
Brigham Young University Brigham Young University

BYU ScholarsArchive BYU ScholarsArchive

Theses and Dissertations

2012-04-12

Application of Parametric NURBS Geometry to Mode Shape Application of Parametric NURBS Geometry to Mode Shape

Identification and the Modal Assurance Criterion Identification and the Modal Assurance Criterion

Evan D. Selin
Brigham Young University - Provo

Follow this and additional works at: https://scholarsarchive.byu.edu/etd

 Part of the Mechanical Engineering Commons

BYU ScholarsArchive Citation BYU ScholarsArchive Citation
Selin, Evan D., "Application of Parametric NURBS Geometry to Mode Shape Identification and the Modal
Assurance Criterion" (2012). Theses and Dissertations. 3558.
https://scholarsarchive.byu.edu/etd/3558

This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion
in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please
contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.

http://home.byu.edu/home/
http://home.byu.edu/home/
https://scholarsarchive.byu.edu/
https://scholarsarchive.byu.edu/etd
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F3558&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=scholarsarchive.byu.edu%2Fetd%2F3558&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/3558?utm_source=scholarsarchive.byu.edu%2Fetd%2F3558&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu,%20ellen_amatangelo@byu.edu

Application of Parametric NURBS Geometry to Mode Shape Identification

and the Modal Assurance Criterion

Evan Selin

A thesis submitted to the faculty of
Brigham Young University

in partial fulfillment of the requirements for the degree of

Master of Science

C. Greg Jensen, Chair
David T. Fullwood

Brian D. Jensen

Department of Mechanical Engineering

Brigham Young University

June 2012

Copyright © 2012 Evan Selin

All Rights Reserved

ABSTRACT

 Application of Parametric NURBS Geometry to Mode Shape Identification
and the Modal Assurance Criterion

Evan Selin

Department of Mechanical Engineering, BYU
Master of Science

The dynamic characteristics of a part are highly dependent on geometric and material

properties of the part. The identification and tracking of vibrational mode shapes within an
iterative design process becomes difficult and time consuming due to the frequently changing
part definition. Currently, visual inspection of analysis results is used as the means to identify the
shape of each vibrational mode determined by the modal analysis. This thesis investigates the
automation of the mode shape identification process through the use of parametric geometry and
the Modal Assurance Criterion.

Displacement results from finite element modal analysis are used to create parametric

geometry templates which can be compared one to another irrespective of part geometry or finite
element mesh density. Automation of the mode shape identification process using parametric
geometry and the Modal Assurance Criterion allows for the mode shapes from a baseline design
to be matched to modified part designs, giving the designer a more complete view of the part’s
dynamic properties. It also enables the identification process to be completed much more quickly
than by visual inspection.

Keywords: NURBS, modal analysis, MAC, mode shape identification, automation

ACKNOWLEDGEMENTS

 I would like to thank Dr. Greg Jensen from Brigham Young University as my graduate

committee chair for all of his time, effort, and direction in helping me to pursue this research and

the thesis originating from it. I would also like to thank Kurt Heinemann and Ammon Hepworth

from Pratt & Whitney who have been instrumental in supporting and contributing to the success

of this research project on a weekly basis. Pratt & Whitney is also responsible for the funding of

this research for which I am especially grateful.

 v

TABLE OF CONTENTS

LIST OF TABLES .. vii

LIST OF FIGURES ... ix

1 Introduction ... 1

1.1 Problem Overview .. 2

1.2 Thesis Objective ... 3

1.3 Problem Delimitations .. 4

1.4 Thesis Organization .. 5

2 Background ... 7

2.1 Modal Analysis ... 7

2.2 The Modal Assurance Criterion .. 9

2.3 Parametric Geometry .. 12

3 Method ... 17

3.1 Gather Information From User ... 18

3.2 Transform Data into NURBS ... 18

3.2.1 Read Displacement File and Determine Node Sequence.. 19

3.2.2 Normalize Nodal Displacements .. 19

3.2.3 Normalize Node Locations ... 20

3.2.4 Transform Data into NURBS Curve ... 21

3.2.5 Transform Data into NURBS Surface .. 21

3.3 Store Template .. 23

3.4 Load Template of Known Mode Shape .. 23

3.5 MAC Calculation .. 23

3.5.1 Comparing Curves .. 24

 vi

3.5.2 Comparing Surfaces .. 24

3.6 Identify Mode Shape ... 25

4 Implementation ... 27

4.1 Gather Information From User ... 28

4.1.1 Mode Identification Application GUI ... 28

4.1.2 Create Templates GUI .. 29

4.2 Transform Data into NURBS ... 32

4.2.1 Read Displacement File and Determine Node Sequence.. 32

4.2.2 Normalize Nodal Displacements .. 35

4.2.3 Normalize Node Locations ... 36

4.2.4 Transform Data into NURBS Curve ... 36

4.2.5 Transform Data into NURBS Surface .. 38

4.3 Store Template .. 41

4.4 Load Template of Known Mode Shape .. 42

4.5 MAC Calculation .. 43

4.6 Identify Mode Shape ... 46

5 Results .. 49

5.1 Mode Identification – Differing Mesh Densities .. 49

5.2 Mode Identification – Differing Geometric Definitions ... 52

5.3 Mode Identification in Iterative Design .. 59

6 Conclusions .. 63

6.1 Recommendations ... 65

REFERENCES .. 69

 vii

LIST OF TABLES

Table 5-1: Modal Assurance Criterion values for tapered twisted non-linear plate52

Table 5-2: Accuracy of the method using curve templates ..57

Table 5-3: Accuracy of the method using surface templates ...57

Table 5-4: Time required by mode shape identification methods ...61

 ix

LIST OF FIGURES

Figure 1-1: Mode shapes produced by a modal analysis .. 2

Figure 2-1: Contour plot of nodal displacement magnitude ... 8

Figure 2-2: Countour plot of mode shape on different geometry ... 9

Figure 2-3: Sample MAC evaluation results ...10

Figure 2-4: Surface interpolation from a set of points ...13

Figure 2-5: Corresponding parametric points on different NURBS curves15

Figure 3-1: Flow chart of the mode identification method ..18

Figure 4-1: The mode identification application GUI ...28

Figure 4-2: The initial create templates GUI ...30

Figure 4-3: The create templates GUI with mode shape images ...31

Figure 4-4: Node sequencing, beginning at the Base-Leading Edge common node35

Figure 4-5: Transformation of node data into a NURBS curve ...38

Figure 4-6: Transformation of node data into a NURBS surface ..39

Figure 4-7: Intermediate square template in parameter space ...40

Figure 4-8: The intermediate template and displacement data create the final template41

Figure 4-9: The current results surface is compared to all loaded template surfaces44

Figure 5-1: Two geometrically identical models meshed differently50

Figure 5-2: Isometric views of each test geometry ..51

Figure 5-3: A baseline model and modified design ...53

Figure 5-4: Ten sample mode shapes from the modal analysis of a baseline design54

Figure 5-5: Contour plots for two easily misidentified mode shapes58

Figure 5-6: Template geometry for two easily misidentified mode shapes58

Figure 5-7: Isight Design of Experiment workflow ...60

1

1 INTRODUCTION

 Determining an object’s vibrational mode shapes and each mode’s corresponding

frequency is the aim of performing a modal analysis using the Finite Element Method and is the

first step in modeling the dynamic behavior of a structure[1]. Finite Element modal analysis

provides a simple check of a part’s dynamic properties for designers in the product development

process. If an iterative process, such as an optimization, is used to define and modify parameters

of the design, the frequencies of the vibrational modes and even the order in which they are

excited can change at each design iteration. A Modal Assurance Criterion has been developed

and used mostly in comparing and identifying analytical and experimental mode shapes [2], [3].

It can likewise be used to compare results between two analytical eigenvectors so long as the

nodal vectors are of the same size. If this is not the case, parametric curve and surface geometries

can be used as a means to compare and identify mode shape and frequency data for geometries

that are geometrically identical or which are meshed with differing levels of detail. This research

seeks a method by which parametric NURBS geometries are used in conjunction with the modal

assurance criterion to automatically identify vibrational mode shapes and frequencies from

modal analysis displacement data. This will make it simple to obtain detailed information about

a part’s dynamic behavior when an iterative design process is being used.

2

1.1 Problem Overview

 When an iterative design method, such as an optimization or design of experiments, is

used in the design process, parametric models can be updated with new geometry, feature

dimensions, positions, and material properties among other things. The goal in changing the

parameters and geometries is to arrive at a design that is superior to the baseline, or starting

design. Iteratively modifying the properties of the part in turn modifies the static and dynamic

behavior of the part when compared to the baseline design. Depending on how much the part is

changed, these behavioral differences can be large or small.

A modal analysis completed using finite element analysis results in natural frequencies

and mode shapes of the part modeled. These results are reported in order of increasing natural

frequency. Contour plots from a modal analysis can be seen in Figure 1-1 below.

Figure 1-1 Mode shapes produced by a modal analysis

The frequencies of the mode shapes are affected by design changes and the vibrational mode

shapes excited by these natural frequencies can exhibit themselves in a different sequence on

3

different design iterations. The task of identifying the specific mode shape associated with each

natural frequency is complicated by this reordering of natural frequencies between iterations.

The Modal Assurance Criterion (MAC) was developed in order to provide a

measurement of consistency between modal vector estimates from different sources[4]. A set of

modal vectors from a finite element analysis can easily be compared to other measured or

estimated modal vectors using the MAC in order to determine if the mode shapes are consistent

between the two. The MAC has also been used to compare and identify mode shapes from the

displacement results of two differing finite element analyses. This works when comparing two

sets of modal vectors of the same size. When modifying and re-meshing geometry within an

iterative process it is not always feasible to create consistent finite element meshes at each

iteration. This makes it difficult to identify the mode shape at each natural frequency using the

MAC. A method must be developed by which this important information can be obtained

automatically throughout the entire optimization process.

1.2 Thesis Objective

The purpose of this thesis is to develop a method which is capable of automatically

matching the mode shape for each natural frequency of a modal analysis to known mode shapes

using the displacement results. This automated process will provide the designer to have a more

complete understanding of the part’s dynamic properties throughout the whole optimization

process.

This research will also investigate the feasibility of using parametric geometry to

represent modal analysis displacement results and compute correlation between mode shapes

using the MAC. The parametric geometry will enable the MAC to match the mode shape to

known modes even for models with differing dimensions and/or mesh coarseness. This research

4

will compare the time required and matching accuracy of two methods, one using parametric

curves and one using parametric surfaces, with the standard MAC in order to determine the most

effective matching method. The main benefit of this research will be in determining a method by

which parts of differing geometry can be correctly matched to known mode shapes due to the

unique properties of parametric geometry.

The mode matching application will be embedded into an optimization software package

to make it easy for a user to set up and run optimizations that utilize its functionality. This

embedded application will allow a designer to create templates of known mode shapes as well as

compare and correlate mode shapes of unknown results to saved templates throughout an

optimization run.

1.3 Problem Delimitations

The purpose in developing an application to accomplish the tasks mentioned above is to

ensure that the proposed method is feasible and effective. In addition, as NURBS parametric

surface geometry will be used by the application, the development of the method will be limited

to matching parts that can reasonably be represented as four-sided surfaces. Modal analysis

carried out as a part of this research will be done using the ANSYS analysis software package.

Analysis models built and used will be modeled using ANSYS SHELL63 elements and will be

limited to two-dimensional representations of parts. All parametric data structures needed in this

research will utilize Solid Modeling Solutions’ GSNLib libraries which are commercially

available. The application will be integrated into SIMULIA’s Isight optimization framework.

5

1.4 Thesis Organization

This thesis is organized into six chapters. Chapter 2 is a literature review that introduces

the reader to the most relevant literature in relation to this thesis. This will include a brief

discussion of modal analysis, a discussion about the Modal Assurance Criterion, and NURBS

parametric geometry and mathematics. The third chapter discusses the general methods used to

automate the matching of modal analysis results to templates of known mode shapes. The fourth

chapter discusses the implementation of those methods using C++ programming and integrating

the application into the Isight optimization software. Chapter 5 details the results of the mode

matching application and compares these results to results obtained using the basic MAC

calculation. The sixth chapter discusses the conclusions and future work of this research.

7

2 BACKGROUND

The intent of this chapter is to give the reader a foundational understanding of the

material in order to understand the significance of this research. A description of modal analysis

will be given first, in Section 2.1, in order to introduce the general procedure followed and

results obtained from dynamic analysis using the Finite Element Method. Section 2.2 serves as

an overview of the purpose, definition, and properties of the Modal Assurance Criterion.

Research demonstrating the properties and application of the Modal Assurance Criteria to mode

identification and the Finite Element Method will also be presented in this section. Following

this, Section 2.3 presents a brief overview of NURBS parametric geometry including the

mathematics formulas that define the geometry and some unique properties they possess which

demonstrate their application to this research.

2.1 Modal Analysis

 In the design process, important dynamic characteristics of a structure or component are

determined by means of a modal analysis. The dynamic properties determined in a modal

analysis are the natural frequencies and vibration mode shapes of the component[5]. These

characteristics are of vital importance for structures designed for dynamic loading conditions,

such as turbine blades. In its most basic form, that of free-vibration with no damping in the

system, a modal analysis consists of solving the matrix eigenvalue problem

8

 �[𝒌] − 𝜔𝑛2[𝒎]�𝝓𝒏 = 𝟎 , (2-1)

where [k] and [m] represent the system stiffness and mass matrices and ωn and 𝝓n are the natural

frequencies and mode shape vectors for the system[6]. Boundary conditions, system damping,

and stress states may be added resulting in a similar yet more complicated solution process.

Finite Element solvers perform modal analysis on meshed models, with the end result being a

natural frequency and a vector of nodal displacements (mode shape) for each vibrational mode.

Figure 2-1 shows a sample contour plot of nodal displacement results for a specific natural

frequency solution from a modal analysis.

Figure 2-1 Contour plot of nodal displacement magnitude

 Components with differing geometry can exhibit the same overall mode shape, although

the natural frequency and exact nodal locations and displacements in the model differ. This

research develops a method by which matching mode shapes can be identified despite having

9

differing geometry or nodal vectors. Figure 2-2, below, shows modal analysis results with the

same mode shape as the figure above even though the geometry is different.

Figure 2-2 Countour plot of mode shape on different geometry

2.2 The Modal Assurance Criterion

 The Modal Assurance Criterion (MAC) was developed around thirty years ago and has

been used widely in the engineering community to measure the consistency of modal vector

estimates, calculations, or experimental data[4], [7]. The MAC calculates the linearity between

any modal vector and a reference modal vector. The mathematical definition of this comparison

is:

10

 𝑀𝐴𝐶 =
�∑ 𝜙𝐴𝑞𝜙𝑅𝑞

𝑁0
𝑞=1 �

2

∑ 𝜙𝐴𝑞𝜙𝐴𝑞
𝑁0
𝑞=1 ∑ 𝜙𝑅𝑞𝜙𝑅𝑞

𝑁0
𝑞=1

 , (2-2)

where 𝝓A is one modal vector which is to be compared to a reference modal vector, 𝝓R. In

this definition, each vector contains N0 locations where displacement is measured and q

denotes the specific element in the vector. The result of this calculation is a value between

zero and one, which indicates the consistency between the two mode shapes, a result of one

being a perfect correlation and zero being no correlation. Comparing modal vectors by means of

this calculation allows for similar mode shapes to be identified and matched simply. Figure 2-3

shows a graphical representation of the MAC values resulting from a comparison of two sets of

ten mode shapes. The dark elements seen across the diagonal of the grid indicate high

correlation between the mode shapes. Lighter elements indicate low correlation between the

modes. As demonstrated by mode shapes number seven and eight, it is possible for a single

mode shape to correlate well with multiple mode shapes.

Figure 2-3 Sample MAC evaluation results

11

As it has been consistently used over several decades, the MAC has served as a

foundation for the development of other specialized assurance criteria including a Partial and

Spacial Modal Assurance Criterion[8]. One pitfall of the MAC is that because it is “normalized

to the highest amplitude response,…a large amplitude local response can mask the global

response”[9]. Another is that it also requires that the two vectors being compared have the same

number of elements. This means that modal solutions of Finite Element models with differing

meshes cannot be compared simply by the MAC because the meshes differ either by the size of

the nodal vector or by the locations of the nodes in the model. This shortcoming will be

overcome by using NURBS geometry to represent the modal analysis nodal results which then

allows the same number of displacement data to be extracted from the parametric geometry that

represents the different models.

 Burns applied the MAC to identify the characteristic mode shapes of an axisymmetric

rotor using Finite Element Analysis results and reference eigenvectors from an actual

structure[10]. In doing this, he avoids the necessity of using visual inspection to determine the

mode shape, greatly improving the speed and accuracy of the modal identification process. One

area of difficulty encountered in his research is the occurrence of false-positive matching of

dissimilar mode shapes. By calculating the average displacement magnitude of the eigenvectors,

the false-positive identifications were able to be identified and corrected. One of the most

important reasons for automation of the mode shape identification process is to eliminate the

need to visually inspect each solution to determine the mode shape.

 Ewins describes the Modal Assurance Criterion as a scalar least-squares deviation

measurement of how much eigenvectors vary from a linear correlation[11]. Excessive variation

in the two eigenvectors being compared indicates that the two modes are dissimilar. Ewins

12

points out that care must be taken in assigning significance to the scalar result calculated by the

MAC because the “acceptable” and “non-correlation” result limits will vary based on the data

points used in the calculation. In addition, nonlinearities in the model, data noise, poor analysis

or experimental data, or inappropriate degree of freedom choice can cause a low MAC

correlation value. It should be noted that for Ewins’ research, the MAC was being used as a

method for model updating and validation.

 An efficient method has been presented by Kim to track modes using the Modal

Assurance Criterion during a structural topology optimization[12]. This allows the tracking of

the order of excited eigenmodes despite the fact that the structural configuration changes at each

iteration step. The method involves assigning reference and desired mode shapes at the initial

optimization setup and then comparing estimated mode shapes to these using the MAC

throughout the optimization process. This application successfully maximized user-specified

natural frequencies and correctly tracked the important mode shapes even as the topology of the

structure changed. Only a subset of the model’s nodal data was used in the MAC calculation in

order to improve efficiency. Kim’s research demonstrates the applicability of mode shape

identification in an optimization process, which will be used in this research.

2.3 Parametric Geometry

 Curves and surfaces are capable of being represented by several different types of

equations including implicit, explicit, and parametric. A parametric definition of a curve or

surface allows for a quick and simple computation of the real-space coordinates of a point

existing on the geometry based on a parameter value, or values[13], [14]. Non-uniform rational

B-spline (NURBS) curves and surfaces are widely used parametric geometry representations. A

NURBS surface must be defined by a set of control points which lie topologically in a

13

rectangular grid. Due to this, their use is mainly limited to represent surfaces that are four-sided.

Interpolation through existing points and extrapolation of points from a set of control points are

two common methods for creating NURBS curves and surfaces[15]. The interpolation of a

surface from a set of points is shown below in Figure 2-4.

Figure 2-4 Surface interpolation from a set of points

A brief description of the mathematical definition of NURBS surfaces will be presented

here with the understanding that the same principles apply to curves by removing one of the

parameter dimensions. Each control point defining a surface has a weight and a B-spline basis

function which together determine the extent to which the point influences the surface. A knot

vector in each parametric direction, u and v, also influences the surface topology. The following

equation is the mathematical definition of a NURBS surface of degree q in the u direction and

degree r in the v direction.

 𝑆(𝑢, 𝑣) =
∑ ∑ 𝑁𝑖,𝑝(𝑢)𝑁𝑗,𝑞(𝑣)𝑊𝑖,𝑗𝑃𝑖,𝑗𝑚

𝑗=0
𝑛
𝑖=0
∑ ∑ 𝑁𝑖,𝑝(𝑢)𝑁𝑗,𝑞(𝑣)𝑊𝑖,𝑗

𝑚
𝑗=0

𝑛
𝑖=0

, 0 ≤ 𝑢, 𝑣 ≤ 1 (2-3)

14

In the definition above, Pi,j are the control points, Wi,j are the weights of each control point, and n

and m are the number of control points in the u and v directions respectively. The expressions

Ni,p(u) and Ni,q(v) are the NURBS basis functions which are defined on the knot vectors:

 𝑈 = �0, … ,0,𝑢𝑝+1, … ,𝑢𝑟−𝑝−1, 1, … ,1�,𝑢𝑖 ≤ 𝑢𝑖+1 (2-4)

 𝑉 = �0, … ,0, 𝑣𝑞+1, … ,𝑢𝑠−𝑞−1, 1, … ,1�,𝑣𝑖 ≤ 𝑣𝑖+1 (2-5)

where r = n + p + 1 and s = m + q + 1. At the beginning and end of each knot vector, there are p,

or q, repeated zeros and ones, respectively, which terminate the surface’s control curves and

indicate that the surface is parameterized between zero and one. More information on the

mathematical and geometric properties of NURBS curves and surfaces can be found in numerous

sources on the topic[13–16].

The real power in using parametric representations of geometry in this research is that

two dissimilar curves or surfaces can be related to one another through their parameterizations.

The parametric definition allows for two separate geometric entities to be easily compared in

parameter-space even though the two entities may be of differing size, configuration, and

complexity in real-space. Figure 2-5 shows how this comparison can be made with a set of

points at given parameter values on two different parametric curves.

15

Figure 2-5 Corresponding parametric points on different NURBS curves

Countless algorithms for creating, editing, and storing NURBS geometry has been

created and is available in the form of published geometry libraries. One of these powerful

libraries, named GSNLib, has been developed for use in C++ programming. Additionally, many

CAD systems, including Siemen’s NX and Dassault Systems’ CATIA, have excellent NURBS

algorithms available for use by the means of their software’s Application Programming

Interface (API). The benefits of using parametric geometry in this form while working with

product design and Finite Element modeling have been demonstrated by Hepworth[17] and

Astle[18].

17

3 METHOD

 This chapter discusses the methods developed to automate the identification of mode

shapes represented by the displacement results of a modal analysis. The following steps are

involved:

1. Read the modal analysis displacement results and develop an understanding of the

modeled part’s geometry and boundary node sequence.

2. Transform the nodal displacement data into a mathematical NURBS representation of

the results for each modal solution and save the data as a template for future use.

3. Compare one NURBS representation of a modal solution to a stored template of

known mode shape using the Modal Assurance Criterion and determine if results

match the template’s mode shape.

4. Gather and store information required to automatically create, store, compare, and

report modal analysis results and identified mode shapes from a user familiar source

(i.e. an optimization program).

A visual representation of these individual steps is shown in Figure 3-1.

18

Figure 3-1 Flow chart of the mode identification method

3.1 Gather Information From User

 In order for the full functionality of this application to be easily accessed and used, a

simple front end is created that allows the user to set up and run the application. A Java

application is set up to collect all required information from the user in order to create template

surfaces or to run the mode shape identification application within an optimization.

3.2 Transform Data into NURBS

The transformation of the nodal displacement results into a mathematical NURBS

representation is handled differently depending on the type of NURBS geometry being created.

The method is different depending on whether NURBS curves or surfaces are created. Each of

the tasks described below contributes to the completion of this process.

19

3.2.1 Read Displacement File and Determine Node Sequence

 Modal analysis is carried out on a Finite Element model of a component and the nodal

displacements are written to a file. Included in this file is a list of each node that exists on the

four edges of the component and the position and displacements of all nodes in the model for

each natural frequency solution determined in the analysis. After all of this information is

stored, the node sequence around the component boundary must be determined.

 It is important to determine the node sequence as well so that each node’s location along

the boundary in relation to the other nodes is known. First, the corner nodes are found by

determining which four nodes exist on more than one edge. The sequence of nodes along each

edge can then be determined based on the distances between each edge node and the corner

nodes of that edge.

3.2.2 Normalize Nodal Displacements

 The normalized nodal displacement for each node in the solution is required to create the

NURBS templates. To accomplish this, each node’s displacement is normalized by the maximum

nodal displacement found in the solution set. If Uall denotes the set of all nodal displacements in

the model solution, the normalized displacements, Unorm, are found by:

 𝑈𝑛𝑜𝑟𝑚 = 𝑈𝑎𝑙𝑙
max (|𝑈𝑎𝑙𝑙|)

 , (3-1)

which results in all normalized nodal displacements falling between negative and positive one,

with a value of one representing the maximum positive displacement.

20

3.2.3 Normalize Node Locations

 The normalized node location of each node along the border of the model is needed in

order to create the NURBS templates. In order to calculate the normalized node location for each

border node, a particular edge and corner node are selected to define the starting point and

direction that the template curve will follow. A normalized position value, Sedge, is calculated for

each node along the starting edge based on its distance from the starting corner node and the total

length of the starting edge according to the equation

 𝑆𝑒𝑑𝑔𝑒,𝑖 = |𝑃𝑖−𝑃0|
|𝑃𝑛−1−𝑃0| , 𝑖 = 0,1, … ,𝑛 − 2,𝑛 − 1 . (3-2)

In this equation, i is the number of the node in sequence and n is the total number of nodes along

the edge. After this has been done for the starting edge, a normalized position value is likewise

calculated for all nodes on the other edges, continuing in the same direction around the model as

the starting edge. The normalized position values begin at zero and increase to one along each

edge. A total position value, Stot, is obtained for each node by the equation

 𝑆𝑡𝑜𝑡 = 𝑆𝑒𝑑𝑔𝑒 + 𝑖 − 1, 𝑖 = 1,2,3,4 , (3-3)

where Sedge is the node’s normalized position on its own edge and i indicates the sequence of the

edge on which the particular node resides around the boundary, beginning at one and proceeding

around the model to four. Thus, the normalized position values for the nodes around the edge of

the component begin at zero and increase to four.

21

3.2.4 Transform Data into NURBS Curve

 It is desired to use the node location and displacement for a particular modal solution to

create a parametric NURBS curve. The normalized node positions around the border of the

model and the normalized nodal displacements are used to do this.

A new point set is created from the correctly ordered nodes, beginning at the starting

corner point and moving around the border of the model. Each point in this set has only two

dimensions, one coming from each original node’s normalized position value, Stot, and one from

each original node’s normalized displacement value, Unorm. The third dimension for each point is

simply set to zero so that the curve only uses two dimensions. An algorithm existing in the

NURBS libraries used interpolates the set of points, creating a NURBS curve that represents the

mode shape of the solution.

3.2.5 Transform Data into NURBS Surface

 It is desired to use the node location and displacement for a particular modal solution to

create a parametric NURBS surface. Similarly to the method for creating a NURBS curve from

the data, this method to create a NURBS surface uses the normalized displacement data for each

node. This method also uses the position of all nodes in the model to create the template surface.

 A CAD API function fits a preliminary parametric surface through a set of points

containing each node location in the model. This surface, which exists in the CAD system is

transformed into a CAD independent form which allows easy storage and programmatic

manipulation of the surface. This transformation of the CAD control points and knot vectors into

the CAD independent data structure is shown in the equations below.

22

 ∑ ∑ 𝑤𝑖,𝑗𝑃𝑖,𝑗𝑛
𝑗=0

𝑚
𝑖=0 𝐶𝐴𝐷𝐼𝑛𝑑𝑒𝑝

= ∑ ∑ 𝑤𝑖,𝑗𝑃𝑖,𝑗𝑛
𝑗=0

𝑚
𝑖=0 𝐶𝐴𝐷

 (3-4)

 𝑈𝐶𝐴𝐷𝐼𝑛𝑑𝑒𝑝 = 𝑈𝐶𝐴𝐷 (3-5)

 𝑉𝐶𝐴𝐷𝐼𝑛𝑑𝑒𝑝 = 𝑉𝐶𝐴𝐷 (3-6)

 As a parametric surface, each node in the model has a U and a V parameter which define

that node’s approximate position on the surface. The parameter values associated with every

node in the model are determined and stored using a function existing in the geometry libraries.

Since all nodes do not lie exactly on the surface, this is done by adjusting the parameter values to

minimize the magnitude of

 𝑃(𝑥, 𝑦, 𝑧) − 𝑆(𝑢, 𝑣) = 𝑃(𝑥, 𝑦, 𝑧) −
∑ ∑ 𝑁𝑖,𝑝(𝑢)𝑁𝑗,𝑞(𝑣)𝑊𝑖,𝑗𝑃𝑖,𝑗𝑚

𝑗=0
𝑛
𝑖=0

∑ ∑ 𝑁𝑖,𝑝(𝑢)𝑁𝑗,𝑞(𝑣)𝑊𝑖,𝑗
𝑚
𝑗=0

𝑛
𝑖=0

 . (3-7)

A new point set is created with data from each node. Points in this set are defined in three

dimensions by the U parameter of the node on the preliminary surface, the V parameter of the

node on the preliminary surface, and the normalized displacement of the node. The surface

fitting function from the API is once again used with this new set of points, creating a new

surface representing the mode shape within CAD. The resulting NURBS surface is translated

once again from CAD into a CAD-independent data structure. The NURBS surface is also

reparameterized in order to ensure that the parameterization is uniform in both directions.

23

3.3 Store Template

After the NURBS template has been created, it is stored for future use. The user defines

where the mode shape template for the model is to be saved. The unique user-defined name for

each mode shape represented within the template is also stored in the template alongside the

geometric definition of the curve or surface. The storage of the templates as files allows the

application to use the template’s stored mode shape definitions immediately after creation, or in

the future as the need arises.

3.4 Load Template of Known Mode Shape

The application must load a template file prior to completing any mode shape

identification to current results. A mode shapes template file that exists in a user-specified

location, as described in Sections 3.2 and 3.3, is opened and read by the application. Each

geometric curve or surface definition, representing a mode shape, in the file is read in and

precisely reproduced and the specific names associated with each mode shape are stored for

future use by the application.

3.5 MAC Calculation

The Modal Assurance Criterion will be used to compare saved templates of known mode

shape to results obtained from a modal analysis in order to classify the mode shapes of the modal

analysis results within an optimization loop. The modal analysis is first carried out and the

results written to file. The data in the results file are transformed into a normalized NURBS

geometric representation as has been described in the previous sections. After this NURBS

geometry has been created, a template of known mode shape is loaded from the database of

saved templates. When both the NURBS geometry from the current results file and the template

24

of known mode shape are loaded, or created, the two geometries can be compared and the results

reported back to the optimization loop. How this is done for NURBS curves and surfaces is

detailed in the following sections.

3.5.1 Comparing Curves

 When working with NURBS curves, the comparison is very simple. Since the NURBS

curve created from the current modal analysis results is normalized and parameterized the same

as the saved template of known mode shape all that must be done is to discretize both curves at

user-defined intervals and calculate the MAC correlation value. Each NURBS curve is divided

into n-1 equal parameter intervals, resulting in n equally-spaced parameter values along each

curve where n is defined as the number of points the user has specified to use in the MAC

calculation. The template curve is evaluated for each of the n parameter values, where the set of

all evaluated points makes the reference vector, 𝝓R. The curve created from the current analysis

results is likewise evaluated at each parameter value, defining the 𝝓A vector. With these two

vectors defined and substituting the number of calculation points used, n, for N0 in the equation

below, the MAC correlation value between the two curves is evaluated.

 𝑀𝐴𝐶 =
�∑ 𝜙𝐴𝑞𝜙𝑅𝑞

𝑁0
𝑞=1 �

2

∑ 𝜙𝐴𝑞𝜙𝐴𝑞
𝑁0
𝑞=1 ∑ 𝜙𝑅𝑞𝜙𝑅𝑞

𝑁0
𝑞=1

 (3-8)

3.5.2 Comparing Surfaces

 When working with NURBS surfaces, the comparison is much like that for curves, only it

is performed using two parameter values as opposed to a single parameter value. Both the

NURBS template surface and current results surface are created using the same method

25

described in Section 3.2.5. Both surfaces are discretized at user-defined intervals in both the U

and V parameter directions resulting in a grid of points across the surfaces spaced at equal

parameter intervals. Each NURBS surface is divided into n-1 equal parameter intervals in the U

direction and m-1 equal parameter intervals in the V direction, resulting in r total points across

the surface, where r is defined by the product of n and m. The template surface is evaluated for

each of the r parameter values, where the set of all evaluated points makes the reference vector,

𝝓R. The curve created from the current analysis results is likewise evaluated at the same

parameter values, defining the 𝝓A vector. With these two vectors defined and substituting the

number of calculation points over the surface, r, for N0 in the MAC, a correlation value between

the two surfaces is evaluated.

3.6 Identify Mode Shape

 Section 3.5 has described how the MAC correlation value is calculated between various

types of NURBS geometries. The NURBS geometry created from the current analysis results is

compared to a set of s user-defined templates of known mode shape, where s is the number of

number of templated mode shapes that the current results will be compared to. This results in a

set of s correlation values. The maximum correlation value of set indicates which template

matches the current results most closely. If this maximum value is above the match threshold

then the matching mode shape is reported back to the optimization loop; otherwise a value is

reported back to the optimization loop indicating that no matching mode shape was found among

the user-specified templates. The matching threshold should be high enough that false-positive

matches do not occur, but low enough to allow for slight discrepancies in the data representing

the same mode. An exact threshold to use in any given case is not easy to define for the reasons

described in [10], [11].

27

4 IMPLEMENTATION

 The methods which have been described in Chapter 3 were implemented in computer

programs for the automated mode identification application. A program to create templates for

results of known mode shape and a program to compare templates to other modal results were

created. Because this research investigates using both NURBS curves and surfaces as a means

of identifying the mode shape of modal analysis results, each of the programs was implemented

once for curves and once for surfaces, making a total of four computer programs.

 The applications written for this research integrate the Siemens NX software API and the

CAD independent General Surface NURBS Library (GSNLib) which is distributed by Solid

Modeling Solutions Inc. Both of these commercially available products are based in the C/C++

programming language which allows their functionality to be easily combined and leveraged in

the applications developed. An additional programming language used was the ANSYS

Parametric Design Language which was used to automate the modeling, meshing, analysis, and

results reporting for testing. All of the modal analysis completed for this research was done

using ANSYS 11.0.

 The applications are also integrated into optimization software to enable a user to easily

use their functionality. SIMULIA’s Isight optimization software is used in this research because

custom components can be easily created using the Java programming language. The custom

28

components developed are used alongside native Isight components and parameters to set up and

run the optimization loops.

4.1 Gather Information From User

 A Java application was developed to allow the user to easily configure and run the

application within the Isight optimization software. The application creates a graphical user

interface (GUI) that allows the user to configure the mode identification application as well as

create templates. Both of these GUI’s are described in this section.

4.1.1 Mode Identification Application GUI

 The mode identification application GUI provides input fields, buttons, and scroll boxes

for the user to specify all files and other items required to run the application. The inputs

required by this application are a template file name, the type of geometry used as templates, and

the number of points to use in the MAC calculation in each parameter direction. The GUI

developed for this application is displayed in Figure 4-1.

Figure 4-1 The mode identification application GUI

29

The template file name can be specified in the “Templates File” text field by typing the

name in manually, accessing a file selection dialog through the “Select” button, or a new

template can be created and input into the text field through the “Create New Templates” button.

In addition to setting the template file name, the “Create New Templates” button also launched

the Create Templates GUI which is described later. If curves are specified as the geometry to be

used, only the number of points in the U parameter direction is input. If surfaces are specified as

in the previous figure, then a number of points in both the U and V parameter directions are

required. Selection of the template geometry type controls whether only the U parameter scroll

box or both the U and V parameter control points scroll boxes are visible. The path to the mode

identification executable is specified in the “Path to Compare Exe” text field manually or with

the “Select” button. The “Help” button displays information about the application.

4.1.2 Create Templates GUI

 The create templates GUI provides input fields for all information required to create new

templates for known mode shapes. The inputs required for this application to execute are a name

for the new templates file, the displacement file representing the results of the known mode

shapes, a directory containing images of the mode shapes, and a path to the executable for the

create templates application. Figure 4-2 shows the GUI for the create templates application.

30

Figure 4-2 The initial create templates GUI

 The new templates file name is input in the “Save New templates File As” text field by

typing in the field or selecting the “…” box, which initializes a file selection dialog. The “Select

Displacement File” text field stores the file name of the modal analysis results file. After a

displacement file has been selected, “Select Image Directory” field and button are enabled and

the user must select or specify a directory containing images of the mode shapes contained in the

31

displacement file which has been specified. Once this directory is specified, the images are

loaded into the GUI as shown by Figure 4-3.

Figure 4-3 The create templates GUI with mode shape images

 Each image in the directory is loaded in alphabetical order and displayed next to a drop

down box for selecting or entering the mode shape that the image represents. Since they are

32

loaded alphabetically, the images in the directory must be named in alphabetical order beginning

with the first mode shape and proceeding in the order of the solution results. This ensures that the

mode shapes represented in the displacement file are accurately displayed in the GUI. Clicking

the mouse on the image toggles it between a small and large image. The user must select the

mode shape represented by the image in the drop down menu beside the image. If the mode

shape is not in the menu, then the user may input the mode name manually into the menu. After

this is completed, the user selects the “OK” button, which creates the new templates file, exits

out of the GUI, and automatically puts the new templates file name into the “Templates File”

field of the mode identification GUI.

4.2 Transform Data into NURBS

Transforming the displacement data contained in the modal analysis results file into

NURBS geometry has several steps which are detailed below. Section 4.2.1 describes the reading

of the displacements file and the sequencing of the nodes in the model. The normalization of

nodal displacement data is described in Section 4.2.2. Section 4.2.3 describes the node location

normalization which is required only when working with NURBS curves. The transformation of

the data into NURBS curves and surfaces is discussed in Sections 4.2.4 and 4.2.5 respectively.

4.2.1 Read Displacement File and Determine Node Sequence

 The displacement file specified by the user must be read and stored by the program. The

reading of the modal analysis displacement results is done simply by storing all lines of the file

in a std::vector of std::strings, then a basic tokenizer is used to extract the node positions and

displacements. Since this is a relatively simple process, the code used to do this is not presented

here.

33

 Once the data is stored in the application, the node sequence is determined. The node

sequence and corner nodes are required for creating a NURBS curve template since the template

represents the displacement around the model boundary and the nodal solutions are reported in

ascending numerical order, not necessarily in geometric order. In order to determine a corner

node between two edges, a nested loop is created. Both loops iterate through all of the nodes on

one of two adjacent edges. Two edges will contain a single similar node number, so Looping

through each edge and finding the similar node number identifies the common node at the corner

of the two edges. The same process is used to determine all corner nodes. The process for finding

the corner node between the base and leading edge of the part is shown below.

for(int i=0; i<(int)baseNodes.size(); i++)
{
 for(int j=0; j<(int)leadingEdgeNodes.size(); j++)
 {
 if(baseNodes[i].number==leadingEdgeNodes[j].number)
 baseLeadNode = baseNodes[i];
 }
}

 Once the corner nodes are identified, the node sequence around the edge is determined.

This is done by beginning at one corner node on a single edge. Once the starting corner node is

set as the first node in the sequence, the next node in the sequence is found by determining the

node that is farthest away from the second corner node on the same edge. If this node has not yet

been used, it is added to the ordered nodes std::vector. This process is repeated for each edge of

the part. Again, nested loops are used, but each loop iterates through the same set of edge nodes,

calculating the distance between the current node and the second corner node per iteration. After

the distance is found, the node is added to the ordered nodes set if it is the next node in the

34

sequence. The process of ordering the nodes of a single edge is shown in the following sample of

code.

leadingEdgeNodesOrdered.push_back(baseLeadNode);
for(int i=1; i<(int)leadingEdgeNodes.size(); i++)
{
 maxDist = -1.0;
 maxNodeNum = 0;
 for(int k=0; k<(int)leadingEdgeNodes.size(); k++)
 {
 double dist = leadTipNode.GetDistance(leadingEdgeNodes[k]);
 if(dist>maxDist)
 {
 int used = 0;
 for(int j=0; j<(int)leadingEdgeNodesOrdered.size(); j++)
 {
 if(leadingEdgeNodes[k].number==

leadingEdgeNodesOrdered[j].number
)

 used = 1;
 }
 if(used==0)
 {
 maxDist = dist;
 maxNodeNum = k;
 }
 }
 }
 leadingEdgeNodesOrdered.push_back(leadingEdgeNodes[maxNodeNum]);
}

 After the sequence on each edge has been determined, the sequence around the entire part

is known and can be used to help define the NURBS geometry. Figure 4-4 shows the sequence of

the nodes around the model’s perimeter, beginning at the common node between the base node

set and leading edge node set.

35

Figure 4-4 Node sequencing, beginning at the Base-Leading Edge common node

4.2.2 Normalize Nodal Displacements

 Since parts exhibiting the same vibrational mode shape will have different actual

displacements at each node based on the part’s geometry, the actual nodal displacement at each

node must not be used. The magnitudes of the nodal displacements are normalized based on the

maximum nodal displacement magnitude so that the normalized nodal displacements lie between

negative and positive one. The normalization of nodal displacements is done as described in

Section 3.2.2 After determining the largest displacement magnitude in the results set, all

displacements are normalized as shown below:

// Normalize the Displacements of Nodes Based on Maximum Displacement
if(usumMax!=0.0)
{
 // Normalize the Displacements of Nodes Based on Maximum Displacement
 for(int i=0; i<(int)surfaceNodes.size(); i++)
 {
 surfaceNodes[i].usum = surfaceNodes[i].usum/usumMax;
 }

}

36

4.2.3 Normalize Node Locations

 When converting the modal analysis data into NURBS curves, additional node location

normalization must take place. This location normalization computes a value between zero and

one for each node along an edge. Since there are four edges, this process is done four times, once

of each edge, and every node on each edge is given a normalized location value. This value is

equal to the length from the first corner node to the current node divided by the total distance

between the edge’s corner nodes. The C++ implementation is as shown below, where the node’s

“sval” is the normalized location along the edge. After the total edge length is determined, the

edge’s nodes are looped through, executing the normalization at each node in the set.

double sval;
double length = 0.0;
double totlength = leadingEdgeNodes.front().GetDistance(leadingEdgeNodes.back());
for(int i=0; i<(int)leadingEdgeNodes.size(); i++)
{
 length = leadingEdgeNodes[0].GetDistance(leadingEdgeNodes[i]);
 sval = length / totlength;
 leadingEdgeNodes[i].sval = sval;
}

4.2.4 Transform Data into NURBS Curve

 Once the items in Section 4.2.1-4.2.3 have been done, the data may be transformed into a

NURBS curve. The transformation is done by creating a point set from the normalized location

and displacement for each node in sequence around the border of the part. The GSNLib library

being used requires three-dimensional points to be used. Since each node has only two

dimensional information (a normalized location value and a normalized displacement) the third

dimension of each point is set to zero. Additionally, since the nodes along each edge have a

normalized location value between zero and one, a total normalized border value is calculated

37

and used. Each edge of the part constitutes one fourth of the border. The normalized boundary

value for all nodes on the first edge of the part is the same as the node edge location value

(described in Section 4.2.3). The normalized boundary value for all nodes on the second edge of

the part is equal to one plus the node edge location value. The normalized boundary value for all

nodes on the third edge of the part is equal to two plus the node edge location value, and so forth.

The lowest normalized boundary value will be 0.0 at the corner of the starting edge and the

highest will be 4.0 at the final corner of the final edge. The normalized boundary value is

denoted “svalNorm” in the sample below. The process of adding the first edge’s normalized

node location and displacement data to a point set is shown below.

double sval = 0.0;
double svalTot = leadingEdgeNodes.back().sval+tipNodes.back().sval
 +trailingEdgeNodes.back().sval+baseNodes.back().sval;
double svalNorm = 0.0;
double currentSval = 0.0;

// Add points from leading edge to the point set
for(int i=0; i<(int)leadingEdgeNodes.size(); i++)
{
 sval = currentSval + leadingEdgeNodes[i].sval;
 svalNorm = sval;// / svalTot;
 IwPoint3d myPoint;
 myPoint.x = svalNorm;
 myPoint.y = leadingEdgeNodes[i].usum;
 myPoint.z = 0.0;
 pointSetUsum.Add(myPoint);
}
leadingEdgeNodes.clear();
currentSval = sval;

Once the point data has been gathered for all edges, a GSNLib library function called

IwBSplineCurve::InterpolatePoints creates the actual NURBS curve. This process is simple and

is shown in the following code sample. It is also depicted in Figure 4-5.

// Create the Usum NURBS curve (degree 3) interpolating the points
IwBSplineCurve::InterpolatePoints(crContext, pointSetUsum, NULL, 3, NULL, NULL, FALSE,
IW_IT_UNIFORM, profileCurveUsum);

38

Figure 4-5 Transformation of node data into a NURBS curve

4.2.5 Transform Data into NURBS Surface

 In practice, transforming data into a NURBS surface is significantly more difficult than

transforming data into a curve. The first step in this process is to create a point set representing

the original nodal positions in the model analyzed. This point set is then used to create a

parametric surface representing the original (not displaced) model geometry, which is referred to

as “Surface 1”. This is done using NX API and GSNLib function calls in the following manner:

std::vector <IwPoint3d> set1;
IwPoint3d point;
for(int i=0; i<(int)surfaceNodes.size(); i++)
{
 point.x = surfaceNodes[i].xPos;
 point.y = surfaceNodes[i].yPos;
 point.z = surfaceNodes[i].zPos;
 set1.push_back(point);
}

tag_t surf1 = fitSurfaceNX(set1,0);
IwBSplineSurface *surface1;
surface1 = Converter::ConvertNURBSSurface(surf1,crContext);
surface1 = reparameterizeSurface(surface1);

 The call to the function fitSurfaceNX() simply transfers the data stored in a std::vector

into an array and, using the corner points found in Section 4.2.1, calls an NX Open API function

39

that creates a parameterized surface inside of NX from a point cloud. Figure 4-6 shows a

representation of this surface fitting process.

Figure 4-6 Transformation of node data into a NURBS surface

The created surface is then reparameterized in order to insure that the parameterization is

uniform over the surface in both directions. The surface created in NX exists in the CAD

program, so in order to extract the surface and store it using GSNLib data structures, a

conversion function is used. The conversion function is not shown here but it is done as

described in Section 3.2.5 where the knot vectors and control points in each parameter direction

are copied from the CAD data structure into the CAD independent (GSNLib) data structure and

an identical surface external to CAD is created from the data.

 Once this has occurred, Surface 1 has been created, representing the original geometry of

the analyzed model. Since Surface 1 was interpolated from the nodes in the model, each node

exists on or near Surface 1. The next step is to determine the U-parameter and V-parameter of

each node from the model. This is done with a call to the GSNLib library function

GlobalPointSolve(). The U and V surface parameters perfectly define the position of the node in

parameter space between zero and one in each case, forming an intermediate two dimensional

square plate in parameter space, as illustrated in Figure 4-7.

40

Figure 4-7 Intermediate square template in parameter space

A new point set is created next, describing the template surface. Instead of using nodal X,

Y, and Z locations like Surface 1 does, the U-parameter, V-parameter, and normalized nodal

displacement are used for the three dimensions of each point in the set. Each U and V parameter

is scaled by a factor of ten in order to make the template surface larger and easier to fit with a

NURBS surface. The process of finding each node’s scaled U and V parameter, creating a new

point using the scaled U and V parameters and normalized displacement, and adding the point to

the point set is shown in the code sample below.

std::vector <IwPoint3d> setusum;
for(int i=0; i<(int)surfaceNodes.size(); i++)
{
 IwPoint3d myPoint;
 myPoint.x = surfaceNodes[i].xPos;
 myPoint.y = surfaceNodes[i].yPos;
 myPoint.z = surfaceNodes[i].zPos;

 IwPoint2d uvGuess;
 uvGuess.x = 0.0;
 uvGuess.y = 0.0;

 IwSolution solution;
 IwSolutionArray solutions;
 IwExtent2d domain = surface1->GetNaturalUVDomain();
 surface1->GlobalPointSolve(domain,IW_SO_MINIMIZE,myPoint,
 0.001,NULL,IW_SR_SINGLE,solutions);

41

 uvGuess.Set(solutions.GetAt(0).m_vStart.m_adParameters[0],
 solutions.GetAt(0).m_vStart.m_adParameters[1]);
 myPoint.Set(10.0*uvGuess.x,10.0*uvGuess.y,surfaceNodes[i].usum);
 setusum.push_back(myPoint);
}

When this point set is fully constructed, the fitSurfaceNX(), ConvertNURBSSurface(),

and reparameterizeSurface() functions, which have been described previously in this section, are

called again to fit a surface to the new point set. The new surface is the template surface and it is

stored in an array for future use.

 This process is repeated for each modal solution in the displacement results file supplied

by the user. Each time, the square parametric plate described previously has nodal displacement

data added for each node in the model. These two items allow the template surface to be created.

This process is depicted simply in Figure 4-8. Each template surface is then temporarily stored in

an array for future use.

Figure 4-8 The intermediate template and displacement data create the final template

4.3 Store Template

 After the template surface has been created for all known mode shapes in the

displacement results file, they may be stored in a library or database to be used at a later date.

This is done programmatically using another GSNLib library function call. The WriteToFile()

42

function is defined for both NURBS curves and surfaces in the GSNLib library. This function

takes an array of NURBS objects and writes them to a file with the path that is specified in the

function call. For surfaces, the function call is shown below:

// Write Each Surface Template in the Templates Array
IwBSplineSurface::WriteToFile(path,templatesArray);

 The surfaces in the array are saved in the user-specified file and the final step is to write

the mode shape names supplied by the user in the Create Templates GUI (Section 4.1.2) into the

bottom of the same templates file. The mode names are written at the bottom of the file because

in order for GSNLib to properly read in the NURBS geometry at a future time, the data in the file

must not be disturbed in any way. The easiest way to avoid disturbing the data is to simply write

the names of the mode shapes in the order the user input them at the end of the templates file

created.

4.4 Load Template of Known Mode Shape

 Loading the templates of known mode shape takes place in two steps. In the first step, the

template surfaces are read from the file in which they exist and are stored in GSNLib data

structures. This is relatively straight forward and is demonstrated in the readTemplateSurfaces()

function.

// Function to Read NURBS Template Surfaces From Templates File
int surfaceTemplate::readTemplateSurfaces(char* file)
{
 IwContext crContext;
 if(IW_SUCCESS != IwBSplineSurface::ReadFromFile(crContext,file,templatesArray))
 {
 std::cerr<<"NURBS Template Surfaces Not Read Successfully.";
 return 1;
 }
 numTemplates = templatesArray.GetSize();

43

 return 0;
}

The second step is that the same file is parsed in order to determine the names of the

mode shapes that each surface represents. The following readModeNames() function shows this

very simply.

// Function to Read the Mode Shape Names From the Bottom of the Templates File
int surfaceTemplate::readModeNames(char* file)
{
 std::vector <std::string> contents;
 infile.open(file);
 readDataFile(infile,contents);
 infile.close();
 infile.clear();

 int position = 0;
 int store = 0;
 for(int i=0; i<(int)contents.size(); i++)
 {
 if(store==1 && position<numModes)
 {
 modeNames.push_back(contents[i]);
 position++;
 }
 if(contents[i]=="Mode Names")
 store = 1;
 }
 return 0;
}

4.5 MAC Calculation

 The MAC calculation can be carried out programmatically after two NURBS geometries

exist in the computer’s memory. The calculation is similar whether using NURBS curves or

surfaces, and the implementation for surfaces will be detailed here.

As discussed in Section 2.2, the MAC calculation is as follows:

44

𝑀𝐴𝐶 =
�∑ 𝜙𝐴𝑞𝜙𝑅𝑞

𝑁0
𝑞=1 �

2

∑ 𝜙𝐴𝑞𝜙𝐴𝑞
𝑁0
𝑞=1 ∑ 𝜙𝑅𝑞𝜙𝑅𝑞

𝑁0
𝑞=1

 . (4-1)

.

When working with surfaces, each nodal vector (𝝓Aq, 𝝓Rq) have N0 elements composing them,

where N0 is equal to the number of points in the U-direction multiplied by the number of points

in the V-direction. The number of points in each parametric direction is specified by the user as

described in Section 4.1.1. The reference nodal vector, 𝝓R, is the set of all points evaluated on

the reference surface of known mode shape, which is loaded as described in Section 4.4. The

actual nodal vector consists of all points evaluated on the surface created from the current

displacement results file, which creation is described in Section 4.2.5.

Figure 4-9 The current results surface is compared to all loaded template surfaces

 Each surface created from the current results file is compared with all of the template

surfaces of known mode shape specified in the templates file as shown in Figure 4-9. The result

of each comparison is an integer specifying which template surface most closely matches the

45

current results surface. A final result where the variable “matchNum” is equal to 9999 indicates

that no matching mode shape was found. This process is seen in the code sample below:

// Function to Compare Surfaces to a Set of Template Surfaces Using the MAC
int surfaceTemplate::compareSurfaceSet(int uPts, int vPts)
{
 double rMax = 0;
 int matchNum = NULL;
 // Loop Through all Templates (4 at a time)
 for(int i=0; i<numTemplates; i++)
 {
 int t1(4*i), t2(4*i+1), t3(4*i+2), t4(4*i+3);
 double r1(0);

 // Compare the Usum Profile and Template Surfaces
 r1 = compareSurfaces(templatesArray[t1],profileSurfaceUsum,uPts,vPts);

 // Average the Results From All 4 Calculations
 double rAvg = r1;
 // Save the Maximum MAC Result (Profile to Template)
 if(i==0)
 {
 matchNum = 9999;
 rMax = 0.0;
 }
 if(rAvg>0.65 && rAvg>rMax)
 {
 matchNum = i;
 rMax = rAvg;
 }
 }
 matchValue = rMax;
 return matchNum;
}

 The compareSurfaces() function in the sample above carries out the actual MAC

calculation. The function takes a template surface, a current results surface, and the number of

points in each parameter direction to use when evaluating the MAC as inputs. The result returned

by this function is the calculated MAC correlation value. This function is shown below.

// Function to Compute MAC Calculation Between Two Surfaces
double surfaceTemplate::compareSurfaces(IwBSplineSurface* tem, IwBSplineSurface* pro,
int numU, int numV)
{
 double numerator(0), denom1(0), denom2(0);
 double numeratorN(0), denomN1(0), denomN2(0);
 // Loop Controlling U Parameter

46

 for(int i=0; i<numU; i++)
 {
 IwPoint3d temPoint, proPoint, proPointNeg;
 IwVector2d uv;
 uv.x = (double)i/(double)(numU-1);
 // Loop Controlling V Parameter
 for(int j=0; j<numV; j++)
 {
 uv.y = (double)j/(double)(numV-1);
 // Get the Displacements From the Template and Profile Surfaces
 tem->EvaluatePoint(uv,temPoint);
 pro->EvaluatePoint(uv,proPoint);
 proPointNeg.Set(proPoint.x,proPoint.y,-proPoint.z);
 // Sum of disp1*disp2
 numerator = numerator + (temPoint.z*proPoint.z);
 numeratorN = numeratorN + (temPoint.z*proPointNeg.z);
 // Sum of disp1*disp1
 denom1 = denom1 + (temPoint.z*temPoint.z);
 denomN1 = denomN1 + (temPoint.z*temPoint.z);
 // Sum of disp2*disp2
 denom2 = denom2 + (proPoint.z*proPoint.z);
 denomN2 = denomN2 + (proPointNeg.z*proPointNeg.z);
 }
 }
 // MAC Calculation
 double result1 = (numerator*numerator) / (denom1*denom2);
 double result2 = (numeratorN*numeratorN) / (denomN1*denomN2);

 if(result1>result2)
 return result1;
 else
 return result2;
}

4.6 Identify Mode Shape

 The mode shape identification has been partially described in Section 4.5. As described,

the compareSurfaceSet() function returns an integer value indicating the closest matching

template mode shape. After this integer value has been identified, the corresponding mode shape

name and the frequency associated with the shape are stored in a std::vector of std::pairs called

“matchedPairs”. The MAC value associated with the match is also stored in a std::vector for later

use. This is shown below:

void surfaceTemplate::setResultSet(int modeNum, double freq)
{
 std::pair <std::string,double> newPair;

47

 if(modeNum!=9999)
 newPair.first = modeNames[modeNum];
 else
 newPair.first = "No Match";
 newPair.second = freq;
 matchedPairs.push_back(newPair);
 matchedValues.push_back(matchValue);
}

 After all of the matches have been identified, the results are written to a results file where

they can be transferred back into Isight for the optimization to use.

int surfaceTemplate::writeModeResults(char* file)
{
 outfile.open(file);
 for(int i=0; i<(int)matchedPairs.size(); i++)
 {
 outfile << matchedPairs[i].second << "," << matchedPairs[i].first
 << "," << matchedValues[i];
 outfile << std::endl;
 }

 outfile.close();
 outfile.clear();

 return 0;
}

 The results are read back into Isight using the Java application that defines the GUIs

described previously. The results file is read and an Isight parameter corresponding to each

known mode shape is created. The frequency associated with each known mode shape is stored

in these parameters. Basic Java file reading capabilities read the mode shape, frequency, and

match value from the results file. The frequency can then be stored in the Isight parameter using

the following line:

a.getScalarByTag(matchNames[j]).getValueObj().setValue(matchFreqs[j]);

48

 After the parameters are set in Isight, the optimization can use them however the user has

specified they be used. For every iteration of the optimization, if the mode shape is matched to

the results, its frequency is assigned into the parameter.

49

5 RESULTS

 The purpose of this research, as discussed in Chapter 1, is to develop a method by which

the mode shapes of a finite element modal analysis may be automatically identified based on the

nodal displacements and previously stored templates of known mode shapes. The method uses

parameterized geometric representations of the vibrational mode shapes which allow two parts of

varied geometry or mesh density to be compared through the Modal Assurance Criterion.

Specifically, this method makes it possible for the frequencies of specific mode shapes to be

identified at every step of an iterative design process, such as an optimization or design of

experiments.

 Section 5.1 shows the results of using the method to compare the mode shapes of two

geometrically identical models which have been meshed with different levels of detail. Section

5.2 details the efficacy of the method in comparing parts with different geometrical definition,

but still of the same general size and shape. Section 5.3 shows the results of embedding the

method into an iterative design process.

5.1 Mode Identification – Differing Mesh Densities

 Vibrational mode shapes for models which are identical in geometric definition but with

differing mesh densities have been successfully identified using the method described in the

previous chapters. This has been accomplished using both parametric curve template

50

representations and parametric surface template representations. Two models which have

differing mesh densities, and thus have a different number of nodal displacements in their modal

shape vectors, and which have been compared using the method developed are shown in Figure

5-1. Although it appears that these parts are simply two dimensional tapered plates, they actually

vary in all three dimensions.

Figure 5-1 Two geometrically identical models meshed differently

As expected, because the models shown in Figure 5-1 are identical except for the mesh,

the mode shapes determined from a modal analysis are identical. The modal analysis results

from the model on the left of Figure 5-1 were used to create two mode shape templates, one

using curves and one using surfaces. The modal analysis results from the model on the right

were then compared to those templates using the method described previously. This research

investigated the method’s capabilities using three different model definitions. The first is a

simple rectangular plate that is 10 inches long, 8 inches wide, and 0.5 inches thick. The second is

a tapered and twisted linear plate which is 10 inches long, 8 inches wide at the base, 10 inches

51

wide at the tip, 0.5 inches thick, and has corners which are displaced an inch out of plane in

opposite directions at the tip. The corner nodes at the base and tip are connected by a line of

nodes. The third test geometry is basically the same as the tapered twisted linear plate just

described, except that the corner nodes on the base and tip are connected via nodes along a non-

linear spline curve. All models are meshed using two-dimensional elements. Each of the test

geometries described above is shown in Figure 5-2.

Figure 5-2 Isometric views of each test geometry

Each of these model definitions was meshed twice, once using quad elements and once

using tria elements. Curve and surface templates were created from the model meshed with quad

elements. Then the model with tria elements was compared to the template. This testing resulted

in the correct identification of all ten mode shapes determined by the modal analysis for all of the

test geometries. The MAC values calculated in the identification process using surface templates

for the tapered twisted non-linear plate definition are displayed in Table 5-1.

52

Table 5-1 Modal Assurance Criterion values for tapered twisted non-linear plate

Mode Number

1 2 3 4 5 6 7 8 9 10

M
od

e
N

um
be

r

1 1.0 0.7457 0.6948 0.9363 0.5287 0.9649 0.6380 0.5972 0.7984 0.6521

2 0.7481 0.9999 0.5746 0.8742 0.7240 0.7964 0.6110 0.5074 0.7230 0.7064

3 0.6913 0.5760 0.9975 0.6777 0.7890 0.7924 0.9024 0.9131 0.8750 0.6458

4 0.9294 0.8837 0.6770 0.9995 0.6231 0.9446 0.7247 0.5966 0.7712 0.7166

5 0.5318 0.7267 0.7973 0.6188 0.9978 0.6544 0.8142 0.8046 0.7550 0.8017

6 0.9635 0.7958 0.7990 0.9470 0.6556 0.9999 0.7455 0.7295 0.8405 0.7647

7 0.6303 0.6180 0.8893 0.7231 0.8070 0.7359 0.9978 0.8645 0.7948 0.6928

8 0.5979 0.5120 0.9274 0.5960 0.8158 0.7313 0.8778 0.9996 0.8099 0.7706

9 0.7766 0.7099 0.8869 0.7459 0.7501 0.8227 0.7948 0.8047 0.9985 0.6205

10 0.6494 0.7051 0.6401 0.7107 0.8073 0.7588 0.6823 0.7493 0.6320 0.9993

 As is shown by the high MAC values in the diagonal elements of the table, each mode is

correctly identified by the method. This demonstrates that parametric surfaces and curves used to

represent the modal analysis data enable an accurate comparison to be made between models

which are meshed differently. This attribute of the method lends itself to use in an iterative

design process because the mode shapes are still able to be identified even though each iteration

of a design may yield a new mesh scheme for the model.

5.2 Mode Identification – Differing Geometric Definitions

 An iterative design process modifies a model’s geometry, usually by changing the

parameter values that define a parametric model. The mode shapes for models which are similar

53

in geometric definition to a baseline design but have slightly modified geometry, due to design

changes, have been successfully identified by this method. The two models being compared may

have the same or a different meshing scheme. Two models, a baseline design and a modified

design are shown in Figure 5-3.

Figure 5-3 A baseline model and modified design

 The same three geometric models described in Section 5.2 were used as the baseline

designs to test the mode identification of models with differing geometric definition. Curve and

surface templates were generated from the baseline design modal analysis results and those

templates were compared to modal analysis results completed within an iterative design process.

An example of a set of ten mode shapes from the modal analysis of a baseline design is shown

below in Figure 5-4.

54

Figure 5-4 Ten sample mode shapes from the modal analysis of a baseline design

 The iterative process used in this research was a Design of Experiments (DOE), which

allowed the degree of design variation to be set in order to investigate the mode identification

capabilities of the method through the entire design space as defined. Four DOE processes were

completed for each template type and geometric definition, where each DOE run was set to vary

the model parameters to a different level. The levels to which the parameters defining the

geometry were varied were plus or minus 10 percent, 20 percent, 30 percent, and 40 percent.

When evaluating the accuracy of the method, the following rules were used to determine

if the method was successful or not.

1. If the mode shape in the modified design matches a mode shape in the baseline design

and the method correctly identifies the shape, the method is correct.

2. If the mode shape in the modified design does not match any shape in the baseline design

and the method does not match it with a mode shape, the method is correct.

3. If the mode shape in the modified design matches a mode shape in the baseline design

and the method does not match it with the mode shape, the method is incorrect.

55

4. If the mode shape in the modified design does not match any shape in the baseline design

and the method matches it to a mode shape, the method is incorrect.

 The design matrix for each DOE to be tested was generated by Isight and the DOE’s were

executed using the automated mode identification method to match any mode shapes in the

modified designs to mode shapes in the templates generated from the baseline design. Each

results file was visually inspected within a post processor to determine the mode shape and the

automated mode shape result was compared to the visually determined shape via the rules listed

above. This process produced the accuracy of the mode identification method.

 The rectangular plate DOE was run and it was determined that the mode identification

application accuracy is related to the amount which the model is allowed to be modified. When

the model geometry parameters were allowed to change plus or minus ten percent of the

baseline, the mode identification application was accurate 98 percent of the time when using

curve templates and 96 percent of the time using surface templates. At plus or minus 20 percent

modification, the application was correct 95 percent of the time for curves and 87 percent of the

time for surfaces. When allowed to modify by plus or minus 30 percent, the method’s accuracy

fell to 92 and 82 percent for curves and surfaces respectively. The accuracy at plus or minus 40

percent modification of the parameters was 89 percent for curve templates and 87 percent for

surface template representations.

 The DOEs executed using the tapered twisted linear plate resulted in a similar

relationship between the amount of variation and the method accuracy. Using NURBS curve

templates, the ten percent variation DOE resulted in a method accuracy of 92 percent. With 20

percent variation in the parameters, the matches were accurate 87 percent of the time. A DOE

56

with 30 percent variation in the parameters resulted in 80 percent accuracy. The mode

identification application was 78 percent accurate when allowing 40 percent variation in the

parameters. Using surface template representation, demonstrates the same general trend of

decreasing accuracy with increased parameter variation. When using NURBS surface templates,

the accuracy with 10, 20, 30, and 40 percent variation in the DOE was 93, 90, 82, and 84 percent

respectively.

 Next, the tapered twisted non-linear plate model was used as the baseline design for the

DOE. The same variation levels of plus or minus 10, 20, 30, and 40 percent were used to set up

the design matrix. Upon examination of the results for curve templates, the method was 88

percent, 83 percent, 83 percent, and 80 percent accurate respectively. With surface templates, the

mode identification accuracies were 91, 88, 87, and 82 percent, respectively.

 Each of the template types and Design of Experiment parameter variation levels

demonstrates the same general pattern that as the amount of variation from the baseline

increases, the accuracy of the mode matching application decreases. These trends are shown in

the results presented in Table 5-2 and Table 5-3, below. In each case, the match accuracy is

above 90 percent when the variation is limited to plus or minus 10 percent. The accuracy

percentage decreases in all cases into the mid to low 80’s as the DOE parameter variation

increases to plus or minus 30 percent. When the variation in the parameters was plus or minus 40

percent the matching accuracy increased from the 30 percent level in two cases and decreased in

the last case.

57

Table 5-2 Accuracy of the method using curve templates

Mode Identification Method Accuracy - Curves

 DOE Parameter Variation

± 10% ± 20% ± 30% ± 40%

Rectangular Plate 98% 95% 92% 89%

Tapered Twisted Linear Plate 92% 87% 80% 78%

Tapered Twisted Non-linear Plate 88% 83% 83% 78%

Table 5-3 Accuracy of the method using surface templates

Mode Identification Method Accuracy - Surfaces

 DOE Parameter Variation

± 10% ± 20% ± 30% ± 40%

Rectangular Plate 96% 87% 82% 87%

Tapered Twisted Linear Plate 93% 90% 82% 84%

Tapered Twisted Non-linear Plate 91% 88% 87% 82%

 In the testing, each modal analysis produced ten mode shapes and natural frequencies. By

investigating which mode shapes were incorrectly matched by the application, it was also

determined that the majority of the mismatches were in the higher order modes. Of all incorrect

matches made by the application, over 83 percent, for curve templates, and 75 percent, for

surfaces, occurred in the final four modes studied. This is due to a number of factors.

As the mode number increases, the mode shapes become increasingly complex. The

function which is used to create a NURBS surface from the nodal displacements determines an

approximate surface from a cloud of points. This is done using a least-squares method to find a

best fit surface for the point data. This results in a surface that does not pass through each point,

58

and thus does not represent the mode shape as accurately as possible. It also produces template

surfaces which appear to be more similar to one another than they actually are.

The incorrect matches are also partially due to the fact that only the nodal displacement

magnitude was used to match the mode shapes. Because only the displacement magnitude is

used instead of the magnitude and direction, dissimilar modes are more easily seen as correlated

modes. When this displacement magnitude effect is combined with the NURBS surface

approximation function discussed above, the effect is amplified. An example of two modes that

may be easily mismatched due to this combined effect, and their respective template surface

representations, are shown in Figure 5-5 and Figure 5-6, below. These effects are correctable

through further refinement of the identification method which will be further discussed in

Section 6.1.

Figure 5-5 Contour plots for two easily misidentified mode shapes

Figure 5-6 Template geometry for two easily misidentified mode shapes

59

 Another important piece of information is that the results indicate that the surface

templates are more accurately used to identify mode shapes than the curve templates are. The

results indicate that this is the case for all models used except for the flat rectangular plate. The

increase in match accuracy when using surface templates is because the surface templates

contain shape information internal to the model as opposed to the curve templates which only

stores information about the outside edge of the model. Surface creation and evaluation increases

the amount of time taken to run the application, but results in greater accuracy, especially when

using models with a more complex geometric definition.

 Despite these inefficiencies in the method, the results show that the identification of

mode shapes using parametric NURBS curves and surfaces created from the modal analysis

displacement data is feasible. The results also demonstrate that the accuracy of the method when

using NURBS curve templates is comparable to the accuracy when using NURBS surface

templates. The advantage of using surface templates in the method is that the part’s interior data

factors into the comparison while curve templates simply use the part’s boundary data.

5.3 Mode Identification in Iterative Design

 Section 5.2 discussed the accuracy of the mode identification method when comparing

two models of differing geometric definition. This was accomplished by executing the

application within an iterative design process and inspecting the results. Figure 5-7, below,

shows a sample DOE set up that was run to test the method. The DOE initializes the parameter

values and passes them into the subflow which calculates other values required, creates a new

modal analysis script, solves the modal analysis in ANSYS, and finally identifies the modes from

the modal analysis results.

60

Figure 5-7 Isight Design of Experiment workflow

The capability to automatically identify the mode shapes throughout the iterative process

is advantageous because it provides significant time savings to identifying the mode shapes by

visual inspection of the analysis results which is the current process for mode shape

identification[10].

In generating the results presented in this section, each mode shape inspection method,

automated and visual, was completed 20 times. The automated mode shape identification runs

identified 10 mode shapes. Visual inspections were completed by having a user view and

identify the mode shape and natural frequency for ten modal solutions within the ANSYS post

processor, having already loaded a previously solved modal analysis results files.

When curve templates were used by the automated application, it took an average of

0.891 seconds to match 10 mode shapes for a speed of 0.0891 seconds per match. The automated

application took an average of 15.55 seconds to execute the matching application 10 times when

using surface templates. This means that the algorithm was able to execute at a rate of 1.555

seconds per match. When the same modal analysis results files were investigated visually to

61

determine the mode shapes and natural frequencies, it was found that on average it took 121.66

seconds to identify the mode shapes for 10 modes. The rate of identification for this visual

inspection is 12.166 seconds per match, which is more than 136 times the speed of the automated

method when using curve templates and almost eight times more than when using surface

templates. These results are presented side by side in Table 5-4.

Table 5-4 Time required by mode shape identification methods

Identification Method Total Time (sec) # of Matches Time per Match (sec)

Automatic - Curves 17.82 200 0.0891

Automatic - Surfaces 311.07 200 1.55535

Visual 2433.28 200 12.1664

When visual inspection is used to identify the mode shape, the designer can be sure of

what each mode shape is, while using the mode identification method introduces the possibility

of incorrect matches occurring as discussed in Section 5.2. However, the significant time savings

made possible through the method present a compelling argument for automation even if the

identification is not always perfectly accurate. This is especially true as the designer increases

the number of mode shapes that he desires to identify at each step of the iterative process which

increases the amount of time that would be invested into mode shape identification.

63

6 CONCLUSIONS

 The Modal Assurance Criterion, which has been developed over the past three decades to

determine how a set of modal vectors are correlated, can be effectively used to compare and

identify the mode shapes of dissimilar finite element models. This is made possible through the

representation of the models’ modal analysis results as parametric NURBS curves and surfaces

which allows parts with different mesh attributes and geometrical definitions to be compared

against previously known mode shapes in parameter space as opposed to real space. The use of

surface templates is more time intensive than using curve templates. The accuracy of the method

using curve templates is comparable to when using surface templates.

 The interpolate points function in GSNLib and the surface approximation function in the

NX Open C API make it possible to use the nodal position and displacement data to create a

parameterized curve or surface representing a specific mode shape which can then be stored to a

database using a GSNLib data structure. Once the finite element model and results data from two

models is transferred into parameterized geometric form, it is simple to compare them one to

another at user-defined intervals using the Modal Assurance Criterion. The MAC calculation is

then able to provide the correlation value that identifies matching mode shapes between models

of different mesh density and geometric definition.

 The automated mode identification method provides a fast and simple way to gain a more

detailed understanding of a part’s dynamic properties without having to visually inspect each

64

modal solution within a finite element post processor. The real benefit of this is when iterative

design processes, such as optimization or design of experiment, are being utilized. Since the

iterative design methods modify the geometric parameters of the model with each iteration, the

NURBS template representations allow the differing models to be successfully compared

irrespective of their size or mesh properties. Using NURBS surface templates offers an

advantage in that data from a part’s interior regions are used while curve templates simply use

boundary data. Using NURBS curve templates offers a distinct time advantage over surfaces.

Although the method is not 100 percent accurate at identifying the modes present in the analysis

results, it is accurate enough to provide an understanding of the part’s properties especially in the

early steps of the design process.

 The similar accuracies of the method, whether using NURBS curve or surface templates,

indicate that both geometries are useful in the identification process. If time is of major concern,

then curve templates should be utilized in order to leverage their minimal time cost. However,

doing so means that internal part data will not factor into the identification process. Surface

templates should be used when it is desired to capture the behavior of the entire part, as opposed

to curve templates which only use the boundary data. On another note, because NURBS surfaces

can only be used to represent models that are four sided, NURBS curve templates are more

applicable for use with a more generalized shape. Implementing the automated method results

in large time savings over the visual inspection of results to determine mode shapes, which is the

currently used method. The automated identification method is almost eight times faster for

surface templates and 136 times faster for curve templates than visual inspection of results within

a post processing environment and the method’s time savings add up significantly when a large

65

number of modes are identified within an iterative process. The mode identification application

also allows for more objectivity in the identification process.

6.1 Recommendations

 One current limitation to the automated mode identification method is that only the nodal

displacement magnitudes are being used to define the NURBS representations of the mode

shapes. An improvement would be realized if the method were to use the nodal displacement in

each of the three (X,Y,Z) directions including the sign. This would increase the level of detail

captured in the NURBS surface representations of the data and allow for a greater number of

unique mode shapes to be more accurately identified. This is due to the fact that positive and

negative displacements could be captured as well as displacements in each of the three principle

directions, avoiding the confusion between two different mode shapes which have different

mode shapes but similar displacement magnitudes.

 Another limitation in the current method is the surface fitting algorithm within the NX

Open C API that is currently being used. The method is not able to consistently fit a surface

through a set of points. A major improvement to the method would be to use another method that

is more capable of fitting a surface through each point individually in a point cloud as opposed to

using a simple least squares approximation. This would also improve the quality of the NURBS

surface representations, allowing the method to more accurately identify the mode shapes of a set

of results. A function exists within the GSNLib function library which may be more effective at

producing an accurate surface representation from the displacement data.

 Another benefit of switching from the NX API function to another method would be that

the application would be independent of the CAD environment completely. Currently, a CAD

session must be started each time the application is run in order to call the function from the API.

66

This accounts for a large portion of the execution time within the iterative process. If the

function could be switched to a CAD independent algorithm, more drastic time savings would be

realized.

 Identification of mode shapes as done in this research, using the MAC correlation value

and a threshold value, introduces uncertainty into the identification process. The uncertainty in

the identification is an important issue that, when quantified, can be used to aid the designer in

understanding the results of the method. A means to leverage this uncertainty, which is currently

not used, to improve the method should be developed. Uncertainty is indicated by MAC values

which are near the threshold value. Multiple MAC values above the threshold also indicate

uncertainty as to which mode shape the results actually represent. Through quantifying the

uncertainty in the mode shape identification, the method will be improved. One way in which the

uncertainty can be used to improve the method is by using NURBS curve templates for a very

fast initial comparison based on the part’s boundary. For match results with high uncertainty,

NURBS surfaces could be used to identify the mode shape using data from the part’s interior.

Finally, if the uncertainty is still high, a flagging process could identify the result as a high

uncertainty match for the designer to investigate. Flagging these uncertain results will allow the

designer to note the less confident matches, inspect the results to ensure the design has not varied

too far from the baseline geometry, and modify the design process in order to reduce the

uncertainty and improve the accuracy of the method.

 The current method also only applies to two dimensional finite element models. This is

adequate for basic analyses, but a modification to the method that allows for three dimensional

models to use the method would allow for mode identification of more detailed models. Three

67

dimensional finite element results may also provide a means for more accurate mode matching

capabilities.

69

REFERENCES

[1] S. Gade, H. Herlufsen, and H. Konstantin-hansen, “How to Determine the Modal
Parameters of Simple Structures,” 2001.

[2] D. J. Ewins, Modal Testing: Theory and Practice, 1st ed. New York: Research Studies
Press Ltd., 1984.

[3] M. Rades, Mechanical Vibrations II. 2010.

[4] R. J. Allemang, “The Modal Assurance Criterion – Twenty Years of Use and Abuse,”
Sound and Vibration, vol. 1, no. August, pp. 14-21, 2003.

[5] ANSYS Inc., “ANSYS Documentation.” ANSYS Inc, 2007.

[6] A. K. Chopra, Dynamics of Structures, 3rd ed. Upper Saddle River: Pearson Prentice Hall,
2007, p. 876.

[7] R. J. Allemang, “Vibrations: Experimental Modal Analysis,” University of Cincinnati,
Cincinnati, 1999.

[8] W. Heylen and T. Janter, “Extensions of the Modal Assurance Criterion,” Transactions of
the ASME, vol. 112, no. October, pp. 468-472, 1990.

[9] M. E. McNelis, T. W. Goodnight, K. S. Carney, K. D. Otten, A. Corporation, and B. Park,
“Lessons Learned From CM-2 Modal Testing and Analysis,” Cleveland, 2002.

[10] L. V. Burns, “MAC Evaluations Utilized in FEA Analysis for Mode Identification,” South
Bend, 2004.

[11] D. J. Ewins, “Model validation: Correlation for updating,” Sadhana, vol. 25, no. 3, pp.
221-234, Jun. 2000.

[12] T. S. Kim and Y. Y. Kim, “Mac-based mode-tracking in structural topology
optimization,” Computers & Structures, vol. 74, no. 3, pp. 375-383, Jan. 2000.

[13] T. W. Sederberg, “Computer Aided Geometric Design - Course Notes,” 2011.

70

[14] L. Piegl and W. Tiller, The NURBS Book, 2nd ed. New York: Springer-Verlag Berlin
Heidelberg, 1997, p. 646.

[15] I. Zeid, Mastering CAD/CAM. Boston: McGraw-Hill, 2005.

[16] J. Gallier, Curves and Surfaces in Geometric Modeling. San Francisco: Morgan
Kaufmann, 2000, p. 491.

[17] A. Hepworth, “Methods to Streamline Laminate Composite Design, Analysis, and
Optimization,” Journal of the Electrochemical Society, vol. 129, no. April. 2010.

[18] T. Astle, “System Architecture and Development of CAD Independent Algorithms for
Integration with Commercial CAD Software,” Brigham Young University, 2003.

	Application of Parametric NURBS Geometry to Mode Shape Identification and the Modal Assurance Criterion
	BYU ScholarsArchive Citation

	TITLE PAGE
	ABSTRACT
	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	1 INTRODUCTION
	1.1 Problem Overview
	1.2 Thesis Objective
	1.3 Problem Delimitations
	1.4 Thesis Organization

	2 BACKGROUND
	2.1 Modal Analysis
	2.2 The Modal Assurance Criterion
	2.3 Parametric Geometry

	3 METHOD
	3.1 Gather Information From User
	3.2 Transform Data into NURBS
	3.2.1 Read Displacement File and Determine Node Sequence
	3.2.2 Normalize Nodal Displacements
	3.2.3 Normalize Node Locations
	3.2.4 Transform Data into NURBS Curve
	3.2.5 Transform Data into NURBS Surface

	3.3 Store Template
	3.4 Load Template of Known Mode Shape
	3.5 MAC Calculation
	3.5.1 Comparing Curves
	3.5.2 Comparing Surfaces

	3.6 Identify Mode Shape

	4 IMPLEMENTATION
	4.1 Gather Information From User
	4.1.1 Mode Identification Application GUI
	4.1.2 Create Templates GUI

	4.2 Transform Data into NURBS
	4.2.1 Read Displacement File and Determine Node Sequence
	4.2.2 Normalize Nodal Displacements
	4.2.3 Normalize Node Locations
	4.2.4 Transform Data into NURBS Curve
	4.2.5 Transform Data into NURBS Surface

	4.3 Store Template
	4.4 Load Template of Known Mode Shape
	4.5 MAC Calculation
	4.6 Identify Mode Shape

	5 RESULTS
	5.1 Mode Identification – Differing Mesh Densities
	5.2 Mode Identification – Differing Geometric Definitions
	5.3 Mode Identification in Iterative Design

	6 CONCLUSIONS
	6.1 Recommendations

	REFERENCES

