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ABSTRACT

Efficient Estimation for Autonomous Multi-Rotor Helicopters
Operating in Unknown, Indoor Environments

John C. Macdonald Jr.
Department of Electrical and Computer Engineering

Doctor of Philosophy

In this dissertation we present advances in developing an autonomous air vehicle ca-
pable of navigating through unknown, indoor environments. The problem imposes stringent
limits on the computational power available onboard the vehicle, but the environment ne-
cessitates using 3D sensors such as stereo or RGB-D cameras whose data requires significant
processing. We address the problem by proposing and developing key elements of a relative
navigation scheme that moves as many processing tasks as possible out of the time-critical
functions needed to maintain flight.

We present in Chapter 2 analysis and results for an improved multirotor helicopter
state estimator. The filter generates more accurate estimates by using an improved dynamic
model for the vehicle and by properly accounting for the correlations that exist in the uncer-
tainty during state propagation. As a result, the filter can rely more heavily on frequent and
easy to process measurements from gyroscopes and accelerometers, making it more robust
to error in the processing intensive information received from the exteroceptive sensors.

In Chapter 3 we present BERT, a novel approach to map optimization. The goal
of map optimization is to produce an accurate global map of the environment by refining
the relative pose transformation estimates generated by the real-time navigation system.
We develop BERT to jointly optimize the global poses and relative transformations. BERT
exploits properties of independence and conditional independence to allow new information
to efficiently flow through the network of transformations. We show that BERT achieves
the same final solution as a leading iterative optimization algorithm. However, BERT de-
livers noticeably better intermediate results for the relative transformation estimates. The
improved intermediate results, along with more readily available covariance estimates, make
BERT especially applicable to our problem where computational resources are limited.

We conclude in Chapter 4 with analysis and results that extend BERT beyond the
simple example of Chapter 3. We identify important structure in the network of transfor-
mations and address challenges arising in more general map optimization problems. We
demonstrate results from several variations of the algorithm and conclude the dissertation
with a roadmap for future work.

Keywords: simultaneous localization and mapping, SLAM, quadrotor, indoor flight, GPS
denied flight, navigation, state estimation, observability, back-end optimization, BERT
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Chapter 1

Introduction

As context for our research, we seek to enable an autonomous air vehicle to search

a completely unknown, indoor environment. This problem is motivated by several potential

applications such as reconnaissance in hostile areas or post-disaster assessment, especially

when a highly trained remote operator is not available. Even with a remote pilot available,

a vehicle equipped with the technologies needed for autonomous exploration could increase

the operator’s situational awareness and reduce the operator’s work load. Despite these

potential benefits, successful attempts to design an autonomous indoor flight system have

been recent and limited. As recently as the 2009 IEEE International Conference on Robotics

and Automation (ICRA), leading researchers in the community were saying, “Several effec-

tive systems for indoor and outdoor navigation of ground vehicles are nowadays available.

However, we are not aware of a similar system for [indoor] flying robots.” [4]

We can further define the context for our research. By “autonomous” we mean that

the vehicle is able to operate without any access to information or input produced on a

separate system. This precludes the use of a ground station computer, for example. We ex-

pect the vehicle must be able to operate independently without even the assistance of other

agents such as a cooperative ground vehicle. By a “completely unknown, indoor environ-

ment” we are implying that no structure can be assumed in the environment. This certainly

precludes using artificial markers that manipulate the environment to provide the vehicle

with navigation cues; GPS or other localization beacons are also considered unavailable.

Several additional consequences follow from the problem context. Because the envi-

ronment is unknown and indoors, an appropriate vehicle should be able to move in possibly

cluttered and confined areas. The vehicle should therefore be limited in size with restrictions

on the weight and power budget allocated to payload. To move through confined spaces the

1



Figure 1.1: Example applications for an autonomous indoor flight vehicle. (Left) An aerial
image of the Fukushima Daiichi Nuclear Power Plant before the magnitude 9.0 earthquake and
subsequent tsunami on 11 March 2011. After the earthquake the walls and floors in several
places were broken up and uneven. (Right) An image of a cave in Afghanistan where the
floor is strewn with debris and the walls are uneven and slanted. In both cases, the type of
autonomous air vehicle we contemplate might be used despite the unknown, unstructured, and
confined nature of the environment.

vehicle must also be sufficiently agile. An agile vehicle in turn requires accurate and fre-

quently updated estimates of its dynamic state. Finally, the unknown and unstructured

nature of the 3D environment motivates truly 3D sensors (e.g. stereo or RGB-D cameras)

as input for online map estimation, collision avoidance, etc.

The confluence of these consequences leads to our primary engineering tradeoff. The

limited weight and power for payload lead directly to limits on the vehicle’s onboard com-

puting capabilities. But developing timely state and map estimates from voluminous 3D

data can be processing intensive. We must meet high computational demands with limited

computing resources.

To address the challenges of the above scenario, we have assumed a few design de-

cisions that scope our contribution toward solving the problem. We have adopted small

multi-rotor helicopters as our target platform. These vehicles have been identified by lead-

ing researchers as “potential game-changers” in robotics [5]. We have also chosen a graph-

based paradigm for simultaneous localization and mapping (SLAM). SLAM is the monicker

given to any algorithm for autonomous navigation that improves on raw odometry by es-

timating a map of the environment while at the same time localizing the vehicle within

2



the map. Graph-based SLAM algorithms have benefited from recent theoretical advances

and “currently belong to the state-of-the-art [SLAM] techniques with respect to speed and

accuracy.” [6]

In summary, we aim to further the development of a small multi-rotor helicopter that

can autonomously search, map out, and localize itself within an unknown and unstructured

indoor environment in spite of its limited ability to process the necessary data. In the re-

mainder of this chapter we will explain why multi-rotor helicopters and graph-based SLAM

are especially well suited to our problem. We conclude Chapter 1 with a list of this dis-

sertation’s contributions. In Chapter 2 we explain our contributions toward developing an

accurate and efficient observer to estimate the dynamic states of the helicopter. In Chap-

ter 3 we describe our initial contributions in map optimization for graph-based SLAM. Our

recent extensions to the work in Chapter 3 are presented in Chapter 4. We conclude the

dissertation with summary thoughts and a discussion of future work in Chapter 5.

1.1 Multi-Rotor Helicopters

As discussed in [5], multi-rotor helicopters possess several features that make them

better platforms than the potential alternatives for indoor flight. Any hovercraft has the

advantage over a fixed-wing vehicle in that it can pause or move more gradually in any

direction within the constrained indoor air space. Lighter than air vehicles provide hover

capability, but they lack sufficient payload and agility for most applications. Hovering ve-

hicles inspired by biological systems (e.g. hummingbirds or insects) may provide sufficient

agility, but they are less well understood and significantly more complex than multi-rotor

helicopters. Co-axial helicopters present a viable alternative, especially due to their inherent

stability. However, the authors of [5] argue that the payload capacity and scalability of

multi-rotor vehicles make them more attractive.

Four- and six-rotor vehicles (respectively designated quadrotors and hexacopters) are

the most common multi-rotor helicopters. As a developmental platform we use a hexacopter

(see Figure 1.1) available from MikroKopter.1 Our hexacopter weighs about 4 kg as currently

configured. It carries a stripped down Microsoft Kinect RGB-D camera weighing about 230

1http://www.mikrokopter.de
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Figure 1.2: A schematic representation of a six rotor helicopter, or hexacopter. The six rotors
alternately rotate in opposite directions (indicated by the curved arrows) to allow the vehicle
to control its yaw. Roll and pitch, which are controlled by varying the relative motor speeds,
produce the lateral accelerations of the vehicle. We use a body-fixed reference frame centered
at Ob at a distance hm below the vehicle. This right-handed reference frame has an ib axis
aligned with the vehicle’s preferred forward direction and a kb axis that aligns with gravity
when the vehicle is at a perfect hover. We also use a local reference frame to define the vehicle’s
position. The right-handed local frame has an arbitrary origin, OL, and an arbitrary heading
with respect to a world reference frame aligned to north and east directions. However, the
Down axis of the local frame is always aligned with gravity.

grams and looking in the ib direction. The underside of the vehicle houses a Maxbotic

ultrasonic range finder2 aligned with the kb axis. We use the IMU that comes standard with

the MikroKopter control board.3

For developmental computing we have mounted to our hexacopter a large, commer-

cially available4 board built on the Intel 2nd Generation Core i7 processor. The computer

runs at 2.1 GHz and has 8 GB of DDR3 RAM. However, we also use a smaller computer

more suited for a final implementation. That computer is based on the 1.6 GHz Intel Atom

Dual Core D510 with 4 GB of RAM. While the developmental board weighs about 180 grams

and consumes around 50 Watts of power, the Atom board weighs in at only 90 grams and

runs on about 15 Watts.

2http://www.maxbotix.com/Ultrasonic_Sensors.htm#LV-EZ
3http://www.mikrokopter.de/ucwiki/en/FlightCtrl_ME_2_1
4http://www.globalamericaninc.com/global-american-inc-epi-qm67.html
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Figure 1.3: BYU MAGICC Lab’s developmental indoor flight platform as of Fall 2012. The
modified Kinect sensor is placed in the lower front portion of the vehicle. Directly above it
is the hard drive with the onboard computer sitting behind it. The motor speed controllers
and MikroKopter flight control board containing the IMU sit on top of the vehicle. Reflective
dots are placed on the front, back, and back-right arms of the hexacopter to allow the motion
capture system to track it. As configured, the hexacopter weighs about 4 kg and measures 13
inches in height and 42 inches in diameter.

While our current vehicle is unrealistically large for many applications, it provides

a useful testbed. We have written tutorial documents to help familiarize others with our

initial hardware and control architecture [7–9].

The MikroKopter provides several nice features. It is relatively inexpensive compared

to the most popular alternatives from Ascending Technologies.5 The firmware on the control

board is open source and provides basic stabilization of roll and pitch angles. There is also

a sizable online user community with English language forums at the official MikroKopter

web site6 and one of their US distributers.7 Perhaps most importantly, there is a fledgling

but growing community of researchers adopting the platform [4,10,11].

5http://www.asctec.de/?locale=en_GB
6http://forum.mikrokopter.de/index.html
7http://www.mikrokopter.us/index.php?action=forum

5

http://www.asctec.de/?locale=en_GB
http://forum.mikrokopter.de/index.html
http://www.mikrokopter.us/index.php?action=forum


For prototyping and ground truth data we use a motion capture system from Motion

Analysis Corp.8 Their system provides an accurate measure of a rigid body’s position and

orientation by tracking a known pattern of reflective dots attached to the vehicle. The

measured pose (i.e. position and orientation) information can be provided at 200 Hz to any

computer over an ethernet connection. In our current facility the system can track objects

within a 14’ long, 10’ wide, and 6’ high volume.

1.1.1 Multi-Rotor Helicopter Literature

Quadrotors have been used for most, and maybe all, significant indoor flight im-

plementations to date. We will consider only those implementations that allow for long

term, repeatable navigation. Systems that rely solely on some form of odometry suffer from

unbounded drift in their navigation solution.

Rudimentary efforts (e.g. [12–14]) tend to manipulate the environment in order to

simplify estimating the vehicle’s dynamic state. In [12], the authors enable a quadrotor to

fly autonomously by using specially designed patterns observed by a monocular camera; a

similar approach is taken in [13]. More recently, the authors of [14] place visual cues on top

of a ground vehicle to allow a quadrotor equipped with a camera to localize with respect to

those cues. Given the context of our research, viz. fully autonomous flight in completely

unknown environments, these articles and others like them (e.g. [15–18]) bear only lightly on

our work. They are primarily mentioned here to provide some perspective on the evolution

of indoor flight using quadrotors.

More advanced systems for indoor flight relax the need to manipulate the environ-

ment. We cited above an early example of such a system published in the 2009 ICRA [4].

This article comes from the research group of Wolfram Burgard, a highly esteemed researcher

in the robotics community. However, much of the article reads like an overview of the indoor

flight problem. The authors invite community collaboration on the problem and provide as a

first step their implementation using open-source code and commercially available hardware.

Their system is built on a MikroKopter quadrotor, with a Hokuyo-URG laser range finder

8http://www.motionanalysis.com/index.html
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for exteroceptive sensing and a XSens MTi-G attitude heading reference system (AHRS) for

interoceptive measurements.

We note some details of the implementation in [4] that are relevant to our work.

First, they directly use the roll and pitch estimates provided by the AHRS; these are based

on the questionable assumption we discuss in Chapter 2 that the onboard accelerometers in

the AHRS can measure the gravity vector. They rely on matching laser scans to maintain

accurate estimates of the quadrotor’s change in position and heading, and they use a graph-

based approach to the SLAM problem for developing their map and global pose estimates.

The computer onboard their quadrotor is an embedded Gumstix PC. Consequently, all but

the most basic computations in their experiments are performed by an offboard laptop

computer. They briefly report four separate tests for:

• Autonomously localizing within a known map;

• Autonomously developing a map online while the vehicle is flown manually;

• Autonomously estimating the change in the piecewise constant ground beneath the

quadrotor, again while the vehicle is flown manually; and

• Autonomous stabilization of yaw and altitude when the other states of the vehicle are

manually controlled.

The fully integrated system is not tested in this article.

The authors of [4] have published some extensions of their work in a very recent

article in the IEEE Transactions on Robotics [11]. In describing the more recent article the

authors say, “This paper extends our previous work by introducing improved algorithms for

simultaneously estimating the altitude of the vehicle and the elevation of the underlying

surface. We furthermore provide quantitative results of our SLAM approach and discuss the

effect of different modes of the incremental scan-matching on the pose stability of the robot.

We also describe our algorithms for path planning, obstacle avoidance and provide additional

details and experiments.” The most noticeable algorithmic changes appear to be in path

planning, obstacle avoidance, and control. Other than modeling multiple floor levels, their

approach to localization and mapping seems to be mostly unchanged. The hardware system
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presented in [11] is also the same. The tests presented in the results section again only test

individual components of the system independently from each other, and the system still

relies heavily on an offboard computer for processing.9

One of the more advanced systems in the literature [1] hails from the GRASP Lab at

the University of Pennsylvania. Their lab is more popularly known for its demonstrations

of quadrotor control given perfect knowledge of their state,10 but this paper treats several

estimation issues required to enable true autonomy. Their quadrotor system is built on an

Ascending Technologies Pelican platform with its standard MEMs IMU and some custom

firmware to run on the embedded processor. The vehicle caries two additional sensors: a

Hokuyo UTM-30LX scanning laser range finder and a uEye 1220SE camera. The laser is

used for most estimation functions; the camera’s only function is to identify loop closure

using a place recognition algorithm. All algorithm development is done in C++ using the

Robot Operating System (ROS) from Willow Garage. The system’s onboard computer is

based on a 1.6 GHz Intel Atom processor with 1 GB of RAM.

To put their work in context, the authors of [1] cite [4] and some other authors that

we will discuss below. They say that, “Relevant to this paper is the work of Bachrach et

al., Grzonka et al., and Blosch et al. with results toward online autonomous navigation and

exploration with an aerial vehicle. The major points of differentiation between existing

results and our work are threefold. First, all the processing is done onboard requiring

algorithms that lend themselves to real-time computation on a small processor. Second,

we consider multifloor operation with loop closure. Third, we design adaptive controllers

to compensate for external aerodynamic effects which would otherwise prohibit operation in

constrained environments.”

The requirement that processing be done onboard is, to us, the most relevant feature

of [1]. Throughout the paper they detail how their design decisions are impacted by the

constraint on computational resources. For example, they depend on a laser scan match-

ing algorithm to update the 2D position and heading. Their scan matching is also their

only means of correcting velocity estimates through their kinematic relationship to position.

9The lead author of [4] and [11] has also made quadrotor navigation one of the primary subjects of his
December 2011 Ph.D. dissertation, available at http://www.slawomir.de/publications.html

10See, for example, the video available at http://www.youtube.com/watch?v=MvRTALJp8DM.
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Figure 1.4: Estimation scheme used by [1] ( c© 2011 IEEE, used with permission). While the
scheme is demonstrably effective, it is a little confusing to follow. We believe a more simple
scheme can be developed based on principles described below and in Section 1.2.

However, instead of choosing a more accurate scan matching algorithm, their computational

limitations force them to settle for a modified Iterative Closest Point (ICP) algorithm. As a

consequence they observe that their vehicle requires these updates at a minimum rate of 20

Hz in order to control the vehicle’s fast dynamics. They also perform similar trades between

accuracy and complexity for their graph-based approach to SLAM which we will discuss

further in Section 1.2. Their series of design decisions regarding estimation and control al-

gorithms leads to a rather complicated scheme involving multiple filters running at different

rates to meet the different needs of the system (see Figure 1.3).

The other points of differentiation listed by [1] are also noteworthy. Their approach

to multiple floor levels appears similar to [11]. But their modeling of aerodynamic effects is

important to the work we present in Chapter 2. They use a typical model for the quadrotor

dynamics modified by a generic “disturbance vector.” The resulting equation is

m
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where m is the mass of the vehicle, the left-hand side vector represents the vehicle’s ac-

celeration in an inertial reference frame, g is gravitational acceleration, R is the rotation

matrix from the body-fixed reference frame of the vehicle to the world frame, and F is the

total thrust produced by the motors. The disturbance vector [fx fy fz]
> captures all other

aerodynamic effects and is “assumed to be a slowly varying term.” They show that using

this model helps to make their system more robust to wind or the vehicle’s own propwash.

In a 2012 ICRA paper the authors of [1] also detail a 3D exploration algorithm for

use on their indoor quadrotor [19]. In both [1] and [19] the authors present impressive flight

test results. It is interesting to note in [19] that this team from the GRASP lab is adopting

the Kinect RGB-D camera from Microsoft. They currently use the Kinect in the exploration

algorithm to provide 3D depth data at close range (< 4m). The Kinect complements the

same scanning laser used in their previous work which measures obstacles at distances up

to 30m. We expect they will continue to develop algorithms that leverage the Kinect data

in future work. Toward the end of this section we will further discuss the applicability of

RGB-D cameras like the Kinect for indoor flight.

A team from the Robust Robotics Group (RRG) at MIT is responsible for another

advanced indoor flight system. In 2009 they entered their vehicle in the annual International

Aerial Robotics Competition (IARC), a competition sponsored by the Association for Un-

manned Vehicle Systems International (AUVSI). The 2009 IARC was the first ever offering

of an indoor flight mission in this long running competition. The vehicles were required to

autonomously takeoff outside a simulated building, identify and enter through a 1 sq. meter

window, and then negotiate the hallways of a 600 sq. meter arena in order to find a target

marked by a solid blue LED.

The RRG team completed all of the tasks in the 2009 IARC.11 They give a compre-

hensive description of their system in [2], though several of their earlier papers also describe

the system [20–23]. Some of their design philosophies and observations about indoor flight

are central to our thinking about the problem.

11In passing we note that the IARC organizers have since felt the need to make the current indoor flight
mission much more challenging. On their website they state, “The new 6th mission is an extension of the
5th mission theme of autonomous indoor flight behavior, however, the 6th mission demands more advanced
behaviors than are currently possible in any existing aerial robot.” We believe they are currently correct;
see their website http://iarc.angel-strike.com/ for the competition’s details.
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Like [1], the authors of [2] also use the Pelican quadrotor by Ascending Technologies,

a platform that they actually designed for their IARC entry.12 The onboard microcontroller

that comes with the vehicle runs at 1 kHz to stabilize roll and pitch and provides filtered

IMU measurements at 100 Hz. For exteroceptive sensing the vehicle uses the Hokuyo UTM-

30LX scanning laser range finder that runs at 40 Hz and has a maximum range of 30m.

Also like [1], a 1.6 GHz Intel Atom with 1 GB of RAM provides the onboard processing.

The authors state that this processor is sufficient to handle all of the “real-time” processing

demands of the system, but they still must rely on a more powerful ground station computer

to handle their SLAM processing.

We especially hold to the principle in [2] that they call “decoupled system architec-

ture.” The idea is simply that time critical processes should be separated from and given

priority over any function that is not essential for keeping the vehicle in the air. The au-

thors of [2] use Figure 1.4 to illustrate their application of this concept. The boxes in the

middle of the chart, highlighted in yellow, run at the rate of the laser scanner (40 Hz) and

constitute the time critical elements for staying airborne. SLAM and the path planning run

at a much lower rate, though in [2] they are not entirely independent from the real-time

needs of the vehicle. In Section 1.2 we will explain how we expect to apply this principle of

decoupling real-time and background tasks, hopefully to the end that all of the processing

can be performed onboard with minimal sacrifices in accuracy.

The authors of [2] make another observation about their system that is important to

our work. The heart of their navigation system is their laser scan matching algorithm. In

fact, among their concluding comments they state, “The fast dynamics of [quadrotors] reduce

the amount of computation time allowed for the real-time state estimation algorithms. . . .

Our work placed special emphasis on the development of a very fast scan matching algorithm

that maintained the accuracy and robustness required for use on a [quadrotor]. The laser

scan-matcher . . . was the key enabling technology that allows our vehicle to fly in GPS-

denied environments.” Similar to [1], the scan matcher in [2] needs to be fast because it is

12Conveniently, one of the students on the RRG team is the brother of one of the founding members of
Ascending Technologies.
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Figure 1.5: Estimation scheme used by [2] ( c© 2011 IEEE; used with permission). The
important element to note is the simple distinction between processes required for real-time
operation and those that are less critical.

the only means of correcting the velocity estimates that are fundamental to damping the

dynamic behavior of the quadrotor. We discuss this problem further in Chapter 2.

The vehicle dynamic model used in [2] is worth a brief mention here. They rely

heavily on the assumption of near hover flight, though that is a reasonable assumption for

most autonomous indoor operation. The linear accelerations of the quadrotor are kept in the

state vector that is estimated by the EKF Data Fusion filter depicted in Figure 1.4. Keeping

the body-frame accelerations in the state vector and assuming roll and pitch estimates are

sufficiently accurate leads them to use accelerometer measurements in a direct update of those

states. In fact, their estimate of the body-frame z-axis acceleration is simply propagated with

a random walk, relying entirely on the measurement update for correction.

They propagate the body x- and y-axis accelerations using the model

ẍb = kθθ − kẋẋb + ωẍ, (1.2)

ÿb = kφφ− kẏẏb + ωÿ, (1.3)

where the terms in Equation (1.2) are defined such that ẍb and ẋb are respectively the

acceleration and velocity of the vehicle along its body-fixed x-axis, kθ and kẋ are constant

parameters associated with the hover state of the vehicle, θ is the vehicle’s pitch, and ωẍ
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is the zero mean, Gaussian process noise. Analogous terms in Equation (1.3) are similarly

defined.

The constant parameters kẋ and kẏ are the aspect of Equations (1.2) and (1.3) that

are most relevant to our work. Regarding these parameters the authors state, “While the

damping parameters kẋ and kẏ are small enough that they could be ignored when the ve-

hicle is in the hover regime, they are included here to prevent the model from allowing the

estimated velocity to grow without bound in the absence of position corrections. The model

parameters are learned by a linear least-squares system identification process from flight

and control data collected offline in a motion capture studio.” We note that they make no

attempt to understand the physical reality associated with these constants. We rejoin this

topic in Chapter 2.

Finally, we mention here one more important comment from [2]. They represent the

states of their vehicle and elements of the environment in a globally metric reference frame.

By this we mean that they choose an arbitrary origin in the environment, usually the initial

location of the vehicle, and then represent the position of the vehicle and other features in

the environment by measuring them from that origin. This approach is almost universal

among those designing indoor flight systems, but [2] cites it as a limiting factor, especially

when operating in complex 3D environments. They state that, “Fully handling these types

of challenging scenarios will likely require relaxing the need to maintain a [globally] metric

representation of the environment and the state of the vehicle.” We base our approach to

the indoor flight problem on a locally metric but globally topological representation of the

environment and vehicle states. We will describe that further and discuss the ramifications

of that representation in Section 1.2

The advanced implementations in [1, 2, 4] rely on a scanning laser range finder to

sense the environment. One must still make some strong assumptions about environment

structure in order to navigate in 3D with a scanning laser range finder. These assumptions

at least include the presence of vertical walls and piecewise constant floors. More subtle

is the assumption that potential obstacles can be observed with only the thin slice of the

environment sensed by the laser. In discussing their system, the authors of [2] make the

following observations about their test flights: “Some areas of the Stata Center at MIT
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have walls that are slanted. If the slanted walls subtend a large enough portion of the field

of view of the laser scanner, the scan-matcher will be unable to disregard as outliers the

false matches between scans taken at different heights. Similar failures occur in outdoor

environments when the laser scanner predominately observes the leaves and branches of

trees (as opposed to vertical tree trunks).” They further state that, “[M]ore work will be

required to unlock the full potential of quadrotors to operate in 3D. The incorporation of

visual information from camera sensors will be an area of particular interest.” We require

truly 3D sensors to operate in the unstructured 3D settings described in Figure 1.0.13

An initial step in this direction is taken by researchers at MIT in an article from

the 2009 ICRA [24]. They equip an Ascending Technologies Hummingbird quadrotor with

a forward looking wireless camera and simulated IMU data.14 All significant processing is

performed on a desktop computer.

Though they use only a monocular camera, the navigation algorithm used by [24]

processes multiple monocular images to develop a 3D representation of the world. Their

approach closely resembles popular feature-based SLAM algorithms [25,26]. However, these

algorithms are known to suffer from problems with computational complexity, as well as drift

in the map’s scale due to the inherent uncertainty in monocular images [27]. The results

presented in [24] are limited. They demonstrate that the vehicle can hover without drifting,

and they present some plots of true vs. estimated position for a short 5 meter long flight.

A team from the Autonomous Systems Lab (ASL) at ETH Zurich developed another

early quadrotor system built around vision processing [28]. In their 2010 ICRA article

they use an Ascending Technologies Hummingbird quadrotor equipped with an IMU and

a downward looking monocular camera. They introduce their article by saying that, “To

the best of our knowledge, this is the first work describing a micro aerial vehicle able to

13We recognize that many indoor environments, including those in Figure 1.0, would not admit the use
of passive cameras due to poor lighting. We expect that RGB-D and time-of-flight cameras, along with
algorithms to process their data, will continue to mature such that these active sensors could be used for
indoor flight in such settings. This does not change the context of our problem; extracting the necessary 3D
information from such data should still be processing intensive.

14The simulated IMU data is produced by flying the vehicle within a motion capture studio. The motion
capture system measures the vehicle’s attitude and position at a high rate and uses those measurements
to synthesize gyroscope and accelerometer measurements by adding noise to the velocities approximated by
numerical derivatives.
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navigate through an unexplored environment (independently of any external aid like GPS or

artificial beacons), which uses a single camera as only exteroceptive sensor.” Like [24], they

use a feature-based monocular SLAM algorithm to develop their map [29]. However, the

algorithm they use is intended for “small [artificial reality] workspaces” and quickly becomes

too computationally expensive for even modest sized maps. This is likely why the system

presented in [28] requires a USB cable connection to a ground station computer to process

vision data. They use real IMU data and present more significant hardware test results

than [24], but the substance of their systems is similar.

ASL researchers15 continue to work with quadrotors as a platform for indoor and

outdoor navigation. Much of that current research is driven by a multi-national European

research initiative named sFly. The sFly project is geared toward designing swarms of

quadrotors operating outdoors or indoors using only monocular cameras for exteroceptive

sensing. Additional publications from the ASL related to sFly can be found at the project’s

web page.16

A separate ETH Zurich team from the school’s Computer Vision and Geometry

(CVG) Group developed a more capable quadrotor system for indoor flight. In their 2011

ICRA paper they present the system they name PIXHAWK [3]. The system is based on a

custom built quadrotor capable of carrying a 400 g payload. They equip the vehicle with an

IMU and two pairs of stereo cameras.

The authors spend only a little time in [3] discussing their approach to estimating the

vehicle states. They treat the global heading and each axis of the vehicle’s global position as

four independent subsystems and use a constant velocity motion model for state propagation.

They claim the vehicle can go several seconds without an update from the vision algorithms

that measure position and heading. However, they also concede that the simplicity of their

dynamic model, “is a valid approximation [only] if the filter update frequency is fast enough

with respect to the change of speed of the physical object.” For our work in Chapter 2 we

also note in passing that, like almost all quadrotor users, they assume the accelerometers in

the IMU can measure the gravity vector.

15In fact, one of the Ph.D. students now at ASL is a member of the MIT RRG team that produced the
system discussed above in [2]

16http://www.sfly.org/
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Keeping all computation onboard is a central focus of [3]. Most computation occurs

on a custom designed computer based on a 1.86 GHz Intel Core 2 Duo with 2 GB of DDR3

RAM. It is perhaps an insight into their design philosophy that they suggest that, “future

upgrade options include Intel i7 CPUs.” They note that the weight of the current computer

is 230 g, 58% of the vehicle’s payload capacity, but they don’t mention how much an i7

computer would weigh with the larger heat sink it would require. While it may work for

ground vehicles, simply increasing the power of one’s computer is a suspect proposition for

small multi-rotor helicopters.

However, it is understandable why one would want greater computing resources for

a fully autonomous quadrotor using truly 3D sensors. The authors of [3] report that 10% of

their CPU capacity is consumed just by identifying the vehicle’s position and heading with

respect to predefined markers placed on the floor in known locations (see Figure 1.5). They

also note that, “Higher-level [tasks] such as stereo obstacle avoidance and pattern recognition

. . . [require] significantly higher load in the range of 40 - 60% [of the computer’s capacity] if

run in parallel.” Despite their own report that 70% of CPU capacity is already allocated, they

claim that this “leaves enough capacity for future work, including simultaneous localization

and mapping.” They provide no evidence to support that assertion.

The system presented in [3] is undoubtedly one of the most advanced systems capable

of autonomous indoor flight that is presented in the literature, but it is also not a complete

solution to the problem presented at the beginning of this Chapter. However, the authors

and their associates have been extending the work in [3] since it was published in the 2011

ICRA. In a 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS) article [30] the authors replace the artificial markers used in [3] with (1) a forward

looking stereo camera performing visual odometry and (2) a downward looking monocular

camera paired with a sonar range sensor to compute optical flow. We also note that the

pictures of hardware in [30] appear to show that they have switched out some components of

their system for components from MikroKopter. They introduce algorithms for autonomous

exploration, path planning, and local occupancy grid mapping that are performed onboard

the vehicle using the same computer from [3]. These algorithms allow for more sophisticated

autonomous behavior than was shown in their prior work, but some important aspects of
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Figure 1.6: The PIXHAWK platform and artificial navigation marker described in [3]
( c© 2011 IEEE; used with permission). The size, nature, and location of the markers on
the floor are known a priori. The vehicle determines its position relative to the marker by
estimating the homography that maps the known dimension of the four marker corners into
the current 2D image. The vehicle’s heading and the absolute location of the marker and the
vehicle can be extracted by analyzing the 2D pattern inside the marker.

these new algorithms depend on the same simplifying assumptions used with a 2D scanning

laser range finder, namely piecewise constant floors and vertical walls. It is also relevant

for us to note that the authors in [30] adopt g2o, an open-source graph-based SLAM tool,

to develop a global map of the environment. They run this SLAM algorithm on a separate

offboard computer.

As a final example from the literature, we cite a unique article from the 2011 Inter-

national Symposium on Robotics Research [31]. The paper is a collaborative effort between

some of the authors from the MIT team discussed above [2] and researchers at the University

of Washington led by Dieter Fox. The article is unique in that it is the first work we are

aware of that uses an RGB-D camera on a quadrotor to enable autonomous flight through

indoor environments.17

17It is actually the only such work of which we are aware at the time of this writing.
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The system demonstrated in [31] is built around the Ascending Technologies Pelican.

They use the computer developed for the PIXHAWK project [3], the 1.86 GHz Core 2 Duo

with 4 GB of RAM. For their RGB-D camera they use a stripped down Microsoft Kinect

sensor that only weighs 115 grams.

Much of the system design in [31] parallels that of [2]. The system depicted in

Figure 1.4 is modified to replace Laser Scanner and Scan Matching with RGB-D Camera

and Visual Odometry, respectively. The authors in [31] use a different graph-based SLAM

algorithm this time, but it still runs on an offboard computer at a much slower rate than

those processes involved in the real-time control loop. The results presented in [31] are

limited to (1) a comparison of position estimates vs. motion capture truth during hover, and

(2) a qualitative assessment of short flights through small rooms.

The Kinect and other RGB-D cameras like it provide a useful tool for navigating

through unstructured indoor environments. The dense depth data is directly useful for

obstacle avoidance and near term path planning. It is also easier to extract 3D point features

from the Kinect data compared to stereo vision. The Kinect’s onboard processor associates

depth data with every pixel in the RGB image, relieving the burden of stereo processing on

the vehicle’s main computer. However, the Kinect itself comes with some downsides. The

structured light sensor used to calculate depth is limited to a range of 4 meters. While this

works well in many indoor settings, looking down a long hallway or into a large auditorium

would make at least most of the depth data unusable. Also, the rolling shutter on the camera

imposes limits on how fast the vehicle can move without inducing excessive blur in the image.

Again, this is not a problem during many indoor maneuvers, but it is a limitation the system

would have to plan around during autonomous operation, e.g. so as to not yaw too quickly.

To conclude this discussion about multi-rotor helicopters, we observe that they are

proven and capable platforms for indoor flight. Several notable institutions (e.g. UPenn,

MIT, ETH Zurich) have labs that are actively engaged in using these vehicles to produce

increasingly more advanced indoor flight systems. However, we have not seen a system yet

that can address the scenario outlined at the beginning of this Chapter. The most important

issue to address is the computation required for truly autonomous localization and mapping

without use of simplifying assumptions about the environment. Our work in Chapter 2 helps
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to relieve this problem for localization. We believe this issue can also be effectively addressed

by designing an appropriate approach to the SLAM problem that we discuss below.

1.2 Navigation Using SLAM

A vehicle has two options when navigating in an unknown environment without ex-

ternal aids: dead reckoning and simultaneous localization and mapping (SLAM). Both of

these approaches are problematic for an indoor air vehicle. All forms of dead reckoning are

subject to unbounded drift in the estimated position and heading of the vehicle in a global

reference frame. Inertial guidance in particular suffers from the low quality inertial mea-

surement unit (IMU) an indoor air vehicle is able to carry. SLAM addresses this problem

by constructing a globally consistent map as the vehicle move about. But SLAM algorithms

tend to be computationally expensive and are therefore constrained by the limited process-

ing power available onboard. We begin this section with some general comments on SLAM,

followed by some specific observations about the paradigm called graph-based SLAM [6]. We

conclude the section and the chapter with a review of the literature on graph-based SLAM

1.2.1 General Comments on SLAM

SLAM algorithms come in many forms, and SLAM has been an active subject of

research in and of itself since the foundational papers (e.g. [32], [33]) in the 1990’s. One

can find excellent tutorial material on SLAM from a number of sources (e.g. [6, 34–38]).

The 2008 overview of SLAM presented in [34] provides a useful taxonomy for classifying

SLAM algorithms. We summarize here some of the more important terms they introduce to

facilitate our further discussion of SLAM:

• Topological vs. Metric - These distinctions apply to the type of map used to model

the environment. A fully topological map may model the world as a set of abstract

places while only tracking the qualitative arrangement of those places. At the other

extreme, a fully metric map may track the global coordinates of every mapped aspect

of the environment. This characterization of SLAM algorithms is best thought of as

a continuum rather than a binary classification. Most sophisticated SLAM algorithms

use a blend of both topological and metric elements in their map (e.g. [39], [40], [41]).
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• Volumetric vs. Feature-Based - Here again we refer to the nature of the map used

to represent the environment. A volumetric map makes a dense representation of the

world; it describes the vehicle’s surroundings with data representative of all or most

of the sensor’s field of view. A feature-based map extracts and saves a much smaller

subset of the data, reducing the raw data to a collection of landmarks that characterize

the environment.

• Online vs. Offline - These terms are meant to distinguish between causal SLAM

algorithms that incorporate data and provide results in real time (Online), and algo-

rithms that operate on the data post facto (Offline). While nothing in the literature

explicitly makes the following distinction, we feel online and offline designations cor-

relate respectively with another divide that seems to exist in the SLAM literature:

whether the SLAM practitioner is primarily concerned with localizing the vehicle or

with generating a map. In the former case, making some sort of map may be treated

as a secondary consideration necessary for maintaining a quality navigation solution.

In the latter case, localizing the vehicle may be treated as simply a necessary part of

generating a quality map. While subtle, we feel this distinction in emphasis between

mapping and localizing is important to be aware of when reviewing SLAM literature

or selecting an appropriate SLAM approach from those already extent.

Loop closure is another key attribute of all SLAM algorithms; it is the trait that

distinguishes SLAM from mere dead reckoning. Loop closure is the process by which the

algorithm recognizes when the vehicle has returned to a prior location in the map. This

recognition allows the algorithm to incorporate the resultant added information about the

vehicle’s pose. Closing the loop constrains the drift in the vehicle’s pose estimates that would

otherwise grow without bound over time.

SLAM algorithms can also be conveniently categorized as belonging to one of three

major paradigms [34]. The first to appear in the literature, and still very popular in some

circles, applies the extended Kalman filter (EKF) to the SLAM problem. The original online

EKF-SLAM algorithm uses a single state vector to jointly estimate a feature-based, metric

map and the current pose of the vehicle.
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While EKF-SLAM rests on the familiar foundation of Kalman filtering, it is often

criticized. Perhaps the most cited, though somewhat outdated, critique addresses computa-

tional complexity. In a naive implementation of EKF-SLAM, updating the entire covariance

matrix requires computation on the order of N2 at every time step, where N is the number

of landmarks in the map. While this would seem to severely limit the size of the attainable

map, excellent work has been presented in [27] and subsequent papers demonstrating how

to build large-scale EKF-SLAM maps in amortized linear time and without any approxima-

tions beyond the standard EKF linearization. This is done by separating the map into local

submaps and exploiting the probabilistic structure of the SLAM problem. We discuss [27]

at greater length in Chapter 3.

Another important critique of EKF-SLAM arises from the linearization inherent

in the the EKF. In [42] and [43] the authors show naive EKF-SLAM is bound to even-

tually become inconsistent. By ‘inconsistent’ we mean the error in the state estimates,

x̃(k)
4
= xtrue(k) − xest(k), fails to satisfy one or both of the following conditions:

E [x̃(k)] = 0,

E
[
x̃(k)x̃(k)T

]
= P (k),

where xtrue(k) and xest(k) respectively represent the true and filter-estimated states at time

step k; E[·] denotes probabilistic expectation; and P (k) is the filter-calculated covariance [44,

pp. 232-233]. However, the authors of [45] and [46] have helped identify the root cause of

this phenomenon and have prescribed a few solutions.

Finally, because of the Kalman filter’s Gaussian assumption the distribution of uncer-

tainty about the estimates is unimodal by design. EKF-SLAM therefore requires irrevocable

decisions at every time step about how to associate information from sensor measurements

with existing features in the map. The EKF-SLAM solution can be quite brittle to errors in

this data association process.

The laundry list of complaints against EKF-SLAM is partly indicative of the algo-

rithm’s maturity. It is well studied, reasonably well understood, and a great place to start to

21



understand SLAM generally. The best introductory material for EKF-SLAM can be found

in [35] and [38].

A second paradigm for approaching the SLAM problem is characterized by the algo-

rithm introduced by [47] and dubbed FastSLAM. This method uses the Rao-Blackwellized

particle filter to develop online estimates of a feature-based, metric map along with an entire

history of vehicle poses. FastSLAM and other particle filtering SLAM algorithms take ad-

vantage of the fact that features can be independently estimated on the condition that the

vehicle’s trajectory is known. Monte Carlo sampling is used to generate several estimates

(i.e. particles) of the vehicle’s trajectory, and then each particle keeps track of its own N

independent EKF’s to estimate the positions of the N features.

FastSLAM proponents tout the fact that its computational complexity scales log-

arithmically in the number of features, as opposed to the quadratic complexity of naive

EKF-SLAM. This benefit is more of a straw man argument due to the work of [27] and re-

lated algorithms. FastSLAM also offers a natural means for making multiple data association

hypotheses in ambiguous cases and for modeling multimodal uncertainty [48]. Unfortunately,

particle filters must be regularly resampled to ensure the set number of particles is concen-

trated on likely estimates of the vehicle trajectory. In [49] the authors show this resampling

invariably leads to statistical inconsistency because the current set of particles will eventu-

ally all descend from a single, biased particle. An introduction to FastSLAM is available

in [34] and [37], though each seems slightly biased by the author’s close association with the

approach.

Both EKF-SLAM and particle filter SLAM are inherently feature-based. In other

words, they reduce the raw sensor data into a set of features. This makes the resulting map

less useful for tasks other than localization, such as path planning or rendering a human

friendly map that increases an operator’s situational awareness.

1.2.2 Graph-Based SLAM

Graph-based SLAM is an increasingly popular alternative to EKF-SLAM and particle

filter SLAM. Graph-based SLAM was introduced by [50]. It has “undergone a renaissance”

in recent years due to improved insights into the structure of SLAM and new methods for
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solving sparse linear systems [6]. Of the above referenced indoor flight implementations,

[1, 2, 4, 11, 19, 28, 30, 31] all use some type of graph-based SLAM algorithm. All of these

articles have been published since 2009, highlighting the recent popularity of the approach.

In graph-based SLAM, a history of estimated vehicle poses are thought of as nodes in a

graph. The edges in the graph encode the relative transformation18 between the nodes. Edges

between temporally consecutive pose nodes are typically derived from odometry information.

Loop closures are also represented as an edge between temporally distant poses. Therefore,

an estimator that generates the edges in the graph is an integral part of graph-based SLAM;

this estimator is generally referred to as the graph-based SLAM “front-end” [6].

The map in graph-based SLAM is made by associating exteroceptive sensor data with

the vehicle pose nodes. This pairing of data to poses can be done in a number of ways. To

develop a feature-based map, features can be made into nodes and connected by an edge

to vehicle pose nodes. The edge from a pose to a feature represents the relative position of

the feature in the local reference frame of that pose. Alternatively, raw sensor data, such as

complete laser scans or stereo camera images, can be saved with the vehicle pose node from

which they were collected to produce a volumetric map. In this latter case, the resulting

graph is referred to as a pose-only graph, or pose graph.

We note here that the original work on graph-based SLAM [50], as well as many

subsequent articles from across the community, employ a pose-only graph. We will tend to

focus our discussion on the pose graph case. It may seem impractical to favor raw data over

reducing that data into a smaller collection of features. However, a quick calculation shows

it is not unrealistic to save raw data. Our current indoor flight system (Figure 1.2) uses

a 120 GB solid state hard drive. We could safely allocate about 26 GB for storing Kinect

frames that are each about 1.3 MB. That equates to about 20,000 images which, if saved

about every 0.5 meters of flight, could represent an ample 10 km of trajectory. Saving the

raw sensor data also facilitates higher level planning like exploration and interaction with

the environment.

18By “relative transformation” here we mean a rigid body transformation defined in the local reference
frame of the global poses from which the transformation originates.
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Whatever the graph architecture, the collection of edges estimated in the front-end

constitutes a globally topological map. Metric estimates are only defined in the local refer-

ence frame of their associated poses. A separate estimator is required to refine locally metric

estimates into a globally metric map. The estimator that performs this function is referred

to as the “back-end optimization” part of graph-based SLAM [6].

It is the back-end estimator that really gives graph-based SLAM its identity. The

same outputs from the front-end could be used as measurement updates in a SLAM algorithm

based on the EKF or the particle filter. Accordingly, the following literature review focuses

on advances in back-end optimization.

Before reviewing the literature, we recall here two of the principles espoused by [2] for

developing an effective indoor flight system. Regarding their “decoupled system architecture”

the authors write, “Rather than using a single integrated state estimator, we realized that

it was critical to develop a local estimator for controlling the position of the vehicle, with

special emphasis on estimating and controlling the velocity. The multi-level system hierarchy

presented [in Figure 1.4] allows for this decomposition and was a critical development that

allowed our system to work. Additionally, once the position of the vehicle is accurately

controlled, the task of designing and implementing higher level algorithms [such as mapping

and path planning] is greatly simplified.” And regarding relative navigation the authors

state, “Fully handling these types of challenging scenarios,” i.e. navigation in complex,

unstructured 3D environments, “will likely require relaxing the need to maintain a [globally]

metric representation of the environment and the state of the vehicle.” Graph-based SLAM

naturally allows for relative navigation and a decoupled system architecture.

Navigation in the graph-based SLAM front-end is fundamentally relative to local

reference frames. Raw measurements made in the front-end are inherently relative measure-

ments. For example, the vehicle senses feature A to be 1.5 meters ahead and 0.3 meters to

the right of its current position. Similarly, any interaction with the environment (e.g. ob-

stacle avoidance, manipulating a target, etc.) will be accomplished based on current sensor

data relative to the vehicle’s current state. Front-end decisions about exploring uncharted

territory are most intuitively based on the open space estimated relative to the vehicle’s cur-

rent location. Even plans to revisit a distant area of the indoor environment should be made
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along the chain of relative transformations between saved poses because reaching a distant

goal along a path through unexplored indoor space will likely meet with obstructions.

Relative navigation also leads to a natural decoupling of the front-end and back-end

components of graph-based SLAM. The purpose of the back-end is to refine the locally refer-

enced transformations using an optimization process that yields an accurate, globally metric

map. Performing relative navigation in the front-end means the vehicle does not immedi-

ately depend on those globally metric states. Therefore, we can move the computationally

challenging optimization of the saved relative transformations completely out of the time

critical path of the system.

Visual 
Odometry 

RGB-D 
Camera 

Back-End 
Estimator 

Front-End 
Estimator 

Low-Level 
Planner 

High-Level 
Planner 

Onboard 
Controller IMU 

Position 
Controller 

Real-Time 

Background Loop 
Closure 

Figure 1.7: Our proposed navigation scheme. The system is based on graph-based SLAM.
The time-critical navigation in the front-end is performed relative to reference frames associated
with saved images of the environment. Refining the map happens when computational resources
permit, and it only feeds directly into the vehicle’s high-level decision making.
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Our concept of relative navigation using graph-based SLAM is summarized in Fig-

ure 1.6. Following is a description of the system components represented by the blocks in

this diagram.

• Visual Odometry (VO)

– The VO takes in RGB-D camera data and estimates the relative transformation

to its current pose from the most recently saved reference image. VO then feeds

that estimate to the front-end estimator. The VO process also alerts the front-end

estimator when a new reference image is selected so that the estimator can reset

the appropriate state estimates to be relative to that new reference.

– VO passes each new reference image to the loop closure process.

• Front-end Estimator

– The front-end estimator is described further in Chapter 2; it fuses the VO estimate

with IMU data to produce the best estimate of the vehicle’s relative transforma-

tion from the current reference image. These estimates are continuously made

available to the low-level planner.

– The front-end estimator passes its relative transformation estimates to the back-

end estimator whenever the VO declares a new reference image. These estimates

constitute the odometry-like relative transformations discussed in Chapter 3 be-

cause they describe relative transformations between temporally consecutive ref-

erence images.

• Loop Closure

– The loop closure process compares temporally distant reference images to deter-

mine if a relative transformation between them can be measured. When it detects

and estimates a relative transformation, that estimate is passed to the back-end

estimator.

• Back-End Estimator
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– The back-end estimator is an optimization process that takes the loop closure and

odometry-like transformations and tries to minimize the error in their estimates.

We treat this subject in detail in Chapters 3 and 4.

– We note a difference here between the scheme of [2] shown in Figure 1.4 and our

approach in Figure 1.6. Because we perform all navigation in the front-end relative

to local reference frames, the output of the back-end estimator does not feed back

into the time-critical state estimation at all. The optimized results from the back-

end enter into the vehicle’s behavior through decisions in the high-level planner.

This allows even greater decoupling between the mapping and localization aspects

of navigation.

• High-Level Planner

– The high-level planner is a subject of future work, but we expect it to take the

optimized map of the environment from the back-end estimator and make high

level decisions based on the vehicle’s mission.

– As an example, when the vehicle needs to explore new territory the high-level

planner might decide where would be best to explore next. It would then identify

some reference images nearest to the desired frontier and identify those as the

goal for the low-level planner.

– As another example, a human operator or the high-level planner itself might

identify a feature in a previously visited reference image that the vehicle should

revisit and interact with. The high-level planner would again direct the low-level

planner to reach that reference image. It might also instruct the low-level planner

on the relative metric location of the target.

– The optimized global information from the back-end estimator would be used in

the high-level planner to inform its decisions. For example, upon receiving newly

optimized information from the back-end, the high-level planner may recognize

that a set of reference images previously estimated to be far from each other are

actually close together in the globally metric map. The planner might then decide

to search for a previously unidentified passage between them.
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• Low-Level Planner

– The low-level planner is also a subject of ongoing work.

– The low-level planner accepts goals from the high-level planner, current relative

pose estimates from the front-end estimator, and raw sensor data. It then deter-

mines a path from its current pose through the chain of locally metric spaces to

reach the goal.

– To perform its function, the low-level planner must have access to the map. Recent

additions to the map can be passed to it from the front-end estimator. Optimized

values for map elements can be passed from the high-level planner.

– The low-level planner executes functions like reactive obstacle avoidance.

– The low-level planner is responsible for making smooth transitions in the desired

metric states as the vehicle moves between adjacent local reference frames.

• Position Controller

– This is simply a controller (PID, LQR, etc.) that takes the error between the

desired and current pose and outputs the control signals (desired roll angle, pitch

angle, yaw rate, and total motor thrust) to the helicopter’s Onboard Controller.

• Onboard Controller

– The onboard controller generally comes included with commercial multi-rotor

helicopters. It stabilizes the vehicle about the desired values it receives from the

position controller.

– We currently use the IMU embedded in the onboard controller to provide input

to the front-end estimator. A separate IMU could be used instead.

1.2.3 Graph-Based SLAM Literature

In 1997 Lu and Milios [50] proposed optimizing a graph of global poses as a robust

solution to the SLAM problem. Their objective was, “to maintain all the local frames of

[exteroceptive] data as well as the relative spatial relationships between local frames. ...
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Consistency is achieved by using all the spatial relations as constraints to solve for the

data frame poses simultaneously.” In other words, a front-end system would determine the

relative transformations between key poses where saved data was acquired in the globally

referenced environment. By “relative” they meant that the transformations between global

poses were defined in the reference frame of the pose from which they originated. Once

relative transformations were estimated in the front-end, they proposed that those estimates

be frozen as constraints to be used in a back-end process to find the most likely arrangement

of the global poses. The optimized global poses then aligned their associated data into a

consistent map.

To further emphasize the nature of their approach, they stated that, “We treat re-

lations [i.e. relative transformations] as primitives, but treat locations [i.e. global poses] as

free variables. ... [W]e do not directly update the existing relations in the network when new

observations are made. We simply add new relations to the network. All the relations are

used as constraints to solve for the location variables which, in turn, define a set of updated

and consistent relations. ... We do not deal with [i.e. optimize] the relations directly.”

We reiterate here that, like Lu and Milios, we tend to limit our discussion to graphs

containing only relative transformations between global poses. Some of the papers cited

below also optimize the global position of features in the environment by accounting for the

relative transformations between those features and the several poses from which they were

observed. We will mention features in our discussion of the literature where important, but

a number of these references also explain how pose-to-feature constraints can be subsumed

into pose-to-pose constraints.

Several algorithms building on [50] have since been presented [51–65]. Optimization

is achieved by minimizing the error measured by the squared Mahalanobis distance. Let ρ

represent a vector of all of the global poses to be optimized, with individual poses designated

by ρi. We define τ ji to be the relative transformation from ρi to ρj. Let the probability

distribution p(τ ji ) represent the Gaussian distributed estimate of τ ji with covariance matrix

Σi,j. Finally, let h(ρi,ρj) denote a function that takes ρi and ρj as inputs and returns the

relative transformation between them. Finally, let C be the set of pairs of indices for which a

relative transformation has been estimated by the front-end. Using this notation, the error
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metric to be minimized is written as

ε(ρ) =
∑

(i,j)∈C

(
h
(
ρi,ρj

)
− τ ji

)>
Σ−1
i,j

(
h
(
ρi,ρj

)
− τ ji

)
, (1.4)

where ε(ρ) indicates that the scalar error, ε, is a function of all the global poses, ρ.

Some early efforts at back-end optimization applied relaxation techniques to the prob-

lem. In one example [51] the authors draw an analogy between graph-based SLAM and a me-

chanical spring-mass system. They assert that global poses correspond to unknown masses.

The springs between the masses correspond to the relative transformations. The value of

each spring’s resting length corresponds with the initial estimate of the relative transfor-

mation, and the spring constant of each spring corresponds with the initial estimate of the

transformation’s uncertainty. They propose a type of gradient descent to sequentially adjust

each pose based on the “forces” it experiences from the current best estimate of adjacent

poses until the system settles down into a minimum energy configuration.

The approach of [52], dubbed multi-level relaxation (MLR), follows in a similar vein.

They primarily differ from [51] in that they propose the network be relaxed at different levels

of resolution in order to make computation more efficient. As late as 2006 some authors cited

MLR as the current “state-of-the-art” in back-end optimization [54] . See the citations in [52]

for additional references to relaxation-based approaches.

More recent back-end optimization algorithms tend to take a different approach due

to advances in direct methods for solving sparse linear systems [6]. Equation (1.4) can

be approximated by replacing the nonlinear function h
(
ρi,ρj

)
with its first-order Taylor

expansion. Taking the derivative, and setting the result equal to zero (see [6] for details)

yields the normal equations

Hρ∆ = d, (1.5)

where H is the information matrix associated with the probability distribution p(ρ), ρ∆ is

an incremental change in ρ, and d is a constant vector.

The authors of [53, 54] use the observation that H is sparse for graph-based SLAM.

Nonzero entries in the information matrix only occur along the block diagonal and in off-
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diagonal blocks corresponding to poses connected by a measured relative transformation.

The authors then employ a variable elimination technique to reduce their initial graph to

one containing fewer variables. Specifically, they remove all of the features, incorporating the

information from pose-to-feature constraints into appropriate pose-to-pose constraints. The

authors then solve the reduced system by matrix inversion or conjugate gradient descent.

The authors of [55–57] take the variable elimination technique further. They present

a line of research that seeks to speed up the incremental optimization of ρ by making smart

decisions about the order and method for eliminating variables from the graph. Instead of

computing the information matrix, they focus attention on the Jacobian of h
(
ρi,ρj

)
(and

the similar function for landmarks) to improve accuracy and numerical stability [55]. Using

QR-factorization they eliminate all of the variables in the graph to form the right triangular

matrix R, then solve the resulting structured, sparse linear system. The key to keeping

this process efficient is keeping R as sparse as possible by choosing a good order in which

variables are eliminated.

The authors of [55–57] also draw interesting connections between the matrices arising

from linearization of (1.4) and probabilistic graphical models (Ch. 8 of [66]). Probabilistic

graphical models include Bayesian networks, Markov random fields, and factor graphs. Their

emphasis on graphical models culminates in [57] where the authors directly manipulate a

tree similar to a Bayesian network [67] instead of the corresponding right triangular matrix

R. We also seek to draw insight from probabilistic graphical models and will discuss this

further in Chapter 3.

The work presented in [58–63] represents another thread in back-end optimization

research. As usual, the methods presented in [58–63] iteratively linearize Equation (1.4) and

adjust ρ. In [58] the authors introduce a variant of stochastic gradient descent to make

the iterative optimization robust to local minima. They also present interesting results that

suggest Equation (1.4) as an error metric is “not an adequate measure of graph quality.” We

will return to this observation in Chapter 3.

In [59] and [60] the authors extend the work in [58], making it converge faster to a

more accurate solution by organizing the global poses into a tree structure and distributing

rotational error more effectively. The primary contribution of [61] is similar to [55–57] in
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that they find an efficient solution to the linear system used in iterative optimization by

choosing an appropriate ordering for variable elimination. In a contemporary paper [62] the

authors modify the typical iterative optimization by calculating state changes on a manifold.

They also make use of a hierarchy of graph-based maps with varying degrees of resolution.

Finally, in “A General Framework for Graph Optimization,” dubbed g2o, the authors

take many of the above innovations and package them in an efficient C++ implementation

[63]. The g2o software is designed to be easily configured for any optimization problem

that can be cast as a graphical network (e.g. graph-based SLAM and bundle adjustment).

Regarding their results they state, “We present evaluations carried out on a large set of

real-world and simulated data-sets; in all experiments g2o offered a performance comparable

with the state-of-the-art approaches and in several cases even outperformed them.”

Of the foregoing papers, all but [60] treat the relative transformations as fixed con-

straints. In other words, after the front-end passes τ ji to the back-end, that vector and its

uncertainty are never altered. Recall that Lu and Milios said they “do not directly update

the existing relations in the network when new observations are made. We simply add new

relations to the network.” This leads to a network that grows over time even if the robot

remains within already explored territory. The authors of [60] allow the possibility of re-

visiting relative transformations, fusing new estimates with old ones. Their update of the

transformations is equivalent to a Kalman update step where the measurement function is

simply the identity function.

The extended Kalman filter (EKF) SLAM community has also produced a body of

work relevant to our research. Several authors (e.g. [64], [65]; see also the references therein)

divide the standard EKF SLAM map into a number of statistically independent local maps,

or “sub-maps.” Several factors motivate this approach to EKF SLAM. Consistency (as

defined in Ch. 5 of [44]) is improved since smaller uncertainty in the robot pose relative

to the local map leads to smaller linearization error. It is also well known that traditional

EKF SLAM becomes computationally intractable as the number of mapped features grows.

Sub-maps help to alleviate this problem by bounding the size of the filter state within each

sub-map. Such approaches then retain an estimate of the relative transformations between

the sub-maps.
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Most work in EKF-SLAM using submaps is similar to graph-based SLAM, especially

those graph-based SLAM methods that optimize the global position of features. EKF-

SLAM arrives at this confluence from its original formulation as a completely feature-based,

globally metric map [32]. Submapping approaches then shift the paradigm toward a globally

topological and locally metric framework with features contained in the local maps. Graph-

based SLAM began by using a globally topological, volumetric map [50]; subsequent works

substituted the location of features relative to the local coordinate system defined by each

pose. In either case, the globally metric map of feature positions is then obtained using an

iterative nonlinear optimization routine.

The work in [27] (and subsequent publications [68–70]) presents an exception to this

analogy between EKF SLAM sub-mapping and graph-based SLAM. We discuss [27, 68–70]

further in Chapter 3. We note here that [27] introduces a distinction from the rest of the sub-

mapping literature. They do not treat the individual sub-maps as statistically independent.

Rather, when sub-maps are to be optimized with information gained at loop closure, that

information is propagated back through the network of sub-maps using the property of

conditional independence.

The algorithms in [51–65] all have at their core a paradigm similar to [50]. The

relative transformations τ ji from global pose ρi to global pose ρj are estimated by a front-

end system. Once passed to the back-end, the transformations τ ji are almost always treated

as fixed constraints. The global poses are the focus of iterative optimization; the objective

is to find the arrangement of global poses that best fits the fixed transformation estimates.

Innovations over [50] have made this approach more efficient and more accurate, but the gist

of the paradigm remains essentially the same.

Our work in Chapters 3 and 4 differs from the foregoing work on graph-based SLAM

in that we seek to directly optimize the relative transformations in the back-end. Focusing

on relative transformations leads to the same final solution as the preceding algorithms.

However, it produces noticeably more accurate intermediate results. Our focus on the relative

transformations grows out of our front-end navigation concept presented above.
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1.3 Summary of This Dissertation’s Contributions

To reiterate, the context of our research puts limits on the computational resources

available while demanding timely information from large amounts of data. We seek to address

this engineering tradeoff with our system concept, summarized in Figure 1.6. The proposed

system offers many areas for further development. The work we present in this dissertation

makes the following contributions in two main components of the overall system:

• Front-End Estimator

– We present a principled approach for tuning a dynamic state estimator that prop-

agates state estimates based on gyroscope measurements.

– We draw insights from an observability analysis of the front-end estimator to ex-

plain the benefit of using an improved dynamic model for a multi-rotor helicopter.

– We present new results that highlight the front-end estimator’s resilience to error

in the exteroceptive measurements used to update the filter’s state estimates.

– We also present new results that show how biases in the accelerometer measure-

ments can be accurately estimated as states in the front-end estimator.

• Back-End Estimator

– We develop the theoretical framework for a new approach to back-end optimiza-

tion in graph-based SLAM. We dub our resulting algorithm BERT.

– Using a simple optimization scenario we test a single iteration of BERT against

one iteration of g2o, a state-of-the-art implementation of the standard back-end

optimization approach. Results show that BERT runs slightly faster while pro-

ducing superior estimates of the relative transformations between the reference

global poses.

– In the same simple scenario we motivate repeated iterations of BERT and show

that BERT and g2o converge to the same final solution while BERT offers better

intermediate results.
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– We show that multiple iterations of BERT are justified after each iteration by

the structure of the joint covariance matrix over all relative transformations and

global poses.

– We develop the theoretical framework for extending BERT beyond the initial

simple scenario to more general optimization problems.

– We show that extending BERT requires almost no additional computation beyond

that required in the original special case.

– We analyze the application of loop closure information in a general loop closure

scenario and show that this leads to increased correlation between the originating

pose in the loop closure and the destination pose.

– We test the theory of extending BERT and discover that special consideration

must be taken in computing the cross-covariance matrices. We propose and im-

plement one solution and identify a likely path to a more sophisticated approach.
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Chapter 2

Front-End Dynamic State Estimation For a Multi-Rotor Helicopter

In Chapter 1 we cited several sources (e.g. [1, 30]) to demonstrate the problem in-

door flight vehicles have. The primary engineering tradeoff is meeting high computational

demands with limited computing resources. The computational demands are driven by the

nature of the unknown indoor environment and the dynamics of the vehicle.

The unknown, possibly complex environment necessitates using exteroceptive sensors

such as stereo or RGB-D cameras that give a reasonably complete picture of the the vehi-

cle’s surroundings. Exteroceptive sensor information is also critical as the only source for

directly updating the vehicle’s estimate of its position and yaw angle. An IMU provides

frequent and simple measurements of angular velocities and linear accelerations, but these

only indirectly affect pose (i.e. position and orientation) estimates through their kinematic

and dynamic relationships. Simplistic modeling of the vehicle may also degrade the benefit

IMU measurements can provide.

The dynamics of multi-rotor helicopters are characterized by the vehicle’s light weight,

with small moments of inertia and very little aerodynamic drag. These attributes provide

the agility desired for moving through confined indoor spaces, but they are agile almost to

a fault. The vehicles’ dynamics are fast and underdamped, therefore the automatic control

must be capable of providing the damping the vehicles naturally lack.

Referring to our navigation concept in Figure 1.6, the front-end estimator has two

sources of information for producing its estimates: the position and orientation information

derived from exteroceptive data, and the measurements provided by the IMU. The authors

of [2] present their quadrotor system stating that “one of the major challenges ... is estimating

the position and velocity.” The authors of [3] further emphasize that, “the estimated velocity
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is critical to damp the [quadrotor dynamics].” Estimating velocity is the primary concern

for the immediate stabilization and control of multi-rotor helicopters.

As typified by the most advanced systems [1–3], the challenge of estimating the ve-

hicle’s linear velocity is typically met by making position measurements as fast as possible.

Frequent position measurements then correct the velocity estimates through their kinematic

relationship. However, deriving position information from truly 3D exteroceptive sensors is

not easy. To our knowledge, no multi-rotor helicopter using such sensors and operating in

an unknown environment has been able to keep all computation onboard.

We have helped to develop an alternative and complementary approach for estimating

the vehicle’s velocity. We adopt an improved dynamic model for the helicopter that allows

us to get better information from the IMU measurements. This is an important feature given

the frequency of the easily processed IMU data; it allows us to reduce the rate at which we

require the more computationally expensive exteroceptive sensor processing.

In the remainder of this chapter we describe our contributions to developing a front-

end observer that estimates the position, orientation, and linear velocity of the multi-rotor

helicopter along with the biases inherent in the accelerometers and gyroscopes in the IMU.

We first introduce the filter which is described in greater detail in our previously submitted

collaborative work [71]. We then proceed to present our approach to tuning the filter. We

conclude this chapter with an observability analysis of the filter and some relevant results.

2.1 Overview of the Front-End Filter

Figure 2.0, repeated from Chapter 1.1 for convenience, shows a schematic repre-

sentation of the hexacopter and some important notation. The filter we develop for the

hexacopter can be readily adapted to other multirotor helicopters. We have given an ex-

tended presentation of the vehicle dynamic model in [71] where we discuss several variations

on the associated observer designs. We will present here the model’s highlights as well as an

additional observer variation that includes estimation of two accelerometer biases.

We define the state vector to be

x
4
=
[
fL rL dL φ θ ψ u v w βib βjb βkb

αib αjb

]>
, (2.1)
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Figure 2.1: A schematic representation of a six rotor helicopter, or hexacopter. The six rotors
alternately rotate in opposite directions (indicated by the curved arrows) to allow the vehicle
to control its yaw. Roll and pitch, which are controlled by varying the relative motor speeds,
produce the lateral accelerations of the vehicle. We use a body-fixed reference frame centered
at Ob at a distance hm below the vehicle. This right-handed reference frame has an ib axis
aligned with the vehicle’s preferred forward direction and a kb axis that aligns with gravity
when the vehicle is at a perfect hover. We also use a local reference frame to define the vehicle’s
position. The right-handed local frame has an arbitrary origin, OL, and an arbitrary heading
with respect to a world reference frame aligned to north and east directions. However, the
Down axis of the local frame is always aligned with gravity.

where fL, rL, and dL represent the vehicle’s forward, right, and down displacement from

a local reference frame; φ, θ, and ψ are the roll, pitch, and yaw angles relating the local

reference frame to the body-fixed reference frame; u, v, and w represent the hexacopter’s

linear velocity resolved in the body ib, jb, and kb axes; βib , βjb , and βkb
are the biases in

gyroscopes measuring angular velocity about the body ib, jb, and kb axes; and αib and αjb

are biases in the accelerometers aligned with the ib and jb axes. The rotation matrix from
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the body-fixed to the local reference frame is

RL
b

4
=


r11 r12 r13

r21 r22 r23

r31 r32 r33

 (2.2)

4
=


cθcψ sφsθcψ − cφsψ cφsθcψ + sφsψ

cθsψ sφsθsψ + cφcψ cφsθsψ − sφcψ

−sθ sφcθ cφcθ

 ,

where cθ
4
= cos(θ), sθ

4
= sin(θ), etc.

The state propagation and measurement equations

ẋ = f(x,u), (2.3)

yn = hn(x), (2.4)

are defined below. The vector u represents the inputs to the model. In the observer we use

gyroscope measurements to drive the prediction of state estimates. Therefore,

u
4
=


γib

γjb

γkb

 =


p+ βib

q + βjb

r + βkb

 , (2.5)

where γib , γjb , and γkb
are the gyroscope measurements about the subscripted axes, and p,

q, and r are the actual rotation rates. We will show in the subsequent section of this chapter

that using sensors to drive the estimation model allows for easy tuning of the process noise.

This sensor driven model also allows us to avoid deriving some complicated elements of the

vehicle model such as the relationship between individual motors speeds, moments of inertia,

and angular accelerations.
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We can decompose Eq. (2.3) into subsystems. We model propagation of bias states

as a random walk and define the rest of Eq. (2.3) as


ḟL

ṙL

ḋL

 = RL
b


u

v

w

 , (2.6)


φ̇

θ̇

ψ̇

 =


1 sinφ tan θ cosφ tan θ

0 cosφ − sinφ

0 sinφ
cos θ

cosφ
cos θ



p

q

r

 , (2.7)


u̇

v̇

ẇ

 =


−g sin θ + (vr − wq)− Fdi

m

g sinφ cos θ + (wp− ur)− Fdj

m

g cosφ cos θ + (uq − vp)− T
m

 , (2.8)

where g is the acceleration due to gravity, m is the vehicle’s mass, and T is the total thrust

generated collectively by the vehicle’s motors. The variables Fdi and Fdj are forces along the

body-fixed ib and jb axes arising from drag experienced by the rotors. These drag terms, first

described in detail by [72], represent the improvement in the dynamic model that enables

better use of IMU data. While seemingly a minor change, correctly characterizing these drag

forces significantly influences our interpretation of accelerometer measurements.

The ib and jb axis accelerometers measure the specific forces (i.e. total force minus

the effect of gravity) associated with u̇ and v̇. The specific forces modeled in (2.8) include

Coriolis terms and Fdi and Fdj. The Coriolis terms are relatively small for indoor flight,

therefore we model the ib and jb axis accelerometer measurements respectively as

h1(x)
4
= −Fdi

m
= − µ

m
u, (2.9)

h2(x)
4
= −Fdj

m
= − µ

m
v, (2.10)

where µ is an aerodynamic term that translates linear velocity into a drag force as described

in [71] and [72]. The important point here is that these accelerometers offer a direct, scaled

measurement of the corresponding velocity components.
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We implement the observer as an extended Kalman filter using the preceding defini-

tions for the components of (2.3) and (2.4) along with additional measurement models for

the position and orientation measurements derived from the exteroceptive sensor. Refer-

ence [2] includes terms similar to − µ
m
u and − µ

m
v in the dynamic model used in their filter.

They give no physical reason for the presence of these terms and explain them as an expedi-

ency to prevent unbounded growth in the predicted velocity. They do not appear to model

accelerometers as measuring these drag terms. Reference [1] lumps these drag forces into a

generic term in their filter described in Chapter 1.1.1, Equation (1.1); the term is used to

model all aerodynamic disturbances which they assume are slowly varying.

We can treat µ as a constant for nominal indoor flight conditions. We mention in [71]

that µ can be included in the observer state to estimate its value. An accurate value for µ can

also be estimated directly given knowledge of the velocity components u and v, such as from

a motion capture system. Measured values of u and v can be used to find a least-squares fit of

(2.9) and (2.10) to the actual accelerometer measurements. Using this approach to estimate

µ, we demonstrate in Figure 2.1 the agreement between actual accelerometer measurements

and the measurement models defined in (2.9) and (2.10). We take the quality of the fit do

be sufficient validation of the model and the assumptions made in its derivation.
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Figure 2.2: Actual accelerometer measurements for a nominal indoor flight plotted against
those predicted by (2.9) and (2.10).
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Using this model for accelerometer measurements significantly improves estimates of

the velocities u and v. Roll and pitch estimates also especially benefit because of their causal

influence on the hexacopter’s lateral acceleration. We leave the presentation of most of these

results to [71] because they are primarily the contribution of that article’s lead author. In

Section 2.4 we do present some results not included in [71].

The improved estimates are facilitated by our approach to tuning the filter, and they

can be explained analytically by examining the observability of (2.3) and (2.4). We proceed

with these two topics next in that order. We then present some results and concluding

thoughts for the chapter.

2.2 Tuning The Sensor Driven Filter

As mentioned in the preceding section, the filter is designed to propagate its state

estimates forward in time based on measured angular velocities. This is opposed to using

the actual control inputs sent to the vehicle. In the latter case one must model the vehicle

from the reception of those inputs on through to the effect they have on the states. Consider

our navigation concept in Figure 1.6. The position controller sends control inputs to the

hexacopter’s Onboard Controller. From those desired values the Onboard controller deter-

mines desired motor speeds for each of the six motors. The cumulative effect of the motors

then creates angular accelerations that depend on the vehicle’s physical characteristics (e.g.

mass, moments of inertia, etc.). This leads to an expanded state vector that includes angular

rates, and the gyroscope measurements would be used in an update step to the filter.

Using the gyroscope measurements to instead drive propagation of the other states

simplifies the vehicle model in the observer. It also leads to an accurate approach to model

the uncertainty in that propagation process. We will first offer just a few thoughts on the

proper approach to filter tuning. We will then derive the method used to tune the process

uncertainty.

2.2.1 Tuning Philosophy

As in any design process, guess and check should be a means of last resort. If a

principled approach can be taken without too much effort, then it should be preferred over a

42



heuristic. We also observe that uncertainty, or noise, is most accurately and easily modeled

where it actually occurs. We can often model the error in a raw measurement, for example,

with a simple (e.g. mutually independent) joint Gaussian distribution.

We will use a qualitative description of visual odometry to illustrate what we mean.1

Visual odometry begins with comparing point features detected in two images of the same

scene taken from different poses. Identifying the point features in an image is the place

where error and uncertainty originally enter the problem. The image is quantized into pixels

and suffers from effects like blurring or the lens distortion. The feature detector itself might

also be imprecise. These effects combine to make the feature detector identify a point on

the image plane that does not agree with the location an ideal pinhole camera model would

suggest.

If raw feature locations in the image plane were the measurement of interest, modeling

the uncertainty would be pretty straightforward. If the camera is reasonably well calibrated

we could probably assume the error in the features are mutually independent. We could also

probably safely model the error for each feature as an independent joint Gaussian distribution

over the x and y pixel locations.

However, the filter that will use the visual odometry output expects to receive a mea-

surement of the camera’s change in position and orientation. To develop that measurement

from raw feature locations we must2 use the camera’s projective geometry to estimate the

detected features’ 3D positions. We then need to find the best rigid body transformation

that explains the change in perspective. The simple uncertainty in individual feature lo-

cations must now be mapped through a complex process to provide the uncertainty in the

resulting measurement of the camera’s change in pose.

At this point, one might be justified in throwing in the towel and adopting a heuristic.

For example, one might approximate the visual odometry covariance by hand tuning a 6x6

diagonal matrix and dividing it by the number of corresponding features used to develop the

rigid body transformation estimate. However, the result could certainly be more accurate

if we developed a principled approach to mapping the underlying uncertainty from the raw

1This example is motivated by the ongoing work of Robert Leishman
2We assume that incorrect feature associations from one image to the next are eliminated by an outlier

rejection step, e.g. RANSAC [73].
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measurements into the final visual odometry output. In the heuristic just offered, the 6

DOF elements of the visual odometry measurement are not really independent as a diagonal

covariance matrix implies.

We map uncertainty from one space into another space using the Jacobian of the func-

tion that transforms one random variable into another. Intuitively, the Jacobian describes

how perturbing the input variables leads to perturbations of the output. A covariance ma-

trix can be thought of as a belief about how much the estimate is perturbed from the truth.

Therefore, we should be able to use the Jacobian to map that belief. We now proceed to

derive how that works for the filter presented in this chapter.

2.2.2 Tuning Approach

We will assume the additive error in each gyroscope measurement is zero mean and

Gaussian distributed. We can test this by collecting gyroscope measurements when the

rotation rate is known (e.g. zero); this information is also available in the gyroscope’s

manufacturing specifications. We will assume for this derivation that there are no biases in

the gyroscopes or accelerometers. This reduces the filter state to

x =
[
fL rL dL φ θ ψ u v w

]>
. (2.11)

At the end of the derivation we will discuss how this assumption is relaxed.

Error in the gyroscope measurements is the primary source of uncertainty in propagat-

ing the state estimates. The states evolve according to Equations (2.6) - (2.8). In particular,

there are no approximations or modeling errors at all in Equations (2.6) and (2.7). We have

also shown the quality of the dynamic model in Equation (2.8) by demonstrating the model’s

agreement with measured accelerometer data. Therefore, in the following presentation we

will assume that all uncertainty in propagating the state estimates can be accounted for in

the gyroscope measurement error. We will relax this assumption at the end of the derivation.

We will adapt some of the notation from the previous section to make the following

presentation easier to follow and self contained. We define the estimated states to be the
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true states plus some error; i.e.

x̂
4
= x + x̃.

Similarly, we define the input from the gyroscope measurements to be the true rotation rates

plus some error; i.e.

û
4
= u + ũ,

where u = [p q r]> and ũ ∼ N (0,G). The diagonal covariance matrix G represents the

independent error parameters for each gyroscope.

The estimated states evolve according to

˙̂x = f (x̂, û)

≈ Ax̂ + Bû,

where

A
4
=
∂f (x,u)

∂x

∣∣∣∣
x̂,û

,

B
4
=
∂f (x,u)

∂u

∣∣∣∣
x̂,û

.

Analogous equations can be written for the time evolution of the true states. Therefore, the

evolution of the estimation error can be written

˙̃x = ˙̂x− ẋ

= (Ax̂ + Bû)− (Ax + Bu)

= Ax̃ + Bũ.
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The solution to this differential equation is given by

x̃ = eAtx̃0 +

∫ t

0

eA(t−τ)Bũ(τ)dτ . (2.12)

The uncertainty in the state estimates is defined to be

P
4
= E

{
x̃x̃>

}
,

where E {·} denotes the expectation of a random variable or vector. The state estimate

uncertainty evolves through time according to

Ṗ =
d

dt
E
{
x̃x̃>

}
= E

{
˙̃xx̃> + x̃ ˙̃x>

}
= E

{
(Ax̃ + Bũ) x̃> + x̃ (Ax̃ + Bũ)>

}
= E

{
Ax̃x̃> + Bũx̃> + x̃x̃>A> + x̃ũ>B>

}
which, when we distribute the expectation operator, gives

Ṗ = AP + E
{
Bũx̃>

}
+ PA> + E

{
x̃ũ>B>

}
.

We need an expression for E
{
x̃ũ>B>

}
to complete the derivation. Substituting Equa-

tion (2.12) into E
{
x̃ũ>B>

}
gives

E
{
x̃ũ>B>

}
= E

{(
eAtx̃0 +

∫ t

0

eA(t−τ)Bũ(τ)dτ

)
ũ>B>

}
= E

{
eAtx̃0ũ

>B> +

∫ t

0

eA(t−τ)Bũ(τ)ũ(τ)>B>dτ

}
=

∫ t

0

eA(t−τ)BGB>δ(t− τ)dτ

=
1

2
BGB>,
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where the 1
2

comes from integrating over only half the volume of the delta function. The

product 1
2
BGB> is symmetric, therefore E

{
Bũx̃>

}
= E

{(
x̃ũ>B>

)>}
= 1

2
BGB>. We can

now write the time propagation of the estimation uncertainty as

Ṗ = AP + PA> + BGB>.

The BGB> term maps the simple, diagonal covariance G into a more complex uncer-

tainty that acknowledges the correlation between various state elements. This was especially

useful in our development of the filter presented in this chapter. In earlier attempts to

leverage the improved dynamic model we designed three independent filters3 [74]. The state

vectors for each filter consisted of

xlong =

 u

θ

 , xlat =

 v

φ

 , x3dof =


n

e

ψ

 , (2.13)

where n and e respectively designate the north and east position of the vehicle with respect

to a global reference frame. The propagation equations for these states were essentially the

same as given above in Equations (2.6) - (2.8).4 The decision to use the three separate filters

was motivated by a desire to make it easier to hand tune the filters.

However, estimating the states in 3 separate filters is an approximation because these

states are not actually independent. In order to extend and improve on [74] using the filer

defined in this chapter we need to tune a 15 x 15 process uncertainty matrix. To be accurate

we should account for the intuitive correlations between several of the state estimates. Using

BGB> in the state propagation step allows the single, large filter to provide accurate results

with almost no heuristic tuning.

We mentioned a few assumptions in the beginning of the above derivation that we now

address. First, we assumed that the IMU sensors were unbiased. Relaxing this assumption

would obviously change the above derivation by changing ũ ∼ N (0,G). However, we show

3Most of the work in [74] was done by Robert Leishman.
4The only differences were: (1) using a global instead of a local reference frame for position states, and

(2) using a term for µ that varied slightly based on the current motor speeds.
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below that the gyroscope and accelerometer biases are observable. We can calibrate and

remove gyroscope biases just before flight, and because they remain well estimated thereafter

we can continue to subtract out their effect.

We also made the mild assumption that all process uncertainty stems from error in the

gyroscope measurements. We address this assumption by adding a hand tuned component,

Q, to the process uncertainty such that

Ṗ = AP + PA> + BGB> + Q. (2.14)

The matrix Q is easy to tune because most of the process uncertainty is in fact correctly

represented in BGB>. We set Q equal to the zero matrix and only adjust a few elements

along its diagonal. The most important function of Q is to model the random walk evolution

of the IMU biases.

2.3 Analyzing the Filter

We now proceed with the observability analysis to inform our understanding of the

filter’s performance. Since the system is nonlinear the observability analysis follows the

approach and notation of [75, Chapter 7]. We introduce that notation and theory in Ap-

pendix A and include a small example there.

For the observability analysis it is convenient to rewrite (2.3) as

ẋ = f(x) +
3∑
j=1

ujgj(x), (2.15)

with f , gj ∈ V (X). In addition to the accelerometer measurements given in (2.9) and (2.10),

we assume an appropriate algorithm (e.g. visual odometry) provides the measurements

h3
4
= fL, (2.16)

h4
4
= rL, (2.17)

h5
4
= dL, (2.18)

h6
4
= ψ, (2.19)
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where hn ∈ S(X). We have chosen here to omit the roll and pitch measurements that

could be provided by visual odometry in order to highlight the information afforded by the

improved model.

It is easy to see that the six row vectors of the form dhn|x0
are all linearly independent.

We next examine the six additional vectors of the form dLfhn|x0
. To keep expressions

compact we represent a vector of zeros of length m as 0m to make the expressions more

compact. We also use the element-wise definition of RL
b from (2.2). We can then write

dLfh1 =



03

0

gµ
m

cθ

0

µ2

m2

µ
m
βkb

− µ
m
βjb

0

− µ
m
w

µ
m
v

02



>

, dLfh2 =



03

−gµ
m

cφcθ
gµ
m

sφsθ

0

− µ
m
βkb

µ2

m2

µ
m
βib

µ
m
w

0

− µ
m
u

02



>

,

dLfh3 =



03

v ∂r12
∂φ

+ w ∂r13
∂φ

u∂r11
∂θ

+ v ∂r12
∂θ

+ w ∂r13
∂θ

u∂r11
∂ψ

+ v ∂r12
∂ψ

+ w ∂r13
∂ψ

r11

r12

r13

05



>

, dLfh4 =



03

v ∂r22
∂φ

+ w ∂r23
∂φ

u∂r21
∂θ

+ v ∂r22
∂θ

+ w ∂r23
∂θ

u∂r21
∂ψ

+ v ∂r22
∂ψ

+ w ∂r23
∂ψ

r21

r22

r23

05



>

,
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dLfh5 =



03

v ∂r32
∂φ

+ w ∂r33
∂φ

u∂r31
∂θ

+ v ∂r32
∂θ

+ w ∂r33
∂θ

0

r31

r32

r33

05



>

, dLfh6 =



03

− cφ
cθ
βjb +

sφ
cθ
βkb

− sφsθ
(cθ)2

βjb −
cφsθ
(cθ)2

βkb

05

− sφ
cθ

− cφ
cθ

02



>

.

We combine the vectors obtained so far into a single observability matrix, OM, and

pick a point in the state space to evaluate the matrix elements. For our vehicle, µ
m
≈ 0.28

and gyroscope biases are on the order of 10−3 at the beginning of a flight. We assume φ and

θ are small such that cos(φ) ≈ 1, sin(φ) ≈ φ, etc. We also assume u, v, and w are at most

0.25 meters per second. These assumptions satisfy the needs of the autonomous hexacopter.

High velocities and large angles lead to large accelerations, degrading the exteroceptive sensor

measurements the vehicle uses to interact with the environment.

For the values and assumptions given above we find that

OM
4
= . . .

. . .



dh1

dh2

dLfh1

dLfh2

dh3

dh4

dh5

dh6

dLfh3

dLfh4

dLfh5

dLfh6



≈



0 0 0 0 0 0 − µ
m

0 0 0 0 0 1 0

0 0 0 0 0 0 0 − µ
m

0 0 0 0 0 1

0 0 0 0 gµ
m

0 0 0 0 0 0 0 0 0

0 0 0 −gµ
m

0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 wsψ wcψ o1 cψ −sψ 0 0 0 0 0 0

0 0 0 −wcψ wsψ o2 sψ cψ 0 0 0 0 0 0

0 0 0 v −u 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 −1 0 0



, (2.20)
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where o1
4
= −usψ−vcψ and o2

4
= ucψ−vsψ. The most significant entries in OM will be between

approximately 0.3 and 3.0. We have grouped rows in OM according to their corresponding

sensor type. The first four rows derive from accelerometer measurements, and the remaining

rows depend on the exteroceptive sensor algorithm. In the sequel we will indicate a single

element of the matrix with the notation OM(row, column)

We can see that the improved model for accelerometer measurements leads to sig-

nificant entries at OM(1, 7) and OM(2, 8). These columns correspond to u and v, the two

components of velocity in the plane of the rotors. Without these entries arising from the im-

proved model, observing u and v would totally rely upon the position measurements h3 and

h4, as indicated by the nonzero elements at OM(9, 7), OM(9, 8), OM(10, 7), and OM(10, 8).

We also note that the improved model for accelerometer measurements leads to sig-

nificant values at OM(3, 5) and OM(4, 4). These columns correspond to φ and θ. Having

significant entries at OM(3, 5) and OM(4, 4) supports our assertion in Section 2.1, i.e. that

the improved dynamic model ought to improve attitude estimates because deflections from

hover cause the accelerations and therefore the velocities that the accelerometers measure.

The 10th and 11th columns in (2.20) lack significant entries; these columns correspond

to the gyroscope bias states βib and βjb . This deficiency leads us to consider other candidate

vectors for OM that would have significant entries in these positions. All vectors of the

form dLgjhn have only zero in these columns. We therefore consider second order derivative

vectors of the form dLgjLfhn or dLfLfhn.

The only likely candidates are dLfLfh1 and dLfLfh2. Evaluating at the same point

in the state space as before gives

dLfLfh1 ≈
[
0 0 0 0 0 0 0 0 0 0 −gµ

m
0 0 0

]
,

dLfLfh2 ≈
[
0 0 0 0 0 0 0 0 0 gµ

m
0 0 0 0

]
. (2.21)

The term gµ
m
≈ 2.8 provides the necessary entries in the 10th and 11th columns. When we

augment OM with these two rows we find a full rank, well conditioned matrix.

In the preceding development we have highlighted the important structure of OM

by evaluating at a particular point in the state space. To verify observability for nominal
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indoor flight conditions we evaluate OM over time for an entire flight. We use a motion

capture system to measure the vehicle’s position and orientation during the flight. We also

use this high rate (≈ 200 Hz) information to estimate the vehicle’s velocity in the body-fixed

reference frame. We make only one approximation, that gyro biases are zero, becasue these

biases are calibrated immediately before flight. In Figure 2.2 we plot the condition number

of OM over a typical flight and note that OM is full rank for the duration.
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Figure 2.3: This figure shows the condition number of the observability matrix as a function
of time for a nominal indoor flight. The condition number is defined as the ratio of the largest
to the smallest singular value of OM. This figure represents the condition number for OM

without approximations other than neglecting terms multiplied by gyroscope biases.

2.4 Results

As mentioned earlier, we use the model described above in a continuous-discrete

extended Kalman filter [76, Ch. 8, Algorithm 2]. IMU data arrive at approximately 40 Hz.

Upon receiving IMU data the state estimates are propagated forward with measurements

from the three-axis MEMs gyroscopes using numerical integration of (2.6) – (2.8). After
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propagation the accelerometer measurements are applied using (2.9) and (2.10) in a typical

Kalman update step.

The filter covariance P is propagated using numerical integration of

Ṗ = AP + PA> + BGB> + Q, (2.22)

where A and B are the Jacobians of (2.3) with respect to the states and the inputs, re-

spectively; G is a diagonal covariance matrix representing the uncertainty in the gyroscope

inputs; and Q is a hand-tuned, diagonal matrix primarily used to model the random walk

for the bias states (i.e. most elements are set to 0). Since gyroscope measurements drive

state propagation, we can measure the noise characteristics that define G. Mapping that

uncertainty through the Jacobian B helps make the filter accurate and easy to tune.

To be consistent with the foregoing observability analysis, the filter receives exterocep-

tive measurements (2.16) – (2.19) giving the relative position and heading of the hexacopter.

These measurements would be provided from a vision-based algorithm such as described

in [77] or [78]. However, in these results we intend to compare the characteristics of our

state estimation approach relative to approaches common in the literature. We therefore

synthesize relative state measurements to allow easy adjustment of the update rate and

noise characteristics. This is done using information from a motion capture system.

For the results presented below, we sample motion capture data at 5 Hz and transform

it into a local reference frame. We randomly delay the measurements with a mean delay

of 250 ms to simulate the time needed to process vision data. We also add various levels

of independent Gaussian noise to each of the relative pose measurements. While there are

certainly artifacts of real vision processing not captured by this approach, we assume it is

sufficient for a comparative analysis.

For that comparison, we have implemented an observer that seems common among

researches using multirotor helicopters. Referring to Figure 1.6, a low-level observer is gen-

erally implemented in the Onboard Controller sold with the commercial hexacopter. This

low-level observer estimates roll and pitch angles, φI and θI, based only on the Onboard

Controller’s IMU data. These attitude estimates are then passed along with gyroscope and
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accelerometer data as inputs into another observer implemented on the user’s separate pro-

cessor. The second observer propagates velocity states according to
u̇

v̇

ẇ

 = ab
m + Rb

L(φI, θI)g, (2.23)

where ab
m is the three axis accelerometer measurements in the body frame, Rb

L(φI, θI) is the

rotation matrix based on φI and θI from the local to the body frame, and g is the gravity

vector expressed in the local reference frame. Exteroceptive measurements are used in an

update step that corrects position and heading estimates.

Equation (2.23) is a valid method for propagating velocity estimates only if Rb
L is

correct. We discuss at length in prior work [71] why φI and θI from commercial multirotor

helicopters tend to be consistently inaccurate. To be brief here, the low-level observers on

these platforms assume accelerometers can measure the direction of the gravity vector in

situations where that is not the case. While we do not use a commercial multirotor autopilot

to generate φI and θI for these results, we have taken care to make estimates of φI and θI

qualitatively match those from a popular commercial multirotor platform5. This is done

by using the observation discussed in [71] that typical estimates of φI and θI are actually a

low-pass filtered version of truth6.

To keep the presentation concise, we do not present here the estimation results for

d, w, or ψ since the improved dynamic model does not offer any direct benefit in these

states over the traditional approach. We will also omit discussing the estimation results for

gyroscope biases. These biases can be easily recalibrated just before flight and do not evolve

significantly over short flights like the one presented below. However, including gyroscope

biases in the state is especially significant in scenarios where the vehicle flies autonomously

for longer periods, such as when it can recharge autonomously [79], for example.

5http://www.asctec.de/home-en/
6We used to have a working Ascending Technologies platform, but it has since been rendered inoperable.

We compared the output of a low-pass filter approximation of φI and θI to data previously recorded from
the Ascending Technologies vehicle until we felt the filters were tuned appropriately.
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The yaw angle ψ is kept close to zero for the majority of this nominal flight. When

ψ = 0, then fL, θ, and u are decoupled from rL, φ, and v (i.e. changes in v caused by φ

are solely responsible for changes in rL). We will omit plots of fL, θ, and u since they are

qualitatively similar to the plots of rL, φ, and v.

Figures 2.3 – 2.5 show results for the first minute of a manually controlled, nominal

flight. We note in Figure 2.3 that errors in φI used in (2.23) do not appear exceptionally large.

The most noticeable discrepancies are on the order of 10 degrees. The traditional approach

also leads to errors for translational displacement in Figure 2.4 that seem somewhat tolerable.

Although the displacement errors shown here can be as much as 0.5 meters, they are brief

and at their worst only after a rapid transition.

However, the significance of errors in φI becomes more apparent when estimating

the corresponding component of velocity. This is illustrated in Figure 2.5. The relatively

infrequent rate (5 Hz) of position updates in these results cannot adequately compensate

for the errors introduced in (2.23) by the incorrect rotation matrix. While the traditional

estimate of v trends correctly, it can be off by as much as 1.5 m/s. This is despite relatively

accurate (5 cm standard deviation) exteroceptive updates. The hexacopter depends on

accurate state estimates, especially of velocity, to control its fast dynamics. Feeding back

poor velocity estimates into a controller would have a deleterious effect on flight performance.

The more accurate estimates afforded by the improved model are also robust to

decreased accuracy in the exteroceptive measurements. This is illustrated in Figure 2.6

where we plot the RMS error over the entire four minute flight for the roll, velocity, and

position displacement. We calculate the RMS errors for three different levels of error in the

exteroceptive sensor algorithm’s measurement of position.

We note in Figure 2.6 that the estimates of φI are unaffected by changes in extero-

ceptive errors. This is because φI is estimated in a separate observer. However, it is worth

noting that estimates of φ generated by using the improved model are also essentially un-

changed by the quality of exteroceptive updates. The first four rows of OM in (2.20) suggest

that the roll and pitch angles (as well as the velocities u and v) are observable based only

on accelerometer measurements. We show in [71] how the improved dynamic model can also

be used in the independent, low-level observer based only on IMU measurements to make
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its attitude estimates φI and θI more accurate. Doing this would consequently improve the

integration of accelerometer measurements in (2.23), making the traditional approach more

accurate.

As expected, Figure 2.6 also demonstrates a more graceful degradation in position

and velocity estimates when using the improved model. Position and velocity states suffer

more under the traditional approach relying on (2.23) because there is no direct correction of

velocity. These results highlight the complementary nature of the improved dynamic model

and corrections from exteroceptive sensor processing. The improved model allows velocity

estimates to be corrected directly by frequent accelerometer data instead of relying only

on indirect corrections from measurements of position. Better velocity estimates in turn

improve position estimates through their kinematic relationship making all the estimates

more robust to degraded information from the exteroceptive sensor.

Finally, Figure 2.7 and Figure 2.8 show estimation results for αjb , the bias in the body

y-axis accelerometer; results for αib are similar. We note that for the estimation results shown

above for the traditional approach we used carefully calibrated values for the accelerometer

bias. However, this was not the case for the filter presented in this chapter. For those results

the accelerometer bias estimates were initialized to zero as though they were not calibrated

at all. Despite this handicap, the filter using the improved model was still able to achieve

good performance.

Figure 2.7 shows estimates of αjb based on three different initial conditions that

represent a careful calibration, a poor calibration, and no calibration at all. Figure 2.7

shows that the estimate of accelerometer bias quickly converges to the correct value even

without a calibrated initial value. Figure 2.8 further illustrates the behavior in the case of

no prior calibration. The filter begins with a large initial error and marginal uncertainty for

αjb . As the flight continues, the uncertainty and error decrease until reaching steady state

behavior at around t = 90 seconds (i.e. about 60 seconds into the flight). Thereafter, the

accelerometer updates in the EKF keep the random walk propagation of αjb tightly bounded.
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Figure 2.4: Estimates of roll angle, φ, during the first minute of a manually controlled flight.
This results were generated using exteroceptive position updates arriving at 5 Hz, delayed on
average by 250 ms, and with 5 cm standard deviation of error. Flight begins at about t = 25
seconds.
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Figure 2.5: Estimates of right displacement from the local reference frame, rL. See also the
caption on Figure 2.3
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Figure 2.6: Estimates of the body y-axis velocity, v. See also the caption on Figure 2.3
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Figure 2.7: Average error in roll angles φ and φI (left), body y-axis velocity v (center),
and relative right displacement rL (right) over a four minute flight. Error of the traditional
approach using (2.23) is graphed in red (light gray); error of estimates based on the improved
model are graphed in blue (dark gray). Error is calculated for three scenarios differing in the
level noise in the exteroceptive position update.
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Figure 2.9: Error of the αjb estimate over the entire flight when initialized to zero (i.e.
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multiples of the marginal standard deviation of the error as calculated by the filter.
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2.5 Chapter 2 Conclusion

We have presented and analyzed an observer based on an improved dynamic model

for multirotor helicopters. The filter produces more accurate attitude and velocity esti-

mates compared to traditional models based on (2.23) because it correctly accounts for the

relationship between accelerometer measurements and velocity in the plane of the rotors.

We have explained the improved estimation by analyzing the observability properties of the

improved estimator. The increased accuracy provided by this observer complements and

relaxes constraints on developing an appropriate vision-based position update. Using the

model presented here, both accelerometer and exteroceptive measurements can be used to

more effectively update the velocity estimates so critical to autonomous control of these

vehicles.

The results presented here could be further improved by more frequent access to

gyroscope and accelerometer measurements. Using IMU data at 40 Hz is modest compared

to rates commonly reported in the literature (e.g. [80]). We used this rate only because of

the current hardware limitations of the prototype testbed. However, improvements due to

faster access to the IMU may not be worth the increased computation given the already

accurate estimates.

We also note that attitude and the accelerometer bias estimates are almost completely

unaffected by the accuracy of exteroceptive position measurements. This is consistent with

the observability analysis of Section 2.3 which suggests that these state estimates are strongly

a function of the accelerometer measurements.

Future work7 developing this front-end filter centers on integrating it with a real-time

vision-based position estimation algorithm similar to [78].

7Currently underway, and conducted by Robert Leishman.
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Chapter 3

Back-End Optimization of Relative Transformations

In the preceding chapter we treated important elements of implementing and analyz-

ing the Front-End Estimator (Figure 1.6). Because of the relative navigation scheme used in

the front-end we have so far been able to discuss localization without much concern for map-

ping. However, long-term, repeatable navigation through unknown environments requires

that an autonomous vehicle develop a map while it navigates. For the remainder of this

dissertation we will focus on the process of optimizing that map in the Back-End Estimator.

The objective of the back-end optimization should be related to the real-time navi-

gation needs of the vehicle. For example, if the vehicle makes time critical decisions based

on global pose estimates, the back-end should be able to quickly compute their mean and

covariance. If, on the other hand, the vehicle navigates relative to saved images of the en-

vironment, the relative transformations between those images may be the most important

output from the back-end. Traditional back-end optimization in graph-based SLAM is fo-

cused on improving global pose estimates. The object of the optimization is to find the most

likely configuration of global poses given fixed relative transformation constraints produced

in the front-end.

In this chapter we show how making relative transformations the focus of the back-

end optimization leads to a novel algorithm that iteratively improves the joint estimate of

global poses and relative transformations. We test the algorithm on front-end data from a

225 meter closed-loop trajectory. Results show that the new algorithm provides the same

global pose estimates in slightly less computational time when compared to g2o, a state-

of-the-art back-end optimization tool. However, g2o requires several iterations in this test

before the optimized relative transformations it produces become more accurate than their

initial values. The algorithm presented in this chapter improves both global pose and relative
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transformation estimates at each iteration, making the result of the optimization suitable to

a wider variety of applications.

3.1 Algorithm Development

In this section we present the initial development leading to our alternative approach

to back-end optimization. We first discuss some relevant background material related to

Bayesian networks and manipulating Gaussian distributions. With that context we then

present the details of our approach. We conclude this section by discussing similarities and

differences between our work and that of [27,68–70].

3.1.1 Bayesian Network Concepts

An excellent introduction to Bayesian networks can be found in [66]. We have also

found [81] to be a useful source for additional insights. We only mention a few concepts in

this section and refer the reader to these and other sources for a more thorough treatment.

A Bayesian network (also called a Bayes net or belief network) is a directed acyclic

graph that represents conditional dependencies among a collection of random variables. The

random variables make up the nodes1 in the graph depicted by a labeled circle. A proba-

bilistic dependence is indicated by a directed edge such that the node at the arrow’s head

is dependent on the node at the arrow’s tail. To use the jargon, the variable at the head is

referred to as the child node. The variable at the tail is called the parent node. The Asia

Network in Figure 3.0 offers a canonical example of a Bayesian network and illustrates the

concepts we introduce here.

The authors of [81] recommend that Bayesian networks be constructed so that the

direction of an edge represent a causal relationship. This is not technically necessary; a

simple Bayes net with two nodes and a single edge would represent the joint distribution

over two variables, e.g. y and z. From basic rules of probability we know that the joint

1Because they are both graphical representations, graph-based SLAM and Bayesian networks use similar
terminology. We caution the reader to carefully examine the context to identify what is being described.
We’ll also do our best not to conflate the concepts.
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Figure 3.1: The so-called Asia Network, a canonical example of a Bayesian network. The
network models a physician’s belief about the variables: A - the patient has recently been to
Asia; S - the patient is a smoker; T - the patient has tuberculosis; C - the patient has cancer; B
- the patient has bronchitis; X - the results of a patient’s X-ray are abnormal; D - the patient
exhibits dyspnoea (i.e. shortness of breath). The variable labeled ‘or’ is a mediating variable
that captures the belief that the patient has either tuberculosis or cancer.

distribution can be written such that

p(y, z) = p(y|z)p(z) = p(z|y)p(y).

As a consequence, we can draw that edge in either direction between the two nodes to

represent the probabilistic dependence between y and z. However, the authors of [81] argue

that using edges to represent causal relationships makes inference more intuitive. Causal

relationships are manifest in Figure 3.0. Smoking, for example, has a causal influence on

getting cancer or bronchitis.

It is also useful to mention here the concept of a Markov blanket. Formally defined,

the Markov blanket for a given variable, x, is the set of its parents, children, and co-parents.

More intuitively, we can think of a Markov blanket as the minimal set of nodes that com-

pletely isolates our belief about x from the rest of the network [66]. The distribution of x is

conditionally independent of all other variables given the variables in its Markov blanket. In
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Figure 3.0, the Markov blanket for node ‘C’ consists of nodes ‘S’ (parent), ‘or’ (child), and

‘T’ (co-parent).

Finally, we introduce here the concept of a mediating variable. The authors of [81]

describe mediating variables as, “variables for which posterior probabilities are not of imme-

diate interest, but which play important roles for achieving correct conditional independence

and dependence properties and/or efficient inference.” In Figure 3.0 the ‘or’ variable is a

mediating variable.

3.1.2 Updating Joint Gaussian Distributions

In this subsection we discuss some details of the interplay between joint, conditional,

and marginal distributions. The joint distribution is the ultimate description of a collection

of random variables. Conditional and marginal distributions allow one to decompose the

joint distribution, and marginal distributions are especially relevant when we receive out-

side information (i.e. a measurement) about a subset of the random variables in a joint

distribution. We will only briefly present some derivations here that relate these types of

distributions for jointly Gaussian random variables. For more detail, see Appendix B.

Let a D-dimensional random vector x of jointly Gaussian variables be partitioned

into two, disjoint sub-vectors such that x =
[
x>1 ,x

>
2

]>
, where x1 is dimension D1 and

x2 is dimension D2. Then the joint distribution p(x), with mean µ and covariance Σ, is

partitioned such that

µ =

µ1

µ2

 ,
Σ =

Σ11 Σ12

Σ21 Σ22

 .
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Typical textbook derivations (e.g. [66, Chapter 2.3.1]) define the conditional distribution

p (x1|x2), with mean µ1|2 and covariance Σ1|2, such that

µ1|2
4
= µ1 + Σ12Σ

−1
22 (x2 − µ2) , (3.1)

Σ1|2
4
= Σ11 −Σ12Σ

−1
22 Σ21. (3.2)

To simplify notation in the sequel we define

K
4
= Σ12Σ

−1
22 . (3.3)

There are a few undesirable aspects of expressing the conditional distribution p (x1|x2)

using (3.1) and (3.2). First, the mean vector µ1|2 has dimension D1. The marginal distri-

bution p (x2) has a mean µ2 of dimension D2. To recover the joint distribution p (x) =

p (x1|x2) p (x2) would require that we sum exponents with different dimensions. It is also

unattractive to leave the conditional distribution’s functional dependence on x2 buried in

the conditional mean.

We can rewrite the conditional distribution p (x1|x2) (see Appendix B) such that

log (p (x1|x2)) ∝ (x− µ)>A (x− µ) , (3.4)

where

A
4
=

 Σ−1
1|2 −Σ−1

1|2K

−K>Σ−1
1|2 K>Σ−1

1|2K

 . (3.5)

Note that the dimension and mean of the conditional exponent now correspond to the original

joint distribution, and the conditional distribution’s functional dependence on x2 is clear.

We can similarly rewrite p (x2) such that

log (p (x2)) ∝ (x− b)>B (x− b) , (3.6)
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where the D-dimensional vector b is defined as

b
4
=

 0

µ2

 ,
and

B
4
=

0 0

0 Σ−1
22

 .
In Appendix B we offer some additional observations about the relationship between the

information matrices A, B, and Σ−1.

As mentioned above, the marginal distribution is important when incorporating new

information from a measurement that involves a subset of variables from the full joint dis-

tribution. Let the measurement be a function of x2, and let p(x̌2), with mean µ̌2 and

information matrix Σ̌−1
22 , represent our belief about the states updated by the measurement.

We also define

b̌
4
=

 0

µ̌2

 ,
B̌
4
=

0 0

0 Σ̌−1
22

 .
To propagate the new information contained in x̌2 into the remaining elements of x we

recover the joint distribution from the conditional and the updated marginal distributions:

p(x) = p(x1|x2)p(x̌2). This product gives

log (p (x)) ∝ (x− µ)>A(x− µ) + (x− b̌)>B̌(x− b̌)

∝ (x− ?
µ)>

?

Σ−1(x− ?
µ),
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where the optimized joint covariance and mean are

?

Σ
4
=
(
A + B̌

)−1

=

 Σ−1
1|2 −Σ−1

1|2K

−K>Σ−1
1|2 Σ̌−1

22 + K>Σ−1
1|2K

−1

, (3.7)

?
µ
4
=

?

Σ
(
Aµ+ B̌b̌

)
. (3.8)

The optimized covariance
?

Σ of the joint distribution can be recovered without inverting the

information matrix as suggested by (3.7). Instead, following the derivation in Appendix B,

we find the optimized covariance and mean to be

?

Σ =

 ?

Σ11

?

Σ12

?

Σ21

?

Σ22


=

Σ11 −K
(
Σ22 − Σ̌22

)
K> KΣ̌22

Σ̌22K
> Σ̌22

 , (3.9)

?
µ =

µ1 −K (µ2 − µ̌2)

µ̌2

 . (3.10)

3.1.3 Optimizing Relative Transformations

Most back-end optimization routines seek to optimize the global poses by minimizing

the squared Mahalanobis distance metric we defined previously in Chapter 1.2.3:

ε(ρ) =
∑

(i,j)∈C

(
h
(
ρi,ρj

)
− τ ji

)>
Σ−1
i,j

(
h
(
ρi,ρj

)
− τ ji

)
. (3.11)

The function ε(ρ) is parameterized by saved relative transformations considered to be “mea-

sured” in the front end and fixed in the back-end. Equation (3.11) compares the saved

transformations to the relative transformations derived from the optimized global poses.

The global poses are the focus of the optimization.
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However, those saved relative transformations are themselves only estimates. As

described in [71] and Chapter 1.2.2, the saved estimates of the relative transformations are

an amalgamation of several IMU, altimeter, and visual odometry measurements. There is

no general guarantee that one will arrive at a globally accurate map by making global pose

estimates agree with error prone relative transformation estimates. This may be the reason

why the authors of [58] argue that Equation (3.11) is “not an adequate measure of graph

quality.”

We also note that the set of all relative transformations fully characterizes the globally

metric map just as much as the set of all the global poses. By this we mean that if all the

relative transformations are known without error then the map is perfectly defined. Since

the relative transformations are the only thing we can actually observe, why not seek to

further refine the transformation estimates in the back-end. Using a relative navigation

scheme in the front-end makes this subtle shift in emphasis seem especially relevant. A focus

on optimizing relative transformations is the underlying philosophy driving our approach to

back-end optimization.

Direct Approach

For the remainder of this chapter we will consider the simple case of a vehicle traveling

around a long, rectangular hallway before returning to the origin to detect a single loop

closure. This scenario allows us to examine some of the fundamental aspects of our approach.

In Chapter 4 we will investigate extending the algorithm to more complex map topologies.

For this simple scenario, a direct approach to optimizing relative transformations

might be modeled by the Bayesian network in Figure 3.1. The relative transformations rep-

resented in the top row exist between N + 1 temporally consecutive poses corresponding to

images saved during exploration. We will refer to these transformations between temporally

consecutive poses as odometry-like transformations; they are of the form τ i+1
i . The trans-

formation at the bottom of Figure 3.1 corresponds to the loop closure transformation from

the origin to the pose of the last image in the trajectory.

When a new image of the environment is first saved, the vehicle begins navigation

with respect to that image. The front end can estimate its change in pose with respect to
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Figure 3.2: A Bayesian network for a direct approach to optimizing the relative transfor-
mations. The nodes at the top represent odometry-like transformations between temporally
consecutive saved images. The node at the bottom represents the single loop closure considered
in this discussion. When evidence about τN

0 becomes available through a loop closure mea-
surement, all of the odometry-like measurements become correlated by the “explaining away”
phenomenon [66].

that image independent of any other estimates of global poses or relative transformations.

This is because the vehicle was certainly at the spot where the image was captured, no

matter where that image is in the world or how the vehicle got there. This independence is

reflected by the fact that no arrows enter the variables in the top row of Figure 3.1.

As the vehicle continues to explore, our prior belief about the odometry-like trans-

formations τ i+1
i provides the only source of information about the relative transformation

τN
0 . This is reflected in the Bayesian network of Figure 3.1 by the arrows pointing from

all of the τ i+1
i into τN

0 . However, at loop closure the vehicle measures its pose relative to

the origin. This “evidence,” to use the Bayesian network parlance, changes our belief about

τN
0 . For a Bayesian network like that of Figure 3.1, evidence on τN

0 makes all of the τ i+1
i

transformations correlated [66].
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The reason for the correlation can also be understood by considering the covariance

matrix for the joint distribution p(τ ), where

τ
4
=



τ 1
0

τ 2
1

...

τN
N−1

τN
0


.

Before measuring a loop closure the covariance matrix has an upper left submatrix that is

block diagonal because of the independence of the relative transformations τ i+1
i . However,

the last block row and column are dense because our prior belief about τN
0 is a function

of all the transformations preceding it. When a measurement of τN
0 is applied to the joint

distribution p(τ ) via a Kalman update step, the cross-covariance elements in the last block

row and column cause the remainder of the matrix to become dense also.

The correlations induced by the first loop closure measurement make it intractable

to directly estimate the joint distribution over all relative transformations. To apply any

future loop closure would require manipulating a large, dense covariance matrix. In a sense,

this is analogous to naive EKF SLAM; using a single covariance matrix to keep track of

correlations between all state elements is too computationally expensive.

Decomposing the Joint Distribution

Consider the relationship between a particular relative transformation τ ji and the rest

of the relative transformations if the global poses ρi and ρj are given. Knowing these global

poses ensures our belief about τ ji is always independent from the remaining relative trans-

formations because τ ji is only defined by ρi and ρj. The global poses ρi and ρj constitute

a Markov blanket for τ ji .

This motivates us to reconsider our approach to back-end optimization by using the

joint distribution p (τ ,ρ). We construct the Bayesian network in Figure 3.2 following the

guideline of assigning directed edges based on causal relationships. Each relative transforma-
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Figure 3.3: A Bayesian network based on the idea of using global poses as mediating variables,
thus leading to the joint distribution p (τ ,ρ). Directed edges in the network are drawn to
represent the physical reality that a relative transformation moves the vehicle from one global
pose to another.

tion points into a global pose because a transformation estimate represents our belief about

how the vehicle arrived there from the previous pose. We have made ρ0 the arbitrary and

certain global origin, therefore ρ1 = τ 1
0.

The remaining global poses can be considered mediating variables that help explain

the “correct conditional independence . . . properties” [81] between the relative transforma-

tions. For our simple scenario in Figure 3.2, if ρ2 is given then our belief about τ 1
0 and

τ 2
1 cannot be affected by any other relative transformation in the network. It is also evi-

dent from this Bayesian network that the Markov blanket of τ 3
2, for example, consists of ρ2

(co-parent) and ρ3 (child).

The Bayesian network in Figure 3.2 suggests the following decomposition of the joint

distribution p (τ ,ρ). To keep expressions compact we introduce the notation xr to indicate

the remaining variables in a random vector x that have not already been broken out in the

preceding conditional distributions. Then the joint distribution can be written as

p (τ ,ρ) = p
(
τ 1

0, τ
2
1|τ r,ρr

)
p (τ r,ρr)

= p
(
τ 1

0, τ
2
1|ρ2

)
p (τ r,ρr)

= p
(
τ 1

0, τ
2
1|ρ2

)
p
(
τ 3

2,ρ2|τ r,ρr

)
p (τ r,ρr)

= p
(
τ 1

0, τ
2
1|ρ2

)
p
(
τ 3

2,ρ2|ρ3

)
p (τ r,ρr)

...

= p
(
τ 1

0, τ
2
1|ρ2

)
p
(
τ 3

2,ρ2|ρ3

)
· · ·

· · · p
(
τN

N−1,ρN−1|τN
0

)
p
(
τN

0

)
. (3.12)
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After completely decomposing p (τ ,ρ) we have the marginal distribution p
(
τN

0

)
at the end of

(3.12). The distribution p
(
τN

0

)
is our marginal belief about the loop closure transformation.

The loop closure measurement will be applied to this marginal distribution so that p
(
τ̌N

0

)
represents our updated belief about this relative transformation.

We can now use Equations (3.9) and (3.10) to find the optimized joint distribution

p
(
?
ρN−1,

?
τN

N−1,
?
τN

0

)
. In those calculations, the states ρN−1 and τN

N−1 play the part of x1, and

τN
0 plays the part of x2. We note that this is a simple operation because the matrices involved

are small. Once we have p
(
?
ρN−1,

?
τN

N−1,
?
τN

0

)
we can trivially extract the marginal distribution

p
(
?
ρN−1

)
and again apply Equations (3.9) and (3.10) to find p

(
?
ρN−2,

?
τN−1

N−2,
?
ρN−1

)
. This

pattern repeats back through the network until all variables have been updated with the

loop closure information.

Algorithm 1 summarizes the back-end optimization process. Relative transformation

estimates are originally produced in the front end. Those relative transformations can be

composed to find our prior belief about the joint distributions over a relative transformation

and the global poses it connects (Algorithm 1, lines 1 and 2). After a loop closure measure-

ment is applied (line 3), the new information can be propagated back through the network

of small joint distributions by repeated use of Equations (3.9) and (3.10) (lines 4 - 6). Since

our goal is Back-End optimization of Relative Transformations, we will dub this approach

BERT.

Small joint distributions of the form p(ρi, τ
j
i ,ρj) are the important entity in BERT.

We can use a collection of such distributions as a modular representation of the entire joint

distribution, p(τ ,ρ). For example, in the simple scenario under consideration, our collection

of small joint distributions is

p
(
ρ1, τ

2
1,ρ2

)
p
(
ρ2, τ

3
2,ρ3

)
p
(
ρ3, τ

4
3,ρ4

)
...

p
(
ρN−1, τ

N
N−1,ρN

)
.
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Algorithm 1: BERT using a modular representation of p (τ ,ρ) for the single loop
scenario.

for ( i = 1; i < N; i++) do
1 Compose ρi with τ i+1

i to find ρi+1.

2 Calculate the joint covariance for p
(
ρi, τ

i+1
i ,ρi+1

)
.

end

3 Apply the loop closure measurement in a Kalman update of p(τ̌N
0 ).

4 Use Equations (3.9) and (3.10) to find p(
?
ρN−1,

?
τN

N−1,
?
τN

0 ) where x1 corresponds to
ρN−1 and τN

N−1, and x2 corresponds to τN
0 .

for ( i = N−1; i > 0; i--) do
5 Extract the marginal distribution p (

?
ρi) from p

(
?
ρi,

?
τ i+1
i ,

?
ρi+1

)
6 Find p

(
?
ρi−1,

?
τ ii−1,

?
ρi
)

using Equations (3.9) and (3.10) where x1 corresponds to
ρi−1 and τ ii−1, and x2 corresponds to ρi

end

We can update any of the individual variables within any p(ρi, τ
j
i ,ρj) and then prop-

agate that information through the remaining small joint distributions based on Equa-

tions (3.9) and (3.10).

Notice that a given global pose variable can occur in multiple distributions. The

prior belief about the global pose variables is identical in each small joint distribution by

construction. This redundancy highlights the role of global poses as mediating variables.

They serve to isolate our belief about each relative transformation, and they act as containers

where information can be stored before propagating it through the rest of the network.

3.1.4 Comparison to CI Submap EKF-SLAM

We find some parallels and differences between BERT and the algorithms described

in [27] and subsequent articles [68–70].

Similar to BERT, [27] divides the entire joint distribution into conditionally indepen-

dent modules. In their case these modules are EKF SLAM sub-maps, primarily consisting

of point features in the environment. They also show how duplicating some elements in

multiple sub-maps allows the sub-maps to remain conditionally independent and efficiently

share information gained at loop closure. During exploration the duplicated variables used
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in [27] consist of point feature estimates and vehicle pose estimates shared by temporally

consecutive sub-maps.

We believe some important differences between [27] and our work arise from the way

we represent the environment. In our concept of graph-based SLAM, we save key images of

the environment that coincide with past vehicle poses. We do not reduce the raw images

into a particular set of individual features. This removes feature position estimates from the

back-end optimization, making it more efficient.

More importantly, because the vehicle was certainly at the pose represented by the

saved image, reobserving the image is equivalent to reobserving the vehicle’s actual pose

at that previous point in time. In [69] the authors observe, “The price paid to maintain

the conditional independence between submaps is some overhead in the size of the maps.

We call overhead to all those elements of a submap that cannot be observed from it, i.e.,

robot positions corresponding to the transitions between submaps and [additional] features

included in the current submap [only because they are needed to transmit new measurement

information along the chain of intermediate submaps].” (emphasis added)

In their initial work [27], the authors use a simple, single loop closure scenario to

illustrate their method just as we do here. Even in this simple case some feature estimates

must be added as overhead to each of the sub-maps around the loop. Such is not the case

with the approach we have presented.

We acknowledge that some non-trivial work remains on our part to establish whether

we will need in the general case something equivalent to the overhead described in [27]

and [69]. In [69] the authors are describing the extension of their algorithm to complex map

topologies. Such an extension remains an item of ongoing work for us that we discuss in

Chapter 4. However, observing past poses in the form of saved images is a fundamental

departure from feature-based maps.

3.2 Results and Further Development

3.2.1 Test Scenario

We have demonstrated in prior work [71, 82] that the roll and pitch of a multi-rotor

vehicle can be estimated with high accuracy using an improved dynamic model in the front-
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end observer. It is also possible to use vision measurements in conjunction with frequent

IMU and laser altimeter measurements to maintain accurate estimates of the vehicle’s relative

down position. Accordingly, we will confine our presentation of results to 2D optimization.

Future work includes applying BERT to all six degrees of freedom.

Let ρi
4
= [ni, ei, ψi]

>, where the first two elements represent the global north and

east position, and the last element is the clockwise rotation of the vehicle’s forward direc-

tion measured from the global north axis. Let τ ji
4
= [∆f, ∆r, ∆ψ]>, where the elements

respectively represent the change in position along the local forward and right axes and the

vehicle’s change of heading. We define the composition function for 2D pose to be

g
(
ρi, τ

j
i

) 4
=


ni +∆f cosψi −∆r sinψi

ei +∆f sinψi +∆r cosψi

ψi +∆ψ

 (3.13)

=


nj

ej

ψj

 .

Similarly, we define the measurement equation used to evaluate Equation (3.11) to be

h
(
ρi,ρj

) 4
=


(nj − ni) cosψi + (ej − ei) sinψi

− (nj − ni) sinψi + (ej − ei) cosψi

ψj − ψi

 (3.14)

=


∆f

∆r

∆ψ

 .

For this test we generate front-end data using a Simulink simulation based on the

dynamic model and state observers described in [71]. The vehicle flies around a rectangular

hallway with a total trajectory length of about 225 meters. During exploration the vehicle

designates new saved images about every 0.3 meters change in position or 10 degrees change
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in heading. This results in 735 odometry-like relative transformations. In this experiment

there is only a single loop closure transformation between the last pose and the origin.

The front-end saves the relative transformation estimates and their uncertainty for

use in the back-end. The average error in the position change per transformation is 2.1 cm,

or about 7% of the length of the transformation. The average error in the heading change

of a transformation is 0.0115 radians (0.7 degrees). We note that the covariance matrix is

not simply diagonal.
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Figure 3.4: True global poses in green (gray) verses the unoptimized estimate (black) based
on composed odometry-like transformations. Red boxed regions are shown close up in Fig-
ures 3.4 & 3.5.

While these errors may not seem exceptionally high, the length of the trajectory

allows for significant error to accumulate in the global pose estimates. Figure 3.3 shows

an overhead view of the true global poses compared to the composition of unoptimized

odometry-like transformations. Figures 3.4 and 3.5 show close up portions of Figure 3.3

to emphasize the error in the global pose estimate that has accumulated by the end of the

trajectory.

We implement BERT using the Eigen C++ linear algebra library. We compare our

results with those obtained using g2o [63], which also relies on the Eigen library. The g2o
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Figure 3.5: A close up view of Figure 3.3 around the true beginning and end of the trajec-
tory, where loop closure occurs. Arrows indicate the true (green/gray) and estimated (black)
heading; the corresponding positions are marked (green/gray stars; black circles) at the base
of each arrow.
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Figure 3.6: A close up view of Figure 3.3 around the odometry-based estimate of the end of
the trajectory. See also the caption on Figure 3.4

code is open-source and among the most recent work in back-end optimization. Also, as

stated in Chapter 1.2.3, the authors provide evidence that g2o is at least as good as many

other back-end optimization techniques both in accuracy and execution time.
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In the results that follow and throughout the remainder of the dissertation we will

forgo examining the effect of optimization on heading estimates. Our reason for this omission

grows out of the way in which we develop our prior belief about global poses and loop closure

transformations using Equations (3.13) and (3.14), respectively. In either case, each heading

state is a linear function of other heading states. Because of this linearity nothing interesting

changes to the optimized heading estimates when using different optimization approaches.

3.2.2 A Single Iteration
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Figure 3.7: True global poses in green (gray) verses estimates from BERT as described in
Algorithm 1 in blue (dark grey). Not shown is the fact that one iteration of g2o returns identical
global poses.

We first apply BERT according to Algorithm 1 and compare our results to one itera-

tion of g2o. Figure 3.6 presents the optimized global poses achieved by our approach. These

global poses are identical to the global poses returned by the first iteration of g2o when using

a Gauss-Newton solver.
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BERT runs in just 6.2 ms.2 The first iteration of g2o can take as much as 25.5 ms. Of

this time about 10.5 ms is spent numerically approximating the Jacobian of Equation (3.11).

Providing the g2o with an analytical Jacobian should reduce the linearization time consid-

erably, but subtracting all linearization time still makes the first iteration of g2o around 9

ms longer than BERT. We assume that remaining difference is due to some initialization

overhead that g2o may require since it is a more general software tool. As will be shown

below, subsequent iterations of g2o take about the same amount of time as BERT.

In summary, BERT and the first iteration of g2o produce the same global pose esti-

mates in about the same time. However, the focus of BERT is optimization of the relative

transformations. Accordingly, we compare the effect BERT and g2o have on the relative

transformations. BERT returns the optimized relative transformations without any extra

computation. But, like all other back-end optimization algorithms, g2o does not directly

optimize transformations. Instead we must use the function h
(
ρi,ρj

)
defined in Equa-

tion (3.14) to find the new transformations that would be given by the optimized global

poses g2o provides.

Figure 3.7 plots the error in the estimated change of position in each relative trans-

formation. A single iteration of g2o causes the error to jump, especially near the end of the

trajectory as shown in Figure 3.8. Before optimization the average error in this metric is

about 2 cm. One iteration of g2o causes that error to rise to about 8 cm (25% of an average

transformation’s change in position) near the end of the trajectory.

We should expect 735 independent odometry-like transformations to be almost un-

changed by a single loop closure measurement. Figures 3.7 and 3.8 show that BERT conforms

to this intuition, producing relative transformations that are only slightly adjusted from the

original front-end estimates. We have also observed that the relative transformations re-

turned from BERT using Algorithm 1 are identical to those one would find using the direct

approach to optimizing the transformations described in Section 3.1.3. This bolsters our

interpretation of global poses as mediating variables.

2For timing results we use a 1.66 GHz Intel R© Atom
TM

CPU (using a single thread) running Ubuntu 12.04.
This computer is compatible with the size, weight, and power limitations of our vehicle.
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Figure 3.8: The error in distance for each relative transformation estimate. We should expect
optimized estimates to change only slightly from the originals because the 735 independent
odometry-like transformations are being updated with information from a single loop closure.
The important feature to note is the degradation toward the end of the trajectory caused by
one iteration of g2o.
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Figure 3.9: A close up of Figure 3.7 highlighting the last 135 relative transformations.

3.2.3 Further Development: Multiple Iterations

A question about BERT naturally arises from the results presented so far. The relative

transformation results from g2o were found using h
(
ρi,ρj

)
. In a manner of speaking, this
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means each τ ji connects ρi to ρj. Since BERT returns the same global pose estimates as one

iteration of g2o, what is significant about the different relative transformations returned by

the two algorithms?

Standard back-end optimization techniques aim to find “the most likely configuration

of the [global] poses given the [relative transformations delivered by the front-end].” [6] This

differs fundamentally from BERT in that BERT returns an a posteriori estimate of the joint

distribution p(τ ,ρ). Standard back-ends use h
(
ρi,ρj

)
to find new transformations implied

by their optimized poses. Conversely, what can we learn by applying g
(
ρi, τ

j
i

)
to find the

new global poses implied by the optimized relative transformations BERT returns?

Figure 3.9 plots the error in position for each global pose along the trajectory. The

equivalent global pose estimates from BERT using Algorithm 1 and from one iteration of

g2o show very little error in global position toward the end of the trajectory near the loop

closure. This is intuitive given that a loop closure with the origin provides considerable

information about the vehicle’s true global pose.

However, if one were to recompose the relative transformation estimates returned by

BERT, the error in global position at the end of the flight would still be significant (see again

Figure 3.9). This observation motivates us to eliminate the global pose estimates obtained

in the first application of BERT and repeat Algorithm 1. Doing so returns global pose

and relative transformation estimates that are further refined. Therefore, like g2o and other

traditional back-ends, BERT can be iterated until the solution converges.

For the experiment in this chapter, Figure 3.10 shows that BERT converges to a

global pose solution that is slightly better than g2o. We expect that the modest difference

is caused by slightly different linearization points used to calculate Jacobians during the

composition steps of BERT (Algorithm 1, Lines 1 and 2). Figure 3.11 gives a view of the

BERT solution from the same overhead perspective as earlier plots. Figure 3.12 shows the

evolution of the average global position error verses computation time.

We consider these results for global pose estimates to be useful, but the driving

philosophy behind BERT is a focus on relative transformations. To that end, we conclude

this section with some observations on the error in relative transformation estimates.
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Figure 3.10: This figure shows the error in global position estimates for each saved image
along the trajectory after one iteration of g2o and BERT. The vertical dashed lines mark poses
occurring in the turns of the trajectory to facilitate comparisons with Figures 3.3 , 3.6 , and 3.11.
The global poses returned by one iteration of BERT and g2o are identical. However, the global
poses calculated by composing the relative transformations returned by BERT are significantly
different. In particular, the global distance error at the end of the trajectory suggests the
loop closure measurement might be reapplied to further improve the relative transformation
estimates.

Equation (3.11), the squared Mahalanobis distance metric, measures the weighted

deviation of optimized relative transformations from their initial values. Figure 3.13 (top)

shows the evolution of Equation (3.11) per iteration of g2o and BERT. Before the first iter-

ation all of the deviation is concentrated in the difference between the measured and prior

belief about the loop closure transformation. For g2o, Equation (3.11) decreases monotoni-

cally with each iteration until it has converged to a final value. BERT converges to essentially

the same value. However, in the first iteration BERT overshoots that value before settling

into a steady state.

Figure 3.13 (top) also illustrates the error calculated by Equation (3.11) when the

true relative transformations are compared to the original values. The result is two orders

of magnitude higher than the minimum achieved by the optimization. The error surface

defined by Equation (3.11) will not, in general, have a minimum value at the true solution.

However, one can probably show that there is guaranteed to be a minimum near the true
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Figure 3.11: This figure shows the error in global position estimates for each saved image
along the trajectory after g2o and BERT are run to convergence. See also the caption for
Figure 3.9. In the case of this example, g2o and BERT produce final results that trend the
same, but the error in the BERT solution is less than g2o in the middle of the trajectory.
We expect this modest improvement by BERT is due to different linearization points at each
iteration. The difference in performance is probably problem dependent.
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Figure 3.12: True global poses in green (gray) verses estimates from BERT run to convergence
in blue (dark grey). Compare with Figures 3.3 and 3.6

solution such that the subjective quality of the map is very good. This should be more

especially true as the ratio of loop closure to odometry-like transformations increases.

83



0 5 10 15 20 25 30
0

5

10

15

20

25

Computation Time

A
v
e
ra

g
e
 G

lo
b
a
l 
P

o
s
it
io

n
 E

rr
o
r 

(i
n
 m

e
te

rs
)

RMS Error in Position over Time

 

 

g
2
o

BERT

Figure 3.13: RMS Error in global position estimates as a function time accumulated over
iterations of BERT and g2o. Times shown for g2o are given after subtracting all the linearization
time out of each iteration; actual execution may be longer.

Still, the results presented in [58] are interesting on this point. They develop a map

that consists of 3500 global poses, 3499 odometry-like transformations, and 2101 loop closure

transformations. They show that the Multi-Level Relaxation (MLR) method developed

in [52] reaches a near minimum value on this dataset after 238 iterations, taking 8.6 seconds

of computation time. The authors of [58] even report that MLR “converged” to this minimum

value “substantially faster” than the method proposed in [58]. Yet the subjective quality

of the map given by MLR is obviously poor at that stage of optimization. MLR eventually

produces3 a “subjectively high quality map,” but only after iterating for 1800 seconds of

computation time [58]. This again goes to the point that Equation (3.11) is not a good

measure of map quality.

The correct measure of map quality is the error calculated by comparing estimates

to truth. Similar in form to Equation (1.4) we define the sum squared error

ε̄(τ ) =
∑(

τ̄ ji − τ ji
)> (

τ̄ ji − τ ji
)
, (3.15)

3See Figure 3 provided in [58]; their assessment of “subjective quality” does not require any straining at
a gnat.
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Figure 3.14: Two error metrics for relative transformations and the performance of g2o
and BERT against those metrics. The top plot shows the Mahalanobis distance defined by
Equation (3.11). The horizontal dotted black line is the value of the Mahalanobis distance
when the true relative transformations are plugged into Equation (3.11). This top plot also
suggests that BERT has something like a second order response to the impulse the system
experiences at loop closure. The bottom plot shows the true sum squared error of the relative
transformations. For the scenario under test the loop closure should only introduce a minor
improvement in the relative transformations. Both methods reflect this in their final values,
but g2o requires three iterations to produce a result that improves on the initial error. BERT
monotonically reduces the error in the relative transformations at each iteration, eliminating
undesirable transient behavior.

where τ̄ ji indicates the true transformation from ρi to ρj. Figure 3.13 (bottom) plots this

metric for each iteration of g2o and BERT. With g2o, ε̄(τ ) initially rises before settling into a

new value that is slightly lower than before optimization. BERT, on the other hand, arrives

at the same value of ε̄(τ ) while making modest and monotonically decreasing changes at

each iteration.

With each iteration BERT improves the estimates of the global poses and the relative

transformations. In the context of relative navigation, especially given limited computing

power, we consider this a noteworthy feature. It may be sufficient during online operation to

conserve computing resources by running one iteration of BERT at a loop closure and waiting

for additional loop closure measurements before optimizing further. Doing so with g2o would

be detrimental to the more immediately important relative transformation estimates.
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3.3 Chapter 3 Conclusion

We recall here the context for our work. Our vehicle relies on the relative transfor-

mations for its front-end navigation. We also put a premium on computation time due to

limited computational resources. We consider global pose estimates to be important but

not time critical. The focus of our back-end optimization is to produce accurate relative

transformations as efficiently as possible.

The contribution in this chapter is a new approach to back-end optimization, BERT,

that uses properties of independence and conditional independence to efficiently estimate

the joint distribution over relative transformations and global poses. We have illustrated in

a simple scenario that BERT improves the estimates of the global poses and the relative

transformations at each iteration of the algorithm. By comparison, a state-of-the-art back-

end optimization tool produces similar global pose estimates at each iteration but requires

multiple iterations to improve relative transformation estimates. This result is especially

well-suited to our application, a small vehicle relying on relative transformations for its

real-time navigation.

BERT offers other useful features. BERT naturally admits global pose measure-

ments when available, e.g. from GPS. Also, no extra computation is required to provide the

optimized relative transformations. Along with optimized transformation estimates BERT

computes the optimized marginal covariance matrices for each of the relative transforma-

tions. Updating this measure of uncertainty is not even contemplated in other literature

on back-end optimization except for [60], and there they only update a transformation’s

covariance matrix if the transformation is measured a second time by the front-end when

the vehicle returns to the area.

To highlight another feature, it is common practice when detecting a loop closure to

use the marginal covariance matrices for the two global poses involved to reject possible false

positives. A place recognition algorithm may tag two reference images as sufficiently similar

to warrant loop closure, but if the estimator suggests the expected value and uncertainty

of the poses make the match untenable, it will be rejected. The marginal uncertainty of

the global poses is always available without additional computation in BERT. Furthermore,
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BERT can be generally thought of as an any-time algorithm, offering a meaningful result at

any iteration and any stage of Algorithm 1.

BERT, as described in this chapter, could also be applied without major modification

in other scenarios where loop closure always occurs with the origin. For example, if a vehicle

is navigating outdoors using a vision-based front-end approach like ours, it may receive

intermittent GPS measurements. The vehicle could use each intermittent GPS measurement

as a loop closure with the origin.

As another example, it is common practice to perform visual odometry (VO) with

respect to a fixed reference image instead of measuring the relative transformation only

between temporally successive images. It is also common to apply a windowed bundle

adjustment [83] to smooth the initial VO measurements. BERT could be used in this context

by treating the reference image as a temporary “global” origin.

In summary, BERT grows out of a new perspective on the back-end optimization

problem. It provides the same information offered by traditional back-end optimization

tools, but it also offers other benefits they do not provide. Most importantly for our overall

system concept, BERT improves our estimates of the relative transformations in the map at

every iteration.
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Chapter 4

Extending BERT Beyond A Single Loop Closed at the Origin

In this chapter we consider how to extend the results from Chapter 3 to arbitrary map

topologies. The example used in the initial development of BERT is a distinctly special case.

Closing the loop with the global origin benefits from the fact that the origin is completely

certain and therefore independent of all other poses. To extend BERT we need to generate

loop closure hypotheses between arbitrary global poses, i.e. we need a prior belief about

arbitrary modular joint distributions of the form p(ρi, τ
j
i ,ρj). Our prior belief about the

global poses involved should treat those poses as correlated.

We begin with some discussion of the covariance matrix associated with the full joint

distribution p (τ ,ρ). We then consider a scenario that is slightly adjusted from that of

Chapter 3. We will close a single loop between the pose at the end of a trajectory and a

pose in the middle. This scenario lets us illustrate some of the important theory behind

extending BERT and serves as a stepping stone to completely general graph topologies. We

then present results from running BERT in this scenario and draw some conclusions.

4.1 Covariance of the Joint Distribution

The motivation for developing BERT is to optimize relative transformations. We saw

in Chapter 3.1.3 that working with the joint distribution over only the relative transforma-

tions led to all of the transformations becoming correlated after the first loop closure. We

then introduced global poses into the estimation problem. Estimating the joint distribution

p (τ ,ρ) allowed us to apply properties of conditional independence to efficiently propagate

loop closure information.

The relative transformations are inherently independent from each other when they

are estimated in the front-end. When the vehicle designates a new reference image, its pose
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estimate relative to that image does not depend on the other relative transformations that

brought the vehicle to that point. However, our estimates of global poses all depend on the

relative transformations. We develop our prior belief about the global poses by composing

the odometry-like relative transformations along the trajectory using

ρi+1 = g
(
ρi, τ

i+1
i

)
=


ni +∆fi cosψi −∆si sinψi

wi +∆fi sinψi +∆si cosψi

ψi +∆ψi

 , (4.1)

where1 ρi
4
= [ni wi ψi]

> is the pose of the ith reference image in the global reference frame;

ρi is located at the north and west positions ni and wi with a heading of ψi. The odometry-

like relative change in pose τ i+1
i

4
= [∆fi ∆si ∆ψi]

> is defined in the local reference frame

associated with ρi and has components that represent the change in forward and side (i.e.

left) directions and heading angle, respectively. Using Equation (4.1) to develop a prior

belief about ρi+1 leads to a strong correlation between it and our belief about pose ρi. To a

lesser degree ρi+1 is also correlated to τ i+1
i

We will symbolically represent the structure of the covariance matrix of p (τ ,ρ) by

first defining some notation. Let Pρi be the covariance matrix associated with the marginal

distribution p(ρi). Let Pτ ji
be the covariance matrix associated with the marginal distribu-

tion p(τ ji ). Let Pρjρi be the cross-covariance matrix relating ρj and ρi. Finally, let Pρjτ
j
i

denote the cross-covariance relating ρj and τ ji , with a similarly subscripted matrix relat-

ing ρi and τ ji . We note that each of the just defined covariance matrices is 3-x-3 for two

dimensional navigation. Using this notation we write the covariance for p(ρi, τ
j
i ,ρj) as

Pij =


Pρi P>

ρiτ
j
i

P>ρjρi

Pρiτ
j
i

Pτ ji
P>
ρjτ

j
i

Pρjρi Pρjτ
j
i

Pρj

 . (4.2)

1We alert the reader here that we have changed the definition of our reference frames in this chapter. The
community standard is a north-west-up global frame, making a positive change in heading a counterclockwise
rotation from north. We have made the switch to allow more straightforward use of publicly available back-
end optimization datasets, almost all of which are developed by the ground vehicle robotics community.
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The covariance matrix P for the full joint distribution p (τ ,ρ) is composed of several

such blocks that overlap at the global poses. Consider the Chapter 3 scenario, a single loop

closure from the origin to the end of the trajectory. In this case we can write our prior belief

about P as

P =



Pρ1 0 P>ρ2ρ1 0 0 0 0 0 0 0

0 Pτ2
1

P>
ρ2τ

2
1

0 0 0 0 0 0 0

Pρ2ρ1 Pρ2τ
2
1

Pρ2 0 P>ρ3ρ3 0 0 0 0 0

0 0 0 Pτ3
2

P>
ρ3τ

3
2

0 0 0 0 0

0 0 Pρ3ρ2 Pρ3τ
3
2

Pρ3 0 P>ρ4ρ3 0 0 0

0 0 0 0 0 Pτ4
3

P>
ρ4τ

4
3

0 0 0

0 0 0 0 Pρ4ρ3 Pρ4τ
4
3

Pρ4 0 0 0
. . .

0 0 0 0 0 0 0 PρN−1
0 P>ρNρN−1

0 0 0 0 0 0 0 0 PτN
N−1

P>
ρNτ

N
N−1

0 0 0 0 0 0 0 PρNρN−1
PρNτ

N
N−1

PρN



,

where 0 represents an appropriately sized matrix of all zeros.

The covariance matrix P in this case has some important structure before loop closure.

Every element off of the 3-x-3 block diagonal is zero. Each cross-covariance term of the form

Pρiτ
j
i

is also a zero matrix, meaning the odometry-like relative transformations are also

independent of the pose from which they originate. These aspects of P are reflected in the

Bayesian network structure discussed previously in Figure 3.2.

After loop closure P again exhibits important structure. Our a posteriori estimate of

P only changes from the prior estimate in the block diagonal elements. Specifically, the only

zeros filled in represent the cross-covariance between a relative transformation and the pose

it originates from. Therefore none of the relative transformations become correlated with

each other. This allows us to marginalize the global poses found after the first iteration of

BERT to find a covariance over all odometry-like relative transformations that is still block

diagonal. The relative transformations remain independent because of the mediating effect

of the global poses.
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We motivated the iteration of BERT in Chapter 3.2.3 by observing the difference

between the relative transformations estimated by the first iteration of BERT and g2o. The

transformations produced by these two methods were different despite the fact that BERT

and g2o develop the same global pose estimates. The structure of P provides the appropriate

justification for iterating BERT.

4.2 An Arbitrary Single Loop

We first extend BERT by again treating a scenario with a single loop closure. How-

ever, this time the loop closure originates from a global pose in between the global origin

and the end of the trajectory. We observed in the previous section that the covariance of

p (τ ,ρ) had no non-zero elements off the block diagonal when closing the loop at the global

origin. This will not be the case generally. Therefore, our primary objective in this section

is to develop an efficient method for calculating the cross-covariances needed to form the

loop closure hypothesis p
(
ρi, τ

j
i ,ρj

)
. We will also consider the structure of the loop clo-

sure hypothesis covariance matrix to help us understand how to propagate that loop closure

information through the rest of the network.

4.2.1 Calculating the Cross-Covariance

We recall here Algorithm 2 which was first presented in Chapter 3.1.3. As previously

conceived in Chapter 3, we begin every iteration of BERT by repeating Lines 1 and 2 of

Algorithm 2 to form our prior belief about the global poses. Our prior belief about the

poses is based on the odometry-like transformations of the form τ i+1
i . Line 1 is simply the

application of Equation (4.1). Line 2 requires that we calculate the marginal uncertainty

and cross-covariance of the new pose based on the uncertainty in the prior pose and the

odometry-like relative transformation between them. To extend BERT, we must reconsider

this portion of Algorithm 2 to also compute our prior belief about the cross-covariance

between poses involved in a loop closure.
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Algorithm 2: BERT using a modular representation of p (τ ,ρ) for the single loop
scenario.

for ( i = 1; i < N; i++) do
1 Compose ρi with τ i+1

i to find ρi+1.

2 Calculate the joint covariance for p
(
ρi, τ

i+1
i ,ρi+1

)
.

end

3 Apply the loop closure measurement in a Kalman update of p(τ̌N
0 ).

4 Use Equations (3.9) and (3.10) to find p(
?
ρN−1,

?
τN

N−1,
?
τN

0 ) where x1 corresponds to
ρN−1 and τN

N−1, and x2 corresponds to τN
0 .

for ( i = N−1; i > 0; i--) do
5 Extract the marginal distribution p (

?
ρi) from p

(
?
ρi,

?
τ i+1
i ,

?
ρi+1

)
6 Find p

(
?
ρi−1,

?
τ ii−1,

?
ρi
)

using Equations (3.9) and (3.10) where x1 corresponds to
ρi−1 and τ ii−1, and x2 corresponds to ρi

end

We implement Line 2 by augmenting p(ρi, τ
i+1
i ) with the new estimate of ρi+1; i.e.

we find the covariance matrix for the joint state vector
ρi

τ i+1
i

ρi+1

 =


ρi

τ i+1
i

g
(
ρi, τ

i+1
i

)
 . (4.3)

We can think of this augmentation like a time propagation step in an EKF. In that sense,

the states ρi and τ i+1
i here are static and ρi+1 evolves from zero to the value given by

g
(
ρi, τ

i+1
i

)
. Therefore, implementing Line 2 of Algorithm 2 can be conveniently described

using matrix multiplication.
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Let In indicate an n-dimensional identity matrix. We define the Jacobians of Equa-

tion (4.1) to be

Jρi
4
=
∂g
(
ρi, τ

i+1
i

)
∂ρi

=


1 0 ai

0 1 bi

0 0 1

 , (4.4)

Jτ i
4
=
∂g
(
ρi, τ

i+1
i

)
∂τ i+1

i

=


cosψi − sinψi 0

sinψi cosψi 0

0 0 1

 , (4.5)

where

ai
4
= −∆fi sin(ψi)−∆si cos(ψi), (4.6)

bi
4
=∆fi cos(ψi)−∆si sin(ψi). (4.7)

We wish to determine the covariance matrix, POdo, for the joint distribution p
(
ρi, τ

i+1
i ,ρi+1

)
.

The undetermined elements of POdo are the marginal uncertainty Pρi+1
and the cross-

covariance matrices Pρi+1ρi and Pρi+1τ
i+1
i

. Again referring to the analogy between time

propagation and augmentation, we can find these new values based on our old values using

the appropriate Jacobians:

POdo
4
=


Pρi 0 P>ρi+1ρi

0 Pτ i+1
i

P>
ρi+1τ

i+1
i

Pρi+1ρi Pρi+1τ
i+1
i

Pρi+1



=


I3 0 0

0 I3 0

Jρi Jτ i 0




Pρi 0 0

0 Pτ i+1
i

0

0 0 0




I3 0 J>ρi

0 I3 J>τ i

0 0 0



=


I3 0 0

0 I3 0

Jρi Jτ i 0




Pρi 0 PρiJ
>
ρi

0 Pτ i+1
i

Pτ i+1
i

J>τ i

0 0 0
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=


Pρi 0 PρiJ

>
ρi

0 Pτ i+1
i

Pτ i+1
i

J>τ i

JρiPρi Jτ iPτ i+1
i

JρiPρiJ
>
ρi

+ Jτ iPτ i+1
i

J>τ i

 . (4.8)

Equation (4.8) represents the standard result we would have previously found at the

end of one step through Lines 1 and 2 in Algorithm 2. Modifying the algorithm for general

loop closure hypotheses begins here. We previously would have marginalized out ρi and

τ i+1
i , and then used ρi+1 and the independent transformation τ i+2

i+1 as our only inputs to

Equation (4.1) in the next step through Lines 1 and 2. But suppose we need to generate a

loop closure hypothesis using ρi and some temporally distant pose ρj. In that case, we should

not marginalize ρi. Rather, we should retain our estimate of ρi in the jointly distributed

random vector until we compose the network up to ρj. Retaining ρi in the random vector

will allow us to calculate the cross-covariance between ρi and ρj.

Therefore, after computing our prior belief about ρi+1 we marginalize only the relative

transformation, leaving the joint distribution p(ρi,ρi+1) with covariance matrix

 Pρi PρiJ
>
ρi

JρiPρi Pρi+1

 .
We augment this distribution with the next odometry-like transformation so that we have

p(ρi,ρi+1, τ
i+2
i+1) with covariance matrix


Pρi PρiJ

>
ρi

0

JρiPρi Pρi+1
0

0 0 Pτ i+2
i+1

 .

This augmentation is trivial since τ i+2
i+1 is independent of the two global poses in the joint

distribution. We must now augment the distribution with the next global pose so that we

have p(ρi,ρi+1, τ
i+2
i+1,ρi+2). The covariance, POdo++ , for this distribution can be described
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with a process similar to Equation (4.8):

POdo++
4
=


Pρi PρiJ

>
ρi

0 P>ρi+2ρi

JρiPρi Pρi+1
0 P>ρi+2ρi+1

0 0 Pτ i+2
i+1

P>
ρi+2τ

i+2
i+1

Pρi+2ρi Pρi+2ρi+1
Pρi+2τ

i+2
i+1

Pρi+2



=


I3 0 0 0

0 I3 0 0

0 0 I3 0

0 Jρi+1
Jτ i+1

0




Pρi PρiJ

>
ρi

0 0

JρiPρi Pρi+1
0 0

0 0 Pτ i+2
i+1

0

0 0 0 0




I3 0 0 0

0 I3 0 J>ρi+1

0 0 I3 J>τ i+1

0 0 0 0



=


I3 0 0 0

0 I3 0 0

0 0 I3 0

0 Jρi+1
Jτ i+1

0




Pρi PρiJ

>
ρi

0 PρiJ
>
ρi

J>ρi+1

JρiPρi Pρi+1
0 Pρi+1

J>ρi+1

0 0 Pτ i+2
i+1

Pτ i+2
i+1

J>ρi+1

0 0 0 0



=


Pρi PρiJ

>
ρi

0 PρiJ
>
ρi

J>ρi+1

JρiPρi Pρi+1
0 Pρi+1

J>ρi+1

0 0 Pτ i+2
i+1

Pτ i+2
i+1

J>τ i+1

Jρi+1
JρiPρi Jρi+1

Pρi+1
Jτ i+1

Pτ i+2
i+1

Pρi+2

 , (4.9)

where Pρi+2
= Jρi+1

Pρi+1
J>ρi+1

+ Jτ i+1
Pτ i+2

i+1
J>τ i+1

.

There are some important aspects to notice in Equation (4.9). As should be ex-

pected, our marginal belief about p(ρi) does not change. More importantly, comparing

Equations (4.8) and (4.9) shows the bottom-right block 3-x-3 matrix in Equation (4.9) is the

same as it would be had we calculated the covariance of p(ρi+1, τ
i+2
i+1,ρi+2) without carrying

along ρi. Finally, the cross-covariance between ρi and ρi+2 (and by induction ρi+3, ρi+4,

etc.) is a function of the Jacobians already calculated in the regular process of developing

our prior belief about the poses. Therefore, the structure of the problem makes it is sufficient

to save the Jacobians found by Equation (4.4) during our regular repetition of Lines 1 and 2

in Algorithm 2. To find Pρjρi we do not need to actually include extra blocks in calculations

like Equation (4.9).

95



According to the foregoing analysis we need to compute Pρjρi = Jρj−1
· · ·Jρi+1

JρiPρi .

We can further simplify this calculation by looking at the specific structure of the Jacobian

given by Equation (4.4). Multiplying two matrices with this form gives

Jρi+1
Jρi =


1 0 ai+1

0 1 bi+1

0 0 1




1 0 ai

0 1 bi

0 0 1



=


1 0 (ai + ai+1)

0 1 (bi + bi+1)

0 0 1

 . (4.10)

Therefore, defining Jji
4
= Jρj−1

· · ·Jρi+1
Jρi , we can calculate the cross-covariance Pρjρi by

saving only two scalar elements from each of the several Jacobians and performing one matrix

multiplication:

Pρjρi = JjiPρi

=


1 0

∑j−1
k=i ak

0 1
∑j−1

k=i bk

0 0 1

Pρi . (4.11)

The ramifications of the foregoing analysis are significant. In Chapter 3.1.4 we dis-

cussed the similarities between BERT and the EKF-SLAM submapping approach of [27]. We

noted one significant difference to be the extra map elements required by [27] to maintain the

conditional independence between their feature-based SLAM submaps. The authors of [27]

called these elements “overhead,” and they consisted of features and robot poses that were

not indigenous to a given submap.

The submaps of [27] correspond to modular distributions p(ρi, τ
i+1
i ,ρi+1). During

our earlier development described in Chapter 3, we wondered if the estimate of ρi may need

to be included in each modular joint distribution along the chain of distributions until we

reached ρj. This would be analogous to the overhead described in [27]. Including additional
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poses in the modular joint distributions would have caused them to quickly grow with the

number of loop closures, destroying the efficiency of BERT. Thankfully, we need not include

any extra elements in the modules that make up our full joint distribution, and the extra

computation needed to generate an arbitrary loop closure hypothesis is negligible.

4.2.2 Structure of the Loop Closure Hypothesis

In the foregoing discussion we showed how to calculate the cross-covariance between

ρi and ρj, and therefore we can now define the distribution p(ρi,ρj). We can in turn use

our prior belief about p(ρi,ρj) to develop our belief about the loop closure transformation.

Recall the measurement equation from Chapter 3.2.1:

h
(
ρi,ρj

)
= τ ji .

=


(nj − ni) cosψi + (wj − wi) sinψi

− (nj − ni) sinψi + (wj − wi) cosψi

ψj − ψi

 . (4.12)

We use Equation (4.12) to calculate the mean of our prior belief about the loop closure trans-

formation. To calculate the covariance we define the necessary Jacobians of Equation (4.12)

to be

JLCi

4
=
∂h
(
ρi,ρj

)
∂ρi

=


− cos(ψi) − sin(ψi) −∆n sin(ψi) +∆w cos(ψi)

sin(ψi) − cos(ψi) −∆n cos(ψi)−∆w sin(ψi)

0 0 −1

 , (4.13)
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and

JLCj

4
=
∂h
(
ρi,ρj

)
∂ρj

=


cos(ψi) sin(ψi) 0

− sin(ψi) cos(ψi) 0

0 0 1

 , (4.14)

where ∆n = (nj − ni) and ∆w = (wj − wi).
Similar to before, we can find the joint covariance, PLC, for the loop closure hypothesis

p(ρi, τ
j
i ,ρj) using

PLC
4
=


Pρi P>

ρiτ
j
i

P>ρjρi

Pρiτ
j
i

Pτ ji
P>
ρjτ

j
i

Pρjρi Pρjτ
j
i

Pρj



=


I3 0 0

JLCi 0 JLCj

0 0 I3




Pρi 0 P>ρjρi

0 0 0

Pρjρi 0 Pρj




I3 J>LCi
0

0 0 0

0 J>LCj
I3



=


I3 0 0

JLCi 0 JLCj

0 0 I3




Pρi PρiJ
>
LCi

+ P>ρjρiJ
>
LCj

P>ρjρi

0 0 0

Pρjρi PρjρiJ
>
LCi

+ PρjJ
>
LCj

Pρj



=


Pρi PρiJ

>
LCi

+ P>ρjρiJ
>
LCj

P>ρjρi

JLCiPρi + JLCjPρjρi Pτ ji
JLCiP

>
ρjρi

+ JLCjPρj

Pρjρi PρjρiJ
>
LCi

+ PρjJ
>
LCj

Pρj

 , (4.15)

where Pτ ji
= JLCi(PρiJ

>
LCi

+ P>ρjρiJ
>
LCj

) + JLCj(PρjρiJ
>
LCi

+ PρjJ
>
LCj

). Though not imme-

diately obvious, PLC also exhibits significant structure that helps us understand how loop

closure information will propagate to other variables.
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We will first consider Pρiτ
j
i
, the cross-covariance between the originating pose of the

loop closure, ρi, and the loop closure transformation, τ ji . To keep expressions compact2 we

introduce the notation cψi
4
= cos(ψi) and sψi

4
= sin(ψi). Then observe that Pρiτ

j
i

can be

manipulated using Equation (4.11) and the definitions of the various Jacobians such that

Pρiτ
j
i

= JLCiPρi + JLCjPρjρi

= JLCiPρi + JLCjJjiPρi

=


−cψi −sψi −∆nsψi +∆wcψi

sψi −cψi −∆ncψi −∆wsψi

0 0 −1

Pρi+


cψi sψi 0

−sψi cψi 0

0 0 1




1 0
∑j−1

k=i ak

0 1
∑j−1

k=i bk

0 0 1

Pρi

=



−cψi −sψi −∆nsψi +∆wcψi

sψi −cψi −∆ncψi −∆wsψi

0 0 −1

 +


cψi sψi cψi

∑j−1
k=i ak + sψi

∑j−1
k=i bk

−sψi cψi −sψi
∑j−1

k=i ak + cψi
∑j−1

k=i bk

0 0 1


Pρi . (4.16)

The last line in Equation (4.16) suggests a relationship between the two matrices in paren-

theses. The upper-left 2-x-2 block and the bottom row of each matrix is the negative of

the other matrix. Also, the first two elements of the last column in each matrix represent a

rotated vector. In the case of the matrix on the left, the original vector is [∆n ∆w]>. In the

case of the matrix on the right, the original vector is
[(∑j−1

k=i ak

) (∑j−1
k=i bk

)]>
.

2This is an unfortunate necessity; the reader should beware of confusing ∆s with sψi when they appear
together.
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We can decompose [∆n ∆w]> by observing that ρj can be found by repeatedly applying

Equation (4.1) starting from ρi. This leads to

∆n

∆w

 =

nj
wj

−
ni
wi


=

ni
wi

+ Rψi

∆fi

∆si

+ Rψi+1

∆fi+1

∆si+1

+ · · ·+ Rψj−1

∆fj−1

∆sj−1

−
ni
wi

 ,
where

Rψi

4
=

cψi −sψi

sψi cψi

 ,
leading further to

∆n

∆w

 =

∑j−1
k=i (∆fkcψk −∆sksψk)∑j−1
k=i (∆fksψk +∆skcψk)


=

 ∑j−1
k=i bk

−∑j−1
k=i ak

 . (4.17)

The last equality follows from the definitions given in Equations (4.6) and (4.7). Using

Equation (4.17) in Equation (4.16) allows us to draw the important conclusion that

Pρiτ
j
i

= 0. (4.18)

In words, our prior belief about the loop closure transformation τ ji is independent of our

prior belief about the pose ρi from which it originates. This has intuitive appeal. The loop

closure transformation τ ji is defined in the reference frame of ρi. By identifying them as

independent we are saying we could move ρi anywhere without affecting our belief about τ ji .

We pause here to make a parenthetical comment on the relationship between Equa-

tion (4.17) and Equation (4.11) from the previous subsection. Equation (4.17) suggests we

could further simplify our approach to calculating the cross-covariance between the poses
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involved in the loop closure hypothesis. Instead of saving ak and bk from each of the several

Jacobians as suggested by Equation (4.11), we could simply use the difference between the

estimated north and west positions of ρi and ρj. We will discuss further in Chapter 4.3 and

Chapter 5 why this is a bad idea. Suffice it to say for now that we will want to adjust the

ak and bk elements from each of the Jacobians individually based on additional criteria. We

therefore leave Equation (4.11) as our preferred expression for Pρjρi .

We now apply the result from Equation (4.18) in Equation (4.15) to simplify our prior

belief about the uncertainty of the loop closure hypothesis p(ρi, τ
j
i ,ρj):

PLC =


Pρi 0 P>ρjρi

0 JLCjPρjρiJ
>
LCi

+ JLCjPρjJ
>
LCj

JLCiP
>
ρjρi

+ JLCjPρj

Pρjρi PρjρiJ
>
LCi

+ PρjJ
>
LCj

Pρj

 . (4.19)

This expression for PLC begins to highlight its structure, but we can go further.

Consider the center block of PLC. This is Pτ ji
, the marginal uncertainty associated

with the loop closure transformation τ ji . Using Equation (4.12) we derive our belief about

τ ji from the two mutually dependent random vectors ρi and ρj. This contrasts with what

happens when we use Equation (4.1) to compose the mutually independent random vectors

ρi and τ i+1
i to derive ρi+1. In this latter case we find that the marginal uncertainty of ρi+1

is the sum of the marginal uncertainties (mapped through appropriate Jacobians) associated

with ρi and τ i+1
i . In other words, we find that Pρi+1

= JρiPρiJ
>
ρi

+ Jτ iPτ i+1
i

J>τ i (see

Equation (4.8)).

We will now show that Pτ ji
can also be manipulated so that it is more intuitively

expressed in terms of the marginal uncertainties Pρi and Pρj . From Equation (4.19),

Pτ ji
= JLCjPρjρiJ

>
LCi

+ JLCjPρjJ
>
LCj

.
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The second term on the right hand side is already in our desired format, so we turn attention

to JLCjPρjρiJ
>
LCi

. From Equation (4.11) we note that JLCjPρjρiJ
>
LCi

= JLCjJjiPρiJ
>
LCi

.

Focusing on JLCjJji for a moment we see that it can be manipulated using earlier results to

find

JLCjJji =


cos(ψi) sin(ψi) 0

− sin(ψi) cos(ψi) 0

0 0 1




1 0
∑j−1

k=i ak

0 1
∑j−1

k=i bk

0 0 1



=


cos(ψi) sin(ψi) 0

− sin(ψi) cos(ψi) 0

0 0 1




1 0 −∆w

0 1 ∆n

0 0 1



=


cos(ψi) sin(ψi) ∆n sin(ψi)−∆w cos(ψi)

− sin(ψi) cos(ψi) ∆n cos(ψi) +∆w sin(ψi)

0 0 1


= −JLCi . (4.20)

Using Equation (4.20) we can now write the expression

Pτ ji
= JLCjPρjJ

>
LCj
− JLCiPρiJ

>
LCi
. (4.21)

Equation (4.21) allows for an intuitive description of the loop closure transformation’s

marginal uncertainty that confirms the intuition associated with Equation (4.18). The un-

certainty in p(ρj) already depends in part on the uncertainty in p(ρi). Since τ ji is defined in

the reference frame of ρi, the uncertainty in p(τ ji ) arises from the uncertainty in p(ρj) less

the contribution from p(ρi).
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Using the preceding development we can express PLC, the uncertainty in the loop

closure hypothesis p(ρi, τ
j
i ,ρj), as

PLC =


Pρi 0 P>ρjρi

0 JLCjPρjJ
>
LCj
− JLCiPρiJ

>
LCi

JLCjPρj + JLCiP
>
ρjρi

Pρjρi PρjJ
>
LCj

+ PρjρiJ
>
LCi

Pρj

 . (4.22)

4.2.3 Propagating Loop Closure Information

Now that we can generate loop closure hypotheses and understand the structure in

their covariance matrices, we are prepared to examine how loop closure information will

propagate through the network. In the initial application of BERT in Chapter 3 we treated

the loop closure estimate as a measurement in a Kalman update. The update only affected

those variables at the end of the trajectory because the global origin, at the other end of the

loop closure, was anchored in its place. We now consider what happens if we again use a

Kalman update to apply the loop closure estimate between two uncertain global poses.

We begin by examining the form of the Kalman gain. The random vector involved

in the update is

xLC
4
=


ρi

τ ji

ρj

 .

The measurement is simply one of the states, so the measurement model is defined as

H
4
=
[
0 I3 0

]
.

The innovation covariance, S, in this case is the sum of the prior covariance Pτ ji
developed

above and the uncertainty in the loop closure as estimated in the front-end. Then the

Kalman gain, L, can be written as

L
4
= PLCH>S−1
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=


Pρi 0 P>ρjρi

0 Pτ ji
P>
ρjτ

j
i

Pρjρi Pρjτ
j
i

Pρj




0

I3

0

S−1

=


0

Pτ ji
S−1

Pρjτ
j
i
S−1

 . (4.23)

The important feature in the Kalman gain is the zero matrix in the upper 3-x-3

block. We can see the way that this zero matrix affects the flow of loop closure information

by examining the corrections applied to the state and covariance in the update. Let η denote

the innovation. We use the notation x+
LC and P+

LC to denote the updated values, and we see

that

x+
LC = xLC + Lη

=


ρi

τ ji

ρj

+


0

Pτ ji
S−1

Pρjτ
j
i
S−1

η, (4.24)

P+
LC = PLC − LHPLC

=


Pρi 0 P>ρjρi

0 Pτ ji
P>
ρjτ

j
i

Pρjρi Pρjτ
j
i

Pρj

−


0

Pτ ji
S−1

Pρjτ
j
i
S−1

[0 I3 0
]

Pρi 0 P>ρjρi

0 Pτ ji
P>
ρjτ

j
i

Pρjρi Pρjτ
j
i

Pρj



=


Pρi 0 P>ρjρi

0 Pτ ji
P>
ρjτ

j
i

Pρjρi Pρjτ
j
i

Pρj

−


0

Pτ ji
S−1

Pρjτ
j
i
S−1

[0 Pτ ji
P>
ρjτ

j
i

]

=


Pρi 0 P>ρjρi

0 Pτ ji
P>
ρjτ

j
i

Pρjρi Pρjτ
j
i

Pρj

−


0 0 0

0 Pτ ji
S−1Pτ ji

Pτ ji
S−1P>

ρjτ
j
i

0 Pρjτ
j
i
S−1Pτ ji

PρjS
−1Pρj

 . (4.25)
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Note that the prior mean value, the marginal covariance, and the cross-covariances associated

with the loop closure origin ρi remain unchanged by the update. The fact that the marginal

distribution p(ρi) remains unchanged comports with the intuition from Equation (4.18).

Since they begin as independent, changing the value of τ ji should not affect our marginal

belief about ρi any more than changing ρi should affect our marginal belief about τ ji .

It is more interesting to emphasize that the cross-covariances Pρiτ
j
i

and Pρjρi remain

unchanged by the update. The cross-covariance Pρiτ
j
i

was zero before the update, so ρi and

τ ji remain independent after the update. For the relationship between ρi and ρj we recall

from probability theory that the correlation coefficient for two scalar random variables is

defined to be their covariance divided by the product of their standard deviations. The cross-

covariance and marginal uncertainty associated with ρi remain unchanged by the update,

but the marginal uncertainty of ρj gets smaller. Therefore, the update causes the elements

of ρi to become more strongly correlated with ρj. This result motivates an area of future

work sketched out in Chapter 5 where we discuss the often cited analogy between back-end

optimization and a mass-spring system.

4.2.4 Summarizing Insights From an Arbitrary Single Loop Closure

We have shown that an arbitrary loop closure hypothesis p(ρi, τ
j
i ,ρj) can be easily

generated from values already calculated in the regular process of developing our prior belief

about the global poses. We have also seen that, because of the structure in the covariance

of p(ρi, τ
j
i ,ρj), updating our belief about the loop closure transformation does not affect

our belief about the originating pose ρi in the loop closure. This suggests that we can

update the entire network of modular joint distributions in this chapter’s single loop example

using the same approach used in Chapter 3. We will start our presentation of results by

applying a slight variation of Algorithm 2 from Chapter 3, but the results will suggest

some modifications that refine our understanding of how to apply the foregoing analysis.

The results also illustrate some important considerations for further extending BERT to

arbitrary networks.
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4.3 Testing an Arbitrary Single Loop Closure

4.3.1 Test Scenario

To extend BERT we generated a new dataset with a more complex set of attributes.

The data again simulates a robot moving in two dimensions through the hallways of a

building. The trajectory includes some long stretches without loop closures as well as a few

stretches through hallways with several loop closures. The stretches without loop closure

allow the uncertainty in global poses to become large. Multiple loop closures offer the option

of considering how loop closure information propagates in more complicated scenarios.

The trajectory in this dataset is about 280 meters long. New reference image poses

are created at about every 0.5 meters change in position or 10 degrees change in heading,

whichever comes first. This leads to 623 reference poses, 622 odometry-like transformations,

and 64 loop closure transformations. All relative transformations in this dataset are cor-

rupted by independent, zero mean Gaussian noise with a standard deviation of 10 cm for

each component of position and 2 degrees for heading. We note that, compared to Chapter 3,

the error on position is a significantly higher percentage of the actual change. The dataset is

based on a path through the fourth floor of the Brigham Young University Clyde Building

and is visualized in Figure 4.0

To test a single loop closure scenario we truncate the trajectory at pose 572 where

the vehicle is just about 25 meters straight down the hallway west from the global origin.

By this point the vehicle has traveled about 255 meters. The single loop closure in the

test occurs with pose 144, a pose about 51 meters along the trajectory from its beginning.

Figure 4.1 illustrates the initially estimated trajectory based on unoptimized odometry-like

transformations.

We use an off-the-shelf Matlab implementation3 of the Levenburg-Marquardt (LM)

algorithm as a baseline to compare our results against. We used this same algorithm during

the early development of Chapter 3. It provided the same results as those returned by

g2o, though at considerably longer execution times. In this chapter we choose to do our

3Available at http://www.mathworks.com/matlabcentral/fileexchange/17534-lmfnlsq-solution-of-
nonlinear-least-squares
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Figure 4.1: A Schematic Representation of the Clyde Dataset. The beginning and end of the
trajectory correspond to the red ‘X’ down and to the right of the center of the image. The
vehicle proceeds from the origin along straight paths between the turns around corners in the
hallways. The turns are marked in the image by curved red arrows and are numbered in the
sequence taken by the trajectory. The heading of the vehicle is always aligned with the forward
direction of motion. Loop closures occur when reference poses are within 0.1 meters and have
the same heading. All of the loop closures occur along the hallways between turns 4 and 5 and
between turns 6 and 7.

implementation in Matlab for easy prototyping since our focus is only on the accuracy of

the results.

4.3.2 A First Attempt at Extending BERT

As an initial attempt at extending BERT we apply several iterations of Algorithm 3

to the data. Let N + 1 be the total number of poses in the trajectory (numbered from

0 to N). The pose ρ0 is the certain global origin, and it is defined in the Clyde dataset
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Figure 4.2: Clyde Dataset Trajectory: Odometry vs. Truth. The true positions of the
reference poses are marked with green dots. Black circles mark the belief about reference poses
based on initial odometry-like transformation estimates. The single loop closure used for this
chapter’s results occurs between the poses connected by a red line.

as [n0, w0, ψ0]> = [0, 0,−π
2
]>. Algorithm 3 is essentially the same as Algorithm 2, just

spelled out in more detail. The only difference is summarized in Lines 6 - 8 where we take

the additional steps needed to compute the joint covariance for the distribution p
(
ρi, τ

j
i ,ρj

)
containing the loop closure transformation. For reasons that will appear below, we designate

Algorithm 3 as a naive approach to BERT.

Figure 4.2 shows an overhead view of the results from one iteration of BERT using

Algorithm 3 and one iteration of LM compared to truth. The results from BERT are ob-

viously worse than LM. BERT has closed the gap between the end of the trajectory and

the other pose involved in the loop closure, but in the process the middle of the trajectory

has been skewed to the east. Figure 4.3 further highlights this performance by plotting the

Euclidean distance between the true global position and the position estimates for each pose.

However, we can also consider the performance of BERT and LM after one iteration by

looking at the error in the relative transformation estimates. Figure 4.4 plots the Euclidean

distance between the true and the estimated change in position for each transformation. We

see the same behavior exhibited by LM (i.e. g2o) in Chapter 3. Namely, LM increases the
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Figure 4.3: Overhead View of Optimized Poses After One Iteration. Information from the
loop closure has been propagated through the network using Algorithm 3. Performance of
BERT is obviously worse than a single iteration of LM, but the solution is plausible enough
that one might hope for BERT to converge after additional iteration.
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Figure 4.4: Global Pose Distance Error After One Iteration. This plot offers an alternative
view of the results shown in Figure 4.3. The vertical axis of the plot represents the Euclidean
distance between true and estimated poses. The vertical dotted line marks the originating pose
in the loop closure. In this case, that is pose number 144. The only noticeable improvement
BERT makes over the unoptimized result occurs toward the end of the trajectory.
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Algorithm 3: One iteration of an initial naive attempt to extend BERT for a single
loop closure between arbitrary poses.

for i = 0 : N− 1 do
1 Use ρi with τ i+1

i in Eq. (4.1) to find ρi+1.
2 Calculate the Jacobians Jρi and Jτ i+1

i
according to Eq. (4.4) and Eq. (4.5).

3 Calculate the joint covariance for p
(
ρi, τ

i+1
i ,ρi+1

)
as given in Eq. (4.8).

4 Save the values ai and bi as defined in Equations (4.6) - (4.7).

end

5 Calculate the expected value of the loop closure transformation τ ji using Eq. (4.12).
6 Calculate the cross-covariance between ρi and ρj using Eq. (4.11)

7 Calculate the Jacobians JLCi and JLCj using Eq. (4.13) and Eq. (4.14).

8 Calculate the joint covariance for p
(
ρi, τ

j
i ,ρj

)
using Eq. (4.22).

9 Apply the loop closure measurement to p
(
ρi, τ

j
i ,ρj

)
in a Kalman update.

for i = N− 1 : −1 : 0 do
10 Extract the updated marginal distribution p

(
?
ρi+1

)
11 Use Equations (3.9) and (3.10) to find p

(
?
ρi,

?
τ i+1
i ,

?
ρi+1

)
.

end

error in the relative change in position, especially toward the end of the trajectory. BERT

performs as should be expected in that the single loop closure causes almost no change in

the initial estimates.

The increased error caused by LM in Figure 4.3 seems less pronounced here than in

Chapter 3, Figures 3.7 and 3.8. This is due to the increased level of noise in the original

front-end estimated transformations. In Chapter 3 the average initial error for the change in

position was 2.1 cm for an average true change of 30 cm. In this current dataset, the average

initial change in position error is 12.4 cm for a true change of 50 cm. That’s a jump from

about 7% to 25% of the true change.

Given that BERT delivers superior relative transformations after one iteration, one

might hope that further iteration would allow BERT to improve its estimates of global poses.

However, Figure 4.5 illustrates that this is clearly not the case. At each iteration the global

pose estimates from BERT get considerably worse. The relative transformation estimates

from BERT also degrade with each iteration as shown in Figure 4.6. Something is lacking

in the algorithm.
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Figure 4.5: Relative Transformation Distance Error After One Iteration. The behavior here
is similar to that witnessed in the initial tests of BERT in Chapter 3. The degradation caused
by one iteration of LM is less pronounced this time due to the higher level of error already
present in the initial estimates of the transformations. BERT again conforms to the expectation
that a single loop closure ought to not change several hundred other loop closures very much
individually. The top figure shows all the relative transformations in the test; the bottom shows
a close-up of the end of the trajectory.

Figure 4.6: Overhead View of Optimized Poses After Several Iterations. The results from
BERT using Algorithm 3 get worse at every iteration as the solution completely diverges from
the truth.
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Figure 4.7: Relative Transformation Error Metrics For the Naive First Attempt to Extend
BERT. The top plot shows the result of computing Equation (3.11) after each iteration of LM
and BERT. Equation (3.11) is a measure of how well the optimized relative transformations
agree with their original estimates. In the results presented here BERT agrees well with the
original estimates after one iteration as it should for a single loop closure and several hundred
odometry-like transformations. However, the metric grows quickly with each subsequent iter-
ation. The bottom plot shows after every iteration the result of calculating the sum squared
error defined in Equation (3.15). Again, iterating BERT degrades the accuracy of the relative
transformation estimates. In both top and bottom plots, LM produces qualitatively the same
results as in Chapter 3.

4.3.3 Linearizing Around the True State

If a vehicle performs SLAM using only onboard sensors then all of the position infor-

mation available to the vehicle is relative; the vehicle receives no global information about

position whatsoever. Even loop closure is a relative measurement, so a SLAM algorithm

must balance the information in all the available relative position estimates in a way that

produces an accurate global map. The key to make this work is to maintain the integrity of

the correlations between elements of the map. With correct correlations an adjustment to

one map element will correctly affect other map elements.

The front-end delivers relative transformation estimates that are inherently indepen-

dent. In BERT we develop global pose estimates from those transformations to allow the

transformations to remain independent. In the process of developing our prior belief about
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poses we introduce a strong correlation between consecutive global poses as well as a modest

correlation between those poses and the transformation they share. Those correlations are

a function of the Jacobians used to map uncertainty from one random vector to another. If

loop closure information does not seem to be affecting the map correctly we should suspect

the correlations, and therefore the Jacobians, to be part of the problem.

To test this conjecture we manipulate the free variables that make up the Jacobians

Jρi , Jτ i , JLCi , and JLCj . Using the results presented earlier in this Chapter, all of these

Jacobians can be written in terms of global heading angle and relative change in position

estimates. For the results in this subsection we replace those estimates with true values,

but only when calculating Jacobians. Therefore, only the covariance matrices are directly

changed by introducing these true values. We will relax the use of true values in linearization

when we present results in Chapter 4.3.5, and we will discuss further options for improving

linearization in Chapter 5.

Modifying the Jacobians with true values, we proceed to again iteratively apply Al-

gorithm 3. Figure 4.7 shows an overhead view of the results. BERT eventually converges to

a solution that resembles the truth, but BERT’s final solution is skewed worse than both the

first and the final solutions produced by LM. Figure 4.8 further illustrates this result with

the Euclidean distance between true and estimated global positions.

It is interesting to note that in this scenario the very first iteration of BERT actually

performs about as well as the converged LM solution. BERT in its first iteration has not

completely closed the distance between the loop closure poses, but most of the global pose

estimates represent a considerable improvement over the initial unoptimized estimate. If

something could be done to prevent subsequent iterations from bending the solution to the

west we might hope to arrive at a solution at least as good or maybe better than LM.

To that end we make an observation about the solution LM produces. If we look

in Figures 4.7 and 4.8 at the LM solution we see that the first and last iterations of LM

produce results that seem indistinguishable from each other and from the initial estimate

for poses temporally preceding the originating pose of the loop closure. Zooming in for a

closer look in Figure 4.9, and calculating the distance between the first and last iterations of

LM confirms this observation. Multiple iterations of LM make no change in the global pose
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Figure 4.8: Overhead View of Optimized Poses Using True Linearization Points in Algo-
rithm 3. Compared to the results in Figure 4.5, BERT now converges to a solution resembling
truth, though less accurate than the LM solution.

Figure 4.9: Global Pose Distance Error Using True Linearization Points in Algorithm 3. It is
interesting to note here that the first iteration of BERT using true linearization points produces
global pose estimates closer to the truth than the converged solution of LM for most of the
poses. However, subsequent iterations of BERT generate errors greater than the unoptimized
solution in many poses.
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Figure 4.10: A Close-Up Look at Results From Figure 4.8. We see that before the originating
pose in the loop closure that the global position estimates from LM are identical to the original
estimates.

estimates before pose 144, and therefore LM also makes no change in the preceding relative

transformation estimates.

The effect of LM on these variables leads us to another realization about the problem

that we can associate with the result in Equation (4.18). Incorporating loop closure infor-

mation should not affect global pose and relative transformation estimates that temporally

precede the originating pose in the loop closure. Both the loop closure transformation and

the odometry-like transformation that originate from pose 144 are independent of the pose

as they are defined in its reference frame.

This insight can also be tied to the direct approach of optimizing relative transforma-

tions that we described in Chapter 3.1.3. A single covariance matrix for the joint distribution

over all transformations would have no off diagonal elements relating the loop closure to the

odometry-like transformations that lead up to pose 144. Therefore, applying the loop clo-

sure measurement to that single, large covariance matrix would have no effect on the earliest

transformation estimates.
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Algorithm 4: Modifying BERT for arbitrary poses in a single loop closure such that
loop closure information only affects the transformations within the loop.

for i = 0 : N− 1 do
1 Use ρi with τ i+1

i in Eq. (4.1) to find ρi+1.
2 Calculate the Jacobians Jρi and Jτ i+1

i
according to Eq. (4.4) and Eq. (4.5).

3 Calculate the joint covariance for p
(
ρi, τ

i+1
i ,ρi+1

)
as given in Eq. (4.8).

4 Save the values ai and bi as defined in Equations (4.6) - (4.7).

end

5 Calculate the expected value of the loop closure transformation τ ji using Eq. (4.12).
6 Calculate the cross-covariance between ρi and ρj using Eq. (4.11)

7 Calculate the Jacobians JLCi and JLCj using Eq. (4.13) and Eq. (4.14).

8 Calculate the joint covariance for p
(
ρi, τ

j
i ,ρj

)
using Eq. (4.22).

9 Apply the loop closure measurement to p
(
ρi, τ

j
i ,ρj

)
in a Kalman update.

for i = N− 1 : −1 : NLCi do
10 Extract the updated marginal distribution p

(
?
ρi+1

)
11 Use Equations (3.9) and (3.10) to find p

(
?
ρi,

?
τ i+1
i ,

?
ρi+1

)
.

end

4.3.4 Optimizing Only the Subset Involved in Loop Closure

The realization presented at the end of the preceding subsection leads us to modify

Algorithm 3. Let the global poses be numbered starting from the global origin ρ0, and

let NLCi identify the pose from which the loop closure transformation emanates. In the

case of our current example, NLCi = 144. We will let NLCj = 572 designate the pose to

which the loop closure transformation extends. We recall that in this experiment NLCj = N,

the last pose of the trajectory. Algorithm 4 presents our modified approach wherein we

only propagate loop closure information back to the originating pose in the loop closure.

Therefore, we update only those relative transformations that are part of the loop. For most

of the results in this subsection we continue to use true state values in our Jacobians.

Figures 4.10 and 4.11 illustrate global pose results produced by BERT using Algo-

rithm 4. We see now that BERT is behaving more like LM. In fact, the second iteration

of BERT outperforms the fourth and final iteration of LM as can be most clearly seen in

Figure 4.11. On a less positive note, we observe that the first iteration of BERT has a

sharp discontinuity between ρ144 and ρ145, and there is significant distance between the loop

116



closure poses ρ144 and ρ572. However, the optimized estimates for both poses are closer to

their true values than were their initial estimates.

Figure 4.11: Overhead View of Optimized Poses Using True Linearization Points in Al-
gorithm 4. The final BERT solution essentially matches the LM solution, but the first two
iterations of BERT are arguably better than the final solution.

We turn to Figure 4.12 to illustrate the relative transformation results from LM and

BERT using Algorithm 4. We will no longer report plots like Figure 4.4 showing the error

in the relative change of position for each transformation. The illustration of the relative

transformation error shown in Figure 4.12 provides a more visible measure of performance.

We will also restrict the scale on the vertical access for the sum squared error to exclude the

initial response of LM and give a more detailed look at the performance of BERT.

As before, BERT avoids the undesirable transient response in sum squared error that

LM suffers from. The steady rise of BERT’s sum squared error has also been noticeably

muted compared to Figure 4.6. The first two iterations of BERT improve the sum-squared

error in the relative transformations. However, beginning at the third iteration BERT allows

a small rise in this error metric. BERT also settles into a final error value that is just slightly
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Figure 4.12: Global Pose Distance Error Using True Linearization Points in Algorithm 4.
BERT acheives the most accurate solution at its second iteration.
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Figure 4.13: Relative Transformation Error Metrics Using True Linearization Points in Al-
gorithm 4. BERT still reduces the sum squared error of the relative transformations, but
it acheives its minimum at the second iteration. Exploring the topic of when to terminate
iterations is a subject of future work discussed in Chapter 5
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greater than that of LM, although the final value of BERT’s sum-squared error is still an

improvement over the unoptimized value.

We will need to keep an eye on the behavior of sum-squared error in the the relative

transformations as we continue to extend BERT to more and more complicated networks.

We expect in the long run that BERT will outperform LM on this count, but the fact that

BERT first decreased the SSE before allowing it to rise again is a minor cause for concern.

Further experimentation is needed because the results developed to date present too little

change in the relative transformation estimates to allow for a stronger opinion of what to

expect.

Finally, one might hope that we could relax the use of true states in the Jacobians by

using Algorithm 4. However, Figure 4.13 shows that only optimizing relative transformations

in the loop does not address the problem introduced by bad linearization. The results

in Figure 4.13, generated with Algorithm 4 and using the current state estimates in the

Jacobians, still diverge to an unacceptable solution. In the next subsection we take a first

look at how to correctly calculate Jacobians.

Figure 4.14: Overhead View of Optimized Poses Using Naive Linearization Points in Algo-
rithm 4. Optimizing only those transformations that make up the closed loop does not avoid
the problems introduced by bad linearization points in the Jacobians.
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4.3.5 Using First Estimates in the Jacobians

Maintaining correct correlations between map elements is directly tied to the issue of

an estimator’s statistical consistency. We mentioned the topic of consistency in Chapter 1.2.1

in connection with EKF-SLAM. An estimator can become inconsistent when the filter esti-

mated covariance becomes too small. This gives rise to incorrect correlation between map

elements and leads to a divergent solution. Consistency has been a topic of much investiga-

tion in the EKF-SLAM community. We have already drawn analogies between BERT and

the EKF-SLAM submapping technique of [27]. We look now to work in the EKF-SLAM

community for solutions to our problem with correct linearization.

The authors of [42] were the first to draw significant attention to the issue of consis-

tency in EKF-SLAM. They presented an experiment that they describe as a counter-example

to the validity of the EKF-SLAM approach. In their experiment a stationary robot repeat-

edly measures the range and bearing of a single feature in a 2D environment. Because both

robot and feature are known to be stationary, the feature’s position relative to the robot

is known to be constant. Yet the authors showed that the vehicle’s estimate of its own

global pose became increasingly confident after each measurement. This should not happen

because repeating the measurement between the stationary objects should not introduce

more information about the vehicle’s global pose. The EKF-SLAM estimator was becoming

overconfident, i.e. inconsistent.

EKF-SLAM consistency has since been a research question pursued by other authors.

In [43] the authors perform simulations of a robot moving in 2D and estimating point fea-

tures for its map. Through Monte Carlo simulation they identify accurate heading estimates

as essential to maintaining the correct covariance properties that define the estimator’s con-

sistency. They suggest that a vehicle use a global heading measurement, such as from a

magnetometer, to constrain the error in heading and eventually freeze the map to avoid

incorporating faulty information.

The line of work that we have already cited beginning with [27] also gives cursory

treatment of consistency. They assert, based on their experience with simulation and im-

plementation, that using submaps damps the onset of inconsistency. They suggest that this

happens because submaps have their own local reference frame. When they instantiate a
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new submap, they know with certainty that the vehicle is at the origin of that submap by

definition. The decreased error and uncertainty in the states used to calculate Jacobians

then leads to a more consistent map when the local maps are merged into a global one.

We believe the best, most principled treatment of statistical consistency is presented

by the authors of [45]. We will discuss their most recent work in Chapter 5, but in [45]

they propose a simple solution to the consistency problem. Instead of using the latest state

estimates in the Jacobians, they use the first-ever estimates for those states. The authors

call their SLAM estimator a First-Estimates Jacobian (FEJ) EKF.

Not using the latest, and presumably the best, state estimates in the Jacobians seems

counterintuitive. However, the authors show analytically in [45] that linearizing about the

latest state estimates causes the linearized error-state model to have an observable subspace

of greater dimension than the underlying nonlinear system. In short, using the latest esti-

mates in the Jacobian leads the filter to believe it has more information than it does. This

leads to the overconfidence and incorrect correlation properties noted by other authors.

Before proceeding to some results, we make a note here about linearization and the

traditional back-end optimization approach implemented with LM. In BERT and LM the

Jacobians for each algorithm are a function of the relative transformation estimates. LM

never changes those values in Equation (3.11), the Mahalanobis distance metric used as the

LM objective function. Therefore LM always linearizes around the original estimates of the

transformations. We believe this is why LM does not suffer from the same linearization

problems as BERT though we haven’t verified this with rigorous analysis.

In this subsection we take an FEJ approach to BERT to test whether it may also suffer

from a problem analagous to that of feature-based EKF-SLAM. We again apply Algorithm 4

to the data, but in Lines 2 and 7 we will use the front-end estimated values needed to compute

the Jacobians. The results are presented in Figures 4.14 - 4.16.

The overhead view in Figure 4.14 and the plot of the position error in Figure 4.15

show that BERT using FEJ gives results more similar to LM than the results presented

previously. The first iteration of BERT using FEJ does not give as good improvement in

global position estimates as that given by using true values in the Jacobians, but the final

solution is nearly the same. We also still observe a large discontinuity between global poses
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Figure 4.15: Overhead View of Optimized Poses Using FEJ Linearization Points in Algo-
rithm 4. Notice that despite using unoptimized values to compute Jacobians BERT arrives at
a solution essentially the same as LM. This suggests that an observability analysis similar to
that of [45] might reveal even better linearization points and better results. However, an FEJ
approach provides a reasonable result without any additional computation.

Figure 4.16: Global Pose Distance Error Using FEJ Linearization Points in Algorithm 4.
Similar to Figure 3.10, minor differences between LM and BERT are likely due to slightly
different linearization points. Using an observability analysis to arrive at better linearization
points might make BERT consistently more accurate than LM (e.g. consider Figure 4.11 results
using true values in linearization).
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ρ144 and ρ145, though this time the discontinuity noticeably increases the position error in

the several poses immediately after ρ144.
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Figure 4.17: Relative Transformation Error Metrics Using FEJ Linearization Points in Al-
gorithm 4. Performance is similar to that shown in Figure 4.12 where true state values were
used in linearization.

Finally, we note in Figure 4.16 that the error in relative transformation estimates

is similar to that found by using the true linearization points. Using FEJ still avoids the

negative transient response seen in LM. However, the steady state value of the error is slightly

higher using FEJ compared to using true values for linearization.

4.3.6 Coming Full Circle: BERT Using a Relative Global Origin

To conclude this Chapter we present one final variation of extending BERT. We can

take a different lesson away from the realization presented in Section 4.3.4. Since the loop

closure information doesn’t change the transformations and poses preceding ρLCi
, why not

treat an arbitrary loop closure the same way we handled a loop closure in Chapter 3. We

can simply identify which transformations belong to the loop, set ρNLCi
= [0, 0, 0]>, and

generate our prior belief about subsequent poses in the reference frame of ρNLCi
. We can
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recover a global map of poses after any iteration by shifting and rotating the optimized

poses by our odometry-based estimate of ρNLCi
. Alternatively, we can recover a global map

after the optimization of transformations in the loop closure has converged by composing

the odometry-like transformations beginning from the global origin ρ0. We summarize this

approach in Algorithm 5 and present the results below.

Algorithm 5: Applying BERT for arbitrary poses in a single loop closure such that
loop closure information only affects the transformations within the loop.

for i = 0 : NLCi − 1 do
1 Use ρi with τ i+1

i in Eq. (4.1) to find ρi+1.
2 Calculate the Jacobians Jρi and Jτ i+1

i
according to Eq. (4.4) and Eq. (4.5).

3 Calculate the joint covariance for p
(
ρi, τ

i+1
i ,ρi+1

)
as given in Eq. (4.8).

end

4 Set a second, separate value for ρLCi
that is [0, 0, 0]> with a covariance matrix of zeros.

Use this value to compose the prior belief about the remaining poses in the following.

for i = NLCi : N− 1 do
5 Use ρi with τ i+1

i in Eq. (4.1) to find ρi+1.
6 Calculate the Jacobians Jρi and Jτ i+1

i
according to Eq. (4.4) and Eq. (4.5).

7 Calculate the joint covariance for p
(
ρi, τ

i+1
i ,ρi+1

)
as given in Eq. (4.8).

end

8 Apply the loop closure measurement, equivalent to an estimate of ρN, in a Kalman

update of p
(
ρN−1, τ

N
N−1,ρN

)
.

for i = N− 1 : −1 : NLCi do
9 Extract the updated marginal distribution p

(
?
ρi+1

)
10 Use Equations (3.9) and (3.10) to find p

(
?
ρi,

?
τ i+1
i ,

?
ρi+1

)
.

end

if Global pose map is desired at the end of an iteration then
11 Rotate each optimized pose from the reference frame of ρLCi

to the global
reference frame using the odometry-estimated value of the heading of ρLCi

.
12 Add the odometry-estimated, globally referenced value of ρLCi

to the rotated,
optimized poses.

end

Figures 4.17 and 4.18 show the global pose results from applying Algorithm 5 and

recovering the globally referenced estimates of the optimized poses at each iteration. The
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Figure 4.18: Overhead View of Optimized Poses Using Algorithm 5. Results for global pose
estimates are almost identical to those given by LM.

Figure 4.19: Global Pose Distance Error Using Algorithm 5. Results for global pose estimates
are almost identical to those given by LM.
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results are practically identical to LM. We feel confident that the small differences seen in

this example, like the differences seen between BERT and g2o in Chapter 3.2.3, are a minor

effect of slightly different linearization points. It is also interesting to note that the global

pose map recovered by Algorithm 5 has no discontinuity following ρLCi
.
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Figure 4.20: Relative Transformation Error Metrics Using Algorithm 5. These results are
peculiar. The relative transformations that are not included in the closed loop are not changed
by optimization, and the transformations in the loop are treated just as in Chapter 3. However,
instead of small and monotonically better estimates of the transformations, we observe a very
slight uptick in the sum squared error after the first iteration. Future work will need to evaluate
the reason for this behavior.

Figure 4.19 shows that BERT again gives almost no change in the relative transfor-

mations as should be expected in this single loop closure scenario. However, BERT actually

leads to an almost imperceptible increase in the sum squared error metric at the first iter-

ation. As stated earlier, the change induced by a single loop closure is too small to draw

any confident comparisons between the various ideas presented in this chapter for extend-

ing BERT. Further work will be required to analyze and differentiate the performance of

variations on BERT with respect to the sum-squared error.
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Taking the approach in Algorithm 5 inherits some nice traits from BERT presented

in Chapter 3. We do not need to do anything special to develop a loop closure hypothesis.

Since all of the poses are defined in the reference frame of ρLCi
, the pose ρLCj

at the end

of the trajectory will itself be the loop closure transformation. Also, in contrast to the

several preceding subsections, we do not need to take any special measures to achieve proper

correlations. However, Algorithm 5 will not be a panacea and may actually have limited

applicability. We discuss these issues further in our Chapter 5.

4.4 Conclusions From the Arbitrary Single Loop Results

In this chapter we have presented some important principles for extending BERT to

arbitrary loop closures and map topologies. We have identified at least two major results.

First, we showed in Chapter 4.2.1 that almost no additional computation is required to

calculate a prior belief about an arbitrary loop closure between two globally referenced

poses. This contrasts with the EKF-SLAM submapping approach in [27]. During and after

a loop closure, the algorithm in [27] requires additional states be added to their submaps

that are analogous to our modular joint distributions p(ρi, τ
i+1
i ,ρi+1).

We derived another important result in Chapter 4.2.2 while examining the structure of

the covariance matrix for the loop closure hypothesis p(ρi, τ
j
i ,ρj). We found in our analysis

that the loop closure transformation is independent of the pose from which it originates. Not

only does this simplify and lend intuition to the covariance of p(ρi, τ
j
i ,ρj), it also motivates

the approach for extending BERT presented in Algorithm 5 of Chapter 4.3.6.

We have also identified an important problem when applying a loop closure to a

network composed of globally referenced poses. Choosing appropriate values to calculate

the Jacobians is critical to the performance of the algorithm. Motivated by another analogy

to EKF-SLAM, we have presented an initial solution to this problem by using the front-end

estimated values needed to compute the Jacobians.

Propagating loop closure information for a single loop closure should readily generalize

to an arbitrary arrangement of multiple loop closures. The origin pose ρi in each loop closure

hypothesis is adjusted only when updated information reaches it through its associated

odometry-like transformation in the modular joint distribution p(ρi, τ
i+1
i ,ρi+1). We can use
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this fact to devise schemes for applying information from several loop closures; we discuss

this further in Chapter 5.
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Chapter 5

Conclusion

In this dissertation we have presented techniques and results that further the devel-

opment of an autonomous air vehicle capable of exploring unknown, indoor environments. A

small indoor flight vehicle requires quick and accurate feedback using a truly 3D exterocep-

tive sensor, but it must process that sensor data and produce timely navigation information

using limited computational resources. Our work contributes to addressing this engineering

tradeoff.

To conclude this dissertation we sketch out several avenues for future work, after

which we provide some summary remarks.

5.1 Future Work

Much work remains in order to implement the system conceived in Chapter 1 and

illustrated by the block diagram in Figure 5.0. Foe example, another student in our lab

is currently pursuing the challenging task of implementing and refining the time-critical

tasks represented by the blocks labeled “Visual Odometry,” “Front-End Estimator,” “Low-

Level Planner,” and “Position Controller.” For the block labeled “Loop Closure” there

are several existing techniques, but the best techniques currently rely on cameras that are

limited to appropriately illuminated environments. The block labeled “High-Level Planner”

also remains to be developed to incorporate the information gained from the background

tasks into the vehicle’s real-time decision making.

Our future work centers on extending our approach to back-end map optimization.

As a completely new paradigm, we see considerable opportunity to further develop BERT.

There are several interesting issues that could be considered. We will organize these as

separate topics, but it should be apparent that they are closely related and often overlap.
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Figure 5.1: Our proposed navigation scheme. The system is based on graph-based SLAM.
The time-critical navigation in the front-end is performed relative to reference frames associated
with saved images of the environment. Refining the map happens when computational resources
permit, and it only feeds directly into the vehicle’s high-level decision making.

We expect all of the following areas of future work will contribute to the final goal of making

BERT an effective tool for arbitrary problems in back-end optimization.

5.1.1 Observability-Constrained Linearization for Globally Referenced Poses

We begin with the ideas most relevant to the end of Chapter 4. We showed that

the linearization points chosen for Jacobians are critical to obtain a good final solution from

the optimization. We demonstrated this in Chapter 4.3.4 by contrasting results between

the case where linearization occurs using true states and the case where linearization is

performed using the most recent state estimates. We can reach essentially the same final

solution as linearization about true states by instead using the first-ever estimated values in

the Jacobians (dubbed FEJ).

However, we may find a performance improvement over FEJ by considering more

sophisticated means of choosing linearization points. Note in Figures 4.10 and 4.11 that the
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global pose estimates in the first iteration of BERT using truth in linearization certainly

outperforms the results for the first iteration of FEJ as shown in Figures 4.14 and 4.15.

We have repeatedly expressed interest in the intermediate results of optimization because

computational limitations (as well as other possible reasons we discuss below) may argue

against running the optimization all the way to convergence for each new loop closure.

Our selection of first-ever estimates for computing Jacobians was motivated by a

suspected connection between BERT and the statistical consistency research done for EKF-

SLAM. We cited the authors of [45] for proposing the FEJ idea based on their observability

analysis of an EKF-SLAM estimator. They showed in the EKF-SLAM case that using first-

ever estimates in the Jacobians kept the observability properties of the linearized system in

harmony with the observability of the true non-linear system. In subsequent work [46] the

same authors propose additional methods for choosing linearization points that maintain the

correct observability properties while improving the accuracy of state estimates. We propose

that future work consider how a similar tack might be taken for BERT while seeking to

maintain the efficiency that makes BERT attractive for our application.

We also make a few additional notes here in connection with this proposed area of

future work. One might look at the results in Chapter 4.3.6 and conclude that we need not

consider choosing good linearization points. Taking the approach in Chapter 4.3.6 does not

require any special care when choosing linearization points and produces reasonable results.

The Chapter 4.3.6 approach benefits from the fact that all pose states involved in a single

loop closure are expressed in the same reference frame as the loop closure. It is therefore

impossible to experience the problem identified in [45], i.e. the loop closure cannot introduce

nonexistent information about the poses as expressed in the global frame. However, there

are certainly scenarios where the Chapter 4.3.6 approach is not applicable, e.g. if we want

to optimize the map using several loop closure transformation estimates simultaneously.

5.1.2 Further Analysis Related to Joint Covariance

One of the interesting differences between BERT and existing algorithms is that

BERT operates on the covariance form of the joint Gaussian. As such, it is natural to

consider concepts like correlation and consistency in the context of the problem. However,
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all we have done to this point is to make qualitative statements about the importance of

correlations and the likely affect they have on the solution’s consistency.

We can think of several questions that ought to be given a more quantitative or

analytical answer. What would be the outcome of Monte Carlo simulations of BERT to

assess its statistical consistency using the average NEES metric defined in [44] and applied

in [43]? How do correlations between global poses evolve as you compose a prior belief about

the trajectory? Do temporally distant but spatially proximate poses become more correlated

as multiple loop closures are applied in the optimization? What happens to the correlation

between global pose estimates when we marginalize their posterior estimates and compose

a new prior belief from the optimized odometry-like transformations? What happens to

the correlations between relative transformations and the poses they connect as we iterate

on a single loop closure estimate or as multiple loop closure estimates are applied in the

optimization? And, how might answers to these questions inform our further development

of the algorithm?

We consider a solid analysis of questions related to covariance and correlation to be

the key to further extending BERT to general back-end optimization problems.

5.1.3 Map Management

Map management is closely related to questions of correlation and joint distributions.

In the SLAM literature, “map management” refers to the process used to limit the growth

of the map over time by choosing map elements to remove. We have proposed in the present

presentation of BERT to keep every reference image in a temporally unbroken sequence from

the global origin to the current pose. Such a proposal may not always be desirable. If two

images of the same location are sufficiently similar, memory and computation resources might

incline us to remove one image and amalgamate the relative transformations associated with

it into a new trajectory.

Pruning reference poses and combining relative transformations to save computer

resources may sound good on the surface, but it may have counter-intuitive or undesirable

consequences. For example, the authors of [55] show that estimating the whole trajectory of

a vehicle allows their approach to back-end optimization to run faster than if they were to
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only keep the most recent pose (where, in either case, the filter also estimates the position

of point features in the environment). For BERT as currently conceived, we use the entire

sequence of independently estimated odometry-like transformations to compose our prior

belief about global poses before applying estimates of the loop closure transformations. It

is unclear at this time what consequences may arise from manipulating the map to remove

some reference poses.

In connection to map management, we also reiterate here a principle that we consider

to be fundamental to autonomous indoor flight. Any effect or action related to map manage-

ment should be kept out of the real-time control of the vehicle. The current reference image

and the globally topological map available in the front-end are sufficient for the immediate

navigational needs of the air vehicle. Nonessential but helpful changes to the map should

only be propagated to the vehicle’s behavior through the mediation of the high and low level

planners (see Figure 1.6).

5.1.4 The Common Mass-Spring Analogy

Since the early papers on graph-based SLAM, authors have referred to an analogy

between the graphical network being optimized and a mass-spring system being relaxed to

its lowest energy state. The authors of [51] were among the first to draw this comparison,

and to our knowledge they are the only ones to have used the analogy to directly inform

the development of their algorithm. Certainly, none of the recent leading papers in back-

end optimization do more than pay lip service to the analogy. Globally referenced poses

are supposed to represent masses, and the relative transformations connecting the poses are

supposed to be like springs. The initially estimated mean and covariance of a transformation

are supposed to represent the spring’s resting length and spring constant, respectively.

We suspect the analogy, as currently conceived, is flawed. Even earlier work in EKF-

SLAM (summarized in [35]) also draws an analogy between a network of springs and the map

of the environment. The authors identify the correlation between map elements as the analog

to a spring constant and assert that observations of the map elements serve to increase those

correlations, i.e. tighten the springs.
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We consider it more intuitively correct to identify correlation between map elements

with the spring constants. In the limit as two global pose, for example, become almost

completely correlated the relative transformation between them becomes almost completely

sure. Our development of BERT has already benefited more than once by drawing on the

EKF-SLAM literature, and we think we can improve the graph-based SLAM analogy to

masses and springs by again referring to the prior EKF-SLAM work.

We also have an ephemeral idea for a new physical analogy to graph-based SLAM.

We picture iterations of BERT for a single loop closure to be like tightening a single screw

while constructing a complicated apparatus. We refer to Figure 4.1 and Figures 4.7 and 4.8

to motivate and illustrate this discussion.

Upon declaring a loop closure we have decided that two global poses should be con-

nected (see the red line in Figure 4.1). After one iteration of BERT using Algorithm 3

we have screwed down the connection between the loop closure poses but they are not yet

tightly connected (see Figures 4.7 and 4.8 to observe the discontinuity between the end of

the trajectory and the other pose in the loop closure). We can continue to tighten the con-

nection by iterating on the process, but we can see in Figure 4.7 that this causes the map

(apparatus) to be skewed away from the desired final configuration.

We expect to make more connections between parts of the map. When one screws

together several connected pieces of a complicated physical object, it is often best to only

screw down each screw to be a little less than “finger tight” until a sufficient number of

screws are in place to assure the parts align properly. We wonder if a similar phenomenon

might occur in our back-end optimization problem if each new loop closure is only applied

once or maybe twice until enough subsequent loop closures have accumulated that we feel it

appropriate to further tighten the initial loop closure.

Any principled analogy between back-end optimization and familiar physical systems

stands to improve our understanding of how to further develop BERT

5.1.5 Identifying False Positive Loop Closures

Incorporating information from loop closure is the key difference between SLAM and

regular odometry. However, the more information one tries to extract from a loop closure the
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more critical it becomes to make sure that loop closure is not a false positive. For example,

in our concept of relative navigation, when a loop closure is identified the vehicle simply

notes there is a relative transformation between two of the reference poses and estimates

its value. Other relative transformation estimates are only affected by the loop closure

estimate during the back-end optimization. If we were only navigating through the globally

topological map generated by the front-end, then a false positive loop closure could have

only a minor impact. However, when trying to find the best globally metric explanation for

all the relative transformations, a false positive loop closure can cause the final solution to

strongly diverge from the truth.

Very little literature in graph-based SLAM addresses the problem of false positive

loop closures. However, we believe the coupling of BERT with relative navigation makes for

a system that should be robust to this problem. Below we will sketch out an approach for

rejecting false positive loop closures with the comment that we believe this to be a fruitful

and straight forward avenue for further applying BERT.

We will assume that the system saves all of the initial estimates of the relative trans-

formations delivered by the front-end. This would be necessary to facilitate an FEJ approach

to linearization if that were used. It would also seem to be prudent in the context of identi-

fying false positive loop closures. If the back-end ever decides its map has become corrupted

it could revert to the initial estimates and redo optimization using only those loop closures

deemed most reliable. We note that using a relative navigation scheme makes this rever-

sion possible because the vehicle would not suffer from a sudden change to the global pose

estimates.

We propose that a new loop closure be initially applied in only one iteration of BERT.

At that point it should be marked as tentative. The vehicle would then continue to navigate,

collecting additional loop closure estimates along the way that are also only applied in one

iteration of BERT. We assume the ratio of false to true loop closure detections is small.

Then recall the squared Mahalanobis distance metric discussed in Chapter 1.2.3:

ε(ρ) =
∑(

h
(
ρi,ρj

)
− τ ji

)>
Σ−1
i,j

(
h
(
ρi,ρj

)
− τ ji

)
, (5.1)
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We propose that the system compute the summands in Equation (5.1) for only the loop

closure transformations using the global poses obtained in the optimization up to the cur-

rent time. We believe that false positive loop closures will present an inordinately large

difference between the original estimate of the loop closure and the corresponding value of

h
(
ρi,ρj

)
. This should happen because the global poses will mostly reflect the influence of

the larger proportion of true loop closures. When a summand from Equation (5.1) exceeds

a predetermined threshold, that loop closure could be thrown out and the network could

be reoptimized using the initial front-end estimates or perhaps some intermediate solution

saved before incorporating the false information.

5.1.6 Developing a Good Termination Metric

Finally, we have not yet addressed how to determine when to cease iterating BERT.

In Chapters 3 and 4 we manually decided when to terminate iterations. We present here

some suggestions for controlling the number of times BERT is applied for each loop closure.

As noted above, it may be appropriate to apply each loop closure only once. Our

assumption of relative navigation in the front-end allows us to patiently develop the globally

metric map. Collecting several loop closures, each applied only once, may produce an accu-

rate map without trying to eek out all of the improvement possible from each loop closure.

There may also be theoretical justification for this based on the optimality of the Kalman

filter used to incorporate the loop closure information.

Some measure of correlation may also provide an appropriate termination metric.

After every iteration of applying the loop closure information the correlation between poses

should increase, especially those poses involved in the loop closure. After several itera-

tions those poses may become sufficiently correlated that we can decide further iteration is

unnecessary.

Perhaps most obvious, some global measure of change in the pose and/or transfor-

mation estimates could also be taken from one iteration to the next. If the latest iteration

makes a small enough change, there should be no reason to continue. This is likely related

to the way correlations in the network evolve from iteration to iteration. We could use

Equation (5.1) for all of the transformations being optimized, letting τ ji and Σi,j represent

136



all of the transformations’ mean and covariance from the previous iteration. We would eval-

uate the term h
(
ρi,ρj

)
using the global poses computed in the current iteration. If ε(ρ) is

sufficiently small we would terminate iteration.

5.2 Concluding Summary

We strongly believe that relative navigation is necessary to develop an autonomous

air vehicle operating in general unknown environments without access to global pose infor-

mation. The relative transformations are the only thing the vehicle can observe. Navigating

along the relative transformations makes the vehicle more robust to the errors in global pose

estimates that are likely to occur in an unstructured setting.

In Chapter 2 we presented analysis and results that demonstrate the effectiveness of

a dynamic state estimator for multirotor helicopters. The estimator leverages an improved

dynamic model for multirotor helicopters to extract more information from the frequent

and easy to process data available from the vehicle’s gyroscopes and accelerometers. We

showed how we can use gyroscopes to propagate our belief about the vehicle’s remaining

dynamic states, and we derived an approach for tuning the estimator to minimize the use

of heuristics and account for the correlation between the state estimates. We also presented

an observability analysis that explains how the improved model leads to better information

about the states estimated by the filter. The results from testing the filter showed its

robustness to noise in the exteroceptive information and its ability to estimate biases that

would otherwise require careful calibration before flight.

We described in Chapter 1 how the estimator developed in Chapter 2 could be used

in a relative navigation scheme. The vehicle periodically saves representative images of the

environment. The vehicle plans its immediate paths and control efforts relative to those saved

images. The sequence of saved images constitutes a locally-metric, globally-topological map

of the world. In other words, without any further action the vehicle is equipped with a map

it can repeatably traverse. However, the map provides a very limited sense of how disparate

map elements are related. Some back-end optimization process must refine the network of

saved poses and relative transformations to produce a globally metric map. This relationship
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between relative navigation and a globally optimized map leads to the contributions in

Chapters 3 and 4.

In Chapter 3 we presented a new approach to back-end optimization that we named

BERT. Whereas existing back-end optimization tools treat the relative transformations as

fixed constraints, BERT optimizes these transformations directly and relies on them as its

abiding representation of the world. We showed that global poses serve as mediating random

variables to help maintain the conditional independence properties inherent in the graph-

based SLAM problem. When iterated, we showed for a simple example that BERT converges

to essentially the same global pose estimates in approximately the same amount of time as

g2o, a state-of-the-art back-end optimization algorithm. However, we showed that g2o takes

several iterations before it improves on the initial relative transformation estimates. In

contrast, we showed that BERT improves the transformation estimates at every iteration.

BERT approaches the back-end optimization process from a direction completely

distinct from algorithms extent in the literature, and it therefore offers some additional

distinct advantages. BERT operates on the covariance form of the Gaussian representing

our belief about the map. Therefore, the joint and marginal covariance of any global pose

or relative transformation in the map is always available without additional computation.

Other algorithms have to extract the marginal covariance of a global pose from the joint

global pose information matrix in order to perform such tasks as rejecting false positive loop

closures. And no other algorithm besides BERT gives attention to changes in the marginal

covariance of a relative transformation as the map evolves over time.

The development in Chapter 3 tested BERT in a special case scenario. In Chapter 4

we extended BERT to a more complex scenario that will serve as a building block for

completely general back-end optimization problems. We showed in Chapter 4 that virtually

no additional computation is needed to compute a prior belief about an arbitrary loop

closure. However, we showed that computing this prior in a naive manner leads to a divergent

solution. We addressed this problem by drawing an analogy with work described in the EKF-

SLAM literature treating the topic of a filter’s statistical consistency. We can modify how

we develop a loop closure distribution by using the first-ever estimates of states needed

to calculate Jacobians; doing this maintains the efficiency of the approach and allows the
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solution to converge. We also showed the efficacy of incorporating loop closure information

by forming the prior estimates of poses in the loop using the reference frame of the pose

from which the loop closure originates.

We consider the future work on every aspect of the system described in Figure 5.0 to

be reasonably well defined and promising. We look forward to witnessing and participating

in its development.
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Appendix A

Nonliner Obsevability Analysis: Theory and Example

Observability is a necessary condition for a filter to converge. Nonlinear observabil-
ity analysis typically follows the approach presented in [84]. A similar and easy to follow
treatment is given in [75, Chapter 7]. We adopt the notation of the latter source with some
modifications for our presentation and refer the reader to [75] for a more detailed presentation
of the theory.

A.1 Theory

Let X denote an open subset of RN. Let S(X) and V (X) respectively designate the
set of all scalar valued smooth functions and the set of all vector fields (i.e. column vectors of
smooth functions) on X. Recall that the Lie derivative of a function κ ∈ S(X) with respect
to any vector field ω ∈ V (X) is defined by the mapping

x 7→ dκ(x) · ω(x) : X → R, (A.1)

where dκ is the gradient of κ with respect to x ∈ X. This Lie derivative is given the notation
Lωκ. Note that the result of the Lie derivative is also in S(X).

Now let x ∈ X represent the state of the nonlinear system. The states evolve in time
according to the equation

ẋ = f(x) +

p∑
j=1

ujgj(x), (A.2)

where the time varying scalars uj represent the inputs driving the state evolution, p is
the number of inputs, and f , gj ∈ V (X). The nonlinear system also provides outputs
yn = hn(x), with n ∈ [1, q].

We say that two states x0,x1 ∈ X are distinguishable if there exists an input func-

tion u
4
= [u1, u2, . . . , up]

> such that the output function h(x0)
4
= [h1(x0), h2(x0), . . . , hq(x0)]>

does not equal h(x1). The system is said to be locally observable at x0 ∈ X if there exists
a neighborhood around x0 in which every other x in the neighborhood is distinguishable
from x0. Finally, we say that the system is locally observable if it is locally observable at
each x0 ∈ X.

For the system to be locally observable at a given point x0 ∈ X, it is sufficient to
show that there exist N linearly independent row vectors in the set{

dhn|x0

}
∪
{

dLzsLzs−1 · · ·Lz1hn
∣∣
x0

}
, (A.3)
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where s ≥ 1, and zj ∈ {f ,g1,g2,g3}. In other words, if one can find enough linearly
independent vectors in the gradients of the measurement equations or in the gradients of
their Lie derivatives evaluated at x0, the system is locally observable at that point.

A.2 Example

We offer a simple example to make the theory more concrete. This example also
relates directly to the analysis in Chapter 2.3. We will use it to explain why the improved
dynamic model for a multi-rotor helicopter allows accelerometer measurements to give in-
formation about attitude, velocity, and gyroscope biases.

First, we define the system in our example. The state vector for the system is x
4
=

[θ, u, βjb ]>, where θ is the pitch angle about the helicopter’s body-fixed jb axis, u is the
linear velocity of the helicopter in its body-fixed ib axis, and βjb is the bias in the gyroscope
measuring angular rate about the body-fixed jb axis. We will assume that all of the vehicle’s
remaining attitude, velocity, and bias states are equal to zero. We will also assume that θ is
small such that sin θ ≈ θ.

Under the assumptions in this example, θ̇ = q, the rotation rate about the body-
fixed jb axis. We define the gyroscope measurement as the only input to the system; i.e.
u1 = θ̇ + βjb . Then we can specify Equation (A.2) for this example as θ̇

u̇

β̇jb

 = f(x) + u1g1(x) =

 −βjb

−gθ − µ
m
u

ζ

+ u1

1
0
0

 , (A.4)

where g is the acceleration due to gravity, µ is an aerodynamic coefficient that transforms
velocity into a drag force, m is the mass of the vehicle, and ζ is a zero mean Gaussian random
variable (i.e. the bias evolves as a random walk). We define the accelerometer measurement
aligned with the body-fixed ib axis to be the only output y1 from the system; it is modeled
as h1 = − µ

m
u.

To show that the system is locally observable at a point x0 ∈ X we need to find three
vectors that are linearly independent at x0. We begin with the gradient of the output:

dh1 =
[
0 − µ

m
0
]
. (A.5)

Next we try a first order Lie derivative. It is obvious that dLg1h1 = [0, 0, 0], so we consider

dLfh1 = d

[0 − µ
m

0
]  −βjb

−gθ − µ
m
u

ζ


=
[
g µ
m

(
µ
m

)2
0
]
. (A.6)
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So far we have two linearly independent row vectors that are both equal to zero in the third
column. To find a third vector, we need a Lie derivative that is a function of βjb so that
the gradient of that Lie derivative may have a nonzero entry in the third column. The only
option is

dLfLfh1 = d

[g µ
m

(
µ
m

)2
0
] −βjb

−gθ − µ
m
u

ζ


=
[
−g
(
µ
m

)2 −
(
µ
m

)3 −g µ
m

]
. (A.7)

Since the three linearly independent vectors in Equations (A.5) - (A.7) do not depend on
the states, the system is locally observable at each x0 ∈ X.

We now draw connections between the observability analysis in this example and
the physical attributes of the system. A Lie derivative can be thought of as the rate of
change of a function constrained by the evolution of the system. The gradient of the Lie
derivative gives a measure of each state’s contribution to that rate of change. We can use
these intuitive notions to gain insight into why the single accelerometer measurement aligned
with the body-fixed ib axis provides information about the linear velocity, pitch angle, and
gyro bias in this example.

Consider the order of the Lie derivatives involved in the preceding analysis. The
zeroth order Lie derivative of h1, i.e. dh1, indicates the velocity is observable. This is
natural; the specific force the accelerometer measures in this system is a scaled component
of linear velocity, as discussed in Chapter 2.1. The first order Lie derivative shows that
the pitch angle is observable. This agrees with the physical reality that a change in pitch
angle directly causes the change in the specific force. Similarly, the change in rotation rate
measured by the biased gyro causes the change in pitch that causes the change in velocity.
In other words, a change in rotation rate has a second order effect on the quantity being
measured by the accelerometer.

In summary, an observability analysis supports the assertion that the model presented
in Chapter 2 is a correct model for the pose and velocity states of a multi-rotor air vehicle.
The full state estimator can be shown to be observable, and the components in the observ-
ability analysis agree with the underlying physics of the system. We present a complete
observability analysis for a multi-rotor air vehicle in Chapter 2
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Appendix B

Details of Manipulating Jointly Gaussian Random Variables

In this appendix we present some derivations treating conditional, marginal, and joint
distributions for Gaussian random vectors. First we present the intermediate steps that allow
the conditional distribution p (x1|x2) to be rewritten in a form that admits easier multiplica-
tion with the marginal distribution p (x2). As a corollary we make some observations about
the relationship that exists between the information matrices for the conditional, marginal,
and joint distributions. We conclude with a derivation showing how to recover the joint
covariance matrix of p (x1,x2) without matrix inversion to allow information updated in the
marginal to be distributed to the remaining variables in the joint.

Most of the motivation for these derivations comes from an apparently unpublished
note written by Paul Newman and John Leonard of MIT in November 2002 titled “A Matrix
Oriented Note on Joint, Marginal, and Conditional Multivariate Gaussian Distributions.”
We correct some small errors in the version we found of that note, and we extend the results
to include the closed form expressions for recovering the optimized joint mean and covariance
without inverting the optimized joint information matrix.

B.1 Rewriting the Conditional Distribution

Let a D-dimensional random vector x of jointly Gaussian variables be partitioned

into two, disjoint sub-vectors such that x =
[
x>1 ,x

>
2

]>
, where x1 is dimension D1 and

x2 is dimension D2. Then the joint distribution p(x), with mean µ and covariance Σ, is
partitioned such that

µ =

[
µ1

µ2

]
,

Σ =

[
Σ11 Σ12

Σ21 Σ22

]
.

Typical textbook derivations (e.g. [66], Chapter 2.3.1) define the conditional distri-
bution p (x1|x2) such that log (p (x1|x2)) is proportional to(

x1 − µ1|2
)>

Σ−1
1|2
(
x1 − µ1|2

)
, (B.1)
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where µ1|2 and Σ1|2 are given by

µ1|2
4
= µ1 + Σ12Σ

−1
22 (x2 − µ2) , (B.2)

Σ1|2
4
= Σ11 −Σ12Σ

−1
22 Σ21. (B.3)

To simplify notation in the sequel we define

K
4
= Σ12Σ

−1
22 . (B.4)

There are a few undesirable aspects of expressing the conditional distribution p (x1|x2)
using (B.1). First, the mean vector µ1|2 has dimension D1. The marginal distribution p (x2)
has a mean µ2 of dimension D2. To recover the joint distribution p (x) = p (x1|x2) p (x2)
would require that we sum exponents with different dimensions. It is also unattractive to
leave the conditional distribution’s functional dependence on x2 buried in the conditional
mean.

Define the following variables:

M
4
=
[
ID1 −K

]
,

g
4
= (x− µ) =

[
x1 − µ1

x2 − µ2

]
,

where ID1 is a D1 x D1 identity matrix. Note that M is size D1 x D. Now observe that

Mg = x1 − µ1 −K (x2 − µ2)

= x1 − µ1|2. (B.5)

Substituting Equation (B.5) into Equation (B.1) gives

(Mg)>Σ−1
1|2 (Mg) = g>M>Σ−1

1|2Mg

= (x− µ)>A (x− µ) , (B.6)

where A
4
= M>Σ−1

1|2M is the information matrix associated with the conditional distribution.
We can expand this expression for A to find that

A =

[
Σ−1

1|2 −Σ−1
1|2K

−K>Σ−1
1|2 K>Σ−1

1|2K

]
. (B.7)

Equation (B.6) gives an expression for the conditional distribution where its functional
dependence on both x1 and x2 is in a more standard form. We can similarly rewrite the
marginal p (x2) such that log (p (x2)) is proportional to

(x− b)>B (x− b) ,
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where the D-dimensional vector b is defined as

b
4
=

[
0
µ2

]
,

and

B
4
=

[
0 0
0 Σ−1

22

]
. (B.8)

B.2 A Short Observation on Information Matrices

A nice piece of intuition arises from writing the conditional and marginal distribu-
tions in the manner just described. The block partitioned information matrix for the joint
distribution can be written [66] as

Σ−1 =

[
Σ−1

1|2 −Σ−1
1|2K

−K>Σ−1
1|2 Σ−1

22 + K>Σ−1
1|2K

]
. (B.9)

Comparing Equations (B.7) and (B.8) to Equation (B.9), it is clear that conditioning x1 on
x2 amounts to removing the marginal information associated with x2; i.e.

A = Σ−1 −B.

Conversely, when we recover a joint distribution, perhaps with an improved marginal belief
about x2, we are simply adding that information back in:

Σ−1 = A + B.

B.3 Deriving the Updated Joint Covariance Without Matrix Inversion

Next we present the steps that lead to a closed form expression for the joint covariance
that has been optimized to include new information from the marginal distribution. Let
p(x̌2), with mean µ̌2 and information matrix Σ̌−1

22 , represent our updated belief about the
marginal states after incorporating information from a measurement. We also define

b̌
4
=

[
0
µ̌2

]
,

B̌
4
=

[
0 0
0 Σ̌−1

22

]
.

To recover the optimized joint distribution p (
?
x), we must perform the multiplication

p(x1|x2)p(x̌2). The product leads to

log (p (
?
x)) ∝ (x− µ)>A(x− µ) + (x− b̌)>B̌(x− b̌)

∝ (x− ?
µ)>

?

Σ−1(x− ?
µ),
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where the optimized joint covariance and mean are

?

Σ
4
=
(
A + B̌

)−1

=

[
Σ−1

1|2 −Σ−1
1|2K

−K>Σ−1
1|2 Σ̌−1

22 + K>Σ−1
1|2K

]−1

, (B.10)

?
µ
4
=

?

Σ
(
Aµ+ B̌b̌

)
. (B.11)

We will use the following identity (Chapter 0.7.3 of [85]) for the inverse of a block
partitioned matrix: [

W X
Y Z

]−1

=

[
∆1 −W−1X∆2

−∆2YW−1 ∆2

]
, (B.12)

where

∆1
4
=
(
W −XZ−1Y

)−1

= W−1 + W−1X∆2YW−1, (B.13)

and

∆2
4
=
(
Z−YW−1X

)−1
. (B.14)

Comparing Equation (B.10) and Equation (B.12) we have

W = Σ−1
1|2,

X = −Σ−1
1|2K,

Y = −K>Σ−1
1|2,

Z = Σ̌−1
22 + K>Σ−1

1|2K. (B.15)

Our goal is to recover the optimized joint covariance matrix
?

Σ without matrix in-

version. We begin by finding the bottom right block
?

Σ22 of the new joint covariance; this
corresponds to the bottom right block ∆2 of Equation (B.12). Making the appropriate
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substitutions into Equation (B.14) leads to

?

Σ22 = ∆2

=
[
Z−

(
−K>Σ−1

1|2

)(
Σ1|2

)(
−Σ−1

1|2K
)]−1

=
[
Z−K>Σ−1

1|2K
]−1

=
[
Σ̌
−1

22 + K>Σ−1
1|2K−K>Σ−1

1|2K
]−1

= Σ̌22. (B.16)

This agrees nicely with intuition. The optimized uncertainty for the variables
?
x2 in the joint

distribution is the same as the uncertainty in the updated marginal distribution.

Now consider the upper left block
?

Σ11; this corresponds to ∆1 in Equation (B.12).
We first recall from Equation (B.3) that W = Σ−1

1|2 can be rewritten such that

W−1 = Σ1|2

= Σ11 −Σ12Σ
−1
22 Σ21

= Σ11 −Σ12Σ
−1
22 Σ22Σ

−1
22 Σ21

= Σ11 −KΣ22K
>. (B.17)

Then observe that

W−1X =
(
Σ1|2

)(
−Σ−1

1|2K
)

= −K

=
(
YW−1

)>
. (B.18)

Using Equations (B.19), (B.17), and (B.18) allows us to simplify Equation (B.13) such that

?

Σ11 = ∆1

= W−1 + W−1X∆2YW−1

= Σ11 −KΣ22K
> + KΣ̌22K

>

= Σ11 −K
(
Σ22 − Σ̌22

)
K>. (B.19)

Equation (B.19) also has an intuitive explanation. A decrease in the uncertainty of the con-
ditioned variables (i.e. x1) is proportional to a decrease in the uncertainty of the conditioning
variables (i.e. x2).

Finally, we want to find the updated cross-covariance terms
?

Σ12 =
(

?

Σ21

)>
. From

Equation (B.12) we get

?

Σ12 = −W−1X∆2
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which from the foregoing derivations can be readily expressed as

= KΣ̌22. (B.20)

To restate it in one place, the joint covariance after incorporating the updated
marginal information is given by

?

Σ =

[
?

Σ11

?

Σ12
?

Σ21

?

Σ22

]

=

[
Σ11 −K

(
Σ22 − Σ̌22

)
K> KΣ̌22

Σ̂22K
> Σ̌22

]
. (B.21)

These terms are all available when the optimized joint information matrix is formed, therefore
the optimized covariance matrix can be calculated directly without inverting the information
matrix. Finding the new joint mean follows similar steps which we omit here in the interest
of brevity. The result is suggested by Equation (B.21):

?
µ =

[
µ1 −K (µ2 − µ̌2)

µ̌2

]
. (B.22)

The content of this appendix is also available as a separate document at [86].
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