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ABSTRACT

A Hierarchical Multi-Output Nearest Neighbor Model for Multi-Output
Dependence Learning

Richard G. Morris
Department of Computer Science, BYU

Master of Science

Multi-Output Dependence (MOD) learning is a generalization of standard classification
problems that allows for multiple outputs that are dependent on each other. A primary issue
that arises in the context of MOD learning is that for any given input pattern there can be
multiple correct output patterns. This changes the learning task from function approximation
to relation approximation. Previous algorithms do not consider this problem, and thus
cannot be readily applied to MOD problems. To perform MOD learning, we introduce the
Hierarchical Multi-Output Nearest Neighbor model (HMONN) that employs a basic learning
model for each output and a modified nearest neighbor approach to refine the initial results.
This paper focuses on tasks with nominal features, although HMONN has the initial capacity
for solving MOD problems with real-valued features. Results obtained using UCI repository,
synthetic, and business application data sets show improved accuracy over a baseline that
treats each output as independent of all the others, with HMONN showing improvement that
is statistically significant in the majority of cases.

Keywords: Multi-Output Dependence, Machine Learning, KNN
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Chapter 1

Introduction

Classification is a common problem in machine learning. Given an input vector ~x and

a set of possible outputs C, classification is the task to give a mapping from the input ~x to

some output y, where y ∈ C. We define a classifier as f : X1 ×X2 × · · · ×Xm 7→ C where m

is the number of input features. However, some problems require multiple outputs given the

same input vector. In these cases the input ~x maps to a vector of outputs ~y where yi ∈ Ci

where Ci is the set of possible outputs for output i. The mapping ~x 7→ ~y has been done

before in the case where the components of ~y are independent [10] and where ~y is structured

[2]. Typically, it is unknown a priori if the outputs are independent, and in many cases the

outputs are dependent. Thus, any one output may be considered correct or incorrect only

when considered in the context of other outputs. In this sense, outputs should be seen as

correct or incorrect collectively, and not individually.

These multiple output decisions are decisions that humans make daily. For example,

when planning a meal the task is to give a mapping from meal times to meal contents. Orange

juice is normally a good choice of drink for breakfast, but if the main or side dish contains

chocolate, orange juice may be a poor choice. If pancakes are the main dish, scrambled eggs

are a better choice for a side dish than if an omelet is the main dish.

We define a training data set T to be a set of input vectors ~x each labeled with an

appropriate output ~y. It is possible for there to be some input vector ~x associated with

multiple instances in T , each labeled with a different output vector ~y where |~y| ≥ 1. In this

case, there are multiple correct outputs for ~x. Each of these outputs do not necessarily need
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to be equally good, some outputs may be more desirable than others, but there are still

multiple outputs that would be acceptable given the input ~x.

This changes the task from finding a mapping function ~x 7→ ~y to finding a relation

from ~x to ~y. We consider the relation where there are multiple outputs (where |~y| > 1)

and there is a dependency between the outputs. This gives rise to interesting questions

about which correct solutions to choose when there are multiple correct solutions available.

Different output selection methods could include random selection, a predetermined bias or

preference, a learned bias or preference, and weighted random selection. This is similar to

what relaxation models accomplish, in that they can give a relation from ŷ to ~y where ŷ is

an initial setting for the solution ~y, but current models are auto-associative, unable to handle

arbitrary input and output mappings, as opposed to the hetero-associative model, which we

support.

Many current algorithms fail to directly support multiple outputs, and any current

model will assume either independence or structure in the outputs. Current approaches either

induce one model per output or create a single model that gives multiple outputs without

explicitly modeling the dependencies. Different models will support multiple independent

outputs with a varying degree of success, without further modification. Decision Tree learning

algorithms must either induce multiple trees in order to produce multiple outputs or must

induce a single tree that blows up exponentially, but neither of these approaches will model

any dependence between the output variables. K-Nearest Neighbor algorithms can support

multiple outputs with little change to the basic algorithm. Multi-Layer Perceptron (MLP)

models can give multiple outputs with a single model or multiple model approach. However,

none of these algorithms explicitly model dependent outputs. An example of the multiple

model approach can be seen in Figure 1.1.

Structured Prediction (SP) is a single model approach to dependent output where the

output has some structure [2]. The output structure could be a graph, a tree, a sequence, or

any other structure. While SP algorithms support multiple dependent outputs, current SP
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algorithms do not account for multiple correct outputs.

We introduce Multi-Output Dependence (MOD) learning as an algorithmic family

that models dependencies between multiple outputs. The MOD classification task is to give

a relation from ~x to C in the case where there exists an i 6= j such that yi ∈ Ci depends on

yj ∈ Cj. MOD problems can be seen as those problems where the outputs are important

in addition to the inputs when making a decision. The context of the other outputs along

with the input needs to be considered when making a decision rather than the input alone.

MOD learning requires approximating a relation, as opposed to the more traditional function

approximation. This work is restricted to tasks with nominal features, although the proposed

algorithm does show potential for tasks with real-valued features.

This paper introduces the Hierarchical Multi-Output Nearest Neighbor model (HMONN)

in order to solve the MOD problem. This hierarchical model has two different layers. The

first layer is a näıve approach with one learning model per output. The models that comprise

the first layer can be any traditional machine learning model. The second layer is a modified

nearest neighbor model that refines the predictions made on the first layer. An example

of this system can be seen in Figure 1.2. Though HMONN focuses on tasks with nominal

features, it also gives improvement for some tasks with real-valued features by implicitly

modeling a similarity function for the feature space.

The rest of the paper is organized as follows. Chapter 2 gives an overview of related

work. We present HMONN to address the MOD classification problem in Chapter 3. In

Chapter 4 experimental results are presented where HMONN is compared to a baseline model

that assumes independence between outputs. Results are obtained from comparisons using

UCI data, synthetic data, and real-world data. Finally, Chapter 5 presents a summary and

discussion of future work.

3
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Input

Output1 

Output2 

Outputn 

Model1

Model2

Modeln

Figure 1.1: An example of a system where multiple models are used to give a multiple output
prediction. Each separate model could use a different algorithm or they could all use the
same algorithm. There is, however, no modeling of the dependence between the outputs.

...

Input

Model1

Model2

Modeln

Output
Modified
Nearest
Neighbor
Model

Figure 1.2: The HMONN model used to solve MOD problems. The models used as input to
the modified nearest neighbor model can use any algorithm to produce an initial prediction.
This models the dependence between the outputs in terms of the local context from the
nearest neighbor algorithm.
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Chapter 2

Related Work

MOD learning is an intersection of learning in the context of multiple outputs and

in the context of statistical dependence. Multi-label classification, relaxation networks,

transfer learning, multi-dimensional Bayesian network classifiers, and structured prediction

all have multiple outputs. Recurrent neural networks, transfer learning, multi-dimensional

Bayesian network classifiers, and structured prediction all present different angles on statistical

dependence. MOD supports multiple outputs that are dependent on each other, with the

added complexity that some inputs have multiple correct outputs, a problem that has not

been considered by previous work. The unique nature of this dependence prevents previous

algorithms from being applied to MOD problems.

Tsoumakas et al. [16] give an overview of multi-label classification (where ∀i Ci =

{0, 1}). They define the two main solution concepts for multi-label classification. The first

approach is problem transformation, where the given data is transformed into a single problem

that already has a well defined solution. An example of problem transformation is binary

relevance, where a binary classifier is trained for each possible label. The second approach

is algorithm adaptation, where current algorithms are modified to solve the multi-label

classification problem directly. Zhang and Zhou [17] use an algorithm similar to k-nearest

neighbor to perform multi-label classification. This is an example of algorithm adaptation.

Their algorithm first finds the k-nearest neighbors to an input vector, then finds the most

likely label using a form of maximum a posteriori inference. Heath et al. [10] compare

binary relevance to several different types of algorithm adaptation. They also give the
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surprising result that binary relevance outperforms the algorithm adaptation methods that

were implemented. The binary relevance approach is similar to the baseline used in our

experiments.

Many problems have a structure to them that is missed by standard classification

algorithms [14]. Structured Prediction (SP) seeks to solve this problem by modeling the

dependence structure of the outputs. This structure could be a sequence, a tree, a graph,

or an image. This allows for multi-output as well as output dependencies. However, these

dependencies are almost always limited to Markovian dependencies — they are related by

time or space.

Theoretically, SP algorithms are capable of modeling any problem with structure, and

MOD problems would be an example of this kind of problem. The main difference between

MOD and SP is that MOD problems are assumed to have some inputs with multiple correct

outputs, whereas with current SP algorithms there is a single correct output assumed for

each input.

Bakır et al.[2] give an overview of the state of the art in SP. Most of these state-of-

the-art algorithms are based on a maximum margin approach such as the approach proposed

by Taskar et al. [14]. This work by Taskar et al. is one of the first to combine the strength of

kernels and maximum margin methods with the language and algorithms of graphical models.

They compare this novel approach to standard Support Vector Machine and Conditional

Random Field models.

Tsochantaridis et al. [15] build off of the same foundational concepts used by other

maximum margin methods for SP. Their algorithm is based on Support Vector Machines.

Their proposed method tends to produce quadratic programs with an exponential number of

constraints. While this would normally make learning near impossible, they also present an

algorithm that utilizes the specific nature of maximum margin problems to examine a much

smaller subset of the constraints. This solution avoids an exponential running time for most

problems considered to be important in SP.
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Daumé et al. [5] present a slightly different algorithm for SP called SEARN. SEARN

operates by deconstructing each decision into multiple binary decisions. Daumé et al. also

give a theoretical guarantee that good performance on the binary decision problems translates

into good performance on the larger problem. They demonstrate promising results when

comparing SEARN to several standard algorithms used on various natural language processing

tasks.

The Multi-dimensional Bayesian network classifier (MBC) [3] is an algorithm that has

the graph of class and feature variables for a given problem (as seen in a standard Bayesian

approach) divided into a class subgraph, a feature subgraph, and a bridge subgraph. It is a

type of SP, where there is some assumed structure to the output. The algorithm computes

the most probable explanation given those class and feature variables. Decomposing the

graph into three subgraphs is meant to ameliorate the computation of the most probable

explanation, which is known to be in NP for Bayesian networks. However, the structure of

the three subgraphs must be defined in order to use MBCs. This is another example of a

multi-output problem that exhibits some dependencies, but not necessarily between outputs.

Our approach is the first approach to consider the multi-output problem to be associated

with multiple correct outputs, and as such to treat the problem as relation approximation.

While MOD learning is relation approximation, this should not be confused with

relational learning. Statistical Relational Learning [9, 12] and Multi-Relational Learning [6]

both handle relational data, not relation approximation. These relational learning models

learn a function from relational data and handle specially formatted and structured data.

A relaxation network is a type of network that is allowed to settle to an output pattern

given some input pattern. This approach is the closest to the relation approximation that

occurs with MOD learning. Hopfield networks [11] and Boltzmann machines [1] are two

examples of relaxation networks. The behavior of these networks is very sensitive to the

architecture of the network. They can easily have multiple outputs. They are, however,

auto-associative, mapping a pattern of n inputs to a pattern of n outputs, or more specifically,

7



they map from an initial prediction ŷ to a final prediction ~y. These outputs can be dependent

on each other anywhere there is a non-zero weight between nodes. Although a Boltzmann

machine could support higher order dependencies through hidden nodes, current learning

algorithms have difficulties learning these higher order dependencies. Another limitation of

relaxation network models is finding an appropriate representation of the problem in the

network structure to allow these models to give valid solutions. Finally, our approach does

not require an initial ŷ like the relaxation networks do, but it maps from an arbitrary ~x to ~y.

Some distantly related problems include the following. Recurrent Neural Networks are

a type of neural network that considers dependencies between different time steps rather than

different outputs [7]. In transfer learning [13] and multitask learning [4] there are multiple

tasks being learned at the same time. These multiple tasks may not share the same inputs,

and are solving several separate, but related, problems. MOD learning is solving a single

problem with highly dependent outputs, or subcomponents.
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Chapter 3

HMONN

We present the Hierarchical Multi-Output Nearest Neighbor model (HMONN) to solve

the MOD problem. This model is compared against a baseline that is an implementation of

the näıve independence model.

In this work, we define an output prediction ŷ to be correct for a given input vector ~x

if there is some training instance in the training data T that has ~x labeled with output ~y

and ŷ = ~y (or if ŷ = ~y for the current test instance). The traditional definition of a correct

prediction only takes into account the labeling on the instance currently being tested. This

definition allows the model to use information contained within the training data to determine

which output predictions should be counted as correct.

Traditional models are not able to model the dependencies between outputs. This

is, in part, due to the fact that traditional models are function approximators, and MOD

problems are, at their heart, relations. For example, a traditional MLP-based solution will

thrash between the multiple possible outputs, and may not give any of the possible correct

output vectors. As an example of this, consider a training set that contains the following two

training patterns.

x1 x2 x3 x4 y1 y2

1 0 0 1 1 0

1 0 0 1 0 1

An MLP will adjust weights towards outputting {1, 0} whenever the first instance

is encountered, and whenever the second instance is encountered it will adjust the weights

9



(a) Actual Relation (b) Possible Learned Function

Figure 3.1: A graphical example of a relation with multiple correct outputs. The solid curve
represents the relation itself. The dotted curve represents the function learned by an MLP
model. The dotted curve follows the solid curve exactly until the relation branches, at which
point the dotted curve is in the center of the two branches.

towards outputting {0, 1}. The network will consequently adjust the weights towards the

output {0.5, 0.5} (without ever stabilizing), given the input {1, 0, 0, 1}, rather than towards

either of the two possible correct outputs.

A graphical example of the problem faced by an algorithm trying to learn a problem

with multiple correct outputs is shown in Figure 3.1. The solid curve represents the relation

in the training data and the dotted curve represents the function that could be learned, for

example by an MLP. The algorithm could output both branches of the relation, following the

relation exactly, choose one of the branches arbitrarily, or choose one based on some criteria.

It should not, however, output something completely different.

The method presented here will favor one output vector over the others. Even

though we could give a distribution of potential outputs from the neighborhood of the initial

prediction, we only give one of the possible correct output vectors for the given input vector

~x. This output vector is the most common among the given neighborhood, and thus varies

with neighborhood size and makeup.

As there is no other MOD algorithm to compare against, we chose to compare the

highest output of the HMONN with the output from the näıve independence model. Due

to the lack of alternative models, the näıve model was chosen as a reasonable comparison

because it is the most likely to be used (in part, due to its simplicity) when working with
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any MOD data without a specific MOD algorithm available.

HMONN is only a first step towards solving the MOD problem. Finding a full solution

to the MOD problem is beyond the scope of this work, which is limited to HMONN. Future

work will investigate more complete solutions to the MOD problem. This will include other

machine learning models, such as relaxation network based approaches.

HMONN starts with some initial prediction and then uses the extra information

provided by that initial prediction to give the output. The initial prediction is obtained

using any machine learning method. We use the output from the näıve independence model

as the initial prediction. Here, we choose to train an MLP classifier for each output. The

outputs from each of the MLP classifiers are combined into an initial prediction. We present

a modified K -Nearest Neighbor (KNN) algorithm to give the final prediction. A typical

distance function for KNN is the Euclidean distance of the input features.

Dist(~x1, ~x2) =

√√√√ N∑
i=1

(x1,i − x2,i)2 (3.1)

N is the number of features in the input space and ~x1 and ~x2 are input vectors.

HMONN uses a different distance function where the initial prediction is used as part of the

features for the distance function.

Dist({~x1, ~y1}, {~x2, ~y2}) =

√√√√θ

N∑
i=1

(x1,i − x2,i)2 + (1− θ)
M∑
i=1

(y1,i − y2,i)2 (3.2)

N is the number of features in the input space, M is the number of outputs, θ is a

weight on the range [0, 1], each ~x is an input vector, and each ~y is an output vector. The

value for θ emphasizes either the input space or the output space as more important. This

modification of KNN captures the dependency between output variables by incorporating

them into the input feature space. This emphasizes the importance of local context for the
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final output given. HMONN takes the initial prediction from the MLP classifiers, uses this

initial prediction as part of the features in a KNN algorithm, and picks the majority output

vector from the neighborhood as the final prediction.
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Chapter 4

Experimental Results

Accuracy of MOD classifiers was evaluated on three different types of data, UCI

repository data, synthetic data, and real-world business data. This accuracy was compared to

a baseline model that consists of a single classifier trained separately for each output, which

we call the näıve model, where each separate prediction is combined into a single output

vector. Accuracy is defined as follows.

MOD accuracy =

∑D
i I({~xi, ~zi} ∈ T ∪ {Di})

|D|
(4.1)

where D is the test data set, ~zi is the predicted output vector for instance i, ~xi is the input

for instance i, T is the training data set, and I(x) is the indicator function returning 1 if the

expression x is true and 0 otherwise. This accuracy metric counts any prediction as correct if

some input vector ~x is labeled with the predicted output vector ~z. This considers all possible

correct output vectors as equally good.

Standard machine learning tasks with only nominal input features are common, and

we assume that the same will hold for MOD data sets. HMONN shows clear improvement

on these data sets. Many tasks also have real-valued features. While it is more difficult

to find a duplicate ~x in these data sets, real-valued features will often have some level of

discretization done to them, through either binning or rounding. This discretization that

is already inherent in many current datasets, increases the likelihood of finding duplicate ~x

vectors in the dataset. This alters the amount of dependence between the output variables

(see Theorem 4.0.1). Thus, in many current datasets, real-valued features do not necessarily
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take on a large range of values. This allows the given definition of accuracy to work in many

cases with real-valued features.

To better handle real-valued features, the definition of accuracy could be extended to

allow for similar values, as opposed to requiring values to be exactly equal. For example,

assume that the test set has ~x 7→ ~t and ~z 6= ~t. If in T ∪ {Di} there is an ~xa with ~xa 7→ ~z and

~x is similar to ~xa, ~x 7→ ~z could be counted as a correct MOD classification. We are currently

working on extending MOD accuracy metrics to better support real-valued features.

We can demonstrate that duplicate ~x values within the training data are necessary

for two output variables to be dependent. Theorem 4.0.1 claims that we can observe the

dependence between two output variables directly in the training data. There may be a

case for loose dependence that relies on different ~x vectors being only similar, but this work

requires exact equality.

Theorem 4.0.1 Given the random variables X, Yi, and Yj, with X being the input vector

and both Yi and Yj being scalars from the output vector, if the two output variables, Yi and

Yj, are conditionally dependent on each other given the input variable X and the training

data T , then there is some input vector, ~x, associated with multiple output vectors, ~y, in T .

Proof Assume that outputs Yi = y1 and Yj = y2 are conditionally dependent given the

input variable X and the training data T . By the definition of statistical dependence this

implies that, for some input vector X = ~x, P (y1 | y2, ~x, T ) 6= P (y1 | ~x, T ). Assume that the

output vector ~y = [y1, y2]
T is the only possible correct output for ~x. Then it is the case that

P (y1 | y2, ~x, T ) = P (y1 | ~x, T ) = 1. This contradicts the definition of statistical dependence.

Thus, there must be multiple possible output vectors for the input vector ~x.

We do show that HMONN can improve on accuracy in the case of real-valued inputs

with some of the experiments on synthetic and UCI data, in spite of the issue of the frequency

of exact ~x vectors for real-valued features. This is due to the fact that the nearest neighbor

portion of the algorithm creates an implicit similarity function for the feature space. The
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xn,y

x2,a

x4,b

x5,b

x3,a

x1,a

Figure 4.1: A graphical example of the implicit similarity function used by HMONN.

similarity function will behave differently based on the neighborhood size. This gives a

distance-based voting for which outputs are correct for any given portion of the feature space.

This causes the majority class for any given neighborhood in the feature space to always

be the correct value. A graphical example of the implicit similarity function is shown in

Figure 4.1. In the figure, the new input to be classified is ~xn with an initial prediction of ŷ.

The neighborhood of ~xn, ŷ, for k = 5, is shown by the dotted circle. Each of the points in the

neighborhood is labeled with either ~a or ~b. All of the points within the neighborhood of ~xn, ŷ

will be seen as similar to ~xn, ŷ. In this example, the input ~xn would be labeled as ~a, which is

the majority vote in the neighborhood. Selecting outputs in this fashion avoids some of the

difficulty with real-valued features, even though it does not solve the problem completely.

We are currently exploring ways to fully resolve this problem, but such a solution is outside

the scope of this paper.

4.1 Synthetic Data

Two different types of synthetic data were created. One used real-valued features in order to

determine whether HMONN implicitly models a similarity function for the feature space, as

hypothesized. The other used only nominal features.
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Real-valued synthetic data was created stochastically using the following process.

Given o output variables, a synthetic data set is generated by selecting c points in the input

space as centroids. These points are each randomly assigned a number of probability vectors.

A probability vector contains a probability distribution over possible output vectors. To

generate an instance, a centroid is selected at random, the input values for that instance are

generated by randomly perturbing the centroid according to a Gaussian distribution. An

output vector is chosen by randomly selecting an output vector according to the probability

distribution of a randomly chosen probability vector for that centroid. A graphical view of

the generation process can be seen in Figure 4.2. This generation process attempts to model

the fact that, for MOD problems, a portion of the input space can belong to more than one

output vector.

Nominal synthetic data was created using the process outlined above with one difference.

To generate a centroid, a center point for each feature was chosen from {0, 1, 2, 3}. New

inputs were generated by adding a randomly selected value from {−1, 0,+1} to the center

point for that feature. Values above 3 were set to 3 and values below 0 were set to 0.

4.1.1 Experiments

Data was generated using the following values. The parameters were set to o ∈ {2, 3, 4}

(with four possible values for each output) and c ∈ {2, 4, 6, 8}. The number of inputs was set

to 3 times the number of outputs. The number of probability vectors was the same as the

number of centroids, 1.5 times the number of centroids, or 2 times the number of centroids.

5000 instances were generated for each data set. Some initial experimentation was used to

determine values for k (the neighborhood size) and θ (the weight of the input versus the

output space). We tested values of k from 1 to 11, and found that there was little difference

between values of k in the experiments. We tested values of θ from {0, 0.25, 0.5, 0.75, 1}, and

found that all values performed equally well in the experiments except θ = 0, which performed

slightly worse than the rest of the values tested. Thus, we used representative values k = 7
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Input Space

Centroid

Centroid

Centroid

Probability Vector 1

0.25 - Output Vector 1
0.45 - Output Vector 2
0.40 - Output Vector 3

Probability Vector 2

0.65 - Output Vector 1
0.35 - Output Vector 4

Probability Vector 3

0.90 - Output Vector 5
0.10 - Output Vector 6

Probability Vector 4

0.45 - Output Vector 2
0.55 - Output Vector 5

Figure 4.2: Example of a model used for data generation. Each centroid resides in a specific
portion of the input space (denoted by the dotted lines). Any number of probability vectors
can be associated with a given centroid. Each output vector that belongs to a given probability
vector also has an emission probability for that output vector.

and θ = 0.5 in the rest of the experiments. The value k = 7 allows for a reasonably sized

neighborhood, and would give a distribution of output vectors if we were comparing more

than the most common output in the neighborhood. The value θ = 0.5 gives an equal balance

between the input and output features, while avoiding the bad value of θ = 0. This results in

twelve datasets for each of two outputs, three outputs, and four outputs, giving a total of 36

datasets used.

The two sets of experiments show a comparison of HMONN versus the näıve model

for real-valued features (first) and for nominal features (second). Experiments were run

using 10-fold cross validation. The näıve neural network layer had a standard MLP with

a single hidden layer of 2n nodes for each output with n being the number of attributes

(this includes the outputs) in the corresponding data set. All experiments were run with

a learning rate of 0.1 and stopped after 10 epochs without any improvement on a held-out

validation set. Statistical significance was determined by using the Wilcoxon signed rank test

with significance at p < 0.05.
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4.1.2 Results

The results of comparing HMONN to the näıve model for real-valued features are given in

Table I.

Model 2-Output 3-Output 4-Output Total
HMONN 0.760 0.877 0.905 0.847

Näıve 0.718 0.770 0.762 0.750

Table I: Results of comparing HMONN to the näıve model for real-valued features. Bold
values indicate that the values are statistically significant. The p-value for the total is
p < .0001.

HMONN outperformed the näıve model for the real-valued synthetic data, and the

improvement was always statistically significant. This is likely due to the fact that HMONN

exploits the information contained in the local neighborhood in order to produce outputs.

HMONN will have more information available with more outputs. This will make the

neighborhood more specific, thus giving the algorithm a higher chance of finding a correct

output.

The results of comparing HMONN to the näıve model for nominal features are given

in Table II.

Model 2-Output 3-Output 4-Output Total
HMONN 0.703 0.864 0.893 0.820

Näıve 0.655 0.758 0.713 0.709

Table II: Results of comparing HMONN to the näıve model for nominal features. Bold values
indicate that the values are statistically significant. The p-value for the total is p < .0001.

HMONN outperformed the näıve model for the nominal synthetic data, and the

improvement was always statistically significant. The exact same pattern is seen for the

nominal synthetic data sets as for the real-valued data sets.
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Total Nominal Instances 2-Output 3-Output 4-Output
adult 15 9 48842 8 28 56
anneal 39 33 898 32 496 4960
autos 26 11 205 10 45 120
cars 7 7 1728 6 15 20
chess 7 7 28056 6 15 20
cmc 10 8 1473 7 21 35
colic 23 16 368 15 105 455
credit-a 16 10 690 9 36 84
heart-h 14 8 294 7 21 35
hepatitis 20 14 155 13 78 286
mushroom 23 23 8124 22 231 1540
nursery 9 9 12960 8 28 56
poker-hand 11 11 74987 10 45 120
post-operative 9 8 90 7 21 35
SPECT 23 23 267 22 231 1540
teachingAssistant 6 5 151 4 6 4
tic-tac-toe 10 10 958 9 36 84
vote 17 17 435 16 120 560
zoo 17 17 101 16 120 560

Table III: UCI Data Set Information. Includes total number of features, number of nominal
features, number of instances, number of derived 2-output datasets, number of derived
3-output datasets, and number of derived 4-output datasets.

4.2 UCI Data

The bulk of the data used came from the UCI repository [8]. The UCI repository does not

contain any data sets that are MOD decision problems. To allow for MOD learning, MOD

data sets were created from the original UCI Data sets. This was done by allowing each

nominal features to act as an output class for a derivative data set. If, for example, the

number of outputs was set to two, each data set would become n derived data sets where n

is the number of nominal features for the chosen data set. Each of these derived data sets

consists of a nominal feature combined with the original output class acting as the output

classes, with all of the other features acting as inputs. Similarly, for three or four outputs the

original output class was combined with two or three (respectively) nominal features to act as

the outputs. The number of data sets scales linearly in the number of inputs with two outputs,
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quadratically with three outputs, and cubicly with four outputs. This is a contrived solution,

but we assume that there is some dependency between input variables and the output variable

— especially for data sets from the UCI repository. Allowing the input variable to become one

of the output variables gives potential that there will be dependence between the outputs.

Twenty different UCI repository data sets were used for the experiments. These data sets

were chosen arbitrarily from those that had more than five nominal input features. Nominal

input features were necessary in order to create the derivative data sets. Table III gives

information for each of the data sets used. We varied the number of outputs between two to

four outputs. Statistical significance was determined using the Wilcoxon signed rank test

with significance at p < 0.05.

4.2.1 Experiments

Experiments were run using 10-fold cross validation. The neural networks used were a

standard MLP with a single hidden layer of 2n nodes for each output with n being the

number of attributes (this includes the output class) in the corresponding data set. All

experiments were run with a learning rate of 0.1 and stopped after 10 epochs without any

improvement on a held-out validation set. Missing values were replaced by the mean/mode.

4.2.2 Results

Table IV shows the results for the UCI dataset experiments. The table contains values for

both HMONN and the näıve model compared by number of outputs. Statistically significant

results are highlighted. HMONN outperformed the näıve model 79% of the time (with 68%

of the time being statistically significant, see the Total columns). In some cases there was

not a significant difference. In four cases, the näıve model outperformed HMONN. Figure 4.3

gives a graphical view of the difference in accuracy between the two models. Each number

is obtained by averaging the results across all the derived data sets from the original UCI

dataset for the given algorithm. The error bars give the standard deviation of the observed
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differences. HMONN outperforms the näıve model in the majority of cases, as can be seen

for the anneal, heart-h, and zoo datasets. Occasionally, the näıve model performs better,

but never with the same magnitude. This, along with the other experiments performed,

demonstrates the potential of HMONN as a model to solve MOD decision problems. This

also validates the assumption that there is some dependence between the output variable

and the input variables in the UCI data sets.

2-Output 3-Output 4-Output Total
Dataset H NI H NI H NI H NI
adult 0.255 0.268 0.136 0.139 0.075 0.083 0.109 0.116
anneal 0.756 0.511 0.700 0.364 0.659 0.254 0.664 0.265
autos 0.265 0.192 0.208 0.118 0.132 0.068 0.159 0.088
car 0.233 0.229 0.066 0.063 0.018 0.017 0.067 0.065
chess 0.100 0.090 0.020 0.017 0.004 0.003 0.024 0.021
cmc 0.358 0.281 0.243 0.203 0.173 0.132 0.217 0.172
colic 0.330 0.255 0.174 0.106 0.106 0.048 0.124 0.064
credit-a 0.424 0.434 0.278 0.297 0.178 0.202 0.223 0.245
crx 0.441 0.438 0.265 0.290 0.161 0.191 0.210 0.236
heart-h 0.509 0.279 0.401 0.152 0.300 0.067 0.357 0.119
hepatitis 0.591 0.605 0.443 0.431 0.381 0.341 0.401 0.369
mushroom 0.795 0.775 0.630 0.590 0.497 0.451 0.518 0.473
nursery 0.282 0.278 0.091 0.089 0.028 0.027 0.069 0.067
poker-hand 0.095 0.091 0.016 0.015 0.003 0.002 0.011 0.011
post-operative 0.360 0.346 0.248 0.238 0.128 0.136 0.194 0.194
SPECT 0.661 0.651 0.513 0.494 0.397 0.372 0.415 0.391
teachingAssistant 0.217 0.183 0.139 0.061 0.088 0.017 0.146 0.083
tic-tac-toe 0.453 0.425 0.190 0.187 0.065 0.074 0.127 0.130
vote 0.729 0.708 0.564 0.540 0.442 0.417 0.470 0.445
zoo 0.816 0.568 0.726 0.492 0.654 0.400 0.670 0.420

# Significant 16 0 15 2 13 4 13 4

Table IV: Table with the results for the UCI experiments. The H columns signify the accuracy
for HMONN and the NI columns signify the accuracy for the näıve independence model.
Bold indicates that the model had significantly greater accuracy. The # Significant line
indicates how many of the entries in each column were statistically significant.
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Figure 4.3: Graph of the results from the UCI dataset experiments. The graph represents the
difference between the accuracy for HMONN and the accuracy for the näıve model. Thus,
a positive value denotes HMONN performing better than the näıve model. Conversely, a
negative value denotes the näıve model outperforming HMONN. The error bars give the
standard deviation of the observed differences.

4.3 Business Application Data

Due to the novelty of the MOD problem space, we are not aware of any currently available

MOD data sets. Not enough people have considered MOD problems to have compiled data

sets to work with. A local business, InsideSales.com, was able to provide data for a real world

MOD task. Due to the proprietary nature of this business data, we are only permitted to

reproduce a de-identified version of this data. This data includes a two output data set and

a three output data set. The data sets have fourteen nominal features and eight real-valued

features. The two output data set has 32544 instances, and the three output data set has

32774 instances. Table V contains seven example instances from the two output data set.

The task is to determine the timing and method to contact business leads. Business

practices would imply that these variables are dependent (given the input ~x), the time you

contact a lead depends on the method used, and the method used depends on the timing.
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n n n n n n n n n n n r n n n r r r r r r r o o

0 ? 0 ? 0 ? 0 0 0 0 13 2 0 0 3 1 1 0 0 0 0 0 0 0
0 ? 1 ? 0 ? 1 1 0 3 10 2 1 1 0 1 1 0 0 0 0 0 1 0
0 ? 1 ? 0 ? 1 1 0 3 12 2 1 0 2 2 5 0 0 0 0 0 2 0
0 ? 2 ? 0 ? 1 2 0 3 13 3 2 1 1 1 2 0 0 0 0 0 1 0
0 ? 1 ? 0 ? 1 1 0 2 11 3 2 0 3 0 1 0 0 0 0 0 2 0
0 ? 2 ? 0 ? 0 2 0 1 12 3 2 0 3 1 2 0 0 0 0 0 2 1
0 ? 2 ? 0 ? 1 1 0 3 10 3 2 0 3 1 4 0 0 0 0 0 2 1

Table V: Example instances from the two output data set from InsideSales.com. Values of ?
signify missing values, n signifies a nominal feature, r signifies a real-valued feature, and o
signifies an output feature.

The experiment setup is the same as that for the UCI data sets with results coming from

10-fold cross validation and using same settings for the model parameters. The results are

in Table VI. HMONN outperformed the näıve model in both cases. This shows that the

improvement of HMONN seen in the UCI and synthetic data will also be seen in real-world

MOD problems.

HMONN Näıve
2-Output 0.508 0.465
3-Output 0.346 0.307

Table VI: The table showing the results of the real-world business data experiments.
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Chapter 5

Conclusions

We have given a formal definition for MOD problems, as a well as one method to solve

such problems. We have defined the Hierarchical Multi-Output Nearest Neighbor model,

with a näıve independence model as a first layer and a modified nearest neighbor model as

the second layer. This model is based on the assumption that local context is a key element

to solving MOD problems. HMONN consistently outperforms the baseline model, typically

with statistical significance. This holds true for synthetic data, UCI repository data, and

for one real-world business task. The synthetic data and the real-world business data are

definitely MOD problems, however the synthetic data is not necessarily representative of real

data, and there is not enough of the real data. The UCI data is thus used to supplement the

other data sources, although it is necessary to create datasets that can only be assumed to

represent MOD data.

Future work should develop solutions using other types of models (such as relaxation

networks), an improved method for calculating accuracy on MOD problems, improved methods

for validating new MOD algorithms, and new methods for identifying and collecting MOD

data. With MOD problems, it is difficult to know how much dependency any given problem

may hold. Many of the data sets that we used for validation could only be assumed to have

a sufficient level of dependency. A method to identify the degree of dependency on a given

data set would be extremely helpful for future work with MOD problems.
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