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abstract

Persistence and Foliation Theory for Random Dynamical System and Their Application to
Geometric Singular Perturbation

Ji Li
Department of Mathematics, BYU

Doctor of Philosophy

Persistence problem of compact invariant manifold under random perturbation is con-
sidered in this dissertation. Under uniformly small random perturbation and the condition
of normal hyperbolicity, the original invariant manifold persists and becomes a random in-
variant manifold. The random counterpart has random local stable and unstable manifolds.
They could be invariantly foliated thanks to the normal hyperbolicity.

Those underlie an extension of the geometric singular perturbation theory to the random
case which means the slow manifold persists and becomes a random manifold so that the
local global structure near the slow manifold persists under singular perturbation. A normal
form for a random differential equation is obtained and this helps to prove a random version
of the exchange lemma.
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Chapter 1. Introduction

To study the long term behavior of states is one of the main goal in dynamical system. It

reflects the idea of understanding and prediction of a real evolving physical system. This

study is mainly carried out by learning the invariant set or manifold of the dynamical system.

Two natural questions arise when studying invariant manifolds. The first one is the problem

of persistence. In the original modeling process, approximation or even conjecture are used

to obtain an ideal dynamical system. However, the real system is always a perturbation

of the ideal system. So the persistence problem under perturbation is well worth studying.

The other question is what happens in the vicinity. Do points nearby converge to or diverge

from the invariant manifold? Do some of them evolve at the same speed while others not?

Could they be classified? All these questions concern the study of invariant foliation.

In this work, we initiate the study of the persistence problem of deterministic invariant

manifolds under random perturbation. It is well known that the sufficient and necessary

condition of persistence of deterministic invariant manifold under deterministic perturbation

is the so called normal hyperbolicity, the definition of which is in the next chapter. We prove

under random perturbation and the condition of normal hyperbolicity, that the invariant

manifold persists and becomes a random invariant manifold, the definition of which is also

given in the next chapter. We also prove there exists an invariant foliation for the random

invariant manifold.

The following summarizes our main results:

Theorem. Assume that ψ(t) is a Cr flow, r ≥ 1, and has a compact, connected Cr normally

hyperbolic invariant manifoldM⊂ Rn. Then there exists ρ > 0 such that for any C1 random

flow φ(t, ω) in Rn if

||φ(t, ω)− ψ(t)||C1 < ρ, for t ∈ [0, 1], ω ∈ Ω,

3



then

(i) Persistence: φ(t, ω) has a C1 normally hyperbolic random invariant manifold M̃(ω).

(ii) Smoothness: If φ(t, ω) is Cr and the normal hyperbolicity is sufficiently strong (see

Theorem 3.1) then M̃(ω) is a Cr manifold diffeomorphic to M for each ω ∈ Ω.

(iii) Existence of Stable Manifolds: φ(t, ω) has a stable manifold W̃s(ω) at M̃(ω).

(iv) Existence of Unstable Manifolds: φ(t, ω) has an unstable manifold W̃u(ω) at M̃(ω).

(v) Foliation: The stable and unstable manifolds can be invariantly foliated based on the

random manifold M̃.

The above results are extensions of the classical deterministic results of Fenichel [F1],

[F2] and [F3]. The precise statements will be in chapter 3.

One of the most important application of persistence of invariant manifold under random

perturbation and the theory of invariant foliation is to reduce a random singular perturbation

system to a lower dimensional relatively simpler system. We devote the last chapter of this

dissertation to the study of singular perturbation systems with real noise, using our random

persistence and foliation theory. We extend the classical deterministic geometric singular

perturbation theory [F4] to the random case. We also prove a random version of the exchange

lemma which describes the smooth configuration of an invariant manifold. The statement of

our extension results is too long and too hard to show here in concisely. See the last chapter.

Invariant manifolds provide large scale structures that serve to organize the global phase

space of a dynamical system. The classical theory of invariant manifold and invariant fo-

liation for deterministic system has a long and rich history. The most general theory of

compact normally hyperbolic invariant manifolds for finite dimensional dynamical systems

was independently proved by Hirsch, Pugh and Shub [HPS1], [HPS2] and Fenichel [F1], [F2]

and [F3]. The most general results for infinite dimensional systems are proved in [BLZ1],
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[BLZ2] and [BLZ3] by Bates, Lu and Zeng. For a more comprehensive introduction for in-

variant manifold and invariant foliation theory of deterministic dynamical system, we refer

the reader to these works.

Random dynamical systems take into account stochastic effects such as stochastic forcing,

uncertain parameters, random sources or inputs, and random boundary conditions. They

arise in the modeling of many phenomena in physics, biology, climatology, economics, etc.

They are more capable of interpreting experimental data. Stochastic partial or ordinary dif-

ferential equations are appropriate models for randomly influenced evolving systems. They

both generate random dynamical systems. There are many local results for local random

stable, unstable, and center manifolds of stationary solutions. For finite dimensional ran-

dom dynamical systems, we refer to [C, BK, Bx, D, LQ, S, Wan, A, LiL]. The results on

local invariant manifolds for infinite dimensional random dynamical systems can be found in

[Ru, CLR, DSL1, DSL2, MS, MZZ, LS, GLS, CDLS, WD]. Random inertial manifolds were

obtained in [BF, GC, DD]. Included in the previously cited work are discrete time dynam-

ics with products of diffeomorphisms, in Euclidean space, on Riemannian manifolds, or in

infinite-dimensional spaces, where applications to PDEs are considered. Various approaches

have been used, the Lyapunov-Perron method in particular.

In [Wan], Wanner established the existence of invariant foliations for finite dimensional

random dynamical systems in a neighborhood of a stationary solution and used the foliations

to prove a Hartman-Grobman theorem for finite dimensional RDSs. Li and Lu [LiL] proved a

stable and unstable foliation theorem and used it to establish a smooth linearization theorem

(Sternberg type of theorem) for finite dimensional random dynamical systems. Pesin’s result

was established by Liu and Qian [LQ] for finite dimensional RDS and by Lian and Lu for

infinite dimensional RDS. The local theory of invariant foliations for stochastic PDEs was

obtained by Lu and Schmalfuss [LS].

The random persistence and foliation theory we present here are global results. The

biggest difficulty about the random case is the measurability. Although measurability of
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random manifold could be described by measurable selection, it is not at all clear how to de-

scribe the measurability of the tangent bundle, without which no local charts on the random

manifold make sense, neither does any kind of coordinate transform. Another difficulty is the

local charts on random manifold. They change as ω changes which belongs to a non-compact

set Ω. At present we do not have results along the lines of this paper for infinite-dimensional

random semiflows, as one encounters with stochastic parabolic PDEs.

Persistence and invariant foliation results underlie geometric singular perturbation the-

ory, which provides a powerful technique for analyzing systems involving multiple time scales

which arise in applications such as neural networks and semi-conductors. Geometric singular

perturbation theory gives a rigorous and well-defined way to reduce systems with small pa-

rameters to lower dimensional systems that are more easily analyzed. The theory was proved

by Fenichel in [F4] in 1979. The proof is based on [F1, F2, F3]. It is a wonderful applica-

tion of the deterministic persistence and invariant foliation theory. The geometric singular

perturbation theory is largely used(more than 200 citations). Applications to problems from

science and engineering have flourished, especially to the problem of signal transmission in

nerve systems. Jones [Jo] provided a clear discussion about [F4] and made the geometric

singular perturbation theory well understood to people.

In his lecture notes, Jones [Jo] included proofs of the geometric singular perturbation

theory and application to a normal form. He also gave an important extension of the λ-

lemma to the case where slow center directions are involved, which is known as the exchange

lemma. See also [JK]. The exchange lemma is used in applications such as the study of nerve

impulses and their propagation. These, mathematically, are called traveling pulses, which in

moving coordinates are homoclinic solutions emanating from equilibria. Such solutions for

the singular system and their persistence are of natural importance. One has to track the

change of the smooth configuration of an invariant manifold as it passes a neighborhood of

the slow manifold. The Exchange Lemma is a powerful tool designed for such investigations.

Many other papers address the same topic and make it more general. Jones and his
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coworkers [JKK] dealed with the case of multiple center directions and provide higher order

and exponential estimates. Brunovsky [Brun1, Brun2] provided elementary proof of Jones’

results, which also gives more insight to this problem. Liu [Liu1, Liu2] discussed the case

of turning points which made this method applicable to the non-normally hyperbolic case.

Schecter [S3, S2, S3] proved a general exchange lemma which contains all the above cases

and a new case. He applied the general exchange lemma to study self-similar solutions of the

Dafermos regularization. Our extensions deal with the random case by applying Brunovsky’s

method.

We hope our extensions of geometric singular perturbation theory and exchange lemma

will lay the groundwork for applications and provide tools for studying random and stochastic

systems.

Non-Technical Overview

Step 1. The basic idea for the existence of a normally hyperbolic random invariant man-

ifold is due to Hadamard [H] and involves a graph transform to first construct a center-

unstable manifold. One takes a Lipschitz graph over the unstable bundle at the deterministic

normally-hyperbolic invariant manifold for ψ(t) and maps it forward under φ(t, ω) for large

but fixed t for each ω ∈ Ω. Because each φ(t, ω) is C1-close to ψ(t), and because the latter

stretches the graph in the unstable direction while compressing in the normal direction, the

image (for each ω) is again a Lipschitz graph. Furthermore, this mapping is a contraction

on the space of such graphs and the resulting fixed graph (for each ω) is the center-unstable

manifold. The center-stable manifold is obtained in the same way, by reversing time. The

desired manifold is then the intersection of these two (for each ω).

Step 2. In order to prove the smoothness of the random unstable manifold, we formally

differentiate the fixed point equation of the random unstable manifold to find out a functional

equation which must be satisfied by the derivative of the random unstable manifold. Next,

we prove the existence of a unique solution of that functional equation. Last, we prove the

unique solution is indeed the derivative. For the measurability part, measurable selection is
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used. The biggest hurdle is the measurability of the tangent space. A metric introduced by

Kato is used, which makes the discussion of measurability of the tangent space possible.

Step 3. The idea for the invariant foliation part is the same as the persistence part. The

biggest difference is that instead of having local charts on a deterministic manifold, local

charts on a random invariant manifold are introduced. Those charts should be related to

each other for different ω ∈ Ω. We define local charts on the deterministic manifold and

then ‘induce’ on the random manifold. This gives us well related local charts on the random

invariant manifold. This kind of technique is also used in proving the asymptotical property

of the invariant foliation.

Step 4. In order to prove the random geometric singular perturbation theory, the random

persistence and foliation theory are used. We use the linearization to approximate the

random singular system in a small neighborhood of the slow manifold. We then use a bump

function to perturb the linear system a little bit so that the new system possesses overflowing

and inflowing center-unstable and center-stable manifold, while the normal hyperbolicity of

the slow manifold persists. Then the persistence and foliation theory can be used for the

perturbed linear system which identify with the original system in a smaller neighborhood

of the slow manifold. So all kinds of invariant manifolds and foliations of the original system

exist.

Step 5. With the random geometric singular perturbation theory, the random singular

system could be decoupled. The decoupled system could be analyzed quantitively to some

degree. We consider a boundary value problem and prove the existence and uniqueness of

the solution. The derivatives of the solution with respect to all arguments are also obtained.

We get exponential order of the solution alone with its derivatives. Those exponential orders

are exactly what we need to prove the random exchange lemma.

We organize this paper as follows: In chapter 2, we give the definition of some important

terms and that of random dynamical system. In chapter 3, we state our main theorem.

In chapter 4,we prove the existence of the random unstable manifold. In chapter 5, we
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prove all kinds of properties of the random unstable manifold and the persistence of normal

hyperbolicity. In chapter 6, we prove the existence of the invariant foliation, the smoothness,

measurability and the asymptotical property of the invariant foliation. In chapter 7, we

discuss corresponding results in cases of overflowing and inflowing invariant manifold. In

chapter 8, we prove a random version of the geometric singular perturbation theory and

apply the theory to extend the exchange lemma to a random version.

Chapter 2. Notations and Preliminaries

2.1 Random Dynamical Systems

In this section, we review some of the basic concepts related to random dynamical systems

in a Banach Space that are taken from Arnold [A]. Let (Ω,F , P ) be a probability space and

X be a Banach space. Let T = R or Z endowed with their Borel σ− algebra.

Definition 2.1.1. A family (θt)t∈T of mappings from Ω into itself is called a metric dynam-

ical system if

(1) (ω, t)→ θtω is F ⊗ B(T) measurable;

(2) θ0 = idΩ, the identity on Ω , θt+s = θt ◦ θs for all t, s ∈ T;

(3) θt preserves the probability measure P .

Definition 2.1.2. A map

φ : T× Ω×X → X, (t, ω, x) 7→ φ(t, ω, x),

is called a random dynamical system (or a cocycle) on the Banach space X over a metric

dynamical system (Ω,F , P, θt)t∈T if

(1) φ is B(T)⊗F ⊗ B(X)-measurable;
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(2) The mappings φ(t, ω) := φ(t, ω, ·) : X → X form a cocycle over θt:

φ(0, ω) = Id, for all ω ∈ Ω,

φ(t+ s, ω) = φ(t, θsω) ◦ φ(s, ω), for all t, s ∈ T, ω ∈ Ω.

An example is the solution operator for a random differential equation driven by a real

noise:

dx

dt
= f(θtω, x), (2.1.1)

where x ∈ Rd, f : Ω × Rd → Rd is a measurable function and fω(t, ·) ≡ f(θtω, ·) ∈

Lloc(R, C0,1
b ). (All through this paper, we suppose these conditions hold whenever there

is a random differential equation of the form (2.1.1).)

Here, (Ω,F , P ) is the classic Wiener space, i.e., Ω = {ω : ω(·) ∈ C(R,Rd), ω(0) = 0}

endowed with the open compact topology so that Ω is a Polish space and P is the Wiener

measure. Define a measurable dynamical system θt on the probability space (Ω,F , P ) by

the Wiener shift (θtω)(·) = ω(t+ ·)−ω(t) for t > 0. It is well-known that P is invariant and

ergodic under θt. This measurable dynamical system θt is also a metric dynamical system.

This models the noise in the system, see [A], page 60 for details.

2.2 Normally Hyperbolic Random Invariant Manifolds

We first recall that a multifunctionM = (M(ω))ω∈Ω of nonempty closed setsM(ω), ω ∈ Ω,

contained in a separable Banach space X is called a random set if

ω 7→ inf
y∈M(ω)

||x− y||

is a random variable for any x ∈ X. When each of the sets M(ω) is a manifold, we call M

a random manifold.

Definition 2.2.1. A random manifold M is called a random invariant manifold for a ran-

10



dom dynamical system φ(t, ω) if

φ(t, ω,M(ω)) =M(θtω) for all t ∈ R, ω ∈ Ω

Definition 2.2.2. A random manifold M̄(ω) = M(ω) ∪ ∂M(ω) is called a random over-

flowing invariant manifold for a random dynamical system φ(t, ω) if

φ(t, ω,M(ω)) ⊃ M̄(θtω) for all t > 0, ω ∈ Ω

Definition 2.2.3. A random manifold M̄(ω) =M(ω)∪∂M(ω) is called a random inflowing

invariant manifold for a random dynamical system φ(t, ω) if

φ(t, ω,M(ω)) ⊃ M̄(θtω) for all t < 0, ω ∈ Ω

Definition 2.2.4. A random invariant manifold M is said to be normally hyperbolic if for

almost every ω ∈ Ω and x ∈M(ω), there exists a splitting which is C0 in x and measurable

in ω:

X = Eu(ω, x)⊕ Ec(ω, x)⊕ Es(ω, x)

of closed subspaces with associated projections Πu(ω, x), Πc(ω, x), and Πs(ω, x) such that

(i) The splitting is invariant:

Dxφ(t, ω)(x)Ei(ω, x) = Ei(θtω, φ(t, ω)(x)), for i = u, c,

and

Dxφ(t, ω)(x)Es(ω, x) ⊂ Es(θtω, φ(t, ω)(x)).

(ii) Dxφ(t, ω)(x)
∣∣
Ei(ω,x)

: Ei(ω, x) → Ei(θtω, φ(t, ω)(x)) is an isomorphism for i = u, c.

Ec(ω, x) is the tangent space of M(ω) at x.
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(iii) There are (θ, φ)-invariant random variables ᾱ, β̄ :M→ (0,∞), ᾱ < β̄, and a tempered

random variable K :M→ [1,∞) such that

||Dxφ(t, ω)(x)Πs(ω, x)|| ≤ K(ω, x)e−β̄ω,x)t for t ≥ 0, (2.2.1)

||Dxφ(t, ω)(x)Πu(ω, x)|| ≤ K(ω, x)eβ̄(ω,x)t for t ≤ 0, (2.2.2)

||Dxφ(t, ω)(x)Πc(ω, x)|| ≤ K(ω, x)eᾱ(ω,x)|t| for −∞ < t <∞. (2.2.3)

Remark 1. We will also call a random set(non-invariant) normally hyperbolic if (i), (ii)

and (iii) above hold on each orbit segment contained in the random set. Particularly, for a

random overflowing invariant manifold, if there’s only Ec and Es in the splitting, we call the

random overflowing invariant manifold normal (stably) hyperbolic. For a random inflowing

invariant manifold, if there’s only Ec and Eu in the splitting, we call the random inflowing

invariant manifold normal (unstably) hyperbolic.

Chapter 3. Main Results

We consider a deterministic flow ψ(t)(x) ≡ ψ(t, x) in Rn and its randomly perturbed (cocy-

cle) counterpart φ(t, ω)(x) ≡ φ(t, ω, x).

Let M be a compact connected Cr normally hyperbolic invariant manifold under the

deterministic Cr flow ψ(t) and let TRn|M = TM⊕ Es ⊕ Eu be the associated splitting.

We will sometimes use the notation Ec to denote the bundle TM and we will sometimes use

Ei to deonote the subspace Ei
m (i = c, s, u) at a point m ∈ M when the context makes the

meaning obvious. Our main results are:

Theorem 3.0.1. Assume that ψ(t) is a Cr flow, r ≥ 1, and has a compact, connected

Cr normally hyperbolic invariant manifold M ⊂ Rn. Let the positive exponents related

to the normal hyperbolicity be α < β in (2.1)-(2.3), which in this case are constant and
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deterministic. Then there exists ρ > 0 such that for any random C1 flow φ(t, ω) in Rn if

||φ(t, ω)− ψ(t)||C1 < ρ, for t ∈ [0, 1], ω ∈ Ω,

then

(i) Persistence: φ(t, ω) has a C1 normally hyperbolic random invariant manifold M̃(ω),

(ii) Smoothness: If α < rβ and φ(t, ω) is Cr, then M̃(ω) is a Cr manifold diffeomorphic

to M for each ω ∈ Ω,

(iii) Existence of Stable Manifolds: φ(t, ω) has a stable manifold W̃s(ω) at M̃(ω),

(iv) Existence of Unstable Manifolds: φ(t, ω) has an unstable manifold W̃u(ω) at M̃(ω).

Theorem 3.0.2. Under the condition and result of theorem 3.0.1, there exists a unique Cr−1

family of Cr submanifolds
{
W̃uu(ω, x) : ω ∈ Ω, x ∈ M̃(ω)

}
of W̃u(ω) satisfying:

(1) For each (ω, x) ∈ Ω × M̃,M̃(ω) ∩ W̃uu(ω, x) = {x}, TxW̃ uu(ω, x) = Ẽu(ω, x) and

W̃ uu(ω, x) varies measurably with respect to (ω, x) in Ω× M̃.

(2) If x1, x2 ∈ M̃(ω), x1 6= x2, then W̃uu(ω, x1) ∩ W̃uu(ω, x2) = ∅ and W̃u(ω) =

∪x∈M̃(ω)W̃uu(ω, x).

(3) For x ∈ M̃(ω), φ(t, ω)
(
W̃uu(ω, x)

)
⊂ W̃uu(θtω, φ(t, ω)x) for −t big enough.

(4) For y ∈ W̃uu(ω, x) and x1 6= x ∈ M̃(ω) with |φ(t, ω)(x1)−φ(t, ω)(x)| → 0 as t→ −∞,

we have

|φ(t, ω)(y)− φ(t, ω)(x)|
|φ(t, ω)(y)− φ(t, ω)(x1)|

→ 0

exponentially as t→ −∞.

(5) For y1, y2 ∈ W̃uu(ω, x), |φ(t, ω)(y1)− φ(t, ω)(y2)| → 0 exponentially as t→ −∞.

(6) W̃uu(θtω, x) is C0 in t for each fixed (ω, x).
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Theorem 3.0.3. Under the condition and result of theorem 3.0.1, there exists a unique Cr−1

family of Cr submanifolds
{
W̃ss(ω, x) : ω ∈ Ω, x ∈ M̃(ω)

}
of W̃s(ω) satisfying:

(1) For each (ω, x) ∈ Ω × M̃,M̃(ω) ∩ W̃ss(ω, x) = {x}, TxW̃ ss(ω, x) = Ẽs(ω, x) and

W̃ ss(ω, x) varies measurably with respect to (ω, x) in Ω× M̃.

(2) If x1, x2 ∈ M̃(ω), x1 6= x2, then W̃ss(ω, x1) ∩ W̃ss(ω, x2) = ∅ and

W̃s(ω) = ∪x∈M̃(ω)W̃
ss(ω, x).

(3) For x ∈ M̃(ω), φ(t, ω)
(
W̃ss(ω, x)

)
⊂ W̃ss(θtω, φ(t, ω)x) for t big enough.

(4) For y ∈ W̃ss(ω, x) and x1 6= x ∈ M̃(ω) with |φ(t, ω)(x1)− φ(t, ω)(x)| → 0 as t → ∞,

we have

|φ(t, ω)(y)− φ(t, ω)(x)|
|φ(t, ω)(y)− φ(t, ω)(x1)|

→ 0

exponentially as t→ +∞.

(5) For y1, y2 ∈ W̃ss(ω, x), |φ(t, ω)(y1)− φ(t, ω)(y2)| → 0 exponentially as t→ +∞.

(6) W̃ss(θtω, x) is C0 in t for each fixed (ω, x).

We use the notation B(0, r) to refer to the ball centered at 0 of radius r where the space

is clear from the context. We will also use the notation L|E to mean the restriction of the

linear operator L to the subspace E. We do not place E as a subscript since often it has sub

and superscripts.

Chapter 4. Existence of the Random Unstable Manifold

4.1 Basic Lemmas

We first recall some facts for deterministic systems taken from [F1]. Then we deduce the

corresponding properties for random systems.

14



The first two propositions concern the hyperbolicity of the invariant manifold M.

Proposition 4.1.1. Normal hyperbolicity is independent of the metric.

Proposition 4.1.2. If M is normally hyperbolic under the flow ψ(t)

(1) There exist positive constants a < 1 and c1 such that

||Dψ(t)(ψ(−t)(m))|Es|| < c1a
t

for all m ∈M and t ≥ 0 and

||Dψ(t)(ψ(−t)(m))|Eu|| < c1a
−t

for all m ∈M and t ≤ 0.

(2) If α < rβ, there exist c2 > 0 and r′ > r such that

||Dψ(t)(ψ(−t)(m))|Es|| ||D(ψ(−t))(m)|Ec||r′ < c2

for all m ∈M and t ≥ 0, and

||Dψ(t)(ψ(−t)(m))|Eu|| ||D(ψ(−t))(m)|Ec||r′ < c2

for all m ∈M and t ≤ 0.

Let the dimensions of Es, Eu, andM be k, l, m, respectively, so that k+l+m = n, and let

Πs, Πu, Πc denote the projections corresponding to the splitting. The next two propositions

are on the smooth approximation of normal bundles and the tubular neighborhood of M,

see [W].

Proposition 4.1.3. There exist k and l-dimensional Cr subbundles Ẽs and Ẽu of TRn|M

which are arbitrarily close to Es and Eu, respectively, and such that TM⊕ Ẽi is invariant

under Dψ(t), i.e., TM⊕ Ẽi = TM⊕ Ei for i = s, u.
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We have TRn|M = Ẽs ⊕ Ẽu ⊕ TM and denote by Π̃s, Π̃u and Π̃c the projections

corresponding to the splitting. We sometimes use the notation Ẽ = Ẽs ⊕ Ẽu.

Proposition 4.1.4. There exists a Cr diffeomorphism γ from a neighborhood of the zero

section of Ẽ to a tubular neighborhood of M in Rn.

To construct the random unstable and stable manifolds, we first introduce the local

coordinate charts in Rn near M.

We use the normal bundle Ẽ to define local charts in Rn near M as in [F1]. By com-

pactness of M, we can take finitely many points p1, p2, · · · , ps of M with the following

properties: for each pj, there exists a coordinate neighborhood U j of pj in M; {U j} covers

M; in each U j, Ẽ has an orthonormal basis which changes in a Cr manner. Moreover, we

can shrink each U j a little to Ũ j such that Ũ j ⊂ U j and {Ũ j} still covers M. Suppose

{(σj, U j
5 (= U j))} is an atlas on M and σ(U j

5 ) = Dj5 ⊂ Rm is an open neighborhood of the

origin in Rm. We may take open subsets Dj1, D
j
2, D

j
3, D

j
4 of Dj5 such that Dji−1 ⊂ D

j
i for

i = 2, 3, 4, 5 and Ũ j ⊂ σ−1
j (Dj1). Taking U j

i = σ−1
j (Dji ), U

j
i are open neighborhoods of pj and

Ũ j ⊂ U j
i for all i = 1, 2, 3, 4, 5. So {U j

i }j covers M. In fact, we have

M = ∪jU j
1 ⊂ ∪jU

j
2 ⊂ · · · ⊂ ∪jU

j
5 =M.

Define for small ε > 0

Ẽε = Ẽs
ε ⊕ Ẽu

ε := {(m, νs, νu) ∈ Ẽ : ||νs|| < ε, ||νu|| < ε}.

It follows from Proposition 4.1.4 that there exists ε0 > 0 such that for 0 < ε < ε0, Ẽε is Cr

diffeomorphic to a neighborhood V ofM in Rn. In other words, Ẽε is a tubular neighborhood

of M. From now on, we view both ψ(t, x) and φ(t, ω, x) as flows on Ẽε as well as on V .

Choose a Cr orthonormal basis on Ẽ|U j
5 for each j. Thus, for m ∈ U j

5 and (m, νs) ∈ Ẽs
ε , ν

s

has coordinates (xs1, · · · , xsk) under the chosen orthonormal basis, and these depend smoothly
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on m. Define τ sj : Ẽs
ε |U

j
5 → Rk by

τ sj (m, νs) = xs = (xs1, · · · , xsk) ∈ Rk,

and define τuj similarly by

τuj (m, νu) = xu = (xu1 , · · · , xul ) ∈ Rl.

We have

||xs||Rk = ||νs||, ||xu||Rl = ||νu||.

These give us Cr diffeomorphisms γj from Ẽε|U j
5 to subsets of Rn = Rm ⊕ Rk ⊕ Rl, where

γj(m, ν
s, νu) = (xc, xs, xu) = (σj(m), τ sj (m, νs), τuj (m, νu)).

So {(Ẽε|U j
5 , γj)} gives us an atlas on Ẽε.

SinceM is compact, there exists L1 > 0 such that Dσj and Dσ−1
j are bounded by L1 for

all m and j.

Then for sufficiently large T > 0, we represent the random diffeomorphism φ(T, ω)(·) in

the local charts by

(xc, xs, xu)→ (f cij(ω, x
c, xs, xu), f sij(ω, x

c, xs, xu), fuij(ω, x
c, xs, xu)),

where

f lij(ω, x
c, xs, xu) = Pl ◦ γj ◦ φ(T, ω, ·) ◦ γ−1

i (xc, xs, xu)

for (xc, xs, xu) ∈ γi◦Ẽε|U i
4 ∩ ψ(−T, U j

4 ) and Pl(x
c, xs, xu) = xl for l = c, s, u. Note that given

i and (xc, xs, xu), fij(ω, x
c, xs, xu) is defined only for some j′s.

Denoting the differential operators D1 = Dxc , D2 = Dxs , D3 = Dxu , we have
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D2f
s
ij(ω, x

c, xs, xu)

= DPlDγjDφ(T, ω)D2γ
−1(xc, xs, xu)

= DPlDγj(Π̃
sDφ(T, ω)|Ẽs)D2γ

−1
i (xc, xs, xu).

Since M is compact, DPl, Dγj, D2γ
−1 along with their inverses are uniformly bounded by

a constant L2 > 0. Then

||D2f
s
ij(ω, x

c, xs, xu)|| ≤ L3
2||Π̃sDφ(T, ω)|Ẽs||.

Similarly, we get for k = 1, 2, 3 and l = c, s, u,

||(Dkf
l
ij(ω, x

c, xs, xu))±1|| ≤ L||Π̃lDφ(T, ω)|Ẽl||,

for some L > 0. We have the following lemma:

Lemma 4.1.1. There exists a T > 0 such that for any η > 0, if ε and ρ are small enough,

then

||(D3f
u
ij(ω, x

c, xs, xu))−1|| < 1

4
(4.1.1)

||D2f
s
ij(ω, x

c, xs, xu)|| < 1

2
(4.1.2)

||(D1f
c
ij(ω, x

c, xs, xu))−1||k||D2f
s
ij(ω, x

c′, xs′, xu′)|| < 1

4
, (4.1.3)

for 0 ≤ k ≤ r, xc′ close to xc, and

||(D3f
c
ij(ω, x

c, xs, xu))−1|| < η. (4.1.4)

||f sij(ω, xc, xs, xu)|| < η, ||fuij(ω, xc, xs, xu)|| < η (4.1.5)
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||D1f
s
ij(ω, x

c, xs, xu)|| < η, ||D3f
s
ij(ω, x

c, xs, xu)|| < η (4.1.6)

||D1f
u
ij(ω, x

c, xs, xu)|| < η, ||D2f
u
ij(ω, x

c, xs, xu)|| < η. (4.1.7)

Moreover, the norm of all first partial derivatives of fij and their inverses are bounded by

some Q > 0.

Proof. By Proposition 4.1.2, there exists a T > 0 such that

Lr||Dψ(−T )(m)|Eu|| < 1

16

Lr||Dψ(T )(ψ(−T )(m))|Es|| < 1

8

Lr+1||Dψ(−T )(m)|TM||k||Dψ(T )(ψ(−T,m))|Es|| < 1

16
, 0 ≤ k ≤ r.

Since Ẽ and E are arbitrarily close, and ||φ(t, ω) − ψ(t)||C1 < ρ for all t ∈ [0, 1] and

ω ∈ Ω, if ρ is small enough, we have

Lr||Π̃uDφ(−T, ω)(m)|Ẽu|| < 1

8
(4.1.8)

Lr||Π̃sDφ(T, ω)(ψ(−T,m))|Ẽs|| < 1

4
(4.1.9)

Lr+1||Dφ(−T, ω)(m)|TM||k||Π̃sDφ(T, ω)(ψ(−T )(m))|Ẽs|| < 1

8
, 0 ≤ k ≤ r. (4.1.10)

Note that we identified V with E(ε) and viewed ψ(t) and φ(t, ω) as flows in the bundles. So

in terms of f lij,

||(D3f
u
ij(ω, x

c, 0, 0))−1|| < 1

8
(4.1.11)

||D2f
s
ij(ω, x

c, 0, 0)|| < 1

4
(4.1.12)

||(D1f
c
ij(ω, x

c, 0, 0))−1||k||D2f
s
ij(ω, x

c, 0, 0)|| < 1

8
, 0 ≤ k ≤ r. (4.1.13)
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We also have

||(D3f
c
ij(ω, x

c, 0, 0))−1|| < 1

2
η. (4.1.14)

Choosing ε and ρ small enough, we have

||(D3f
u
ij(ω, x

c, xs, xu))−1|| < 1

4

||D2f
s
ij(ω, x

c, xs, xu)|| < 1

2

||(D1f
c
ij(ω, x

c, xs, xu))−1||k||D2f
s
ij(ω, x

c′, xs′, xu′)|| < 1

4
,

for 0 ≤ k ≤ r, xc′ close to xc, and

||(D3f
c
ij(ω, x

c, xs, xu))−1|| < η.

By the invariance of M under ψ(T ), the invariance of Eu, Es, TM under Dψ(T ) and the

closeness of Ẽ and E, if ε and ρ are small enough, we have

||f sij(ω, xc, xs, xu)|| < η, ||fuij(ω, xc, xs, xu)|| < η

||D1f
s
ij(ω, x

c, xs, xu)|| < η, ||D3f
s
ij(ω, x

c, xs, xu)|| < η

||D1f
u
ij(ω, x

c, xs, xu)|| < η, ||D2f
u
ij(ω, x

c, xs, xu)|| < η.

This completes the proof of the lemma.

4.2 Existence of the Random Unstable Manifold

In this section, we will prove the existence of the random unstable manifold using the graph

transform. The random unstable manifold will be constructed as a section of Ẽε over Ẽu
ε .

We will define a transform on the space of all Lipschitz sections and prove the transform has

a fixed point which gives the random unstable manifold.
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Let X denote the space of sections of Ẽε over Ẽu
ε . For u(ω) ∈ X, it is locally represented

by ui(ω):

ui(ω, x
c, xu) = τ si ◦ P s ◦ u(ω) ◦ (σi × τui )−1(xc, xu)

where P s is the fiber projection. For ε > 0 fixed so that B̄ε(0) ⊂ Di5 for all j. Define

Lipu(ω) := max
i

sup
xc,xc′∈Di3,||xu||,||xu′||≤ε,(xc,xu)6=(xc′,xu′)

||ui(ω, xc, xu)− ui(ω, xc′, xu′)||
max{||xc − xc′||, ||xu − xu′||}

(4.2.1)

if it exists. Denote Xδ = {u(ω) ∈ X|Lipu(ω) ≤ δ}. Denote a random section by

u = {u(ω) ∈ X|ω ∈ Ω}

and denote by S the set of all such u = {u(ω) : ω ∈ Ω}. Define

Lip u := sup
ω

Lipu(ω),

and let

Sδ = {u ∈ S|Lipu ≤ δ}.

Define the norm on Sδ by

||u|| := sup
ω

max
i

sup
xc,xu
|ui(ω, xc, xu)|.

Then the induced metric on Sδ makes it into a complete metric space. Let T be given by

Lemma 3.1.

Proposition 4.2.1. There is a unique u ∈ S such that φ(t, ω, graphu(ω)) ⊃ graphu(θtω)

for all t > T and ω ∈ Ω. Furthermore, u ∈ Sδ.

We need several lemmas to prove this proposition. We occasionally write u(ω) in place

of graphu(ω).
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In the local coordinates, the mapping u(ω)→ φ(T, ω)(u(ω)) has the form

(xc, ui(ω, x
c, xu), xu)

→ (f cij(ω, x
c, ui(ω, x

c, xu), xu), f sij(ω, x
c, ui(ω, x

c, xu), xu), fuij(ω, x
c, ui(ω, x

c, xu), xu))

Define an operator G on Sδ by

(Gu)j(ω, ξ
c, ξu) = f sij(θ

−Tω, xc, ui(θ
−Tω, xc, xu), xu),

where

ξc = f cij(θ
−Tω, xc, ui(θ

−Tω, xc, xu), xu),

ξu = fuij(θ
−Tω, xc, ui(θ

−Tω, xc, xu), xu).

In the following, we will show G is well defined. For convenience, we denote xcu =

(xc, xu), ξcu = (ξc, ξu), and write

f sij(ω, x
cu, xs) = f sij(ω, x

c, xs, xu),

and

f cuij (ω, xcu, xs) = (f cij(ω, x
c, xs, xu), fuij(ω, x

c, xs, xu))T .

We also use the norms

||xcu|| = max(||xc||, ||xu||),

||ξcu|| = max(||ξc||, ||ξu||),

||f cuij || = max(||f cij||, ||fuij||).
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Thus, we may write the local representatives as

ui(ω, x
cu) = ui(ω, x

c, xu)

(Gu)j(ξ
cu) = f sij(ω, x

cu, u(ω, xcu))

with

ξcu = f cuij (ω, xcu, u(ω, xcu)).

Denote

A ≡ D1,3f
s
ij(ω, x

cu, xs) ≡ (D1f
s
ij(ω, x

c, xs, xu), D3f
s
ij(ω, x

c, xs, xu)),

B ≡ D2f
s
ij(ω, x

cu, xs) = D2f
s
ij(ω, x

c, xs, xu),

C ≡ D1,3f
cu
ij (ω, xcu, xs) =

 D1f
c
ij(ω, x

c, xs, xu) D3f
c
ij(ω, x

c, xs, xu)

D1f
u
ij(ω, x

c, xs, xu) D3f
u
ij(ω, x

c, xs, xu)

 ,

and

E ≡ D2f
cu
ij (ω, xcu, xs) = (D2f

c
ij(ω, x

c, xs, xu), D2f
u
ij(ω, x

c, xs, xu)).

Lemma 4.2.1. For δ > 0 small enough and any 0 < ε < ε0, there exists ρ(ε) > 0 such that

for 0 < ρ < ρ(ε), G is well defined on Sδ.

Proof. For fixed ω and i and any xcu, xcu′ ∈ Di3 ×B(0, ε), we have

||ξcu − ξcu′||

= ||f cuij (θ−Tω, xcu, ui(θ
−Tω, xcu))− f cuij (θ−Tω, xcu′, ui(θ

−Tω, xcu′))||

≥ 1

Q
||xcu − xcu′|| −Qδ||xcu − xcu′||

>
1

2Q
||xcu − xcu′||,

which implies that f cuij (θ−Tω, ·, ui(θ−Tω, ·)) is one-to-one, thus is a homeomorphism from
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Di3 × B(0, ε) to its range. Note that although the Mean Value Theorem does not hold in

multidimensional space, we still have the first inequality above since the matrix of partial

derivatives obtained by using the Mean Value Theorem componentwise is close to the Jaco-

bian. Such estimates will be used repeatedly in our analysis.

Letting xc = xc′ and using Lemma 4.1.1, we have

||ξu − ξu′||

= ||fuij(θ−Tω, xc, ui(θ−Tω, xc, xu), xu))− fuij(θ−Tω, xc, ui(θ−Tω, xc, xu
′), xu′))||

≥ ||(D3f
u
ij)
−1||−1||xu − xu′|| − ||D1f

u
ij||||xc − xc||

− ||D2f
u
ij||||ui(xc, xu)− ui(xc, xu

′)||+ o(||xcu − xcu′||)

≥ 4||xu − xu′|| − 2Qδ||xcu − xcu′||

= (4− 2Qδ)||xu − xu′||

> 3||xu − xu′||,

(4.2.2)

where by taking ε small enough, we have from ||xu − xu′|| < 2ε, that o(||xcu − xcu′||) <

Qδ||xcu − xcu′||.

For fixed δ, ε > 0, there exists ρ(ε) > 0 such that for 0 < ρ < ρ(ε), we have

||fuij(θ−Tω, xc, ui(θ−Tω, xc, 0), 0)|| < 1

3
ε, (4.2.3)

which together with (4.2.2) yield that

||fuij(θ−Tω, xc, ui(θ−Tω, xc, xu), xu)|| > ε

for 2
3
ε < ||xu|| < ε. From this fact and that f cuij (θ−Tω, ·, ui(θ−Tω, ·)) is a homeomorphism,

we conclude that ∪kDk3 × B(0, ε) is contained in the range of f cuij (θ−Tω, ·, ui(θTω, ·)) for i, j

running through all possible choices. This shows G is well defined and completes the proof

of the lemma.
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Lemma 4.2.2. For all 0 ≤ k ≤ r,

||B|| ||C−1||k < 1

2
. (4.2.4)

Proof. Using Lemma 4.1.1, we have

||B|| < 1

2
. (4.2.5)

Writing

C =

 D1f
c
ij(ω, x

c, xs, xu) D3f
c
ij(ω, x

c, xs, xu)

D1f
u
ij(ω, x

c, xs, xu) D3f
u
ij(ω, x

c, xs, xu)

 =

 a b

c d

 ,

we have

C−1 =

 (a− bd−1c)−1 −(a− bd−1c)−1bd−1

(ca−1b− d)−1ca−1 −(ca−1b− d)−1

 .

From Lemma 4.1.1, we know that

||a|| < Q, ||c|| < η, ||a−1|| < Q,

||b|| < η, ||d|| < Q, ||d−1|| < 1

4
.
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Hence,

||(C−1)11|| = ||(a− bd−1c)−1||

= ||(I − a−1bd−1c)−1a−1||

≤ ||a−1||(1 +O(η2)),

||(C−1)12|| = || − (I − a−1bd−1c)−1bd−1a−1||

≤ 1

4
Qη(1 +O(η2)) = O(η),

||(C−1)21|| = ||(d−1ca−1b− I)−1d−1ca−1||

≤ 1

4
Qη(1 +O(η2)) = O(η),

||(C−1)22|| = || − (d−1ca−1b− I)−1d−1||

≤ ||d−1||(1 +O(η2)) ≤ 1

4
(1 +O(η2))

which yield that for η sufficiently small,

||C−1||k < 2 max(||(D1f
c
ij)
−1||k, 1

4
).

Therefore,

||B||||C−1||k < 2 max(||D2f
s
ij||||(D1f

c
ij)
−1||k, 1

4
||D2f

s
ij||)

< 2 max(
1

4
,
1

4
× 1

2
) =

1

2
.

The proof of the lemma is complete.

We note that

||A|| < η (4.2.6)

and all A,B,C,E and their inverses are bounded by Q, perhaps choosing a larger value of

Q.
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Remark: A,B,C and E depend on i, j, xcu, xs, ω, ψ(T ) and φ(T, ω). But all the above

estimates hold uniformly. Note that in (4.2.4) the arguments i, j, ω should be the same,

while the arguments xcu, xs could vary as long as they vary only slightly.

Lemma 4.2.3. For fixed δ small enough and any 0 < ε < ε0, there exists a ρ(ε) > 0 such

that for all 0 < ρ < ρ(ε), G maps Sδ to Sδ.

Proof. It is sufficient to show that if u ∈ Sδ, then

||(Gu)j(ω, ξ
cu)− (Gu)j(ω, ξ

cu′)|| ≤ δ||ξcu − ξcu′|| (4.2.7)

for ξcu and ξcu′ in any sufficiently small neighborhood for all ω ∈ Ω and j. This is because any

two points ξcu, ξcu′ ∈ Dj3×B(0, ε) are connected by a line segment which is covered by finitely

such neighborhoods and one can always choose a sequences of point ξ0 = ξcu, ξ1, · · · , ξm = ξcu′

along the line segment such that for any 1 ≤ k ≤ m, ξk and ξk+1 are located in the same

small neighborhood. Then

||(Gu)j(ω, ξ
cu)− (Gu)j(ω, ξ

cu′)|| ≤
∑
k

δ||ξk − ξk−1|| = δ||ξm − ξ0|| = δ||ξcu − ξcu′||.

Using Lemma 4.2.1, we have for ξcu′ near ξcu, there exists xcu′ ∈ Di3 near xcu such that

ξcu = f cuij (θ−Tω, xcu, ui(θ
−Tω, xcu))

and

ξcu′ = f cuij (θ−Tω, xcu′, ui(θ
−Tω, xcu′)).
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Thus, we have

||(Gu)j(ω, ξ
cu)− (Gu)j(ω, ξ

cu′)||

= ||f sij(θ−Tω, xcu, ui(θ−Tω, xcu))− f sij(θ−Tω, xcu
′, ui(θ

−Tω, xcu′))||

≤ ||A||||xcu − xcu′||+ ||B||δ||xcu − xcu′||+ o(||xcu − xcu′||)

≤ (2η + δ||B||)||xcu − xcu′||.

Here, we have taken ||xcu − xcu′|| small enough so that |o(||xcu − xcu′||)| < η||xcu − xcu′||.

Next we need to estimate ||ξcu − ξcu′|| in terms of ||xcu − xcu′||:

||ξcu − ξcu′|| = ||f cuij (θ−Tω, xcu, ui(θ
−Tω, xcu))− f cuij (θ−Tω, xcu′, ui(θ

−Tω, xcu′))||

≥ ||f cuij (θ−Tω, xcu, ui(θ
−Tω, xcu))− f cuij (θ−Tω, xcu′, ui(θ

−Tω, xcu))||

−||f cuij (θ−Tω, xcu′, ui(θ
−Tω, xcu))− f cuij (θ−Tω, xcu′, ui(θ

−Tω, xcu′))||

≥ ||C−1||−1||xcu − xcu′||+ o(||xcu − xcu′||)− ||E||δ||xcu − xcu′||

≥ ||C−1||−1(1− 2δQ2)||xcu − xcu′||.

Here again we have taken ||xcu−xcu′|| small enough so that |o(||xcu−xcu′||)| < δQ||xcu−xcu′||.

Then, we have

||(Gu)j(ω, ξ
cu)− (Gu)j(ω, ξ

cu′)|| ≤ (2η + δ||B||)||xcu − xcu′||

≤ (2η + δ||B||) ||C
−1||

(1−2δQ2)
||ξcu − ξcu′||

≤ 2ηQ+ 1
2
δ

1−2δQ2 ||ξcu − ξcu′|| ≤ 3
4
δ||ξcu − ξcu′||,

provided δ < 1
12Q2 and η < δ

16Q
. So G maps Sδ to Sδ. This completes the proof of the

lemma.

Lemma 4.2.4. If δ, η > 0 are small enough, there exists ε(η) > 0 such that for any 0 < ε <

ε(η) there exists ρ(ε) > 0 such that for 0 < ρ < ρ(ε), G is a contraction on Sδ.
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Proof. Let u, u′ ∈ Sδ. Fix ω ∈ Ω and let ξcu ∈ (σj × τuj )(Ẽu
ε |U

j
3 ) be given. By Lemma 4.2.1,

there exist i and xcu, xcu′ ∈ Di3 ×B(0, ε) such that

ξcu = f cij(θ
−Tω, xcu, ui(θ

−Tω, xcu)) = f cij(θ
−Tω, xcu′, u′i(θ

−Tω, xcu′)).

Here, as long as ε is small, xcu, xcu′ are close enough to be in the same Di3 × B(0, ε). Then

if ε is small enough, we have o(||xcu − xcu′||) and o(||u− u′||) are so small that

||(Gu)j(ω, ξ
cu)− (Gu′)j(ω, ξ

cu)||

= ||f sij(θ−Tω, xcu, ui(θ−Tω, xcu))− f sij(θ−Tω, xcu′, u′i(θ−Tω, xcu′))||

≤ ||A||||xcu − xcu′||+ ||B||||ui(θ−Tω, xcu)− u′i(θ−Tω, xcu)||

+Q||u′i(θ−Tω, xcu)− u′i(θ−Tω, xcu′)||+ o(||xcu − xcu′||) + o(||u− u′||)

≤ (η + 2δQ)||xcu − xcu′||+ 2
3
||ui(θ−Tω)− u′i(θ−Tω)||.

Next, we need to estimate ||xcu−xcu′|| in terms of ||ui(θ−Tω)−u′i(θ−Tω)||. We first have

||f cuij (θ−Tω, xcu, ui(θ
−Tω, xcu))− f cuij (θ−Tω, xcu′, ui(θ

−Tω, xcu))||

≥ Q−1||xcu − xcu′||

and

||f cuij (θ−Tω, xcu′, u′i(θ
−Tω, xcu′))− f cuij (θ−Tω, xcu′, ui(θ

−Tω, xcu))||

≤ Q(δ||xcu − xcu′||+ ||ui(θ−Tω)− u′i(θ−Tω)||).

Noting that

ξcu = f cuij (θ−Tω, xcu, ui(θ
−Tω, xcu)) = f cuij (θ−Tω, xcu′, u′i(θ

−Tω, xcu′)),
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we combine the above estimates to obtain

||xcu − xcu′|| ≤ (2Q2(η + 2δQ) +
2

3
)||ui(θ−Tω)− u′i(θ−Tω)||.

Taking δ, η small enough, then we get

||(Gu)j(ω, ξ
cu)− (Gu′)j(ω, ξ

cu)|| ≤ 3

4
||ui(θ−Tω)− u′i(θ−Tω)||.

Proof of Proposition 4.2.1: Using Lemma 4.2.4, by the uniform contraction principle, G has

a unique fixed point in Sδ, call it u. If u′ ∈ S is such that

φ(T, ω)(graphu′(ω)) ⊃ graphu′(θTω),

then the proof of Lemma 4.2.4 can be applied: Fix ω ∈ Ω and let ξcu ∈ (σj × τuj )(Ẽu
ε |U

j
3 ) be

given. Since u′ is invariant, there exist i and xcu′ ∈ Di3 ×B(0, ε) such that

ξcu = f cuij (θ−Tω, xcu, ui(θ
−Tω, xcu)) = f cuij (θ−Tω, xcu′, u′i(θ

−Tω, xcu′)).

Here, as long as ε is small, xcu, xcu′ are close enough to be in the same Di3×B(0, ε). Then

||uj(ω, ξcu)− u′j(ω, ξcu)||

= ||f sij(θ−Tω, xcu, ui(θ−Tω, xcu))− f sij(θ−Tω, xcu′, u′i(θ−Tω, xcu′))||

≤ (η + 2δQ)||xcu − xcu′||+ 2
3
||ui(θ−Tω)− u′i(θ−Tω)||.

Similarly, as in Lemma 4.2.4 we get

||xcu − xcu′|| ≤ (2Q2(η + 2δQ) +
2

3
)||ui(θ−Tω)− u′i(θ−Tω)||.
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So

||uj(ω, ξcu)− u′j(ω, ξcu)|| ≤
3

4
||ui(θ−Tω)− u′i(θ−Tω)||.

This shows that u = u′, giving the uniqueness in S.

To show

φ(t, ω)(graphu(ω)) ⊃ graphu(θtω),

we use the uniqueness of u.

For any fixed t > T , we can define G′ on Sδ based on t just as G is based on T . G′ is

well defined. Then we have φ(t, ω)(graphu(ω)) ∩ Ẽε is the graph of an element ū ∈ Sδ at

the θtω fiber.

Since for each ω

φ(T, θ−Tω)(graphu(θ−Tω)) ⊃ graphu(ω) (4.2.8)

we have

φ(t, ω)(graphu(ω)) ⊂ φ(t, ω)φ(T, θ−Tω)(graphu(θ−Tω))

= φ(T, θt−Tω)φ(t, θ−Tω)(graphu(θ−Tω)),

which gives

graph ū(θtω) ⊂ φ(T, θ−T (θtω))(graph ū(θ−T (θtω))),

or equivalently:

graph ū(ω̃) ⊂ φ(T, θ−T (ω̃))(graph ū(θ−T (ω̃))). (4.2.9)

Comparing (4.2.8) and (4.2.9) and using the uniqueness of the fixed point of G, we obtain

ū = u.

This completes the proof of the proposition.

�
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The graph of u = {u(ω) : ω ∈ Ω} gives us the random unstable manifold which is

overflowing invariant under the random flow φ.

Chapter 5. Smoothness, Measurability and Normal Hyperbolic

In order to finish the proof of theorem 3.0.1, we need to prove the smoothness, and measur-

ability of u.

5.1 Smoothness of the Random Unstable Manifolds

Let u ∈ Sδ denote the unique fixed point of G. So the graph of u(ω) is the unique random

unstable manifold W̃u(ω). We prove u is Cr. We construct linear functions in the local

coordinates as the candidates for Dui(ω) and prove they are indeed the derivatives of ui(ω).

In the local coordinates, for any fixed ω, u(ω) is represented by ui(ω) : (Di3 ×B(0, ε))→

Rk, for i = 1, · · · , s. If u(ω) ∈ C1, Dui(ω) assigns to each point in (Di3 × B(0, ε)) a linear

map from Rn−k to Rk. Thus Du(ω) is represented by

vi(ω) ∈ C0((Di3 ×B(0, ε)), L(Rn−k,Rk)),

for i = 1, · · · , s. The candidates for Du(ω) are of the form

v(ω) = (v1(ω), · · · , vs(ω)) ∈
s∏
i=1

C0((Di3 ×B(0, ε)), L(Rn−k,Rk)),

and we denote the space of such mappings by T̄ S. If v(ω) is such an s−tuple, define

||v(ω)|| = max
1≤i≤s

sup
xcu∈(Di3×B(0,ε))

||vi(ω, xcu)||, (5.1.1)
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if this exists, where || · || is the operator norm. For v = {v(ω) ∈ T̄ S : ω ∈ Ω}, define

||v|| := sup
ω
||v(ω)||. (5.1.2)

Let TS be the space of all such random linear mappings v. To be more clear, any element

v of TS can be first viewed as a function of ω ∈ Ω, and for any fixed ω, v(ω) is an s-tuple

(v1(ω), · · · , vs(ω)) ∈
∏s

i=1C
0((Di3 × B(0, ε)), L(Rn−k,Rk)). Define the norm || · || on TS by

(5.1.1) and (5.1.2). Under this norm, TS is complete.

In terms of the local coordinates, u(ω) satisfies

uj(θ
Tω, ξcu) = f sij(ω, x

cu, ui(ω, x
cu))

where ξcu = f cuij (ω, xcu, ui(ω, x
cu)). Differentiating these formally, we have

vj(θ
Tω, ξcu)[C + E vi(ω, x

cu)] = A+B vi(ω, x
cu),

where A = D1,3f
s
ij, B = D2f

s
ij, C = D1,3f

cu
ij and E = D2f

cu
ij , the arguments of A,B,C,E

are all (ω, xcu, ui(ω, x
cu)). So

vj(θ
Tω, ξcu) = Hij(ω)vi(ω, x

cu),

where

Hij(ω)vi(ω, x
cu) = [A+B vi(ω, x

cu)][C + E vi(ω, x
cu)]−1. (5.1.3)

Thus, (5.1.3) induces an operator H on TS.

Remark In the definition of Hij, the arguments of all A,B,C,E are all (ω, xcu, ui(ω, x
cu)),

while later in the computation of contraction, the arguments of A,B,C,E may be different

and in fact the matrices themselves may be different, being small perturbations of these

Jacobians. However, this does not affect the estimates.
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We want to prove that H has a fixed point v(ω). For technical reasons, we need a

smooth partition of unity. Choose Cr functions: hi : Û i
3 → [0, 1] with support of hi ⊂ Û i

2

and
s∑
i=1

hi = 1 on ∪si Û i
1. Here, Û i

k := (σi × τui )−1(Dik ×B(0, ε)). Define

v0
i (ω, x

cu) = 0, i = 1, 2, · · · , s

and

vn+1
j (θTω, ξcu) =

s∑
i=1

hi(m−)Hij(ω)vni (ω, xcu),

where

φ(T, ω, u(ω,m−)) = u(θTω, σ−1
j (ξcu))

Then m− ∈ ∪si Û i
1 and

s∑
i=1

hi(m−) = 1. We will show {vn} converges to a fixed point of

(5.1.3).

Proposition 5.1.1. The sequence {vn(ω)} converges to a solution of the equations

vj(θ
Tω) =

s∑
i=1

hi ·Hij(ω)vi(ω). (5.1.4)

First, we claim:

Lemma 5.1.1. ||vni (ω, xcu)|| < δ for all n and ω.

Proof. It is sufficient to show

||Hij(ω)vni (ω)|| < δ.

Letting δ > 0 be such that δQ2 � 1, for ||vni (ω)|| < δ we have

||[C + E vni (ω)]−1|| = ||[C (1 + C−1E vni )]−1||

= ||[1− (−C−1E vni )]−1C−1|| = ||
∞∑
k=0

(−C−1E vni )kC−1||

≤
∞∑
k=0

||C−1E vni ||k||C−1|| ≤
∞∑
k=0

||δQ2||k||C−1|| = ||C−1||
1− δQ2

.
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Thus, using (5.1.3), by induction, we have

||Hij(ω)vni (ω)|| ≤ (η + ||B||δ) ||C
−1||

1− δQ2
≤
Qη + 1

2
δ

1− δQ2
≤ δ

provided η is small enough. This completes the proof of the lemma.

Lemma 5.1.2. ||vn+1(θTω)− vn(θTω)|| ≤ λ||vn(ω)− vn−1(ω)|| for some 0 < λ < 1.

Proof. It is sufficient to show

||Hij(ω)vni (ω)−Hij(ω)vn−1
i (ω)|| ≤ λ||vn(ω)− vn−1(ω)|| for all i, j.

First, we note that

Hij(ω)vni (ω)−Hij(ω)vn−1
i (ω)

= [A+B vni (ω)][C + E vni (ω)]−1

−[A+B vn−1
i (ω)][C + E vn−1

i (ω)]−1

= (A+B vni )(C + E vni )−1[(C + E vn−1
i )− (C + E vni )](C + E vn−1

i )−1

+[(A+B vni )− (A+B vn−1
i )](C + E vn−1

i )−1.

Estimating the above and using Lemma 4.2.2, we have

||Hij(ω)vni (ω)−Hij(ω)vn−1
i (ω)||

≤ (η + ||B||δ) ||C
−1||

1− δQ2
Q||vni − vn−1

i || ||C
−1||

1− δQ2

+||B||||vni − vn−1
i || ||C

−1||
1− δQ2

=
(

(η + ||B||δ) ||C
−1||2

(1− δQ2)2
Q+

1
2

1− δQ2

)
||vn(ω)− vn−1(ω)||

= λ||vn(ω)− vn−1(ω)||,

for all i, j. By choosing η and δ small enough, we have λ < 1. The proof is complete.
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By the contraction principle, {vn} converges to v which satisfies (5.1.4).

We are ready to prove that v is the derivative of u.

Proposition 5.1.2. For each ξcu ∈ (Dj3×B(0, ε)), Duj(θ
Tω, ξcu) exists and equals vj(θ

Tω, ξcu),

hence, u ∈ C1 and vj(θ
Tω, ξcu) = Hij(ω)vi(ω, x

cu).

Proof. For a fixed ω ∈ Ω, we define an increasing function γω : (0, 1)→ R,

γθTω(a)

= max
i

sup
ξcu,ξcu′∈(Di3×B(0,ε)),0<||ξcu−ξcu′||<a

||ui(θTω, ξcu′)− ui(θTω, ξcu)− vi(θTω, ξcu)(ξcu′ − ξcu)||
||ξcu′ − ξcu||

.

Note that γθTω is bounded by 2δ.

We want to show γω(a)→ 0 as a→ 0. To prove this, we claim

Claim: γω(a) satisfies

γθTω(a) ≤ sγω(za) + r(ω, a)

for small a, for some 0 ≤ s < 1, z > 1, where r(ω, a) is a decreasing function which

approaches zero as a→ 0 uniformly in ω ∈ Ω.

Proof of the claim: Let ξcu ∈ (Dj3 ×B(0, ε)). By Lemma 4.2.1 , we have

ξcu = f cuij (ω, xcu, ui(ω, x
cu))

for some xcu ∈ (Di2×B(0, ε)). We choose d ∈ (0, a) so small that if ξcu′ ∈ (Dj3×B(0, ε)) with

||ξcu−ξcu′|| < d, then there exist xcu′ ∈ (Di3×B(0, ε)) such that ξcu′ = f cij(ω, x
cu′, ui(ω, x

cu′)).

To show

γθTω(a) ≤ sγω(za) + r(ω, a),

it is sufficient to show that

||uj(θTω, ξcu′)−uj(θTω, ξcu)−Hij(ω)vi(θ
Tω, ξcu) · (ξcu′− ξcu)|| ≤ [sγω(za) + r(a)]||ξcu′− ξcu||
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for all ξcu, ξcu′, i, j as above and ||ξcu′ − ξcu|| ≤ a < d.

First, we have

ξcu′ − ξcu = f cuij (ω, xcu′, ui(ω, x
cu′))− f cuij (ω, xcu, ui(ω, x

cu))

= C(xcu′ − xcu) + E(ui(ω, x
cu′)− ui(ω, xcu)) + o(||xcu′ − xcu||),

uj(θ
Tω, ξcu′)− uj(θTω, ξcu) = f sij(ω, x

cu′, ui(ω, x
cu′))− f sij(ω, xcu, ui(ω, xcu))

= A(xcu′ − xcu) +B(ui(ω, x
cu′)− ui(ω, xcu)) + o(||xcu′ − xcu||).

Note that the quantity o(||xcu − xcu′||) is uniformly in ω ∈ Ω. From the first equation it

follows that

||xcu′ − xcu|| ≤ ||C−1|| ||ξ
cu′ − ξcu||

1− 2δQ2

and that

ξcu′ − ξcu = [C + E vi(ω, x
cu)](xcu′ − xcu)

+E[ui(ω, x
cu′)− ui(ω, xcu)− vi(ω, xcu)(xcu′ − xcu)] + o(||xcu′ − xcu||).
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Hence,

||uj(θTω, ξcu′)− uj(θTω, ξcu)−Hij(ω)vi(θ
Tω, ξcu)(ξcu′ − ξcu)||

= ||A(xcu′ − xcu) +B(ui(ω, x
cu′)− ui(ω, xcu)) + o(||xcu′ − xcu||)

− [A+B vi(ω, x
cu)][C + E vi(ω, x

cu)]−1 · (ξcu′ − ξcu)||

= ||A(xcu′ − xcu) +B[ui(ω, x
cu′)− ui(ω, xcu)]− [A+B vi(ω, x

cu)](xcu′ − xcu)

− [A+B vi(ω, x
cu)][C + E vi(ω, x

cu)]−1E[ui(ω, x
cu′)− ui(ω, xcu)

− vi(ω, xcu)(xcu′ − xcu)] + o(||xcu′ − xcu||)||

= ||{B − [A+B vi(ω, x
cu)][C + E vi(ω, x

cu)]−1 · E}[ui(ω, xcu′)− ui(ω, xcu)

− vi(ω, xcu)(xcu′ − xcu)] + o(||xcu′ − xcu||)||

≤ [||B||+O(η + δ)]γω(||xcu′ − xcu||)||xcu′ − xcu||+ ||o(||xcu′ − xcu||)||

≤ [||B||+O(η + δ)]||C−1||
1− 2δQ2

γω(||xcu′ − xcu||)||ξcu′ − ξcu||+ ||o(||xcu′ − xcu||)||.

Taking s = ||B||+O(η+δ)||C−1||
1−2δQ2 , if η and δ are small enough, then s < 1 . Let z = Q

1−2δQ2 . Then

||xcu′ − xcu|| ≤ z||ξcu′ − ξcu|| < zd < za.

Then

γω(||xcu′ − xcu||) ≤ γω(za).

Since

||ξcu′ − ξcu|| ≥ z−1||xcu′ − xcu||,

o(||xcu′−xcu||) can be bounded by r(ω, a)||ξcu′− ξcu|| where r(ω, a)→ 0 uniformly in ω ∈ Ω

as a→ 0. This shows

γθTω(a) ≤ sγω(za) + r(ω, a). (5.1.5)

Note that z can be taken to be bigger than 1 because γω(a) is increasing in a. This completes

the proof of the claim.
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We are ready to show γω(a)→ 0 as a→ 0.

Replace a successively by az−1, az−2, · · · , az−n, repalce ω successively by ω, θTω, · · · ,

θ(n−1)Tω, weight the terms with sn−1, sn−2, · · · , 1 and add them together to get:

γθnTω(az−n) ≤ snγω(a) + r(θ(n−1)Tω, az−n) + sr(θ(n−2)Tω, az−n+1) + · · ·+ sn−1r(ω, az−1)

≤ sn · 2δ +
1

1− s
sup
ω

max
0≤t≤a

r(ω, t).

Since here ω is arbitrary, we get

γω(sz−n) ≤ 2δsn +
1

1− s
sup
ω

max
0≤t≤a

r(t).

It follows that γω(a)→ 0 as a→ 0.

So u is differentiable. Then from the definition of vn we have vn ∈ C0. Since vn → v

uniformly, v ∈ C0. Since Du = v, u ∈ C1.

Next, we show u ∈ Cr. Knowing u ∈ C1, by the construction of vn, using the partition

of unity {hi}, we have vn ∈ C1 and

vn+1
j (θTω, ξcu) =

∑
hi[A+Bvni (ω, xcu)][C + Evni (ω, xcu)]−1.

Hence,

Dvn+1
j (θTω, ξcu)[C + E vi(ω, x

cu)]

=
∑

hi[BD vni (ω, xcu)(C + E vni (ω, xcu))−1

− (A+B vni (ω, xcu))(C + E vni (ω, xcu))−1ED vni (ω, xcu)(C + E vni (ω, xcu))−1]

+ (terms not involving derivatives of vk or v)
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which yields

Dvn+1
j (θTω, ξcu)

=
∑

hi

(
BD vni (ω, xcu)(C + E vni (ω, xcu))−1

− (A+B vni (ω, xcu))(C + E vni (ω, xcu))−1ED vni (ω, xcu)(C + E vni (ω, xcu))−1
)(
C + E vi(ω, x

cu)
)−1

+ (terms not involving derivatives of vk or v).

Then, using Lemma 4.2.2 and similar arguments to those in Lemma 5.1.1 and 5.1.2, one

can show Dvn is a Cauchy sequence. By the definition of vn, Dvn ∈ C0. Hence Dv exists

and equals the limit of Dvn. So v ∈ C1 and u ∈ C2.

By using induction and Lemma 4.2.2, one can prove that Dk−1vn is a Cauchy sequence

in C0, and converges to Dk−1v uniformly. So v ∈ Ck−1, i.e., u ∈ Ck. Thus, we have

Proposition 5.1.3. u ∈ Cr.

This completes the proof of the smoothness of the random unstable manifold W̃u. From

the proof, we also obtain the following property, which will be used in the next section:

Proposition 5.1.4. Each vi is measurable in (ω, xcu) jointly.

Proof. From the definition of the sequence vn, each vn+1 is defined by H(ω, vn) in a local

chart. H(ω, v) has the following Caratheodory property: H(·, v) is measurable for any fixed

v, and H(ω, ·) is Cr−1 for almost every ω ∈ Ω. So as long as v0 is measurable in ω and Cr−1

in xcu, each vn is measurable in ω and Cr−1 in xcu. Since vn is measurable in ω and Cr−1 in

xcu, it is measurable in (ω, xcu) jointly (see [CV]). Since v0 is chosen to be 0, all the above

hold. Then the limit v of vn is jointly measurable in (ω, xcu).
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5.2 Measurability of the Unstable Manifold and its Tangent

Space

In this section, we prove that the unique random unstable manifold is a random set and the

tangent space of the random unstable manifold is measurable.

Let u = {u(ω) : ω ∈ Ω} be the unique fixed point of G in Sδ. For simplicity, we use u(ω)

to denote both the section and the graph of the section.

Proposition 5.2.1. u(ω) is a random set.

Proof. Recall

Û i
k ≡ (σi × τui )−1(Dik ×B(0, ε)

and let

u0(ω) = ∪si=1Û
i
3,

u1(ω) = φ(T, θ−Tω, u0(θ−Tω)) ∩ V,

un+1(ω) = φ(T, θ−Tω, un(θ−Tω)) ∩ V,

· · ·

un = {un(ω) : ω ∈ Ω}.

Recall that V is a tubular neighborhood of M in Rn which is Cr diffeomorphic to Ẽε. Since

we identify V with Ẽ(ε), u0(ω) can be viewed as a set or the zero section. Here, we view

u0(ω) as a set. We have V ∈ B(Rn). Since G is a uniform contraction on Sδ, we have

un → u,

i.e.,

un(ω)→ u(ω)
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uniformly in ω ∈ Ω.

We will show all un(ω) are random sets. Let {mk} be dense in ∪si=1Û
i
3. Define

y0
k(ω) = mk.

Let

y1
k(ω) = φ(T, θ−Tω, y0

k(θ
−Tω)), · · · ,

yn+1
k (ω) = φ(T, θ−Tω, ynk (θ−Tω)).

Since φ(t, ω,m) is B(R)⊗F⊗B(Rn)−measurable, we know that each ynk (ω) is B(Rn)−measurable.

We also know that {ynk (ω)}k ∩ un(ω) is dense in un(ω), since φ(−T, θTω, ·) is continuous.

For any x = xcu ∈ Rn, define

rnx(ω) = inf
y∈un(ω)

|x− y|,

then rnx is a random variable. This is because for each fixed a ∈ R,

{ω : rnx(ω) ≥ a}

= {ω : inf
y∈un(ω)

|x− y| ≥ a}

= ∩k({ω | ynk (ω) ∈ V, |x− ynk (ω)| ≥ a} ∪ {ω | ynk (ω) ∈ V c})

which is F−measurable because of the measurability of ynk (ω) and V . So we have proved

rnx(ω) is a random variable. Since n, x are arbitrary, un(ω) are random sets.

To show that u(ω) is a random set, let x ∈ Rn and define

rx(ω) = inf
y∈u(ω)

|x− y|.
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We want to show rx(ω) is a random variable. Since

un(ω)→ u(ω)

uniformly for ω ∈ Ω in C0 norm, we have

rnx(ω)→ rx(ω)

pointwise, which implies that rx(ω) is a random variable, hence, uω is a random set. This

completes the proof of the proposition.

To show the measurability of the tangent space TW̃u, we need to show

TW̃u : (ω,m) ∈ W̃u → T(ω,m)W̃u

is measurable. Since each T(ω,m)W̃u is an (n− k)-dimensional subspace of Rn, the map from

W̃u to the tangent space can be represented by

TW̃u : W̃u = {(ω,m) : ω ∈ Ω,m ∈ W̃u(ω)} → Kn−k,

(ω,m) 7→ T(ω,m)W̃u ∈ Kn−k,

where Kn−k is the set of all (n− k)-dimensional subspaces of Rn.

Consider the metric introduced by [K]. Let N1, N2 be linear subspace of Rn and let SN1

be the unit sphere in N1. Define, for N1 6= {0} 6= N2

d1(N1, N2) = sup
x∈SN1

dist(x, SN2),

d2(N1, N2) = max(d1(N1, N2), d2(N1, N2)).
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Also define

d2(0, N) = d2(N, 0) = 1.

Then the set of all closed linear subspaces of Rn is a complete metric space with metric d2

and Kn−k is also a complete metric space with this metric. See also [LL].

Corresponding to the local chart Di3 ×B(0, ε)×Rk, for each ω ∈ Ω, there is an open set

Ûi(ω) on W̃u(ω). We denote

Ûi := {(ω,m) : ω ∈ Ω,m ∈ Ûi(ω)}.

Then

W̃u = Û1 ∪ Û2 ∪ · · · ∪ Ûs.

Each Ûi is a measurable subset of W̃u.

In the local chart Di3×B(0, ε)×Rk, Ûi is constructed as a collection of Lipschitz functions

ui(ω, x
cu) over Di3 × B(0, ε). vi(ω, x

cu) is the derivative of ui(ω, x) which has values in

L(Rn−k,Rk). We use v̂i(ω, x
cu) to denote the tangent space in the local chart. So v̂i(ω, x

cu)

has values in Kn−k. By an elementary computation, for any ω ∈ Ω, xcu ∈ Di3×B(0, ε), the d2

distance between v̂i(ω, x
cu) and Rn−k × {0} is at most

√
2− 2√

1+δ2
, which, for convenience,

will be denoted by δ∗. Then the range of v̂i can be denoted by

Bd2(Rn−k × {0}, δ∗),

the closed set containing all n−k dimensional subspace of Rn, whose d2 distance to Rn−k×{0}

are no more than δ∗. Remember this set is in the chart Di3 ×B(0, ε)× Rk.

In order for TW̃u to be a well defined map, the range of all TW̃u|Ûi should be in the

same metric space. Or in other words, all values of v̂i should be measured in a single chart.

Suppose the coordinate change from Di3×B(0, ε)×Rk to D1
3×B(0, ε)×Rk is represented

by the invertible matrix Ai1. Then in the chart D1
3 × B(0, ε) × Rk, v̂ is represented by
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(A11v̂1, · · · , As1v̂s). It has range

∪si=1Ai1Bd2(Rn−k × {0}, δ∗).

To prove the measurability of v̂ = TW̃u, it is enough to prove the measurability of each

TW̃u|Ûi, or equivalently the measurability of each Ai1v̂i as a function defined in the chart

Di3 ×B(0, ε)× Rk taking value in Kn−k measured in the chart D1
3 ×B(0, ε)× Rk:

Ω×Di3 ×B(0, ε)→ Ai1Bd2(Rn−k × {0}, δ∗).

Since Ai,1 is an invertible matrix, it is a diffeomorphism from

Bd2(Rn−k × {0}, δ∗)

to

Ai1Bd2(Rn−k × {0}, δ∗).

So it suffices to prove the measurability of v̂i as a function defined in the chart Di3 ×

B(0, ε)× Rk and taking values in Kn−k measured in the chart Di3 ×B(0, ε)× Rk.

Proposition 5.2.2. v̂i is measurable.

Proof. From section 5 we know vi is measurable. We use the measurability of vi to prove

the measurability of v̂i.

The operator norm of each vi(ω, x) is at most δ. Let B(0, δ) be the closed ball centered

at 0 with radius δ in the space L(Rn−k,Rk). It induces a subset Kδ of Kn−k:

Kδ := {(a, L̃a) : a ∈ Rn−k, L̃ ∈ B(0, δ)}.
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We also have the representation

Kδ = Bd2(Rn−k × {0}, δ∗).

This is because for any L̃ ∈ B(0, δ),

d2(Rn−k × {0}, (I × L̃)(Rn−k)) =

√√√√2− 2√
1 + ||L̃||2

,

which is no more than δ∗ =
√

2− 2√
1+δ2

. On the other hand, for any 0 < δ1 ≤ δ, and J an

n − k dimensional subspace of Rn whose d2 distance to Rn−k × {0} is δ1, there exists an L̃

such that ||L̃|| = δ1 and Rn−k × L̃(Rn−k) = J . So we have

Kδ = Bd2(Rn−k × {0}, δ∗).

Define a metric d3 on Kδ by

d3(Rn−k × L1(Rn−k),Rn−k × L2(Rn−k)) := ||L1 − L2||L(Rn−k,Rk).

This makes Kδ into a metric space, and obviously we have

Kδ = Bd3(Rn−k × {0}, δ).

Lemma 5.2.1. d2 and d3 generate the same topology on Kδ.

Proof. Let Dn ⊂ Kδ. It is obvious that d2(Dn, D0)→ 0 if and only if d3(Dn, D0)→ 0.

We use the metric d3 on Kδ. This makes Kδ isomorphic to B(0, δ). So the measurability

of v̂i as a function to Kδ is equivalent to the measurability of vi as a function to B(0, δ). By

Proposition 5.1.4, vi is measurable. So v̂i is measurable.

From the discussion before proposition 5.2.2, we have:
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Proposition 5.2.3. The tangent space of the random unstable manifold W̃u is measurable.

5.3 Stable Manifold and Random Invariant Manifold

Since the random flow φ(t, ω) is invertible, by reversing the time and applying the results on

the unstable manifold in previous sections, we have

Proposition 5.3.1. There exists a unique Cr random stable manifold W̃s(ω) in the neigh-

borhood V of M. Moreover, it is a random set and its tangent space is measurable.

Taking the intersection of W̃u(ω) and W̃s(ω), we get an invariant manifold M̃(ω) of

the random flow φ(t, ω). From the proof of the existence of W̃s(ω) and W̃u(ω) we can find

this intersection by taking a measurable m-dimensional random manifold M0(ω) on the

random unstable manifold, as a graph over M and mapping it under the inverse flow. For

example, we can take the random set which corresponds to ui(ω, x
cu) = ui(ω, x

c, 0) in a local

chart. Iterates of this random set approaches the random stable manifold uniformly under

the inverse random flow. On the other hand, the random set stays in the random unstable

manifold. So it converges to the intersection of the random stable and unstable manifold. In

other words, the invariant manifold of intersection is the limit of M0(ω) under the inverse

random flow. Since we have the measurability and smoothness of ui(ω, x
c, 0) in local charts

we know M0(ω) is measurable and smooth and since also the derivatives (tangent spaces)

converge uniformly, then the limit M̃(ω) is also measurable and smooth.

M̃(ω) is obviously Cr diffeomorphic to M for each ω ∈ Ω because it is the graph of a

Cr section over the tangent bundle of M.

The measurability of the tangent space of M̃(ω) is also proved from the measurability

and smoothness of the tangent space of M0(ω). From the measurability and smoothness of

the tangent space of M0(ω), we get the measurability of the derivative map of M0(ω,m)

in local charts using the Caratheodory property as we did in proposition 5.1.4. Then from

uniform convergence of the tangent spaces, we get the measurability of the derivative map

of M(ω) in local charts. Applying the method of proving the measurability of the tangent
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space of the unstable manifold, which shows the equivalence between the measurability of

the tangent space and the measurability of the tangent map, we obtain the measurability of

the tangent space of the random invariant manifold M(ω).

Summarizing the above, we get

Proposition 5.3.2. There exists a unique Cr random invariant manifold M̃(ω) in a neigh-

borhood of M. For each fixed ω ∈ Ω, M̃(ω) is Cr diffeomorphic to M. Moreover, it is a

random set and its tangent space is measurable.

5.4 Persistence of Normal Hyperbolicity

We show that M̃ is normally hyperbolic to complete the proof of theorem 3.0.1. We prove

the following proposition:

Proposition 5.4.1. For each x ∈ M̃(ω) there exists a splitting

Rn = Eu(ω, x)⊕ Ec(ω, x)⊕ Es(ω, x)

of closed subspaces with associated projections Πu(ω, x), Πc(ω, x), and Πs(ω, x) such that

(i) The splitting is invariant:

Dxφ(t, ω)(x)Ei(ω, x) = Ei(θtω, φ(t, ω)(x)), for i = u, c, s

(ii) Dxφ(t, ω)(x)
∣∣
Ei(ω,x)

: Ei(ω, x) → Ei(θtω, φ(t, ω)(x)) is an isomorphism for i = u, c, s.

Ec(ω, x) is the tangent space of M(ω) at x.

(iii) There are (θ, φ)-invariant random variables α, β : M → (0,∞), 0 < α < β, and a
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tempered random variable K(ω, x) :M→ [1,∞) such that

||Dxφ(t, ω)(x)Πs(ω, x)|| ≤ K(ω, x)e−β(ω,x)t for t ≥ 0, (5.4.1)

||Dxφ(t, ω)(x)Πu(ω, x)|| ≤ K(ω, x)eβ(ω,x)t for t ≤ 0, (5.4.2)

||Dxφ(t, ω)(x)Πc(ω, x)|| ≤ K(ω, x)eα(ω,x)|t| for −∞ < t <∞. (5.4.3)

Moreover, Ei(ω, x) are measurable in (ω, x) and Cr−1 in x.

We prove the proposition by several lemmas.

Lemma 5.4.1. For any ω ∈ Ω, there are subbundles Ẽs(ω) and Ẽu(ω) of TRn|M̃(ω), which

are uniformly close to Ẽs and Ẽu respectively, such that Ẽs(ω) is complementary to TM̃(ω)

in TW̃s(ω)|M̃(ω) and Ẽu is complementary to TM̃(ω) in TW̃s(ω)|M̃(ω).

Proof. We first note that there exists an unstable manifoldWu ofM under the deterministic

flow ψ(t). Both Wu and W̃u(ω) are constructed as sections over the same bundle. Since

φ(t, ω) and ψ(t) are uniformly C1 close, Wu and W̃u(ω) are C1 close and diffeomorphic to

each other. We denote the diffeomorphism between them by u(ω). Then u(ω) is C1 close to

the identity map. Taking the image of Ẽu under the map Du(ω) to get Ẽu(ω), then Ẽu(ω)

is uniformly close to Ẽu.

Similarly, we have Ẽs(ω) is uniformly close to Ẽs.

Since Ẽi is arbitrarily close to Ei for i = s, u, we have that Ẽi(ω) are uniformly close to

Ei. Since there is no invariance condition on Ẽi(ω), we can modify Ẽi(ω,m) such that they

are Cr in m for each fixed ω ∈ Ω and still stay close to Ei. This is from [W]. In any case,

Ẽi(ω,m) is not necessarily measurable.

Define Ẽc(ω,m) ≡ TM̃(ω) and for i = s, u, c, Π̃i ≡ Π̃i(ω,m) the projections onto

Ẽi(ω,m). Recall that 0 < α < β are constants associated with the normal hyperbolicity of

M with repect to ψ(t).
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Lemma 5.4.2. (1) There exist positive constants 0 < a < 1 and c1 such that:

||Π̃sDφ(t, θ−tω)(φ(−t, ω)(m))|Ẽs(θ−tω)|| < c1a
t

for all m ∈ M̃(ω) and t ≥ 0,

||Π̃uDφ(t, θ−tω)(φ(−t, ω)(m))|Ẽu(θ−tω)|| < c1a
t

for all m ∈ M̃(ω) and t ≤ 0.

(2) If α < rβ, there exist c2 > 0 and r′ > r such that

||Π̃sDφ(t, θ−tω)(φ(−t, ω)(m))|Ẽs(θ−tω)|| ||Dφ(−t, ω)(m)|Ẽc(ω)||r′ < c2

for all m ∈ M̃(ω) and t ≥ 0,

||Π̃uDφ(t, θ−tω)φ(−t, ω)(m)|Ẽu(θ−tω)|| ||Dφ(−t, ω)(m)|Ẽc(ω)||r′ < c2

for all m ∈ M̃(ω) and t ≤ 0.

(3) If α < rβ, there exist c3 > 0 and r′ > r such that

||Π̃sDφ(t, θ−tω)φ(−t, ω)(m)|Ẽs(θ−tω)|| ||Dφ(−t, ω)(m)|Ẽc(ω)||

||Dφ(t, θ−tω)φ(−t, ω)(m)|Ẽc(θ−tω)||r′−1 < c3

for all m ∈ M̃(ω) and t ≥ 0,

||Π̃uDφ(t, θ−tω)φ(−t, ω)(m)|Ẽu(θ−tω)|| ||Dφ(−t, ω)(m)|Ẽc(ω)||

||Dφ(t, θ−tω)φ(−t, ω)(m)|Ẽc(θ−tω)||r′−1 < c3

for all m ∈ M̃(ω) and t ≤ 0.
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Proof. We prove this lemma using an idea extended from [F1].

We first prove (1). Since

||Dψ(t)ψ(−t)(m)|Es|| → 0 as t→∞

for all m ∈M, for m ∈M there exists T (m) > 0 such that

||Dψ(T (m))ψ(−T (m))(m)|Es|| < 1.

Hence, there exists a neighborhood U(m) of m in M such that for m′ ∈ U(m),

||Dψ(T (m))ψ(−T (m))(m′)|Es|| < 1.

Since M is compact, we may choose finitely many points m1,m2, · · · ,mN such that

M⊂ U(m1) ∪ U(m2) ∪ · · · ∪ U(mN).

Choose 0 < a < 1 such that

||Dψ(T (mi))ψ(−T (mi))(m
′)|Es|| < aT (mi)

for m′ ∈ U(mi). Since φ(t, ω) and ψ(t) are uniformly close, M̃(ω) and M are uniformly

close, and we have

||Π̃sDφ(T (mi), θ
−T (mi)ω)φ(−T (mi), ω)(u(ω,m′))|Ẽs(θ−T (mi)ω)|| < aT (mi)

for m′ ∈ U(mi). Take U(ω,mi) = u(ω, U(mi)), then

M̃(ω) ⊂ U(ω,m1) ∪ U(ω,m2) ∪ · · · ∪ U(ω,mN)
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and

||Π̃sDφ(T (mi), θ
−T (mi)ω)φ(−T (mi), ω)(m̃)|Ẽs(θ−T (mi)ω)|| < aT (mi)

for all ω ∈ Ω and m̃ ∈ U(ω,mi).

Fix an arbitrary ω ∈ Ω. Let m ∈ M̃(ω) be given. Choose a sequence of integers

i(1), i(2), · · · , as follows. Choose i(1) such that m ∈ U(ω,mi(1)). If i(1), i(2), · · · , i(j) have

been chosen, let τ(j) = T (mi(1))+ · · ·+T (mi(j)). Choose i(j+1) such that φ(−τ(j), ω)(m) ∈

U(θ−τ(j)ω,mi(j+1)). Let t > 0, it is possible to write t = τ(j) + r for some j and 0 ≤ r <

maxT (mi). Then

||Π̃sDφ(t, θ−tω)φ(−t, ω)(m)|Ẽs(θ−tω)||

= ||Π̃sDφ(T (mi(1)), θ
−τ(1)ω)φ(−T (mi(1)), ω)(m)|Ẽs(θ−τ(1)ω)

Π̃sDφ(T (mi(2)), θ
−τ(2)ω)φ(−T (mi(2)), θ

−τ(1)ω)φ(−τ(1), ω)(m)|Ẽs(θ−τ(2)ω)

Π̃sDφ(T (mi(3)), θ
−τ(3)ω)φ(−T (mi(3)), θ

−τ(2)ω)φ(−τ(2), ω)(m)|Ẽs(θ−τ(3)ω)

· · ·

Π̃sDφ(r, θ−tω)φ(−r, θ−τ(j)ω)φ(−τ(j), ω)(m)|Ẽs(θ−tω)||

≤ aT (m1) · aT (m2) · · · aT (mj) · ar ·
||Π̃sDφ(r, θ−tω)φ(−r, θ−τ(j)ω)φ(−τ(j), ω)(m)|Ẽs(θ−tω)||

ar

≤ c at,

where

c = sup
||Π̃sDφ(r, θ−tω)φ(−r, θ−τ(j)ω)φ(−τ(j), ω)(m)|Ẽs(θ−tω)||

ar
,

and the supremum is taken over all ω ∈ Ω,m ∈ M̃(ω) and 0 ≤ r < maxT (mi). Equivalently

c = sup
||Π̃sDφ(r, θ−rω′)φ(−r, ω′)(m′)|Ẽs(θ−rω′)||

ar
,

and the supremum is taken over all ω′ ∈ Ω,m′ ∈ M̃(ω′) and 0 ≤ r < maxT (mi).
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Since (2) and (3) follow the similar arguments, we omit the details.

Lemma 5.4.3. There exist unique subbundles Es(ω) and Eu(ω) of TRn|M̃(ω), such that

Es(ω) is complementary to TM̃(ω) in TW̃s(ω)|M̃(ω) and Eu(ω) is complementary to

TM̃(ω) in TW̃u(ω)|M̃(ω). Moreover, Ei(ω) (i = s, u) is Cr−1 and invariant under Dφ(t, ω)

for any t ∈ R and ω ∈ Ω.

Proof. We will show that for some K to be determined later, there exists a unique random

subbundle Eu(ω) of TW̃s(ω)|M̃(ω) that is invariant under Dφ(K,ω). This will be sufficient

to conclude the invariance under Dφ(t, ω) for any t ∈ R. This is because once we proved

the first, we know that Dφ(t, ω)(Eu(ω)) is also invariant under Dφ(K,ω). Then by the

uniqueness we are done.

To start, we notice that any bundle complementary to TM̃(ω) in TW̃u(ω)|M̃(ω) is the

graph of a family of linear maps

h(ω,m) : Ẽu(ω,m)→ TM̃(ω,m),

and the bundle is invariant under Dφ(K,ω) if and only if

Dφ(K, θ−Kω)h(θ−Kω, φ(−K,ω,m)) = h(ω,m)

for all ω ∈ Ω and m ∈ M̃(ω). Equivalently,

h(ω,m)Π̃uDφ(K, θ−Kω, φ(−K,ω,m)) · (ξcu + h(θ−Kω, φ(−K,ω,m)))ξcu

= Π̃cDφ(K, θ−Kω, φ(−K,ω,m)) · (ξ + h(θ−Kω, φ(−K,ω,m)))ξ

for all ξ ∈ Ẽu(θ−Kω, φ(−K,ω,m)), for ω ∈ Ω, m ∈ M̃(ω). Since TM̃(ω) is invariant, we

have

Π̃uDφ(K, θ−Kω, φ(−Kω,m))h(θ−Kω, φ(−K,ω,m)) = 0.
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Suppressing ξ, we can write the functional equation for h as

h(ω,m) ◦ Π̃uDφ(K, θ−Kω, φ(−K,ω,m))|Ẽu(θ−Kω, φ(−K,ω,m))

= Π̃cDφ(K, θ−Kω, φ(−K,ω,m))|Ẽu(θ−Kω, φ(−K,ω,m))

+Π̃cDφ(K, θ−Kω, φ(−K,ω,m)) ◦ h(θ−Kω, φ(−K,ω,m)))|Ẽu(θ−Kω, φ(−K,ω,m)).

We have

[Π̃uDφ(K, θ−Kω, φ(−K,ω,m))|Ẽu(θ−Kω, φ(−K,ω,m))]−1 = Π̃uDφ(−K,ω,m)|Ẽu.

Hence,

h(ω,m)

= Π̃cDφ(K, θ−Kω, φ(−K,ω,m)) ◦ Π̃uDφ(−K,ω,m)|Ẽu

+Π̃cDφ(K, θ−Kω, φ(−K,ω,m)) ◦ h(θ−Kω, φ(−K,ω,m))) ◦ Π̃uDφ(−K,ω,m)|Ẽu.

This is a linear functional equation for h. We want to use the contraction mapping theorem

to show it has a unique fixed point.

By Proposition 5.4.2 (1) and (2), we get

||D(φ|M̃(θ−Kω))(K, θ−Kω, φ(−K,ω,m))|| ||Π̃uDφ(−K,ω,m)|Ẽu|| ≤ 1

4
(5.4.4)

||Dφ(K, θ−Kω, φ(−K,ω,m))|Ẽc(θ−Kω)|| ||Dφ(−K,ω,m)|Ẽc(ω)||k ||Π̃uDφ(−K,ω,m)|Ẽu||

≤ 1

4

(5.4.5)

for 1 ≤ k ≤ r − 1.
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Define a space S, whose element h ∈ S is of the form:

h = {h(ω,m)|ω ∈ Ω,m ∈ M̃(ω)}.

Define the norm || · ||S by

||h||S := sup
ω

max
m∈M̃(ω)

||h(ω,m)||L(Ẽu(ω,m),TM̃(ω,m)).

Under this norm, S is a complete metric space. Let

h0(ω,m) ≡ 0 ∈ L(Ẽu(ω,m), TM̃(ω,m)),

and define

hn+1(ω,m)

= Π̃cDφ(K, θ−Kω, φ(−K,ω,m)) ◦ Π̃uDφ(−K,ω,m)|Ẽu

+Π̃cDφ(K, θ−Kω, φ(−K,ω,m)) ◦ hn(θ−Kω, φ(−K,ω,m))) ◦ Π̃uDφ(−K,ω,m)|Ẽu.

Then for all n ≥ 0, and for any fixed ω, hn(ω,m) is Cr−1 in m . By (5.4.4), hn is a Cauchy

sequence. Suppose h is the unique limit of hn. Then h satisfies

h(ω,m)

= Π̃cDφ(K, θ−Kω, φ(−K,ω,m)) ◦ Π̃uDφ(−K,ω,m)|Ẽu

+Π̃cDφ(K, θ−Kω, φ(−K,ω,m)) ◦ h(θ−Kω, φ(−K,ω,m))) ◦ Π̃uDφ(−K,ω,m)|Ẽu

So h(ω,m) represents the unique invariant bundle E(ω,m). Since hn(ω,m) → h(ω,m)

uniformly, h(ω,m) is C0 in m.

By (5.4.5), Dk
mh

n(ω,m) for k ≤ r−1 is a Cauchy sequence in the corresponding space. So

Dk
mh

n(ω,m) converges uniformly as n goes to ∞. Therefore, Dk
mh(ω,m) exists and equals
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the limit of Dk
mh

n(ω,m), which means h(ω,m) is Cr−1 in m for any fixed ω. Hence, we

obtain an unique Cr−1 invariant bundle Eu(ω). Similarly, we have a unique Cr−1 invariant

bundle Es(ω).

From now on, we use Es(ω) and Eu(ω) to denote the unique invariant bundle of lemma

5.4.3. Since ψ(t) and φ(t, ω) are uniformly close, and M and M̃(ω) are uniformly close, we

conclude that E(ω) are uniformly close to E. SinceM is compact, the angle between E(m)

and TmM is bounded away from 0. So also we have that the angle between E(ω,m) and

TmM̃(ω) are uniformly bounded away from 0. So ||Πs||, ||Πu||, 1
||Πs|| and 1

||Πu|| are bounded.

Suppose they are all bounded by c4 > 0.

Lemma 5.4.4. (5.4.1), (5.4.2) and (5.4.3) are satisfied for Es(ω), Eu(ω) and Ec(ω) =

TM̃(ω).

Proof. For any ν ∈ TW̃s(ω)|M̃(ω), we have

ν − Πsν ∈ TM̃(ω).

So Π̃sΠs = Π̃s. Similarly, ΠsΠ̃s = Πs.

For each fixed ω ∈ Ω, m ∈ M̃(ω) and ν ∈ Es(ω,m), let ν̃ = Π̃sν. Then ν̃ − ν ∈ TM̃(m)

and

c−1
4 |Π̃sDφ(−t, ω)(ν̃)|

= c−1
4 |Π̃sDφ(−t, ω)(Π̃sν)| = c−1

4 |Π̃sDφ(−t, ω)(ν)| ≤ |ΠsΠ̃sDφ(−t, ω)(ν)|

= |ΠsDφ(−t, ω)(ν)| ≤ c4|Π̃sΠsDφ(−t, ω)(ν)| = c4|Π̃sDφ(−t, ω)(ν)|

= c4|Π̃sDφ(−t, ω)(Π̃sν)| = c4|Π̃sDφ(−t, ω)(ν̃)|,
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which gives us

c−1
4 |Π̃sDφ(−t, ω)(ν̃)| ≤ |ΠsDφ(−t, ω)(ν)| ≤ c4|Π̃sDφ(−t, ω)(ν̃)|. (5.4.6)

From (5.4.6), all properties listed in lemma 5.4.2 persist if we change Ẽs(ω) and Ẽu(ω)

to Es(ω) and Eu(ω).

From (1) of lemma 5.4.2 , if we take K(ω, x) = c1 and β(ω, x) = − log a, then β > 0 and

(θ, φ)-invariant, K(ω, x) is tempered, and (5.4.1) and (5.4.2) hold.

From the uniform closeness of φ(t, ω) and ψ(t), the normally hyperbolicity property of

M under ψ(t) and the uniform closeness of M̃(ω) andM, we have for some (θ, φ)-invariant

random variable α : M̃ → (0,∞) and tempered random variable K(ω, x) : M̃ → [1,∞)

such that (5.4.3) hold.

What we need to prove is that rα < β. From (2) of lemma 5.4.2, α and β can be chosen

such that rα < β.

Lemma 5.4.5. Ei(ω,m) is measurable.

Proof. In section 6,7, we proved the measurability of Ec. Here we only prove the measura-

bility of Eu. For Es, just follow exactly the same argument for Eu.

Take the orthogonal complement of T(ω,m)M̃ in T(ω,m)W̃u to get a normal bundle Êu(ω,m).

Since TM̃ and TW̃u are both measurable, Êu(ω,m) is also measurable. Moreover, the angle

between Êu(ω,m) and T(ω,m)M̃ are uniformly bounded away from 0. So by Lemma 5.4.4,

all properties listed in lemma 5.4.2 hold, even though Ê(ω,m) may not be close to Eu. So

we can replace the bundle Ẽu(ω,m) in lemma 5.4.3 by Êu(ω,m) and still get the unique

invariant bundle Eu(ω,m) by the same argument. In this way, the contraction mapping in

the functional equation of h(ω, x) is measurable in ω and Cr−1 in x. As we got the mea-

surability of v in proposition 5.1.4, we get the measurability of h(ω, x)–the representation of

Eu(ω,m). This completes the proof of the lemma.
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The bundles Ec(ω), Es(ω) and Eu(ω) satisfy all the conditions listed in proposition 5.4.1.

So we have proved Proposition 5.4.1.

Summarizing Proposition 4.2.1, 5.1.3, 5.2.1, 5.2.3, 5.3.1,5.3.2 and 5.4.1, gives Theorem

3.0.1.

5.5 Last but not Least

we abstract from the property of normal hyperbolic a key lemma for later use:

Lemma 5.5.1. (1) There exist positive constants 0 < a < 1 and c1 such that:

||ΠsDφ(t, θ−tω)(φ(−t, ω)(m))|Es(θ−tω)|| < c1a
t

for all m ∈ M̃(ω) and t ≥ 0,

||ΠuDφ(t, θ−tω)(φ(−t, ω)(m))|Eu(θ−tω)|| < c1a
t

for all m ∈ M̃(ω) and t ≤ 0.

(2) If α < rβ, there exist c2 > 0 and r′ > r such that

||ΠsDφ(t, θ−tω)(φ(−t, ω)(m))|Es(θ−tω)|| ||Dφ(−t, ω)(m)|Ec(ω)||r′ < c2

for all m ∈ M̃(ω) and t ≥ 0,

||ΠuDφ(t, θ−tω)φ(−t, ω)(m)|Eu(θ−tω)|| ||Dφ(−t, ω)(m)|Ec(ω)||r′ < c2

for all m ∈ M̃(ω) and t ≤ 0.
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(3) If α < rβ, there exist c3 > 0 and r′ > r such that

||ΠsDφ(t, θ−tω)φ(−t, ω)(m)|Es(θ−tω)|| ||Dφ(−t, ω)(m)|Ec(ω)||

||Dφ(t, θ−tω)φ(−t, ω)(m)|Ẽc(θ−tω)||r′−1 < c3

for all m ∈ M̃(ω) and t ≥ 0,

||ΠuDφ(t, θ−tω)φ(−t, ω)(m)|Eu(θ−tω)|| ||Dφ(−t, ω)(m)|Ec(ω)||

||Dφ(t, θ−tω)φ(−t, ω)(m)|Ẽc(θ−tω)||r′−1 < c3

for all m ∈ M̃(ω) and t ≤ 0.

Proof. This follows exactly the same proof of lemma 5.4.2.

Chapter 6. Invariant Foliation

6.1 Existence of the Invariant Foliation

In this section, we prove the existence of invariant foliation of the random unstable manifold.

We will keep using the notationsM, M̃,W , W̃ , Ei(the deterministic bundles) and Ei(ω)(the

random bundles) to mean what they were in the previous sections. Others will be given new

meanings when used.

We construct the invariant foliation in local coordinates on W̃u(ω). The basic idea is due

to Hadamard [H] and involves a graph transform. First, we take a set of Lipschitz graphs in

local charts, which pass through different points on the random invariant manifold M̃(ω) and

are contained in the random unstable manifold W̃u(ω). Then, we consider a random graph

tranform on these graphs by φ(t, ω) for some large fixed t > 0. We show that this random

graph transform is a contraction on the space of such sets of graphs and the resulting fixed

set of graphs gives us the invariant foliation of the random unstable manifold. By reversing
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the time, we get the invariant foliation of the random stable manifold. The technical hurdle

is the construction of local charts. We need the local charts on W̃u(ω) for different ω ∈ Ω,

while at the same time we need those charts are all related to each other for different ω.

We overcome this difficulty by using the fact that the random unstable manifold W̃u(ω) and

deterministic unstable manifold Wu are Cr diffeomorphic and close. Thus, we can define

local coordinates on Wu and then induce local coordinates on W̃u(ω). We denote i(ω) the

Cr diffeomorphism fromWu to W̃u(ω). For any fixed ω, i(ω) is Cr close to the identity map

Id.

To define local coordinates on Wu, we follow Fenichel’s approach, see [F2] page 1122.

Let exp be the exponential map. For each m ∈ M and ν ∈ TWu|M, let expm(ν) be the

end point of the geodesic with initial point m and initial tangent vector ν. We borrow the

following lemma from [F2]:

Lemma 6.1.1. There exists 0 < ε1 such that for each m ∈M,

expm : {ν ∈ TmWu|M : |ν| < ε1} → Wu

is a diffeomorphism onto its range and its range lies in Wu. Moreover, the derivative of

the exponential map satisfies that D expm(0) is the identity map and ||D expm(ν)|| and

||[D expm(ν)]−1|| are arbitrarily close to 1 uniformly for m ∈M and |ν| < ε1.

Define

Γ(ω) : TW̃u(ω)|M̃(ω) 7→ W̃u(ω)

by

Γ(ω) := i(ω) ◦ exp ◦ [D i(ω)]−1.

This gives us local coordinates on W̃u(ω) near M̃(ω). By the uniform closeness of ψ(t) and

φ(t, ω), the uniform closeness of Wu and W̃u(ω) and Lemma 6.1.1, there exists 0 < ε2 < ε1

such that Γ(ω) is well defined on {ν ∈ TW̃u(ω)|M̃(ω) : |ν| < ε2}. Fix a K > 0 big enough.
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There exists 0 < ε3 < ε2 such that

φ(K,ω){Γ(ω)(TW̃u(ω)|M̃(ω))(ε3)} ⊂ Γ(θKω)(TW̃u(θKω)|M̃(θKω))(ε2).

For any ω ∈ Ω,m ∈ M̃(ω), let ξc, ξu, xc xu denote elements of TM̃(θ−Kω, φ(−K,ω)(m)),

Eu(θ−Kω, φ(−K,ω)(m)), TM̃(ω,m) and Eu(ω,m) respectively. We use (ξc, ξu) and (xc, xu)

as coordinates near φ(−K,ω)(m) and m. The map φ(K, θ−Kω) has the form

(ξc, ξu) 7→ (xc, xu) = (gc(ξc, ξu), gu(ξc, ξu)),

defined for |ξ| = |ξc|+ |ξu| < ε3. Note that gc and gu depend on ξc, ξu as well as on m and

ω. And there exists Q so large that all first partial derivatives of gc and gu along with their

inverses are bounded by Q.

By lemma 5.5.1 we have

||Dφ(−K,ω)(m)|Eu(ω)|| < 1

4
,

||D((φ|M̃(θ−Kω))(K, θ−Kω))φ(−K,ω)(m)||k||Dφ(−K,ω)(m)|Eu(ω)|| < 1

4
,

for any 0 ≤ k ≤ r. In terms of gc and gu, the above give us

||[D2g
u(0, 0)]−1|| = ||Dφ(−K,ω)(m)|Eu(ω)|| < 1

4
,

||[D2g
u(0, 0)]−1||||D1g

c(0, 0)||k < 1

4
, for 0 ≤ k ≤ r.

We also have from the invariance of M̃(ω) and E(ω) the following

gu(0, 0) = 0, gc(0, 0) = 0, D2g
c(0, 0) = 0.

By the compactness of M, the uniform closeness of ψ(K) and φ(K,ω) and the uniform
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closeness of W̃u(ω) and Wu, for any β > 0 and γ > 0 there exists 0 < ε4 < ε3 such that for

all ω ∈ Ω and m ∈ M̃(ω), if |ξc|, |ξ̄c|, |ξu|, |ξ̄u| ≤ ε4, then

||[D2g
u(ξc, ξu)]−1|| < 1

3
, (6.1.1)

||[D2g
u(ξc, ξu)]−1||||D1g

c(ξ̄c, ξ̄u)||k < 1

3
, for 0 ≤ k ≤ r, (6.1.2)

||gu(ξc, ξu)|| < γ, ||gc(ξc, ξu)|| < γ, ||D2g
c(ξc, ξu)|| < γ, (6.1.3)

|gu(ξc, ξu)− gu(ξc, ξ̄u)| ≥ [||[D2g
u(ξc, ξu)]−1||−1 − β] |ξu − ξ̄u|, (6.1.4)

|gc(ξc, ξu)− gc(ξ̄c, ξu)| ≤ [||D1g
c(ξc, ξu)||+ β] |ξc − ξ̄c|. (6.1.5)

For β sufficiently small, there exists a small positive δ0 such that if

|ξc − ξ̄c| ≤ δ0|ξu − ξ̄u|,

then

|gu(ξc, ξu)− gu(ξ̄c, ξ̄u)|

≥ |gu(ξc, ξu)− gu(ξc, ξ̄u)| − |gu(ξc, ξ̄u)− gu(ξ̄c, ξ̄u)|

≥ [||[D2g
u(ξc, ξu)]−1||−1 − β] |ξu − ξ̄u| −Q|ξc − ξ̄c|

≥ (3− β −Qδ0) |ξu − ξ̄u| > 2|ξu − ξ̄u|.

(6.1.6)

Let S denote the set of families of continuous maps h = {h(ω,m) : ω ∈ Ω, m ∈ M̃(ω)},

where h(m,ω)(xu) : Eu(m,ω)(ε4) → TM̃(ω,m)(ε4) is continuous in xu and the base point

m. Moreover, h(m,ω)(0) = 0.
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For h ∈ S, define

Lip h := sup
ω∈Ω

max
m∈M̃(ω)

sup
xu,x̄u∈Eu(ω,m)(ε4),xu 6=x̄u

|h(ω,m)(xu)− h(ω,m)(x̄u)|
|xu − x̄u|

,

if it exists. Denote by Sδ the set of all Lipschitz h:

Sδ := {h ∈ S : Lip h ≤ δ}.

Define a distance on Sδ,

d(h, h′) = sup{|h(m,ω)(xu)− h′(m,ω)(xu)|
|xu|

: ω ∈ Ω, m ∈ M̃(ω), 0 6= xu ∈ E(m,ω)(ε4)}.

The supremum exists because each term is bounded by 2δ. Under this metric, Sδ is complete.

Moreover, convergence in Sδ implies uniform convergence.

We will construct a family h ∈ Sδ such that W̃uu(ω,m) is the graph of h(ω,m).

Proposition 6.1.1. There exists a unique point in Sδ, which we denote by h. For any

t > K, h satisfies the overflowing invariance condition:

φ(−t, ω)(graph(h(ω,m))) ⊂ graph(h(θ−tω, φ(−t, ω)(m))).

Proof. We first note that in local coordinates the above overflowing invariance condition is

equivalent to the nonlinear functional equation:

h(ω,m)(gu(h(θ−Kω, φ(−K,ω)(m))(ξu)), ξu) = gc(h(θ−Kω, φ(−K,ω)(m))(ξu)), ξu).

We will show that this functional equation has a unique solution in Sδ.

Define a map G on Sδ → S as follows. For h ∈ Sδ, ω ∈ Ω, m ∈ M̃(ω),

(Gh)(m,ω)(xu) = gc(h(θ−Kω,m′)(ξu), ξu)
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where

xu = gu(h(θ−Kω,m′)(ξu), ξu),

m′ = φ(−K,ω)(m).

The next lemma justifies this definition.

Lemma 6.1.2. If δ and ε4 are sufficiently small, for each h ∈ Sδ, ω ∈ Ω and m ∈ M̃(ω),

the map ξu 7→ gu(h(θ−Kω,m′)(ξu), ξu) is one-to-one on E(θ−Kω,m′)(ε4) and E(ω,m)(ε4) is

contained in its range.

Proof. By (6.1.6) we conclude that gu is one-to-one. Then gu is a continuous injection from

an open subset of Euclidean space to Euclidean space of the same dimension. By invariance

of domain, the range of gu is open. Since gu(0, 0) = 0, there exists c > 0 such that B(0, c)

is contained in the range of gu. Again from (6.1.6) we have that the pre-image of B(0, c) is

contained in B(0, c/2) and that B(0, ε4) is contained in the range of gu.

Lemma 6.1.3. If δ and ε4 are sufficiently small, G maps Sδ into Sδ.

Proof. It is obvious that (Gh)(ω,m)(0) = 0. We only need to estimate the Lipschitz constant

of Gh. Let xu, x̄u ∈ E(ω,m)(ε) and define ξu, ξ̄u by

xu = gu(h(θ−Kω,m′)(ξu), ξu),

x̄u = gu(h(θ−Kω,m′)(ξ̄u), ξ̄u),
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which are well defined by lemma 6.1.2. Then

|x̄u − xu| = |gu(h(θ−Kω,m′)(ξ̄u), ξ̄u)− gu(h(θ−Kω,m′)(ξu), ξu)|

≥ |gu(h(θ−Kω,m′)(ξu), ξ̄u)− gu(h(θ−Kω,m′)(ξu), ξu)|

−|gu(h(θ−Kω,m′)(ξ̄u), ξ̄u)− gu(h(θ−Kω,m′)(ξu), ξ̄u)|

≥ {||[D2g
u(h(θ−Kω,m′)(ξu), ξu)]−1||−1 − β}|ξ̄u − ξu|

−Q|h(θ−Kω,m′)(ξ̄u)− h(θ−Kω,m′)(ξu)|

≥ {||[D2g
u(h(θ−Kω,m′)(ξu), ξu)]−1||−1 − β −Qδ}|ξ̄u − ξu|.

Also, we have

|(Gh)(ω,m)(x̄u)− (Gh)(ω,m)(xu)|

= |gc(h(θ−Kω,m′)(ξ̄u), ξ̄u)− gc(h(θ−Kω,m′)(ξu), ξu)|

≤ [||D1g
c(h(θ−Kω,m′)(ξu), ξu)||+ β]|h(θ−Kω,m′)(ξ̄u)− h(θ−Kω,m′)(ξu)|+ γ|ξ̄u − ξu|

≤ {[||D1g
c(h(θ−Kω,m′)(ξu), ξu)||+ β]δ + γ}|ξ̄u − ξu|.

So by (6.1.1) and (6.1.2), for δ small enough, choosing ε4 and γ sufficiently small, we have

Lip Gh < δ.

Lemma 6.1.4. If δ and ε4 are sufficiently small, G is a contraction on Sδ.

Proof. Let h, ĥ ∈ Sδ and xu ∈ E(ω,m)(ε4). Then, there exist ξu, ξ̂u ∈ E(θ−Kω,m′)(ε4)
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such that xu = gu(h(θ−Kω,m′)(ξu), ξu) = gu(ĥ(θ−Kω,m′)(ξ̂u), ξ̂u). By (6.1.6), we have

2|ξu − ξ̂u| ≤ |gu(h(θ−Kω,m′)(ξu), ξu)− gu(h(θ−Kω,m′)(ξu), ξ̂u)|

= |gu(ĥ(θ−Kω,m′)(ξ̂u), ξ̂u)− gu(h(θ−Kω,m′)(ξu), ξ̂u)|

≤ Q|ĥ(θ−Kω,m′)(ξ̂u)− h(θ−Kω,m′)(ξu)|

≤ Q|ĥ(θ−Kω,m′)(ξ̂u)− ĥ(θ−Kω,m′)(ξu)|

+Q|ĥ(θ−Kω,m′)(ξu)− h(θ−Kω,m′)(ξu)|

≤ Qδ|ξ̂u − ξu|+Qd(ĥ, h)|ξu|.

Choosing δ such that δ < 1
Q

, we have

|ξu − ξ̂u| ≤ Qd(ĥ, h)|ξu|.

We also have

|(Gh)(ω,m)(xu)− (Gĥ)(ω,m)(xu)|

= |gc(h(θ−Kω,m′)(ξu), ξu)− gc(ĥ(θ−Kω,m′)(ξ̂u), ξ̂u)|

≤ |gc(ĥ(θ−Kω,m′)(ξ̂u), ξ̂u)− gc(ĥ(θ−Kω,m′)(ξu), ξu)|

+|gc(ĥ(θ−Kω,m′)(ξu), ξu)− gc(h(θ−Kω,m′)(ξu), ξu)|

≤ [(Q+ β)δ + γ]|ξu − ξ̂u|+ [||D1g
c(h(θ−Kω,m′)(ξu), ξu)||+ β]d(h, ĥ)|ξu|

≤ (Q+ β + τ)δ Qd(h, ĥ)|ξu|+ [||D1g
c(h(θ−Kω,m′)(ξu), ξu)||+ β]d(h, ĥ)|ξu|

= [||D1g
c(h(θ−Kω,m′)(ξu), ξu)||+ β + (Q+ β + θ)δ Q]d(h, ĥ)|ξu|
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and

|xu| = |gu(h(θ−Kω,m′)(ξu), ξu)|

= |gu(h(θ−Kω,m′)(ξu), ξu)− gu(0, 0)|

≥ [||[D2g
u(h(θ−Kω,m′)(ξu), ξu)]−1||−1 − β −Qδ]|ξu|.

Hence,

|(Gh)(ω,m)(xu)− (Gĥ)(ω,m)(xu)|
|xu|

≤ ||D1g
c(h(θ−Kω,m′)(ξu), ξu)||+ β + (Q+ β + θ)δ Q

D2gu(h(θ−Kω,m′)(ξu), ξu)]−1||−1 − β −Qδ
d(h, ĥ).

Choosing δ and ε sufficiently small and using (6.1.2) the factor preceding d(h, ĥ) can be

bounded by a constant λ < 1. Thus, we have

d(Gh,Gĥ) ≤ λd(h, ĥ).

This completes the proof of the lemma.

By the contraction principle, there exists a unique fixed point h of G in Sδ. h satisfies:

φ(−K,ω)(graph(h(ω,m))) ⊂ graph(h(θ−Kω, φ(−K,ω)(m))).

For any fixed t > K we can define G1 just as we defined G for K. We know that G and

G1 commute. So we have

GG1h = G1Gh = G1h.

By the uniqueness of G we conclude

G1h = h.
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Or equivalently

φ(−t, ω)(graph(h(ω,m))) ⊂ graph(h(θ−tω, φ(−t, ω)(m))).

This completes the proof of proposition 6.1.1.

6.2 Smoothness

In this section, we prove two kinds of smoothness of the invariant foliation: the smoothness

of each fiber and the smoothness in the base point. We also prove that as the base point

changes, the fiber changes measurably.

To prove smoothness, we first differentiate the equation of the fixed point formally to find

out the functional equation, which must be held by the real derivatives. Second, we show the

functional equation has a unique solution in some space. Last, we show that unique solution

is indeed the derivative.

6.2.1 Smoothness of the Fiber. By proving the following proposition, we show that

each fiber of the invariant foliation is Cr.

Proposition 6.2.1. For any ω ∈ Ω and m ∈ M̃(ω), h(m,ω)(xu) is a Cr function in xu and

all derivatives Dkh(m,ω)(xu), 1 ≤ k ≤ r are continuous in the base point m.

Proof. First, we have

h(ω,m)(gu(h(θ−Kω,m′)(ξu), ξu)) = gc(h(θ−Kω,m′)(ξu), ξu). (6.2.1)
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Taking derivative formally on both sides of the above equation, we have

Dh(ω,m)(xu)[D1g
u(h(θ−Kω,m′)(ξu), ξu)Dh(θ−Kω,m′)(ξu) +D2g

u(h(θ−Kω,m′)(ξu), ξu)]

= D1g
c(h(θ−Kω,m′)(ξu), ξu)Dh(θ−Kω,m′)(ξu) +D2g

c(h(θ−Kω,m′)(ξu), ξu).

Thus, if h(ω,m) is differentiable, then we must have

Dh(ω,m)(xu)

= [D1g
c(h(θ−Kω,m′)(ξu), ξu)Dh(θ−Kω,m′)(ξu) +D2g

c(h(θ−Kω,m′)(ξu), ξu)]

[D1g
u(h(θ−Kω,m′)(ξu), ξu)Dh(θ−Kω,m′)(ξu) +D2g

u(h(θ−Kω,m′)(ξu), ξu)]−1

where

xu = gu(h(θ−Kω,m′)(ξu), ξu), m′ = φ(−K,ω)(m).

The candidate for Dh, which we denote by v, has the following form:

v = {v(m,ω) : ω ∈ Ω,m ∈ M̃(ω)}.

For each ω ∈ Ω,m ∈ M̃(ω), v(m,ω)(·) is a continuous map from

Eu(m,ω)(ε4)→ L(Eu(m,ω), TM̃(ω,m)),

or equivalently,

v(m,ω) ∈ C0(Eu(m,ω)(ε4), L(Eu(m,ω), TM̃(ω,m))).

69



Let TS be the space of all such v. Define the norm || · || on TS by

||v|| = sup
ω,m

max
xu∈Eu(m,ω)

||v(m,ω)(xu)||.

Under this norm, TS is complete. We want to find an element v ∈ TS such that

v(ω,m)(xu)

= [D1g
c(h(θ−Kω,m′)(ξu), ξu)v(θ−Kω,m′)(ξu) +D2g

c(h(θ−Kω,m′)(ξu), ξu)] (6.2.2)

[D1g
u(h(θ−Kω,m′)(ξu), ξu)v(θ−Kω,m′)(ξu) +D2g

u(h(θ−Kω,m′)(ξu), ξu)]−1

where

xu = gu(h(θ−Kω,m′)(ξu), ξu), m′ = φ(−K,ω)(m).

We prove the functional equation 6.2.2 of v has a unique solution in TS.

Define a sequence {vn} ⊂ TS by induction: Let v0 ≡ 0 and

vn+1(ω,m)(xu)

= [D1g
c(h(θ−Kω,m′)(ξu), ξu)vn(θ−Kω,m′)(ξu) +D2g

c(h(θ−Kω,m′)(ξu), ξu)] (6.2.3)

[D1g
u(h(θ−Kω,m′)(ξu), ξu)vn(θ−Kω,m′)(ξu) +D2g

u(h(θ−Kω,m′)(ξu), ξu)]−1

where

xu = gu(h(θ−Kω,m′)(ξu), ξu), m′ = φ(−K,ω)(m).

We have the following two lemmas, the proof of which follow exactly the same as we did in

section 5.1.

Lemma 6.2.1. ||vn|| < δ for all n.

Lemma 6.2.2. ||vn+1 − vn|| ≤ λ||vn − vn−1|| for some 0 < λ < 1.

Hence, vn converge to the unique solution v of equation 6.2.2. By the uniform conver-
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gence, v(m,ω)(xu) is continuous in xu and m.

The next lemma states that Proposition 6.2.1 holds for the case k = 1.

Lemma 6.2.3. Dh(m,ω)(xu) = v(m,ω)(xu).

Proof. For a fixed ω ∈ Ω, we define an increasing function %ω : (0, 1)→ R,

%ω(a)

= max
m∈M̃(ω)

sup
xu,xu′∈Eu(m,ω),0<||xu−xu′||<a

||h(m,ω)(xu′)− h(m,ω)(xu)− v(m,ω)(xu)(xu′ − xu)||
||xu′ − xu||

.

Note that %ω is bounded by 2δ.

We want to show %ω(a)→ 0 as a→ 0. To prove this, we claim

Claim: %ω(a) satisfies

%ω(a) ≤ α%ω′(κa) + r(θ−Kω, a)

for small a, where r(θ−Kω, a) is a decreasing function approaching to zero as a→ 0 uniformly

with respect to ω ∈ Ω and 0 ≤ α < 1, κ > 1.

The proof of the claim follows exactly the same as we did in proposition 5.1.2.

Replace successively a by aκ−1, aκ−2, · · · , aκ−n and ω by θKω, θ2Kω, · · · , θnKω respec-

tively and weight the terms with 1, 1
α
, · · · , 1

αn−1 and add them together to get:

1

αn−1
%θnKω(aκ−n) ≤ α%ω(a) + (1 +

1

α
+ · · ·+ 1

αn−1
) sup

ω
max
0≤t≤a

r(ω, t).

Then since %ω(a) ≤ 2δ, we have

%θnKω(aκ−n) ≤ 2αnδ +
1

1− α
sup
ω

max
0≤t≤a

r(ω, t).

Since ω is arbitrary, we get

%ω(aκ−n) ≤ 2αnδ +
1

1− α
sup
ω

max
0≤t≤a

r(ω, t).
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It follows that %ω(a)→ 0 as a→ 0.

So h(m,ω)(xu) is C1 in xu and Dh(m,ω)(xu) is continuous in the base point m.

Lemma 6.2.4. Dk−1v(m,ω)(xu) exists for 2 ≤ k ≤ r and is continuous in xu and m.

Moreover Dkh(m,ω)(xu) = Dk−1v(m,ω)(xu).

Proof. By induction, it is easy to see Dkvn is a Cauchy sequence in the corresponding space,

which implies the uniform convergence of Dkvn(m,ω). Since vn converge to v, we have that

Dkv(m,ω)(xu) exists and equals the uniform limit of Dkvn(m,ω)(xu).

Combining Lemma 6.2.3 and Lemma 6.2.4 together gives Proposition 6.2.1.

Proposition 6.2.2. The graph of h(ω,m) is tangent to E(ω,m) at m.

Proof. It is equivalent to show Dh(ω,m)(xu)|xu=0 = 0. Since

|h(ω,m)(xu)− h(ω,m)(x̄u)| ≤ δ|xu − x̄u|

we have

|Dh(ω,m)(0)| ≤ δ

for arbitrary δ > 0. It follows that Dh(ω,m)(0) = 0.

6.2.2 Smoothness about Base Point. In this subsection, we prove the fiber changes

Cr−1 smoothly as the base point on the center manifold changes. We will introduce a new

coordinate system, in which we prove the smoothness in the base point. The idea of our

proof is the same as we did in the last subsection.

Proposition 6.2.3. h(ω,m) is Cr−1 in m for m ∈ M̃.

Proof. We need to prove the random C0 manifold Σ = {Σ(ω) : ω ∈ Ω} defined by

Σ(ω) = {(m, p)|m ∈ M̃(ω), p ∈ W̃uu(ω,m)}
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is a Cr−1 submanifold of M̃ × W̃ = {M̃(ω)× W̃(ω) : ω ∈ Ω}.

Let M̃∗ = {M̃∗(ω) : ω ∈ Ω} be the diagonal embedding of M̃ to M̃ × W̃u:

M̃∗(ω) := {(m,m)|m ∈ M̃(ω)}.

Then, M̃∗ is a compact connected Cr random invariant manifold.

We embed TW̃u(ω) into T (M̃(ω) × W̃u(ω))|M̃∗(ω) as follows. Let γ(t) be a curve in

W̃u(ω) such that γ(0) = m ∈ M̃(ω). Then γ∗(t) := (m, γ(t)) is a curve in M̃(ω) × W̃u(ω)

such that γ∗(0) = (m,m). The mapping γ → γ∗ induces an injection TW̃u(ω)|M̃(ω) →

T (M̃(ω)×W̃u(ω))|M̃∗(ω). Let Eu
∗ and Ec

∗ be the image of Eu and TM̃ under this injection,

respectively. Then, we get the following splitting:

T (M̃(ω)× W̃u(ω))|M̃∗(ω) = TM̃∗(ω)⊕ Eu
∗ (ω)⊕ Ec

∗(ω).

The embedding we have here is based on [F3].

To show proposition 6.2.3, we need local coordinates and partitions of unity along the

line of section 4 and 5. We first present the proof in the case that M̃(ω) × W̃u(ω) is a

subset of a torus and Eu
∗ (ω) and Ec

∗(ω) are trivial bundles. In other words, we have global

coordinates. Later, we explain how this proof could be modified to fit the general case. The

idea for this subsection is the same as it was in the previous subsection.

Denote the global coordinates by (xcc, xu, xc) ∈ TM̃∗(ω) × Eu
∗ (ω)(ε5) × Ec

∗(ω)(ε5). The

induced random flow φ∗(K,ω) := (φ(K,ω), φ(K,ω)) on M̃(ω)× W̃u(ω) has the form:

(xcc, xu, xc)→ (jcc(xcc, xu, xc), ju(xcc, xu, xc), jc(xcc, xu, xc)). (6.2.4)

From the lemma 5.5.1 we have

||[D2j
u(xcc, 0, 0)]−1|| < 1

4
, (6.2.5)
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||[D2j
u(xcc, 0, 0)]−1||||D3j

c(xcc, 0, 0)||k < 1

4
, (6.2.6)

||[D1j
cc(xcc, 0, 0)]−1||k−1||[D2j

u(xcc, 0, 0)]−1||||D3j
c(xcc, 0, 0)|| < 1

4
(6.2.7)

for 1 ≤ k ≤ r. So for ε5 small enough, we have

||[D2j
u(xcc, xu, xc)]−1|| < 1

3
, (6.2.8)

||[D2j
u(xcc, xu, xc)]−1||||D3j

c(xcc, xu, xc)||k < 1

3
, (6.2.9)

||[D1j
cc(xcc, xu, xc)]−1||k−1||[D2j

u(xcc, xu, xc)]−1||||D3j
c(xcc, xu, xc)|| < 1

3
. (6.2.10)

From the invariance of M̃∗(ω), we have

ju(xcc, 0, 0) = 0, jc(xcc, 0, 0) = 0 (6.2.11)

and so

D1j
u(xcc, 0, 0) = 0, D1j

c(xcc, 0, 0) = 0. (6.2.12)

By the invariance of Eu
∗ (ω) we get

D2j
c(xcc, 0, 0) = 0 (6.2.13)

and

D1D2j
c(xcc, 0, 0) = 0. (6.2.14)

Hence, for any small γ, choosing ε5 small enough we have

|ju(xcc, xu, xc)| < γ, |jc(xcc, xu, xc)| < γ, (6.2.15)

||D1j
u(xcc, xu, xc)|| < γ, ||D1j

c(xcc, xu, xc)|| < γ, (6.2.16)
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||D2j
c(xcc, xu, xc)|| < γ, ||D1D2j

c(xcc, xu, xc)|| < γ. (6.2.17)

Moreover, we may suppose all first and second partial derivatives of jcc, ju, jc are bounded

by some Q > 0. Let this Q be large enough but finite such that it is the upper bound of all

bounded terms which may come later.

We represent Σ(ω) by

h∗(ω) : TM̃∗(ω,m
∗)× Eu

∗ (ω,m
∗)→ Ec

∗(ω,m
∗).

From Lemma 6.2.1, h∗(ω)(xcc, xu) is Cr in xu and Dk
2h
∗(ω)(xcc, xu) is C0 in xcc for 0 ≤ k ≤ r,

and the following hold

h∗(ω)(xcc, 0) = 0, D2h
∗(ω)(xcc, 0) = 0, ||D2h

∗(ω)(xcc, xu)|| ≤ δ,

||D2h
∗(ω)(xcc, xu)|| = ||D2h

∗(ω)(xcc, xu)−D2h
∗(ω)(xcc, 0)|| ≤ Q(ω)|xu|.

By the uniform Cr closeness of all M̃(ω) × W̃u(ω) to each other, the uniform closeness of

φ(K,ω) to the deterministic ψ(K) and the compactness, we get uniform estimate

||D2h
∗(ω)(xcc, xu)|| ≤ Q|xu|. (6.2.18)

From the invariance of Σ(ω) we obtain

h∗(ω)(xcc, xu) = jc(ξcc, ξu, h∗(θ−Kω)(ξcc, ξu)), (6.2.19)

where

xcc = jcc(ξcc, ξu, h∗(θ−Kω)(ξcc, ξu)),

xu = ju(ξcc, ξu, h∗(θ−Kω)(ξcc, ξu)).
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Taking the derivative with respect to ξcc formally on both side of (6.2.19) gives

D1h
∗(ω)[D1j

cc +D3j
ccD1h

∗(θ−Kω)] +D2h
∗(ω)[D1j

u +D3j
uD1h

∗(θ−Kω)](6.2.20)

= D1j
c +D3j

cD1h
∗(θ−Kω),

where the argument of h∗, j are clear from the context.

For any fixed ω ∈ Ω, let v∗(ω) ∈ C0(TM̃∗(ω) × Eu
∗ (ω), L(TM̃∗(ω), Ec

∗(ω))) and v∗ =

{v∗(ω) : ω ∈ Ω}. Define

||v∗||LIP = sup
ω

sup
xu 6=0

||v∗(ω)(xcc, xu)||
|xu|

. (6.2.21)

Let DS be the space of all such v. Define the norm on DS by (6.2.21). Under this norm,

DS is a complete metric space. We prove the following functional equation of v∗ ∈ DS has

a unique solution:

v∗(ω)(xcc, xu)[D1j
cc(ξcc, ξu, h∗(θ−Kω)(ξcc, ξu))

+D3j
cc(ξcc, ξu, h∗(θ−Kω)(ξcc, ξu))v∗(θ−Kω)(ξcc, ξu)]

+D2h
∗(ω)(xcc, xu)[D1j

u(ξcc, ξu, h∗(θ−Kω)(ξcc, ξu))

+D3j
u(ξcc, ξu, h∗(θ−Kω)(ξcc, ξu))v∗(θ−Kω)(ξcc, ξu)]

= D1j
c(ξcc, ξu, h∗(θ−Kω)(ξcc, ξu)) +D3j

c(ξcc, ξu, h∗(θ−Kω)(ξcc, ξu))v∗(θ−Kω)(ξcc, ξu),

(6.2.22)

where

xcc = jcc(ξcc, ξu, h∗(θ−Kω)(ξcc, ξu)),

xu = ju(ξcc, ξu, h∗(θ−Kω)(ξcc, ξu)).

We follow the approach of Lemma 6.2.3.
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Define a sequence {vn∗ } ⊂ DS by

v0
∗ = 0,

vn+1
∗ (ω) = [D1j

c +D3j
cD1h

∗(θ−Kω)−D2h
∗(ω)(D1j

u +D3j
uvn∗ (θ

−Kω))]

[D1j
cc +D3j

ccvn∗ (θ
−Kω)]−1,

where the arguments of h∗(ω) and vn+1
∗ are (xcc, xu), the arguments of h∗(θ−Kω) and vn∗ are

(ξcc, ξu), the arguments ofD1j
cc, D3j

cc, D1j
u, D3j

u, D1j
c, D3j

c are (ξcc, ξu, h∗(θ−Kω)(ξxx, ξu)).

We prove {vn∗ } is a Cauchy sequence in DS.

Lemma 6.2.5. ||vn+1
∗ ||LIP ≤ δ.

Proof. The proof of this lemma is straightforward following from (6.2.10), (6.2.15), (6.2.16),

(6.2.17) and (6.2.18).

Lemma 6.2.6. ||vn+1
∗ − vn∗ ||LIP < λ||vn∗ − vn−1

∗ ||LIP for some 0 < λ < 1.

Proof. First, we note that

vn+1
∗ (ω)(xcc, xu)[D1j

cc +D3j
ccvn∗ (θ

−Kω)(ξcc, ξu)]

+D2h
∗(ω)[D1j

u +D3j
uvn∗ (θ

−Kω)(ξcc, ξu)]

= D1j
c +D3j

cvn∗ (θ
−Kω)(ξcc, ξu),

(6.2.23)

vn∗ (ω)(xcc, xu)[D1j
cc +D3j

ccvn−1
∗ (θ−Kω)(ξcc, ξu)]

+D2h
∗(ω)[D1j

u +D3j
uvn−1
∗ (θ−Kω)(ξcc, ξu)]

= D1j
c +D3j

cvn−1
∗ (θ−Kω)(ξcc, ξu),

(6.2.24)

where the arguments ofD1j
cc, D3j

cc, D1j
u, D3j

u, D1j
c, D3j

c are (ξcc, ξu, h∗(θ−Kω)(ξxx, ξu)).
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From (6.2.23)−(6.2.24), we get

vn+1
∗ (ω)(xcc, xu)− vn∗ (ω)(xcc, xu)

= [D3j
c − vn∗ (θ−Kω)(ξcc, ξu)D3j

cc −D2h
∗(ω)(xcc, xu)D3j

u]

· [vn∗ (θ−Kω)(ξcc, ξu)− vn−1
∗ (θ−Kω)(ξcc, ξu)][D1j

cc +D3j
ccvn∗ (θ

−Kω)(ξcc, ξu)]−1.

(6.2.25)

We also have

|xu| = |ju(ξcc, ξu, h(θ−Kω)(ξcc, ξu))|

= |ju(ξcc, ξu, h(θ−Kω)(ξcc, ξu))− ju(ξcc, 0, h(θ−Kω)(ξcc, 0))|

≥ (||(D2j
u)−1||−1 − β)|ξu| −Qδ|ξu|.

(6.2.26)

From (6.2.10),(6.2.25) and (6.2.26), it is easy to get

||vn+1
∗ (ω)(xcc, xu)− vn∗ (ω)(xcc, xu)||

|xu|
<

1

2

||vn∗ (θ−Kω)(ξcc, ξu)− vn−1
∗ (θ−Kω)(ξcc, ξu)||

|ξu|
,

which gives us

||vn+1
∗ − vn∗ ||LIP ≤

1

2
||vn∗ − vn−1

∗ ||LIP.

Let v∗ be the uniform limit of {vn∗ }. We prove that v∗ is the partial derivative D1h
∗ of

h∗. Along the line of Lemma 6.2.3, we get that v∗ is the partial derivative D1h
∗ of h∗. We

already have that D2h
∗ exists and is C0. So h∗ is C1 jointly in (m,xu).

The rest of proposition 6.2.3 is straightforward, along the line of Lemma 6.2.1. So we

complete the proof of proposition 6.2.3.

Remark. h(ω,m, xu) is actually Cr−1 jointly in (m,xu).

Besides all the above smoothness properties, the invariant foliation has the following
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continuous property:

Proposition 6.2.4. W̃uu(θtω, x) is C0 in t for any fixed (ω, x).

Proof. Suppose m(0) is a point on the fiber W̃uu(ω,m) represented by xu(0)+h(ω,m, xu(0))

in local coordinates. From the invariance property of the foliation, we have φ(t, ω,m(0)) ∈

W̃uu(θtω, φ(t, ω,m). So φ(t, ω,m(0)) can be represented in local coordinates by

xu(t) + h(θtω, φ(t, ω,m), xu(t)).

Since φ(t, ω,m(0)) is C0 in t, xu(t) + h(θtω, φ(t, ω,m), xu(t)) is C0 in t. Then since xu(t)

and φ(t, ω,m) are both C0 in t, it must follow that h(θtω,m, xu) is C0 in t, which give us

the conclusion of the proposition.

Remark. From the proof of the proposition, we conclude that the smoothness of the fibers

W̃uu(θtω, x) in t for any fixed (ω, x) is the same as the smoothness of any orbit of the random

system.

General Case. If no global chart exists, we construct local charts on M̃ × W̃ near M̃∗

using a similar method as we did in section 3. Let M×W and M∗ be the deterministic

counterparts of M̃ × W̃ and M̃∗ respectively. As in lemma 6.1.1, a similar lemma holds.

In other words, lemma 6.1.1 persists if we replace M and W there by M∗ and M×W

respectively. Then the compactness ofM∗ gives us a local chart onM×W nearM∗. Then

the uniform Cr closeness of M̃(ω)×W̃(ω) toM×W induces a local chart on M̃×W̃ near

M̃∗. The method of induce is exactly the same as we did in section 3, after lemma 6.1.1.

In the local charts, the induced random flow φ∗(K,ω) has exactly the same form as

(6.2.4):

(xcc, xu, xc)→ (jcc(xcc, xu, xc), ju(xcc, xu, xc), jc(xcc, xu, xc)),

with a different understanding that j depends on m∗ ∈ M̃∗(ω) as well. All the estimates are

uniform about m and ω. So the proof is also adapted to the case of local charts.
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6.3 Measurability of the Fibers

In this section, we prove that the fibers in the unique family {W̃uu(ω,m) : ω ∈ Ω,m ∈ M̃(ω)}

change in a measurable way as ω changes.

What we need to do is to prove the representation h∗(ω, xcc, xu) of the unique family is

measurable. The major difficult is that the coordinate system we used to construct the unique

family depends on ω. In other words, the coordinates xcc and xu of h∗(ω, xcc, xu) depend

on ω. It is very hard to prove the measurability of h∗. To overcome this problem, we use

the measurability and smoothness of M̃∗(ω), Eu
∗ (ω) and Ec

∗(ω) to construct ω-independent

coordinates in Rm ⊕ Rl ⊕ Rm.

Lemma 6.3.1. There exists a coordinate system in which h∗ has a new form h̃∗(ω, ycc, yu)

with the following properties: ycc and yu are independent of ω; h̃∗(ω, ycc, yu) is Cr in yu and

Cr−1 in (ycc, yu) jointly.

Proof. Fix any ω0 ∈ Ω, let m0(ω0) ∈ M̃∗(ω0). Since for different ω ∈ Ω, all M̃∗(ω) are

Cr diffeomorphic to each other, we get a set of points m0(ω) ∈ M̃∗(ω) corresponding to

m0(ω0) ∈ M̃∗(ω0). Then from the so called measurable selection, there exist measurable

bases

{ēu1(ω,m0(ω)), · · · , ēul (ω,m0(ω))} and {ēc1(ω,m0(ω)), · · · , ēcm(ω,m0(ω))},

of the tangent spaces Eu
∗ (ω,m0(ω)) and Ec

∗(ω,m0(ω)).

From Cr−1 smoothness of M̃∗(ω0), Eu
∗ (ω0) and Ec

∗(ω0), there exist bases of the bundles

Eu
∗ (ω0) and Ec

∗(ω0):

{eu1(ω0,m(ω0)), · · · , eul (ω0,m(ω0))} and {ec1(ω0,m(ω0)), · · · , ecm(ω0,m(ω0))},
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which are Cr−1 in m(ω0) and satisfy:

eik(ω0,m0(ω0)) = ēik(ω0,m0(ω0)),

for i = u(c) and k = 1, · · · , l(k).

For different but fixed ω1 ∈ Ω, by the same reasoning, we get different Cr−1 bases of the

bundles Eu
∗ (ω1) and Ec

∗(ω1):

{eu1(ω1,m(ω1)), · · · , eul (ω1,m(ω1))} and {ec1(ω1,m(ω1)), · · · , ecm(ω1,m(ω1))}.

Do this kind of construction for all ω ∈ Ω, then we get

{eu1(ω,m(ω)), · · · , eul (ω,m(ω))} and {ec1(ω,m(ω)), · · · , ecm(ω,m(ω))}.

Claim: These bases are jointly measurable about (ω,m(ω)).

Notice that for fixed m0, they are measurable about ω. From the Cr−1 smoothness, the

measurability of the bundle and the Cr−1 diffeomorphism of the bundles to each other and to

the deterministic counterpart, for any fixed m1(the definition of m1(ω) are the same to that

of m0(ω)), the bases at (ω,m1(ω)) are measurable about ω because they could be viewed as a

composition of a measurable Cr−1 transition diffeomorphism, say Tm0,m1(ω, ·), with the bases

at (ω,m0(ω)). So they are measurable about ω and Cr−1 about m. Then the claim follows.

Therefore, there exist a neighborhood of 0 in Rm ⊕ Rl ⊕ Rm and a map

T (ω, ·) : M̃(ω)× W̃u(ω)→ D

such that T (ω, ·) is a Cr−1 diffeomorphism for each ω and T (·, z), T−1(·, z) are measurable

for each z ∈ M̃(ω) × W̃u(ω). Moreover, points on M̃(ω) = {(m,m)|m ∈ M̃} are mapped

to D ∩ Rm × {0} × {0} and eui (ω,m) are mapped to unit vectors in the ei directions in Rl

and ecj(ω,m) are mapped to unit vectors in the ej directions in Rm.
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h∗ has the form h̃∗(ω, ycc, yu) in this new coordinate system D. Obviously, all the prop-

erties listed in the lemma are satisfied by h̃∗.

Our next step is to prove that h̃∗(ω, ycc, yu) is measurable. The following lemma is from

[CDLS]:

Lemma 6.3.2. For a Polish space H, there is a mapping

P : Ω×H → H,

satisfying that P (ω, ·) is a homeomorphism for any ω ∈ Ω, and P (·, x), P−1(·, x) are mea-

surable for any x ∈ H. If φ is a continuous random dynamical system, then so is φ′ defined

by

φ′(t, ω, x) := P (θtω, φ(t, ω, P−1(ω, x)).

Recall that, φ∗(t, ω, x) is the Cr random flow in the original ω-dependent coordinate

system. Under the new ω-independent coordinate system, φ∗(t, ω, x) has the form

φ̃∗(t, ω, y) = T (θtω, φ∗(t, ω, T−1(ω)y)).

By the above lemma, φ̃∗(t, ω, y) is a Cr−1 random flow.

Next, we prove h̃∗(ω, ycc, yu) is measurable.

Proposition 6.3.1. h̃∗(ω, ycc, yu) is Cr−1 in (ycc, yu) and measurable in ω, so is measurable

in (ω, ycc, yu).

Proof. Recall that, in section 3, we constructed the invariant foliation by finding out the

unique fixed point of a contraction mapping G on Sδ (graph transform). So the invariant

foliation is the limit of any starting foliations(starting element of Sδ) under the mapping of

G.

Suppose h0(ω, x,m) is the representation of a starting foliation. After one iteration

under the graph transform, h0(ω, x,m) becomes h1(ω, x,m). By Proposition 6.1.1, we have
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the relationship between h0(ω, x,m) and h1(ω, x,m): for h0 ∈ Sδ, ω ∈ Ω, m ∈ M̃(ω),

h1(m,ω)(xu) = gc(h0(θ−Kω,m′)(ξu), ξu)

where

xu = gu(h(θ−Kω,m′)(ξu), ξu),

m′ = φ(−K,ω)(m).

From the above we see that as long as φ(t, ω, x) is measurable in ω and Cr in x, gu and

gc above are measurable in ω and Cr in other coordinates. Therefore, h1 has the same

measurability and smoothness properties as h0.

Now, we consider it in the new coordinate system. We note that h̃∗(ω, ycc, yu) is the limit

of a sequence h̃∗n(ω, ycc, yu) which is generated by iterating the graph of h̃∗0(ω, ycc, yu) under

the graph transform G∗, where G∗ is generated by the random flow φ̃∗(t, ω, y).

Because φ̃∗(t, ω, y) is a Cr−1 random flow, i.e., measurable in ω and Cr−1 in y, as long

as we take h̃∗0(ω, ycc, yu) ≡ 0, which is Cr−1 in (ycc, yu) and measurable in ω, we get the

Cr−1 smoothness and ω-measurability of all the sequence h̃∗n(ω, ycc, yu). Therefore, the limit

h̃∗(ω, ycc, yu) is also measurable in ω.

On the other hand, since the change of the coordinate system is given by T (ω, ·) which is a

Cr−1 diffeomorphism for each ω, h̃∗(ω, ycc, yu) is Cr−1. Therefore, h̃∗(ω, ycc, yu) is measurable

in (ω, ycc, yu).

Summing up the results of this section, we get the following

Proposition 6.3.2. The unique family of fibers {W̃uu(ω,m) : ω ∈ Ω,m ∈ M̃(ω)} is a Cr−1

family of Cr manifolds and the fibers in it change measurably. Moreover, W̃uu(θtω, x) is C0

in t for any fixed (ω, x).
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6.4 Asymptotic Property

In this section, we prove that the points on unstable fiber W̃uu(ω,m) are equivalent in a

certain asymptotic sense and characterize the invariant foliation. The technical difficult

is the lack of a uniformly metric (distance) on the random unstable(stable) manifold. To

overcome this, we again use the Cr diffeomorphism and Cr closeness of the random unstable

manifold to the corresponding deterministic ones to induce the one we need.

Since we will not use the smoothness in the base point nor the measurability of the

invariant foliation in this section, we will use the coordinate system used in section 6.1.

Suppose d̂(ω)(·, ·) is the geodesic distance on W̃u(ω): For any m,m′ ∈ W̃u(ω), d(m,m′)

is the infimum of the lengths of piecewise smooth rectifiable curves joining m and m′, if any

such curve exists. Otherwise d(m,m′) = ∞. Let d(·, ·) be the geodesic distance on Wu.

Then d induces a distance d̃(ω) on W̃u(ω) in the following manner:

d̃(ω)(m,m′) := inf{length of c(t)}

for c(t), t ∈ [0, a] a piecewise smooth rectifiable curves joining i−1(ω,m) and i−1(ω,m′) in

Wu. Since Wu and W̃u(ω) are uniformly C1 close, i(ω) are uniformly C1 close to Id, we

conclude that d̃(ω) is uniformly equivalent to d̂(ω), the geodesic distance on W̃u(ω). Under

d̃, we have

d̃(ω)(Γ(ω,m, ν),m) = |Di−1(ω,m)ν|.

Since Di(ω,m), Di(ω,m)−1 are uniformly close to the identity matrix transformation. So

we can define another uniformly equivalent distance d(ω) on W̃u(ω) such that

d(ω)(Γ(ω,m, ν),m) = |ν|.

We will use d(ω) to measure the distance on W̃u(ω). To save notation, we use d for all d(ω).

We have the following proposition which characterizes the fiber W̃uu(ω,m).
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Proposition 6.4.1. Suppose m,m′ ∈ M̃(ω), p ∈ W̃uu(ω,m) and p′ ∈ W̃uu(ω,m′), then

(i) d(φ(−t, ω)(p), φ(−t, ω)(m))→ 0 exponentially as t→∞;

(ii) If m 6= m′ and d(φ(−t, ω)(m), φ(−t, ω)(m′))→ 0 as t→∞, then

d(φ(−t, ω)(p), φ(−t, ω)(m))

d(φ(−t, ω)(p′), φ(−t, ω)(m))
→ 0 as t→∞,

d(φ(−t, ω)(p), φ(−t, ω)(m))

d(φ(−t, ω)(p), φ(−t, ω)(m′))
→ 0 as t→∞;

(iii) W̃uu(ω,m) ∩ W̃uu(ω,m′) = ∅ if m 6= m′;

(iv) W̃u(ω) = ∪m∈M̃(ω)W̃uu(ω,m).

Proof. From lemma 5.5.1 we have

||Dφ(−K,ω)(m)|Eu(ω)|| < 1

4
aK1

and

||D((φ|M̃(θ−Kω))(K, θ−Kω))φ(−K,ω)(m)||r||Dφ(−K,ω)(m)|Eu(ω)|| < 1

4

which yield that for some a1 < a2 < 1,

||Dφ(−K,ω)(m)|Eu(ω)|| < 1

4
aK1 <

1

4
aK2 ,

||D((φ|M̃(θ−Kω))(K, θ−Kω))φ(−K,ω)(m)||k||Dφ(−K,ω)(m)|Eu(ω)|| < 1

4
aK2 ,

where k is no larger than r.

Just as we get the estimates (6.1.1), (6.1.2) and (6.1.6), we get similar estimates:

||[D2g
u(ξc, ξu)]−1|| < 1

3
aK1 , (6.4.1)

||[D2g
u(ξc, ξu)]−1||||D1g

c(ξ̄c, ξ̄u)||k < 1

3
aK2 , (6.4.2)
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|gu(h(θ−Kω, x′)(ξu), ξu)| > 2
|ξu|
aK1

, (6.4.3)

where m1 = φ(−K,ω)(m). We have

d(Γ(ω,m, ν),m) = |ν|

for ω ∈ Ω, m ∈ M̃(ω) and |ν| < ε4. If δ is sufficiently small, and xu ∈ Eu(ω,m)(ε4),

xc ∈ TM̃(ω,m)(ε4) such that |xc| ≤ δ|xu|, for all ω ∈ Ω and m ∈ M̃(ω,m), then

3

4
|xu| ≤ d(Γ(ω,m, (xu, xc),m) ≤ 4

3
|xu|. (6.4.4)

Moreover, without the condition that |xc| ≤ δ|xu|, there is a constant c5 such that

d(Γ(ω,m, (xu, xc),m) ≥ c5|xc|.

This is because the angle between Eu(ω,m) and TM̃(ω,m) is bounded away from zero

uniformly.

To prove part (i) and (ii), it is enough to let t approach to infinity through multiples of

K.

(i) Let p = Γ(ω,m, (h(ω,m)(xu), xu)), φ(−K,ω, p) = Γ(θ−Kω,m1, (h(θ−Kω,m1)(ξu), ξu)).

Then we have xu = gu(h(θ−Kω,m1)(ξu), ξu) and by (6.4.3), (6.4.4),

d(φ(−K,ω)(p), φ(−K,ω)(m)) ≤ 4

3
|ξu| ≤ 4

3
· 1

2
aK1 g

u(h(θ−Kω,m1)(ξu), ξu)

=
2

3
aK1 |xu| ≤

8

9
aK1 d(p,m),

which leads the conclusion of part (i).

(ii) There exists N large enough such that for n ≥ N , d(φ(−nK, ω)(m), φ(−nK, ω)(m′))
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are so small that φ(−nK, ω)(m′) can be represented in local coordinates near

mn := φ(−nK, ω)(m)

as (ξ̂cn, ξ̂
u
n), while φ(−nK, ω)(p) is represented as (ξcn, ξ

u
n) where ξc1 = ξc, ξu1 = ξu, ξ̂c1 = ξ̂c,

ξ̂u1 = ξ̂u and ξc0 = xc, ξu0 = xu ξ̂c0 = x̂c, ξ̂u0 = x̂u as we used before.

Without loss of generality, we may assume that for any n ≥ 0, φ(−nK, ω)(m′) can be

represented in local coordinates near mn.

Since m′ ∈ M̃(ω) and M̃(ω) is invariant under φ(−t, ω), we have

|ξ̂cn| > δ|ξ̂un|

for any n ≥ 0. Particularly,

|ξ̂c| > δ|ξ̂u|.

Now

|xu| = |gu(h(θ−Kω,m1)(ξu), (ξu))|

≥ |gu(h(θ−Kω,m1)(ξu), (ξu))− gu(h(θ−Kω,m1)(ξu), 0)|

−|gu(h(θ−Kω,m1)(ξu), 0)− gu(0, 0)|

≥ [||[D2g
u(ξc, ξu)]−1||−1 − β]|ξu| −Qδ|ξu|
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and

|x̂c| = |gc(ξ̂c, ξ̂u)|

≤ |gc(ξ̂c, ξ̂u)− gc(0, ξ̂u)|+ |gc(0, ξ̂u)− gc(0, 0)|

≤ [||D1g
c(ξ̂c, ξ̂u)||+ β]|ξ̂c|+ γ|ξ̂u|

≤ [||D1g
c(ξ̂c, ξ̂u)||+ β +

γ

δ
]|ξ̂c|

= [||D1g
c(ξ̂c, ξ̂u)||+ β + τ ]|ξ̂c|.

So

|ξu|
|ξ̂c|
≤ |x

u|
|x̂c|

||D1g
c(ξ̂c, ξ̂u)||+ β + τ

||[D2gu(ξc, ξu)]−1||−1 − β −Qδ
≤ |x

u|
|x̂c|

aK2 .

Similarly

|ξun|
|ξ̂cn|
≤
|ξun−1|
|ξ̂cn−1|

aK2 ≤ · · · ≤
|xu|
|x̂c|

anK2 .

Since

d(m′,m) = |(x̂c, x̂u)| =
√
|x̂c|2 + |x̂u|2 ≤

√
1

δ2
+ 1 |x̂c| < (1 +

1

δ
)|x̂c|,

we conclude

d(φ(−nK, ω, p), φ(−nK, ω,m))

d(φ(−nK, ω,m′), φ(−nK, ω,m))
≤

3
4
|ξun|

c5|ξ̂cn|
≤ 3

4c5

anK2

|xu|
|x̂c|
→ 0 as n→∞.

This gives us

d(φ(−t, ω)(p), φ(t, ω)(m))

d(φ(−t, ω)(m′), φ(−t, ω)(m))
→ 0 exponentially as t→∞. (6.4.5)

Part (ii) is a conclusion of (6.4.5).

(iii) Suppose q ∈ W̃uu(ω,m) ∩ W̃uu(ω,m′) for m 6= m′. By part (i),

d(φ(−t, ω)(q), φ(−t, ω)(m))→ 0, d(φ(−t, ω)(q), φ(−t, ω)(m′))→ 0
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as t→∞. Hence d(φ(−t, ω)(m′), φ(−t, ω)(m))→ 0. Then by part (ii),

1 ≤ d(φ(−t, ω)(q), φ(−t, ω)(m)) + d(φ(−t, ω)(q), φ(−t, ω)(m′))

d(φ(−t, ω)(m′), φ(−t, ω)(m))
→ 0,

which is a contradiction.

(iv) Suppose (U,Φ) is a local chart on M̃(ω) near a point m ∈ M̃(ω) such that E(ω)

has an Cr−1 orthonormal basis in U . Let (V,Ψ) be a local chart on W̃u(ω) near m. Define

a map χ : Rm × Rl → Rm+l by

χ(xc, xu) = Ψ(Γ(ω,Φ−1xc, (h(ω,Φ−1xc)(xu), xu))).

Then this is a one-to-one continuous map from Euclidean space to Euclidean space with the

same dimension. By invariance of domain this map is a homeomorphism. From this fact we

conclude that

W̃u(ω) = ∪m∈M̃(ω)W̃
uu(ω,m).

Putting proposition 6.1.1, 6.2.1, 6.2.2, 6.2.3, 6.3.2 and 6.4.1 together, we complete the

proof of theorem 3.0.2.

By considering the time inverse flow, we have theorem 3.0.3.

Chapter 7. results for Overflowing and Inflowing Invariant

Manifolds

In this chapter, we discuss the cases of overflowing and inflowing invariant manifolds. The

proof of these results follows in the same fashion as the persistence of normally hyperbolic

invariant manifolds with slight modifications. We will mainly discuss the conditions of

theorem but not the proof of them.
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Theorem 7.0.1. Assume that ψ(t)(x) is a Cr flow, r ≥ 1, and has compact, connected Cr

normally hyperbolic overflowing invariant manifold M̄ =M∪ ∂M⊂ Rn. Then there exists

ρ > 0 such that for any Cr random flow φ(t, ω, x) in Rn if

||φ(t, ω)− ψ(t)||C1 < ρ, for t ∈ [0, 1], ω ∈ Ω,

then if α < rβ, φ(t, ω) has a Cr normally hyperbolic random overflowing invariant manifold

M̃(ω) such that for each ω ∈ Ω, M̃(ω) is Cr diffeomorphic to M.

Proof. We enlarge the overflowing invariant manifold M̄ to M̄1 := ψ(1,M̄) and M̄2 :=

ψ(2,M̄) such that

M̄ ⊂M1 ⊂ M̄1 ⊂M2 ⊂ M̄2,

where Mi, i = 1, 2, are the interiors of M̄i.

Following the same argument of the proof of Theorem 3.0.1, One can construct M̃(ω)

near M1 in a tubular neighborhood V of M̄2 as a section of normal bundle.

Since the normal direction contains only the stable direction, there is no need to combine

the center and the unstable direction. So the proof for the persistence actually is shorter.

We have the following theorem for the inflowing manifolds.

Theorem 7.0.2. Assume that ψ(t)(x) is a Cr flow, r ≥ 1, and has compact, connected Cr

normally hyperbolic inflowing invariant manifold M̄ = M∪ ∂M ⊂ Rn. Then there exists

ρ > 0 such that for any Cr random flow φ(t, ω, x) in Rn if

||φ(t, ω)− ψ(t)||C1 < ρ, for t ∈ [0, 1], ω ∈ Ω,

then if α < rβ, φ(t, ω) has a Cr normally hyperbolic random inflowing invariant manifold

M̃(ω) such that for each ω ∈ Ω, M̃(ω) is Cr diffeomorphic to M.

Remark 1. For the general overflowing case (with both extension and contraction in normal
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directions), if it is normally hyperbolic, an unstable manifold exists (see [F1] theorem 4) and

persists under random perturbation.

Remark 2. For the general inflowing case, if it is normally hyperbolic, a stable manifold

exists and persists under random perturbation.

Remark 3. Generally, for the overflowing(inflowing) case, we have neither the existence

of a stable(unstable) manifold of M nor the persistence of M. So we do not have the

persistence of the normal hyperbolicity, either. However, we have the following theorem

about the persistence of normal hyperbolicity:

Theorem 7.0.3. Assume that ψ(t) is a Cr flow, r ≥ 1, and has compact, connected Cr

normally hyperbolic overflowing(inflowing) invariant manifold M̄ = M∪ ∂M ⊂ Rn with

α < rβ, M has both the stable and unstable manifold Ws and Wu. Then there exists ρ > 0

such that for any random Cr flow φ(t, ω) in Rn if

||φ(t, ω)− ψ(t)||C1 < ρ, for t ∈ [0, 1], ω ∈ Ω,

as long as φ(t, ω) has compact, connected Cr random overflowing(inflowing) invariant man-

ifold ¯̃M(ω) with stable and unstable manifold W̃s(ω) and W̃u(ω) such that ¯̃M(ω), W̃s(ω)

and W̃u(ω) are C1 close to M̄, Ws andWu, respectively. Then ¯̃M(ω) is normally hyperbolic

with constant α < rβ.

Proof. The proof follows the line of section 5.4.

Now, we discuss the foliation results for all cases discussed above.

Recall that, we use the expanding property of the random unstable manifold (contraction

property of the random stable manifold) and the invariance of the center manifold to well

define the operator on the space of all fibers. And actually, for the random unstable manifold,

we only use the overflowing invariance of the center manifold, while for the random stable

manifold, we only use the inflowing invariance of the center manifold. In other words,
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to construct the unique family of fibers, we demand the normal direction and the center

direction have the same invariance property.

Under the conditions of theorem 7.0.1 and 7.0.2, the normal direction has a different

invariance property than the center direction does, which implies that the neighborhood of

the center manifold can not be foliated completely.

For the cases in Remark 1 (Remark 2), the normal direction has the same invariance

property as the center direction does. However, we generally do not have the persistence

of the center manifold. So generally we do not have a result about the foliation of the

random unstable manifold based on the random center manifold. In order for the random

unstable manifold in Remark 1(random stable manifold in Remark 2) to be foliated, some

extra conditions should be given. We have the following 2 theorems for those 2 cases:

Theorem 7.0.4. Assume the conditions of Theorem 7.0.3 hold for the overflowing case.

Then there exists a unique Cr−1 family of Cr submanifolds
{
W̃uu(ω, x) : ω ∈ Ω, x ∈ M̃(ω)

}
of W̃u(ω) satisfying:

(1) For each (ω, x) ∈ Ω × M̃,M̃(ω) ∩ W̃uu(ω, x) = {x}, TxW̃uu(ω, x) = Eu(ω, x) and

W̃uu(ω, x) varies measurably with respect to (ω, x) in Ω× M̃.

(2) If x1, x2 ∈ M̃(ω), x1 6= x2, then W̃uu(ω, x1) ∩ W̃uu(ω, x2) = ∅ and W̃u(ω) =

∪x∈M̃(ω)W̃uu(ω, x).

(3) For x ∈ M̃(ω), φ(t, ω)
(
W̃uu(ω, x)

)
⊂ W̃uu(θtω, φ(t, ω)x) for all t > 0 such that

φ(t, ω)x ∈ M̃(θtω).

(4) For y ∈ W̃uu(ω, x) and x1 6= x ∈ M̃(ω) with |φ(t, ω)(x1)−φ(t, ω)(x)| → 0 as t→ −∞,

we have

|φ(t, ω)(y)− φ(t, ω)(x)|
|φ(t, ω)(y)− φ(t, ω)(x1)|

→ 0

exponentially as t→ −∞.

(5) For y1, y2 ∈ W̃uu(ω, x), |φ(t, ω)(y1)− φ(t, ω)(y2)| → 0 exponentially as t→ −∞.
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(6) W̃uu(θtω, x) is C0 in t for any fixed (ω, x).

The next result is on the stable foliation.

Theorem 7.0.5. Assume the conditions of theorem 7.0.3 hold for the inflowing case. Then,

there exists a unique Cr−1 family of Cr submanifolds
{
W̃ss(ω, x) : ω ∈ Ω, x ∈ M̃(ω)

}
of

W̃s(ω) satisfying:

(1) For each (ω, x) ∈ Ω × M̃,M̃(ω) ∩ W̃ss(ω, x) = {x}, TxW̃ss(ω, x) = Es(ω, x) and

W̃ss(ω, x) varies measurably with respect to (ω, x) in Ω× M̃.

(2) If x1, x2 ∈ M̃(ω), x1 6= x2, then W̃ss(ω, x1) ∩ W̃ss(ω, x2) = ∅ and

W̃s(ω) = ∪x∈M̃(ω)W̃
ss(ω, x).

(3) For x ∈ M̃(ω), φ(t, ω)
(
W̃ss(ω, x)

)
⊂ W̃ss(θtω, φ(t, ω)x) for all t < 0 such that

φ(t, ω)x ∈ M̃(θtω).

(4) For y ∈ W̃ss(ω, x) and x1 6= x ∈ M̃(ω) with |φ(t, ω)(x1)− φ(t, ω)(x)| → 0 as t → ∞,

we have

|φ(t, ω)(y)− φ(t, ω)(x)|
|φ(t, ω)(y)− φ(t, ω)(x1)|

→ 0

exponentially as t→ +∞.

(5) For y1, y2 ∈ W̃ss(ω, x), |φ(t, ω)(y1)− φ(t, ω)(y2)| → 0 exponentially as t→ +∞.

(6) W̃ss(θtω, x) is C0 in t for any fixed (ω, x).

Chapter 8. Application to Geometric Singular Perturbation

In this chapter, we build geometric singular perturbation theory under small random per-

turbation and apply this random geometric singular perturbation theory to prove a random

version of the exchange lemma.
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8.1 Random Geometric Singular Perturbation Theory

We recall first deterministic singular perturbation. Let k,m be positive integers, n = k+m, r

be a positive integer or infinity, r ≥ 2, χ be a Cr m-dimensional submanifold of Rn. Generally,

singular perturbation problem involves a Cr system of ordinary differential equations of the

form

z′ = h(z, ε) (8.1.1)

defined for z ∈ Rn, ε ∈ (−ε0, ε0), subject to the condition

h(z, 0) = 0 for all z ∈ χ. (8.1.2)

Consider a system in Rn:

z′ = h(z, ε) + εH(θtω, z, ε), (8.1.3)

where ε ∈ (−ε0, ε0), ω ∈ Ω, h,H are Cr in (z, ε) for each ω ∈ Ω, subject to the condition

h(z, 0) = 0 for all z ∈ χ, (8.1.4)

and the C1 norm of H(θtω, z, ε) are uniformly bounded for t ∈ R, ω ∈ Ω, z ∈ Rn, ε ∈ (−ε0, ε0).

We call system (8.1.3) a random singular perturbation system.

The linearization of (8.1.3) for ε = 0 at z ∈ χ is

δz′ = D1h(z, 0)δz. (8.1.5)

It follows from (8.1.4) that zero is an eigenvalue of D1h(z, 0) of multiplicity at least m. We

call these m zeros corresponding to the tangent space of χ the tangential eigenvalues, and

call the remaining eigenvalues the normal eigenvalues. The long term properties of (8.1.3)

are highly related to the normal eigenvalues.
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We are interested in the case that all normal eigenvalues are nonzero, which motivates

the following notation: Let χN ⊂ χ be the open set where all the normal eigenvalues are

nonzero. (For z ∈ χN , the kernel of D1h(z, 0) has a unique invariant complement, so there is

a well-defined projection onto the kernel. We denote this projection by πχ. The kernel and

its invariant complement are Cr−1, so πχ is also Cr−1.) Let χH ⊂ χ be the open set where

all the normal eigenvalues have nonzero real parts. For z ∈ χH , the linearization of (8.1.3)

for ε = 0 normal to χ has a hyperbolic fixed point.

8.1.1 Terms and Notations. Let φ(t, ω) be a random flow. For V = {V (ω) : ω ∈ Ω}

a random manifold, define

I+(V (ω)) := {p ∈ V (ω) : φ(t, ω)(p) ∈ V (θtω) for all t ∈ [0,∞)}

I−(V (ω)) := {p ∈ V (ω) : φ(t, ω)(p) ∈ V (θtω) for all t ∈ (−∞, 0]}

I(V (ω)) := {p ∈ V (ω) : φ(t, ω)(p) ∈ V (θtω) for all t ∈ (−∞,∞)},

and

I+(V ) := {I+(V (ω)) : ω ∈ Ω}

I−(V ) := {I−(V (ω)) : ω ∈ Ω}

I(V ) := {I(V (ω)) : ω ∈ Ω}.

Sometimes, we use I+
ε , I

−
ε and Iε to mean the corresponding set under random flows φε(t, ω)

which are parameterized by ε.

Let V1 = {V1(ω) : ω ∈ Ω}, V2 = {V2(ω) : ω ∈ Ω} such that for all ω ∈ Ω, V1(ω) ⊂

V2(ω) ⊂ Rn. We say that V1 is invariant relative to V2 if orbit segments which leave V1

also leave V2. More precisely, this means that for any fixed ω, and all p ∈ V1(ω), if t1 ≥ 0

and φ(s, ω)(p) ∈ V2(θsω) for all s ∈ [0, t1], then φ(s, ω)(p) ∈ V1(θsω) for all s ∈ [0, t1],

and if t2 ≤ 0 and φ(s, ω)(p) ∈ V2(θsω) for all s ∈ [t2, 0], then φ(s, ω)(p) ∈ V1(θsω) for all
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s ∈ [t2, 0]. Similarly, we define relatively positively invariant and relatively negatively

invariant.

We say that a random set or random manifold V1 = {V1(ω) : ω ∈ Ω} is locally invariant

if V1 is invariant relative to some neighborhood V2 = {V2(ω) : ω ∈ Ω} of V1, where by

neighborhood we mean for each ω, V2(ω) is open and V1(ω) ⊂ V2(ω) ⊂ Rn. And similarly,

we define locally positively invariant and locally negatively invariant.

Suppose V = {V (ω) : ω ∈ Ω} is locally positively invariant, and let {S(p, ω) : ω ∈ Ω, p ∈

V (ω)} be a family of submanifolds of Rn parameterized by ω ∈ Ω and p ∈ V (ω). We say

that {S(p, ω) : ω ∈ Ω, p ∈ V (ω)} is locally positively invariant if

φ(t, ω)(S(p, ω)) ⊂ S(φ(t, ω)(p), θtω)

for all ω ∈ Ω, p ∈ V (ω) and t ≥ 0 such that φ(s, ω)(p) ∈ V (θsω) for all s ∈ [0, t]. Similarly,

if V = {V (ω) : ω ∈ Ω} is locally negatively invariant, and {S(p, ω) : ω ∈ Ω, p ∈ V (ω)}

is a family of submanifolds of Rn parameterized by ω ∈ Ω and p ∈ V (ω), we say that

{S(p, ω) : ω ∈ Ω, p ∈ V (ω)} is locally negatively invariant if

φ(t, ω)(S(p, ω)) ⊂ S(φ(t, ω)(p), θtω)

for all ω ∈ Ω, p ∈ V (ω) and t ≤ 0 such that φ(s, ω)(p) ∈ V (θsω) for all s ∈ [t, 0].

Suppose {Vε : ε ∈ (−ε0, ε0)} is a family of random submanifolds of Rn parameterized by

ε. Let

V ∗(ω) = {(p, ε) : ε ∈ (−ε0, ε0), p ∈ Vε(ω)},

V ∗ = {V ∗(ω) : ω ∈ Ω}.

We say that {Vε : ε ∈ (−ε0, ε0)} is a Cr family of random submanifolds of Rn if V ∗ is a

Cr random submanifold of Rn × (−ε0, ε0).

Suppose V is a locally invariant (or locally positively invariant or locally negatively
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invariant) random submanifold of Rn, {S(p, ω) : ω ∈ Ω, p ∈ V (ω)} is a family of random

submanifolds of Rn parameterized by ω ∈ Ω, p ∈ V (ω). Let

S∗(ω) = {(p, p′) : p ∈ V (ω), p′ ∈ S(p, ω)},

S∗ = {S∗(ω) : ω ∈ Ω}.

We say that {S(p, ω) : ω ∈ Ω, p ∈ V (ω)} is a Cr family of random submanifolds if S∗ is

a random Cr submanifold of R2n.

Let {S(p, ω, ε) : ε ∈ (−ε0, ε0), (p, ω) ∈ Vε} be a family of random submanifolds parame-

terized by (p, ω, ε) ∈ V ∗. Let

S∗(ω) = {(p, p′, ε) : ε ∈ (−ε0, ε0), (p, ω) ∈ Vε, p′ ∈ S(p, ω, ε)},

S∗ = {S∗(ω) : ω ∈ Ω}.

We say that {S(p, ω, ε) : ε ∈ (−ε0, ε0), (p, ω) ∈ Vε} is a Cr family of random submanifolds

if S∗ is a Cr random submanifold of R2n × (−ε0, ε0).

8.1.2 Theorem. We are ready to state the main theorems. Consider the system in Rn:

z′ = h(z, ε) + εH(θtω, z, ε),

where ε ∈ (−ε0, ε0), ω ∈ Ω, h,H are Cr in (z, ε) for each ω ∈ Ω, H is F ⊗ B(Rn) ⊗ B(R)

measurable and for each fixed ω, H is C0 in t. The following condition holds:

h(z, 0) = 0 for all z ∈ χ.

Moreover the C1 norm of H(θtω, z, ε) are uniformly bounded for t ∈ R, ω ∈ Ω, z ∈ Rn, ε ∈

(−ε0, ε0). Let φε(t, ω) be the generated random flow on Rn parameterized by ε ∈ (−ε0, ε0).
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It is well known that for each ε, φε(t, ω) is a continuous random dynamical system of class

Cr. Moreover, φε(t, ω) is C1 in t. See [A].

Let k1, k2, k3 be fixed integers such that k = k1 + k2 + k3. Let K ⊂ χN be a compact

connected manifold with boundary such that for all z ∈ K, D1h(z, 0) has k1 eigenvalues with

negative real part, k2 eigenvalues which are pure imaginary, and k3 eigenvalues with positive

real part.

For each m ∈ K, let Es
m, E

c
m, E

u
m denote the invariant subspaces of D1h(z, 0) associated

with the eigenvalues of D1h(z, 0) in the left half plane, on the imaginary axis, and in the

right half plane, respectively. Note that the dimension of Ec
m is k2 +m.

We call a manifold W cs a center-stable manifold of K under φ0(t, ω) if W cs is locally

positively invariant under φ0(t, ω), and for all m ∈ K, W cs is tangent to Es
m⊕Ec

m at m. We

define center-unstable manifold and center manifold the same way, with Es
m ⊕ Ec

m replaced

by Es
u ⊕ Ec

m and Ec
m, respectively.

Theorem 8.1.1. Let K ⊂ χN be a compact connected manifold with boundary such that for

all z ∈ K, D1h(z, 0) has k1 eigenvalues with negative real part, k2 eigenvalues which are pure

imaginary, and k3 eigenvalues with positive real part. Then

(i) There is a Cr family of random manifolds {W cs
ε : ε ∈ (−ε0, ε0)} such that W cs

ε is

locally positively invariant under the flow φε(t, ω) for each ε ∈ (−ε0, ε0) and W cs
0 is a

center-stable manifold of K under φ0(t, ω).

(ii) There is a Cr family of random manifolds {W cu
ε : ε ∈ (−ε0, ε0)} such that W cu

ε is

locally negatively invariant under the flow φε(t, ω) for each ε ∈ (−ε0, ε0) and W cu
0 is a

center-unstable manifold of K under φ0(t, ω).

(iii) There is a Cr family of random manifolds {W c
ε : ε ∈ (−ε0, ε0)} such that W c

ε is locally

invariant under the flow φε(t, ω) for each ε ∈ (−ε0, ε0) and W cs
0 is a center manifold

of K under φ0(t, ω).
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There is a neighborhood U of K such that I+
ε (U) ⊂ W cs

ε , I−ε (U) ⊂ W cu
ε , and Iε(U) ⊂ W c

ε for

each ε ∈ (−ε0, ε0). Moreover, the tangent space of the above random manifolds are all jointly

measurable about (ω, z).

Theorem 8.1.2. Under the condition and conclusion of theorem 8.1.1,

(i) There is a Cr−1 family {W ss
ε (p, ω) : ε ∈ (−ε0, ε0), ω ∈ Ω, p ∈ W c

ε (ω)} of Cr manifolds

such that for each fixed ε ∈ (−ε0, ε0), the family {W ss
ε (p, ω) : ω ∈ Ω, p ∈ W c

ε (ω)}

is locally positively invariant, the fiber W ss
0 (p, ω) ≡ W ss

0 (p) is tangent to Es
p at p for

each p ∈ K. Moreover, for each fixed ε and ω, p ∈ W ss
ε (p, ω); for different p, q ∈

W c
ε (ω), W ss

ε (p, ω) and W ss
ε (q, ω) are disjoint and

⋃
p∈W c

ε (ω) W
ss
ε (p, ω) = W cs

ε (ω). Each

W ss
ε (p, ω) intersects W c

ε (ω) transversely, in exactly one point p.

(ii) There is a Cr−1 family {W uu
ε (p, ω) : ε ∈ (−ε0, ε0), ω ∈ Ω, p ∈ W c

ε (ω)} of Cr manifolds

such that for each fixed ε ∈ (−ε0, ε0), the family {W uu
ε (p, ω) : ω ∈ Ω, p ∈ W c

ε (ω)}

is locally negatively invariant, the fiber W uu
0 (p, ω) ≡ W uu

0 (p) is tangent to Eu
p at p

for each p ∈ K. Moreover, for each fixed ε and ω, p ∈ W uu
ε (p, ω); for different

p, q ∈ W c
ε (ω), W uu

ε (p, ω) and W uu
ε (q, ω) are disjoint and

⋃
p∈W c

ε (ω) W
uu
ε (p, ω) = W cu

ε (ω).

Each W uu
ε (p, ω) intersects W c

ε (ω) transversely, in exactly one point p.

8.1.3 Proof of Theorem 8.1.1 and 8.1.2. The general idea to prove the main theorems

is that in a compact region, the original system can be viewed as a small perturbation of

the linearization of the ε = 0 system. The latter can be modified a little bit to possesses a

normally hyperbolic overflowing or inflowing invariant manifold which are in explicit form,

and then the random invariant manifold theory can be applied.

It is convenient to view ε as a dummy variable in the phase space. So we consider the

following system:

z′ = h(z, ε) + εH(θtω, z, ε)

ε′ = 0

(8.1.6)
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Since K is compact, simply connected, we may choose global Cr coordinates (x, y1, y2, y3, ε) =

Φ(z, ε) near K × {ε = 0} such that (8.1.6) takes the following form

x′ = f(x, y1, y2, y3, θ
tω, ε)

y′1 = g1(x, y1, y2, y3, θ
tω, ε)

y′2 = g2(x, y1, y2, y3, θ
tω, ε)

y′3 = g3(x, y1, y2, y3, θ
tω, ε)

ε′ = 0,

(8.1.7)

for x near some compact set K̃. (Here K̃ is a compact subset of Rm. We may sometimes

use this K̃ to mean the set {(x, 0) ∈ Rn : x ∈ K̃} or {(x, 0, 0) ∈ Rn+1 : x ∈ K̃}.) Moreover,

for x ∈ K̃,

f(x, 0, 0, 0, θtω, 0) = 0

gi(x, 0, 0, 0, θ
tω, 0) = 0 for i = 1, 2, 3,

(8.1.8)

and

∂(g1, g2, g3)

∂(y1, y2, y3)
|
y = 0

ε = 0

=


A1(x) 0 0

0 A2(x) 0

0 0 A3(x)

, (8.1.9)

where the eigenvalues of A1(x) are in the left half plane, the eigenvalues of A2(x) are on the

imaginary axis, and the eigenvalues of A3(x) are in the right half plane. The dimension of

A1, A2, A3 are k1, k2, k3.

Let δ1 be a small positive number. Define K̃1 := {x ∈ Rm, d(x, K̃) ≤ δ1}, U1 :=

{(x, y1, y2, y3, ε) : x ∈ K̃1, |yi| ≤ δ1, i = 1, 2, 3, |ε| ≤ δ1}. Then (8.1.7) is arbitrarily C1-close
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to

x′ = 0

y′1 = A2(x)y1

y′2 = A2(x)y2

y′3 = A3(x)y3

ε′ = 0,

(8.1.10)

uniformly in U1.

Let Λs = {(x, y1, y2, y3, ε) : y3 = 0}, Λu = {(x, y1, y2, y3, ε) : y1 = 0}, and Λ = Λs
⋂

Λu.

The manifolds with corners Λs
⋂
U1,Λ

u
⋂
U1 and Λ

⋂
U1 are compact. It is easy to check

that under the system (8.1.10), Λ
⋂
U1 is normally hyperbolic. However, Λ

⋂
U1 is neither

invariant nor overflowing invariant. We will modify the system (8.1.10) such that Λ
⋂
U1 is

overflowing invariant and still normally hyperbolic under the modified system.

Since K̃ is compact, there exist l1 < 0 < l3 such that for any x ∈ K̃, the largest of the

real parts of the eigenvalues of A1(x) is smaller than l1, and the smallest of the real parts of

the eigenvalues of A3(x) is bigger than l3. Choose Cr bases in Rk1 , Rk2 , Rk3 such that

< y1, A1(x)y1 > ≤ (l1 + δ2)|y1|2

< y2, A2(x)y2 > ≤ δ2|y2|2

< y2,−A2(x)y2 > ≤ δ2|y2|2

< y3,−A3(x)y3 > ≤ (−l3 + δ2)|y3|2

for all y1 ∈ Rk1 , y2 ∈ Rk2 , y3 ∈ Rk3 , where δ2 is an arbitrary positive number. This can be
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achieved using the ε− jordan form. So we have

||eA1(x)t|| ≤ e(l1+δ2)t for all t ≥ 0

||eA2(x)t|| ≤ eδ2t for all t ∈ R

||eA3(x)t|| ≤ e(l3−δ2)t for all t ≤ 0.

To modify the system (8.1.10) and (8.1.7), let a1, a2, a3, a4 and a5 be real numbers, satisfying

0 < a5 < a4 < a3 < a2 < a1 = δ1, and choose a C∞ ”bump” function B : [0, δ1] → R such

that B(r) = 0 for r ∈ [0, a4], B(a3) > 0, B(a2) < 0, B(a1) > 0 and B′(r) > 0 for r ∈ (a4, a3),

B′(r) < 0 for r ∈ (a3, a2), B′(r) > 0 for r ∈ (a2, a1). Let R : K̃1 → R be defined by

R(x) =

 0, x ∈ K̃,

d(x, K̃), x ∈ K̃c,

the modified systems are

x′ = f(x, y1, y2, y3, θ
tω, ε) + δ3B(R(x))x

y′1 = g1(x, y1, y2, y3, θ
tω, ε)

y′2 = g2(x, y1, y2, y3, θ
tω, ε) + δ3B(|y2|)y2

y′3 = g3(x, y1, y2, y3, θ
tω, ε)

ε′ = 0,

(8.1.11)

and

x′ = δ3B(R(x))x

y′1 = A2(x)y1

y′2 = A2(x)y2 + δ3B(|y2|)y2

y′3 = A3(x)y3

ε′ = 0,

(8.1.12)
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where δ3 is a small positive number.

Let

K̃i = {x ∈ K̃1 : d(x, K̃) ≤ ai}

Ui = {(x, y1, y2, y3, ε) : x ∈ K̃i, |y1| ≤ ai, |y2| ≤ ai, |y3| ≤ ai, |ε| ≤ δ1}

for i = 1, 2, 3, 4, 5. Choose δ1 small enough and 0 < δ2 � δ3 � δ1, then Λu
⋂
U1 is overflowing

invariant under (8.1.12) and normally (stably) hyperbolic, while Λs
⋂
U2 is inflowing invariant

under (8.1.12) and normally (unstably) hyperbolic. (By choosing δ2 � δ3,we make y2 expand

or contract on Λu
⋂
U1 or Λs

⋂
U2, respectively. By choosing both δ2, δ3 small, we make the

normal hyperbolicity strong enough to obtain enough smoothness.)

Now theorem 7.0.1 and 7.0.2 can be applied. Since δ1 is small enough, the flow generated

by (8.1.11) and (8.1.12) are uniformly C1 close for bounded time t. So by theorem 7.0.1, there

is a Cr random manifold Λ̃u = {Λ̃u(ω) : ω ∈ Ω} near Λu
⋂
U1 which is overflowing invariant

under (8.1.11), and by theorem 7.0.2, there is a Cr random manifold Λ̃s = {Λ̃s(ω) : ω ∈ Ω}

near Λs
⋂
U2 which is inflowing invariant under (8.1.11). Moreover, for system (8.1.11),

I−(U1) = Λ̃u, I+(U2) = Λ̃s. Since K̃ × {ε = 0} consists of equilibria of (8.1.11), Λ̃u, Λ̃s both

contain K̃ ×{ε = 0}. Because the linearization of (8.1.11) and (8.1.12) coincide at points of

K̃×{ε = 0}, the tangent space of Λ̃u and Λ̃s and that of Λu and Λs at points of K̃×{ε = 0}

coincide. Define

Λ̃i
ε := {(x, y1, y2, y3) : (x, y1, y2, y3, ε) ∈ Λ̃i} for i = u, s

. Then

Λ̃u
0 = {(x, y1, y2, y3) : (x, y1, y2, y3, 0) ∈ Λ̃u}

is a center-unstable manifold of K̃ under system (8.1.11), and

Λ̃s
0 = {(x, y1, y2, y3) : (x, y1, y2, y3, 0) ∈ Λ̃s}
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is a center-stable manifold of K̃ under system (8.1.11).

In order to apply the random foliation theory, consider Λ̃s, Λ̃u and Λ̃s
⋂

Λ̃u. Recall

that Λ̃s is C1-close to Λ
⋂
U2, Λ̃u is C1-close to Λ

⋂
U1, Λ̃s

⋂
Λ̃u is C1-close to Λ

⋂
U2 and

inflowing invariant under system (8.1.11). Since Λ
⋂
U2 is inflowing invariant and normally

hyperbolic, by theorem 7.0.3 Λ̃s
⋂

Λ̃u is also normally hyperbolic. By theorem 7.0.5, for each

ω ∈ Ω, there exists a Cr−1 family of Cr submanifold {W̃ss(ω, p) : p ∈ Λ̃s
⋂

Λ̃u(ω)} of Λ̃s(ω)

satisfying:

(1) For each ω and p ∈ Λ̃s
⋂

Λ̃u(ω), Λ̃s
⋂

Λ̃u(ω) ∩ W̃ss(ω, p) = {p} and W̃ ss(ω, p) varies

measurably with respect to (ω, p) in Ω× M̃.

(2) If p1, p2 ∈ Λ̃s
⋂

Λ̃u(ω), p1 6= p2, then W̃ss(ω, p1)∩W̃ss(ω, p2) = ∅, ∪x∈Λ̃s
⋂

Λ̃u(ω)W̃ss(ω, p)

is a neighborhood of Λ̃s
⋂

Λ̃u(ω) in Λ̃s(ω), and if δ1 is small enough, ∪x∈Λ̃s
⋂

Λ̃u(ω)W̃ss(ω, p)

is equal to Λ̃s(ω).

(3) For p ∈ Λ̃s
⋂

Λ̃u(ω), φ(t, ω)
(
W̃ss(ω, p)

)
⊂ W̃ss(θtω, φ(t, ω)p) for t big enough.

(4) For q ∈ W̃ss(ω, p) and p1 6= p ∈ Λ̃s
⋂

Λ̃u(ω) with |φ(t, ω)(p1) − φ(t, ω)(p)| → 0 as

t→∞, we have

|φ(t, ω)(q)− φ(t, ω)(p)|
|φ(t, ω)(q)− φ(t, ω)(p1)|

→ 0

exponentially as t→ +∞.

(5) For q1, q2 ∈ W̃ss(ω, p), |φ(t, ω)(q1)− φ(t, ω)(q2)| → 0 exponentially as t→ +∞.

Since Λ̃s
⋂

Λ̃u is not overflowing invariant but inflowing, theorem 7.0.4 can not be applied

directly. We consider the overflowing invariant manifold Λ
⋂
U3. By theorem 7.0.1, there is a

Cr random manifold Λ̄u = {Λ̄u(ω) : ω ∈ Ω} near Λu
⋂
U3 which is overflowing invariant under

(8.1.11) and contained in Λ̃u = {Λ̃u(ω) : ω ∈ Ω}. Now Λ̄u and Λ̄u
⋂

Λ̃s satisfy the conditions

of theorem 7.0.4. So we get the Cr−1 family of Cr submanifold {W̃uu(ω, p) : p ∈ Λ̄u
⋂

Λ̃s(ω)}

of Λ̄u(ω) having similar properties as listed above.
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Now we consider system (8.1.7). In U4 and U5, (8.1.11) and (8.1.7) coincide. Define for

p ∈ Λ̄u
⋂

Λ̃s(ω)
⋂
U5:

W uu(ω, p) := W̃uu(ω, p)
⋂

U4,

W uu
ε (ω, p) := {(x, y1, y2, y3) : (x, y1, y2, y3, ε) ∈ W uu(ω, p)}.

Define for p ∈ Λ̃u
⋂

Λ̃s(ω)
⋂
U5:

W ss(ω, p) := W̃ss(ω, p)
⋂

U4,

W ss
ε (ω, p) := {(x, y1, y2, y3) : (x, y1, y2, y3, ε) ∈ W ss(ω, p)}.

Then define

W cu
ε (ω) :=

⋃
p∈Λ̄u

⋂
Λ̃s(ω)

⋂
U5

W uu
ε (ω, p),

W cs
ε (ω) :=

⋃
p∈Λ̃u

⋂
Λ̃s(ω)

⋂
U5

W ss
ε (ω, p).

Let ε0 > 0 be smaller than every constant used so far, and define

W cu(ω) := {(x, y1, y2, y3, ε) : (x, y1, y2, y3) ∈ W cu
ε (ω), ε ∈ (−ε0, ε0)},

W cs(ω) := {(x, y1, y2, y3, ε) : (x, y1, y2, y3) ∈ W cs
ε (ω), ε ∈ (−ε0, ε0)},

W c(ω) := W cu(ω)
⋂

W cs(ω).

Then for each ω, W cu(ω) is a neighborhood of W c(ω) in Λ̄u, W cs(ω) is a neighborhood

of W c(ω) in Λ̃s. Since Λ̄u
0 is a center-unstable manifold of K̃ under system (8.1.11), W cs

0

is a center-unstable manifold of K̃ under system (8.1.7). Similarly, W cs
0 is a center-stable

manifold of K̃ under (8.1.7), W c
0 is a center manifold of K̃ under (8.1.7).

From the definition of W ss,W uu, all properties listed in (1),(2),(3),(4),(5) above persist.

In other words, W ss,W uu are the families of theorem 8.1.2.
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8.2 Random Exchange Lemma

8.2.1 Normal Form. In applications, many singular perturbation problems take the

following form:

x′ = (
dx

dτ
) = f1(x, y, ε)

εy′ = f2(x, y, ε).

(8.2.1)

We add real noise to the above system and get:

x′ = f1(x, y, ε) + εH1(θτω, x, y, ε)

εy′ = f2(x, y, ε) + εH2(θτω, x, y, ε),

(8.2.2)

and a corresponding fast system with t = τ/ε and ż := dz
dt

:

ẋ = εf1(x, y, ε) + ε2H1(θτω, x, y, ε)

ẏ = f2(x, y, ε) + εH2(θτω, x, y, ε).

(8.2.3)

Our task is to decouple the above system near some specific region so that the new system

could be analyzed quantitively. The tool is our random singular perturbation theory.

Let K be a bounded connected relatively open subset of {(x, y)|f2(x, y, 0) = 0}. Assume

for each point (x, y) ∈ K, the matrix

 0 0

D1f2(x, y, 0) D2f2(x, y, 0)


has 0 as an eigenvalue of multiplicity exactly m. No other eigenvalues lie on the imaginary

axis. So it corresponds to the case that K ⊂ χH which means that K is normally hyperbolic.

Then we can decouple system (8.2.3) near K. We have the following

Theorem 8.2.1. There exists a measurable Cr−1 change of coordinates, such that in the new
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coordinates which we denote by (a, b, x), the system of equations (8.2.3) takes the following

form:

ȧ = A(θtω, a, b, x, ε)a

ḃ = B(θtω, a, b, x, ε)b

ẋ = ε[C(θtω, x, ε) +X(θtω, a, b, x, ε)ab]

(8.2.4)

near K, for a ∈ Rk1, b ∈ Rk3, x ∈ Rm, A,B are k1× k1 and k3× k3 matrix valued functions,

A,B are Cr−2 in (a, b, x, ε), C is Cr−1 in (x, ε), X is Cr−3 in (a, b, x, ε), all of A,B,C,X

are C0 in t for fixed ω, and jointly measurable. Moreover, the following hold:

(a,Aa) ≥ 4α|a|2

(b, Bb) ≤ −4α|b|2
(8.2.5)

for some α > 0.

Proof. Let TRn|K = TK ⊕Es⊕Eu be the splitting corresponding to the normal hyperbol-

icity. Since K is relatively open and connected, it is contractible. It is well known that Es

and Eu are trivial bundles. Thus, we can set up a Cr coordinate system near K as follows:

choose (a, b, x), a ∈ Rk1 , b ∈ Rk3 , x ∈ Rm such that

K = {(a, b, x)|a = 0, b = 0},

Es = {(a, b, x)|a = 0},

Eu = {(a, b, x)|b = 0}.
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In this new coordinate system, (8.2.3) takes the following form

ȧ1 = A1(θtω, a1, b1, x1, ε)

ḃ1 = B1(θtω, a1, b1, x1, ε)

ẋ1 = εX1(θtω, a1, b1, x1, ε)

(8.2.6)

where A1, B1, X1 are Cr in (a1, b1, x1, ε), C
0 in t for each fixed ω, and F⊗B(Rn+1) measurable.

It can be assumed from Theorem 8.1.1 that there exists a Cr family of Cr random locally

invariant manifolds M ε(ω)(M0(ω) ≡ K), each having dimension m. And there exists a Cr

family of Cr random overflowing invariant manifolds W u
ε (ω) and random inflowing invariant

manifolds W s
ε (ω). Moreover, the Cr family of Cr random overflowing invariant manifolds

W u
ε (ω) is given by graphs of functions in the coordinates (a1, b1, x1), namely

W u
ε (θtω) = {(a1, b1, x1)|b1 = hu(θtω, a1, x1, ε)},

where hu(θtω, a1, x1, ε) is Cr in (a1, x1, ε), C
1 in t for each fixed ω, and F ⊗ B(Rk1+m+1)

measurable.

Make the following change of coordinates: (a1, b1, x1)→ (a2, b2, x2) by:

a2 = a1,

b2 = b1 − hu(θtω, a1, x1, ε),

x2 = x1.

Obviously, the transformation is invertible. In this new coordinates,

W u
ε (ω) = {(a2, b2, x2)|b2 = 0}.
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Consider the system in the new coordinates:

ȧ2 = ȧ1 = A1(θtω, a1, b1, x1, ε)

= A1(θtω, a2, b2 + hu(θtω, a2, x2, ε), x2, ε)

= A2(θtω, a2, b2, x2, ε)

ḃ2 =
d

dt
(b1 − hu(θtω, a1, x1, ε))

= B1(θtω, a2, b2 + hu(θtω, a2, x2, ε), x2, ε)−
d

dt
hu(θtω, a1, x1, ε)

= B2(θtω, a2, b2, x2, ε)

ẋ2 = εX2(θtω, a2, b2, x2, ε)

where, from the smoothness and measurability of A1, B1, X1 and hu, A2, B2, X2 are Cr in

(a2, b2, x2, ε), C
0 in t for each fixed ω, and F ⊗ B(Rn+1) measurable.

Moreover, the Cr family of Cr random inflowing invariant manifolds W s
ε (ω) is given by

graphs of functions in the coordinates (a2, b2, x2), namely

W s
ε (θtω) = {(a2, b2, x2)|a2 = hs(θτω, b2, x2, ε)},

where hs(θtω, b2, x2, ε) is Cr in (b2, x1, ε), C
1 in t for each fixed ω, and F ⊗ B(Rk3+m+1)

measurable. Next we make the following change of coordinates: (a2, b2, x2)→ (a3, b3, x3) by

a3 = a2 − hs(θtω, b2, x2, ε),

b3 = b2,

x3 = x2.

Again, the transformation is invertible. In these new coordinates,

W s
ε (ω) = {(a3, b3, x3)|a3 = 0},
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W u
ε (ω) = {(a3, b3, x3)|b3 = 0}.

The system of equations are now

ȧ3 = A3(θtω, a3, b3, x3, ε)

ḃ3 = B3(θtω, a3, b3, x3, ε)

ẋ3 = εX3(θtω, a3, b3, x3, ε)

(8.2.7)

and A3, B3, X3 are Cr in (a3, b3, x3, ε), C
0 in t for each fixed ω, and F⊗B(Rn+1) measurable.

From theorem 8.1.2, There is a Cr−1 family {W uu
ε (p, ω) : ε ∈ (−ε0, ε0), ω ∈ Ω, p ∈Mε(ω)}

of Cr manifolds such that for each fixed ε ∈ (−ε0, ε0), the family {W uu
ε (p, ω) : ω ∈ Ω, p ∈

Mε(ω)} is locally negatively invariant, the fiber W uu
0 (p, ω) ≡ W uu

0 (p) is tangent to Eu
p at p

for each p ∈ K. Moreover, for each fixed ε and ω, p ∈ W uu
ε (p, ω); for different p, q ∈ Mε(ω),

W uu
ε (p, ω) and W uu

ε (q, ω) are disjoint and
⋃
p∈Mε(ω) W

uu
ε (p, ω) = W cu

ε (ω). Each W uu
ε (p, ω)

intersects W c
ε (ω) transversely, in exactly one point p. We call each manifold of the family

an unstable fiber.

In the coordinates (a3, b3, x3), the unstable fibers are represented by huu(θtω, a3, x3, ε),

for huu is Cr in (a3, ε), C
r−1 in (a3, x3, ε), C

1 in t for each fixed ω and F ⊗ B(Rk1+m+1)

measurable, in the following manner

(a3, x3)→ (a3, h
uu(θtω, a3, x3, ε))

such that for fixed x3, (a3, h
uu(θtω, a3, x3, ε)) lies on the same fiber with base point (0, x3).

Now make the following change of coordinates: (a3, b3, x3)→ (a4, b4, x4) by

a4 = a3

b4 = b3,

x4 = huu(θtω, a3, x3, ε).
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This is a measurable Cr−1 change.

The Jacobian D(a4,b4,x4)
D(a3,b3,x3)

= 1 on {b3 = 0, a3 = 0}. Note the fact that

x4 = huu(θtω, a3, x3, ε)

= x3 + huu(θtω, a3, x3, ε)− huu(θtω, 0, x3, ε)

= x3 + h̃uu(θtω, a3, x3, ε)a3.

Since huu(θtω, a3, x3, ε) are uniformly Cr−1 close to huu(θtω, 0, x3, 0), which is independent

of ω, and K is bounded connected and relatively open, the above change of coordinates

is uniformly invertible for a3, b3 small. Under the new coordinate system, the system of

equations are

ȧ4 = A4(θtω, a4, b4, x4, ε)

ḃ4 = B4(θtω, a4, b4, x4, ε)

ẋ4 = εX4(θtω, a4, b4, x4, ε)

(8.2.8)

and A4, B4, X4 are Cr−1 in (a4, b4, x4, ε), C
0 in t for each fixed ω, and F⊗B(Rn+1) measurable.

The unstable fibers W uu
ε (θtω, p) are represented by

W uu
ε (θtω, p) = {(a4, b4, x4)|b4 = 0, x4 = constant }.

So by similar reason, by using the stable fibers, we could do another measurable Cr−1 change

of coordinates (a4, b4, x4)→ (a5, b5, x5) such that under the coordinates (a5, b5, x5), the stable

fibers W ss
ε (ω, p) are represented by

W ss
ε (ω, p) = {(a5, b5, x5)|a5 = 0, x5 = constant },
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and the system of equations are

ȧ5 = A5(θtω, a5, b5, x5, ε)

ḃ5 = B5(θtω, a5, b5, x5, ε)

ẋ5 = εX5(θtω, a5, b5, x5, ε)

(8.2.9)

with A5, B5, X5 C
r−1 in (a5, b5, x5, ε), C

0 in t for each fixed ω, and F ⊗B(Rn+1) measurable.

We name these final coordinates (a5, b5, x5) as (a, b, x). In a small neighborhood of K,

say {|a| ≤ ∆, |b| ≤ ∆, x ∈ K}, we have

W u
ε (ω, p) = {(a, b, x)|b = 0},

W s
ε (ω, p) = {(a, b, x)|a = 0},

W uu
ε (ω, p) = {(a, b, x)|b = 0, x = constant },

W ss
ε (ω, p) = {(a, b, x)|a = 0, x = constant }.

The system of equations are

ȧ = Ã(θtω, a, b, x, ε)

ḃ = B̃(θtω, a, b, x, ε)

ẋ = εX̃(θtω, a, b, x, ε)

(8.2.10)

with Ã, B̃, X̃ Cr−1 in (a, b, x, ε), C0 in t for each fixed ω, and F ⊗ B(Rn+1) measurable.

Note that {a = 0} is the random stable manifold, which is invariant. It follows that

Ã(θtω, 0, b, x, ε) = 0.

So

Ã(θtω, a, b, x, ε) = A(θtω, a, b, x, ε)a,
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for some k1 × k1 matrix valued function A.

Similarly,

B̃(θtω, a, b, x, ε) = B(θtω, a, b, x, ε)b,

for some k3 × k3 matrix valued function B. We have that A,B are Cr−2 in (a, b, x, ε), C0 in

t for each fixed ω, and F ⊗ B(Rn+1) measurable.

Since

W uu
ε (ω, p) = {(a, b, x)|b = 0, x = constant },

and

W ss
ε (ω, p) = {(a, b, x)|a = 0, x = constant },

on {a = 0} or {b = 0}, X̃ is independent of b or a respectively. It follows that

X̃(θtω, a, b, x, ε) = C(θtω, x, ε) +X(θtω, a, b, x, ε)ab,

for C Cr−1 in (x, ε), X Cr−3 in (a, b, x, ε), and both C and X are C0 in t for each fixed ω,

and measurable.

To prove (8.2.12), note that for ε = 0, A,B are independent of ω. Using the ε−Jordan

form and by compactness of K, there exists a Cr−1 basis of Rk1 and Rk3 , such that (8.2.12)

hold for ε = 0. Because A(θtω, a, b, x, ε) and B(θtω, a, b, x, ε) are uniformly C0 close to

A(θtω, 0, 0, x, 0) and B(θtω, 0, 0, x, 0), it follows that (8.2.12) also hold for small ε.

8.2.2 Boundary Value Problem. In this section, we discuss a boundary value problem.

All our discussion will be restricted to the compact region:

ΩK = {|a| ≤ ∆, |b| ≤ ∆, x ∈ K̄}
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for K a bounded connected relatively open subset of Rm. The system of equations is the

one we obtained in Theorem 8.2.1. For convenience, we write it down here:

ȧ = A(θtω, a, b, x, ε)a

ḃ = B(θtω, a, b, x, ε)b

ẋ = ε[C(θtω, x, ε) +X(θtω, a, b, x, ε)ab]

(8.2.11)

for a ∈ Rk1 , b ∈ Rk3 , x ∈ Rm, A,B are k1× k1 and k3× k3 matrix valued functions, A,B are

Cr−2 in (a, b, x, ε), C is Cr−1 in (x, ε), X is Cr−3 in (a, b, x, ε), all of A,B,C,X are C0 in t

for fixed ω, and jointly measurable. A,B satisfy:

(a,Aa) ≥ 4α|a|2

(b, Bb) ≤ −4α|b|2
(8.2.12)

for some α > 0.

The boundary conditions are given as Silnikov type: the values a(T ), b(0), x(0) are given.

In particular, the time T has the order of O(1
ε
). In the case that |a(T )| = |b(0)| = ∆, the

solution of the boundary value problem corresponds to a set of trajectories (parameterized

by ω) which enter the compact region ΩK and exit the region after a time of order O(1
ε
). So

each solution is actually a random process.

The tool is contraction the mapping principle. First we write the system as the sum of

a linear part and a nonlinear part. Then use the variation of constant formula to find out

the mapping of which the unique solution is the fixed point. The key part is to prove this

mapping is indeed a contraction.

For each x0 ∈ K, there exists a random process which is generated by the slow flow

x′ = C(θ
τ
ε ω, x, ε)

on Rm. Let ρε(τ, ω, ·) be the random dynamical system generated by the slow flow.
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One of the key points is to measure the difference of x(t, ω) and ρε(εt, ω, x
0), where x(t, ω)

is the x component of a sample path, typically a sample path of a solution of the boundary

value problem, which has x0 as the beginning x coordinate. For convenience, we introduce

a new dependent variable c to represent this difference:

c = x− ρε(εt, ω, x0).

So c satisfies:

ċ = C̄(θtω, a, b, c, x0, ε)

where

C̄(θtω, a, b, c, x0, ε) = ε[C(θtω, ρε(εt, ω, x
0)+c, ε)−C(θtω, ρε(εt, ω, x

0), ε)+X(θtω, a, b, c, x0, ε)ab].

We will discuss the following boundary value problem:

ȧ = A(θtω, a, b, x, ε)a

ḃ = B(θtω, a, b, x, ε)b

ċ = C̄(θtω, a, b, c, x0, ε)

a(T ) = a1, b(0) = b0, c(0) = 0.

(8.2.13)

We will sometimes use y to mean the argument (a, b), and use z to mean (a, b, c). We use

Pi to mean the projection to the i coordinate, for i = a, b, c, y. Also we will identify points

a ∈ Rk1 , b ∈ Rk3 with points (a, 0) and (0, b) ∈ Rk1+k3 .

Theorem 8.2.2. Let τ̄ > 0 be fixed. Let x0 ∈ K such that ρ0(τ, ω, x0) ∈ K for 0 ≤ τ ≤ τ̄ .

Fix any τ ∈ (0, τ̄). There exist ε0 > 0,∆ > 0 such that for any 0 < ε < ε0, T ∈ [ τ
ε
, τ̄
ε
],

|a1| ≤ ∆, |b0| ≤ ∆, there exists a unique solution of (8.2.13) which we denote by Ψ. So

Ψ = Ψ(a1, b0, x0, T )

115



is a random process parameterized by (a1, b0, x0, T ). Moreover, Ψ is C1 in (a1, b0, x0, T ), and

the partial derivatives of Ψ satisfy:

|(DPaΨ)(0)| = O(e−q/ε) (8.2.14)

|(DPbΨ)(T )| = O(e−q/ε) (8.2.15)

||DPcΨ|| = O(e−q/ε) (8.2.16)

for some q > 0. The norm || · || is equivalent to the maximum norm and is to be defined

later.

Proof. In order to use variation of constant formula, we write A(θtω, a, b, c, x0, ε)a and

B(θtω, a, b, c, x0, ε)b as the sum of linear part:

ȧ = A(θtω, 0, 0, ρε(εt, ω, x
0), ε)a+ la(θ

tω, a, b, c, x0, ε)

ḃ = B(θtω, o, o, ρε(εt, ω, x
0), ε)b+ lb(θ

tω, a, b, c, x0, ε)

where

la = [A(θtω, a, b, x, ε)− A(θtω, 0, 0, ρε(εt, ω, x
0), ε)]a,

lb = [B(θtω, a, b, x, ε)−B(θtω, 0, 0, ρε(εt, ω, x
0), ε)]a.

The first order partial derivatives of la, lb are all bound uniformly. We have

|Dala| = O(|z|)

|Dila| = O(|a|) for i = b, c, x0,

(8.2.17)

|Dblb| = O(|z|)

|Dilb| = O(|b|) for i = a, c, x0.

(8.2.18)
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Consider first the linear system:

ȧ = A(θtω, 0, 0, ρε(εt, ω, x
0), ε)a

ḃ = B(θtω, 0, 0, ρε(εt, ω, x
0), ε)b.

Let Φ(t, t0, ω, x
0) be the fundamental matrix satisfying Φ(t0, t0) = I. It follows that Φ(t, t0)

commutes with Pa, Pb. Moreover, by (8.2.12),

|Φ(t, t0)Pa| ≤ e2α(t−t0) for t ≤ t0 (8.2.19)

|Φ(t, t0)Pb| ≤ e−2α(t−t0) for t ≥ t0 (8.2.20)

From variation of constant formula, a random process

z(t, ω) = (y(t, ω), c(t, ω)) = (a(t, ω), b(t, ω), c(t, ω))

is a solution of (8.2.13) if and only if

y(t, ω) =Φ(t, T, ω, x0)a1 +

∫ t

T

Φ(t, T, ω, x0)Φ−1(s, T, ω, x0)la(θ
sω, z(s, ω), x0)ds

+ Φ(t, 0, ω, x0)b0 +

∫ t

0

Φ(t, 0, ω, x0)Φ−1(s, 0, ω, x0)lb(θ
sω, z(s, ω), x0)ds

c(t, ω) =

∫ t

0

C̄(θsω, z(s), x0)ds

(8.2.21)

for all 0 ≤ t ≤ T .

Let S = S(T ) be the space of continuous random process z(t, ω) = (a(t, ω), b(t, ω), c(t, ω))
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on [0, T ] with the norm

||z|| = ||a||+ ||b||+ ||c||

||a|| = sup
0≤t≤T

eα(T−t)|a(t)|

||b|| = sup
0≤t≤T

eαt|b(t)|

||c|| = sup
0≤t≤T

e−κεt|c(t)|,

where κ is a large number to be determined later. This is an equivalent norm to the maximum

norm. With this norm, S is complete.

It is obvious that

|a(t)| ≤ ||a||, |b(t)| ≤ ||b||, |c(t)| ≤ eκτ̄ ||c|| (8.2.22)

for 0 ≤ t ≤ T .

Define an operator G on S as follows. For any z(t, ω) ∈ S, Gz is a random process

defined by the right hand side of (8.2.21). Let

S∆ = {z ∈ S : ||z|| ≤ 4∆}.

We prove that for ε0,∆ small enough, G maps S∆ to itself and G is a contraction on S∆.

Notice the fact that G is a composition of a nonlinear Nemytski operator and bounded linear

maps, and the fact that the Nemytski operator is between functional spaces with supremum

norms. Then G is C1 differentiable and the derivatives are given by some explicit form

similar to the form of G. So by proving ||DG|| is uniformly small, we can show G is a

contraction.

To prove ||DG|| is small, we prove the a, b, c components of DG are all small. Consider

first PaDG. Let z(t, ω) ∈ S∆.
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|eα(T−t)PaDzG(z)δz|

=|eα(T−t)
∫ t

T

Φ(t, T, ω, x0)Φ−1(s, T, ω, x0)PaDzla(θ
sω, z(s), x0)δz(s)ds|

≤
∫ T

t

eα(T−t)e2α(t−s)|Dala(θ
sω, z(s), x0)δa(s)

+Dbla(θ
sω, z(s), x0)δb(s) +Dcla(θ

sω, z(s), x0)δc(s)|ds

=

∫ T

t

eα(t−s)[O(|z(s)|)|eα(T−s)δa(s)

+O(|eα(T−s)a(s)|)(|δb(s)|+ |δc(s)|)]ds

=O((1 + eκτ̄ )∆)||δa||+O(∆)(||δb||+ eκτ̄ ||δc||)

=O(eκτ̄∆)||δz||.

(8.2.23)

This shows

||DzPaG(z)|| = O(∆). (8.2.24)

By similar reasoning, we get

||DzPbG(z)|| = O(∆). (8.2.25)

Next we consider ||DzPcG(z)||, which is no bigger than ||DaPcG(z)|| + ||DbPcG(z)|| +

||DcPcG(z)||. We first prove ||DaPcG(z)|| is small.

|e−κεt(DaPcG(z)δa)(t)|

=|εe−κεt
∫ t

0

[DaX(θsω, z(s))δa(s)a(s)b(s) +X(θsω, z(s))δa(s)b(s)]ds|

=εO(

∫ T

0

|δa(s)| |b(s)|ds)

=εO(

∫ T

0

e−α(T−s)e−αsds ||δa|| ||b||)

=O(ε∆e−
ατ
ε )||δa||.

(8.2.26)
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This shows

||DaPcG(z)|| = O(∆). (8.2.27)

By similar reasoning, we get

||DbPcG(z)|| = O(∆). (8.2.28)

Consider DcPcG(z). We have

|e−κεt(DcPcG(z)δc)(t)| = O(ε

∫ t

0

|e−κεtδc(s)|ds) = O(ε

∫ t

0

e−κε(t−s)ds ||δc||) = O(
1

κ
).

This shows

||DcPcG(z)|| = O(
1

κ
). (8.2.29)

To sum up (8.2.24), (8.2.25), (8.2.27), (8.2.28) and (8.2.29), DG is small. We conclude that

for ∆ sufficiently small and κ sufficiently large, ||DG|| could be made to be smaller than 1
8
.

We still need to prove that G maps S∆ to itself. This will follow once we prove that

||G(z0)|| ≤ 3∆ for some z0 ∈ S∆, since then we would have

||G(z)|| ≤ ||G(z0)||+ 1

8
||z − z0|| ≤ 4∆.

Consider G(0).

G(0) = (Φ(t, T, ω, x0)a1,Φ(t, 0, ω, x0)b0, 0),

so

||G(0)|| ≤ |a1|+ |b0| < 3∆.

So G is a contraction on S∆. Let Ψ = Ψ(a1, b0, x0, T ) be the unique fixed point.

Consider the derivative of Ψ. We have

Ψ(a1, b0, x0, T ) = G(Ψ(a1, b0, x0, T ), a1, b0, x0, T ).
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To save notation, let µ ≡ (a1, b0, x0, T ). For j ∈ {a1, b0, x0, T}, then by the chain rule

DjΨ(µ) = DzG(Ψ(µ), µ)DjΨ(µ) +DjG(Ψ(µ), µ).

We have already proved ||DzG(Ψ(µ), µ)|| < 1
4
. It follows that

||DjΨ(µ)|| ≤ ||[I −DzG(Ψ(µ), µ)]−1DjG(Ψ(µ), µ)|| < 2||DjG(Ψ(µ), µ)||.

Similarly, the above hold with Ψ, G replaced by PiΨ, PiG:

||DjPiΨ(µ)|| < 2||DjPiG(Ψ(µ), µ)||,

for i = a, b, c.

First consider DjPaG:

Da1PaG(z, µ)(t) = Φ(t, T, ω, x0) (8.2.30)

Db0PaG(z, µ)(t) ≡ 0 (8.2.31)

DTPaG(z, µ)(t) =DTΦ(t, T, ω, x0)a1 + Φ(t, T, ω, x0)la(θ
Tω, z(T ), x0)

+

∫ t

T

DT [Φ(t, T, ω, x0)Φ−1(s, T, ω, x0)]la(θ
sω, z(s, ω), x0)ds

(8.2.32)

Dx0PaG(z, µ)(t) = Dx0Φ(t, T, ω, x0)a1+

∫ t

T

Dx0 [Φ(t, T, ω, x0)Φ−1(s, T, ω, x0)la(θ
sω, z(s, ω), x0)]ds

(8.2.33)
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We have

d

dt
Φ(t, T, ω, x0) = A(θtω, 0, 0, ρε(εt, ω, x

0))Φ(t, T, ω, x0)

Differentiate both sides with respect to T or x0 we find out that

|DiΦ(t, T, ω, x0)Pa| = O(e−2α(T−t)) (8.2.34)

for i = x0, T .

By (8.2.30), (8.2.31), (8.2.32), (8.2.33), (8.2.34) and similar reasoning as we did in prov-

ing (8.2.24), we obtain the boundedness of |eα(T−t)DjPaG(z, µ)(t)|. So ||DjPaG(z, µ)|| is

bounded. It follows easily from the definition of the equivalent norm || · || that (8.2.14) holds.

Similarly, we obtain (8.2.15).

Now consider DjPcG(z, µ). Obviously, PcG(z, µ) is independent of a1, b0, T . We only

need to consider Dx0PcG(z, µ):

Dx0PcG(z, µ)(t) =

∫ t

0

Dx0C(θsω, z(s), x0)ds = ε

∫ t

0

O(|c(s)|+ |a(s) |b(s)|)ds. (8.2.35)

We have

|c(t)| =|
∫ t

0

C(θsω, z(s), x0)ds|

=ε

∫ t

0

O(|c(s)|+ |a(s)| |b(s)|)ds

=O(ε)

∫ t

0

|c(s)|ds+O(ε)

∫ t

0

||a|| ||b||eα(s−T )e−αsds

=O(ε)

∫ t

0

|c(s)|ds+O(ε∆2)

∫ t

0

e−αTds

=O(ε)

∫ t

0

|c(s)|ds+O(e−αT ).

(8.2.36)

By Gronwall inequality

|c(t)| = O(e−αT eO(ε)t) = O(e−
1
2
αT ) = O(e−

1
2
α τ
ε ) = O(e−

q
ε ),
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so

||c|| ≤ |c(t)|eκτ̄ = O(e−
q
ε ),

then by (8.2.35)

Dx0PcG(z, µ)(t) = ε

∫ t

0

O(|c(s) + |a(s) |b(s)|)ds

= O(e−
q
ε εT ) + ε

∫ t

0

O(∆2)e−α(T−s)e−αsds

= O(e−
q
ε )

(8.2.37)

||Dx0PcG(z, µ)|| ≤ O(e−
q
ε )eκτ̄ = O(e−

q
ε ).

So (8.2.16) also holds.

8.2.3 Random Exchange Lemma. Suppose Σ = {(a, b, x) : b = r(a, x, ω)} is a random

invariant manifold of dimension k1 + p + 1, for 0 ≤ p ≤ m − 1. Σ intersects the random

stable manifold {a = 0} transversally. Also, Σ intersects {|b| = ∆} transversally at

Σ∆ = {(a, b, x) : |b| = ∆, x = u(a, x0, ω)},

where ω ∈ Ω̃ ⊂ Ω, and x0 ∈ J(ω), a p−dimensional submanifold of K. Here Ω̃ satisfies:

⋃
ω∈Ω̃,t∈R

θtω = Ω,

and for ω1 6= ω2, ω1, ω2 ∈ Ω̃, we have θtω1 6= θsω2 for any t, s ∈ R. Moreover, suppose the

transversality is at least uniformly of the order εl for some l > 0, so the derivatives of r and

u are uniformly bounded below by Cεl.
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Suppose there’s no equilibrium point for the slow flow ρε on K, or more generally suppose

|C(θ
τ
ε ω, x, ε)| ≥ Cεl.

Also, suppose C(θ
τ
ε ω, x, ε) is transversal to J(ω) for ω ∈ Ω̃ and the transversality is at least

uniformly of the order εl, which means the angle:

angle (C(θ
τ
ε ω, x, ε), Tx0J(ω)) ≥ Cεl.

Then under the slow random flow ρε, J(ω) evolves to become a p + 1 dimensional random

submanifold of Rm.

Let P (ω) ∈ Σ∆(ω), and after a time T̃ ∈ ( τ
ε
, τ̄
ε
), P (ω) evolves under the random flow to

a point q(ω) ∈ {|a| = ∆}. Between (0, T̃ ), it stays in ΩK . Let q̄(ω) = ρε(εT̃ , x0, ω), we have

the following random version of exchange lemma

Theorem 8.2.3. There exists a neighborhood U(ω) of q̄(ω) in ρε(εt, J(ω), ω) and a C1

function

h(ω) : {|a| ≤ ∆} × U(ω)→ Rk3+m

such that (a, b, x) is a point of Σ(ω) near q(ω) with

(a(T ), b(T ), x(T )) = φ(ω, T )(a0, b0, x0)

for some (a0, b0, x0) ∈ Σ∆ and τ < T < τ̄ if and only if

(b, x) = h(ω, a, ξ) and ξ = ρε(εT, ω, x
0).

Moreover,

|DkPbh(a, ξ)| = O(e−
λ
ε ) (8.2.38)

|Dk(Pxh(a, ξ)− ξ)| = O(e−
λ
ε ) (8.2.39)
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for k = 0 or 1 and some λ > 0.

Proof. For each fixed (a1, x0, T ), define a map η(a1, x0, T )(·) : {|a0| ≤ ∆} → Rk1 as follows:

a0 7→ PaΨ(a1, r(a0, u(a0, x0, ω), ω), x0, T )(0).

Since the derivatives of r and u grow at most as powers of ε−1 as ε → 0 while those of

PaΨ(a1, b0, x0, T )(0) are of the order O(e−
λ
ε ), it follows that Da0η is uniformly small for ε

sufficiently small. So η is a contraction.

Let ηf be the unique fixed point of η. Define h by

h(a, ξ, ω) = P(b,x)φ(ω, T )(ηf (a, x
0, T ), r(ηf , u(ηf , x

0, ω), ω), u(ηf , x
0, ω)),

then

h(a, ξ, ω) = P(b,x)Ψ(a, r(ηf (a, x
0, T ), u(ηf , x

0, ω), ω), x0, T )(T ). (8.2.40)

Thus h is well defined. From (8.2.15), (8.2.14), (8.2.40) and the chain rule, (8.2.38) and

(8.2.39) are satisfied.
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