator norms.

Note that the set B = {x : ||x|| = 1} is closed and bounded, and therefore, compact; thus, when
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|| · ||v is continuous, it attains a maximum value on B, and we are justified in replacing ’sup’ in the

definition above by ’max’. Since the properties of operator norms depend on the properties of the

supremum, and on the properties of corresponding vector norms, operator norms pass Axioms 1–4

almost effortlessly.

In addition, all operator norms posses the sub-multiplicative property (Axiom 5), as the follow-

ing lemma shows.

Lemma 1.10. Given the operator norm || · || : CN → R ∪ {0}, and matrices A and B in MN ,

||AB|| ≤ ||A|| ||B||

Proof. Choose a unit vector x ∈ CN . If Bx = 0, then trivially,

0 = ||A0|| = ||ABx|| ≤ ||A|| ||B||

If Bx 6= 0, then observe that 1
||Bx||Bx is a unit vector. Then,

||ABx|| =
||Bx||
||Bx||

||ABx|| = ||Bx|| ||A
(

1

||Bx||
Bx

)
||

Since both x and 1
||Bx||Bx are unit vectors, the definition of an operator norm as a supremum

gives that ||A|| ||B|| is greater than the right-hand side above. Since x is arbitrary, and ||AB|| =

max
||x||= 1

||AB||, we have ||AB|| ≤ ||A|| ||B||.

The previous vector norms each produce a corresponding operator norm:

The 1-norm: ||A||1 := max
||u||= 1

||Au||1

The 2-norm (spectral norm): ||A||2 := max
||u||= 1

||Au||2

The ∞-norm: ||A||∞ := max
||u||= 1

||Au||∞

Note that we have overloaded the norm notation above, as is common practice in the field. In

the equations above, Au is a vector, so on the right-hand side, || · ||1 is a vector norm; whereas A

is a matrix, so on the left-hand side, || · ||1 is a matrix norm. Thus, the meaning of || · ||1 is different

depending on whether we put a vector or a matrix inside. In fact, subscripts are often dropped

altogether when the norm in use is well understood, and also when discussing properties of norms
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in general.

The matrix 2-norm is often referred to as the spectral norm because of its relationship to the

eigenvalues of A and A∗A. The next few lemmas explain these concepts, as well as some other

nice properties of the 2-norm.

Lemma 1.11. Given a unitary matrix U = (umn) ∈MN , and a vector x ∈ CN ,

||Ux||2 = ||x||2

Proof.

||Ux||22 = (Ux)∗Ux = x∗U∗Ux = x∗x = ||x||22

Taking square roots finishes the proof.

Observe that an immediate consequence of Lemma 1.11 is that the 2-norm of any unitary matrix

is one.

Lemma 1.12. If A ∈MN is normal, then ρ(A) = ||A||2.

Proof. By the Spectral Theorem (Theorem 1.4), we can write A = UDU∗, where U is unitary

and

D = (dmn) is a diagonal matrix with the eigenvalues of A along its diagonal. Note that at least

one of the eigenvalues of A will have magnitude equal to ρ(A). Without loss of generality, suppose

that this is true of the entry d11. Let e = (e1, e2, . . . , eN )T be the vector with 1 in the first entry

and zeros thereafter. Then, by the definition of the spectral norm,

||D||2 ≥ ||De||2 =

∣∣∣∣∣∣
∣∣∣∣∣∣
(

N∑
n= 1

d1nen,
N∑

n= 1

d2nen, . . . ,
N∑

n= 1

dNnen

)T ∣∣∣∣∣∣
∣∣∣∣∣∣
2

=
∣∣∣∣∣∣(d11, 0, . . . , 0)T

∣∣∣∣∣∣
2

=
√
|d11|2 = ρ(A) (1.5)
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In contrast to the above result, note that for every x = (x1, x2, . . . , xN )T ∈ CN with ||x||2 = 1,

||Dx||22 =

∣∣∣∣∣
N∑

n= 1

d1nxn

∣∣∣∣∣
2

+

∣∣∣∣∣
N∑

n= 1

d2nxn

∣∣∣∣∣
2

+ . . . +

∣∣∣∣∣
N∑

n= 1

dNnxn

∣∣∣∣∣
2

= |d11x1|2 + |d22x2|2 + . . . + |dNNxN |2

= |d11|2|x1|2 + |d22|2|x2|2 + . . . + |dNN |2|xN |2

≤ ρ(A)2|x1|2 + ρ(A)2|x2|2 + . . . + ρ(A)2|xN |2

= ρ(A)2
N∑

n= 1

|xn|2 = ρ(A)2||x||22 = ρ(A)2

Since x is arbitrary, we have ||D||22 ≤ ρ(A)2, which implies ||D||2 ≤ ρ(A). Combining this with

inequality (1.5) proves that ||D||2 = ρ(A).

Now note that,

||A||2 = ||UDU∗||2 ≤ ||U||2 ||D||2 ||U∗||2 = ||D||2 = ρ(A)

In contrast, suppose that the unit eigenvector corresponding to d11 is u. Then,

ρ(A) = |d11| = |d11| ||u||2 = ||d11u||2 = ||Au||2 ≤ ||A||2

By the last two inequalities, ρ(A) = ||A||2.

Although the above lemma does not hold in general for all matrices in MN , a similar result

involving the largest singular value does!

Lemma 1.13. Given A ∈MN with largest singular value σmax,

σmax = ||A||2

Proof. Since the singular values of A are nonnegative, σ2
max is the eigenvalue of A∗A of largest

magnitude. Since A∗A is normal, it can be decomposed as A∗A = UDU∗ = V∗DV, where

U = V∗ is a unitary matrix, and D is a diagonal matrix with the squares of the singular values of

A along its diagonal. Let D1/2 be the real matrix obtained from D by taking the positive square
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root of each of its entries; because D is diagonal, D1/2D1/2 = D and D1/2 =
(
D1/2

)∗
. Note that

given any unit vector x, the vector Vx is also a unit vector by Lemma 1.11. Then,

||Ax||22 = (Ax)∗Ax = x∗A∗Ax = x∗V∗DVx = x∗V∗D1/2D1/2Vx

= (D1/2Vx)∗D1/2(Vx) = ||D1/2(Vx)||22 ≤ ||D1/2||22 = σ2
max

Since this is true for all unit vectors x, we have ||A||22 ≤ σ2
max, which implies that ||A||2 ≤ σmax.

Now note that since σ2
max is an eigenvalue of A∗A, there exists a corresponding unit eigenvector

y, such that A∗Ay = σ2
maxy. Then,

||A||22 ≥ ||Ay||22 = y∗A∗Ay = σ2
maxy

∗y = σ2
max||y||22 = σ2

max

Thus, ||A||2 ≥ σmax. Combining this with the result from above yields: ||A||2 = σmax.

Corollary 1.14. Given a matrix A ∈MN ,

||A∗||2 = ||A||2

Proof. Let σmax be the largest singular value of A. Then σ2
max is the largest eigenvalue of A∗A

and AA∗, since their nonzero eigenvalues are the same. Then σmax is the largest singular value of

A∗. By Lemma 1.13, ||A∗||2 = σmax = ||A||2.

Another matrix norm that we will consider is the Frobenius norm, which is not an operator

norm:

The Frobenius norm: ||A||F :=

 N∑
m,n= 1

|amn|2
 1

2

The Frobenius norm is often also written as:

||A||F =
√

trace (AA∗) =
√

trace (A∗A) (1.6)

To see the equivalence of equation (1.6) to the Frobenius norm definition, note that the mth diagonal
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(AA∗)mm of AA∗ is just

(AA∗)mm =

N∑
j= 1

(A)mj (A∗)jm =

N∑
j= 1

amjamj =

N∑
j= 1

|amj |2

Summing over m from m = 1 to m = N gives the trace of AA∗, and it also gives the square of

||A||F . Furthermore, note that the mth diagonal entry of A∗A is given by,

(A∗A)mm =

N∑
j= 1

(A∗)mj(A)jm =

N∑
j= 1

ajmajm =

N∑
j= 1

|ajm|2

Again, summing over all m gives trace(A∗A), as well as ||A||2F .

A matrix norm is called unitarily invariant if pre-multiplying on the left or post-multiplying

on the right by a unitary matrix does not change the value of the norm; that is, the norm || · || is

unitarily invariant if and only if given A ∈MN and a unitary matrix U ∈MN , we have

||UA|| = ||A|| = ||AU||

Unitary invariance will be a valuable property in some of the theorems that follow. Of the norms

that we have considered, there are just two that are unitarily invariant: the Frobenius norm, and

the spectral norm.

Lemma 1.15. The Frobenius norm is unitarily invariant.

Proof. Choose A and U from MN , with U unitary. Then,

||UA||F =
√

trace((UA)∗(UA)) =
√

trace(A∗U∗UA) =
√

trace(A∗A) = ||A||F

Similarly,

||AU||F =
√

trace((AU)(AU)∗) =
√

trace(AUU∗A∗) =
√

trace(AA∗) = ||A||F
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Lemma 1.16. The 2-norm is unitarily invariant.

Proof. Choose A and U from MN , with U unitary. Let σmax be the largest singular value of A.

By Lemma 1.13, ||A||2 = σmax. Then,

||UA||2 ≤ ||U||2 ||A||2 = ||A||2 = σmax

By a similar argument, ||AU||2 ≤ σmax. In contrast, note that there exists unit vectors x and y,

such that A∗Ax = σ2
maxx and AA∗y = σ2

maxy. Then,

||UA||22 ≥ ||UAx||22 = x∗A∗U∗UAx = x∗A∗Ax = σ2
maxx

∗x = σ2
max||x||2 = σ2

max

and

||AU||22 = ||(AU)∗||22 ≥ ||(AU)∗y||22 = y∗AU(AU)∗y = y∗AUU∗A∗y = y∗AA∗y

= σ2
maxy

∗y = σ2
max||y||2 = σ2

max

Thus, ||UA||2 = σmax = ||AU||2, and the theorem result follows from ||A||2 = σmax.

1.4 The Resolvent

The resolvent of a matrix A ∈MN is the function R : C\σ(A)→MN defined by

R(z) := (zI − A)−1

Note that σ(A) is a closed set, which makes the complement C\σ(A) open. From linear algebra

and identities for matrix inverses, it follows that

R(z) = (zI − A)−1 =
1

det(zI − A)
adj(zI − A) (1.7)

where ‘adj’ refers to the adjugate of (zI − A). This form of the resolvent is insightful, because

we will be able to use it to show that upon left and right multiplication by suitable vectors, the

resolvent can be made into a complex rational function. Indeed, we have already shown above that,
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det(zI − A) is a polynomial in z of degree N . We now show that the adjugate of (zI − A) is a

matrix polynomial in z.

Choose z ∈ C\σ(A), and let p(ξ) = ξN + cN−1ξ
N−1 + . . . + c1ξ + c0 be the characteristic

polynomial of (zI − A). Note that p(ξ) = det(ξI − (zI − A)). Then c0 = (− 1)Ndet(zI − A),

by equation (1.1). By the Cayley-Hamilton Theorem,

0 = p(zI − A)

= (zI − A)N + cN−1(zI − A)N−1 + . . . + c1(zI − A) + (− 1)Ndet(zI − A)I

Rearranging terms we get,

I =
(− 1)N

det(zI − A)

(
− (zI − A)N − cN−1(zI − A)N−1 − . . . − c1(zI − A)

)
= (zI − A)

(
(− 1)N

det(zI − A)

(
− (zI − A)N−1 − cN−1(zI − A)N−2 − . . . − c1

))

Thus,

(zI − A)−1 =
(− 1)N

det(zI − A)

(
− (zI − A)N−1 − cN−1(zI − A)N−2 − . . . − c1

)
and by equation 1.7 we have,

adj(zI − A) = (− 1)N
(
− (zI − A)N−1 − cN−1(zI − A)N−2 − . . . − c1

)
Therefore, since z is arbitrary, adj(zI − A) is a matrix polynomial of degree N − 1 for each

z ∈ C\σ(A).

By pre and post multiplying adj(zI − A) by u∗ and v respectively, for some u,v ∈ CN , we

create a complex polynomial in z of degree less than or equal to N − 1. In turn, this makes u∗R(z)v

a complex rational function, with numerator and denominator having degrees less than or equal to

N . Since rational functions are continuous and analytic on their domains, the same holds true for

u∗R(z)v, and for the resolvent R(z) on the domain C\σ(A). This fact will be integral to the proof

of Spijker’s Lemma 3.21 later on.

The next theorem shows that the norm of the resolvent of A evaluated at z, is bounded below
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by one over the distance between z and the spectrum of A.

Theorem 1.17. Given A ∈MN , z ∈ C\σ(A), and matrix norm || · ||, we have:

||(zI − A)−1|| ≥ 1

dist(z, σ(A))

Proof. The fact that σ(A) is closed, implies that dist(z,A) > 0 for every z ∈ C\σ(A). Also, note

that zI − A is invertible for each z ∈ C\σ(A).

Choose z ∈ C\σ(A). Let λ be an eigenvalue of A, and let v be a corresponding orthonormal

eigenvector. Then,

(zI − A)v = zv − Av = zv − λv = (z − λ)v

Multiplying both sides of the equation by
(

1
z−λ

)
(zI − A)−1 we get:

(
1

z − λ

)
v = (zI − A)−1 v

Taking norms,

∣∣∣∣ 1

z − λ

∣∣∣∣ ||v|| =

∣∣∣∣∣∣∣∣( 1

z − λ

)
v

∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣(zI − A)−1 v

∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣(zI − A)−1
∣∣∣∣∣∣ ||v||

Thus, ∣∣∣∣ 1

z − λ

∣∣∣∣ ≤ ∣∣∣∣∣∣(zI − A)−1
∣∣∣∣∣∣

Since λ is arbitrary, the inequality holds for all λ ∈ σ(A), and we may replace
∣∣∣ 1
z−λ

∣∣∣ with 1
dist(z,σ(A))

in the inequality above.

Corollary 1.18. If A ∈MN is normal and z ∈ C, then equality holds:

||(zI − A)−1||2 =
1

dist(z, σ(A))
(1.8)

Proof. Choose z ∈ C. Let the eigenvalues of A be λ1, λ2, · · · , λn. It is easily verified that the

eigenvalues of zI − A are z − λ1, z − λ2, · · · , z − λn. There is no loss of generality in assuming

that the eigenvalues are labeled so that |z − λ1| ≤ |z − λ2| ≤ . . . ≤ |z − λn|. In this case we have

that dist(z, σ(A)) = |z − λ1|. By Theorem 1.4 there is a unitary matrix U such that A = UDU∗,
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where D is a diagonal matrix with the eigenvalues of A along its diagonal. The following shows

that zI − A is normal:

(zI−A)∗(zI−A) = |z|2I− zI∗A− zA∗I+A∗A = |z|2I− zAI∗− zIA∗+AA∗ = (zI−A)(zI−A)∗

By Lemma 1.3, (zI − A)−1 is also normal. Then by Lemma 1.12,

||(zI − A)−1||2 = ρ((zI − A)−1)

= ρ((zUU∗ − UDU∗)−1)

= ρ(U(zI − D)−1U∗)

= ρ((zI − D)−1)

=
1

|z − λ1|

The last equality comes since the diagonal (and thus eigenvalues) of (zI−D)−1 are 1
z−λ1 ,

1
z−λ2 , · · · ,

1
z−λn .

Since z is arbitrary, the equality holds for all z ∈ C\σ(A), and we may replace
∣∣∣ 1
z−λ

∣∣∣ with

1
dist(z,σ(A)) .

1.5 Pseudospectra

Eigenvalues and eigenvectors are extremely powerful tools in working with matrices. When one

knows the eigenvalues of a square matrix A, one can immediately determine the determinant, trace,

and invertibility of A. We have seen that if A is normal, and hence unitarily diagonalizable, then

it can be expressed entirely in terms of it’s eigenvalues and eigenvectors. And yet, there is a certain

instability associated with eigenvalues. For example, a matrix A with λ = 0 as an eigenvalue

is known to be singular, a highly undesirable property. In this case, the equation Ax = b does

not have a unique solution, and A−1 does not exist. However, an arbitrarily small perturbation

of the entries of A can immediately change this. Consider A as the N ×N identity matrix, with

the entry in the first row and first column, a11, switched to 0. Let B be the matrix obtained by

changing a11 from zero to some arbitrarily small value ε. We succeed in turning a rank deficient,

zero determinant, matrix into a full rank, nonzero determinant matrix. The solution to Bx = b is

now unique, and B−1 now exists! On the other hand, starting with B and reversing the step above

21



to obtain A, we also reverse our success.

On closer inspection, the matrix B will have a determinant equal to ε; the spectral norm

and the determinant of the inverse will be ε−1, a potentially large number. This is a red flag

that computational analysis done on such a matrix may run into problems. While the matrix B

may have analytically desirable properties, it suffers the same problems as A in many practical

applications.

Still, if perturbing matrix entries can have such a profound effect on matrix properties, one

might legitimately wonder how this technique might be employed to solve—or at least better

understand—problems involving matrices with undesirable properties. One might also call into

question the accuracy of scientific conclusions where measurement error creates perturbation of

matrix entries. Indeed, measurement error is ubiquitous in problems of applied mathematics, and

understanding the effects of small perturbations on matrix entries is another step in knowing the

quality of scientific results.

To understand how perturbing matrix entries can affect matrix properties, we must look beyond

the spectrum. The ε-pseudospectrum of a matrix A ∈MN , is the subset

σε(A) =
{
z ∈ C : ||(zI − A)−1|| > ε−1

}
where ε > 0, and || · || is some pre-determined norm. An element z ∈ σε(A) is referred to as

an ε-pseudoeigenvalue of A. The maximum modulus attained by the elements of σε(A), which

we denote ρε(A), is called the ε-pseudospectral radius of A. An N × N matrix A has an

ε-pseudospectrum and an ε-pseudospectral radius for each ε > 0. In plural, the sets σε(A) are

referred to as the ε-pseudospectra of A. We see immediately that the ε-pseudospectra are nested;

that is, given 0 < ε1 < ε2, we have:

σε1(A) ⊆ σε2(A) (since ε−1
1 > ε−1

2 )

Theorem 1.17 shows that, given λ ∈ σ(A), the convention

∣∣∣∣∣∣(λI − A)−1
∣∣∣∣∣∣ = ∞
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is justified due to the following:

∞ = lim
z→λ

1

dist(z, σ(A))
≤ lim

z→λ

∣∣∣∣∣∣(zI − A)−1
∣∣∣∣∣∣

Then the following also holds:

σ(A) =
⋂
ε> 0

σε(A)

The next theorem shows that an ε-pseudospectrum contains the set of points that are within ε

of the spectrum.

Theorem 1.19. Given A ∈MN and ε > 0,

σε(A) ⊇ σ(A) + {z : |z| < ε} (1.9)

Proof.

σ(A) + {z : |z| < ε} = {λ + z : λ ∈ σ(A), |z| < ε}

= {ω : ω = λ + z, λ ∈ σ(A), |z| < ε}

= {ω : ω − λ = z, λ ∈ σ(A), |z| < ε}

= {ω : λ ∈ σ(A), |ω − λ| < ε}

= {ω : dist(ω, σ(A)) < ε}

=

{
ω :

1

dist(ω, σ(A))
> ε−1

}
(1.10)

By Theorem 1.17 and the definition of the pseudospectrum, this last set is contained in σε(A).

Corollary 1.20. If the matrix A ∈MN is normal, then

σε(A) = σ(A) + {z : |z| < ε}

Proof. By Corollary 1.18, if A is normal, then ||(zI − A)−1||2 = 1
dist(z,σ(A)) . By substituting the

right-hand side into equation 1.10 above, the corollary is proved.

Since
∣∣∣∣∣∣(zI − A)−1

∣∣∣∣∣∣ is positive for z ∈ C\σ(A), its graph is a surface over the complex plane
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with vertical asymptotes at each of the eigenvalues of A. When A is normal, the level curves of

the norm of the resolvent are marked by circles and curves that are equidistant from the spectrum.

However, in the cases where A is a nonnormal matrix, the level curves may take on many diverse

forms. For example, the matrices

A =



1
2 0 0 0 0

0 i
2 1000 0 0

0 0 −i
2 1 0

0 0 0 −1
2 1000

0 0 0 0 9i
10


and D =



1
2 0 0 0 0

0 i
2 0 0 0

0 0 −i
2 0 0

0 0 0 −1
2 0

0 0 0 0 9i
10



Figure 1.1: Pseudospectra and Resolvents of A and D
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have the same eigenvalues, but their ε-pseudospectra are quite different, particularly since D is

normal, but A is not. This is evident in their respective graphs in Figure 1.5, where the eigenvalues

are plotted as points (or poles in the 3D graphs). The interior of each closed contour in the 2D

graphs is an ε-pseudospectrum for different values of ε.

Chapter 2. Expressing Ak

In this chapter, we discuss three basic ways of expressing a square matrix A ∈MN . If A is normal,

then the Spectral Theorem (Theorem 1.4) comes to the rescue. If not, then we make use of Schur’s

Unitary Triangularization Theorem to construct a more complex expression. We also look at an

integral expression of Ak involving the resolvent.

Suppose that A ∈ MN is normal. Then by the Spectral Theorem (Theorem 1.4), there exists

a diagonal matrix D and unitary matrix U, such that A = UDU∗. A straightforward inductive

proof on k, using the fact that U∗U = I, shows that,

Ak = UDkU∗ (2.1)

Since working with a diagonal matrix is very simple, this decomposition is invaluable when it can

be applied.

For the more general case where A ∈ MN is not assumed to be normal, we may still take

advantage of the Schur unitary triangularization theorem (Theorem 1.5): there exists an upper-

triangular matrix T, and unitary matrix U, such that A = UTU∗. Again, an inductive process

yields the decomposition:

Ak = UTkU∗ (2.2)

for nonnegative integers k. This decomposition can be much harder to work with when T is not

diagonal. For this reason, we must develop a deeper understanding of the structure of the upper-

triangular matrix Tk, and its relationship to T.
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2.1 Expressing Tk

For this section, we will assume that we have been given a square matrix A, with Schur decompo-

sition A = UTU∗. The following notation will be used: Tk =
(
t
(k)
mn

)
, where t

(k)
mn is the element

from the mth row and nth column of Tk. In the special case that k = 1, we write

T = (tmn) =



λ1 t12 t13 . . . t1N

0 λ2 t23 . . . t2N
...

. . .
. . .

. . .
...

...
. . .

. . . tN − 1,N

0 . . . . . . 0 λN


where λ1, λ2, . . . , λN are the eigenvalues of A.

To develop bounds for the norm of powers of an upper triangular matrix ||Tk||, we will find it

useful to express the matrix Tk in terms of the entries of the matrix T. This will be accomplished

in Theorem 2.4. First, we set the stage for the theorem with three lemmata. The first lemma

is a component-wise version of the statement, “the product of upper-triangular matrices is an

upper-triangular matrix.”

Lemma 2.1. Given two N ×N upper triangular matrices V = (vmn) and W = (wmn), the mnth

entry of VW is given by:

(VW)mn =


∑

m≤ r≤n
vmrwrn if m ≤ n

0 if m > n

Proof. Since V and W are upper triangular, vmr = 0 for r < m and wrn = 0 for r > n. The

proof follows readily from these facts and the identity from matrix multiplication,

(VW)mn =
N∑
r= 1

vmrwrn for each m,n ∈ {1, 2, . . . , N}

The next lemma makes use of the multi-index notation ∆j = (δ1, δ2, . . . , δj), for j = 0, 1, 2, . . . .
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Each component of ∆j is considered to be a nonnegative integer, and we define the norm of ∆j

by |∆j | :=

j∑
i= 1

δi. Although the identity in the next lemma is quite complex, we will need it for

simplification in Theorem 2.4.

Lemma 2.2. Given an N ×N upper triangular matrix T = (tmn), fix m and n with m < n. Let

λ1, λ2, . . . , λN be the eigenvalues of T. Then,

tmnλ
k
n +

∑
m<r<n

tmr

n−m∑
j= 1

∑
r=α1<α2

< ...<αj+1 =n

(
j∏

i= 1

tαi,αi+1

) ∑
|∆j+1|= k− j

j+ 1∏
l= 1

λδlαl
(2.3)

=

n−m∑
j= 1

∑
m=α1<α2
< ...<αj+1 =n

(
j∏

i= 1

tαiαi+1

) ∑
|∆j+1|= (k+ 1)− j

j+ 1∏
l= 1

λδlαl

∣∣∣∣∣
δ1 = 0

(2.4)

Proof. The proof proceeds as follows. There are two terms added together in (2.3). First, we

change the form of the second term, and then that of the first. Then we add the results together

to obtain (2.4).

Beginning with the second term of (2.3), note that for each r with m < r < n, there are at

most n − m integers between r and n, including n but not r; this is because there are n − m

integers between m and n, not including m. There are j + 1 α’s which must be chosen in the

summation
∑

r=α1<α2
< ...<αj+1 =n

; thus, the summation returns 0 when j = n − m, since j + 1 α’s are not

possible in this case. Then we can replace

n−m∑
j= 1

by

n−m− 1∑
j= 1

in the second term of (2.3):

∑
m<r<n

tmr

n−m∑
j= 1

∑
r=α1<α2

< ...<αj+1 =n

(
j∏

i= 1

tαi,αi+1

) ∑
|∆j+1|= k− j

j+ 1∏
l= 1

λδlαl

=
∑

m<r<n

tmr

n−m− 1∑
j= 1

∑
r=α1<α2

< ...<αj+1 =n

(
j∏

i= 1

tαi,αi+1

) ∑
|∆j+1|= k− j

j+ 1∏
l= 1

λδlαl
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Rearranging the order of summation gives:

=
n−m− 1∑
j= 1

∑
m<r<n

∑
r=α1<α2

< ...<αj+1 =n

(
tmr

j∏
i= 1

tαi,αi+1

) ∑
|∆j+1|= k− j

j+ 1∏
l= 1

λδlαl

Now, change the bounds of the first summation to start at j = 2, and end at n − m:

=
n−m∑
j= 2

∑
m<r<n

∑
r=α1<α2
< ...<αj =n

(
tmr

j−1∏
i= 1

tαi,αi+1

) ∑
|∆j |= k− (j− 1)

j∏
l= 1

λδlαl

Now, we wish to pass tmr into the product

j∏
i= 1

tαi,αi+1 . To accomplish this 1) we need to change α1

to m, and 2) we need α2 to range from m + 1 to n − 1; the second part will be provided for by the

summation
∑

m<r<n

. Also, note that for each j, when tmr is passed into the product

j∏
i= 1

tαi,αi+1 ,

the product will then have one more element; therefore, we will need j to begin at 2, and end at

n − m. Finally, we must not ignore the last summation
∑

|∆j |= k− j

j∏
l= 1

λδlαl
. Since α1 will become

m, but λm is not included in the original products, we must set δ1 = 0. Also, making α1 = m,

means that we will have an additional element in each product of the summation; thus, we must

change the product upper bound from j to j + 1, and ∆j will again become ∆j+1. However, the

sum of the exponents will remain unchanged at k − (j − 1) = (k + 1) − j. Putting everything

together we continue from above:

=
n−m∑
j= 2

∑
m=α1<α2
< ...<αj+1 =n

(
j∏

i= 1

tαi,αi+1

) ∑
|∆j+1|= (k+ 1)− j

j+ 1∏
l= 1

λδlαl

∣∣∣∣∣∣
δ1 = 0

(2.5)

Now that we have a new form of the second term of (2.3), let’s turn our attention to the first

term, tmnλ
k
n. Note that,

tmnλ
k
n =

∑
m=α1<α2 =n

(
1∏

i= 1

tαi,αi+1

) ∑
∆2 = (k+ 1)− 1

λδ1α1
λδ2α2

∣∣∣∣∣∣
δ1 = 0

This is just the 1st term of the 1st sum (for j = 1) of (2.4) above. Adding it to (2.5) yields

(2.4).
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One more lemma will prove useful in simplifying the work of Theorem 2.4.

Lemma 2.3.

∑
|∆j+1|= (k+ 1)− j

j+ 1∏
l= 1

λδlαl
=

∑
|∆j+1|= k− j

λδ1+1
α1

λδ2α2
· · ·λδj+1

αj+1 +
∑

|∆j+1|= (k+ 1)− j

j+ 1∏
l= 1

λδlαl

∣∣∣∣∣
δ1 = 0

Proof. Notice that the exponents of the λ’s in both the first and second terms on the right sum

to (k + 1) − j, (since |∆j+1| = δ1 + δ2 + . . . + δj+1). Now observe that the first term on the

right is the sum of all products of the form λη1α1λ
η2
α2 · · ·λ

ηj+1
αj+1 , where η1 can be any value from 1 to

(k + 1) − j. In contrast, the second term on the right is the sum of all products of the same form,

where η1 is restricted to be 0. This complementary nature of the first and second terms on the

right allows us to combine them into a single summation.

Armed with Lemmas 2.1, 2.2, and 2.3, we are now ready for a major theorem regarding the

values of the entries of Tk.

Theorem 2.4. Given k ∈ N and an upper-triangular matrix T = (tmn) ∈MN , the mnth entry of

T k is given by,

t(k)
mn =



λkm if m = n

n−m∑
j= 1

∑
m=α1<α2
< ...<αj+1 =n

(
j∏

i= 1

tαiαi+1

) ∑
|∆j+1|= k− j

j+ 1∏
l= 1

λδlαl
if m < n

0 if m > n

which may be written in the slightly more compact form,

t(k)
mn =


λkm if m = n

n−m∑
j= 1

∑
m=α1<α2
< ...<αj+1 =n

(
j∏

i= 1

tαiαi+1

) ∑
|∆j+1|= k− j

j+ 1∏
l= 1

λδlαl
if m 6= n

Remark. The fact that the summation
∑

m=α1<α2
< ...<αj+1 =n

returns 0 if m > n demonstrates the equiva-

lence of the more compact form above to the former representation.
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Proof. We proceed with an inductive proof. Initial step: suppose k = 1. Then, t
(k)
mn = tmn, and if

m = n, then tmn = λm. If m > n, then tmn = 0. If m < n, notice that

∑
|∆j+1|= 1− j

j+ 1∏
l= 1

λδlαl
=

 1 if j = 1

0 if j > 1
(2.6)

Working backwards from the theorem statement, we have,

n−m∑
j= 1

∑
m=α1<α2
< ...<αj+1 =n

(
j∏

i= 1

tαiαi+1

) ∑
|∆j+1|= k− j

j+ 1∏
l= 1

λδlαl

=
n−m∑
j= 1

∑
m=α1<α2
< ...<αj+1 =n

(
j∏

i= 1

tαiαi+1

) ∑
|∆j+1|= 1− j

j+ 1∏
l= 1

λδlαl
(since k = 1)

By equation (2.6) we may replace the last summation in the expression above to get,

=
∑

m=α1<α2
< ...<αj+1 =n

(
j∏

i= 1

tαiαi+1

)∣∣∣∣∣∣∣
j= 1

= tmn

Inductive step: now suppose that the theorem holds for some k ∈ N. We wish to show that,

t(k+1)
mn =



λk+1
m if m = n

n−m∑
j= 1

∑
m=α1<α2
< ...<αj+1 =n

(
j∏

i= 1

tαiαi+1

) ∑
|∆j+1|= (k+ 1)− j

j+ 1∏
l= 1

λδlαl
if m < n

0 if m > n

By properties of matrix multiplication, and since Tk+1 = TTk, we have t
(k+1)
mn =

N∑
r= 1

tmrt
(k)
rn . If

m > n then Lemma 2.1 and the inductive step give t
(k+1)
mn = 0. If m = n then Lemma 2.1 and

the inductive step give,

t(k+1)
mn = tk+1

mm =
N∑
r= 1

tmrt
(k)
rm =

∑
m≤ r≤m

tmrt
(k)
rm = tmmt

(k)
mm = λk+1

m
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Finally, if m < n then by matrix multiplication,

t(k+1)
mn =

N∑
r= 1

tmrt
(k)
rn

By Lemma 2.1 this becomes,

∑
m≤ r≤n

tmrt
(k)
rn = tmmt

(k)
mn + tmnt

(k)
nn +

∑
m<r<n

tmrt
(k)
rn

Now we use the initial step and the inductive step to replace tmm, t
(k)
nn , and t

(k)
rn .

λmt
(k)
mn + tmnλ

k
n +

∑
m<r<n

tmr

 n−m∑
j= 1

∑
r=α1<α2

< ...<αj+1 =n

(
j∏

i= 1

tαiαi+1

) ∑
|∆j+1|= k− j

j+ 1∏
l= 1

λδlαl


By Lemma 2.2, the last two terms can be combined to give:

λmt
(k)
mn +

n−m∑
j= 1

∑
m=α1<α2
< ...<αj+1 =n

(
j∏

i= 1

tαiαi+1

) ∑
|∆j+1|= (k+ 1)− j

j+ 1∏
l= 1

λδlαl

∣∣∣∣∣
δ1 = 0

Now we use the inductive step again to substitute for t
(k)
mn.

λm

 n−m∑
j= 1

∑
m=α1<α2
< ...<αj+1 =n

(
j∏

i= 1

tαiαi+1

) ∑
|∆j+1|= k− j

j+ 1∏
l= 1

λδlαl


+

n−m∑
j= 1

∑
m=α1<α2
< ...<αj+1 =n

(
j∏

i= 1

tαiαi+1

) ∑
|∆j+1|= (k+ 1)− j

j+ 1∏
l= 1

λδlαl

∣∣∣∣∣
δ1 = 0

Passing λm into the product of λ’s gives:

=
n−m∑
j= 1

∑
m=α1<α2
< ...<αj+1 =n

(
j∏

i= 1

tαiαi+1

) ∑
|∆j+1|= k− j

λδ1+1
α1

λδ2α2
· · ·λδj+1

αj+1

+

n−m∑
j= 1

∑
m=α1<α2
< ...<αj+1 =n

(
j∏

i= 1

tαiαi+1

) ∑
|∆j+1|= (k+ 1)− j

j+ 1∏
l= 1

λδlαl

∣∣∣∣∣
δ1 = 0
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Rearranging terms we get:

=

n−m∑
j= 1

∑
m=α1<α2
< ...<αj+1 =n

(
j∏

i= 1

tαiαi+1

) ∑
|∆j+1|= k− j

λδ1+1
α1

λδ2α2
· · ·λδj+1

αj+1 +
∑

|∆j+1|= (k+ 1)− j

j+ 1∏
l= 1

λδlαl

∣∣∣∣∣
δ1 = 0



Finally, by Lemma 2.3 we may combine the summations in brackets and finish the proof:

n−m∑
j= 1

∑
m=α1<α2
< ...<αj+1 =n

(
j∏

i= 1

tαiαi+1

) ∑
|∆j+1|= (k+ 1)− j

j+ 1∏
l= 1

λδlαl

Having obtained the mnth term of the matrix Tk we may now write Tk entirely in terms of the

entries of T. For a 3× 3 matrix this becomes:

Tk =



λk1 t12

∑
|∆2|= k− 1

λδ11 λ
δ2
2 t13

∑
|∆2|= k− 1

λδ11 λ
δ2
3 + t12t23

∑
|∆3|= k− 2

λδ11 λ
δ2
2 λ

δ3
3

0 λk2 t23

∑
|∆2|= k− 1

λδ12 λ
δ2
3

0 0 λk3


(2.7)

In equation (2.7), notice that k shows up as an exponent in the diagonal entries, and also in

each of the summations. As k gets large, this will create a very large number of terms for each of

the summations; thus, it will be better to develop a new expression in which the number of terms

in the summations depends only on the size of the matrix, rather than on k. In the next subsection

we show how to do this in cases where the eigenvalues are either all equal, or all distinct.

2.1.1 Expressing
∑

|∆j+1|=C

j+ 1∏
l= 1

λδlαl
. We will show shortly that the last summation in the

expression for t
(k)
mn in Theorem 2.4, when m < n, has

(
k

j

)
terms, for each j. As k becomes large,

computation of this summation becomes very costly, because the number of operations depends

directly on the value of k. Therefore, it is advantageous to replace the last summation with a

more practical alternative when possible. In the case that all of the eigenvalues are equal, or in

the case that they are all distinct, we will derive alternative representations in which the number
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of operations will depend only on the dimensions of the matrix T, rather than on the power k.

First, consider the case in which all of the eigenvalues are equal. In this case,

∑
|∆j+1|= k− j

j+ 1∏
l= 1

λδlαl
=

∑
|∆j+1|= k− j

λk−j = λk−j
∑

|∆j+1|= k− j

1 (2.8)

where λ = λα1 = λα2 = . . . = λαj+1 . To evaluate the sum,
∑

|∆j+1|= k− j

1, we need a lemma from

combinatorics.

Lemma 2.5. There are

(
C + i − 1

i − 1

)
=

(
C + i − 1

C

)
different sums of the form

δ1 + δ2 + . . . + δi = C

where the δ’s are nonnegative integers.

Proof. First, note that the two expressions are equal since,

(
C + i − 1

i − 1

)
=

(C + i − 1)!

C!(i − 1)!
=

(
C + i − 1

C

)

To show that this is equal to the number of sums, consider dividing a line segment into i bins

by means of i − 1 different perpendicular notches, none of which occurs on the endpoints of the

segment. Let δj correspond to the jth bin for j = 1, 2, .... Now select C distinct points on the line

segment, none of which correspond with the positions of the i − 1 notches. Count the number of

points within each bin and let this be the value of the corresponding δ for that bin. By taking the

sum of the δ’s, we create one sum of the desired form. The problem of finding the total number of

sums, is thus equivalent to the problem of finding the number of permutations of the C points and

i − 1 notches, without regard to the order of the notches among themselves, or to the order of the

points among themselves; this is equal to (C + i− 1)!
C!(i− 1)! .

Corollary 2.6. There are

(
k

j

)
different sums of the form

δ1 + δ2 + . . . + δj+1 = k − j

where the δ’s are nonnegative integers.
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Proof. This follows directly from Lemma 2.5, by substituting k − j in for C, and j + 1 for i.

By Corollary 2.6 and equation (2.8), we have the following lemma:

Lemma 2.7. Given λ = λα1 = λα2 = . . . = λαj+1,

∑
|∆j+1|= k− j

j+ 1∏
l= 1

λδlαl
=

∑
|∆j+1|= k− j

λk−j =


(
k

j

)
λk−j , if k ≥ j

0, if k < j

The right-hand side of Lemma 2.7 is a simpler representation than the left-hand side, and

therefore, it will be easier to code and faster to compute. In the case of equal eigenvalues, substi-

tuting the right-hand side for the last summation in Theorem 2.4 will greatly reduce the number

of operations in computing the element t
(k)
mn. The 3× 3 case on page 32, for k > 2 becomes,

Tk =



λk t12

(
k

1

)
λk−1 t13

(
k

1

)
λk−1 + t12t23

(
k

2

)
λk−2

0 λk t23

(
k

1

)
λk−1

0 0 λk


(2.9)

Now, we derive a similar result in the case where all of the eigenvalues are distinct. This result

is more complex, so we smooth the way with two preliminary lemmata.

Lemma 2.8. Given j, C ∈ N and λ1, λ2, . . . , λj+1 ∈ C,

∑
|∆j+1|=C

j+ 1∏
l= 1

λδlαl
=

∑
|∆j+1|=C

λ
δj+1
αj+1

j∏
l= 1

λδlαl
=

C∑
i= 0

λC−iαj+1

∑
|∆j |= i

j∏
l= 1

λδlαl

Proof. The first equality is rather trivial. We will focus on the second, which is also easily seen by
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expanding part of the summation.

∑
|∆j+1|=C

λ
δj+1
αj+1

j∏
l= 1

λδlαl

=
∑
|∆j |=C

λ0
αj+1

j∏
l= 1

λδlαl
+

∑
|∆j |=C− 1

λαj+1

j∏
l= 1

λδlαl
+ · · · +

∑
|∆j |= 1

λC−1
αj+1

j∏
l= 1

λδlαl
+ λCαj+1

=

C∑
i= 1

λC−iαj+1

∑
|∆j |= i

j∏
l= 1

λδlαl

Lemma 2.9. Given j ∈ N and λ1, λ2, . . . , λj+1 ∈ C,

−λj−1
j+1

j∏
h= 1

(λj+1 − λh)−1 =

j∑
r= 1

λj−1
r

j+ 1∏
h= 1
h 6= r

(λr − λh)−1

Proof. Define the rational function p(x) by replacing λj+1 by the variable x in the left-hand side

of the inequality above:

p(x) := −xj−1
j∏

h= 1

(x − λh)−1

Now we can proceed with a proof by partial fraction decomposition. We must solve for the values

of c1, c2, . . . , cj in the following equation:

−xj−1
j∏

h= 1

(x − λh)−1 =
c1

(x − λ1)
+

c2

(x − λ2)
+ . . . +

cj
(x − λj)

(2.10)

By cross multiplying to get rid of fractions we get:

−xj−1 = c1

j∏
h= 1
h 6= 1

(x − λh) + c2

j∏
h= 1
h 6= 2

(x − λh) + . . . + cj

j∏
h= 1
h 6= j

(x − λh)
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Now replace x by λr, for each r ∈ {1, 2, . . . , j}, and then solve for cr to get:

c1 = −λj−1
1

j∏
h= 1
h 6= 1

(λ1 − λh)−1, c2 = −λj−1
2

j∏
h= 1
h 6= 1

(λ2 − λh)−1,

, . . . , cj = −λj−1
j

j∏
h= 1
h 6= 1

(λj − λh)−1

Plugging these values into equation (2.10) yields:

−xj−1

j∏
h= 1

(x − λh)

= −λj−1
1

 j∏
h= 1
h 6= 1

(λ1 − λh)−1

 (x − λ1)−1 − λj−1
2

 j∏
h= 1
h 6= 2

(λ2 − λh)−1

 (x − λ2)−1

− . . . − λj−1
j

 j∏
h= 1
h 6= j

(λj − λh)−1

 (x − λj)
−1

Finally, replace x by the value λj+1 to finish the proof:

−λj−1
j+1

j∏
h= 1

(λj+1 − λh)

= −λj−1
1

 j∏
h= 1
h 6= 1

(λ1 − λh)−1

 (λj+1 − λ1)−1 − λj−1
2

 j∏
h= 1
h 6= 2

(λ2 − λh)−1

 (λj+1 − λ2)−1

− . . . − λj−1
j

 j∏
h= 1
h 6= j

(λj − λh)−1

 (λj+1 − λj)
−1

= λj−1
1

j+ 1∏
h= 1
h 6= 1

(λ1 − λh)−1 + λj−1
2

j+ 1∏
h= 1
h 6= 2

(λ2 − λh)−1 + . . . + λj−1
j

j+ 1∏
h= 1
h 6= j

(λj − λh)−1

=

j∑
r= 1

λj−1
r

j+ 1∏
h= 1
h 6= r

(λr − λh)−1

We are now ready to derive another form of the last summation in Theorem 2.4 for the case

when all of the eigenvalues are distinct.
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Theorem 2.10. Given C ∈ N, j ∈ N, and λ1, λ2, . . . , λj+1 ∈ C, with all of the λ’s distinct,

∑
|∆j+1|=C

j+ 1∏
r= 1

λδrr =

j+ 1∑
r= 1

λC+j
r

j+ 1∏
h= 1
h 6= r

(λr − λh)−1 (2.11)

Proof. We proceed with an inductive proof. Base case: suppose j = 1. Then,

∑
|∆2|=C

2∏
l= 1

λδlαl
=

∑
|∆2|=C

λδ1α1
λδ2α2

=
C∑
i= 0

λC−iα1
λiα2

=
λC+1

1 − λC+1
2

λ1 − λ2
=

λC+1
1

(λ1 − λ2)
+

λC+1
2

(λ2 − λ1)

Inductive case: now suppose that the theorem statement holds for j − 1, for some j ≥ 2. Then,

∑
|∆j+1|=C

j+ 1∏
r= 1

λδrr =

C∑
i= 0

λC−ij+1

∑
|∆j |= i

j∏
r= 1

λδrr (by Lemma 2.8)

=

C∑
i= 0

λC−ij+1

j∑
r= 1

λi+ j− 1
r

j∏
h= 1
h 6= r

(λr − λh)−1 (by inductive step)

=

j∑
r= 1

j∏
h= 1
h 6= r

(λr − λh)−1λj−1
r

C∑
i= 0

λC−ij+1λ
i
r

=

j∑
r= 1

j∏
h= 1
h 6= r

(λr − λh)−1λj−1
r

(
λC+1
r − λC+1

j+1

λr − λj+1

)

=

j∑
r= 1

j+ 1∏
h= 1
h 6= r

(λr − λh)−1λj−1
r

(
λC+1
r − λC+1

j+1

)

=

j∑
r= 1

λC+j
r

j+ 1∏
h= 1
h 6= r

(λr − λh)−1 − λC+1
j+1

j∑
r= 1

λj−1
r

j+ 1∏
h= 1
h 6= r

(λr − λh)−1

Lemma 2.9 allows us to substitute for the last summation.

=

j∑
r= 1

λC+j
r

j+ 1∏
h= 1
h 6= r

(λr − λh)−1 − λC+1
j+1

(
−λj−1

j+1

j∏
h= 1

(λj+1 − λh)−1

)

=

j+ 1∑
r= 1

λC+j
r

j+ 1∏
h= 1
h 6= r

(λr − λh)−1
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By replacing C in Theorem 2.10 by k − j, we can then substitute for the last summation in the

right-hand side of Theorem 2.4. Note that this substitution is dependent upon k > j. If instead,

k < j, then the summation
∑

|∆j+1|= k− j

just returns zero; if k = j then it returns 1. Again,

the importance of this substitution arises from the fact that the number of terms to sum on the

right-hand side of equation (2.11) depends only on j, while for the left-hand side, the number of

operations depends on C. For large values of C, the right-hand side will be computationally more

efficient. For the 3× 3 case with k > 3 we have,

Tk =



λk1 t12

2∑
r=1

λkr

2∏
h=1
h6=r

(λr − λh)−1 t13

3∑
r=1
r 6=2

λkr

2∏
h=1
h6=r

(λr − λh)−1 + t12t23

3∑
r=1

λkr

2∏
h=1
h6=r

(λr − λh)−1

0 λk2 t23

2∑
r=1

λkr

2∏
h=1
h6=r

(λr − λh)−1

0 0 λk3


The next lemma provides a bound for the sum of eigenvalues which we have been considering;

it will be useful in developing upper bounds for the norm of matrix powers.

Lemma 2.11. Given a nonzero upper-triangular matrix T ∈MN with eigenvalues λ1, λ2, . . . , λN ,

and nonnegative integers k and j,

∣∣∣∣∣∣
∑

|∆j+1|= k− j

j+ 1∏
l= 1

λδlαl

∣∣∣∣∣∣ ≤
∑

|∆j+1|= k− j

j+ 1∏
l= 1

|λδlαl
| ≤

(
k

j

)
ρ(T)k−j

Proof. The first inequality is trivial.

∣∣∣∣∣∣
∑

|∆j+1|= k− j

j+ 1∏
l= 1

λδlαl

∣∣∣∣∣∣ ≤
∑

|∆j+1|= k− j

j+ 1∏
l= 1

|λδlαl
| =

∑
|∆j+1|= k− j

|λδ1α1
||λδ2α2

| . . . |λδj+1
αj+1 |

≤
∑

|∆j+1|= k− j

ρ(T)δ1 + δ2 + ...+ δj+1 =
∑

|∆j+1|= k− j

ρ(T)k−j =

(
k

j

)
ρ(T)k−j

The last two steps follow by the definition of |∆j+1|, and by Corollary 2.6. Notice that this works
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even for k < j.

Interestingly, if ρ(T) < 1, the bound above approaches zero as k approaches infinity. The

following lemma solidifies this concept.

Lemma 2.12. Given a nonnegative integer j, and 0 ≤ ρ < 1,

lim
k→∞

(
k

j

)
ρk−j = 0

Proof. If ρ = 0, the lemma is trivial. Suppose that ρ > 0. If we replace k by the real-valued

variable x, the limit on the left-hand side above is the same as

lim
x→∞

x(x − 1) · · · (x − j + 1)

j!
ρx−j = lim

x→∞

x(x − 1) · · · (x − j + 1)

j!ρj−x

Observe that the numerator is a polynomial of degree j. Taking successive derivatives of the

numerator yields new polynomials, each of degree one less than the last. Thus, the jth derivative

is a polynomial of degree 0; in fact, it is equal to j!, since the highest degree term from the original

polynomial is xj . The nth derivative of the denominator is (−1)nj![ln(ρ)]nρj−x. Given these facts,

it is permissible to apply L’Hopital’s rule from calculus j times to get:

lim
x→∞

j!

(−1)jj![ln(ρ)]jρj−x
= lim

x→∞

ρx−j

(−1)j [ln(ρ)]j
= 0

Now that Theorem 2.4 has given us ways of expressing the powers of an upper-triangular

matrix in terms of the entries of the original matrix, remember that we can combine this with

Schur’s Unitary Triangularization Theorem to provide a way to express the power of any square

matrix, in terms of the entries of its upper-triangular Schur form.

2.2 Ak in terms of the Resolvent

In this section we look at a way of expressing the matrix power Ak in terms of an integral involving

the resolvent of A. This will be the substance of Theorem 2.16. As usual, we must develop a few
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preliminary results. We start by showing that the resolvent of A, R(z) = (zI − A)−1, can be

expressed as a series involving Ak.

Theorem 2.13. For z ∈ C such that |z| > ||A||,

R(z) =

∞∑
k=0

Ak

zk+1

Proof. First, note that for each N ∈ N,

I − (z−1A)N + 1 = (I − z−1A)
(
I + z−1A + (z−1A)2 + . . . + (z−1A)N

)
= (I − z−1A)

N∑
k=0

Ak

zk

Taking the limit as N →∞ yields

I = (I − z−1A)
∞∑
k=0

Ak

zk

multiplying by z gives

zI = (zI − A)
∞∑
k=0

Ak

zk

Then

R(z) = (zI − A)−1 = z−1
∞∑
k=0

Ak

zk
=

∞∑
k=0

Ak

zk+1

Corollary 2.14. If |z| > ||A||, then

lim
|z|→∞

||R(z)|| = 0

Proof.

||R(z)|| =

∣∣∣∣∣
∣∣∣∣∣
∞∑
k=0

Ak

zk+1

∣∣∣∣∣
∣∣∣∣∣ ≤

∞∑
k=0

||Ak||
|zk+1|

= z−1
∞∑
k=0

||Ak||
|zk|

≤ z−1
∞∑
k=0

(
||A||
|z|

)k
=

1

|z| − ||A||

Taking the limit as z →∞ finishes the proof.
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Note that Corollary 2.14, together with the facts that R(z) and the norm || · || are continuous,

lead to the conclusion that the ε-pseudospectra σε(A) are bounded open sets.

Lemma 2.15. Let Γ be a positively oriented Jordan Curve with 0 in its interior. For every k ∈ N,

1

2πi

∫
Γ

1

zj−k+1
dz =

 1 if k = j

0 if k 6= j
for every j ∈ R

Proof. See Saff and Snider [5, p. 166]

Theorem 2.16. Given a positively oriented Jordan curve Γ which contains the ball centered at the

origin of radius ρ(A) in its interior, we have

Ak =
1

2πi

∫
Γ
zkR(z) dz

for every k ∈ N.

Proof.

1

2πi

∫
Γ
zkR(z) dz =

1

2πi

∫
Γ
zk(zI − A)−1 dz

=
1

2πi

∫
Γ
zk

 ∞∑
j= 0

Aj

zj+ 1

 dz, (by Theorem 2.13)

=
1

2πi

∫
Γ

∞∑
j= 0

Aj

zj−k+1
dz

Note that R(z) is continuous on its domain and Γ is compact, which implies that zkR(z) is uniformly

continuous on Γ; therefore, we are justified in switching the order of the sum and integral.

=
1

2πi

∞∑
j= 0

Aj

∫
Γ

1

zj−k+1
dz

= Ak (by Lemma 2.15)
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Chapter 3. Behavior of
∣∣∣∣Ak

∣∣∣∣ for N ×N Matrices

Now that we have different ways of expressing the matrix power Ak, it is natural to ask whether

these different expressions can improve analysis of the norm, ||Ak||. In fact, we will see that the

expressions of the last chapter can be used along with the spectral radius to determine bounds on

norms; and in the case of the 2× 2 matrix, an exact formula will be achieved.

Perhaps the most useful parameter in analyzing matrix norms quickly, is the spectral radius.

Once we know the spectral radius ρ(A) of a matrix A, we instantly know the end behavior of norms

such as ||Ak||2 as k → ∞. Theorem 3.1 will show that if ρ(A) > 1, then ||Ak|| is guaranteed to

diverge to ∞ as k → ∞. In contrast, Corollary 3.3 will imply that if ρ(A) < 1, then ||Ak||

converges to 0 as k →∞; consequently, it is also bounded above for all k.

Theorem 3.1. For every nonnegative integer k,

ρ(A)k ≤ ||Ak||,

where ρ(A) is the spectral radius of the N ×N matrix A, and || · || is any matrix norm satisfying

the sub-multiplicative property.

Proof. Let λ be an eigenvalue of A with corresponding eigenvector x. Then

|λk| ||x|| = ||λkx|| = ||Akx|| ≤ ||Ak|| ||x||

We can divide both sides by ||x||, which is nonzero since x is an eigenvector. Since λ is an arbitrary

eigenvalue of A, the relationship holds for ρ(A).

Corollary 3.2. If A is normal, then for every nonnegative integer k,

ρ(A)k = ||Ak||2

Proof. By Theorem 1.4, we can write A = UDU∗, where U is unitary and D is a diagonal matrix

with the eigenvalues of A along its diagonal. Then,
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||Ak||2 = ||(UDU∗)k||2 = ||UDkU∗||2 = ρ(UDkU∗) = ρ(Dk) = [ρ(D)]k = [ρ(A)]k

Corollary 3.2 is extremely useful in analyzing norms of normal matrices; it reduces a complex

computation involving matrix norms and powers, into that of taking the power of a scalar value.

Also, while normal matrices can take many diverse forms, all those with spectral radius less than

one will display a graph similar to that of the symmetric (and normal) matrix A in Figure 3.1,

with spectral radius ρ(A) ≈ .91:

Figure 3.1: The Norm of Powers of a Normal Matrix

A =


1
2 0 1

10 0

0 1
2

2
5 0

1
10

2
5

1
2 0

0 0 0 9
10



Theorem 3.3. Given any matrix A in MN with spectral radius ρ(A),

lim
k→∞

Ak = 0 if and only if ρ(A) < 1

Proof. Suppose that lim
k→∞

Ak = 0. Then for each eigenvalue λ and corresponding eigenvector x of

A,

lim
k→∞

λkx = lim
k→∞

Akx = 0

Since each eigenvector is nonzero, this implies that lim
k→∞

λk = 0, for each eigenvalue λ. Thus,

|λ| < 1 for each eigenvalue λ. Therefore, ρ(A) < 1.

Now suppose that ρ(A) < 1. Let A = UTU∗ be the Schur decomposition of A. Using the
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same notation as in Theorem 2.4, if m > n, then t
(k)
mn = 0. If m = n, then

0 ≤ lim
k→∞

|t(k)
mn| = lim

k→∞
|λm|k ≤ lim

k→∞
|ρ(A)|k = 0

Finally, if m < n, then

lim
k→∞

|t(k)
mn| = lim

k→∞

∣∣∣∣∣∣∣
n−m∑
j= 1

∑
m=α1<α2
< ...<αj+1 =n

(
j∏

i= 1

tαiαi+1

) ∑
|∆j+1|= k− j

j+ 1∏
l= 1

λδlαl

∣∣∣∣∣∣∣
= lim

k→∞

n−m∑
j= 1

∑
m=α1<α2
< ...<αj+1 =n

∣∣∣∣∣
j∏

i= 1

tαiαi+1

∣∣∣∣∣
∣∣∣∣∣∣

∑
|∆j+1|= k− j

j+ 1∏
l= 1

λδlαl

∣∣∣∣∣∣
Apply Lemma 2.11 and Lemma 2.12 to get:

≤ lim
k→∞

n−m∑
j= 1

∑
m=α1<α2
< ...<αj+1 =n

∣∣∣∣∣
j∏

i= 1

tαiαi+1

∣∣∣∣∣
(
k

j

)
ρ(T)k−j =

n−m∑
j= 1

∑
m=α1<α2
< ...<αj+1 =n

∣∣∣∣∣
j∏

i= 1

tαiαi+1

∣∣∣∣∣
[

lim
k→∞

(
k

j

)
ρ(T)k−j

]

= 0

Since all of the entries of Tk approach 0 as k →∞, then lim
k→∞

Tk = 0. Then lim
k→∞

Ak = 0.

For an alternative proof of Theorem 3.3, see Horn and Johnson [2, p. 298]. The continuity of

the norm leads directly to the following corollary.

Corollary 3.4. Given any matrix A ∈MN with spectral radius ρ(A),

lim
k→∞

||Ak|| = 0 if and only if ρ(A) < 1

Regardless of whether ||Ak|| is bounded by a constant, the following theorem shows that its

growth is at most exponential.

Theorem 3.5. Given A ∈ MN , there exists γ > 0 and M ≥ 1, such that for each nonnegative

integer k,

||Ak|| ≤ Mγk
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Proof. Choose ε > 0. Let Ã := (ρ(A) + ε)−1A. Observe that,

ρ(Ã) =
ρ(A)

ρ(A) + ε
< 1

By Corrolary 3.4 we have that lim
k→∞

||Ãk|| = 0. Thus, there exists N ≥ 0 such that for every

k ≥ N we have ||Ãk|| < 1. Then for k ≥ N ,

(ρ(A) + ε)−k||Ak|| = ||(ρ(A) + ε)−kAk|| = ||Ãk|| < 1

||Ak|| < (ρ(A) + ε)k (3.1)

Let γ = ρ(A) + ε, and let M = max
1≤ k≤N

{1, γ−k||Ak||}. Then Mγk ≥ ||Ak|| for every k, and we

are done.

Corollary 3.6.

ρ(A) = lim
k→∞

||Ak||1/k

Proof. From Theorem 3.1 and equation (3.1), given ε > 0, there exists N ∈ N, such that for every

k ≥ N ,

ρ(A)k ≤ ||Ak||2 ≤ (ρ(A) + ε)k

Then for k ≥ N ,

ρ(A) ≤ ||Ak||1/k2 ≤ (ρ(A) + ε)

In fact, this is true for all ε > 0, thus

lim
k→∞

||Ak||1/k2 = ρ(A)

For a nonnormal matrix A with spectral radius ρ(A) < 1, the shape of the graph of ||Ak||2

may take the same form as seen in Figure 3.1 on page 43, or it may display a prominent transient

phase ; in fact, the latter is more typical, as seen in the upper-triangular (and nonnormal) example
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of Figure 3.2.

Figure 3.2: The Norm of Powers of a Nonnormal Matrix

A =


1
2 0 1 0
0 1

2 0 0
0 0 1

2 4
0 0 0 9

10



While the peak of the transient phase for the 4× 4 matrix above is quite manageable, in cases

with larger dimensions, or in cases with larger off - diagonal entries, the transient phase can grow

very large before peaking. Those interested in taking norms of matrix powers are presented with

two major problems regarding computation: 1) larger numbers require more time for computation,

and 2) if numbers get too large, a computer will no longer be able to store them in memory. If

the answer that we desire requires iteration beyond the transient effect, then we may wish to have

bounds that can tell us how large the norm may grow, before actually running a mathematical

model involving the norm.

3.1 Bounds on ||Tk||

Now we look at bounds on the norm ||Tk||, where as before, T is an upper-triangular matrix, and

k is a nonnegative integer. First, we look at the 2× 2 case, where we are in fact able to develop an

exact expression for the norm.
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Theorem 3.7. Given the 2× 2 upper triangular matrix T =
(
λ1 t
0 λ2

)
,

||Tk||2 =

[
1

2

(
b +

√
b2 − 4|λ1λ2|2k

)] 1
2

where b = |λ1|2k + |λ2|2k + |t|2
∣∣∣∣∣∣
k−1∑
j= 1

λj1λ
k− 1− j
2

∣∣∣∣∣∣
2

Proof. By Theorem 2.4,

Tk =


λk1 t

∑
∆2 = k− 1

λδ11 λ
δ2
2

0 λk2

 =


λk1 t

k−1∑
j= 0

λj1λ
k− 1− j
2

0 λk2


Then,

(
Tk
)∗

Tk =


|λ1|2k λk1

t k−1∑
j= 0

λj1λ
k− 1− j
2


t k−1∑

j= 0

λj1λ
k− 1− j
2

λk1 |λ2|2k + |t|2
∣∣∣∣∣∣
k−1∑
j= 0

λj1λ
k− 1− j
2

∣∣∣∣∣∣
2


The characteristic polynomial of

(
Tk
)∗

Tk is:

p(ξ) =
(
ξ − |λ1|2k

)ξ −
|λ2|2k + |t|2

∣∣∣∣∣∣
k−1∑
j= 0

λj1λ
k− 1− j
2

∣∣∣∣∣∣
2 − |λ1|2k|t|2

∣∣∣∣∣∣
k−1∑
j= 0

λj1λ
k− 1− j
2

∣∣∣∣∣∣
2

= ξ2 −

|λ1|2k + |λ2|2k + |t|2
∣∣∣∣∣∣
k−1∑
j= 0

λj1λ
k− 1− j
2

∣∣∣∣∣∣
2 ξ + |λ1λ2|2k

+ |λ1|2k|t|2
∣∣∣∣∣∣
k−1∑
j= 0

λj1λ
k− 1− j
2

∣∣∣∣∣∣
2

− |λ1|2k|t|2
∣∣∣∣∣∣
k−1∑
j= 0

λj1λ
k− 1− j
2

∣∣∣∣∣∣
2

= ξ2 −

|λ1|2k + |λ2|2k + |t|2
∣∣∣∣∣∣
k−1∑
j= 0

λj1λ
k− 1− j
2

∣∣∣∣∣∣
2 ξ + |λ1λ2|2k
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By the quadratic formula, the largest root is:

ξmax =
1

2

|λ1|2k + |λ2|2k + |t|2
∣∣∣∣∣∣
k−1∑
j= 0

λj1λ
k− 1− j
2

∣∣∣∣∣∣
2

+

√√√√√|λ1|2k + |λ2|2k + |t|2

∣∣∣∣∣∣
k−1∑
j= 0

λj1λ
k− 1− j
2

∣∣∣∣∣∣
22

− 4|λ1λ2|2k


Note that the arithmetic-geometric mean inequality ensures that the expression under the square

root is nonnegative, since:

|λ1|2k + |λ2|2k

2
≥
√
|λ1λ2|2k implies that

(
|λ1|2k + |λ2|2k

)2
≥ 4|λ1λ2|2k

Observe that ξmax is real, and it is the largest eigenvalue of
(
Tk
)∗

Tk; thus,
√
ξmax is the largest

singular value of Tk. By Lemma 1.13, we have ||Tk||2 =
√
ξmax; thus, taking the square root of

the right-hand side above finishes the proof.

Unfortunately, this method for finding ||Tk||2 is not practical for matrices of dimension 3 and

higher, as it relies on the quadratic formula to find the largest root of the characteristic polynomial.

For higher dimensions, we will seek to bound the norm, rather than writing out an explicit formula

for its exact value. The next theorem gives a lower bound for ||Tk||2, where T is of arbitrary

dimension. In fact, one can replace || · ||2 by || · ||1, || · ||∞, or || · ||F and the theorem below still

holds.

Theorem 3.8. Let T ∈MN be an upper-triangular matrix, and let k be a nonnegative integer. Let

T be written entry-wise in the notation of Theorem 2.4. Then for 1 ≤ m < n ≤ N ,

||Tk||2 ≥ |t(k)
mn| =

∣∣∣∣∣∣∣
n−m∑
j= 1

∑
m=α1<α2
< ...<αj+1 =n

(
j∏

i= 1

tαiαi+1

) ∑
|∆j+1|= k− j

j+ 1∏
l= 1

λδlαl

∣∣∣∣∣∣∣
Proof. First, note that give any vector x = (x1, x2, . . . , xN )T , we have |xi|2 ≤

N∑
j=1

|xj |2 = ||x||22,

for each i = 1, 2, . . . , N . Let e(n) = (e1, e2, . . . , eN )T be the vector with 1 in the nth coordinate,
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and zeros otherwise. Fix m and n, with 1 ≤ m < n ≤ N . Then,

|t(k)
mn|2 =

N∑
q=1

|t(k)
mq|2e2

q = ||Tke(n)||22 ≤ ||Tk||22

Substituting the value for t
(k)
mn given by Theorem 2.4, and taking the square root finishes the

proof.

In general, using the absolute value of one matrix entry to bound the norm of the matrix,

provides a bound that is likely not very sharp; however, details about the structure of Tk provided

by Theorem 2.4, can guide us to select a matrix entry for which Theorem 3.8 gives a surprisingly

good bound. In chapter 4 we will see several examples where this is the case.

In order to develop and simplify upper bounds for ||Tk||, we will need results from combinatorics.

Lemmas 3.9, 3.10, and 3.11 provide ways for working with combinations which will be useful in the

proof of the next theorem.

Lemma 3.9. Given positive integers n and m with n > m, then for each j with 1 ≤ j ≤ n − m

there are

(
n − m − 1

j − 1

)
distinct tuples (α1, α2, . . . , αj+1), where

m = α1 < α2 < . . . < αj+1 = n.

Proof. Since α1 and αj+1 are fixed, there are j − 1 terms which must be selected in order from

least to greatest. There are n − m − 1 terms between n and m (noninclusive). Since only one

ordering of the terms is valid, this is the same as selecting j − 1 objects from n − m − 1 objects

without regard to order; that is, it is the number of combinations of n − m − 1 objects, taken

j − 1 at a time.

Lemma 3.10 (Pascal’s Identity). Given an integer N with N ≥ 1, and given an integer q with

1 ≤ q ≤ N , (
N

q

)
=

(
N − 1

q

)
+

(
N − 1

q − 1

)
Proof.

(
N

q

)
=

N !

q!(N − q)!
=

N ! − q(N − 1)! + q(N − 1)!

q!(N − q)!
=

N ! − q(N − 1)!

q!(N − q)!
+

q(N − 1)!

q!(N − q)!

=
N(N − 1)! − q(N − 1)!

q!(N − q)!
+

q(N − 1)!

q(q − 1)!(N − q)!
=

(N − q)(N − 1)!

q!(N − q)!
+

(N − 1)!

(q − 1)!(N − q)!
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=
(N − 1)!

q!(N − 1 − q)!
+

(N − 1)!

(q − 1)!(N − 1 − (q − 1))!
=

(
N − 1

q

)
+

(
N − 1

q − 1

)

Lemma 3.11. Given an integer N with N ≥ 1, for each integer q with 1 ≤ q ≤ N ,

N∑
s= q

(
s − 1

q − 1

)
=

(
N

q

)

Proof. We proceed by induction. If N = 1, then we must have q = 1.

N∑
s= q

(
s − 1

q − 1

)
=

1∑
s= 1

(
s − 1

0

)
=

(
0

0

)
= 1 =

(
1

1

)
=

(
N

q

)

Now suppose that the lemma holds for some integer N ≥ 1, and choose some q with 1 ≤ q ≤ N .

Then,

N + 1∑
s= q

(
s − 1

q − 1

)
=

N∑
s= q

(
s − 1

q − 1

)
+

(
N

q − 1

)
=

(
N

q

)
+

(
N

q − 1

)
(by the inductive step)

=

(
N + 1

q

)
(by Lemma 3.10)

We are now ready to derive an upper-bound.

Theorem 3.12. Given a nonzero N ×N upper-triangular matrix T with

ρ(T) = max(|λ| : λ ∈ σ(T)) and MT = max(|tij | : i < j)

for each k = 0, 1, 2, . . . , we have

||Tk||2 ≤

√√√√√N−1∑
l= 0

 l∑
j= 0

(
l

j

)(
k

j

)
M j

T ρ(T)k−j

2
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where we take

(
k

j

)
= 0 for j > k.

Proof. Given x with ||x|| = 1, we have

||Tkx||22 =
N∑

m= 1

∣∣∣∣∣
N∑
r= 1

t(k)
mrxr

∣∣∣∣∣
2

=
N∑

m= 1

∣∣∣∣∣
N∑

r=m

t(k)
mrxr

∣∣∣∣∣
2

(since t(k)
mr = 0 for r < m)

=

N∑
m= 1

∣∣∣∣∣λkmxm +

N∑
r=m+ 1

t(k)
mrxr

∣∣∣∣∣
2

(since t(k)
mr = λkm for r = m)

Now, using Theorem 2.4 we substitute for t
(k)
mr in the second summation.

||Tkx||22 =
N∑

m= 1

∣∣∣∣∣∣∣λkmxm +
N∑

r=m+ 1

 r−m∑
j= 1

∑
m=α1<α2
< ...<αj+1 = r

(
j∏

i= 1

tαiαi+1

) ∑
|∆j+1|= k− j

j+ 1∏
l= 1

λδlαl

xr

∣∣∣∣∣∣∣
2

≤
N∑

m= 1

|λkm||xm| +
N∑

r=m+ 1

 r−m∑
j= 1

∑
m=α1<α2
< ...<αj+1 = r

(
j∏

i= 1

|tαiαi+1 |

) ∑
|∆j+1|= k− j

j+ 1∏
l= 1

|λδlαl
|

 |xr|


2

Observe that |xm|, |xr| ≤ 1 for each r, so dropping these terms on the right will only increase the

value of the overall sum.

||Tkx||22 ≤
N∑

m= 1

|λkm| +

N∑
r=m+ 1

 r−m∑
j= 1

∑
m=α1<α2
< ...<αj+1 = r

(
j∏

i= 1

|tαiαi+1 |

) ∑
|∆j+1|= k− j

j+ 1∏
l= 1

|λδlαl
|




2

Since x was arbitrary, and since ||Tk||2 = sup
||x||= 1

||Tkx||2, we have that,

||Tk||22 ≤
N∑

m= 1

|λkm| +

N∑
r=m+ 1

 r−m∑
j= 1

∑
m=α1<α2
< ...<αj+1 = r

(
j∏

i= 1

|tαiαi+1 |

) ∑
|∆j+1|= k− j

j+ 1∏
l= 1

|λδlαl
|




2

By Lemma 2.11 we may substitute the expression

(
k

j

)
ρ(T)k−j for the last summation in the
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inequality above; we may also replace |tαiαi+1 | by MT, to get:

||Tk||22 ≤
N∑

m= 1

ρ(T)k +
N∑

r=m+ 1

 r−m∑
j= 1

∑
m=α1<α2
< ...<αj+1 = r

(
j∏

i= 1

MT

)(
k

j

)
ρ(T)k−j




2

Since

j∏
i= 1

MT = M j
T, we can make this substitution and rearrange terms to get:

=

N∑
m= 1

ρ(T)k +

N∑
r=m+ 1

 r−m∑
j= 1

M j
T

(
k

j

)
ρ(T)k−j

∑
m=α1<α2
< ...<αj+1 = r

1




2

By Lemma 3.9 this is equal to,

N∑
m= 1

ρ(T)k +
N∑

r=m+ 1

 r−m∑
j= 1

M j
T

(
k

j

)
ρ(T)k−j

(
r − m − 1

j − 1

)2

Now we expand the summation
N∑

r=m+1

to get:

=
N∑

m= 1

ρ(T)k +

 1∑
j= 1

M j
T

(
k

j

)
ρ(T)k−j

(
0

j − 1

) +

 2∑
j= 1

M j
T

(
k

j

)
ρ(T)k−j

(
1

j − 1

)

+ . . . +

N−m∑
j= 1

M j
T

(
k

j

)
ρ(T)k−j

(
N −m− 1

j − 1

)2

Rearranging terms we get,

N∑
m= 1

[
ρ(T)k +

(
k

1

)
MT ρ(T)k−1

[(
0

0

)
+

(
1

0

)
+ . . . +

(
N −m− 1

0

)]

+

(
k

2

)
M2

T ρ(T)k−2

[(
1

1

)
+

(
2

1

)
+ . . . +

(
N −m− 1

1

)]

+ . . . +

(
k

N −m

)
MN−m

T ρ(T)k−(N−m)

[(
N −m− 1

N −m− 1

)]]2
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By Lemma 3.11 this is equal to,

N∑
m= 1

[
ρ(T)k +

(
k

1

)
MT ρ(T)k−1

(
N −m

1

)
+

(
k

2

)
M2

T ρ(T)k−2

(
N −m

2

)

+ . . . +

(
k

N −m

)
MN−m

T ρ(T)k−(N−m)

[(
N −m
N −m

)]]2

Now since ρ(T)k =

(
N − m

0

)(
k

0

)
M0

T ρ(T)k, we have,

||Tk||22 ≤
N∑

m= 1

N −m∑
j= 0

(
N − m

j

)(
k

j

)
M j

T ρ(T)k−j

2

Let l = N − m and note that as m ranges from 1 to N , l ranges from N − 1 to 0. If we sum the

terms above backwards over l, we get:

||Tk||22 ≤
N−1∑
l= 0

 l∑
j= 0

(
l

j

)(
k

j

)
M j

T ρ(T)k−j

2

Taking the square root finishes the proof.

The bound from Theorem 3.12 is not sharp, as many concessions were made in whittling down

the initial expression for the norm to the more simplified statement of the theorem. However,

similar logic may be applied to other norms to derive their respective bounds. In the next theorem,

we present a bound for the Frobenius norm.

Theorem 3.13. Given a nonzero upper-triangular matrix T with,

ρ(T) = max(|λ| : λ ∈ σ(T)) and MT = max(|tij | : i < j),

for each k = 0, 1, 2, . . . ,

||Tk||F ≤

√√√√√√Nρ(A)2k +

N∑
m,n= 1
m<n

∣∣∣∣∣∣
n−m∑
j= 1

(
n − m − 1

j − 1

)(
k

j

)
M j

T ρ(T)k−j

∣∣∣∣∣∣
2

53



where

(
k

j

)
= 0 for j > k.

Note that since ||A||2 ≤ ||A||F , for any matrix A, the above bound also works for the 2-norm.

Proof. Again, we use the notation of Theorem 2.4.

||Tk||2F =

N∑
m,n= 1

∣∣∣t(k)
mn

∣∣∣2 =

N∑
m,n= 1
m≤n

∣∣∣t(k)
mn

∣∣∣2 (since t(k)
mn = 0 if m > n)

=

N∑
m= 1

|λm|2k +

N∑
m,n= 1
m<n

∣∣∣∣∣∣∣
n−m∑
j= 1

∑
m=α1<α2
< ...<αj+1 =n

(
j∏

i= 1

tαiαi+1

) ∑
|∆j+1|= k− j

j+ 1∏
l= 1

λδlαl

∣∣∣∣∣∣∣
2

≤ Nρ(T)2k +
N∑

m,n= 1
m<n

∣∣∣∣∣∣∣
n−m∑
j= 1

∑
m=α1<α2
< ...<αj+1 =n

M j
T

∑
|∆j+1|= k− j

ρ(T)k−j

∣∣∣∣∣∣∣
2

= Nρ(T)2k +

N∑
m,n= 1
m<n

∣∣∣∣∣∣
n−m∑
j= 1

(
n − m − 1

j − 1

)
M j

T

(
k

j

)
ρ(T)k−j

∣∣∣∣∣∣
2

(by Lemmas 2.7 and 3.9)

The proof is completed by rearranging terms and taking the square root of both sides.

Now we look at a similarly derived bound for the infinity norm.

Theorem 3.14.

||Tk||∞ ≤
N−1∑
j= 0

(
N − 1

j

)(
k

j

)
M j

T ρ(T)k−j

Proof.

||Tk||∞ = max
1≤m≤N

N∑
n= 1

∣∣∣t(k)
mn

∣∣∣ = max
1≤m≤N

N∑
n=m

∣∣∣t(k)
mn

∣∣∣ (
since Tk is upper-triangular

)
≤ max

1≤m≤N

{
ρ(T)k +

N∑
n=m+ 1

∣∣∣t(k)
mn

∣∣∣} (
since |t(k)

mm| = |λm|k ≤ ρ(T)k
)
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Now, use Theorem 2.4 to substitute for the values of t
(k)
mn.

= max
1≤m≤N

ρ(T)k +
N∑

n=m+ 1

∣∣∣∣∣∣∣
n−m∑
j= 1

∑
m=α1<α2
< ...<αj+1 =n

(
j∏

i= 1

tαiαi+1

) ∑
|∆j+1|= k− j

j+ 1∏
l= 1

λδlαl

∣∣∣∣∣∣∣


≤ max
1≤m≤N

ρ(T)k +
N∑

n=m+ 1

∣∣∣∣∣∣∣
n−m∑
j= 1

∑
m=α1<α2
< ...<αj+1 =n

M j
T

∑
|∆j+1|= k− j

ρ(T)k−j

∣∣∣∣∣∣∣


By Lemmas 2.7 and 3.9 we get:

= max
1≤m≤N

ρ(T)k +

N∑
n=m+1

∣∣∣∣∣∣
n−m∑
j= 1

(
n − m − 1

j − 1

)
M j

T

(
k

j

)
ρ(T)k−j

∣∣∣∣∣∣


≤ ρ(T)k +

N∑
n= 2

N−1∑
j= 1

(
n − 2

j − 1

)
M j

T

(
k

j

)
ρ(T)k−j (3.2)

In order to simplify further, we expand the first summation of the second term.

= ρ(T)k +

1∑
j=1

(
0

j − 1

)
M j

T

(
k

j

)
ρ(T)k−j +

2∑
j=1

(
1

j − 1

)
M j

T

(
k

j

)
ρ(T)k−j

+ . . . +
N−1∑
j=1

(
N − 2

j − 1

)
M j

T

(
k

j

)
ρ(T)k−j

Rearranging terms we get:

= ρ(T)k + MT

(
k

1

)
ρ(T)k−1

[(
0

0

)
+

(
1

0

)
+ . . . +

(
N − 2

0

)]

+ M2
T

(
k

2

)
ρ(T)k−2

[(
1

1

)
+

(
2

1

)
+ . . . +

(
N − 2

1

)]

+ . . . + MN−1
T

(
k

N − 1

)
ρ(T)k−(N−1)

[(
N − 2

N − 2

)]

By Lemma 3.11, this is equal to:

= ρ(T)k + MT

(
k

1

)
ρ(T)k−1

[(
N − 1

1

)]
+ M2

T

(
k

2

)
ρ(T)k−2

[(
N − 1

2

)]

+ . . . + MN−1
T

(
k

N − 1

)
ρ(T)k−(N−1)

[(
N − 1

N − 1

)]
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= ρ(T)k +

N−1∑
j=1

M j
T

(
k

j

)
ρ(T)k−j

[(
N − 1

j

)]

=

N−1∑
j=0

M j
T

(
k

j

)
ρ(T)k−j

[(
N − 1

j

)]

The last inequality follows since ρ(T)k =

(
N − 1

0

)(
k

0

)
M0

T ρ(T)k. Rearranging terms finishes

the proof.

Corollary 3.15.

||Tk||2 ≤
√
N

N−1∑
j= 0

(
N − 1

j

)(
k

j

)
M j

T ρ(T)k−j

Proof. The proof follows directly from the fact that ||Tk||2 ≤
√
N ||Tk||∞.

3.2 The Kreiss Matrix Theorem

The Kreiss Matrix Theorem gives both a lower and upper bound for the supremum of the norm of

a matrix power; these bounds were originally developed in 1962 by Kreiss [3]. There have been at

least eight improvements to the upper bound with the proof of the last improvement completed in

1991. See Trefethen and Embree [7, p. 177] for a list of these improvements, as well as for further

references to their proofs. In this section we provide the proof of the last improvement. First,

we need to discuss an important term behind the theorem. The Kreiss constant of the matrix

A ∈MN is defined as

K(A) := sup
ε> 0

ρε(A) − 1

ε

Our first order of business in this section is to show that the Kreiss constant is equivalent to another

expression, which we will use more in this paper.

Theorem 3.16. Given A ∈MN ,

K(A) = sup
ε> 0

ρε(A) − 1

ε
= sup
|z|> 1

(|z| − 1)||(zI − A)−1||

Proof. Fix ε > 0. By Corollary 2.14, and since R(z) is continuous on its domain, the set σε(A)

is bounded; it is also easy to see that it is open. By definition of ρε(A), there exists a sequence
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{zm} ∈ σε(A), with |zm| → ρε(A) as m → ∞. Note that ||(zmI − A)−1|| > ε−1, for every m.

Furthermore, since σε(A) is bounded, there is a subsequence {zmj}, which converges to a point z0

in the closure of σε(A) as j → ∞. Again, since R(z) and the norm are continuous, and since the

absolute value is continuous, we have

||(z0I − A)−1|| ≥ ε−1 and |z0| = ρε(A)

Thus,

(|z0| − 1)||(z0I − A)−1|| ≥ ρε(A) − 1

ε

Now, take the supremum over all complex numbers:

sup
z

(|z| − 1)||(zI − A)−1|| ≥ ρε(A) − 1

ε

If |z| ≤ 1, then (|z| − 1)||(zI − A)−1|| ≤ 0, and if |z| > 1, then (|z| − 1)||(zI − A)−1|| > 0.

Thus, we may restrict the supremum above to complex numbers of modulus greater than one, since

there are certainly values for z for which (|z| − 1)||(zI − A)−1|| is positive.

sup
z

(|z| − 1)||(zI − A)−1|| = sup
|z|> 1

(|z| − 1)||(zI − A)−1||

Now we show that we can get the inequality in the other direction. Fix z with |z| > 1. Let

ε0 = ||(zI−A)−1||. Then z is on the boundary of σε0(A). There exists a sequence {ωm} ⊆ σε0(A),

with ωm → z. Since ρε0(A) ≥ |ωm|, for every m, we have ρε0(A) ≥ |z|. Then,

ρε0(A) − 1

ε0
≥ (|z| − 1)||(zI − A)−1||

Therefore,

sup
ε> 0

ρε(A) − 1

ε
≥ (|z| − 1)||(zI − A)−1||
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In fact, this is true for all z with |z| > 1; thus,

sup
ε> 0

ρε(A) − 1

ε
= sup
|z|> 1

(|z| − 1)||(zI − A)−1||

The Kreiss Matrix Theorem is stated below; it’s proof will follow in two parts—the lower bound,

and upper bound–which are the substance of Theorems 3.18 and 3.24, respectively. For simplicity,

for the rest of this section we will assume that || · || is the spectral norm.

Theorem 3.17 (Kreiss Matrix Theorem). Given a matrix A ∈MN ,

K(A) ≤ sup
k≥ 0
||Ak|| ≤ eNK(A) (3.3)

In 1984, LeVeque and Trefethen [4] proved the above theorem with the factor eN replaced by

2eN . They accompanied this by the conjecture that the factor of 2 was unnecessary. It wasn’t

until 1991 that Spijker’s result [6] could be applied to Leveque and Trefethen’s work to reduce the

Kreiss upper bound to its present form.

Note that Theorem 3.17 is quite uninteresting when applied to normal matrices. Given a normal

matrix A with ρ(A) < 1,

sup
k≥ 0
||Ak|| = sup

k≥ 0
ρ(A)k = 1

by Corollary 3.2. Thus, the graph of ||Ak|| starts at 1 and tends to 0 as k → ∞. Also, note that

for a normal matrix A, Corollary 1.20, leads us to conclude that ρε(A) = ρ(A) + ε. If in addition,

we assume ρ(A) > 1, then

lim
ε→0+

ρ(A) + ε− 1

ε
= ∞

Thus,

K(A) = sup
ε> 0

ρ(A) + ε− 1

ε
= ∞

On the other hand, if we assume ρ(A) ≤ 1, then for each ε > 0,

ρ(A) + ε− 1

ε
≤ 1
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Observe that,

lim
ε→∞

ρ(A) + ε− 1

ε
= 1

Thus we may conclude, K(A) = 1.

The Kreiss Matrix Theorem becomes more interesting when examining the norm of powers of

nonnormal matrices, which tend to exhibit transient growth over an interval and then eventually

approach zero as k gets large. In nonnormal cases, many values for K(A) are possible, and they

may be used in the Kreiss Matrix Theorem to form bounds for the peak of the transient phase of

the graph of ||Ak||.

We will proceed with the proof of the lower bound of the Kreiss Matrix Theorem. Then we will

provide a few preliminary results, including Spijker’s Lemma, which will pave the way for a proof

of the Kreiss Matrix Theorem upper bound.

Theorem 3.18. Given A ∈MN ,

sup
k≥ 0
||Ak|| ≥ K(A)

Proof. The case where sup
k≥ 0
||Ak|| = ∞ is trivial. Thus, suppose that there exists M < ∞ with

sup
k≥ 0
||Ak|| = M . By Theorem 3.1 we must have ρ(A) ≤ 1.

Choose z ∈ C, with |z| > 1. Note that z /∈ σ(A) and so R(z) < ∞. Furthermore,

||(zI − A)−1|| =

∣∣∣∣∣
∣∣∣∣∣
∞∑
k=0

Ak

zk+1

∣∣∣∣∣
∣∣∣∣∣ ≤

∞∑
k=0

||Ak||
|zk+1|

≤ M

|z|

∞∑
k=0

(
1

|z|

)k
=

M

|z|
1

1 − 1/|z|
=

M

|z| − 1

Then,

(|z| − 1)||(zI − A)−1|| ≤ M = sup
k≥ 0
||Ak||

Since z is arbitrary we have K(A) ≤ sup
k≥ 0
||Ak||.

In order to prove the upper bound of the Kreiss Matrix Theorem we will need a result by Spijker

[6] obtained in 1991. Two preliminary lemmas will smooth the way.
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Lemma 3.19. Given a, b ∈ R, and θ ∈ [0, 2π],

|a cos θ + b sin θ| ≤
√
a2 + b2

Proof. This is true by the Cauchy Schwartz inequality (Lemma 1.6):

|a cos θ + b sin θ| = |(a, b) · (cos θ, sin θ)| ≤
√
a2 + b2

√
cos2 θ + sin2 θ =

√
a2 + b2

Lemma 3.20. Let Q(z) be a complex polynomial of degree n. The restriction of znQ(z) to the

circle S = {z : |z| = d}, for some d > 0, is equivalent to the restriction to S of some polynomial

of degree less than or equal to n.

Proof. Let the expansion of Q be Q(z) = qnz
n + qn−1z

N−1 + . . . + q1z + q0. Then,

Q(z) = qn z
n + qn−1 z

N−1 + . . . + q1 z + q0

Observe that S is parameterized by the function z(t) = deit as t ranges from 0 to 2π. Thus,

z(t) = de−it and (z(t))−1 =
e−it

d
.

Thus, z(t) = d2(z(t))−1, and on [0, 2π], we have:

Q(z) = qnd
2n(z(t))−n + qn−1d

2(n− 1)(z(t))− (n− 1) + . . . + q1d
2(z(t))−1 + q0

znQ(z) = qnd
2n + qn−1d

2(n− 1)z(t) + . . . + q1d
2z(t)N−1 + q0z

n

Lemma 3.21 (Spijker’s Lemma). Let S be a circle in the complex plane with radius d. Let r(z) =

P (z)/Q(z), where P and Q are polynomials over C of degree less than or equal to N , for some

N ∈ N, with Q(z) 6= 0 on S. Then,

∫
S
|r′(z)||dz| ≤ 2πN max

z∈S
|r(z)|.
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Proof. First, parameterize S by the map z, where z = z(t) = deit for 0 ≤ t ≤ 2π. On the domain

[0, 2π], define the complex valued function f , and real-valued functions g and h, according to the

following:

f(t) = g(t) + ih(t) = r(deit)

Since r is a rational function, it is analytic on its domain, which includes S. Thus, r is differentiable,

and the following holds:

f ′(t) = g′(t) + ih′(t) = dieitr′(deit)

This, coupled with the parameterization of S results in the two identities,

|f ′(t)|
d

= |r′(t)| and |dz| = d dt (3.4)

Equations (3.4) can be used to turn the contour integral of |r′(z)| into a definite integral of |f ′(t)|.

∫
S
|r′(z)||dz| =

∫ 2π

0
|f ′(t)| dt (3.5)

Since f ′(t) is complex-valued, we can write it in polar form as f ′(t) = |f ′(t)| cosωt + i|f ′(t)| sinωt,

where ωt depends on t. Thus for each t, we have g′(t) = |f ′(t)| cosωt and h′(t) = |f ′(t)| sinωt.

Observe that for each t,

∫ 2π

0
|g′(t) cos θ + h′(t) sin θ| dθ =

∫ 2π

0
|(|f ′(t)| cosωt) cos θ + (|f ′(t)| sinωt) sin θ| dθ

=

∫ 2π

0
|f ′(t)|| cosωt cos θ + sinωt sin θ| dθ

= |f ′(t)|
∫ 2π

0
| cos(ωt − θ)| dθ = 4|f ′(t)|

Dividing both sides by 4 and integrating with respect to t, we get

1

4

∫ 2π

0

(∫ 2π

0
|g′(t) cos θ + h′(t) sin θ| dθ

)
dt =

∫ 2π

0
|f ′(t)| dt (3.6)

For now let’s focus on the inner integral on the left of equation (3.6). Fix θ ∈ [0, 2π], and define
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Fθ by

Fθ(t) = g(t) cos θ + h(t) sin θ (3.7)

Since r(z) is a rational function, g and h, will be restrictions of rational functions to the interval

[0, 2π]. Then g′ and h′ are also restrictions of rational functions. Thus, g′ and h′ are each either

identically 0, or they have a finite number of zeros. Thus, if F ′θ has an infinite number of zeros on

[0, 2π], then F ′θ is in fact identical to 0 on the interval. In this case, since F ′θ(t) = g′(t) cos θ +

h′(t) sin θ, the integral (3.6) will just be 0, and by equation (3.5), the lemma is proved.

Now suppose without loss of generality that F ′θ(t) has finitely many zeros in [0, 2π]. Then, there

exists an integer k and real values t0, t1, . . . , tk, with t0 = 0 < t1 < t2 < . . . < tk = 2π, such

that |F ′θ(t)| > 0 on (tj−1, tj), for j = 1, 2, . . . , k. Then, the sign of F ′θ does not change on the open

intervals (tj−1, tj). If F ′θ(t) < 0 on (tj−1, tj), then − (Fθ(tj) − Fθ(tj−1) > 0. This implies that

∫ tj

tj−1

|F ′θ(t)| dt = −
∫ tj

tj−1

F ′θ(t) dt = − (Fθ(tj) − Fθ(tj−1)) = |Fθ(tj) − Fθ(tj−1)|

In contrast, if F ′θ(t) > 0 on (tj−1, tj) then trivially,

∫ tj

tj−1

|F ′θ(t)| dt = |Fθ(tj) − Fθ(tj−1)|

Since this is true for j = 1, 2, . . . , k,

∫ 2π

0
|F ′θ(t)| dt =

k∑
j= 1

∫ tj

tj−1

|F ′θ(t)| dt =
k∑

j= 1

|Fθ(tj) − Fθ(tj−1)|

Now, for j = 1, 2, . . . , k, define the sets,

Bj =

{
y ∈ R : min

t∈[tj−1,tj ]
Fθ(t) ≤ y ≤ max

t∈[tj−1,tj ]
Fθ(t)

}

and let

a = max
0≤ t≤ 2π

|Fθ(t)|

Observe that Bj ⊆ [− a, a] for each j. Also observe that a value y∗ is in Bj if and only if there

exists t ∈ [0, 2π], such that F (t) = y∗. For each j, let χBj be the function that takes the value 1
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on Bj , and 0 everywhere else:

χBj (y) =

 1, if y ∈ Bj

0, if y /∈ Bj

Then since Fθ is monotonic on [tj−1, tj ], the maxima and minima of the Fθ on [tj−1, tj ] occur at

the endpoints; thus, ∫ a

−a
χBj (y)dy = |Fθ(tj) − Fθ(tj−1)|,

for j = 1, 2, . . . , k. This leads to the following,

∫ 2π

0
|F ′θ(t)| dt =

k∑
j= 1

|Fθ(tj) − Fθ(tj−1)|

=
k∑

j= 1

∫ a

−a
χBj (y)dy

=

∫ a

−a

k∑
j= 1

χBj (y)dy

≤ 2a max
y∈[− a,a]

k∑
j= 1

χBj (y) (3.8)

Now let y∗ satisfy
k∑

j= 1

χBj (y
∗) = max

y∈[− a,a]

k∑
j= 1

χBj (y) (3.9)

Since Fθ is continuous on S, there exists t∗ ∈ [0, 2π] such that Fθ(t
∗) = y∗. We want to show that

there are at most 2N distinct values, t ∈ [0, 2π], such that F (t) = y∗. Observe that,

2Fθ(t) = 2(g(t) cos θ + h(t) sin θ)

= 2(g(t) cos θ + h(t) sin θ) + ig(t) sin θ − ig(t) sin θ + ih(t) cos θ − ih(t) cos θ

= (cos θ − i sin θ)(g(t) + ih(t)) + (cos θ + i sin θ)(g(t) − ih(t))

= e−iθr(z) + eiθr(z)

Since F ′θ(t) is not identically 0 on [0, 2π], neither side above is constant as t (and z = deit) varies.
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If we replace Fθ(t) above by y∗, we obtain the equation

2y∗ = e−iθr(z) + eiθr(z) (3.10)

which is not satisfied for all z in S. Likewise, since Q(z) 6= 0 for all z in S, we may multiply both

sides of equation (3.10) by Q(z)Q(z) to get,

2y∗Q(z)Q(z) = Q(z)Q(z)
[
e−iθr(z) + eiθr(z)

]

This new equation is satisfied by the exact same values that satisfy equation (3.10). Substituting

r(z) = P (z)/Q(z) and rearranging terms gives,

e−iθP (z)Q(z) + eiθP (z)Q(z) − 2y∗Q(z)Q(z) = 0 (3.11)

Now multiply the above identity by zN , and set u(z) equal to the left-hand side:

u(z) = e−iθP (z)zNQ(z) + eiθzNP (z)Q(z) − 2y∗Q(z)zNQ(z) (3.12)

By Lemma 3.20, u(z) is the restriction of a polynomial to S, of degree less than or equal to 2N .

Note that the polynomial cannot be of degree 0 because equation (3.12) is not satisfied for all

z in S. Therefore, u has at most 2N distinct complex zeros on S. Since the map t 7→ deit is

bijective, and since equation (3.11) is equivalent to equation (3.10) for z ∈ S, there are at most 2N

distinct values t such that both F (t) = y∗, and z = deit satisfies equation (3.11). Thus, the set

{F (t) : F (t) = y∗, t ∈ [0, 2π]}, has nonempty intersection with at most 2N distinct sets Bj . By

equation (3.9) and the definition of χBj ,

max
y∈[− a,a]

k∑
j= 1

χBj (y) =
k∑

j= 1

χBj (y
∗) ≤ 2N (3.13)
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Now we put everything together, starting from equation (3.5).

∫
S
|r′(z)||dz| =

∫ 2π

0
|f ′(t)| dt

=
1

4

∫ 2π

0

(∫ 2π

0
|g′(t) cos θ + h′(t) sin θ| dθ

)
dt (by euation (3.6))

=
1

4

∫ 2π

0

(∫ 2π

0
|F ′(t)| dθ

)
dt

≤ 1

4
(2π2a2N) (by equations (3.8) and (3.9))

= 2πN max
0≤ t≤ 2π

|Fθ(t)|

≤ 2πN max
z∈S
|r(z)|

The last inequality follows from Lemma 3.19, since for every t ∈ [0, 2π],

|Fθ(t)| = |g(t) cos θ + h(t) sin θ| ≤
√
g(t)2 + h(t)2 = |r(deit)|

Lemma 3.22. Given a matrix A ∈ MN , let R(z) be the resolvent of A, and let r(z) = u∗R(z)v,

for some unit vectors u and v. Let Γ =
{
z : |z| = 1 + (k + 1)−1

}
, for some k ∈ N. Then,

sup
z∈Γ
|r(z)| ≤ (k + 1)K(A)

Proof.

K(A) = sup
|z|> 1

(|z| − 1)||(zI − A)−1|| = sup
|z|> 1

(|z| − 1)||R(z)||

= sup
|z|> 1

(|z| − 1)|r(z)| ≥ sup
z∈Γ

(|z| − 1)|r(z)| = sup
z∈Γ

(k + 1)−1|r(z)|

The result follows by multiplying both sides by (k + 1).

Lemma 3.23. The sequence, {
(
1 + 1

n

)n}∞n= 1, who’s limit is defined as the irrational number e, is

monotonically increasing.

Proof. Let f be defined f(x) = xn+ 1. Then f is continuous and differentiable, and the derivative
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of f is f ′(x) = (n + 1)xn. Given numbers a and b with 0 ≤ a < b, by the mean value theorem

there exists a value c ∈ (a, b), such that,

bn+ 1 − an+ 1 = (n + 1)cn(b − a) < (n + 1)bn(b − a) = (n + 1)bn+ 1 − (n + 1)bna

− an+ 1 < nbn+ 1 − (n + 1)bna = bn(nb − (n + 1)a)

an+ 1 > bn((n + 1)a − nb) (3.14)

This is true for all 0 ≤ a < b, so in particular, it is true for a = 1 + 1
n+ 1 , and b = 1 + 1

n , for

each n = 1, 2, . . . . Substituting these values into inequality (3.14), we get,

(
1 +

1

n + 1

)n+ 1

>

(
1 +

1

n

)n(
(n + 1)

(
1 +

1

n + 1

)
− n

(
1 +

1

n

))
=

(
1 +

1

n

)n
(n + 1 + 1 − n − 1) =

(
1 +

1

n

)n

Theorem 3.24. Given a matrix A ∈MN with spectral radius ρ(A) < 1,

sup
k> 0
||Ak|| ≤ eNK(A)

Proof. Let Γ = {z : |z| = d}, where d = 1 + (k + 1)−1. Define the rational function

r(z) = u∗R(z)v, where u and v are unit vectors in CN , and R(z) is the resolvent of A. By

Theorem 2.16,

u∗Akv = u∗
(

1

2πi

∫
Γ
zkR(z) dz

)
v =

1

2πi

∫
Γ
zku∗R(z)v dz =

1

2πi

∫
Γ
zkr(z) dz

If we parameterize Γ with the function z(t) = deit, for 0 ≤ t ≤ 2π, then the last integral becomes,

1

2πi

∫ 2π

0

(
deit
)k
r(deit)ideit dt =

1

2πi

∫ 2π

0
idk+1eit(k+ 1)r(deit) dt
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Using integration by parts we obtain the following,

1

2πi

[
dk+1

i(k + 1)
eit(k+ 1)r(deit)

∣∣∣∣2π
0

]
− 1

2πi

∫ 2π

0

dk+1

i(k + 1)
eit(k+ 1)r′(deit)ideit dt

= 0 +
1

2π(k + 1)

∫ 2π

0

(
deit
)k+1

r′(deit)ideit dt

This is then equal to the contour integral,

1

2π(k + 1)

∫
Γ
zk+1r′(z) dz

Thus,

u∗Akv =
1

2π(k + 1)

∫
Γ
zk+1r′(z) dz

Then,

∣∣∣u∗Akv
∣∣∣ ≤ 1

2π(k + 1)

∫
Γ
|z|k+1|r′(z)||dz|

Observe that |z| = d = 1 + (k + 1)−1, and thus |z|k+1 is one term in the sequence {
(
1 + 1

n

)n}∞n= 1

who’s limit defines the irrational number e. By Lemma 3.23, this sequence is increasing, and thus,

|z|k+1 < e. Continuing from above, we may replace |z|k+1 by e.

∣∣∣u∗Akv
∣∣∣ ≤ 1

2π(k + 1)

∫
Γ

e|r′(z)||dz| =
e

2π(k + 1)

∫
Γ
|r′(z)||dz|

By Spijker’s Lemma (Lemma 3.21), we have,

∫
Γ
|r′(z)||dz| ≤ 2πN sup

Γ
|r(z)|

Then,

∣∣∣u∗Akv
∣∣∣ ≤ e

2π(k + 1)
2πN sup

Γ
|r(z)| =

eN

(k + 1)
sup

Γ
|r(z)|
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By Lemma 3.22, sup
z∈Γ
|r(z)| ≤ (k + 1)K(A). Thus,

∣∣∣u∗Akv
∣∣∣ ≤ eN

(k + 1)
(k + 1)K(A) = eNK(A)

Since the above is true for all k ≥ 0, and since ||Ak||2 = |u∗Akv| (by Lemma 1.16), the theorem

is proved.

Chapter 4. Examples

In this chapter we investigate a few examples of where matrix powers and their norms are used in

mathematics. First, we revisit the question asked on the first page of this thesis regarding the four

different graphs and four different matrices (Figure 1). The figure is reprinted here for convenience.

After that, we will look at an example of the Gauss-Seidel method, which is used in numerical

linear algebra. Another example will investigate nonnormality in Markov processes, and the last

example will look at a random upper-triangular matrix with a particular structure.

4.1 Revisiting Figure 1

We are now ready to revisit the question asked on the first page regarding the matrices in Figure 1.

Matrix V has 2 as an eigenvalue, implying that the spectral radius is greater than one. Thus, by

Theorem 3.1, The norm of powers of V will diverge to infinity. Graph number 1 is the only graph

where this happens. Now observe that the matrix Y is symmetric, and therefore normal. Also, it is

diagonal, and so the spectral radius is equal to the largest magnitude of the diagonal entries. Since

this is
(

80
81

)
, Lemma 1.12 tells us that the graph of the norm of powers of Y will be equal to the

graph of
(

80
81

)k
; it will start at one, when k = 0, and then decrease exponentially as k increases.

The only graph with these characteristics is graph number 4.

Now for the more subtle examples. Matrices X = (xmn) and W = (wmn) are nonnormal due

to their upper-triangular forms; therefore, we might expect the graphs of the norms of their powers

to have transient effects. Notice that graphs 2 and 3 look the same, but they are on very different

scales: graph 2 peaks at around 50, while graph 3 peaks at a value well over 140,000. Let’s take a
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Figure 4.1: Figure 1 Revisited!

1. 2.

3. 4.

V=


0 2 0 0
2 0 0 0
0 0 0 0
0 0 0 2

 W=


20
21 0 2 2
0 40

41 0 2
0 0 60

61 0
0 0 0 80

81



X=


20
21 2 0 0
0 40

41 2 0
0 0 60

61 2
0 0 0 80

81

 Y =


20
21 0 0 0
0 40

41 0 0
0 0 60

61 0
0 0 0 80

81



look at bounds from Theorem 3.8.

||Wk||2 ≥ |w(k)
2,4 |

= w24

∑
|∆2|= k−1

(
40

41

)δ1 (80

81

)δ2
+ w23w34

∑
|∆4|= k−3

(
40

41

)δ1 (60

61

)δ3 (80

81

)δ3

The equality follows from Theorem 2.4, and since the entries of W are all nonnegative. Observe

that since w23 = 0, and since the eigenvalues are distinct, by Theorem 2.10 (with C = k − j) we
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have that this is equal to:

2

((
40
41

)k − (80
81

)k
40
41 −

80
81

)
+ 0

This last expression can be graphed on a calculator to find that the bound reaches 40.59 at k = 56.

This tells us that the graph of ||Wk||2 is at least this high for the same value of k. Now let’s look

at the same bound for the matrix X, but this time based on the 1, 4 entry of Xk. Again, we take

advantage of the fact that the eigenvalues are distinct to use Theorem 2.10.

||Xk||2 ≥ |x(k)
1,4|

= x14

∑
|∆2|= k−1

(
20

21

)δ1 (80

81

)δ2
+ x12x24

∑
|∆3|= k−2

(
20

21

)δ1 (40

41

)δ2 (80

81

)δ3

+ x23x34

∑
|∆3|= k−2

(
40

41

)δ1 (60

61

)δ2 (80

81

)δ3
+ x12x23x34

∑
|∆4|= k−3

(
20

21

)δ1 (40

41

)δ2 (60

61

)δ3 (80

81

)δ4

= 0 + 0 + 0 + x12x23x34

∑
|∆4|= k−3

(
20

21

)δ1 (40

41

)δ2 (60

61

)δ3 (80

81

)δ4

= 8

( (
20
21

)k(
20
21 −

40
41

) (
20
21 −

60
61

) (
20
21 −

80
81

) +

(
40
41

)k(
40
41 −

20
21

) (
40
41 −

60
61

) (
40
41 −

80
81

)
+

(
60
61

)k(
60
61 −

20
21

) (
60
61 −

40
41

) (
60
61 −

80
81

) +

(
80
81

)k(
80
81 −

20
21

) (
80
81 −

40
41

) (
80
81 −

60
61

))

This latter expression has a maximum value of about 147, 167 at k = 141. we could have obtained

an even simpler bound by noting that,

x12x23x34

∑
|∆4|= k−3

(
20

21

)δ1 (40

41

)δ2 (60

61

)δ3 (80

81

)δ4
>

∑
|∆4|= k−3

(
20

21

)δ1+δ2+δ3+δ4

=

(
k

3

)(
20

21

)k−3

=
k(k − 1)(k − 2)

6

(
20

21

)k−3

The maximum of this bound is about 17, 007, and it occurs at k = 62. Either of these bounds

gives us enough information to exclude graph 2 as a choice for the graph of the norm of powers of

the matrix X. By the process of elimination, we conclude that graph 2 pertains to matrix W, and

graph 3 pertains to matrix X.
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What about other bounds? For W, the Kreiss lower and upper bounds are 34.71 and 377.45,

respectively. Thus, the lower bound from Theorem 3.8 with the entry w2,4 beats the Kreiss lower

bound! The maximum of the upper bound from Theorem 3.12 is:

||Wk||2 ≤
N−1∑
l= 0

√√√√ l∑
j= 0

(
l

j

)(
k

j

)
2j
(

80

81

)k−j

which is equal to 982, 330 for k = 241. For X, the Kreiss lower and upper bounds are 72, 210 and

785, 148, respectively. Again, teh bound from Theorem 3.8 with entry x1,4 is substantially better

than the Kreiss lower bound. The upper bound based on Theorem 3.12 is exactly the same as

for the previous matrix—982, 330; this is due to the fact that the bound is obtained essentially by

taking the norm after replacing all of the eigenvalues by the spectral radius, and all of the entries

above the diagonal by the largest magnitude of the entries. Thus, this particular upper bound

works much better for the matrix X, than for the matrix W.

Figure 4.2: Graph of ||Wk||2

How do the bounds compare to actual values for the norm? The actual norm ||Wk||2 peaks at

a value of 49.98 when k = 47. In contrast, The actual norm ||Xk||2 peaks at a value of 147, 211.41

when k = 141. This means that, among the bounds we have considered, the bounds obtained from
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Figure 4.3: Graphs of ||Xk||2

Theorem 3.8 are the closest to the actual norms for all values of k. A surprising amount of detail

in the norm is captured by observing the upper-right corner entries of Wk and Xk! In fact, in the

latter case the lower bound appears to be equal to the norm, but upon zooming in we see that it

is actually lower. Figures 4.2 and 4.3 show the graphs of the norm of powers for the matrices W

and X with some of their bounds.

4.2 The Gauss-Seidel Method

The Gauss-Seidel method is an iterative method used in numerical linear algebra to solve matrix

equations of the form Ax = b, where A is an N×N matrix and b is an N×1 vector. Typically, it is

most useful when N is large and A is sparse; in these cases, the Gauss-Seidel method tends to work

better than Gaussian elimination techniques. The method proceeds by decomposing A into a sum

of its diagonal, strictly upper-triangular, and strictly lower-triangular parts: A = D + U + L. If

ρ((D + L)−1U) < 1, then, given an initial vector x0, it has been shown that the recursive relation,

xk+1 = (D + L)−1(b − Uxk) for k = 0, 1, 2, . . .

yields a sequence of vectors {xk}∞k=0, which converges to the actual solution x of Ax = b. For

background theory on why this is the case, consult Demmel [1, p. 282–294]. The error at the kth

step of iteration, ||xk − x||2, is bounded by the product of ||
(
(D + L)−1U

)k ||2 and the initial
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error, ||x0 − x||2; that is,

||xk − x||2 ≤ ||
(
(D + L)−1U

)k ||2||x0 − x||2

In cases where (D + L)−1U is nonnormal, larger errors may result while k iterates through a

transient phase, after which the error tends to zero as k tends to ∞.

The Gauss-Seidel method is often used in solving boundary value problems, such as those

involving the famous Poisson equation:

 −uxx = f, for x ∈ [0, 1]

u(0) = 0, u(1) = 0

One popular approach to solving this problem is to discretize the domain into N + 2 equally spaced

points (including the endpoints). Given a spacing of h, a function v evaluated at the nth point

can be represented with the condensed notation vn for n = 0, 1, 2, . . . , N + 1. The finite difference

scheme:  −
vn−1− 2vn + vn+1

h2
= f, for n = 1, 2, . . . , N

v0 = 0, vN+1 = 0

is in terms of the discrete function v, which—as soon as it can be solved for—will give an approxi-

mation of the actual solution u of the boundary value problem. Observe that the first line of the

finite difference scheme gives N equations. The matrix form of these equations is:



−2 1

1 −2 1

. . .
. . .

. . .

1 −2 1

1 −2





v1

v2

...

...

vN


= −h2



f1

f2

...

...

fN


which we may write more compactly as Av = b. Notice that we have taken advantage of the fact
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that v0 = 0 = vN+1 in writing the matrix form. Decomposing A as indicated above gives,

D + L =



−2

1 −2

. . .
. . .

1 −2

1 −2


and U =



0 1

0 1

. . .
. . .

0 1

0


One can verify that,

−(D + L)−1U =



0 2−1

0 2−2 2−1

...
...

. . .
. . .

0 2−(N−1) · · · 2−2 2−1

0 2−N · · · · · · 2−2


When N is even, the eigenvalues of this matrix are 0 and cos2( jπ

N+1) for j = 1, 2, . . . , N2 . Thus, the

spectral radius is less than one, and so the norm ||
(
D + L)−1U

)k ||2 will tend to 0 as k →∞.

Let’s look at a specific example. Suppose now that N = 40, and further suppose that we are

able to choose an initial vector v0 such that the initial error is bounded by 20. We may wish to

know what error in our answer is possible while using the Gauss-Seidel method, given three-hundred

steps of iteration. Determining that the spectral radius is 0.994, then by Lemma 3.1 we have that

0.994k ≤ ||
(
D + L)−1U

)k ||2
Thus, at k = 300 the bound for the error is at least 0.994300 · 20 ≈ 3.288. As it turns out, the

difference, ||
(
D + L)−1U

)k ||2 − 0.994k, never exceeds 0.0028 as k → ∞, making 0.994k a good

choice for estimating the norm. While the matrix (D + L)−1U is nonnormal, it is “close” to normal

in the sense that the norm of its power is close to the power of its spectral radius. The Kreiss lower

and upper bounds on sup
k≥0
||
(
D + L)−1U

)k ||2 are 1 and 108.73, respectively. The upper bound

for ||
(
D + L)−1U

)k ||2 based on Theorem 3.12 is approximately 1.666 × 1039. Thus, the other

bounds are not as useful in this example. Trefethen and Embree [7, p. 236] speculate that had the
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matrix (D + L)−1U in the Poisson example exhibited stronger nonnormal characteristics, research

on transient phases in norms of matrix powers may have begun as early as the 1950s.

4.3 Markov Chains

Markov Chains have been used extensively in probability theory to model mathematical systems

which change over time; more specifically, systems which undergo a finite number of states, and the

state at any one time can be predicted based on the state of the previous period. The transition

matrix P = (pmn) of a Markov chain is a square matrix in which the element pmn represents the

probability that a system in state m at a specific time, will switch to a system in state n in the next

period. A state vector x for an observation of a Markov process is a row vector in which the nth

component is the probability that the system is in the nth state at the time of observation. Given

an initial state vector x(0), the state vector after k periods is given by,

xk = x0Pk

For example, imagine a line with one-hundred equally spaced nodes (counted left to right),

onto which a particle is dropped. Given that it has landed on the 100th node, suppose that the

probability is 1 that the particle stays put in the next period. Given that the particle has landed on

the 99th node, suppose that the probabilities that the particle stays put, or moves one node to the

right, are 1
4 and 3

4 , respectively. Finally, given that the particle has landed on some node between

the 1st and the 98th, suppose that the probabilities that the particle stays put, moves one node to

the right, or moves two nodes to the right, are 1
4 , 1

4 , and 1
2 , respectively. The transition matrix for

such a system is given by:

P =



1
4

1
4

1
2

. . .
. . .

. . .

1
4

1
4

1
2

1
4

3
4

1


As it is only possible for the particle to stay put or move to the right, we may expect that given any
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Figure 4.4: Nonnormality in Analysis of a Markov Chain

initial state vector, the limit of the Markov process will be a state vector in which all the entries

are zero, except the last entry which is one:

lim
k→∞

xk = [0, 0, . . . , 0, 1]

Taking the limit of powers of the transition matrix, lim
k→∞

Pk, yields a matrix which we will call P∞.

The matrix P∞ has a last column of all ones and all other entries equal to zero. This represents the

reasonable expectation that if the experiment is run for many periods, the particle will be found

at the 100th node.

Now consider the idea of dropping many particles on the line. Given the previous conditions

we can expect the particles to all converge to the right-most node over repeated observations. An

interesting question lies in how quickly we can expect this to occur. One way to measure this idea is

by taking the norm ||Pk − P∞||∞ as k tends to∞. Figure 4.4 shows the graph of this norm, along

with that of the spectral radius, and a lower bound based on Theorem 3.8 using the entry from the

1th row and 100th column of the Schur form T of Pk − P∞. This bound hits a maximum of 1 at

k = 5 and stays within 1
2 of the actual norm from that point on. Perhaps even more importantly,

the bound gets closer to the actual value of the norm as k increases. While the spectral radius is a
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lower bound, it is not as useful because it goes so quickly to zero, without exhibiting the nonnormal

behavior inherent in the graph of the norm.

As in the Gauss-Seidel example, the other bounds are less useful here as well. The Kreiss lower

and upper bounds which we derived earlier apply to the spectral norm, and so we will not use them

here. The bound based on Theorem 3.14 reaches 1.73× 1035 at k = 75.

How can we interpret the graph? If we run our experiment for seventy periods or less, there

are still likely to be many particles in transition to the right. As the number of periods increases

up past one-hundred, we can expect most of the particles to have already arrived at the right-most

node, with perhaps a few stragglers still in transition.

4.4 Random Matrices with ±1 in the First Two Superdiagonals

Random strictly upper-triangular matrices are nonnormal (with exception of the zero matrix), and

thus it is impossible to unitarily diagonalize them. When taking the norm of their powers, we may

run into significant transient effects before convergence; of course, we will still require that the

spectral radius be less than one in order to obtain any type of convergence at all. Here, we look

at a particular type of upper-triangular matrix in which the entries on the first two superdiagonals

come from the {±1} distribution, with the probability of either value appearing in an entry equal

to 1
2 . All of the other entries of the matrix will be set to 0.

A =



0 ±1 ±1

. . .
. . .

. . .

. . .
. . . ±1

. . . ±1

0


Trefethen and Embree refer to this type of matrix as a random Fibonacci matrix [7, p. 351].

Right away, we recognize that such matrices have only one eigenvalue, 0. By Theorem 1.2, we

may be certain that for powers k ≥ N , where N is the matrix dimension, we will have Ak = 0.

The more interesting results happen for powers k with 0 < k < N . Figure 4.5 shows the graph

of one such random matrix, where N = 100. The norm of powers of A grows exceptionally large
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Figure 4.5: A Random Matrix with ±1 in the first two Superdiagonals

for powers between 50 and 90. In fact, this norm peaks at about 1.65× 109, when k = 69. Notice

how jagged the graph is in contrast with the other examples; this is due to the sign changes, and

the equal magnitude of the superdiagonal entries. The Kreiss lower and upper bounds for this

graph are 6.92× 107 and 1.88× 1010, respectively. Only the Kreiss lower bound makes it into the

view of the graph as shown. The upper bound based on Theorem 3.12 reaches 1.16 × 1029, and

is also not shown in the figure. The lower bound based on Theorem 3.8 and the entry from the

upper right corner of Ak provides the best approximation to the actual norm of all of the bounds

considered—it peaks at about 0.95× 109 when k = 71; it is rather interesting that one entry from

Ak can account for so much of the transient effect in the graph of the norm.
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Chapter 5. Summary

We have discussed several ways of representing a matrix power Ak where A is a square complex

matrix and k is a nonnegative integer. If A is normal, the spectral decomposition (Theorem 1.4)

allows us to decompose A into a product UDkU∗, where U is a unitary matrix and D is a diagonal

matrix with the eigenvalues of A along its diagonal. If A is nonnormal, we can use the Schur

decomposition (Theorem 1.5), which allows us to express A as the product UTkU∗, where T is

an upper-triangular matrix with the eigenvalues of A along its diagonal, and U is again a unitary

matrix.

A more in-depth investigation into the powers of the Schur form T of the matrix A, leads to an

expression of the mnth entry t
(k)
mn of the matrix Tk in terms of the entries of T (Theorem 2.4). In

cases where the eigenvalues were either all equal or all distinct, we were able to substitute for part of

the expression of t
(k)
mn, to get an expression in which the number of terms in the summation did not

depend on k; these substitutions were based on Lemma 2.7 and Lemma 2.10, respectively. When

possible in application, one should take advantage of these lemmas, rather than using the general

expression in Theorem 2.4; these latter forms are easier to code and much faster to compute.

Theorem 2.4 allowed us to give a new proof that lim
k→∞

Ak = 0 if and only if ρ(A) < 1 (Lemma

3.3). We also used the expression of t
(k)
mn from Theorem 2.4 to produce new lower (Theorem 3.8)

and upper (Theorems 3.12, 3.13, and 3.14) bounds on norms of Ak. In the case of the 2× 2 matrix

we were able to get an exact formula for the spectral norm of Tk in terms of the entries of T

(Theorem 3.7).

Another representation of Ak came as an integral over a Jordan curve containing the ball

centered at the origin of radius ρ(A), and involving the resolvent of A (Theorem 2.16):

1
2πi

∫
Γ
zk(zI − A)−1 dz. We used this expression, along with Spijker’s Lemma (Lemma 3.21) to

state and prove the most current form of the Kreiss Matrix Theorem (Theorem 3.17).

Armed with bounds new and old, we analyzed the four examples first introduced in Figure 1.

We also looked at examples of where matrix norms are used in analysis of error in Gauss-Seidel

iterations, in estimation of convergence time in Markov processes, and in observing transient effects

of a random upper-triangular matrix. We saw that none of the bounds performs better than the

others in all cases. We found that at times one bound may perform particularly well for all values
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of k; while at other times this may be limited to a particular range of k, or in fact no bound may

seem to work very well.

There are doubtlessly still many unanswered questions regarding how norms of matrix powers

behave. We may have a high level of optimism that answers lie within reach, and they are certainly

needed to advance our mathematical understanding. Matrices and their norms are used ubiqui-

tously in fields of applied mathematics in building scientific models, and in measuring complex

phenomenon. Therefore, better understanding of the properties of matrix powers, is very likely to

lead to improved applications, which in turn will give us greater power to shape the world we live

in.
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