
Brigham Young University Brigham Young University

BYU ScholarsArchive BYU ScholarsArchive

Theses and Dissertations

2012-11-29

Filtering Techniques for Pose Estimation with Applications to Filtering Techniques for Pose Estimation with Applications to

Unmanned Air Vehicles Unmanned Air Vehicles

Bryce Benson Ready
Brigham Young University - Provo

Follow this and additional works at: https://scholarsarchive.byu.edu/etd

 Part of the Electrical and Computer Engineering Commons

BYU ScholarsArchive Citation BYU ScholarsArchive Citation
Ready, Bryce Benson, "Filtering Techniques for Pose Estimation with Applications to Unmanned Air
Vehicles" (2012). Theses and Dissertations. 3490.
https://scholarsarchive.byu.edu/etd/3490

This Dissertation is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for
inclusion in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more
information, please contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.

http://home.byu.edu/home/
http://home.byu.edu/home/
https://scholarsarchive.byu.edu/
https://scholarsarchive.byu.edu/etd
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F3490&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=scholarsarchive.byu.edu%2Fetd%2F3490&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/3490?utm_source=scholarsarchive.byu.edu%2Fetd%2F3490&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu,%20ellen_amatangelo@byu.edu

Filtering Techniques for Pose Estimation With Applications to Unmanned Air Vehicles

Bryce Benson Ready

A dissertation submitted to the faculty of
Brigham Young University

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Clark N. Taylor, Chair
Randal W. Beard

Timothy W. McLain
Jeffrey C. Humpherys

Brian D. Jeffs

Department of Electrical and Computer Engineering

Brigham Young University

November 2012

Bryce Benson Ready has placed this work in the public domain.

ABSTRACT

Filtering Techniques for Pose Estimation With Applications to Unmanned Air Vehicles

Bryce Benson Ready
Department of Electrical and Computer Engineering

Doctor of Philosophy

This work presents two novel methods of estimating the state of a dynamic system in a Kalman Filtering
framework. The first is an application specific method for use with systems performing Visual Odometry in a mostly
planar scene. Because a Visual Odometry method inherently provides relative information about the pose of a platform,
we use this system as part of the time update in a Kalman Filtering framework, and develop a novel way to propagate
the uncertainty of the pose through this time update method. Our initial results show that this method is able to reduce
localization error significantly with respect to pure INS time update, limiting drift in our test system to around 30
meters for tens of seconds.

The second key contribution of this work is the Manifold EKF, a generalized version of the Extended Kalman
Filter which is explicitly designed to estimate manifold-valued states. This filter works for a large number of commonly
useful manifolds, and may have applications to other manifolds as well. In our tests, the Manifold EKF demonstrated
significant advantages in terms of consistency when compared to other filtering methods. We feel that these promising
initial results merit further study of the Manifold EKF, related filters, and their properties.

Keywords: Riemannian manifold, Kalman filter, unmanned air vehicles, homography, image registration, direct image
registration, visual odometry

ACKNOWLEDGMENTS

This dissertation is dedicated to my wife Camilla, whose support and encouragement made the writing of it

possible.

I would like to thank Dr. Clark Taylor for his advice and support throughout my graduate work. I could not

have asked for a better mentor or a better friend.

I would like to thank my committee members for their comments and support, particularly Dr. Jeff Humpherys

for introducing me to his framework for understanding the Kalman Filter.

I would also like to thank Dr. Travis Oliphant, for introducing me to a number of beautiful ideas which have

transformed the way I think, technically and otherwise.

Contents

Acknowledgements iii

List of Tables vii

List of Figures viii

1 Introduction 1

I Kalman Filtering with Visual Odometry 3

2 Motivation and Related Work 4

3 Visual Odometry Based Pose Estimator 7
3.1 Visual Odometry System . 9
3.2 VO Covariance Estimation . 13

3.2.1 Propagating Errors In Image 1 Pose to Image 2 . 14
3.2.2 Determining Covariance With Imperfect Registration . 16

4 Results and Analysis 17
4.1 Pose Estimation During GPS dropout . 17
4.2 Computational Complexity . 18

II Kalman Filtering on Riemannian Manifolds 22

5 Motivation and Related Work 23
5.1 Related Work . 24

5.1.1 Nonlinear Filtering . 25
5.1.2 Attitude Estimation . 25
5.1.3 Constraint-based Kalman Estimation of Manifold Quantities 26
5.1.4 Parameterization-based Kalman Estimation of Manifold Quantities 27

5.2 Outline . 28

6 The EKF As A Suboptimal Least Squares Estimator 29
6.1 The Extended Kalman Filter . 29

6.1.1 System and Notation . 29
6.1.2 Cost Function . 31
6.1.3 Jacobian and Hessian of Cost Function . 32
6.1.4 EKF Approximations . 33

6.1.4.1 Gauss-Newton Iteration . 33
6.1.4.2 Prior Initial Value . 34
6.1.4.3 Estimate Only Current State . 35
6.1.4.4 Single Iterative Update . 37

6.2 Analysis of EKF Assumptions . 37

iv

7 Manifolds 39
7.1 Definition of Inner Product Spaces . 40
7.2 Definition of a Manifold . 41
7.3 Distance on Manifolds . 42

7.3.1 Tangent Space to a Manifold Point . 43
7.3.2 Riemannian Manifolds and Manifold Distance . 45
7.3.3 Geodesics and the Exponential and Logarithmic Mappings 45

7.4 Respecting Distance Invariants on Manifolds . 46
7.5 The Principal Chart of a Manifold . 49
7.6 Vector Spaces Are Also Manifolds . 51
7.7 Probability and Mahalanobis Distance on Manifolds . 51

8 Kalman Filtering on Manifolds 53
8.1 Joint Update Case . 54

8.1.1 Cost Function . 54
8.1.2 Computing the Jacobian J (Xk) . 54
8.1.3 Computing the Approximate Hessian Hk (Xk) . 56
8.1.4 Computing the Inverse Hessian Pk (Xk) . 56

8.1.4.1 Computing
{
H −1

k

}
(2,1) . 57

8.1.4.2 Computing Pk . 58
8.1.5 Total Filter Update Equations . 59

8.2 Time-only Update . 60
8.2.1 Computing the Approximate Hessian Hk (Xk) . 61
8.2.2 Computing

{
H −1

k

}
(2,1) . 61

8.2.3 Computing Pk . 62
8.3 Measurement-only Update . 62
8.4 Discussion . 63

9 Manifold EKF Implementation Examples 64
9.1 SO3 Under SO3 . 65

9.1.1 Principal Chart Representation . 65
9.1.2 Group Operations . 66

9.1.2.1 Composition . 66
9.1.2.2 Inversion . 69

9.1.3 Manifold Operations . 69
9.1.3.1 Placement Function . 69
9.1.3.2 Group Action . 69
9.1.3.3 Action on R3 . 69
9.1.3.4 Rescaling . 70

9.1.4 Invariant Metrics . 71
9.2 S2 Under SO3 . 71

9.2.1 Principal Chart Representation . 71
9.2.2 Global to Principal Chart Coordinate Conversions . 72

9.2.2.1 Global to Principal Chart Coordinates . 72
9.2.2.2 Principal Chart to Global Coordinate Conversion 74

9.2.3 Manifold Operations . 75
9.2.3.1 Placement Function . 75
9.2.3.2 Group Action . 77
9.2.3.3 Rescale Operation . 78

9.2.4 Invariant Metrics . 78
9.3 Fb3: State Space for a Flying Vehicle in 3-space . 78

9.3.1 Principal Chart Representation . 79
9.3.2 Group Operations . 79

9.3.2.1 Composition . 79

v

9.3.2.2 Inversion . 81
9.3.3 Manifold Operations . 82

9.3.3.1 Placement Function . 82
9.3.3.2 Group Action . 82
9.3.3.3 Action of Fb3 on R3 . 82
9.3.3.4 Rescaling . 83

9.3.4 Invariant Metrics . 83

10 Manifold EKF Performance 84
10.1 Consistency of Measurement Update . 84

10.1.1 Metrics . 85
10.1.2 Results and Discussion . 86

10.2 Camera-In-Hand Performance Comparison . 88
10.2.1 Simulation Methodology . 90

10.2.1.1 True System Dynamics . 90
10.2.1.2 Estimator System Dynamics . 90
10.2.1.3 System Measurements . 91

10.2.2 Results and Discussion . 91

III Conclusion 94

11 Conclusions and Future Work 95
11.1 Conclusions . 95
11.2 Future Work . 95

11.2.1 Application to a Broader Array of Manifolds . 95
11.2.2 Removing Effect of Coordinate Singularity on Filter Performance 95
11.2.3 Optimal Cost Function of the Manifold EKF . 96

Bibliography 97

IV Appendices 103

A Useful Matrix Lemmata 104
A.1 Inversion of an “Augmented” Matrix . 104
A.2 Woodbury Matrix Identity . 107
A.3 Inverse Swapping . 107

vi

List of Tables

10.1 Aggregate consistency data for each of the four filters used. 88

vii

List of Figures

3.0.1 Layout of our GPS/INS/VO pose estimation system . 7
3.1.1 Our method for computing the pose of the MAV when Image 2 was captured assuming Image 1’s

pose is perfectly known. 11
3.1.2 An example iteration of the image registration process using our Gauss-Newton registration method.

In sub-figure (a), a difference image is created to evaluate how accurate the current pose estimate is.
In sub figure (b), the new pose (New_est) is computed using the difference image and the Jacobian
images. 12

3.1.3 Residual image differences produced by our direct registration method (left image) and a standard
feature-based registration method (right image). Feature-based registration was performed on a
640× 480 video sequence, tracking Harris corners between frames using the OpenCVTMtoolbox,
using RANSAC to estimate a homography matrix relating each frame pair, and warping the first
frame to align it with the second. Direct registration was performed using the method indicated in
this section on a 4× downsampled version of the same video. Direct registration is able to consis-
tently reduce the minimum mean squared pixel error compared to feature based registration. 13

4.0.1 The MAV platform used in this work. The MAV is a flying wing aircraft constructed of EPP foam
with a 6 foot wingspan, controlled by a KestrelTMautopilot. 18

4.1.1 (a,b) gpsins location estimates (blue +) and voonly location estimates (green �) in a circular
flight path.
(c) Euclidean distance between gpsins and voonly location estimates at each point in time. Note
rapid error growth. 19

4.1.2 (a,b) gpsins location estimates (blue +) and voins location estimates (green �) in a circular
flight path.
(c) Euclidean distance between gpsins and voins location estimates at each point in time. Notice
the slow growth of error as compared to Figure 4.1.1(c). 20

7.3.1 Manifold distance is not chart distance: the standard distance metric based on vector subtraction
and vector norm is not in general invariant under many desired transformations on a manifold. The
distance along the manifold surface between points a1 and a2 is equal to the distance between b1
and b2: this result is physically meaningful in many common problems. This is the case because
b1 = f (a1) and b2 = f (a2), where f is a 3D rotation about the sphere center: “along the surface”
distance on S2 is invariant to such rotations. However, if we use vector subtraction of the coordinates
of those points (i.e. dist2 (b1,b2) = ‖b1−b2‖2) in the commonly used latitude, longitude coordinate
system for S2, the distance on the chart is changed considerably by the operation f 42

7.3.2 An illustration of the tangent space to a manifold point. Any curve γ (t) (black line) on the manifold
passing through a point can be differentiated with respect to time, and the resulting vector dγ(t)

dt (red)
resides in the tangent space TxM (blue grid). 43

9.2.1 Figure illustrating the choice of principal chart coordinates on S2. Point x0, the origin, has global
coordinates

[
1 0 0

]
. The principal chart vector pointing to any other point x1 has coordinates[

a b
]
, such that a vector

[
0 a b

]
(cyan) “points in the direction of” x1. The vector r is the

rotation which takes the vector
[

1 0 0
]

to the global coordinates of the point x1. 76

viii

10.1.1 Examples of non-isotropic covariance matrices used in this experiment. Each sub-figure shows the
covariance of the pre-update (larger ellipse) and post-update (smaller ellipse) state estimates (left
image), and the covariance of the measurement (right image). 87

10.1.2 Average distance over 100 trials between truth and final filter estimate, for four filters: simpleEKF
(magenta squares), simpleUKF (orange triangles, facing down), constrainedUKF (red triangles,
facing left), and manifoldEKF (green stars). These results are for non-isotropic initial state and
measurement covariances, where the larger eigenvector is 10× the smaller in all cases. Each point
on the x-axis represents a different rotation of the state and measurement covariances, in five degree
increments.

Sub-figures 10.1.2a and 10.1.2b give absolute error in radians, while sub-figures 10.1.2c and
10.1.2d give SNEES. Sub-figures 10.1.2b and 10.1.2d are identical to 10.1.2a and 10.1.2c respec-
tively, except that they are zoomed in the x direction, in order to more clearly show typical values.

SNEES is defined such that a perfectly consistent filter would always give a value of 1.0 on
these plots, while a conservative filter would have values <1, and any value greater than 1 indicates
filter inconsistency. Note that, while the Manifold EKF is not always consistent, it is consistent in
significantly more cases than all the other filters, and tends to have lower SNEES values even when
it is inconsistent. 89

10.2.1 Absolute error by state component, for the for the modified “camera-in-hand” problem.. 92
10.2.2 Scaled NEES for the modified “camera-in-hand” problem. 92

ix

Chapter 1

Introduction

Unmanned air vehicles have become increasingly popular in recent years, both commercially and in academic

and military applications. These robotic platforms are inexpensive and lightweight, and have become increasingly

capable in terms of sensor payloads and autonomy.

If any robotic platform is to interact with its environment, it must first have an accurate internal model of

some sort that describes that environment and its place within it. Hence, estimation of a robotic platform’s state has

been the topic of a great deal of research for many years. Recent increases in the capability and ubiquity of robotics

platforms like UAVs has brought some of the challenges of the state estimation problem to the forefront. In particular,

most systems of interest have nonlinear system equations which must be solved “online”, ideally in realtime, rather

than using offline or batch-processing techniques. Many robotics applications, then, require a solution to the nonlinear

filtering problem.

The nonlinear filtering problem has the goal of estimating the state of a dynamic system whose dynamic

and measurement equations are nonlinear functions. It is one of the “hard problems” in engineering[1], one in which

engineering skill, not rote copying of some optimal form, will be necessary for many years to come. This fact is

an outgrowth of the inherent complexity of nonlinear functions: the probability density function which accurately

describes out knowledge of the state of a system given some set of constraints can be arbitrarily complex. There are

many ways to simplify the problem, all of them introducing some degree of sub-optimality.

There are many ways to perform nonlinear state estimation that are applicable to robotic vehicles, but the

Kalman family of filters, from the provably optimal (for linear systems) Kalman Filter itself, to the wide range of

nonlinear Kalman-style filters, has certainly found the broadest scope of application. The Extended Kalman Filter is

without question the “workhorse” estimator of industry, and is the starting point for much academic research. While it

can and has been improved upon, the EKF is, as we shall discuss in Chapter 6, based on a very important and flexible

method of solving inverse problems. This, perhaps, explains why it works so well and is so tolerant of approximations.

This work makes two major contributions. Each of these are novel methods of performing state estimation

with Kalman-style filters.

The first contribution of this work is discussed in Part I, Chapters 3 through 4. It is related to the use of an

optical camera, an increasingly common and useful sensor found in robotic applications. There are two main ways in

which EO cameras are used for pose estimation: they can perform some sort of place recognition, providing absolute

estimates of portions of the pose, or they can be used to perform what is called Visual Odometry (VO), the process

of estimating relative pose displacements from a series of images, thus yielding constraints on vehicle motion that

1

can assist the estimation process. We describe a Visual Odometry system which is based on direct image registration.

Since visual odometry inherently yields relative pose information, we use the VO system as the “time update” portion

of the extended Kalman filtering framework. The fact that the visual odometry process is not differentiable presents a

difficulty with this method, as it makes it difficult to propagate covariance estimates through this process. We present

a novel way of performing this covariance propagation that takes advantage of the structure of the VO system, and

show promising preliminary results of its use on a real small UAV platform.

The second, and much more general, contribution of this work is discussed in Part II, Chapters 6 through 10.

This contribution is a new Kalman-family filter which we term the Manifold EKF. It is essentially a re-derivation of

the Extended Kalman Filter, which extends its applicability to a broad and useful class of Riemannian Manifolds. We

begin by highlighting a derivation of the EKF due to [2, 3], which provides a useful way to view the EKF and gives

insights into its performance. The Manifold EKF is derived using this same framework, but with error terms defined

in terms of operations that are generalized to manifolds. We present several examples of the implementation of these

manifold operations for key manifolds of interest, give an analysis of the consistency of this new filter, and provide

simulated results for a sample application.

2

Part I

Kalman Filtering with Visual Odometry

3

Chapter 2

Motivation and Related Work

Many of the advantages associated with fixed-wing MAVs stem from their ability to operate autonomously

at two levels. On a basic level, MAVs must be able to autonomously perform low-level flight tasks such as taking

off, flying straight and level, climbing, descending, banking, etc. On a higher level, MAVs must be able to combine

these maneuvers to fly to specific locations, follow specific trajectories, and otherwise navigate autonomously. To

perform these tasks, MAVs must be able to estimate their own pose, which consists of location (tx, ty, tz) and attitude,

which is commonly expressed using Euler angles for yaw(ψ), pitch(θ), and roll(φ). We can divide these six pose

parameters into two sets of three parameters. The first group, which we will refer to as aviation parameters (pitch,

roll, and altitude), are required to perform basic autonomous maneuvers, while the second, which we term navigation

parameters (x, y, yaw), are additionally required for autonomous navigation. Current MAV systems [4, 5, 6, 7] carry a

simple Inertial Navigation System (INS) consisting of accelerometers, rate gyros, and pressure sensors. These sensors

can provide only relative information about navigation parameters1; thus INS based estimates of navigation parameters

will drift without bound over time. Because MAVs use low-cost, lightweight MEMS-based inertial sensors, errors in

navigation parameter estimates from the INS alone typically increase extremely rapidly, often becoming unacceptably

large within a few seconds. For this reason, current MAV systems rely on the Global Positioning System (GPS) to

provide estimates of the navigation parameters. While GPS does provide bounded-error estimates of geo-location

(x,y) and heading, it makes the operation of the MAV dependent on external infrastructure–the network of orbiting

GPS satellites. Signals from these satellites can be blocked, both by environmental obstacles (eg. urban terrain) and

by deliberate or unintentional jamming [8]. Much effort has therefore been directed at finding ways to reduce the

dependence of MAV platforms on GPS.

Vision-based pose estimation techniques are a promising way to estimate pose in GPS-denied environments,

and thus reduce dependence on GPS. Vision sensors are typically already available on MAV platforms, and provide

a rich source of information about the environment. There are two main methods of performing vision-based pose

estimation reported in the literature. Visual Simultaneous Localization And Mapping, or Visual SLAM (e.g. [9, 10,

11, 12, 13]) is perhaps the most elegant and complete method. SLAM algorithms in general estimate both robot state

and the location of landmarks in the environment simultaneously. If perfected, a solution to the Visual SLAM problem

would allow a robot to function in a truly autonomous manner, using vision and other sensors to navigate an unfamiliar

environment as a human being can, without relying on fiducial markings, GPS signals, or other external infrastructure.

However, there are still a number of problems with Visual SLAM which make its practical application challenging.
1As we shall see, INS sensors can provide absolute measurements of aviation parameters. Exploitation of this fact is a critical component of this

paper.

4

SLAM algorithms in general have non-constant computation time as more and more landmarks are observed, and

managing and reducing this computational load is still a focus of ongoing research. Current Visual SLAM systems

can use either a video camera alone (e.g. [13]) or a video camera with low-quality MEMS-based inertial sensors (e.g.

[12]), and can provide impressive navigational accuracy and stability. Unfortunately, they rely on the assumption that

the environment is bounded and relatively small, so that an excessive and growing collection of landmarks does not

slow down the processor. This assumption is not valid for MAV platforms, which must navigate in extremely large

unexplored environments. Furthermore, in navigation applications, the landmark locations are typically not of interest,

meaning that much of this computational burden, while providing greater accuracy, does not contribute directly to the

desired result.

In this work, our proposed scenario is a system in which GPS is typically available, but may drop out for an

intermediate length of time (several tens of seconds). Our goal, then, is not to produce estimates that do not accumulate

error, but estimates that accumulate error slowly enough that they are still accurate within this time window. Visual

Odometry (VO) methods are a viable means of performing vision-based pose estimation under this scenario. Named

in analogy to wheeled-robot odometry, VO methods use computer vision algorithms to estimate the relative orientation

between image frames. With any VO method, then, the key goal is to somehow decrease the amount of error introduced

at each step, thereby slowing the growth of error sufficiently that pose estimates are valid within a desired time window.

We employ two strategies to improve the error characteristics of VO. First, we utilize a novel VO system based

upon prior work by Dellaert et al. [14, 15]. Our VO system uses a direct image registration algorithm, estimating a

single parametric transformation mapping pixels in an image to ground locations. This is in contrast to more standard

feature-based image registration methods, which track a series of feature points and use their motion to infer the relative

pose between frames. Direct registration is generally able to produce more accurate results than such feature-based

methods; this increased registration accuracy helps to slow the accumulation of pose error.

The second method we use to slow VO error growth is to fuse VO measurements with INS data in an EKF

framework. In the literature, a technique known as vision-assisted inertial navigation [16, 17, 18, 19, 20, 21, references

therein] is the usual method of doing this. Current techniques use the INS to provide relative measurements of the

pose parameters, and these relative measurements are integrated in the EKF time update step to provide absolute pose.

The relative pose measurements provided by VO are used in the EKF measurement update step to correct drift in this

INS pose estimate. SLAM methods which incorporate inertial sensors similarly use inertial measurements in the time

update (e.g. [9, 12]). In this work, we fuse INS and vision in a different way: rather than performing vision-assisted

inertial navigation, we propose to perform inertially-aided visual odometry. The distinction is somewhat subtle, but

nevertheless significant. One key contribution of this work is that we interpret INS measurements in a different way

than the standard vision-aided inertial navigation literature, allowing us to make use of a low-quality MEMS-based

INS without inducing INS integration error. This is in contrast to most vision-assisted inertial navigation literature,

where the assumption is usually made that a relatively high fidelity INS system is available, or else that another sensor

can slow or stop the drift induced by a low quality INS. Another interpretation is possible, however: the three-axis

accelerometers in the INS measure the acceleration of the aircraft in each dimension, which for a fixed wing aircraft,

5

will primarily measure the direction of the gravity vector. This information allows us to directly compute the pitch

and roll of the aircraft [7]. INS data has been interpreted in this way in the computer vision community to estimate the

pose of a camera [22, 23] as well as to perform such tasks as scene reconstruction and camera calibration [24, 25, 26].

Combining these pitch and roll estimates with the altitude estimate obtained from the INS pressure sensors, we have

a complete estimate of the aviation pose parameters of the aircraft. Many current MAV systems interpret INS data in

this way [4, 5, 6]: however, to our knowledge ours is the first work to apply this information to MAVs in a VO setting.

Because we interpret the INS data as providing absolute measurements of the aviation pose parameters of the aircraft,

we use INS data in the EKF measurement update, rather than as a time update. Since VO measures the relative pose

between frames, we use VO measurements in the time-update step. Thus, VO is the main means of estimating aircraft

pose, and its accuracy is improved by incorporating measurements of the aviation parameters from the INS. Use of

VO as the time-update step in an EKF framework requires that we be able to propagate both the MAV pose and its

covariance matrix. The standard EKF method for doing this (linearizing the time update function) will not work with

our proposed VO system, as it is neither differentiable nor available in closed form. The second major contribution of

this paper is thus a novel means of estimating uncertainty associated with our VO estimates.

In the remainder of Part I, we first give a general overview of our pose estimation system (Section 3), and then

describe our VO method and the underlying direct image registration method (Section 3.1), giving further background

on existing VO methods. We then develop our proposed method of uncertainty propagation through the VO system

(Section 3.2). Finally, we will present MAV flight results obtained using our method (Section 4).

6

Chapter 3

Visual Odometry Based Pose Estimator

GPS / IMU pose estimation unit

Visual Odometry Unit

(VO unit)

Kalman-filter

based fusion

VO/IMU coupled

pose estimate

True Pose Values +

N(0,ΣIMU)

Figure 3.0.1: Layout of our GPS/INS/VO pose estimation system

The operation of our pose estimation framework is summarized in Figure 3.0.1. The goal of this system is to

estimate the pose of the aircraft, which we represent with a 6-vector χ:

χ =
[

tx ty tz ψ θ φ

]T
, (3.0.1)

composed of a 3-D location state (tx, ty, tz) and three Euler angles(ψ,θ ,φ) representing attitude (yaw1, pitch, and roll).

Video frames Yn and Yn−1 from an MAV camera are fed into the VO system, along with current pose estimates. The

VO system then produces an estimated pose χV
n for each new video frame Yn, using the image data Yn−1 and estimated

pose χ̂n−1 of the previous frame.

Independently, information from other on-board sensors are fed into the GPS/INS pose estimation system,

which separately estimates a pose χG
n of the aircraft at the time each frame was taken. If GPS is unavailable, this

estimate includes only the aviation parameters, which can be obtained from the INS alone. In our system, altitude is

computed directly from the autopilot pressure sensors, while pitch and roll are computed by combining accelerometer

1Yaw is typically defined as the compass direction in which the nose of the aircraft is pointing, while heading is the direction in which the aircraft
is moving. If the aircraft is flying with a crab angle (i.e. the nose is not pointing exactly in the direction of flight) due to wind conditions, these two
quantities will not be identical. Pose estimates obtained using VO provide yaw information, while heading estimates can be provided directly by
GPS. Heading can also be estimated by using the difference in location estimates.

7

and rate gyro measurements in a complimentary filter. Pitch/roll states are propagated forward in time using rate

measurements from the gyroscopes. Accelerometer measurements are used to give bounded error estimates of pitch

and roll, computed according to the following formula:

[
Ax Ay Az

]
≡ accelerometer readings, (3.0.2)

φacc = tan−1
(

Ay

−Az

)
, (3.0.3)

θacc = tan−1
(

Ax

−Ay sin(φ)−Az cos(φ)

)
. (3.0.4)

The weighted sum of the accelerometer based measurements and predicted states become the new pitch/roll estimates.

If the aircraft is turning, the accelerometers will measure not only the lift force opposing gravity, but also extra

acceleration from the d’Alembert force due to centripetal acceleration. To help account for this fact, the relative

weight of the accelerometer-based measurements is reduced as the turn rate of the MAV increases, causing the system

to rely more heavily on the propagated values. In our experience, this method produces sufficiently accurate estimates

to enable MAV navigation (see [7]).

Because these INS based pose measurements have bounded error as we have discussed, we model this esti-

mate as the true pose of the aircraft corrupted with zero-mean Gaussian noise (ν):

GPS unavailable: χ
G
n =

[
tz θ φ

]T
+ν . (3.0.5)

We desire to fuse these partial measurements of aircraft pose with the pose information from the VO system using

an EKF framework. The standard EKF framework estimates the state of a system given knowledge of the system

dynamics and measurements that are functions of the state:

χn = f(χn−1, un)+η , (3.0.6)

yn = h(χn)+ν (3.0.7)

where η and ν are zero-mean, Gaussian random vectors with covariance matrices Q and R respectively. At each time

step, we estimate the new state of the system and its covariance from the previous state:

χ̂
−
n = f(χ̂n−1, un) , (3.0.8)

P̂−n = FP̂n−1FT +Q (3.0.9)

where the matrix F is the Jacobian of the system dynamics function:

F =
∂ f
∂ χ

∣∣∣∣
χ=χ̂n−1,u=un

. (3.0.10)

8

When a measurement becomes available, we incorporate the information it provides about the state, perform-

ing what is known as a measurement update step:

χ̂n = χ̂
−
n +K

(
yn−h

(
χ̂
−
n
))

, (3.0.11)

P̂n = (I−KH) P̂−n (3.0.12)

where H is the Jacobian of the measurement function (analogous to F):

H =
∂h
∂ χ

∣∣∣∣
χ=χ̂−

. (3.0.13)

As we have discussed, we use the aviation parameters available from the INS as our measurement function.

This means that our h function is in fact just a linear operator, and we can find H directly:

y =


θ

φ

tz

 = h(χ)

=


0 0 0 0 1 0

0 0 0 0 0 1

0 0 1 0 0 0


︸ ︷︷ ︸

H

χ. (3.0.14)

By contrast, the time update in our EKF will come from VO, meaning that our f function represents the VO system as

follows:

χ
−
n = f(χn−1)

= vo_system(χn−1,Yn−1,Yn) . (3.0.15)

In the next section, we will describe the operation of our VO pose estimation system, which is represented by

the function f(·) . We will then proceed in section 3.2 to approximate F , enabling us to implement equation (3.0.9).

3.1 Visual Odometry System

Several VO frameworks are delineated in the literature. Most commonly used existing methods function by

detecting and tracking feature points between frames in a video sequence, and using the motion of these points to

estimate the relative pose between frames. This is done by using feature point motion to estimate either the essential

matrix [27, 28, 29, 30, 31] or a homography [32, 33] relating pairs or sets of frames, and then decomposing these

matrices [34, 35] to find the relative pose.

9

All VO methods share a common implementation challenge that must be addressed to allow absolute pose

to be estimated. This problem is that of determining the scale factor of the estimated relative pose. Because a video

camera is a bearing-only sensor and provides no depth information, it is impossible to distinguish whether a pair of

frames are widely separated and observing large, distant objects or closely spaced and observing small, nearby objects.

If care is not taken to ensure that relative pose estimates are expressed in the same scale then gross errors in absolute

pose estimates can be accumulated very rapidly. This problem is typically addressed in the literature by triangulating

the 3-D location of feature points common between two frame pairs.

In this work, we propose a novel VO strategy, based upon prior work by Dellaert et al. [14, 15]. Rather than

infer the inter-frame relative pose by using the motion of extracted feature locations, we directly compute the absolute

pose of the second frame from the absolute pose of the first frame by means of an iterative image registration approach.

This approach works by projecting the first observed image onto the terrain and rendering a view of this projected data

from the currently estimated pose of the second frame. The estimated pose of the second frame is iteratively adjusted

by means of image Jacobians to make the second frame and the re-projected first frame match as closely as possible.

Thus, this method directly estimates a single parametric transform using the captured image as a whole, rather than

the estimated motion of selected feature points. This fact typically allows direct image registration methods to provide

greater accuracy in image registration. Furthermore, since the absolute pose of each frame is estimated, the scale factor

problem is handled implicitly.

Direct image registration such as we are performing depends upon three main assumptions: (1) that the scene

being imaged is planar, (2) that all image motion is due to camera motion, meaning that motion due to independently

moving objects is negligible, (3) there is sufficient texture in the imaged scene to allow the iterative descent registration

algorithm to avoid converging to a local minimum.

While the planarity assumption is not appropriate for ground-based robots, it is generally a reasonable as-

sumption in other applications. Unmanned Underwater Vehicle applications [36, 37, 38] commonly make this as-

sumption. As MAVs are typically relatively distant from the terrain they observe, this assumption is often workable

in many fixed-wing MAV situations. In addition, we have found that our direct registration algorithm is robust to

small amounts of non-planarities (e.g. trees, small structures) in the images. This is a reasonable scenario for many

applications; low flights in complicated (e.g. urban) terrain will violate this assumption, however.

The assumption that objects do not move independently is not problematic in most environments. At typical

MAV altitudes, any moving objects will occupy only a tiny fraction of a captured image, and thus will have little effect

on image registration. This assumption will fail in some cases (i.e. viewing a highway with heavy, fast-moving traffic)

but will be a good assumption in many others.

Sufficient image texture is also usually a good assumption: most UAV flights are daytime flights, and most

real flight environments contain significant visual texture. Certain flight environments could of course cause the direct

image registration to not converge. In general, however, our practical experience suggests that direct registration is

more robust than feature-based methods in low-texture video.

10

Project Y1 onto ground plane

using .

Render Y2
r from ground image

using estimated pose

Compute difference between Y2

and Y2
r

Refine estimated pose to

minimize difference image

Difference image

sufficiently small?

Return

estimated

pose ()

Yes

No

1
χ̂

V

2
χ

Figure 3.1.1: Our method for computing the pose of the MAV when Image 2 was captured assuming Image 1’s pose is
perfectly known.

Our VO algorithm for estimating the current pose of the MAV is illustrated in Figure 3.1.1. To estimate the

pose of video frame Y2 (or rather, the pose of the aircraft when this frame was captured), we assume that a previous

frame Y1 is available with associated pose information χ̂1 for that frame. We also assume that we have a coarse

estimate of the pose from which Y2 was captured
(
χE

2
)
. This coarse estimate could be obtained from the current

GPS/INS estimate χG
2 , the pose of the previous frame χ̂1, or the result of a quick feature-based motion estimation

algorithm. When registering sequential video frames (30 fps frame rate), simply using the pose of the previous frame

as the initial pose estimate
(
i.e. let χE

2 = χ̂1
)

was found to produce the most rapid convergence, as the aircraft typically

did not move far enough in one frame interval to make this a bad initial guess. The goal of our algorithm is to compute

a more refined estimate χV
2 of the MAV pose when frame Y2 was captured.

The first step shown in Figure 3.1.1 is to project Y1 onto a ground image. The projection process assumes

that the terrain over which the MAV is flying is planar and horizontal and uses the estimated pose χ̂1 with respect

to this ground plane to produce an ortho-rectified image of the region of ground observed by Y1. This projection is

computed by perspective warping: i.e. the ground image is a perspectively warped version of the captured image.

Rather than interpolating between pixel values, a gaussian point spread function is assumed to act on each pixel value,

and the perspective projection of this point spread function determines the amount by which each pixel in Y1 affects

each ground image pixel. Further explanation and details of this warping process are given by Dellaert et al. [14, 15].

Once we have inferred the appearance of the ground plane using image Y1, we desire to iteratively refine

our initial pose estimate for Y2. At the kth iteration, we produce a rendered image Y r
2 (k) of this ground image using

the current pose estimate χV
2 (k) for image Y2. This rendering process is simply the inverse of the projection process,

and is performed using a projectively distorted gaussian point spread function to determine the amount by which each

ground pixel affects a given pixel in Y r
2 (k). The rendered image Y r

2 (k) represents the visual information in Y1 as it

would appear in Y2, assuming that the poses χ̂1 and χV
2 (k) used for projection and rendering were accurate. The

difference or residual image (Y r
2 (k)−Y2) provides information about the error in the current pose estimate χV

2 (k).

To determine an update ∆χV
2 (k) to the current pose estimate, we use a variant of the popular Lucas-Kanade image

11

Captured Image Rendered Image Difference Image

- =

(a)

∂Y/∂tx ∂Y/∂ty ∂Y/∂tz

∂Y/∂θ ∂Y/∂ ∂Y/∂ψ

Difference Image
≈ ∆tx · ∆ty · ∆tz ·

∆ θ · ∆ · ∆ψ ·

+

+

+

+ +

New_est = Old_est+

∆(tx,ty,tz,θ, ,ψ)φ

φφ

(b)
Figure 3.1.2: An example iteration of the image registration process using our Gauss-Newton registration method. In sub-
figure (a), a difference image is created to evaluate how accurate the current pose estimate is. In sub figure (b), the new pose
(New_est) is computed using the difference image and the Jacobian images.

registration method [39], based on Gauss-Newton gradient descent. We attempt to choose ∆χV
2 (k) to minimize the

pixel for pixel squared magnitude of the residual image:

J = ∑
p∈P

(
Y2,p−Y r

2,p
)2 (3.1.1)

where P is the set of all pixels in image Y2, Y r
2,p are the pixels in the rendered image and Y2,p are the pixels in Image

2. A Gauss-Newton iteration essentially consists of computing partial derivatives of the residual image with respect

to all of the pose parameters. Each of these partial derivative images approximates the change in the residual image

caused by a differential change in the associated pose parameter. The goal at each iteration is to express the residual

image as a weighted sum of the different Jacobian images, after which the pose is changed according to these weights.

A graphical example of a single iteration is shown in Figure 3.1.2.

As discussed in [14, 15], the partial derivatives or “Jacobian Images” of the residual can be approximated

using the chain rule as follows:

∂Y r
2

∂�︸︷︷︸
Jacobian Image

=
∂Y r

2
∂x︸︷︷︸
∇x

∂x
∂�

+
∂Y r

2
∂y︸︷︷︸
∇y

∂y
∂�

. (3.1.2)

12

Figure 3.1.3: Residual image differences produced by our direct registration method (left image) and a standard feature-based
registration method (right image). Feature-based registration was performed on a 640×480 video sequence, tracking Harris
corners between frames using the OpenCVTMtoolbox, using RANSAC to estimate a homography matrix relating each frame
pair, and warping the first frame to align it with the second. Direct registration was performed using the method indicated in
this section on a 4× downsampled version of the same video. Direct registration is able to consistently reduce the minimum
mean squared pixel error compared to feature based registration.

Each of the terms in this equation represents an “image” or matrix of values, one for each pixel location. The symbol

� represents one of the six pose parameters [tx, ty,tz,ψ,θ ,φ], and the terms labeled ∇x and ∇y are gradients of the

rendered image, i.e. partial derivatives of the luminance function in the vertical and horizontal image directions. The
∂y
∂� and ∂x

∂� terms represent the differential location change of the image of the preimage of each image point. That is,

each pixel location (x,y) is imaging a particular world point P, and a differential change in any pose parameter (�) will

cause a differential change in the (x,y) image coordinates of the projection of P. The ∂y
∂� and ∂x

∂� terms thus represent

the way in which a feature observed at any point in the image will appear to move due to a differential change in the

pose parameter �. After multiple iterations like the one shown in Figure 3.1.2, the estimated change (∆χV
2 (k)) in the

pose estimate will become very small. At this point, the current pose estimate χV
2 (k) becomes the final χV

2 returned

from our VO algorithm.

Figure 3.1.3 demonstrates the potential improvement in registration given by direct registration methods

versus more standard feature-based image registration. Since more accurate pixel registration implies more accurate

relative pose estimates, improved accuracy can lead to slower growth in VO pose estimates, leading to more accurate

overall pose estimates.

3.2 VO Covariance Estimation

As discussed in Section 3, to fuse INS and VO measurements in an EKF framework, we need to be able to

find the matrix

F =
∂ f
∂ χ

∣∣∣∣
χ=χ̂n−1

(3.2.1)

that linearly approximates the state transition function. The state transition function f in our EKF is the VO system

described in the previous section, which produces the current aircraft pose χV
2 given the estimated previous pose χ̂1.

Unfortunately, this f function is not differentiable, and is expressed only as an iterative algorithm, not in mathematical

closed form. In this section, we will make some simplifying assumptions that allow us to approximate the Jacobian F

13

of this algorithm. This will allow us to propagate covariance in pose χ1to covariance on pose χV
2 , enabling the fusion

of VO and INS measurements.

The final χV
2 produced by our VO system is a function of both the pose χ̂1 and the two images Y1 and Y2.

The interplay of these two images in the iterative image registration algorithm leads to a non-differentiable f. Stated

differently, changes in χV
2 can be due either to changes in the quality of image registration between Y1 and Y2 or due to

changes in the original pose χ̂1: this fact makes it impossible to differentiate f directly. Even if we could parametrize

and precisely describe “the quality of image registration” in a meaningful way, differentiating f with respect to this

parametrization would still involve differentiation of an iterative procedure. To rectify this situation, we will first

assume in Section 3.2.1 that the image registration process is able to perfectly register Y1 with Y2: this is the same

as assuming that all our uncertainty about the final pose χV
2 is due to propagated uncertainty in χ̂1. We will find the

desired matrix F using this assumption. We will then discuss error due to mis-registration in Section 3.2.2.

3.2.1 Propagating Errors In Image 1 Pose to Image 2

To find the component of uncertainty on χV
2 (due to propagation of uncertainty from χ̂1), we need to be able

to characterize the function f(·) such that χV
2 = f(χ̂1). We seek to linearize this function so that we can perform a

standard linear covariance update PV
2 =FP̂1FT . To begin, we note that once the iterative image registration process has

converged, χ̂1 and χV
2 can each be used to compute the homography matrices HG1 and HG2, which map pixel locations

in images Y1 and Y2 respectively to locations on the ground image. These homographies were used respectively in the

projection and rendering processes of the VO system (see Section 3.1), and are thus available from the VO process.

HG1 and HG2 individually have uncertainty associated with them, because each of their components is a function of

χ̂1 and χV
2 , which are imperfectly known and thus have associated covariances. Because homography matrices can be

composed by matrix multiplication and are invertible [40, 35], we can combine these two homography matrices into a

single homography that maps pixel locations in Y1 to pixel locations in Y2 as:

H12 = HG2H−1
G1 = HG2H1G. (3.2.2)

If, as we have assumed, the registration between Y1 and Y2 is perfectly accurate, then this homography H12 is perfectly

known. Thus, although both HG2 and H1G (the inverse of HG1) have associated uncertainty, their product H12 does not.

This observation is a direct consequence of the fact that VO methods fundamentally measure relative poses: while χ1

and χ2 may both be incorrect, the accuracy of the relationship between them is constrained only by the accuracy of

image registration.

The relationship in equation 3.2.2 forms the basis of our desired f(·). We first post-multiply by HG1:

HG2 = H12HG1. (3.2.3)

14

Our insight about HG1,HG2, and H12 allows us to write:

HG2 (χ2) = H12HG1 (χ1) . (3.2.4)

To isolate χ2 as a function of χ1 from this last equation, it would be desirable if we could invert the function

HG2 (χ2); we would like to be able to deduce the pose of a camera given a homography mapping its image points to

the ground. We will refer to this inverse function as ξ instead of H−1
G2 , to emphasize the fact that the inverse we would

like is not the matrix inverse of the matrix HG2, but rather a function mapping a homography matrix to a pose. If we

could find such a function, we would have our desired formula for f:

ξ
(
HG2

(
χ

V
2
))

= ξ (H12HG1 (χ̂1)) , (3.2.5)

χ
V
2 = ξ (H12HG1 (χ̂1)) ,

= f(χ̂1) . (3.2.6)

We could then compute the desired derivative F by the chain rule:

∂ f
∂ χ̂1

=
∂ χV

2
∂ χ̂1

=
∂ξ

∂HG2

∂HG2

∂HG1

∂HG1

∂ χ̂1
. (3.2.7)

The function HG1 (χ̂1) can already be computed in closed form using standard computer vision techniques, and its

derivative, the term ∂HG1
∂ χ̂1

in equation 3.2.7 is a 9× 6 matrix of partial derivatives that can be computed from this

closed-form expression in a straightforward manner. The term ∂HG2
∂HG1

is a 9× 9 matrix of partial derivatives: these

partials are also straightforward to compute, as they are simply elements of H12 (see equation 3.2.3).

The only remaining obstacle is the first term in equation 3.2.7, determining the derivative of the ξ function.

As discussed in [35], there are well documented methods of decomposing a homography matrix to determine a relative

pose; these methods, however, in general produce four solutions among which we must choose based on the cheirality

constraint. This fact makes the ξ function non-differentiable. Instead of attempting to differentiate ξ directly, we

notice that we can approximate changes in the homography matrix HG2 due to changes in χV
2 using the partial derivative

matrix ∂HG2
∂ χ2

, just as we do for HG1. The inverse of this linear mapping, if it existed, would give changes in χV
2 due

to changes in HG2 as desired. The inverse does not exist, as the 9× 6 matrix ∂HG2
∂ χV

2
represents an over-determined

system. We can, however, find the pseudo-inverse of the matrix ∂HG2
∂ χ2

, which still maps changes in HG2 to changes in

χ2, minimizing error in the elements of HG2 . We use this pseudo-inverse to approximate the derivative ∂ξ

∂HG2
.

Combining these three terms, we compute the 6×6 matrix of partial derivatives ∂ χV
2

∂ χ̂1
as:

∂ χV
2

∂ χ̂1
=

(
QT Q

)−1
QT ∂HG2

∂HG1

∂HG1

∂ χ̂1
, (3.2.8)

where

Q =
∂HG2

∂ χV
2
. (3.2.9)

15

We now have the desired partial derivative matrix of our VO method, which we can use to approximate covariance

propagation.

3.2.2 Determining Covariance With Imperfect Registration

Naturally, the process of determining H12 (i.e. registration) is not, as we assumed in the previous subsection,

without error. This registration error will cause the difference image to have residual structure (which is not due to

parallax) after the registration process completes. We address this source of error by computing the ratio of the residual

cost function J of equation 3.1.1 with an empirically determined cost value, and boosting the diagonal values of the

covariance matrix PV
2 proportionally. Doing this is similar to the “Q-boosting” technique common in EKF practice:

we simply increase our estimated uncertainty on the VO pose such that the overall filter yields desirable results. In

practice, this extra boost in the diagonal elements of PV
2 was not found to be necessary to yield good results, and was

not used in generating result data.

16

Chapter 4

Results and Analysis

To evaluate our pose estimation framework, we estimate MAV pose without using GPS information, and

show that fusion of VO and INS information allows MAV location to be estimated with accuracy similar to that of

GPS for a reasonable period of time.

All results presented in this work are collected using an inexpensive, hand-launchable MAV platform, shown

in Figure 4.0.1. The aircraft is a flying wing design, with a 6-foot wingspan, constructed of EPP foam. The on-board

KestrelTMautopilot and associated Virtual CockpitTMsoftware platform allow the aircraft to autonomously aviate and

navigate. The KestrelTMautopilot comprises a small microcontroller and a collection of sensors that includes three-

axis accelerometers, rate gyroscopes, and differential pressure sensors. Pitch, roll, and altitude are estimated on-board

from these sensor readings, while 2-D location and heading are estimated using a small on-board GPS receiver [4, 7].

This pose estimate and other telemetry data is transmitted to a ground station at a rate of about 4 Hz. A separate

camera/transmitter system collects video footage during flight and transmits this video to the ground station. This

video stream is synchronized on the ground station with the stream of pose estimates from autopilot telemetry. VO

and sensor fusion are performed off-line using this data.

4.1 Pose Estimation During GPS dropout

A key goal of this work is to explore the use of VO for MAV localization during GPS dropout. To evaluate the

accuracy of our fused VO/INS pose estimates, we compare the estimated (tx, ty, tz) location of the aircraft with baseline

location measurements produced by the current MAV autopilot pose estimation method, which uses a GPS receiver

to measure tx and ty, and a differential pressure sensor to measure tz. We will hereafter refer to these baseline pose

estimates as gpsins pose estimates. These baseline location estimates are here compared with location estimates

from:

1. Our unaided VO system (referred to as voonly) shown in Figure 4.1.1

2. Our fusion system, incorporating only VO and INS measurements (referred to as voins) shown in Figure 4.1.2.

In each of these figures, we display the path of the MAV as estimated by gpsins and by one of the vision-aided

fusion schemes, giving both a horizontal and vertical view (sub-figures (a) and (b), respectively), and plot the time-

varying distance between these two paths (sub-figure (c)). Clearly the errors in voonly location are both much

larger than those of voins, and increase dramatically over the course of the flight (∼70 seconds). This demonstrates

that fusion of VO and INS data can significantly reduce the drift in location estimates that is inherently part of VO

17

(a) MAV (b) KestrelTMAutopilot

Figure 4.0.1: The MAV platform used in this work. The MAV is a flying wing aircraft constructed of EPP foam with a 6 foot
wingspan, controlled by a KestrelTMautopilot.

systems, as well as dramatically reducing (∼40%) the worst-case location error. It is also meaningful to realize that

the cyclic pattern of errors present in Figures 4.1.1(c) and 4.1.2(c) is likely a consequence of inaccuracies in camera

mounting, wind estimation, and temporal data association. It is perhaps remarkable that position can be estimated to

within <40m of GPS estimates in the presence of these inaccuracies. As the size, cost, and field use constraints on

MAV platforms necessarily make them prone to these errors, the ability to function in their presence is an important

benefit for MAV platforms. It should be noted that this error is comparable to the error obtained by some SLAM-based

visual/inertial navigation solutions, such as that of Kim and Sukkarieh[9] and Bryson and Sukkarieh[10] (whose flight

path is similar to ours). Several other SLAM-based solutions give much better accuracy in simulation (e.g. [41]) or in

limited environments with relatively rapid loop closure (e.g. [13]).

4.2 Computational Complexity

The results given here are presented as a proof of concept. The navigational results shown were obtained

using real flight data, but processing was performed offline, in a framework that was not optimized for speed. A

number of further optimizations are possible, which we feel would allow our estimation framework to run at a frame

rate of about 5Hz or better on computing hardware compatible with MAV weight and power constraints (∼1.5 GHz

standard laptop-style CPU). These optimizations could include the following:

18

−60 −40 −20 0 20 40 60

−80

−60

−40

−20

0

20

40

60

East Location (meters)

N
o

rt
h

 L
o

c
a

ti
o

n
 (

m
e

te
rs

)

(a)

−60 −40 −20 0 20 40 60

50

60

70

80

90

100

110

East Location (meters)

A
lt
it
u

d
e

 (
m

e
te

rs
)

(b)

0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

Distance from GPS location to voonly location vs. time

time since beginning of flight (seconds)

e
u
c
lid

e
a
n
 d

is
ta

n
c
e
 (

m
e
te

rs
)

(c)

Figure 4.1.1: (a,b) gpsins location estimates (blue +) and voonly location estimates (green �) in a circular flight path.
(c) Euclidean distance between gpsins and voonly location estimates at each point in time. Note rapid error growth.

19

−60 −40 −20 0 20 40 60

−60

−40

−20

0

20

40

60

East Location (meters)

N
o

rt
h

 L
o

c
a

ti
o

n
 (

m
e

te
rs

)

(a)

−60 −40 −20 0 20 40 60

60

70

80

East Location (meters)A
lt
it
u

d
e

 (
m

e
te

rs
)

(b)

0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

Distance from GPS location to voimu location vs. time

time since beginning of flight (seconds)

e
u
c
lid

e
a
n
 d

is
ta

n
c
e
 (

m
e
te

rs
)

(c)

Figure 4.1.2: (a,b) gpsins location estimates (blue +) and voins location estimates (green �) in a circular flight path.
(c) Euclidean distance between gpsins and voins location estimates at each point in time. Notice the slow growth of error
as compared to Figure 4.1.1(c).

20

• The simulation environment is currently coded in MATLAB, and no MEX functions are utilized. A functioning

system would need a C/C++ implementation, which in itself would bring performance significantly closer to

realtime.

• We currently perform forward additive image registration: that is, the second image is repeatedly warped (re-

quiring expensive recomputation of image Jacobians) until it matches the first image. Baker et al. [39] present

several ways of improving on this, notably the inverse compositional method, which needs to compute Jaco-

bians only once and applies the inverse of the computed warping to the first image. This could also significantly

reduce computational load.

• Not all pixels need actually be compared during the direct registration process: only a sampling of pixels would

be needed. This could significantly reduce computation costs.

Memory requirements associated with this method are both fixed and reasonable, as only the previous video frame and

the vehicle state estimates need to be stored.

21

Part II

Kalman Filtering on Riemannian Manifolds

22

Chapter 5

Motivation and Related Work

As we have discussed in Chapter 1, the Extended Kalman Filter (EKF) has been widely used in nonlinear

filtering applications for over half a century. While theoretically suboptimal in general, the EKF is relatively easy to

implement, and very tolerant of the approximations inherent in its use. Nevertheless, the EKF often has difficulties

with highly nonlinear systems. Depending on the details of the system equations, the EKF can sometimes produce

poor estimation results, and is further prone to becoming either inconsistent, producing incorrect results with high

confidence, or else uninformative, offering an estimate with such high uncertainty as to make it effectively meaning-

less. Inconsistency is a particularly severe problem when the state and measurement models of the system in question

are highly nonlinear. The nonlinear nature of the system will cause differences from predicted values which are com-

pletely predictable from available information, but differ from the approximate predictions given by the linearized

models of the EKF. These differences are incorrectly assumed to represent valid information about the state, and cause

the EKF to become overconfident in its estimates, which can eventually lead to the filter simply ignoring all incoming

measurements and giving wildly inaccurate estimates, an effect known as filter divergence.

The literature documents many variants of the EKF designed to improve its performance for nonlinear sys-

tems (e.g. [42, 43, 44]). Some of these works deal with nonlinear systems in general. There are also large bodies of

work on specific problems. For example, the estimation of the attitude of a rigid body has been the subject of a large

amount of work spanning many decades, and a vast array of filtering strategies have been developed for this problem

(see Section 5.1.2).

While there can be many sources of nonlinear behavior in system models, one very common source is that

often the state being estimated is not a linear vector space, as the original Kalman Filter derivation assumes. Instead,

these points often lie on Riemannian Manifolds, more general “curved” spaces. For example:

• The attitude of a rigid body (such as an aircraft or spacecraft) is a member of the set of all right-handed orthogo-

nal rotations, called the 3-dimentional Special Orthogonal Group, or SO3. This is perhaps the most encountered

and most studied manifold, not least because of its ubiquity across a wide field of applications.

• The pose (position and attitude) of a rigid body belongs to 3-dimensional Special Euclidean Group, or SE3,

which is simply the combination of SO3 and the familiar 3-dimensional linear vector space R3.

• Optical cameras and other bearing-only sensors inherently measure angles to a feature. This can be considered

to belong to either the two-dimensional projective space P2 (the set of all lines through the origin) or else to the

surface of a two-dimensional sphere, denoted S2.

23

• A commonly considered problem in computer vision is that of a pair of cameras imaging a planar surface. The

pixel coordinates of a point in either camera’s image will be related to the pixel coordinates of that point in the

other camera’s image by an invertible linear mapping termed a Homography matrix. Homography matrices are

3×3 invertible matrices, having in fact only eight degrees of freedom, and form an eight-dimensional manifold.

Manifolds lack some of the structure which linear vector spaces possess, making the filtering problem more difficult. In

particular, two points in a manifold space cannot be meaningfully “added” together: i.e. vector addition and subtraction

are not defined on manifolds in general. Since these operations provide the most common means of measuring distance

on a vector space, the distance between two points on a manifold must be developed separately. Going a step further,

such basic statistical operations as finding the mean and covariance of a set of points rely on the notion of integration

and hence of summation. These facts present one with difficulties in applying the EKF to manifold-valued problems.

In general, the difficulties associated with estimating manifold-valued quantities have been overcome in one

of two ways. Some works represent manifold quantities by embedding them in a higher dimensional space: for exam-

ple, using a unit-length quaternion[45] to represent a rotation in SO3. This method nominally renders the manifold as

a vector space, and allows standard estimators like the EKF to be mostly re-used, but introduces the complication that

the state must be constrained to lie on the manifold surface: not every 4-vector is a valid quaternion.

Other methods enforce the manifold constraint implicitly, either by using a minimal parameterization of some

sort which guarantees conformance to the manifold surface, or by modifying the Kalman filter equations in a way that

take the underlying structure of the manifold into account. These methods can perform unconstrained estimation, with

the conceptual overhead of needing to account for manifold structure. SO3 is clearly the manifold most studied in

works of this type. Key papers of both types are discussed in more detail in Section 5.1, below.

In this work, we propose a new EKF-family filter, the Manifold Extended Kalman Filter (Manifold EKF).

This filter parameterizes the space so as to guarantee adherence to the manifold constraint surface, and thus falls into

the second category. Rather than being limited, however, to a particular manifold such as SO3, the Manifold EKF

is a general approach to filtering that works on a very broad class of manifolds. As we will demonstrate in Chapter

10, it has superior performance and consistency characteristics compared to the standard EKF, due to the fact that the

manifold nature of the state and measurement spaces are accounted for in the derivation of the filter itself, rather than

added on later. This filter can be viewed as a general extension of the EKF to manifold valued problems: it utilizes

notions of “distance”, “mean”, and “covariance” that are generalized to a large and useful class of manifolds.

Our proposed method builds on the work of Pennec et al. [46, 47, 48], who have developed generalized

versions of distance metrics and statistical measures for manifolds, as well as the recent work of Humpherys et al.

[2, 3], who present a particularly useful derivation of the Extended Kalman Filter as a set of sub-optimal modifications

to a least-squares estimation problem.

5.1 Related Work

The available literature on estimation and filtering is quite vast, and even a thorough summary is well beyond

the scope of this work. We will instead discuss several key publications that are related to the Manifold EKF. We

24

will first discuss the vast field of attitude estimation, much of which (historically at least) comes from the spacecraft

community. We will then discuss general methods for nonlinear filtering, which can be applied to manifold estimation

problems, as well as methods which address the constrained and re-parameterized approaches to the Kalman Filter for

manifolds.

5.1.1 Nonlinear Filtering

Several general nonlinear filtering methods can be used to help solve the problems of estimating attitude.

These include approaches using the Unscented Kalman Filter, Particle Filters, and filters that numerically propagate a

state pdf based on the Fokker-Planck equation. Descriptions of the entire field of nonlinear filtering are well beyond

the scope of this work, and useful surveys are given by Crassidis et al. [49, 50] as well as Daum [1].

A number of extensions to the EKF are also very useful in terms of manifold value estimation. More directly

in the EKF family of filters is Psiaki’s Backward Smoothing EKF [51], which maintains a sliding window of past

states rather than a single state estimate. As we shall see in Chapter 6 the EKF, which estimates only the current state

of a system, can be viewed as a suboptimal simplification of a full least squares estimator which estimates the entire

state history. The Backward Smoothing EKF can be thought of as “bridging the gap” between these two extremes.

5.1.2 Attitude Estimation

SO3 is without a doubt the most studied manifold in terms of estimation. This is understandable, as the

attitude of a rigid body is a basic component of many physical systems. A survey of attitude estimation methods is

given in [49, 50], and a helpful survey of the various parameterizations of SO3 used is given in [45].

Many early works began with the least squares cost function defined by Wahba [52], which was motivated

by the need for estimating the attitude of spacecraft. Wahba’s problem seeks to find a rotation matrix between the

spacecraft body frame and another frame, given pairs of vectors whose values are known or measured in each frame.

It minimizes the squared difference between body-frame vectors and their counterparts rotated into the body frame.

Early work on this problem notably produced the QUEST estimator [53, 54, 55], which solves for the rotation matrix

in the form of a unit quaternion, by finding the eigenvalue of a sum of outer product matrices. This can also be done

using the SVD [56], which gives covariance information about the resulting solution. Later work extends the QUEST

algorithm into filtering frameworks [57, 58, 59]. Psiaki’s extended QUEST framework, in particular, is a least-squares

optimization based recursive filtering framework which is quite general in that it can estimate other states in addition

to quaternion values.

While all of these methods provide a framework to deal with the estimation of values on SO3, and possibly

even other vector-space values, they do not provide a framework for estimating values on other manifolds. If other

manifolds, such as S2 or P2 are involved in a system’s equations, there are a number of more general filtering methods

which provide a way to deal with quantities on any manifold.

25

5.1.3 Constraint-based Kalman Estimation of Manifold Quantities

One general way of using a Kalman-style filter to estimate manifold quantities is to view the manifold as a

smooth surface embedded in a higher-dimensional space. The Whitney theorem[60, 61] guarantees that this is always

possible for any manifold, and that the embedding space will need to have a dimension of at most 2N + 1, where

N is the dimension of the manifold itself. The space S2, for instance, is inherently a two-dimensional space, but is

readily visualized as the surface of the unit sphere in R3. A filter using this method may thus use a three-vector to

represent a point in S2. Standard Extended Kalman Filtering equations can be used in this case, with the additional

complication that there is nothing to guarantee that the state estimate will remain on the surface of the sphere. In fact,

the mean of several unit-length vectors will always have a norm that is less than or equal to unity. Therefore, some

extra modifications to the EKF framework are necessary to ensure that the manifold surface constraint is obeyed.

Historically, two main methods were used to enforce manifold constraints, often referred to as the projection

and pseudo-measurement approaches.

The projection approach performs the standard (Extended) Kalman Filter method, but adds a “reprojection”

step after each measurement update, which forces the state estimate back onto the manifold. For example, a filter

whose state space is S2 might estimate the state as a 3-vector in the standard way, but then normalize the vector after

each step. This approach was first described in the EKF literature in [62], and several other papers deal with this topic

.

The pseudo-measurement approach works by adding an extra “measurement” to the system, with zero mea-

surement uncertainty, in order to enforce the manifold constraint. Thus, our example system working on S2 might

“measure” the difference between the length of the vector and unity, with the result being always forced to zero, with

zero uncertainty. This “measurement” is treated in the EKF framework like any other measurement, and tends to keep

the estimate on the manifold surface. This method is as old as the Kalman Filter itself, with Kalman’s original paper

giving an example using a measurement with zero covariance [63]. Several later works expanded this method for use

in nonlinear systems, and to inequality constraints.

More recently, Juler and LaViola[42] published an important paper that arguably describes the state of the

art in terms of constrained Kalman Filtering. They discuss two types of constraints: one which guarantees that the

distribution is constrained to the manifold, and one which guarantees that the mean of the distribution is constrained to

the manifold. For a manifold such as S2, enforcing the former constraint will usually cause the latter constraint to be

violated. They prove that for general nonlinear problems, the pseudo-measurement approach does not enforce either of

these constraints, and therefore use a projection-based method. They implement their technique using the Unscented

Kalman Filter [64], adding a step after the measurement update which first projects each individual sample point

onto the constraint surface, computes the mean, and then projects that mean onto the constraint surface, appropriately

increasing the covariance in the process.

26

5.1.4 Parameterization-based Kalman Estimation of Manifold Quantities

Another way to allow the Kalman Filter to operate on manifolds is to choose a minimal parameterization of

the manifold, such that every possible state is guaranteed to be a manifold point. Perhaps the most common example

is to use yaw, pitch, and roll angles to parameterize SO3, rather than the quaternions often used in constraint-based

filters. Another common example is the use of two spherical coordinate angles rather than unit-length 3-vectors to

parameterize points in S2.

There have been many works that have applied this principle in specific applications, such as vision-based

motion estimation [65], medical imaging [44], and platform attitude estimation [43]. We will discuss some of these

methods which relate particularly closely to our method. Our proposed method is a general extension of the EKF

to a particular class of manifolds, and is thus applicable to a broader class of problems than these works address

individually. More specific differences between these method and our proposed Manifold EKF will be discussed on a

case-by-case basis.

In many ways, the special-case filter described by [44] uses a similar approach to ours. This work uses some

of the statistical tools described in [46, 47, 48] to construct a filter whose state space is a particular application-specific

manifold. Rather than defining and minimizing manifold distance, however, it chooses a particular base point and

approximates measurement errors as the difference between two vectors based at that point. As will be discussed in

Chapter 7, this amounts to using distance on a particular chart in place of distance on the manifold, which will mean

that the filter will return a different answer if a different base point is chosen. Put differently, the distance which the

EKF is attempting to minimize will change in ways that do not match physical intuition, which will introduce error

into this technique.

The Multiplicative Extended Kalman Filter of [43] deals with the manifold SO3, meaning it gives a way to

estimate the attitude of a rigid body. It represents attitude by using both a unit quaternion and a three-dimensional rep-

resentation such as the rotation vector or (modified) Gibbs vector[66]. This three-dimensional, minimal representation

is not able to uniquely represent every value on the manifold, but it is unconstrained in that any collection of three

numbers does correspond to a rotation (i.e. it is onto, though not one-to-one). Thus, this minimal representation and an

associated covariance matrix represent the information in the filter, while the quaternion shifts this information to be

centered at the proper point. In this way, the rotation antipodal to the base point, which is not uniquely representable,

is always kept very far away (in fact approximately antipodal to) the filter’s region of interest. If the measurement

space is also SO3 (as when quaternion measurements are available from a star tracker on a satellite), then the MEKF

finds the tangent vector to the predicted measurement and uses this as the innovation vector in a standard Kalman

Filter update.

In some ways, our work could be viewed as generalizing the MEKF to manifolds other than SO3. Specifically,

the MEKF properly uses the logarithmic mapping on SO3 to determine an error vector, meaning its distance metric

results will match physical intuition in that it will be invariant under rotational shifts. Aside from applicability to only

a single manifold, the MEKF differs from our approach in that it always uses only a single iteration to estimate the

27

updated state, whereas our filter applies multiple iterations. As will be seen in Chapter 10, the number of iterations

has a significant effect on the performance of our filter.

5.2 Outline

Chapter 6 is devoted to providing a derivation of the Extended Kalman Filter as a sub-optimal modification

of a least-squares estimation problem, using the derivation strategy of [2, 3]. We will then proceed in Chapter 7 to

briefly sketch the manifold development of Pennec et al. With these two frameworks in place, we will devote Chapter

8 to the derivation of the key equations of the Manifold EKF. In Chapter 9 we describe the implementation of the basic

set of manifold operations on several important manifolds. Finally, we examine the advantages and performance of

the Manifold EKF in Chapter 10.

28

Chapter 6

The EKF As A Suboptimal Least Squares Estimator

6.1 The Extended Kalman Filter

This chapter presents a derivation of the EKF which is due to [2, 3]. This derivation is useful in many ways,

not the least of which being that it highlights the relationship between the EKF and the full nonlinear least squares

problem. This derivation is presented here for two reasons. First, it provides a novel way to understand the well-known

sub-optimality of the Extended Kalman Filter, which gives some insight into the EKF’s performance and how it can be

improved. Second, this derivation framework can be easily generalized for manifolds, and thus an analogous method

will be used to derive the Manifold EKF in Chapter 8.

6.1.1 System and Notation

The (discrete-time) EKF can be thought of as an estimator of the state history of a dynamic system. Such a

system is described at any particular time index k by an N-dimensional state vector xk
1. This state evolves according

to the system dynamic function fk (xk−1), which computes the value of the k-th state from the (k−1)th state:

xk = fk (xk−1)+ vk. (6.1.1)

Note that there can in general be a different system dynamic function at each time step k. vk is a zero-mean random

variable with covariance

Qk = E
[
vkvT

k
]
. (6.1.2)

Often, it is assumed that vk is a Gaussian process (that is, that being zero mean with covariance Qk completely specifies

the statistics of vk). This this is not actually an assumption made by the EKF, which requires only that vk have zero

mean and be uncorrelated with the state and other noise sources.

The complete state history of such a system up to time index k will be denoted Xk, where

Xk =


x0

x1
...

xk

 (6.1.3)

1We are here assuming a discrete-time system.

29

is a vector of length (k+1) ·N. We will also find it convenient to define the aggregate system dynamic function fk (Xk),

which produces Xk from Xk−1:

Xk = fk (Xk−1)

.
=



x0

f1 (x0)

f2 (x1)
...

fk (xk−1)


+



v0

v1

v2
...

vk


(6.1.4)

as well as the aggregate (k+1) ·N× (k+1) ·N block-diagonal matrix Qk:

Qk =


Q0 0

Q1

. . .

0 Qk

 . (6.1.5)

The state of the system is in general not directly observable. Rather, information about the value of xk must be

inferred by observing yk, an M-dimensional vector of measured values. The complete measurement history is denoted

Yk, where

Yk
.
=


y1

y2
...

yk

 (6.1.6)

is a vector of length k ·M. Note that, for simplicity, we will assume that there is one measurement for every entry in the

state history except for x0, though relaxing this assumption is straightforward. These measurements can be predicted

from the state history by means of the system measurement function, hk:

yk = hk (xk)+wk. (6.1.7)

Like vk, wk is zero-mean noise with covariance Rk = E
[
wkwT

k

]
, which is uncorrelated with vk. We here make the

common Markov assumption that yk depends only on xk and not on previous states (xk−1,xk−2, · · ·).

30

As with the dynamic function, we will find it convenient to define hk (Xk), which produces Yk given Xk:

Yk = hk (Xk)
.
=


h1 (x1)

h2 (x2)
...

hk (xk)

+


w1

w2
...

wk

 (6.1.8)

as well as the k ·M× k ·M block matrix Rk:

Rk =


R1 0

R2

. . .

0 Rk

 . (6.1.9)

The EKF derivation will involve the computation of the Jacobians of the dynamic and measurement functions,

respectively. We thus define Jacobians of fk and hk as

Fk
.
=

∂ fk (xk−1)

∂xk−1
, (6.1.10)

Hk
.
=

∂hk (xk)

∂xk
. (6.1.11)

6.1.2 Cost Function

We will begin by setting up a least squares problem to estimate the state history Xk of the system. We seek to

find Xk to minimize the following cost function:

2S (Xk)

=
(
X0− X̂0

)T Q−1
0
(
X0− X̂0

)
+(Xk− fk (Xk−1))

T Q−1
k (Xk− fk (Xk−1))

+(Yk−hk (Xk))
T R−1

k (Yk−hk (Xk)) (6.1.12)

= (x0− x̂0)
T Q−1

0 (x0− x̂0)︸ ︷︷ ︸
A

+
K

∑
k=1

(xk− fk (xk−1))
T Q−1

k (xk− fk (xk−1))︸ ︷︷ ︸
B

+(yk−hk (xk))
T R−1

k (yk−hk (xk))︸ ︷︷ ︸
C

. (6.1.13)

The terms in Equation 6.1.13 describe the distance between values in Xk and Yk and available estimates

thereof:

1. the Mahalanobis distance (term A) between the initial state x0 and its a-priori estimate x̂0

2. the Mahalanobis distance (term B) between each state xk and fk (xk−1), its value as predicted by the system

dynamic model

31

3. the Mahalanobis distance (term C) between each past measurement yk and h j (xk), its value as predicted by the

measurement model

In some sense the minimization of this cost function is the “correct” problem to solve: since the prior estimate (x̂0,Q0),

the dynamic model (fk (·) ,Qk), the measurement model (hk (·) ,Rk) and the measured values yk are the only informa-

tion available for the system, minimizing the squared error between actual and predicted values is in many cases a

useful problem to solve.

Since each successive new value of k will only add extra terms to this cost function, we can re-write it in a

recursive fashion:

S (Xk) = S (Xk−1)

+
1
2
(xk− fk (xk−1))

T Q−1
k (xk− fk (xk−1))

+
1
2
(yk−hk (xk))

T R−1
k (yk−hk (xk)) . (6.1.14)

In order to determine a new estimate of Xk, the central idea is to begin with an initial estimate and use

Newton’s method to find a critical point of the gradient Jk of the cost function Sk. This will involve computation

of the Hessian Hk. Of course, the standard caveat of iterative nonlinear estimation applies: the non-quadratic nature

of Sk (due to the nonlinearity of the functions fk and hk) means that we are not guaranteed to converge to the global

optimum of Sk.

6.1.3 Jacobian and Hessian of Cost Function

We can easily derive an expression for the gradient. We will express this in two block rows, the first containing

derivatives with respect to prior states and the second the derivative with respect to the most recent state only:

Jk =

 ∂Sk(Xk)
∂Xk−1

∂Sk(Xk)
∂xk

=


 ∂S(Xk−1)

∂Xk−1
+

 0(k−2)·N

−FT
k Q−1

k (xk− fk (xk−1))


(
Q−1

k (xk− fk (xk−1))−HT
k R−1

k (yk−hk (xk))
)
 (6.1.15)

and the Hessian:

32

∂Jk

∂Xk
=

[
∂Jk

∂Xk−1

∂Jk
∂xk

]
(6.1.16)

=


 ∂S(Xk−1)

∂Xk−1∂Xk−1
+

 0(k−2)·N,(k−2)·N 0(k−2)·N

0T
(k−2)·N FT

k Q−1
k Fk

  0(k−2)·N

−FT
k Q−1

k


[

0(k−2)·N −Q−1
k Fk

] (
Q−1

k +HT
k R−1

k Hk
)


︸ ︷︷ ︸
first order terms

+


 0(k−2)·N,(k−2)·N 0(k−2)·N

0T
(k−2)·N −∇2 fkQ−1

k (xk− fk (xk−1))

 0(k−1)·N

0T
(k−1)·N −∇2hkR−1

k (yk−hk (xk))


︸ ︷︷ ︸

second order terms

.

An iterative least squares solution can then be found by choosing an initial estimate of Xk, evaluating ∂Jk
∂Xk

and Jk at

that estimate, and forming the next estimate using Newton’s method:

Xi+1
k = Xi

k−
(

∂Jk

∂Xk

)−1

Jk
(
Xi

k
)
. (6.1.17)

6.1.4 EKF Approximations

Thus far, the method we describe is simply a least squares method taking the dynamics and measurements

into account, sometimes referred to as bundle adjustment[67]. The EKF equations can be arrived at from this problem

by making the following simplifications:

6.1.4.1 Gauss-Newton Iteration

We use a Gauss-Newton iteration, instead of the full Newton’s method. That is, we ignore the second deriva-

tive terms in the Hessian, using instead the approximate Hessian Hk:

Hk =


 ∂S(Xk−1)

∂Xk−1∂Xk−1
+

 0N(k−2),N(k−2) 0N(k−2)

0T
N(k−2) FT

k Q−1
k Fk

  0N(k−2)

−FT
k Q−1

k


[

0N(k−2) −Q−1
k Fk

] (
Q−1

k +HT
k R−1

k Hk
)
 (6.1.18)

where Hk−1
(
X̂k−1

)
represents only the first order terms of the second derivative

∂S (Xk−1)

∂Xk−1∂Xk−1

∣∣∣∣
Xk−1=X̂k−1

. (6.1.19)

The use of a Gauss-Newton approximation to the Hessian matrix rather than the full Hessian will not in

general affect the validity of the solution. In fact, there is an entire class of iterative minimization algorithms that use

various approximations to the Hessian matrix: the specific approximation will affect the performance of the solver, but

33

will in general not cause the algorithm to converge to an incorrect result. Of course, any nonlinear solver algorithm

could converge to a local minimum of the cost function, and this is true even if Newton’s method were used directly.

6.1.4.2 Prior Initial Value

For the initial value of Xk, we choose its prior estimate, which consists of the prior estimate of all past states

X̂k−1, along with the value of xk predicted using the system dynamic model:

X̂k =

 X̂k−1

x̂k

=

 X̂k−1

fk (x̂k−1)

 (6.1.20)

evaluating the gradient and Hessian at this point greatly simplifies their form. This is the case because we are using

the prior estimate X̂k−1, which is assumed to be the minimizer of the prior cost function Sk−1. Letting

Ĥk
.
=

∂hk (xk)

∂xk

∣∣∣∣
xk=x̂k

(6.1.21)

and

F̂k
.
=

∂ fk (xk−1)

∂xk−1

∣∣∣∣
xk−1=x̂k−1

, (6.1.22)

we can find the simplified value of the Jacobian:

Jk
(
X̂k
)

=



∂S (Xk−1)

∂Xk−1︸ ︷︷ ︸
0

+

 0N(k−2)

−F̂T
k Q−1

k (fk (x̂k−1)− fk (x̂k−1))︸ ︷︷ ︸
0


Q−1

k

 fk (x̂k−1)− fk (x̂k−1)︸ ︷︷ ︸
0

− ĤT
k R−1

k (yk−hk (fk (x̂k−1)))




=

 0N(k−1)

−ĤT
k R−1

k (yk−h(fk (x̂k−1)))

 . (6.1.23)

We similarly find a simplified Hessian:

Hk
(
X̂k
)

=


(
Hk−1

(
X̂k−1

)
+41

)  0N(k−2)

−F̂T
k Q−1

k


[

0N(k−2) −Q−1
k F̂k

] (
Q−1

k + ĤT
k R−1

k Ĥk
)
 (6.1.24)

where

41 =

 0N(k−2),N(k−2) 0N(k−2)

0T
N(k−2) FT

k Q−1
k Fk

 . (6.1.25)

34

Note that the 0(k−1)N vector in Jk
(
X̂k
)

means that only the rightmost block column of
(
Hk
(
X̂k
))−1

will contribute

to the updated estimate.

6.1.4.3 Estimate Only Current State

We do not update any of the past system states Xk−1, but only the most recent system state, xk. This further

reduces the portion of the inverse Hessian we are required to compute for the first iteration, from the rightmost block

column to the lower-right sub-block, which is of size N×N. This block of the inverse Hessian is denoted
(
Hk
(
X̂k
))−1

2,2,

and represents a first order approximation of the covariance of the state xk. We therefore will denote it Pk, as in standard

EKF equations.

We can compute this block using Lemma 1 from Appendix A, which is allows us to explicitly compute any

given term of the inverse of a block matrix, as

 A B

C D

−1

=

 A−1 +A−1B
(
D−CA−1B

)−1 CA−1 −A−1B
(
D−CA−1B

)−1

−
(
D−CA−1B

)−1 CA−1
(
D−CA−1B

)−1

 (6.1.26)

=

 (
A−BD−1C

)−1 −
(
A−BD−1C

)−1 BD−1

−D−1C
(
A−BD−1C

)−1 −D−1C
(
A−BD−1C

)−1

 . (6.1.27)

If we identify terms of H as

A =

Hk−1
(
X̂k−1

)
+

 0N(k−2),N(k−2) 0N(k−2)

0T
N(k−2) FT

k Q−1
k Fk

 , (6.1.28)

B =

 0N(k−2)

−F̂T
k Q−1

k

 , (6.1.29)

C =
[

0N(k−2) −Q−1
k F̂k

]
, (6.1.30)

and

D =
(
Q−1

k + ĤT
k R−1

k Ĥk
)
, (6.1.31)

we can apply Lemma 1 to yield

(
Hk
(
X̂k
))−1

2,2 = Pk =
(
D−CA−1B

)−1
(6.1.32)

35

and

Pk =


ĤT

k R−1
k Ĥk +Q−1

k −[
0T

N(k−2) −Q−1
k F̂k

](
Hk−1

(
X̂k−1

)
+41

)−1

 0(k−2)N

−F̂T
k Q−1

k



−1

(6.1.33)

where

41 =

 0(k−2)N,(k−2)N 0(k−2)N

0T
(k−2)N F̂T

k Q−1
k F̂k

 .
Equation 6.1.33 can be further simplified by applying Lemma 2 from Appendix A, which gives

(
D−CA−1B

)−1
= D−1 +D−1C

(
A−BD−1C

)−1
BD−1. (6.1.34)

By identifying terms in Equation 6.1.33

Pk =



ĤT
k R−1

k Ĥk +Q−1
k︸︷︷︸
D

−

[
0T

N(k−2) −Q−1
k F̂k

]
︸ ︷︷ ︸

C

Hk−1
(
X̂k−1

)
+41︸ ︷︷ ︸

A


−1 0N(k−2)

−F̂T
k Q−1

k


︸ ︷︷ ︸

B



−1

, (6.1.35)

we can compute the intermediate products in Equation 6.1.34, as

D−1C =
[

0T
N(k−2) −F̂k

]
, (6.1.36)

BD−1 =

 0N(k−2)

−F̂T
k

 , (6.1.37)

and

BD−1C =

 0N(k−2)

−F̂T
k Q−1

k

[0T
N(k−2) −F̂k

]
=

 0(k−2)N,(k−2)N 0(k−2)N

0(k−2)N F̂T
k Q−1

k F̂k

 . (6.1.38)

Plugging these term identifications back into Equation 6.1.34 allows us to compute to compute Pk:

Pk =

(
ĤT

k R−1
k Ĥk +

(
Qk + F̂k

(
Hk−1

(
X̂k−1

))−1
2,2 FT

k

)−1
)−1

(6.1.39)

=
(

ĤT
k R−1

k Ĥk +
(
Qk + F̂kPk−1FT

k
)−1
)−1

. (6.1.40)

36

For the EKF, Pk is a first order approximation to the covariance of the final estimate of xk. Plugging this value

and the initial estimates (6.1.20) into the Newton Update equation (6.1.17) gives us a form of the EKF equations:

Pk =
(

ĤT
k R−1

k Ĥk +
(
Qk + F̂kPk−1F̂T

k
)−1
)−1

, (6.1.41)

x̂+k = x̂−k −PkĤT
k R−1

k (yk−h(fk (x̂k−1)))

= fk (x̂k−1)−PkĤT
k R−1

k (yk−h(fk (x̂k−1))) . (6.1.42)

6.1.4.4 Single Iterative Update

The EKF stops after performing the single Gauss-Newton update step just described, rather than iterating the

full Newton’s method until convergence. This simplifies the algorithm, as it means that only the (2,2) sub-block of the

inverse approximate Hessian need ever be computed, whereas updating the current estimate of xk and iterating would

necessitate computation of the entire last block row of H −1.

6.2 Analysis of EKF Assumptions

It is interesting to note that in the linear case, the cost function Sk in equation 6.1.13 is truly quadratic in Xk,

which means that Newton’s method is guaranteed to converge in a single step, regardless of the initial estimate. If that

is the case, then the above simplifications are based on correct assumptions, and result in the original Kalman Filter

which has been shown to be the optimal estimator for linear system models.

In the general nonlinear case optimality guarantees are quickly lost. In general, we can think of the non-

optimality of the EKF in terms of three major sources of error:

1. Even if we correctly find a critical point of the cost function Sk, there is no guarantee that we will find the global

optimum. This is in general the case with all nonlinear estimators.

2. By assuming the prior estimate was the minimizer of the prior cost function and updating only the most recent

state (second and third assumptions), the EKF sacrifices the information in past state and measured values.

Instead, all information about the state history comes from the estimate x̂k−1, and the prior inverse block Hessian

(covariance) Pk−1. In the general nonlinear case, this amounts to the optimization of a different cost function

than that given by Sk. Another way of understanding this problem is to realize that during any particular update,

discrepancies between actual and predicted values are assumed to be purely due to errors in the estimate of the

current state xk, whereas they may actually be due partly to errors propagated from prior state estimates.

3. The EKF does not find the optimum point according to this cost function, but instead takes only a single Gauss-

Newton optimization step on this cost function.

The EKF is quite robust to the effects of these simplifications in many practical applications. The key problem with

the EKF is that its estimate tends to become overconfident, leading it to trust incorrect state estimates too highly (due

to the covariance matrix becoming too small). This is typically countered by artificially increasing the values of Qk,

37

which serves to help prevent Pk from becoming too small and leading to filter divergence, but which also may cause

the filter covariance to be so large as to make the filter uninformative. The performance of a filter can thus be cast as

the extent to which it can strike the proper balance between being inconsistent and being uninformative [68].

Since there is in general no way to guarantee that a nonlinear estimator will converge to the global optimum,

the first source of error is difficult to eliminate. The second source of error, updating only the most recent state, is

inherent in the nature of the filtering problem. If sufficient computational resources are available, it is likely that a full

optimization of the least squares cost function will yield a better answer than any filter. However, in many situations

this is simply not possible due to resource constraints, which is why filtering methods are resorted to. The Backward-

Smoothing EKF of [51] gives a scalable way to solve this problem partially. By allowing the number of prior states

maintained to be fixed at a number other than 1, the BSEKF makes it possible in a given application to explore the

tradeoff between resource usage and filter performance.

The last of the problems listed above is perhaps the easiest to address, at least partially. The Iterated Extended

Kalman Filter attempts to do so by using the Kalman Filter update equation iteratively, in effect re-computing the

inverse Hessian at each new estimate in hopes of obtaining a more accurate estimate. In the framework we have

described, this amounts to using a value of xk that is not equal to f (xk−1), while still assuming that xk = f (xk−1)

for purposes of computing the Jacobian. The IEKF measurement update has been shown to outperform the EKF

measurement update in certain cases. In particular, if a single measurement completely observes the state variables

in which the measurement function is highly nonlinear, the final linearization used by the IEKF will be close to the

linearization at the correct state, which will cause the IEKF estimate to be better in general[68].

38

Chapter 7

Manifolds

As the mathematics of manifolds may be unfamiliar to many readers who are familiar with Kalman filtering,

the purpose of this section is to give a relatively informal and intuitive explanation of this material. While some

derivations are sketched in moderate detail for the sake of gaining insight, this section is not intended to provide

complete proofs or mathematical rigor. Readers desiring a rigorous treatment should to consult [47] and [60], from

which this material is drawn.

The Kalman Filter formulation assumes that the state to be estimated is a member of an inner product space.

This assumption is evident in the formulation of the cost function used in the EKF Derivation in Chapter 6: the

covariance weighted squared distance between some value x and its estimate x̂ was always computed as a quadratic

form

(x− x̂)T Q−1
x (x− x̂) . (7.0.1)

This distance is effectively a particular inner product (specified by the value of Qx) of the vector (x− x̂) with itself.

This vector is the vector based at x̂ which points to x, and is computed by vector subtraction of the coordinates of those

two points.

Inner product spaces have a number of important properties, in particular the notion of vector subtraction,

that cannot be meaningfully defined on many spaces of interest. Thus, the purpose of this chapter is to develop the

definition of a Riemannian manifold, which is a generalization of the notion of an inner product space. As we shall

see, on Riemannian manifolds we can define operations called the exponential and logarithmic mappings which can

be seen as generalized replacements for vector addition and subtraction.

This chapter will proceed as follows. After giving some background information on inner product spaces in

Section 7.1, we will motivate and define the concept of a manifold in Section 7.2. The key motivation for manifolds

will be the fact that we cannot always find a way to uniquely assign coordinates to points on curved spaces. Once

manifolds are defined, we will of necessity discuss the definition of distance between points on a manifold (Section

7.3), defining along the way the important notion of the tangent space to a manifold point. The tangent space to a

manifold point can be thought of as the set of all velocity vectors a curve passing through that point could have. These

velocity vectors give us a way to define speed, which in turn gives us a way to define distance (by integration over a

time interval). Once distance is defined, we can introduce the exponential and logarithmic mappings which will allow

us to replace vector addition and subtraction respectively. These mappings are defined in terms of motion along the

geodesics, or minimum-length curves, of the manifold.

39

Once we have a way to define distance, we will discuss (Section 7.4) the importance of ensuring that the

distance between manifold points remains invariant under a certain class of transformations. If some operations do

not change the distance between points in a space associated with some real system, our distance metric must reflect

this fact in order to be useful in the process of modeling and estimating the state of that system. To this end, we will

introduce the notion of a Lie Group of operations under which distance should be invariant. This set of operations will

give us a way to “move between” manifold points and thus relate tangent vectors at different points to one another. It

will also lead (Section 7.5) to a convenient representation for points on a manifold called the principal chart, and to a

way to actually implement the exponential and logarithmic mappings.

With the foregoing discussions in place, we note (Section 7.6) that all of the concepts developed for manifolds

are applicable to vector spaces, and yield familiar operations in those spaces: the exponential mapping on a vector

space is vector addition, the logarithmic mapping is vector subtraction, etc... Finally (Section 7.7), we briefly discuss

the representation of statistical and probabilistic concepts on manifolds.

7.1 Definition of Inner Product Spaces

A scalar field can be thought of as the generalization of the set of real numbers. Two real numbers can be

added and/or multiplied, and the operations of addition and multiplication follow the rules of algebra (multiplication

distributes over addition, etc...). Generalizing this, then, if we can define any collection of mathematical objects, and

define “add” and “multiply” operations on those objects that follow the same rules of algebra, that set of objects is

termed a scalar field, and each element of the set is called a scalar.

A finite dimensional vector space is a generalization of the familiar three-dimensional Euclidean space. A

vector space is a collection of vectors, each of which is a fixed-length collection of scalars1. The number of scalars

making up each vector is the dimension of the vector space. A vector space is more than just a set of n-tuples of

scalars, however; a vector space must define the operations of scalar multiplication and vector addition. The former

allows a scalar and a vector to be multiplied to produce another vector, and the latter allows two vectors to be added

(or subtracted) to produce another vector.

In addition to scalar multiplication and vector addition, most commonly used vector spaces also define the

notion of an inner product, and such a space is more specifically termed inner product space. The inner product

is an operation that takes two vectors and produces a single scalar. The inner product is often used to define the

geometrically important notions of length, distance, and angle. In the most familiar three-dimensional euclidean

space:

• The length of a vector is the square root of the inner product of the vector with itself: ‖a‖=
√
〈a,a〉.

• The distance between points a and b is the length of the vector
−→
ab = b−a.

• The angle between two vectors can be found from the inner product: θ = arccos
(

〈a,b〉√
〈a,a〉〈b,b〉

)
.

1Vectors have a fixed number of scalar components for finite dimensional vector spaces. There are also infinite dimensional vector spaces, where
each vector is has infinitely many components. In this work the term vector space will always refer to finite dimensional vector spaces.

40

These definitions of length, distance, and angle work in any inner product space, regardless of dimension.

Perhaps the most intuitive inner product space is R3, whose elements are ordered triples of real numbers. This

space is commonly identified with the three dimensional euclidean space E3, the collection of all geometric points in

the three dimensional space that human beings experience. This identification consists of associating or “labeling”

each point in E3 with a point in R3, commonly referred to as the assignment of coordinates to points. We define a

chart as a one-to-one mapping that identifies points in some space with points in Rn. More generally, any vector

space of dimension n can be assigned coordinates by identifying each point in the space with a single point in Rn.

Assigning coordinates to each vector in a vector space allows us to treat the space as Rn, which means that we can

perform geometric operations in that space by performing algebraic operations.2 A vector space can in fact be defined

by this process of assigning coordinates: if we can define a one-to-one and onto correspondence between any space

and Rn, we have effectively proved that that space is a finite dimensional inner product space.

7.2 Definition of a Manifold

Unfortunately, not all finite dimensional spaces of interest can be corresponded to Rn in this way. For exam-

ple, the unit sphere, S2, is the collection of all points in R3 whose distance from the origin is 1. While it is typically

pictured as embedded in a three-dimensional space as just described, the sphere is inherently two dimensional. In at-

tempting to assign two dimensional coordinates to points on the sphere, we run into the famous map-maker’s problem:

there is no way to form a 1 : 1 correspondence between S2 and R2, because there will always be at least one point on

the sphere that can have many possible coordinate values. The “north pole” and “south pole” are the classic examples

of such singularity points if latitude and longitude angles are used to correspond S2 and R2.

This problem of not being able to unambiguously assign coordinates to every point on such spaces leads to the

definition of a differentiable manifold, or simply a manifold, which generalizes the definition of a vector space. To

assign coordinates in a vector space, we must be able to find a chart that is one-to-one and onto: a unique assignment

of coordinates to every point in the space. For manifolds, this constraint is relaxed in a specific way.

The definition of a manifold allows for many charts, each corresponding between Rn and only a portion of

the points in the space. For the space to be a manifold, these charts must satisfy the following conditions:

• The charts must collectively cover the entire manifold: there may be no points that are not assigned coordinates

in Rn by some chart.

• Wherever two charts φ and ψ overlap (where two different charts identify the same manifold point with points

in Rn), there must be a differentiable and invertible function sφψ taking the coordinates of a point in one chart

to the coordinates of that point in the other chart.

• The range of each chart (the portion of Rn onto which it maps manifold points) must be an open subset of Rn.

2The assigning of coordinates, allowing the use of algebra to solve geometric problems, is due to Descartes and underlies the field of algebraic
geometry.

41

Figure 7.3.1: Manifold distance is not chart distance: the standard distance metric based on vector subtraction and vector
norm is not in general invariant under many desired transformations on a manifold. The distance along the manifold surface
between points a1 and a2 is equal to the distance between b1 and b2: this result is physically meaningful in many common
problems. This is the case because b1 = f (a1) and b2 = f (a2), where f is a 3D rotation about the sphere center: “along the
surface” distance on S2 is invariant to such rotations. However, if we use vector subtraction of the coordinates of those points
(i.e. dist2 (b1,b2) = ‖b1−b2‖2) in the commonly used latitude, longitude coordinate system for S2, the distance on the chart
is changed considerably by the operation f .

7.3 Distance on Manifolds

In an inner product space, as discussed above, the definition of an inner product automatically gives us a way

to define the distance between two points: dist(a,b) =
√
〈(b−a) ,(b−a)〉. In order to be useful any definition of

distance must conform to the physical properties of the system being modeled. These properties can be understood

as a series of invariants, operations under which distance will not change. For example, the distance between two

points on the surface of a sphere should not be changed by operations which rotate the points about the sphere center,

effectively rotating the sphere beneath the points.

If we can find a chart for a space such that the standard chart distance does not change under all of the

invariant transformations we care about, then we can simply use chart coordinates to represent manifold points in

all our operations, much like we use tuples of real numbers in R3 to represent points in three-dimensional euclidean

space. Finding a chart that has this property is often easy for linear vector spaces, but not for manifolds in general.

Geometrically speaking, it is fairly easy to see why this is so. An illustrative example is given in Figure 7.3.1. The

manifold S2 is inherently “curved”, and assigning 2-d coordinates to it amounts to an attempt to “flatten” the curved

space. This has two effects: it requires “tearing” of the sphere at some point (causing the chart to not be one-to-one

over the whole manifold), and it produces nonlinear distortions in the mapping process. These distortions cause chart

distance to be different after a transformation, even when actual manifold distance is not.

42

Figure 7.3.2: An illustration of the tangent space to a manifold point. Any curve γ (t) (black line) on the manifold passing
through a point can be differentiated with respect to time, and the resulting vector dγ(t)

dt (red) resides in the tangent space TxM
(blue grid).

Because of practical constraints such as this, we cannot simply use chart distance as a proxy for manifold

distance on general manifolds.

Fortunately, the notion of vector addition, and thus the standard definition of distance, can be generalized to

manifolds. To do this, we will define the tangent space to each point on the manifold, which is intuitively the set of

vectors which “point from” that base point to every other point on the manifold, just as the difference between two

points a and b in a vector space specifies a vector āb that “translates” from a to b.

The actual mapping which tells us the point b to which a particular tangent vector v based at a points is termed

the exponential mapping. Its inverse function, termed the logarithmic mapping, determines the vector v given a and

b. The former function is the manifold generalization of vector addition, while the latter is the generalization of vector

subtraction.

7.3.1 Tangent Space to a Manifold Point

Every point a on a manifold M has an associated tangent space, denoted TaM . The tangent space can

be thought of as representing the set of all possible velocities a manifold-valued curve γ (t) passing through a may

possess.

To see that this is the case, we can think of ourselves moving in time along the path γ (t) on a manifold M , as

shown (using S2 for ease of visualization) in Figure 7.3.2. Note that this function γ returns an abstract manifold point,

not the coordinates of this point in any particular chart. Suppose that at some time t0, we are located at the manifold

point γ0, so that γ0 = γ (t0). We can choose a chart that covers the point γ0 and other points that are close to γ0 (in the

temporal sense). We can then compose the abstract function γ with the chart’s mapping φ to produce a new function

43

γφ (t). This function takes a scalar (time) to a vector in Rn (the coordinates of the abstract point γ (t) under the chart φ).

The function γφ is now a standard vector-valued scalar function, and each of its components can thus be differentiated

using ordinary calculus. This means that the velocity vector of the curve γφ can be computed at the point t0. The

key insight is that this velocity vector expresses in some sense a true, abstract property of the function γ , regardless

of the chart we choose. This is the case because we can convert the coordinates of the vector ∂γφ

∂ t , which depend on

chart φ , to the coordinates of the corresponding vector under some other chart ψ (which of course must also cover the

temporal neighborhood of interest around γ0), using the invertible, differentiable mapping between overlapping charts

mφψ . Recall that this mapping must by definition exist in order for the space to be a manifold: the use of mφψ here

highlights the key reason why this is the case. Since knowing a curve’s velocity at a point under a certain choice of

chart implies knowing its velocity at that point under any choice of chart, the velocity is not an arbitrary value: the

choice of chart is merely a choice of the representation of that velocity.

It is important to keep in mind that the tangent spaces at any two points on a manifold are two distinct spaces.

If we wish to compare vectors in different spaces, we must define some way of identifying vectors in these two spaces.

Put differently, we need a way to map vectors in some tangent space TxM to another tangent space TyM . One way to

do this is to use a differentiable function which takes the coordinates of some point x (expressed in some chart) to the

coordinates of another point y (also expressed in some chart):

f (x) = y. (7.3.1)

This function, then, would take any curve γφ passing through x to a corresponding curve ηψ passing through y:

γφ (0) = x, (7.3.2)

f
(
γφ (0)

)
= ηψ (0) = y. (7.3.3)

If this is the case, the Jacobian of the function f will be a linear operator mapping vectors in TxM to corresponding

vectors in TyM . To see that this is so, we need only find the time derivative of the new curve ηφ (t) evaluated at t = 0,

applying the chain rule:

dηψ (t)
dt

∣∣∣∣
t=0

=
d f
(
γφ (t)

)
dt

∣∣∣∣∣
t=0

=
∂ f (γ)

∂γ

∣∣∣∣
γ=x
·

dγφ (t)
dt

∣∣∣∣
t=0

. (7.3.4)

If we recall that the tangent space TxM was defined as the collection of all possible velocity vectors which a manifold-

valued curve could possess at point x, we see that dγφ (t)
dt

∣∣∣
t=0

is in fact such a vector: it is the velocity of the curve γφ

as it passes through the point x (at time 0). Likewise, dηψ (t)
dt

∣∣∣
t=0

is the corresponding vector in TyM , and we can see

from Equation 7.3.4 that they are linearly related by the Jacobian ∂ f (γ)
∂γ

∣∣∣
γ=x

of f . Thus we can see that the Jacobian of

any mapping taking one manifold point to another provides a linear mapping between the tangent spaces to those two

points.

44

7.3.2 Riemannian Manifolds and Manifold Distance

All of the tangent spaces to points on some n-dimensional manifold M are equivalent to Rn. If we define

an inner product operation on each tangent space, it becomes an inner product space. This allows us to talk about

the length of vectors in that space, or equivalently the instantaneous speed of any curve passing through that point. A

Riemannian manifold is a manifold which “smoothly” defines an inner product to every tangent space.

To be rigorous about the meaning of “smoothly” we must briefly introduce the concept of a vector field. A

vector field is a mapping that assigns a vector to each point in a vector space. More specifically, given the coordinates

of a point a in some vector space, the vector field gives the coordinates of a vector based at a. A vector field is

differentiable if the vector coordinates can be differentiated w.r.t. the vector space coordinates. We can define a

vector field on a manifold as well, by using the same argument we used to define the tangent space: the choice of a

chart lets us use the standard definition of a vector field, and where charts overlap, the overlap functions allow us to

convert vector components between them.

If a manifold M has an inner product 〈·, ·〉x defined on each of its tangent spaces TxM , then we can com-

pute the inner product between any two differentiable vector fields V1 and V2 at every point on the manifold as

〈V1 (x) ,V2 (x)〉x. This result is a scalar function taking the coordinates x of a manifold point (in some chart) to a

scalar value. If this function is differentiable with respect to x at every point x on M (no matter what the chart used)

then the manifold is by definition a Riemannian manifold.

Intuitively, a Riemannian manifold is thus the generalization of an inner product space: it allows us to define

manifold distance. We have seen that we can compute the velocity vector to a manifold-valued curve in any chart of

our choice. For a Riemannian manifold we can use the Riemannian metric to compute the length of any such vector.

This means that we can compute the instantaneous speed of a curve at a manifold point. By integrating this speed over

time, we can find the length of the curve over any time interval. This fact can be used to define distance: the distance

between point a and point b is defined to be the length of the shortest curve that begins at a and ends at b. The shortest

curve between two points is termed a geodesic.

Practically speaking, the inner product in the tangent space TxM at any point x on an N-dimensional Rie-

mannian manifold M is specified by an N×N Hermitian symmetric matrix. In practice, there are a number of ways

of assigning these matrices to points in M , all of which result in a Riemannian metric. The choice of which of these

Riemannian metrics is to be used must be made before any computation can be performed. As we have said previously,

we will typically require that certain geometric intuition holds, meaning that the distance between points should be

invariant under certain transformations. We will see shortly that this provides us with a meaningful way to choose a

particular Riemannian metric.

7.3.3 Geodesics and the Exponential and Logarithmic Mappings

In order to find out what the geodesic curves are for a particular manifold, we can conceptually use the

calculus of variations to set up a second order differential equation, the solutions to which are the geodesics (details

are given in [47]). It turns out due to the theory of second order differential equations that there is a one-to-one

45

correspondence between tangent vectors at a point and geodesic curves passing through that point (keeping in mind

that every geodesic curve has a particular speed). Intuitively, this correspondence gives us a way to get from the

tangent space TaM back onto the manifold M itself: it allows the definition of the exponential mapping expa (v),

which produces the point reached by traveling along the geodesic corresponding to v for unit time.

The mapping from TaM to M provided by expa (·) is one-to-one for the entire manifold except a set of

points known as the cut locus of a, which is the set of points where multiple geodesics leaving a meet. For example,

on the manifold S2, the cut locus of any point will be the antipodal point, since all geodesic curves leaving a are great

circles, and will intersect again at the antipodal point to a. The vectors in TaM corresponding to the cut locus points

form a set called the tangential cut locus. The exponential map is invertible everywhere except on the cut locus. In

this region, we can define the inverse of the exponential mapping which is termed the logarithmic mapping, denoted

loga (b). This mapping takes the endpoint of a geodesic and returns the corresponding tangent vector at a.

The logarithmic mapping at a specified point a maps manifold points near a to TaM , which is a vector space

and thus equivalent to Rn. This means that the logarithmic mapping can be considered the mapping function of a

chart, called the exponential chart based at a. This chart uses tangent vectors in TaM to represent points on M . If

we choose one point on M to be the origin, the exponential chart based there is termed the principal chart.

Note that the length of the vector v = loga (b) is by definition exactly the geodesic distance between a and

b. This is the case because the exponential mapping was defined using the geodesics, the same curves used to define

distance. This fact allows us to use the exponential and logarithmic mappings as generalized version of vector addition

and vector subtraction, respectively, since loga (·) allows us to find the vector “pointing from” a to b whose length is

the distance between them.

7.4 Respecting Distance Invariants on Manifolds

As we have discussed, it is important to have a way of measuring distance on the manifold that is invariant

under certain classes of transformations, so that our distance metrics accurately model physical intuition. We can do

this by choosing the Riemannian metric such that it is invariant to the group of transformations we are concerned with.

Following [47], we presume that the transformations under which distance should be invariant themselves belong to a

special type of differential manifold called a Lie Group.

A Lie Group G is a differentiable manifold which has defined a differentiable composition operator, here

denoted ◦, under which the elements of the manifold form a group. Among other things, this means that individual

elements g1,g2 ∈G of a Lie Group can be “multiplied” (composed) together to yield another element of the Lie Group:

g1 ◦g2 ∈ G . The differentiability of this operator can be defined in terms of any chart of choice, analogously with the

differentiability of a vector field on a manifold, as above. Because it is differentiable, the mapping f (g) = g1 ◦ g

defines an invertible linear mapping between the tangent spaces TgG and Tg1◦gG .

In practice, the geometric transformations under which distance is physically invariant are frequently mem-

bers of Lie Groups. For example, in many physical situations, distance is invariant to three-dimensional rotation and

46

linear translation: these operations correspond to the manifolds SO3 and R3 respectively, both of which are also Lie

Groups.

Thus, for every manifold M on which we wish to work, we must also specify the Lie Group G of transforma-

tions under which distance should be invariant. We assume that there is an action operator, denoted ?, by which group

operations can “act” on a manifold point to produce a manifold point. It is this group action under which we would

like distance to be invariant. We will require that this action distributes over composition between group members:

(g1 ◦g2)? f = g1 ? (g2 ? f)

= g1 ?g2 ? f . (7.4.1)

In some cases, the manifold itself is its own Lie Group. This is the case, for example, with both R3 and SO3. In R3,

distance should physically be invariant to linear translation, but since every linear translation can be identified with a

vector in R3, we have that M = G . Similarly, the angular distance between two orientations in SO3 should be invariant

to rotations, but every rotation is a member of SO3.

Since we have a group of operations under which distance is invariant, we will use this set of operations

to allow us to translate between manifold points. The Jacobian of these operations, then, give us a way to translate

vectors between tangent spaces. In practice this means that we can shift calculations on some tangent space TxM

to any other tangent space, perform them there, and shift the results back without worrying that the shifting process

affects the outcome. To this end, we will also require that the manifold is homogeneous under the group, meaning

that every manifold point x ∈M can be obtained by acting on the origin with some member fx ∈ G of the group. This

requirement allows us to associate with every manifold point a set Fx of group operations which take the origin to that

point:

Fx = { f ∈ G | f ?o = x} . (7.4.2)

This association allows us to choose (from this set) a single placement function fx ∈Fx for every manifold point x.

The inverse f−1
x of this placement function allows us to move from any point x on the manifold back to the origin,

and the inverse of the Jacobian of fx, denoted J (fx)
−1, allows us to translate vectors in any tangent space TxM into

corresponding tangent vectors on TOM , at the origin.

Because of the group structure of G , the set of all potential placement functions is a sub-group of the manifold

G (a subset which is also a group in its own right). G will always contain some operations which take the origin to

itself, and these operations will form a sub-group of G which we call the isotropy group, written I . If we have some

placement function fx which takes the origin to the point x, we can find another function that does the same by simply

composing this function with any function I ∈ I . Note that if the manifold M and the Lie group G are the same

space (as is the case with SO3), then the isotropy group has only a single member (the identity), and there is but a

single unique choice of placement function for each point, which is the point itself.

47

Given a choice of placement function for every point on a homogeneous manifold, we are now ready to

choose a Riemannian metric which is invariant under the action of points in G . Our strategy is to choose the matrix

QO which defines the Riemannian metric at the origin, allowing us to define the length of any vector in the principal

chart, and thus the distance of any point from the origin. This length is computed as:

len(vO) =
√
〈vO,vO〉O =

√
vT

OQOvO. (7.4.3)

Since the placement function fx takes the origin to the point x, it’s Jacobian evaluated at the origin:

J (fx) =
∂ fx ? e

∂e

∣∣∣∣
e=O

(7.4.4)

is a linear mapping from TOM to TxM . With this mapping, we can define the inner product on any tangent space

TxM by first mapping vectors back to T0M and then applying the inner product in TOM :

〈vx,wx〉x
.
=

〈
J−1 (fx)vx,J−1 (fx)wx

〉
O

= vT
x J−T (fx)QOJ−1 (fx)︸ ︷︷ ︸

Gx

wx

= vT
x Qxwx. (7.4.5)

.

By defining the Riemannian inner product in this way, we can in many cases guarantee that the inner product

between two vectors is invariant to the action of any group element g. To see when this is possible, we can examine

the inner product between two vectors under the action of some g ∈ G :

〈
vg?x,wg?x

〉
g?x

.
=

〈
J−1 (fg?x)vg?x,J−1 (fg?x)wg?x

〉
O

=

〈
J−1 (fg?x)

∂g?�
∂�

∣∣∣∣
�=x

vx,J−1 (fg?x)
∂g?�

∂�

∣∣∣∣
�=x

wx

〉
O

(7.4.6)

recall that by definition,

J (fg?x) =
∂ fg?x ? e

∂e

∣∣∣∣
e=O

. (7.4.7)

Furthermore, since fg?x takes the origin to the point g?x, it will necessarily be equal to g◦ fx ◦ I, for the proper choice

of I ∈I , the isotropy group. This is the case because the operation g◦ fx, which is a member of G , takes the origin

to the point g ? x. Hence, as discussed in it must differ from fg?x only by composition with a member of I (which

may simply be the identity mapping), since the set Fx defined above contains all functions in G taking the origin to

48

the point x, and its members differ only by composition with members of I . This, then, means that we can write:

J (fg?x) =
∂ (g◦ fx ◦ I)? e

∂e

∣∣∣∣
e=O

=
∂g? (fx ? (I ? e))

∂e

∣∣∣∣
e=O

=
∂g?�

∂�

∣∣∣∣
�=x
· ∂ fx ?4

∂4

∣∣∣∣
4=O
· ∂ (I ? e)

∂e

∣∣∣∣
e=O

=
∂g?�

∂�

∣∣∣∣
�=x
· J (fx) · J (I) , (7.4.8)

J−1 (fg?x) = J−1 (I) · J−1 (fx) ·
∂g?�

∂�

∣∣∣∣
�=x

−1

(7.4.9)

substituting 7.4.9 back into 7.4.6, and simplifying, we obtain:

〈
vg?x,wg?x

〉
g?x =

〈
J−1 (I)J−1 (fx) · vx,J−1 (I)J−1 (fx)wx

〉
O

= vT
x J−T (fx)J−T (I)QOJ−1 (I)J−1 (fx)wx. (7.4.10)

In order for this to be equal to Equation 7.4.5, a sufficient condition is that:

J−T (I)QOJ−1 (I) = Q0 (7.4.11)

for any choice of I ∈I .

We will need to take care to verify that Equation 7.4.11 hold on any manifolds we work on, for whatever

distance metric QO we choose. Fortunately, as we have discussed, the isotropy group I always contains only the

identity mapping if the manifold M is its own Lie Group. This means that for Lie Groups like SO3 and SE3, Equation

7.4.11 is always satisfied, regardless of the value of QO. On other manifolds, we may need to carefully select a value

of QO to satisfy this condition, and in some cases it may simply not be possible to choose a Riemannian metric that is

invariant.

7.5 The Principal Chart of a Manifold

The exponential and logarithmic mappings take tangent space vectors to abstract manifold points and back

again. In order to actually express and use these functions, they must be made to express manifold points using some

particular chart. There are multiple ways to do this, but a particularly parsimonious way is to use the manifold’s

principal chart. If we do this, the coordinates of the tangent space vector from O to some point x are also the chart

coordinates of that point x on the manifold. This means that both the exponential and the logarithmic mappings are

identity if the base point is the origin. This convenient mapping simplifies a number of operations.

In order to numerically express the exponential and logarithmic mappings based at some other point x, we

can proceed much as we did for the Riemannian metric. Between any point x and any other point y, there is a geodesic

49

curve whose velocity vector at x is the vector logx (y). Mapping this curve through any group operations will not alter

this vector, as we showed in the last section. Therefore, we will map the curve through the inverse of the placement

function of x, f−1
x , compute the logarithm at the origin, and then map the resulting vector back to TxM , using J (fx):

logx (y) = J (fx) log f−1
x ?x

(
f−1
x ? y

)
= J (fx) logO

(
f−1
x ? y

)
(7.5.1)

= J (fx)
(

f−1
x ? y

)
(7.5.2)

where Equation 7.5.2 follows from 7.5.1 since logO is the identity mapping.

We can safely perform these operations precisely because the distance metric was chosen such that group

action operations like f−1
x ?� preserve distance, and therefore preserve geodesics, which are defined as minimum

distance curves. To make this more rigorous, consider that there is exactly one geodesic curve γ which joins the point

x with the point y in unit time: that is, γ (0) = x and γ (1) = y. The image of this curve under f−1
x is some other curve

η , and we know by definition of f−1
x that η (0) = O and η (1) = f−1

x ? y. The logarithmic function logO
(

f−1
x ? y

)
will by definition find the time derivative of the unique geodesic curve joining η (0) and η (1), which is a tangent

vector in TOM . Because f−1
x is a member of G , and the image of a geodesic curve under any member of G is also a

geodesic, the curve η is a geodesic, and therefore must be precisely the geodesic joining the points η (0) and η (1).

The tangent vector logO
(

f−1
x ? y

)
, then, is precisely the time derivative of the geodesic curve η (t) at t = 0. Therefore,

multiplication by J (fx) =
∂ fx?e

∂e

∣∣∣
e=O

will necessarily convert this time derivative into the time derivative of the original

curve γ (t) at t = 0:

∂ fx ? e
∂e

∣∣∣∣
e=O

dη (t)
dt

∣∣∣∣
t=0

=
∂ fx ? e

∂e

∣∣∣∣
e=O

d f−1
x ? γ (t)

dt

∣∣∣∣
t=0

=
∂ fx ? e

∂e

∣∣∣∣
e=O

∂ f−1
x ?�
∂�

∣∣∣∣
�=x

dγ (t)
dt

∣∣∣∣
t=0

= J (fx)J
(

f−1
x
) dγ (t)

dt

∣∣∣∣
t=0

= J (fx) J (fx)
−1 dγ (t)

dt

∣∣∣∣
t=0

=
dγ (t)

dt

∣∣∣∣
t=0

. (7.5.3)

Similarly for the exponential, we can map a vector vx back to the origin using J (fx)
−1, apply the exponential

mapping (identity) and then transform the result using fx:

expx (vx) = fx ? exp f−1
x ?x

(
J (fx)

−1 vx

)
= fx ? expO

(
J (fx)

−1 vx

)
(7.5.4)

= fx ?
(

J (fx)
−1 vx

)
. (7.5.5)

50

In terms of implementation, Equations 7.5.2 and 7.5.5 work because the group action operator ? is parame-

terized such that its input and output are both expressed in the principal chart. This means that we must find the way

to express this operation in this fashion for a manifold/group pair in order to use this technique. For example, as we

shall see in Chapter 9, the principal chart representation of SO3 is the rotation vector parameterization (unit-length axis

of rotation scaled by angle of rotation). We will therefore need a way to compose two such rotation vectors directly.

Furthermore, our implementation must be differentiable, so that quantities like J (fx) can be computed.

Of course, not every point on a general manifold can be represented by a single chart. It will be important,

therefore, to examine what the cut locus of the principal chart is. For many manifolds of interest, including SO3 and

S2, the cut locus is a single point, the antipodal point to the origin. We will in general simply use principal chart

coordinates as though they were a global covering of the entire manifold, since the cut locus will in general be a single

point, and thus have null measure. See Chapter 11 in Section III for further discussion.

7.6 Vector Spaces Are Also Manifolds

Note that all vector spaces are also manifolds, and all of the developments here apply to vector spaces as well.

By way of a common example, suppose that the manifold M is in fact Rn. In this case, the chart mapping φ is simply

the identity mapping, the exponential mapping is vector addition, and the logarithmic mapping is vector subtraction.

Since the exponential mapping has no cut locus, the logarithmic mapping is everywhere defined. This means that the

tangent space at a is in fact just a copy of the space Rn with its origin at a, and every point in M corresponds to a

point in TaM trivially.

7.7 Probability and Mahalanobis Distance on Manifolds

A Riemannian metric on a manifold can be used to define a measure (volume metric) dM which can be used

to integrate real-valued functions of manifold coordinates:

ˆ
f (x)dM . (7.7.1)

The availability of a measure, in turn, allows us to define probability density functions on manifolds.

Defining the moments of a pdf on a manifold is somewhat more complicated. Mean is typically defined:

x =

ˆ
xdM , (7.7.2)

but this definition requires the use of vector addition. Fortunately, there are several alternative ways to define mean

that coincide with this definition in the vector case. Pennec [47] uses the Frechet or Karcher mean, defined as the point

x about which covariance is minimized:

argmin
{
(logx (x))(logx (x))

T
}
. (7.7.3)

51

Note that the covariance is simply the mean outer product of vectors in TxM , which is a vector space: that is, we have

no difficulties using the standard definition of covariance (adapted to use logx (�) instead of (�− x)), since it naturally

lives on a tangent space. A simple recursive algorithm for the computation of mean value has been developed, and is

given in [46, 47].

A definition of Gaussian pdf that follows from this definition of dM is given in [46]. In our application,

we care less about the actual definition of the Gaussian pdf than we do about Mahalanobis distance, since the EKF

derivation does not assume that noise is Gaussian in nature, but only seeks to minimize a Mahalanobis distance metric.

The Mahalanobis distance is also easy to define, and is again simply the standard definition of Mahalanobis distance,

with vector subtraction replaced by the logarithmic map:

distMaha = (logx (x))Q−1 (logx (x)) . (7.7.4)

It is important to note that Mahalanobis distance is sometimes not invariant to group operations, even when other

invariant distance metrics can be found for a manifold. Note that in the definition given above, the log function is

defined using an invariant distance metric, and that Mahalanobis distance is defined in terms of this log function.

52

Chapter 8

Kalman Filtering on Manifolds

Having laid the foundation in Chapter 7 of the theoretical concepts of manifolds, we will now proceed to

derive the equations of the Manifold EKF. This derivation will follow the same process as the standard EKF derivation

in Chapter 6: we will first frame a cost function Sk (Xk) to be minimized, which will in general involve error vectors on

both the state and measurement manifolds. These error vectors, as we have discussed in Chapter 7, will be computed

by using the logarithmic mapping of their corresponding manifolds, rather than by vector subtraction in the coordinates

of a particular chart.

In implementing the Manifold EKF, as with any other filtering method, we will often encounter situations

where we wish to predict the current state from a previous state absent any new measurements. This corresponds to

the “time update” step employed by the typical EKF. There will also be the “measurement update” case, wherein a

new measurement collected at the current time is available, and what we term the “joint update” case which performs a

simultaneous time and measurement update. Each of these cases will need to be derived from a separate cost function:

we therefore will present cost functions for the time-only and joint update cases and present results for each. The

measurement-only case can be implemented by simply performing a joint update with the amount of time lapse set to

zero: i.e. by setting xk = xk−1, and letting fk (xk−1) be simply the identity function.

Given the cost function, we will seek to find the value of only the most recent state xk which minimizes this

cost function by using the Gauss-Newton iterative minimization technique:

∆xk = −
{

∂ 2Sk (Xk)

∂Xk∂Xk

}−1
∂Sk (Xk)

∂Xk

= −
{

∂ 2Sk (Xk)

∂Xk∂Xk

}−1

J (Xk) , (8.0.1)

we can then apply the resulting delta vector to the current estimate of xk to obtain a new one, x+k . This application will

be performed using the state manifold’s exponential mapping, rather than vector addition on a particular chart:

x+k = expxk
(∆xk) . (8.0.2)

As with the EKF, we will use Hk (Xk), the Gauss-Newton approximation of the Hessian, rather than the

actual Hessian matrix. We will therefore proceed to compute the the Jacobian J (Xk) of S, as well as H (Xk) and

its inverse, which we will denote Pk (Xk). Unlike the EKF, however, we will not require that only a single iteration

of the Gauss-Newton iterative procedure may be performed, but will allow the procedure to run for any given number

53

of iterations or until some convergence criteria are met. This means that we must compute the last row of the inverse

Hessian matrix Pk (Xk), rather than simply the last block column of that row. At the end of this chapter, Algorithms

8.1 and 8.2 provide a complete summary of the Manifold EKF filter equations.

8.1 Joint Update Case

8.1.1 Cost Function

To form a cost function analogous to equation 6.1.13 in Chapter 6, we desire to find the sum of the Maha-

lanobis error between (1) the current state and its value as predicted by the system dynamic function and (2) the actual

measured value and the measured value predicted by the system measurement function. We can form such a cost

function Sk, using the logarithmic mapping to find error vectors:

Sk (Xk) =
1
2

k

∑
i=1

(
logxi

(fi (xi−1))
)T Q−1

i
(
logxi

(fi (xi−1))
)

+
1
2

k

∑
i=1

(
logzi

(hi (xi))
)T R−1

i
(
logzi

(hi (xi))
)
. (8.1.1)

Re-writing this cost function recursively, we have:

Sk (Xk) =
1
2

Sk−1 (Xk−1)

+
1
2

(
logxk

(fk (xk−1))
)T

Q−1
k

(
logxk

(fk (xk−1))
)

+
1
2

(
logzk

(hk (xk))
)T

R−1
k

(
logzk

(hk (xk))
)
. (8.1.2)

Other than the replacement of vector subtraction with it’s generalization the logarithmic mapping, this cost function is

identical to that used by the EKF. This cost function applies to the general case where both dynamic motion (resulting

in a newly added state xk) and a measurement must be considered.

8.1.2 Computing the Jacobian J (Xk)

The Jacobian vector J (Xk) is a vector of the same length as Xk which represents the partial derivatives of

the cost function Sk (Xk) with respect to each element of Xk.

We will first compute the Jacobian of several pieces of the cost function, which will prove to be slightly

different than the corresponding portions of the EKF derivation.

The expression logxk
(fk (xk−1)) represents the state space error vector. It is the vector in the tangent space

at xk which points at fk (xk−1), the propagated version of the prior state. We will need the Jacobian of this expression

54

with respect to both xk and xk−1. Both of these Jacobians will be N×N matrices:

φk
.
=

∂ logxk
(fk (xk−1))

∂xk−1

=
∂ logxk

(f)

∂ f
· ∂ fk (xk−1)

∂xk−1
, (8.1.3)

Fk
.
=

∂ logxk
(fk (xk−1))

∂xk
. (8.1.4)

Note that φk and Fk allow us to map changes in xk−1 and xk, respectively, into changes in the state space error vector.

We will also find it convenient to define a larger N× kN matrix containing φk :

Φk
.
=
[

0N×(k−1)N φk

]
. (8.1.5)

Similarly, logzk
(hk (xk)) is the measurement space error vector, the vector in the tangent space TzkZ which

points at hk (xk), the estimated measurement value. We will need the Jacobian of this expression with respect to xk.

This Jacobian will be an M×N matrix:

Hk
.
=

∂ logzk
(hk (xk))

∂xk

=
∂ logzk

(h)

∂h
· ∂hk (xk)

∂xk
. (8.1.6)

Recall that the cost function is given by:

Sk (Xk) =
1
2

Sk−1 (Xk−1)

+
1
2

(
logxk

(fk (xk−1))
)T

Q−1
k

(
logxk

(fk (xk−1))
)

+
1
2

(
logzk

(hk (xk))
)T

R−1
k

(
logzk

(hk (xk))
)
. (8.1.7)

As with the EKF derivation in Section 6, we will break up the Jacobian into derivatives w.r.t. Xk−1 and xk:

Jk =
∂Sk (Xk)

∂Xk
=

 ∂Sk(Xk)
∂Xk−1

∂Sk(Xk)
∂xk


=

 1
2

∂Sk−1(Xk−1)
∂Xk−1

+ΦT
k Q−1

k logxk
(fk (xk−1))

FT
k Q−1

k

(
logxk

(fk (xk−1))
)
+HT

k R−1
k

(
logzk

(hk (xk))
)
 . (8.1.8)

55

8.1.3 Computing the Approximate Hessian Hk (Xk)

The approximate Hessian of S (Xk) is a matrix of shape (k+1)N×(k+1)N which gives all the partial second

derivatives of S w.r.t. each element of Xk. We define the symbol Hk (Xk) to be the Gauss-Newton approximation to

this Hessian, which simply neglects all second order terms.

Recalling that the Jacobian of Sk is given by

Jk =
∂Sk (Xk)

∂Xk
=

 ∂Sk(Xk)
∂Xk−1

∂Sk(Xk)
∂xk


=

 Jk−1 (Xk−1)+ΦT
k Q−1

k logxk
(fk (xk−1))

FT
k Q−1

k

(
logxk

(fk (xk−1))
)
+HT

k R−1
k

(
logzk

(hk (xk))
)  , (8.1.9)

we can compute the derivative of Jk (neglecting second order terms) as:

∂Jk (Xk)

∂Xk
=

 ∂ 2Sk(Xk)
∂Xk−1∂Xk−1

∂ 2Sk(Xk)
∂Xk−1∂xk

∂ 2Sk(Xk)
∂xk∂Xk−1

∂ 2Sk(Xk)
∂xk∂xk


=

 1
2

∂ 2Sk−1(Xk−1)
∂Xk−1∂Xk−1

+ΦT
k Q−1

k Φk ΦT
k Q−1

k Fk

FT
k Q−1

k Φk FT
k Q−1

k Fk +HT
k R−1

k Hk

 (8.1.10)

which is simply the approximated Hessian:

Hk =

 Hk−1 (Xk−1)+ΦT
k Q−1

k Φk ΦT
k Q−1

k Fk

FT
k Q−1

k Φk FT
k Q−1

k Fk +HT
k R−1

k Hk

 . (8.1.11)

8.1.4 Computing the Inverse Hessian Pk (Xk)

As shown in equation 8.0.1, computing ∆xk requires the inverse Hessian, not the Hessian itself. Since we are

interested only in updating the most recent state xk and not the entire past history Xk, we need only compute the last

row of the block inverse Hessian.

The inverse Hessian matrix is a first-order approximation of the covariance matrix of the error of a least-

squares estimator. We will therefore call the inverse of the approximate Hessian (the covariance of Xk) Pk:

Pk
.
= H −1

k . (8.1.12)

The lower right sub-block of this matrix is (to first order) the covariance of xk, and will be denoted Pk:

Pk
.
=
{
H −1

k

}
(2,2) . (8.1.13)

Because the EKF performs only a single iterative step, it need only compute Pk. The Manifold EKF, by

contrast, will iterate until convergence, meaning that we will be interested in computing both
{
H −1

k

}
(2,1) and Pk,

56

which together constitute the last block row of Pk. We will first proceed to compute the former, as it will turn out that

the latter is simply a sub-term.

8.1.4.1 Computing
{
H −1

k

}
(2,1)

Recalling the GN-approximate Hessian for the full case, and identifying terms as in Lemma 1:

Hk =


Hk−1 (Xk−1)+Φ

T
k Q−1

k Φk︸ ︷︷ ︸
A

Φ
T
k Q−1

k Fk︸ ︷︷ ︸
B

FT
k Q−1

k Φk︸ ︷︷ ︸
C

FT
k Q−1

k Fk +HT
k R−1

k Hk︸ ︷︷ ︸
D

 , (8.1.14)

we can easily compute the (2,1) term of H −1
k to be either

{
H −1

k

}
(2,1) = −

(
FT

k Q−1
k Fk +HT

k R−1
k Hk

)−1
FT

k Q−1
k Φk · Hk−1 (Xk−1)+ΦT

k Q−1
k Φk

−ΦT
k Q−1

k Fk
(
FT

k Q−1
k Fk +HT

k R−1
k Hk

)−1
FT

k Q−1
k Φk

−1

(8.1.15)

or

{
H −1

k

}
(2,1) = −

 FT
k Q−1

k Fk +HT
k R−1

k Hk

−FT
k Q−1

k Φk
(
Hk−1 (Xk−1)+Φ

T
k Q−1

k Φk
)−1︸ ︷︷ ︸ΦT

k Q−1
k Fk


−1

·

FT
k Q−1

k Φk
(
Hk−1 (Xk−1)+Φ

T
k Q−1

k Φk
)−1︸ ︷︷ ︸ (8.1.16)

depending on which portion of Lemma 1 we choose to use. We will prefer the latter form, equation 8.1.16.

A number of simplifications can be made to equation 8.1.16. The indicated last factor can be altered using

Lemma A.2, and recalling the definition of Pk = H −1
k to give:

(
Hk−1 (Xk−1)+Φ

T
k Q−1

k Φk
)−1

= Pk−1 +Pk−1Φ
T
k
(
−Qk−ΦkPk−1Φ

T
k
)−1

ΦkPk−1

= Pk−1−Pk−1Φ
T
k
(
Qk +ΦkPk−1Φ

T
k
)−1

ΦkPk−1

= Pk−1−Pk−1Φ
T
k
(
Qk +ΦkPk−1Φ

T
k
)−1

ΦkPk−1. (8.1.17)

Furthermore, recalling that Φk is a N× kN matrix which is zero except for the last length N block column, and that

Pk−1 is kN× kN we find that

ΦkPk−1Φ
T
k = φk {Pk−1}(2,2) φ

T
k = φkPk−1φ

T
k . (8.1.18)

Substituting 8.1.18 into equation 8.1.17 gives

(
Hk−1 (Xk−1)+Φ

T
k Q−1

k Φk
)−1

= Pk−1−Pk−1Φ
T
k
(
Qk +φkPk−1φ

T
k
)−1

ΦkPk−1. (8.1.19)

57

The term φkPk−1φ T
k is seen frequently, and in fact has particularly intuitive geometric meaning. Recalling

that φk is the Jacobian of the state error vector logxk
(fk (xk−1)) w.r.t. xk−1, we can see that this term is the first order

approximation of the covariance on this error vector induced by uncertainty in xk−1. We will denote this term by

P
′
k−1 = φkPk−1φ

T
k . (8.1.20)

Equation 8.1.19, in turn, can be substituted back into 8.1.16, which can then be again simplified with Equation

8.1.18 to obtain

{
H −1

k

}
(2,1) = −

 FT
k Q−1

k Fk +HT
k R−1

k Hk

−FT
k Q−1

k

{
I−P

′
k−1
(
Qk +φkPk−1φ

T
k
)−1
}

P
′
k−1︸ ︷︷ ︸Q−1

k Fk


−1

(8.1.21)

·FT
k Q−1

k

{
ΦkPk−1−P

′
k−1

(
Qk +P

′
k−1

)−1
ΦkPk−1

}
.

We will also find it convenient to define an identifier for the indicated term in Equation 8.1.21

Mk = FT
k Q−1

k

{
I−P

′
k−1

(
Qk +P

′
k−1

)−1
}

P
′
k−1, (8.1.22)

giving us:

{
H −1

k

}
(2,1) = −

(
FT

k Q−1
k Fk +HT

k R−1
k Hk−MkQ−1

k Fk
)−1

·FT
k Q−1

k

{
I−P

′
k−1

(
Qk +P

′
k−1

)−1
}

ΦkPk−1 (8.1.23)

= −
(
FT

k Q−1
k Fk +HT

k R−1
k Hk−MkQ−1

k Fk
)−1

·FT
k Q−1

k

(
I−P

′
k−1

(
Qk +P

′
k−1

)−1
)

φk {Pk−1}(2,1) . (8.1.24)

8.1.4.2 Computing Pk

As discussed, Pk is simply a sub-term in the computation of {Hk}(2,1). This can be seen by examining the

(2,2) sub-block of an inverse matrix from Lemma 1, and comparing the form to that of the (2,1) sub-block, which we

have already computed:

 A B

C D

−1

=

 A−1 +A−1B
(
D−CA−1B

)−1 CA−1 −A−1B
(
D−CA−1B

)−1

−
(
D−CA−1B

)−1︸ ︷︷ ︸CA−1
(
D−CA−1B

)−1︸ ︷︷ ︸
 . (8.1.25)

Note that the (2,1) sub-block contains the (2,2) sub-block as a factor. Finding the corresponding term in Equation

8.1.24, we have that:

Pk =
(
FT

k Q−1
k Fk +HT

k R−1
k Hk−MkQ−1

k Fk
)−1

. (8.1.26)

58

8.1.5 Total Filter Update Equations

Now that we have computed the relevant terms, we can return to Equations 8.0.1 and 8.0.2. These equations

will in general need to be iteratively applied.

We can iteratively compute new estimates for xk by using Gauss-Newton update steps, recalling that the

update computed at each step must be applied using the manifold’s exponential mapping:

X+
k = expX−k

(
−H −1

k Jk
)
. (8.1.27)

As discussed, we will only update xk, giving

x+k = expx−k

(
−
{
H −1

k

}
(2,:)Jk

)
. (8.1.28)

We can now substitute the values of Jk and H −1
k into Equation 8.0.1 and 8.0.2 to yield

x+k = expx−k


−
[{

H −1
k

(
X−k
)}

(2,1) Pk
(
X−k
)]

·

 Jk−1 (Xk−1)+ΦT
k Q−1

k logxk
(fk (xk−1))

FT
k Q−1

k

(
logxk

(fk (xk−1))
)
+HT

k R−1
k

(
logzk

(hk (xk))
) 

 . (8.1.29)

As with the EKF derivation above, we assume that Sk−1 was actually minimized by X̂k−1, meaning that Jk−1
(
X̂k−1

)
is zero. This gives us:

x+k = expx−k

(
δxk

)
, (8.1.30)

where

δxk = −
{
H −1

k

(
X−k
)}

(2,1) Φ
T
k Q−1

k logxk
(fk (xk−1))︸ ︷︷ ︸

−Pk
(
X−k
)(

FT
k Q−1

k

(
logxk

(fk (xk−1))
)
+HT

k R−1
k

(
logzk

(hk (xk))
))

. (8.1.31)

59

The first term (indicated) in the expression for δxk can be simplified by recalling Equations 8.2.4 and 8.1.26:

{
H −1

k

(
X−k
)}

(2,1) Φ
T
k Q−1

k logxk
(fk (xk−1))︸ ︷︷ ︸

= −PkFT
k Q−1

k

(
I−P

′
k−1

(
Qk +P

′
k−1

)−1
)

φk {Pk−1}(2,1) Φ
T
k Q−1

k logxk
(fk (xk−1))

= −PkFT
k Q−1

k

(
I−P

′
k−1

(
Qk +P

′
k−1

)−1
)

φkPk−1φ
T
k︸ ︷︷ ︸

P′k−1

Q−1
k logxk

(fk (xk−1))

= −Pk FT
k Q−1

k

(
I−P

′
k−1

(
Qk +P

′
k−1

)−1
)

P
′
k−1︸ ︷︷ ︸

Mk

Q−1
k logxk

(fk (xk−1))

= −PkMkQ−1
k logxk

(fk (xk−1)) . (8.1.32)

Note our identifications of factors equivalent to P
′
k−1 and Mk as defined in equations 8.1.20 and 8.1.22 respectively.

A summary of the equations for the joint update is given in Algorithm 8.1.

8.2 Time-only Update

It is sometimes the case that we wish to propagate our state estimate forward in time, without having new

measurements to incorporate. When this is the case, we can use a cost function which simply omits the last term in

Equation 8.1.2:

Sk (Xk) =
1
2

Sk−1 (Xk−1)

+
1
2

(
logxk

(fk (xk−1))
)T

Q−1
k

(
logxk

(fk (xk−1))
)
. (8.2.1)

This corresponds to performing a time update only: we add a new state xk, but do not apply any measurements based

on that state.

The Jacobian of this function is simply:

Jk =
∂Sk (Xk)

∂Xk
=

 ∂Sk(Xk)
∂Xk−1

∂Sk(Xk)
∂xk

 =

 1
2

∂Sk−1(Xk−1)
∂Xk−1

+ΦT
k Q−1

k logxk
(fk (xk−1))

FT
k Q−1

k

(
logxk

(fk (xk−1))
)

 . (8.2.2)

Unlike the joint case, the optimal value of xk, which will cause Jk to be zero, is readily apparent: simply

setting xk = fk (xk−1) will accomplish this. This means that we need not iterate to perform a time update, but can

simply compute the new value. However, as it is still useful to compute the covariance of the predicted estimate, we

will proceed to compute the approximate Hessian and its inverse.

60

Algorithm 8.1 Joint Time and Measurement update step for the Manifold Extended Kalman Filter
For a system with state xk, dynamic equations given by:

xk = fk (xk−1)

and measurement equations given by:
yk = hk (xk) .

We can perform a combined time and measurement update by repeatedly applying:

x+k = expx−k


PkMkQ−1

k

(
logxk

(fk (xk−1))
)

−PkFT
k Q−1

k

(
logxk

(fk (xk−1))
)

−PkHT
k R−1

k

(
logzk

(hk (xk))
)


until convergence, where

Pk =
(
FT

k Q−1
k Fk +HT

k R−1
k Hk−MkQ−1

k Fk
)−1

,

Mk = FT
k Q−1

k

(
I−P

′
k−1

(
Qk +P

′
k−1

)−1
)

P
′
k−1,

P
′
k−1 = φkPk−1φ

T
k

and

Fk
.
=

∂ logxk
(fk (xk−1))

∂xk
,

φk
.
=

∂ logxk
(fk (xk−1))

∂xk−1
=

∂ logxk
(f)

∂ f
· ∂ fk (xk−1)

∂xk−1
,

Hk
.
=

∂ logzk
(hk (xk))

∂xk
=

∂ logzk
(h)

∂h
· ∂hk (xk)

∂xk
.

8.2.1 Computing the Approximate Hessian Hk (Xk)

Similarly to the joint case, we can simply compute the approximate Hessian to be

Hk|k−1 (Xk) =

 Hk−1 (Xk−1)+ΦT
k Q−1

k Φk ΦT
k Q−1

k Fk

FT
k Q−1

k Φk FT
k Q−1

k Fk

 . (8.2.3)

8.2.2 Computing
{
H −1

k

}
(2,1)

Since the only difference between the time-only Hessian of Equation 8.2.3 and the joint Hessian of Equation

8.1.11 is the removal of the HT
k R−1

k Hk term in the (2,2,) sub-block, it is easy to show that
{
H −1

k

}
(2,1) is given by:

{
H −1

k

}
(2,1) = −

(
FT

k Q−1
k Fk−MkQ−1

k Fk
)−1

·FT
k Q−1

k

(
I−P

′
k−1

(
Qk +P

′
k−1

)−1
)

φk {Pk−1}(2,1) (8.2.4)

61

Algorithm 8.2 Time-only update step for the Manifold Extended Kalman Filter
For a system with state xk, dynamic equations given by:

xk = fk (xk−1)

and measurement equations given by:
yk = hk (xk) .

We can perform a time update by setting :

xk = fk (xk−1) .

The covariance estimate of xk is given by Pk:

Pk =
(
FT

k Q−1
k Fk−MkQ−1

k Fk
)−1

where

Mk = FT
k Q−1

k

(
I−P

′
k−1

(
Qk +P

′
k−1

)−1
)

P
′
k−1,

P
′
k−1 = φkPk−1φ

T
k

and

Fk
.
=

∂ logxk
(fk (xk−1))

∂xk
,

φk
.
=

∂ logxk
(fk (xk−1))

∂xk−1
=

∂ logxk
(f)

∂ f
· ∂ fk (xk−1)

∂xk−1
,

Hk
.
=

∂ logzk
(hk (xk))

∂xk
=

∂ logzk
(h)

∂h
· ∂hk (xk)

∂xk
.

which is simply Equation 8.1.24 with said term removed.

8.2.3 Computing Pk

As with the joint update, we observe that Pk is a factor in
{
H −1

k

}
(2,1): using the appropriate portion of

Equation 8.2.4, we have:

Pk =
(
FT

k Q−1
k Fk−MkQ−1

k Fk
)−1

. (8.2.5)

A summary of the equations for the joint update is given in Algorithm 8.2.

8.3 Measurement-only Update

The Kalman Filter implementation allows the time and measurement updates to be fully separated: a time

update followed by a measurement update produces the same result as if a joint update had been performed. For

the EKF, this is no longer the case. We will therefore elect to always perform joint updates. In some cases, it will

62

be necessary to store the value of the prior state xk−1 in addition to the time-propagated state xk|k−1. In this way, a

measurement update performed after a time update will simple discard xk|k−1, and perform a joint update.

8.4 Discussion

The above Manifold EKF equations follow generally from the same derivation process used for the Extended

Kalman Filter in Chapter 6. As discussed in that Chapter, the EKF makes what can be considered three important

approximations:

1. The EKF updates only the most recent state xk, not any prior states. This is equivalent to assuming that newly

available measurements give information only about the noise in the estimate of xk when in fact they also give

information about the noise in prior measurements.

2. The EKF assumes that the estimate of the last state xk−1 obtained by previous steps is the minimizer of the cost

function.

3. The EKF does not iterate until convergence.

The last of these approximations is not (or at least need not be) made by the Manifold EKF, and results in significant

improvement in its performance (see Chapter 10).

63

Chapter 9

Manifold EKF Implementation Examples

Chapter 8 provided the key derivation of the Manifold EKF equations. Actual implementation of the Manifold

EKF, however, requires numerical implementations of the basic manifold operations described in Chapter 7. In this

chapter, we provide examples of the process of implementing these specific operations for several manifolds of interest.

These will include the commonly used manifolds SO3 (rotations) and S2 (directions/bearings). We also include a

hybrid manifold which we term Fb3, which can be used to specify the state of a moving robotic platform equipped

with an inertial measurement unit. This manifold is the product of:

• position (R3)

• attitude (SO3)

• velocity (R3)

• Accelerometer biases (R3)

• Gyro biases (R3)

For each of these manifolds, we will:

1. Determine the parameterization of the manifold which corresponds to the principal chart

2. For manifolds which are also Lie groups, derive functions which operate on and return principal chart coordi-

nates:

(a) the composition operator on the group, and

(b) the inversion operator on the group.

3. For all manifolds, derive functions which operate on and return principal chart coordinates:

(a) the action (?) of the group on the manifold,

(b) the placement function fx which returns the group operation which takes the origin to a point, and

(c) the rescaling operator on the manifold.

4. Determine which Riemannian Metrics are invariant under the group action

64

These basic operations, once known, allow the logarithmic and exponential mappings to be computed as shown in

Equations 7.5.2 and 7.5.5 respectively, and enable implementation of the Manifold EKF.

Before proceeding with the examples, we note in this process we will find ourselves computing the derivative

of many scalar functions. Many of these functions have numerical instabilities when evaluated near zero, and therefore

we give a Taylor series approximation that can be used instead of the function. Except where otherwise noted, this

Taylor series expansion is about 0. The term O (�n) indicates a sum of discarded terms containing only powers of �

raised to the power of n or greater.

9.1 SO3 Under SO3

SO3 is the space of all orthogonal matrices with positive determinant. This means that SO3 is a surface in R9

(the general set of 3x3 matrices) which is defined by the following constraints:

RT R = I, (9.1.1)

|R| = +1. (9.1.2)

9.1.1 Principal Chart Representation

In order to determine the principal chart representation of SO3, we can think of a manifold valued curve R(t),

and differentiate Equation 9.1.1 for this curve. The goal is to find the form of Ṙ, the time derivative of a rotation, which

is of course a vector in T SO3. In particular, we wish to find TOSO3, the tangent space at the origin, as this space is

used as the principal chart. The constraint is thus:

R(t)RT (t) = I. (9.1.3)

Taking the derivative, we find:

d
dt

R(t)RT (t) = 0,

Ṙ(t)RT (t)+R(t) ṘT (t) = 0,

Ṙ(t)RT (t) = −R(t) ṘT (t) ,

Ṙ(t)RT (t) = −
(
Ṙ(t)RT (t)

)T
. (9.1.4)

Equation 9.1.4 shows that the matrix Ṙ(t)RT (t) is a skew-symmetric matrix, i.e. transposing and negation are the

same. Since every skew-symmetric matrix has only three independent values, we can write this as a vector r under the

so-called “hat operator”[35, chap. 2][45]:

Ṙ(t)RT (t) = r̂ (t) , (9.1.5)

Ṙ(t) = r̂ (t)R(t) (9.1.6)

65

where we define

ˆ
r1

r2

r3

 =


0 r3 −r2

−r3 0 r1

r2 −r1 0

 . (9.1.7)

Thus, every derivative of a function on SO3 is the product of a skew-symmetric matrix and a rotation matrix. Since we

are trying to discover the principal chart, we want the tangent space at the origin, meaning we set R(t) = I for t = t0.

This, then, gives us

Ṙ(t) = r̂ (t) , (9.1.8)

meaning that derivatives at the origin are simply skew symmetric matrices. In turn, this means that that principal chart

vectors can be identified with a 3-vector r. Geometrically, the vector r is termed a rotation vector, which is the axis of

rotation scaled by the angle of rotation[45].

9.1.2 Group Operations

SO3 is a Lie group, as well as a manifold, and therefore we will define the composition of two rotations and

the inversion of a rotation.

9.1.2.1 Composition

The composition of two rotations Rb and Ra are determined in the standard way by matrix multiplication:

Rb ◦Ra = RbRa. (9.1.9)

We need to be able to perform this composition on the principal chart representation of SO3, meaning that we need a

way to compose two rotation vectors directly. We will do this by first converting the rotation vectors to quaternions,

composing, and converting back to rotation vectors[69, Sec. 7.3.4]:

rb ◦ ra = r (q(rb)⊗q(ra)) . (9.1.10)

The functions r () and q() represent quaternion-to-rotation-vector and rotation-vector-to-quaternion transformations

respectively, while ⊗ represents quaternion composition[45]. The Jacobians of the composition function, then, are

given by:

∂ (rb ◦ ra)

∂ rb
=

∂ r (q)
∂q

· ∂ (qb⊗qa)

∂qb
· ∂q(rb)

∂ rb
(9.1.11)

66

and

∂ (rb ◦ ra)

∂ ra
=

∂ r (q)
∂q

· ∂ (qb⊗qa)

∂qa
· ∂q(ra)

∂ ra
. (9.1.12)

For the conversion of quaternions (assumed to be unit-length) to rotation vectors, we have[47, Sec. 7.3.4]:

r (q) = 2sign(q4) ·
arcsin(‖v‖)
‖v‖

v, (9.1.13)

∂ r (q)
∂q

=
[(

τI3x3 +ξ vvT
)
−2v

]
(9.1.14)

where

v =


q1

q2

q3

 , (9.1.15)

τ = 2sign(q4)
arcsin(‖v‖)
‖v‖

(9.1.16)

= 2sign(q4)

(
1+

1
6
‖v‖2 +O

(
‖v‖4

))
(9.1.17)

and

ξ = 2sign(q4)
‖v‖
√

1−‖v‖2− arcsin(‖v‖)

‖v‖3 (9.1.18)

= −2sign(q4)

(
2
3
+

1
5
‖v‖2 +O

(
‖v‖4

))
. (9.1.19)

For the conversion of rotation vectors to unit quaternions, we have[47, Sec. 7.3.4]:

q(r) = ±

 κr

cos
(
‖r‖
2

)  (9.1.20)

and

∂q(r)
∂ r

= ±

 κI3x3−λ rrT

− 1
2 κrT

 (9.1.21)

67

where

κ =
sin
(
‖r‖
2

)
‖r‖

(9.1.22)

=
1
2
− 1

48
‖r‖2 +O

(
‖r‖4

)
(9.1.23)

and

λ =
sin
(
‖r‖
2

)
‖r‖3 −

cos
(
‖r‖
2

)
2‖r‖2 (9.1.24)

=
1

24

(
1− ‖r‖

2

40

)
+O

(
‖r‖4

)
. (9.1.25)

Note that there is always a sign ambiguity, as q and −q represent the same rotation[45].

Finally, the quaternion composition operation is given by [45, eq. 172-174]

qb⊗qa =


qb4 qb3 −qb2 qb1

−qb3 qb4 qb1 qb2

qb2 −qb1 qb4 qb3

−qb1 −qb2 −qb3 qb4

qa

=


qa4 −qa3 qa2 qa1

qa3 qa4 −qa1 qa2

−qa2 qa1 qa4 qa3

−qa1 −qa2 −qa3 qa4

qb, (9.1.26)

with Jacobians given by

∂ (qb⊗qa)

∂qb
=


qa4 −qa3 qa2 qa1

qa3 qa4 −qa1 qa2

−qa2 qa1 qa4 qa3

−qa1 −qa2 −qa3 qa4

 (9.1.27)

and

∂ (qb⊗qa)

∂qa
=


qb4 qb3 −qb2 qb1

−qb3 qb4 qb1 qb2

qb2 −qb1 qb4 qb3

−qb1 −qb2 −qb3 qb4

 . (9.1.28)

68

9.1.2.2 Inversion

The inverse of a rotation matrix R is found by taking the transpose, RT . This corresponds to negating the

first three elements of the corresponding quaternion. As can be seen from Equation 9.1.20, negation of the first three

elements of a quaternion is the same as negating the corresponding rotation vector r. Thus, the inversion operation is

given by:

r−1 =−r (9.1.29)

with a Jacobian given by:

∂ r−1

∂ r
= −I3x3. (9.1.30)

9.1.3 Manifold Operations

9.1.3.1 Placement Function

Since SO3 is both a manifold and the chosen Lie Group of invariant operations on itself, the isotropy group

I of operations which take the origin to itself is made up only of a single element, the identity. Thus, there is only a

single choice of placement function for each manifold point, which is the point itself.

9.1.3.2 Group Action

Because SO3 is its own Lie group, the action of SO3 on itself is simply defined to be the same as the compo-

sition operation.

9.1.3.3 Action on R3

When they are thought of as operations, elements of SO3 are perhaps most commonly used to rotate vectors

in R3. This operation is not strictly necessary for dealing with SO3 under SO3, but will be useful in our other example

manifolds.

The most straightforward way to compute the action of some rotation r on a vector x is to use the Rodriguez

formula to convert r back to a direction cosine matrix R, and then perform the matrix multiplication[69, Sec. 7.3.3.3]:

r ? x = R(r)x

=
(
I +α (θ) r̂+β (θ) r̂2)x (9.1.31)

where

θ = ‖r‖ , (9.1.32)

69

α =
sin(θ)

θ

≈ 1− θ 2

6
+O

(
θ

4) (9.1.33)

and

β =
1− cos(θ)

θ 2

=
1
2
− θ 2

24
+O

(
θ

4) . (9.1.34)

The derivative of this operation with respect to x is simply R:

∂ (r ? x)
∂x

= R(r) =
(
I +α r̂+β r̂2) , (9.1.35)

while the derivative with respect to r is given by[69, Sec. 7.3.3.3]:

∂ (r ? x)
∂x

= x̂
(
γ (θ)rrT +β r̂+αI3x3

)
− r̂x̂

(
δ (θ)rrT +2β I3x3

)
(9.1.36)

where

γ (θ) =
α̇

θ
=

(cos(θ)−α)

θ 2 (9.1.37)

=
1
3
− θ 2

30
+O

(
θ

4) (9.1.38)

and

δ (θ) =
β̇

θ
=

α−2β

θ 2 (9.1.39)

= − 1
12

+
θ 2

180
+O

(
θ

4) . (9.1.40)

9.1.3.4 Rescaling

Geometrically, the length of the rotation vector r is the angle by which to rotate about the unit-length axis

of rotation given by r
‖r‖ . There is thus an angle wrapping ambiguity, with a rotation vector r = (nπ +θ)v for some

unit-length v representing either r = vθ for even n or r = −vθ for odd n. As discussed in Chapter 7, the exponential

mapping is only invertible for points within the tangential cut locus, which for SO3 is a circle of radius π . Therefore,

for some applications, it will be important to implement a “rescaling” operation, which maps an r value with a length

greater than π to the corresponding vector with length < π .

70

In order to compute a rescaled vector, we must first determine the number of copies of 2π to subtract from

the length of the vector such that its absolute length is minimized:

k0 = argmin
k∈N
|‖r‖−2πk|=

⌊
‖r‖
2π

+
1
2

⌋
. (9.1.41)

With this value, we can compute[69, sec. 7.3.3.2] the rescaled vector rr:

rr =

(
1− 2πk0

‖r‖

)
r (9.1.42)

and its Jacobian:
∂ rr

∂ r
= I3x3 +

2πk0

‖r‖3 r̂2. (9.1.43)

9.1.4 Invariant Metrics

As discussed in Section 7.4, we need to verify that Equation 7.4.11 holds for whatever metric we choose for

the manifold. Reproducing that equation here for convenience, we must verify that:

J−T (I)QOJ−1 (I) = Q0 (9.1.44)

for any choice of I ∈I , a member of the isotropy group. For SO3, this is trivially verified for any choice of QO, since

I consists only of the identity rotation, whose Jacobian is the identity matrix.

9.2 S2 Under SO3

The manifold S2 is a very important space, as it can be used to represent 2-d measurements of direction

or bearing. EO/IR cameras are bearing-only sensors, and thus S2 is a natural manifold to use for camera-based

measurements.

The space S2 is a two-dimensional manifold, most readily visualizable as the unit-sphere embedded in stan-

dard 3-space. Distance on the unit-sphere is physically invariant to rotations of the sphere, meaning that we will choose

SO3 as the Lie Group of operations used to translate between points.

9.2.1 Principal Chart Representation

We must first determine what the nature of the tangent spaces to S2 are. Geometrically, it is obvious that

these tangent spaces are 2-d tangent planes to the sphere. To show this more rigorously, we can begin by viewing

S2 as a smooth surface constraint on coordinates in R3: S2 is the set of all points p ∈ R3 such that pT p = 1. If we

consider some curve ρ (t), where the function ρ (·) takes a time value t ∈ R to a unit length vector, we can compute

71

the derivative of the constraint at any point:

ρ
T (t)ρ (t) = 1, (9.2.1)

d
dt

ρ
T (t)ρ (t) =

d
dt

1, (9.2.2)

2ρ
T (t)

dρ (t)
dt

= 0, (9.2.3)

2ρ
T (t) ρ̇ (t) = 0. (9.2.4)

From the last equation, it is easy to see that at any point t, any valid value of the vector ρ̇ must be orthogonal to

the unit-length 3-vector ρ (t), meaning they must lie on the 2-d plane whose normal vector is ρ (t). Since ρ̇ (t) is by

definition the velocity vector to a manifold-valued curve, it is necessarily a member of the tangent space Tρ(t)S2. We

arbitrarily choose the origin of S2 to be the point
[

1 0 0
]T

, meaning that the tangent space to the origin in the

global parameterization is the set of all vectors of the form
[

0 a b
]T

for any a,b ∈ R. This 2-d tangent space is

TOS2, and is isomorphic to R2.

9.2.2 Global to Principal Chart Coordinate Conversions

Knowing the structure of the tangent space, we can choose a minimal 2-d coordinate representation for this

space. This representation can be fully specified by finding a function which takes a unit-length 3-vector to principal

chart coordinates, and vice versa.

9.2.2.1 Global to Principal Chart Coordinates

If we consider a global coordinate g:

g =
[

gx gy gz

]T
. (9.2.5)

Simply choosing the y and z coordinates of this vector gives us a 2-vector

v =
[

gy gz

]T
. (9.2.6)

The vector v could be used as the principal chart representation were it not for the fact that its length is not correct. As

we have seen, the length of the principal chart representation of a point must be the distance between the origin and

that point, which for S2 means it must be the angle θ between the vector g and the origin vector O =
[

1 0 0
]
.

This is (part of) what allows the logarithmic mapping to be used in lieu of vector subtraction to determine distance.

In fact, the length of the vector v is
√

g2
y +g2

z , which geometrically is easily seen to be equal to sin(θ).

Therefore, we must scale the vector v by θ

sin(θ) in order to find our principle chart coordinates. This operation is

trivial in most cases, but can be numerically unstable if θ is very close to either O or the antipodal point −O =[
−1 0 0

]
. In those cases, we can compute a Taylor series expansion of the function θ

sin(θ) about the points θ = 0

72

and θ = π . The former expansion is

θ

sin(θ)
≈ 1+

1
6

θ
2 +

7
360

θ
4 +O

(
θ

5
)
, (9.2.7)

while the latter is

π

sin(π)
≈ −1− π

(θ −π)
− π

6
(θ −π)− 1

6
(θ −π)2

+
7π

360
(θ −π)3− 7

360
(θ −π)4 +O

(
(θ −π)5

)
. (9.2.8)

Note that this value will become arbitrarily large as θ approaches π . Since the point −O is in fact the cut locus of S2,

the point where multiple geodesics meet and thus the point which has multiple coordinate values in the principal chart,

this is a convenient place for this numerical instability to be located: −O is already not uniquely representable.

The Jacobian of the principal chart coordinate vector p w.r.t. the global representation g is thus:

∂ p
∂g

=
∂

∂g
θ

sin(θ)
v (9.2.9)

=
θ

sin(θ)
∂v
∂g

+

(
(sin(θ)−θ cos(θ))

sin2
θ

)
v

∂θ

∂g
. (9.2.10)

It is helpful to note that

θ = arctan2(‖v‖ ,gx) , (9.2.11)

= arctan2
(√

g2
y +g2

z ,gx

)
(9.2.12)

and to further note that

‖v‖=
√

g2
y +g2

z = sin(θ) (9.2.13)

and

gx = cos(θ) . (9.2.14)

We can thus compute the derivative of θ w.r.t. g:

∂θ

∂g
=

∂arctan2(y,x)
∂y

·
∂

√
g2

y +g2
z

∂g
+

∂arctan2(y,x)
∂x

· ∂gx

∂g

=
gx

‖g‖2 ·
[

0 gy√
g2

y+g2
z

gz√
g2

y+g2
z

]
+
−
√

g2
y +g2

z

‖g‖2 ·
[

1 0 0
]

=
gx

‖v‖
·
[

0 vT
]
−‖v‖ ·

[
1 0 0

]
. (9.2.15)

73

Substituting this into Equation 9.2.10, we can find:

∂ p
∂g

=
θ

sin(θ)
∂v
∂g

+

(
(sin(θ)−θ cos(θ))

sin2
θ

)
v

∂θ

∂g

=
θ

sin(θ)
∂v
∂g

+

(
(sin(θ)−θ cos(θ))

sin2
θ

)
v
(

gx

‖v‖
·
[

0 vT
]
−‖v‖ ·

[
1 0 0

])
. (9.2.16)

Using equations 9.2.13 and 9.2.14, we have:

∂ p
∂g

=
θ

‖v‖

[
02x1 I2x2

]
+

(
(‖v‖−θgx)

‖v‖2

)(
gx

‖v‖
·
[

02x1 vvT
]
− ‖v‖

2

‖v‖
·
[

v 02x2

])

=
θ

‖v‖

[
02x1 I2x2

]
+

(
(‖v‖−θgx)

‖v‖3

)(
gx ·
[

02x1 vvT
]
−‖v‖2 ·

[
v 02x2

])
=

θ

‖v‖

[
02x1 I2x2

]
+

(
gx ‖v‖
‖v‖3 ·

[
02x1 vvT

]
− θg2

x

‖v‖3

[
02x1 vvT

]
−
[

v 02x2

]
+

θgx

‖v‖3 ‖v‖
2 ·
[

v 02x2

])

=
θ

‖v‖

[
02x1 I2x2

]
+

(
gx (‖v‖−θgx)

‖v‖3

)[
02x1 vvT

]
+

(
θgx

‖v‖
−1
)[

v 02x2

]
=

θ

‖v‖

[
02x1 I2x2

]
+

(
gx

‖v‖2 −g2
x

θ

‖v‖3

)[
02x1 vvT

]
+

(
gx

θ

‖v‖
−1
)[

v 02x2

]
.

=
θ

sin(θ)

[
02x1 I2x2

]
+

(
cos(θ)
sin2 (θ)

− cos2 (θ)
θ

sin3 (θ)

)[
02x1 vvT

]
+

(
θ cos(θ)
sin(θ)

−1
)[

v 02x2

]
. (9.2.17)

Note that this derivative doesn’t exist at the origin, when g =
[

1 0 0
]
, or θ = 0. This will cause difficulties in

evaluation of the Jacobian of the group action operation discussed in Section 9.2.3.2. The Jacobian at this point is

seldom needed, but we have found the following approximation, when used for this special case, to be functional in

practice:

∂ p
∂g

=

(
1+

1
6
‖v‖2 +0.075‖v‖4

)
I−
(

2
3
+0.2‖v‖2

)
vvT −

[
v 02×2

]
. (9.2.18)

9.2.2.2 Principal Chart to Global Coordinate Conversion

Given a principle chart vector, will see in Section 9.2.3.1 below how to find the rotation which takes the origin

to that point. We can thus find the global representation of a point by simply finding its placement function fp, and

74

then rotating the 3-vector
[

1 0 0
]

by that rotation:

pg = fp ?O

= fp ?


1

0

0

 . (9.2.19)

The derivative of this operation can be found by the chain rule:

∂ pg

∂ p
=

∂ pg

∂ fp
·

∂ fp

∂ p
. (9.2.20)

The former derivative factor is the derivative of the action of SO3 on R3, and is given in Section 9.1.3.3. The latter

derivative is the Jacobian of the placement function of S2, and will be given by Equation 9.2.23 below.

9.2.3 Manifold Operations

Since S2 is not a Lie Group [60], we need only examine its manifold operations: we have already discussed

the composition and inversion functions on SO3 above.

9.2.3.1 Placement Function

We will choose SO3 as the group G for this manifold, since intuition dictates that any rotation of the sphere

should not change physical distance on the sphere. The placement function fp corresponding to a sphere point p is

thus the rotation that takes the origin vector O =
[

1 0 0
]

to the global representation of the point p. As shown

in Figure 9.2.1, we can find a rotation which takes the origin to any sphere point by simply finding the cross product

75

Figure 9.2.1: Figure illustrating the choice of principal chart coordinates on S2. Point x0, the origin, has global coordi-
nates

[
1 0 0

]
. The principal chart vector pointing to any other point x1 has coordinates

[
a b

]
, such that a vector[

0 a b
]

(cyan) “points in the direction of” x1. The vector r is the rotation which takes the vector
[

1 0 0
]

to the
global coordinates of the point x1.

of the origin with a vector of the form
[

0 a b
]
, yielding another vector perpendicular to

[
1 0 0

]
:

fx =


1

0

0

×
 0

x



=


1

0

0

×


0

x1

x2



=


0 0 0

0 0 1

0 −1 0




0

x1

x2



=


0

x2

−x1

 , (9.2.21)

pc =

arctan
(√

g2
y+g2

z
gx

)
√

g2
y +g2

z

 gy

gz

 . (9.2.22)

76

The Jacobian of the placement function is straightforward to compute, and is given by:

∂

∂x
fx =


0 0

0 1

−1 0

 . (9.2.23)

9.2.3.2 Group Action

Physically, the action of a member of SO3 on a point in S2 is straightforward: if a point on the surface of the

sphere is identified with a unit-length 3-vector, then the action simply corresponds to the rotation of this vector about

the point
[

0 0 0
]
. As discussed in Chapter 7, we will require a 2-d principal chart representation of points on

S2, and will need to parameterize the group action operator so that its inputs and outputs are parameterized in terms of

principal chart coordinates. In order to express this action in terms of values expressed in the principal chart, we can

proceed by converting a principal chart value to its global representation (unit length 3-vector), rotate it, and then find

the principal chart coordinates corresponding to the rotated vector

r ? p = g2pc(r ?pc2g(p)) . (9.2.24)

The Jacobians of the group action, then, are easily found by the chain rule:

∂ r ? p
∂ p

=
∂g2pc(�)

∂�

∣∣∣∣
�=r?pc2g(p)

· ∂ (r ?4)

∂4

∣∣∣∣
4=pc2g(p)

· ∂pc2g(p)
∂ p

, (9.2.25)

∂ r ? p
∂ r

=
∂g2pc(�)

∂�

∣∣∣∣
�=r?pc2g(p)

· ∂ (r ?pc2g(p))
∂ r

. (9.2.26)

The only difficulty with these equations lies with the first factor: as we have seen, g2pc(�) is not differentiable when

�= O. This derivative will be evaluated at this point when the rotation r operating on a point p is in fact the inverse

of the placement function of that point, i.e. when r = f−1
p . This means that computing the logarithm of a point about

itself will require this computation. Fortunately, there is a straightforward way around this problem: The inverse of

the Jacobian of the placement function is equal to the Jacobian of the inverse placement function:

J−1 (fp)
.
=

∂ (fp ?�)

∂�

∣∣∣∣
�=O

−1

=
∂
(

f−1
p ?4

)
∂4

∣∣∣∣∣
4=p

= J
(

f−1
p
)
. (9.2.27)

The Jacobian of the placement function J (fp) of any point p will involve evaluation of the derivative ∂g2pc(�)
∂�

∣∣∣
�= fp?O=p

.

Provided that the point p is not itself the origin, this places the evaluation point � away from the singularity which ex-

ists there. Thus only the derivatives of computations close to logO (O) will require use of the approximation discussed

in Section 9.2.2.1.

77

9.2.3.3 Rescale Operation

Analogously to the rescale operation on SO3, we can re-normalize an S2 vector x by computing the number

of angular wraps:

k0 =

⌊
‖x‖
2π

+
1
2

⌋
, (9.2.28)

and then computing the rescaled vector as:

xr =

(
1− 2πk0

‖x‖

)
x. (9.2.29)

The Jacobian of this operation is given by:

∂xr

∂x
=

(
1− 2πk0

‖x‖

)
I2x2 +

2πk0

‖x‖3 xxT . (9.2.30)

9.2.4 Invariant Metrics

Unlike SO3, S2 is not a Lie group. Hence, it has a nontrivial isotropy group I of rotations which take the

origin to itself. In fact, the group I is the set of all rotations with a rotation vector of the form
[

a 0 0
]

for any

a ∈ R. The Jacobians J (I) of these group operations w.r.t. the S2 point being acted on are rotations about the x axis,

of the form

Rx (θ) =


1 0 0

0 cos(θ) −sin(θ)

0 sin(θ) cos(θ)

 . (9.2.31)

Thus, according to Equation 7.4.11

J−T (I)QOJ−1 (I) = Q0 (9.2.32)

which in this case will be

Rx (θ)QORT
x (θ) = QO. (9.2.33)

This equation is satisfied if QO = aI2x2 for any real number a; that is, if QO is isotropic. This is sufficient for many

applications.

9.3 Fb3: State Space for a Flying Vehicle in 3-space

We here define the space Fb3 as the set of all possible states of a flying vehicle.

A flying vehicle must keep track of its own position, attitude, and velocity, and typically will also estimate

the current bias value added to its onboard rate gyro and accelerometer sensors. We define Fb3 to have the following

states:

• position: a 3-vector in some “fixed” or “world” coordinate frame

78

• attitude: a member of SO3. When combined with position, this can be viewed as a member of the Lie Group

SE3[70, 71].

• velocity: 3-vector expressed in the body reference frame1

• gyroscope bias: additive bias to the rate gyro measurements, a member of R3.

• accelerometer bias: additive bias to the accelerometer measurements, a member of R3

9.3.1 Principal Chart Representation

Since it is in many ways simply a composition of multiple subspaces, all but one of which is simply R3,

determining the principal chart of Fb3 is quite straightforward: it is simply the concatenation of the principal chart

representations of its constituent manifolds. Thus, the principle chart representation of Fb3 is given by:

x =
[

pT rT vT bT
a bT

g

]T
(9.3.1)

where:

• p is the global position of the vehicle

• r is expressed in the principal chart of SO3, and describes the vehicle’s attitude

• v is the vehicle’s velocity vector, expressed in the body frame

• ba is the additive bias on the accelerometer measurements

• bg is the additive bias on the rate gyroscope measurements

Another equivalent way to regard Fb3 is to replace p and r with a frame representation f which represents a member

of SE3[70, 71].

9.3.2 Group Operations

Fb3 is composed entirely of manifolds which are Lie Groups, and is a Lie Group itself. We will therefore

define the operations of composition and inversion on Fb3.

9.3.2.1 Composition

To motivate the composition of Fb3 values, we will first examine the composition of SE3 values, in a mo-

tivating example which will be reused for the remainder of this section. Let us define a frame f1 =
[

tT
1 rT

1

]T
.

This frame is a member of SE3: it is an ordered trihedron of vectors with a common base point. It thus has a pose

(consisting of both a position and an orientation) and can be used to express the pose of a rigid body. We presume

1Of course, velocity need not be estimated or expressed in the body frame. The choice of what frame velocity is expressed in can have effects
on the definition of some of the basic manifold operations, in particular the action of Fb3 on itself.

79

the presence of a similar reference or world frame fg. The vector t1 is a vector pointing from the origin of fg to the

origin of f1, and its coordinates give the coordinates of f1 expressed in frame fg. The rotation vector r1 specifies the

orientation of f1, and is defined such that its action on a 3-vector expressed in fg produces a vector expressed in f1:

v f1 = r1 ? v fg . (9.3.2)

Now, consider that we have another frame f2 which is defined relative to f1. t2 is then the position vector pointing from

the origin of f1 to the origin of f2, expressed in f1’s coordinates. Similarly, r2 takes free vectors in f1’s coordinates

to the corresponding free vectors in f2’s coordinates. We define the composition operator2 on SE3 such that the

composition of f2 with f1 yields the expression of the frame f2 relative to the global frame fg:

ft = f2 ◦ f1
.
=

[
tT
t rT

t

]T
(9.3.3)

=
[(

t1 + r−1
1 ? t2

)T
(r2 ◦ r1)

T
]T

. (9.3.4)

Intuitively, we have rotated the vector t2, which was expressed in f1, such that it is now expressed in fg. We can then

add this result to t1, to find the location (relative to fg) of frame f2’s origin. Similarly, the composition of r2 and r1

gives the total rotation from frame fg coordinates to frame f2 coordinates.

The Jacobian of the composition operator on SE3 is straightforward to compute. We have that:

∂ ft
∂ f2

=

 ∂ tt
∂ t2

∂ tt
∂ r2

∂ rt
∂ t2

∂ rt
∂ r2


=

 ∂(r−1
1 ?t2)
∂ t2

03x3

03x3
∂ (r2◦r1)

∂ r2

 . (9.3.5)

Both of the nonzero blocks of this derivative matrices have been derived already in Section 9.1: the upper and lower

blocks can be found using Equations 7.4.9 and 9.1.11 respectively. Similarly, the Jacobian with respect to f1 is given

by:

∂ ft
∂ f2

=

 ∂ tt
∂ t1

∂ tt
∂ r1

∂ rt
∂ t1

∂ rt
∂ r1


=

 I3x3
∂(r−1

1 ?t2)
∂ r1

03x3
∂ (r2◦r1)

∂ r1

 . (9.3.6)

2This is certainly not the only way to define the composition operator on SE3, nor is it the way employed by [47]. This method, however, has
the advantage that it implies that the action of a frame f defined relative to some global frame fg on a 3-vector expressed in fg yields the same
geometric vector expressed in frame f .

80

We can extend this definition of the composition of two frames in SE3 to the composition of two Fb3 values

in a straightforward manner:

xt = x2 ◦ x1
.
=

[
(f2 ◦ f1)

T (v2 + v1)
T (ba2 +ba1)

T (bg2 +bg1)
T
]

(9.3.7)

=
[(

t1 + r−1
1 ? t2

)T
(r2 ◦ r1)

T (v2 + v1)
T (ba2 +ba1)

T (bg2 +bg1)
T
]
. (9.3.8)

The Jacobians of this operation with respect to both x2 and x1 is straightforward to find, given previous developments,

and are given by

∂xt

∂x2
=



∂ (f2◦ f1)
∂ f2

06x3 06x3 06x3

03x6 I3x3 03x3 03x3

03x6 03x3 I3x3 03x3

03x6 03x3 03x3 I3x3

 (9.3.9)

and

∂xt

∂x1
=



∂ (f2◦ f1)
∂ f1

06x3 06x3 06x3

03x6 I3x3 03x3 03x3

03x6 03x3 I3x3 03x3

03x6 03x3 03x3 I3x3

 , (9.3.10)

respectively.

9.3.2.2 Inversion

As with composition, the key to defining an inversion rule for Fb3 is to examine the corresponding rule on

SE3. The defining characteristic of the inversion function is that the composition of any frame f with its inverse f−1

should yield the origin:

f ◦ f−1 = O =
[

03x1 03x1

]T
. (9.3.11)

From this constraint, we can readily derive the inverse of a frame:

f−1 =
[
(r ?−t)T (−r)T

]T
. (9.3.12)

Intuitively, the inverse expresses the negative of t in the f frame, and uses the inverse of the frame’s rotation.

81

The Jacobian of the inverse is given by:

∂ f−1

∂ f
=

 ∂ (r?−t)
∂ t

∂ (r?−t)
∂ r

03x3
∂ (−r)

∂ r


=

 (− ∂ (r?τ)
∂τ

∣∣∣
τ=−t

) (
∂ (r?τ)

∂ r

∣∣∣
τ=−t

)
03x3 −I3x3

 . (9.3.13)

9.3.3 Manifold Operations

9.3.3.1 Placement Function

Since Fb3 is a Lie Group, its isotropy group I is a single identity element, meaning that its placement

function under itself is simply identity.

9.3.3.2 Group Action

Because Fb3 is its own group, the group action is the same as the composition operator we have already

described:

x2 ? x1
.
= x2 ◦ x1. (9.3.14)

9.3.3.3 Action of Fb3 on R3

In order to define the action of Fb3 on any vector v ∈ R3, we will first define the action of SE3 on R3. Since

we have opted to define the translational portion t of a frame f =
[

t r
]

to be expressed relative to a global frame,

this action is given by finding the vector from t to the vector’s endpoint, and then rotating the result:

f ? v .
= r ? (v− t) . (9.3.15)

This operation has an extremely intuitive interpretation: the action of a frame on a vector gives an expression of the

same geometric vector expressed relative to that frame.

The Jacobian of this operation is easily found with respect to f :

∂ (f ? v)
∂ f

=
[

∂ (f?v)
∂ t

∂ (f?v)
∂ r

]
=

[
− ∂ (r?y)

∂y

∣∣∣
y=v−t

∂ (r?y)
∂ r

∣∣∣
y=v−t

]
, (9.3.16)

and with respect to v:

∂ (f ? v)
∂v

=
∂ (r ? y)

∂y

∣∣∣∣
y=v−t

. (9.3.17)

82

The action of an Fb3 vector x on a vector v ∈R3 is most easily defined as being simply the action of its frame

on that vector:

x? v .
= fx ? v (9.3.18)

where

x .
=
[

f T vT bT
a bT

g

]T
. (9.3.19)

9.3.3.4 Rescaling

A member x =
[

tT rT vT bT
a bT

g

]T
of the manifold Fb3 has only a single element, r, for which

increasing the length by multiples of some value identifies the same point, the rescale operation of Fb3 is a straight-

forward extension of that of SO3:

rescale(x) =
[

tT
(

rescale(r)T
)

vT bT
a bT

g

]T
(9.3.20)

where rescale(r) is given by Equation 9.1.42. The Jacobian is given by:

∂ rescale(x)
∂x

=



I3x3 03x3 03x3 03x3 03x3

03x3
∂rescale(r)

∂ r 03x3 03x3 03x3

03x3 03x3 I3x3 03x3 03x3

03x3 03x3 03x3 I3x3 03x3

03x3 03x3 03x3 03x3 I3x3


(9.3.21)

where the (2,2) term of this block matrix is given by Equation 9.1.43.

9.3.4 Invariant Metrics

As with SO3, the Lie group nature of Fb3 ensures that any choice of inner product matrix in TOFb3 will result

in an invariant distance metric under the group action.

83

Chapter 10

Manifold EKF Performance

As discussed in Chapter 6, if we assume that the state and measurements of a system are members of vector

spaces, the suboptimality of the EKF can be thought of as deriving from three major sources:

1. The EKF attempts to solve a nonlinear optimization problem, meaning it may in general produce a local rather

than the global optimum.

2. The EKF allows updates to only the most recent system state, rather than the entire state history.

3. At each update step, the EKF performs only a single iteration of what optimally needs to be a multi-iteration

estimation process.

The first source of error in inherent in the nature of nonlinear estimation, and cannot in general be removed by any

practical estimator. If we assume that due to resource constraints only a single prior state may be stored and updated,

then the second source of error is likewise not removable.

If the state and/or measurements of a system are members of more general Riemannian manifolds, the EKF

has the additional problem of not inherently recognizing this portion of the system structure. Since the Manifoild EKF

solves this problem and is furthermore not limited to a single iteration at each update step, it in some sense represents

the best that can be done in terms of a filtering solution for manifolds. Further improvements over the Manifold EKF

will likely need to resort to methods which store and update multiple prior states.

Even if the Manifold EKF were optimal according to some cost function, the actual performance of the filter

in practice is a separate and highly relevant question. In this chapter, we present results demonstrating the performance

of the Manifold EKF. In Section 10.1 we present a series of simulated results which demonstrate that the Manifold EKF

is typically more consistent than other filter types in the case where state and measurement covariances are highly non-

isotropic. We then proceed in Section 10.2 to show simulated results for a rapidly and unpredictably moving camera,

comparing the Manifold EKF to a regular EKF using the same principal chart representation, demonstrating the benefit

of the Manifold EKF equations.

10.1 Consistency of Measurement Update

In order to assess the performance of the Manifold EKF, we simulate and compare the performance of each

of four filters in a simple experiment. This simple experiment consists of estimating the true platform body frame

bearing to a target of interest, given a (noisy) measurement of the target bearing in the frame of a rigidly attached

camera and perfect knowledge of the rotation between body and camera axes. A noisy prior estimate of this bearing

84

is also available. The state and measurement spaces of this system are thus both S2, and we here simulate only a

measurement update. Multiple Monte Carlo trials of but a single measurement update are performed, in order to

assess the relative performance of the measurement update of each of the four filters.

The four filters that are compared in this experiment use different parameterizations of the state space, but all

use the principal chart on S2 for the measurement space. These four filters are:

• simpleEKF: A straightforward EKF implementation, using a minimal spherical parameterization of the state

space. That is, the simpleEKF filter uses a particular set of chart coordinates as its state space representation

• simpleUKF: An unscented[72, 73, 74, 42] version of the simpleEKF filter, using the same state-space represen-

tation.

• constrainedUKF: the constrained unscented filter introduced in [42], which was discussed in Section 5.1.3.

This filter uses a 3-d vector as the state space, and constrains this vector to have unit norm.

• manifoldEKF: the Manifold EKF herein derived, which uses the principal chart of S2 as the state space.

10.1.1 Metrics

Consistency and conservativeness are important attributes of estimators. If an estimator is consistent, its

covariance estimate P is greater than or equal to the true covariance of its estimates x̂ about the true value x, [75]

satisfying:

E
[
(x− x̂)(x− x̂)T

]
≤ P. (10.1.1)

Intuitively, for a consistent estimator, the estimate of its own uncertainty of the state remains close to the true value,

and information from each new incoming measurement will be appropriately incorporated. When a filter becomes in-

consistent, it has a much higher probability of ignoring information in incoming measurements, because its artificially

small covariance estimate falsely indicates that the propagated state estimate from the prior time step is more reliable

than it really is (overconfidence). This can lead to filter divergence, wherein the state covariance becomes so small at

some point that the filter effectively ignores all incoming measurements thereafter, causing it to drift far from the true

value. Typically, a filter cannot recover from such divergence normally, and must be re-initialized.

Any estimate can be made consistent by, for example, setting P = aI, where a is a larger than the maximum

eigenvalue of the true covariance. Such an estimate, however, may not be very useful, as an unnecessarily large

covariance estimate effectively indicates that the estimate contains little information about the actual value. Thus, a

filter may be consistent but overly conservative. Ideally, a filter would give covariance estimates which were just large

enough for the filter to be consistent, but no larger.

One way to measure consistency in simulation is to compute a scaled version of the normalized estimation

error squared (NEES)[76, 77]. This amounts to the mean of the squared Mahalanobis error between the true state and

the state estimate:

85

errMaha = (x̂− x)T P̂−1 (x̂− x) , (10.1.2)

NEES = E
[
errMaha

]
= E

[
(x̂− x)T P̂−1 (x̂− x)

]
. (10.1.3)

For a consistent filter with gaussian state errors, the normalized squared error vector (x̂− x)T P̂−1 (x̂− x) will be a

sample from a chi-squared distribution with N degrees of freedom, where N is the dimension of the state vector x. The

mean of this squared value should thus be equal to N: we therefore divide the mean squared value by N to cause the

nominal value to be equal to 1, giving

SNEES =
1
N

NEES

=
1
N

E
[
(x̂− x)T P̂−1 (x̂− x)

]
. (10.1.4)

This Scaled NEES (SNEES) is an indicator of filter consistency: if it is greater than 1, the the average squared distance

of the true value from the mean estimate is greater that predicted by the covariance matrix P̂, hence the filter is

inconsistent. Conversely, a value less than one represents a conservative filter, and the closer to 1 this value is, the less

conservative (and hence more desirable) the estimates of that filter are.

Because of the way the Kalman Filter operates, the measurement update never causes an increase in the

covariance estimate. For this reason, there is a strong tendency for a filter, once it has an inconsistent estimate of the

current state, to continue to produce increasingly inconsistent results, and hence diverge. Thus, the more often a filter

produces inconsistent state estimates, the more often it is likely to diverge.

For our desired comparison between the four filters listed, we plot both the absolute RMS error between the

true state and a given estimate, and the NEES value.

10.1.2 Results and Discussion

The Manifold EKF update equations require an iterative procedure in order to converge to the correct value.

We experimented with the use of several different limits on the number of iterations the filter is allowed to perform.

We found that the number of iterations has a strong effect on Manifold EKF performance, but allowing more than

3 iterations did not contribute significantly to performance. All Manifold EKF results presented in this section were

obtained with 3 iterations in the measurement update.

It was found that both absolute error and SNEES varied significantly depending on the covariance of the prior

state estimate
(
P̂
)

and that of the measurement (R). To examine this effect, values of both the state covariance P̂ and

the measurement covariance R were generated whose maximum eigenvalue was 10× larger than their smaller eigen-

value, making the covariance matrices highly non-isotropic. Furthermore, covariances were generated with different

orientations, covering the range [0,π) in 5 degree increments. Thus, a set of 36 values of P̂ were generated which were

86

(a)

(b)

Figure 10.1.1: Examples of non-isotropic covariance matrices used in this experiment. Each sub-figure shows the covariance
of the pre-update (larger ellipse) and post-update (smaller ellipse) state estimates (left image), and the covariance of the
measurement (right image).

identical up to a rotation, and likewise for R, the measurement covariance. Some example P̂,R pairings are illustrated

in Figure 10.1.1. Every possible combination of these candidates was tried, resulting in 36× 36 = 1296 individual

trials. For each such trial, 100 Monte Carlo sub-trials with different measurement noise values were performed, and

the absolute and SNEES errors from the truth were recorded. The mean of these error metrics across the 100 Monte

Carlo sub-trials generates an average error metric for each of the 1296 trials. These average values are plotted in

Figure 10.1.2 for each of the four filters. Aggregate results are given in Table 10.1, which shows the percentage of

cases in which each filter had an SNEES value ≤1. That table also shows an inconsistency value for each filter, which

is the sum of the SNEES value over all inconsistent cases, divided by the number of such cases. This value gives some

relative indication of how badly each of the four filters become inconsistent.

87

Table 10.1: Aggregate consistency data for each of the four filters used.

filter % consistent cases inconsistency
simpleEKF 22.3 7540.4
simpleUKF 54.8 245.6

constrainedUKF 44.4 11.0
manifoldEKF 65.2 1.2

There are several notable conclusions which can be drawn from these results:

1. The manifoldEKF is not always consistent: there are many rotations of the P and R matrices which cause the

filter’s SNEES to be greater than one. This is to be expected, given that the manifoldEKF, like the EKF itself, is

a sub-optimal version of the complete least squares estimator.

2. The manifoldEKF is generally significantly more accurate than any of the other filters used. There are many

cases where other filters produce an estimate that is closer to the true value than the manifoldEKF’s, but the

manifoldEKF’s RMS error is usually between 0.02 and 0.06 radians, while the accuracy of other methods can

vary more widely depending on the rotation of the covariance matrices in a particular trial. (See Figure 10.1.2b).

3. The manifoldEKF is generally significantly more consistent than any of the other filters used. It’s mean Maha-

lanobis error is below 1.0 in more cases, and is consistently much smaller when it is above 1.0 (see Table 10.1).

Furthermore, the SNEES value is more tightly contained within a narrow band, while the consistency of the

other filters varies wildly: they are sometimes both consistent and less conservative than the manifoldEKF, and

sometimes wildly inconsistent.

10.2 Camera-In-Hand Performance Comparison

The results presented in Section 10.1 deal only with the performance of the measurement update of the

Manifold EKF under very specific circumstances. In order to give a broader feel for the Manifold EKF’s performance,

we will in this section present simulated results in a more complete problem setting.

Specifically we deal with a variation on the so-called “camera-in-hand” problem: a platform consisting of an

optical camera and an IMU is allowed to move through space with little knowledge of its motion dynamics. We use a

simple constant-velocity model for the system dynamics, presuming that the world-frame velocity of the platform is

altered over time by the addition of white random acceleration.

88

(a) full (b) zoomed

(c) full (d) zoomed

Figure 10.1.2: Average distance over 100 trials between truth and final filter estimate, for four filters: simpleEKF (magenta
squares), simpleUKF (orange triangles, facing down), constrainedUKF (red triangles, facing left), and manifoldEKF (green
stars). These results are for non-isotropic initial state and measurement covariances, where the larger eigenvector is 10× the
smaller in all cases. Each point on the x-axis represents a different rotation of the state and measurement covariances, in five
degree increments.

Sub-figures 10.1.2a and 10.1.2b give absolute error in radians, while sub-figures 10.1.2c and 10.1.2d give SNEES.
Sub-figures 10.1.2b and 10.1.2d are identical to 10.1.2a and 10.1.2c respectively, except that they are zoomed in the x
direction, in order to more clearly show typical values.

SNEES is defined such that a perfectly consistent filter would always give a value of 1.0 on these plots, while a con-
servative filter would have values <1, and any value greater than 1 indicates filter inconsistency. Note that, while the Manifold
EKF is not always consistent, it is consistent in significantly more cases than all the other filters, and tends to have lower
SNEES values even when it is inconsistent.

89

10.2.1 Simulation Methodology

10.2.1.1 True System Dynamics

The simulated true system generates acceleration and angular velocity values by integrating gaussian white

noise with a specified covariance. We used a standard deviation of 1 m
s3 for acceleration noise (jerk) and 1 rad

s2 for angular

velocity noise (angular acceleration). In addition, the true system has a certain probability of using 100 times this noise

level at any particular point. The probability of these random “course changes” was set to 0.5 for acceleration and

0.01 for angular velocity. This setup allows for sharp changes in the course of the system.

The principal chart representation used for the state, as discussed, is a minimal representation and will thus

have a cut locus. This can be problematic for the SO3 portion of the state, as a 180◦ rotation about the z axis is a cut

locus point. The system’s attitude is thus prevented from deviating from the origin by any rotation with magnitude

greater than π

2 : if this limit is ever about to be exceeded, the angular velocity is reversed in sign and multiplied by 0.5,

allowing the system to “bounce off” this attitude boundary. This simple setup keeps the system attitude away from the

singularity point of the principal chart representation. See Section 11.2.2 for a discussion of how future work could

eliminate the need for such precautions.

The acceleration and angular velocity measurements generated by the true system are corrupted by biases,

which biases are produced by integration of white noise (random walk). The driving random walk noise used is small,

with a standard deviation of 1×10−3 m
s2 for acceleration bias and π

180 ×10−3 rad
s for angular velocity bias.

10.2.1.2 Estimator System Dynamics

The state of this system is a member of the space Fb3 discussed in Chapter 9. We thus estimate the position

p, velocity v, and attitude r, in addition to accelerometer bias ba and gyro bias bg. The estimator performs a simple

integration of IMU inputs, with the dynamic equations given by:



p(t +∆t)

r (t +∆t)

v(t +∆t)

ba (t +∆t)

bg (t +∆t)


=



p(t)+∆t
(
(r (t))−1 ? v(t)

)
expr(t) (∆t (g(t)−bg (t)))

v(t)+∆t (a(t)−ba (t)+ r (t)?G)

ba (t)

bg (t)


(10.2.1)

where g(t) and a(t) represent the biased gyro and accelerometer measurements respectively, which are treated as

inputs, and G is the world-frame gravity vector, which is taken to be
[

0 0 −9.80665
]
. Note also the use of the

action (?) of the inverse attitude vector (r (t))−1 on v(t), which has the effect of mapping v(t) from the body frame

back to the inertial frame, and the exponential mapping based at r (t)
(

expr(t) (·)
)

, which properly updates the attitude

with the estimated bias.

90

10.2.1.3 System Measurements

A number of point targets, whose positions are a-priori known exactly by the system, are scattered throughout

the environment, and the camera on the platform makes a noisy measurement of the bearing to each visible target. The

measurements provided by the system are thus points in S2. The equations of this measurement process are given by:

xbt = rc ? r (t)? (T − p(t)) , (10.2.2)

m(t) = g2pc
(

xbt

‖xbt‖

)
(10.2.3)

where xbt is the camera-frame vector from the body origin to the target, T is the target location in inertial coordinates,

rc is a fixed rotation from the body frame to the camera frame, and g2pc is the conversion between a unit-length vector

and the principal chart representation of S2, given in Section 9.2.2.1. The body-to-camera rotation rc is chosen such

that the camera looks along the body-frame −z axis. The camera is chosen to have a circular field of view of 160 ◦.

In actual application, recognizing which target corresponds to a given bearing measurement, the so-called

data association problem, would be a significant portion of the effort required in the implementation of such a system.

As the data association and filtering problems are in many (though not all) ways separable from one another, and as

these results are intended to demonstrate the potential of the Manifold EKF, we make the common assumption that

the data association problem is perfectly solved, giving the simulated system perfect knowledge of the position of the

target associated with each bearing measurement.

10.2.2 Results and Discussion

We simulate the system by performing 20 Monte Carlo trials. Each trial consists of allowing the platform to

move within a virtual box 30 meters on a side, with targets placed randomly on each of the “walls” of the box. The

platform is allowed to move for two seconds. These run parameters were chosen such that the platform would always

be within the box, and would thus always be able to see some landmarks. This simulation is performed using the

Manifold EKF, as well as a regular EKF which uses the same parameterization. Thus, any performance differences

between the two filters will be due to the Manifold EKF equations, not simply to the principal chart representation

used.

In terms of results, we show the absolute error of the state estimate from truth for each of the twenty runs,

broken down by component (position error, attitude error, etc...), as well as the mean value of these errors across all

trials. We also show the scaled NEES of the state estimate for each of the trails, and the mean of this value across all

trials. In all cases, the Manifold EKF was limited to 3 iterations during each measurement update.

Several experiments were attempted, with different values of measurement uncertainty. With a small amount

of measurement noise, (standard deviation of 3 degrees) the results of the EKF and the Manifold EKF are comparable,

with the Manifold EKF having slightly less absolute error, especially in attitude, and being slightly more conservative.

Results for a measurement noise standard deviation of 20 degrees are given in Figures 10.2.1 and 10.2.2, for the

Manifold EKF and regular EKF respectively. In all of these plots, the x axis represents a sample number, with samples

91

(a) EKF (b) Manifold EKF

Figure 10.2.1: Absolute error by state component, for the for the modified “camera-in-hand” problem..

(a) EKF (b) Manifold EKF

Figure 10.2.2: Scaled NEES for the modified “camera-in-hand” problem.

being spaced by ∆t = 0.01 seconds. Individual Monte-Carlo trials are plotted as thin lines in various colors, and the

heavy dark lines represent the mean of these individual trials.

From these results, it is clear that the Manifold EKF offers significant benefit in terms of accuracy and

consistency that is due not to its parameterization of the space using the principal chart (since the EKF implementation

shares that parameterization), but to the structure of its update procedures. This benefit is much more pronounced

when there is high uncertainty in the measurements . Such results are to be expected, since the Manifold EKF performs

92

multiple iterations during its measurement update, allowing the nonlinear measurement equations to be more correctly

modeled by the filter.

93

Part III

Conclusion

94

Chapter 11

Conclusions and Future Work

11.1 Conclusions

This work presents two novel methods of estimating the state of a dynamic system. The first is an applica-

tion specific method for use with systems performing Visual Odometry in a mostly planar scene. The second is the

Manifold EKF, a generalized version of the Extended Kalman Filter which is explicitly designed to estimate manifold-

valued states. We have derived the Manifold EKF as a simplification of an optimal least squares estimator, and have

provided examples of the application of this filter to the commonly used manifolds SO3 and S2, as well as a space

encompassing SO3 which represents the state of a robotic vehicle. Our tests have demonstrated that the Manifold

EKF is advantageous in terms of consistency and error performance under certain conditions when compared to other

filtering methods. We feel that these promising results merit further study of the Manifold EKF, related filters, and

their properties.

11.2 Future Work

We here address a number of possible next steps in the development of the ideas introduced in this work.

11.2.1 Application to a Broader Array of Manifolds

The manifolds to which the Manifold EKF is applied in this work are some of the most common and straight-

forward, with the chief ones being SO3 and S2, and combinations of these with Rn. There are a number of other

manifolds to which this technique could be applied. It would be interesting to thoroughly study the use of the Mani-

fold EKF in tasks such as estimation of the essential matrix and/or homography matrices, both of which are manifold

quantities[35, 40]. More complicated applications like bearing-only SLAM would also be interesting applications to

study.

11.2.2 Removing Effect of Coordinate Singularity on Filter Performance

The Manifold EKF uses only principal chart coordinates to express the state. Since principal chart coordinates

are minimal, there will always be a set of cut locus points, to which multiple coordinates could be assigned. For

critically important manifolds like SO3 and S2, the cut locus is a set of null measure (a single point), and thus does not

pose a problem in terms of integration over the manifold surface [69]. However, this singularity can still lead to filter

instability. This work makes no attempt to remove this limitation. Numerically, these singularity points can often be

avoided by suitably defining the geometry of the problem, perhaps even doing so dynamically in a manner similar to

95

that used by the MEKF [78], where a separate “super-state” is kept which gives, in global coordinates, the location of

a floating base point, and the actual state stores error from this point. It would be interesting to numerically analyze

the effects of the cut locus, and determine the conditions under which it introduces numerical instability. Another

possibility is to use a non-minimal representation of the manifold but still implement the exponential and logarithmic

mappings (e.g. see [79]): it is certainly possible to use such a strategy for the Manifold EKF, though not using the

principal chart means that the exponential mapping based at the origin will in general no longer be identity.

11.2.3 Optimal Cost Function of the Manifold EKF

The Manifold EKF is expressly not optimal in terms of the cost function used to derive it, as given in Equation

8.1.2, as it only allows updating of the most recent state xk. Taking a cost function of the same form but with x0 through

xk−1 considered constants would also not produce the Manifold EKF. It would be interesting to find the cost function

under which the Manifold EKF is optimal, as this could shed light on the reasons for its performance improvements.

It would also be interesting to know how the performance of a filter which is optimal under some other cost function

would compare with that of the Manifold EKF.

96

Bibliography

[1] F. Daum, “Nonlinear filters: beyond the Kalman filter,” IEEE Aerospace and Electronic Systems Magazine,
vol. 20, pp. 57–69, Aug. 2005. 1, 25

[2] J. Humpherys and J. West, “Kalman Filtering with Newton’s Method,” IEEE Control Systems Magazine, vol. 30,
no. 6, pp. 101–106, 2010. 2, 24, 28, 29

[3] J. Humpherys, P. Redd, and J. West, “A Fresh Look at the Kalman Filter,” SIAM Review, 2012. 2, 24, 28, 29

[4] R. Beard, D. Kingston, M. Quigley, D. Snyder, R. Christiansen, W. Johnson, T. McLain, and M. Goodrich,
“Autonomous Vehicle Technologies for Small Fixed Wing UAVs,” AIAA Journal of Aerospace Computing, In-
formation, and Communication, vol. 2, Jan 2005. 4, 6, 17

[5] J. B. Saunders, B. Call, A. Curtis, R. W. Beard, and T. W. McLain, “Static and dynamic obstacle avoidance in
miniature air vehicles,” in AIAA 5th Aviation, Technology, Integration, and Operations Conference, Sep 2005. 4,
6

[6] D. B. Kingston and R. W. Beard, “Real-Time Attitude and Position Estimation for Small UAV’s Using Low-Cost
Sensors,” in AIAA Unmanned Unlimited Systems Conference and Workshop, (Chicago, IL), Sept 2004. 4, 6

[7] R. S. Christiansen, “Design of an Autopilot for Small Unmanned Aerial Vehicles,” Master’s thesis, Brigham
Young University, August 2004. 4, 6, 8, 17

[8] J. Volpe, “Vulnerability assessment of the transport infrastructure relying on the global positioning system,” tech.
rep., Office of the Assistant Secretary for Transportation Policy, U.S. Department of Transportation, Center, J.
A. V. N. T. S., Aug 2001. 4

[9] J. Kim and S. Sukkarieh, “Airborne Simultaneous Localisation and Map Building,” in Robotics and Automation,
2003. Proceedings. ICRA ’03. IEEE International Conference on, vol. 1, pp. 406–411 vol.1, 2003. 4, 5, 18

[10] M. Bryson and S. Sukkarieh, “Bearing-Only SLAM for an Airborne Vehicle,” in Australasian Conference on
Robotics and Automation, 2005. 4, 18

[11] J. Kim and S. Sukkarieh, “SLAM aided GPS/INS Navigation in GPS Denied and Unknown Environments,” in
The 2004 International Symposium on GNSS/GPS, 2004. 4

[12] J. Langelaan and S. Rock, “Passive gps-free navigation for small uavs,” in Proc. IEEE Aerospace Conference,
pp. 1–9, 2005. 4, 5

[13] A. J. Davison, I. D. Reid, N. D. Molton, and O. Stasse, “Monoslam: Real-time single camera slam,” vol. 29,
pp. 1052–1067, June 2007. 4, 5, 18

[14] F. Dellaert, S. Thrun, and C. Thorpe, “Jacobian Images of Super-Resolved Texture Maps for Model-Based Mo-
tion Estimation and Tracking,” in 1998 IEEE Workshop on Applications of Computer Vision, (Princeton, NJ),
pp. 2–7, IEEE Computer Society, October 1998. 5, 10, 11, 12

[15] F. Dellaert, C. Thorpe, and S. Thrun, “Super-Resolved Texture Tracking of Planar Surface Patches,” in 1998
IEEE/RSJ International Conference on Intelligent Robotic Systems, vol. 1, pp. 197–203, October 1998. 5, 10,
11, 12

[16] P. Corke, J. Lobo, and J. Dias, “An Introduction to Inertial and Visual Sensing,” The International Journal of
Robotics Research, vol. 26, no. 6, pp. 519–535, 2007. 5

97

[17] S. Roumeliotis, A. Johnson, and J. Montgomery, “Augmenting inertial navigation with image-based motion
estimation,” in 2002 IEEE International Conference on Robotics and Automation, vol. 4, pp. 4326–4333, 2002.
5

[18] D. D. Diel, “Stochastic Constraints for Vision Aided Inertial Navigation,” Master’s thesis, MIT, Jan 2005. 5

[19] D. S. Bayard and P. B.Brugarolas, “An Estimation Algorithm for Vision-Based exploration of small bodies in
space,” in 2005 American Control Conference, 2005. 5

[20] A. I. Mourikis and S. I. Roumeliotis, “A multi-state constraint kalman filter for vision-aided intertial navigation,”
in 2007 IEEE International Conference on Robotics and Automation, 2007. 5

[21] L. Armesto, J. Tornero, and M. Vincze, “Fast Ego-motion Estimation with Multi-rate Fusion of Inertial and
Vision,” The International Journal of Robotics Research, vol. 26, no. 6, pp. 577–589, 2007. 5

[22] T. Viéville, E. Clergue, and P. Facao, “Computation of ego-motion and structure from visual and inertial sensors
using the vertical cue,” in International Conference on Computer Vision, pp. 591–598, 1993. 6

[23] J. Domke and Y. Aloimonos, “Integration of Visual and Inertial Information for Egomotion: A Stochastic Ap-
proach,” in 2006 IEEE International Conference on Robotics and Automation, pp. 2053–2059, 2006. 6

[24] J. Lobo and J. Dias, “Vision and inertial sensor cooperation using gravity as a vertical reference,” IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, vol. 25, no. 12, pp. 1597–1608, 2003. 6

[25] J. Lobo and J. Dias, “Inertial sensed ego-motion for 3d vision,” Journal of Robotic Systems, vol. 21, no. 1,
pp. 3–12, 2004. 6

[26] J. Lobo and J. Dias, “Relative Pose Calibration Between Visual and Inertial Sensors,” The International Journal
of Robotics Research, vol. 26, no. 6, pp. 561–575, 2007. 6

[27] D. Nister, O. Naroditsky, and J. Bergen, “Visual Odometry,” in 2004 IEEE Conference on Computer Vision and
Pattern Recognition, vol. 1, 2004. 9

[28] D. Nister, O. Naroditsky, and J. Bergen, “Visual odometry for ground vehicle applications,” Journal of Field
Robotics, vol. 23, pp. 3–20, Jan 2006. 9

[29] T. Kanade, O. Amidi, and Q. Ke, “Real-time and 3D Vision for Autonomous Small and Micro Air Vehicles,” in
2004 IEEE Conference on Decision and Control, vol. 2, pp. 1655–1662, 2004. 9

[30] J. Kehoe, R. Causey, A. Arvai, and R. Lind, “Partial Aircraft State Estimation from Optical Flow Using Non-
Model-Based Optimization,” in 2006 American Control Conference, p. 6, 2006. 9

[31] J. Kehoe, A. Watkins, R. Causey, and R. Lind, “State Estimation using Optical Flow from Parallax-Weighted
Feature Tracking,” in 2006 AIAA Guidance, Navigation, and Control Conference, 2006. 9

[32] K. Kaiser, N. Gans, and W. Dixon, “Position and orientation of an aerial vehicle through chained, vision-based
pose reconstruction,” in 2006 AIAA Guidance, Navigation, and Control Conference, AIAA, Aug 2006. 9

[33] K. Kaiser, N. Gans, and W. Dixon, “Localization and Control of an Aerial Vehicle through Chained, Vision-Based
Pose Reconstruction,” in 2007 American Control Conference, pp. 5934–5939, 2007. 9

[34] D. Nister, “An Efficient Solution To The Five-Point Relative Pose Problem,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 26, no. 6, pp. 756–770, 2004. 9

[35] Y. Ma, S. Soatto, J. Kosecka, and S. S. Sastry, An Invitation to 3-D Vision: From Images to Geometric Models.
SpringerVerlag, 2004. 9, 14, 15, 65, 95

[36] R. Eustice, H. Singh, J. Leonard, M. Walter, and R. Ballard, “Visually navigating the rms titanic with slam
information filters,” in Robotics: Science and Systems, (Cambridge, Mass), Jun 2005. 10

[37] K. Richmond and S. Rock, “A real-time visual mosaicking and navigation system,” Unmanned Untethered Sub-
mersible Technology, 2005. 10

98

[38] S. Fleischer, Bounded-Error Vision-Based Navigation Of Autonomous Underwater Vehicles. PhD thesis, stanford
university, 2000. 10

[39] S. Baker and I. Matthews, “Lucas-Kanade 20 years on: A Unifying Framework. Part 1: The Quantity Approx-
imated, the Warp Update Rule, and the Gradient Descent Approximation,” International Journal of Computer
Vision, vol. 56, pp. 221–255, February 2004. 12, 21

[40] R. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision. Cambridge University Press, 2004.
14, 95

[41] J. Kim and S. Sukkarieh, “Robust Multi-loop Airborne SLAM in Unknown Wind Environments,” in Robotics
and Automation, 2006. ICRA 2006. Proceedings 2006 IEEE International Conference on, pp. 1536–1541, 2006.
18

[42] S. J. Julier and J. J. LaViola, Jr., “On Kalman Filtering With Nonlinear Equality Constraints,” IEEE Transactions
on Signal Processing, vol. 55, pp. 2774–2784, June 2007. 23, 26, 85

[43] F. L. Markley, “Attitude error representations for Kalman filtering,” Journal of Guidance Control and Dynamics,
vol. 26, no. 2, pp. 311–317, 2003. 23, 27

[44] A. Tyagi and J. W. Davis, “A recursive filter for linear systems on Riemannian manifolds,” 2008 IEEE Conference
on Computer Vision and Pattern Recognition, pp. 1–8, June 2008. 23, 27

[45] M. D. Shuster, “A Survey of Attitude Representations,” The Journal of the Astronautical Sciences, vol. 41, no. 4,
pp. 439–517, 1993. 24, 25, 65, 66, 68

[46] X. Pennec, “Intrinsic Statistics on Riemannian Manifolds: Basic Tools for Geometric Measurements,” Journal
of Mathematical Imaging and Vision, vol. 25, no. 1, pp. 127–154, 2006. 24, 27, 52

[47] X. Pennec, L’Incertitude dans les problemes de reconnaissance et de recalage: application en imagerie medicale
et biologie moleculaire. Phd, INRIA, Sophia-Antipolis, 1996. 24, 27, 39, 45, 46, 51, 52, 67, 80

[48] X. Pennec and N. Ayache, “Uniform distribution, distance and expectation problems for geometric features
processing,” Journal of Mathematical Imaging and Vision, vol. 9, no. 1, pp. 49–67, 1998. 24, 27

[49] J. L. Crassidis, F. L. Markley, and Y. Cheng, “A Survey of Nonlinear Attitude Estimation Methods,” Journal of
Guidance, Control, and Dynamics, vol. 30, no. 1, pp. 12–28, 2007. 25

[50] F. L. Markley, J. L. Crassidis, and Y. Cheng, “Nonlinear attitude filtering methods,” in AIAA Guidance, Naviga-
tion, and Control Conference, Citeseer, 2005. 25

[51] M. Psiaki, “Backward-smoothing extended Kalman filter,” Journal of Guidance Control and Dynamics, vol. 28,
no. 5, p. 885, 2005. 25, 38

[52] G. Wahba, “A Least Squares Estimate of Spacecraft Attitude,” SIAM Review, vol. 7, no. 3, p. 409, 1965. 25

[53] J. E. Keat, “Analysis of Least-Squares Attitude Determination Routine DOAOP,” tech. rep., Computer Sciences
Corporation, Feb. 1977. 25

[54] P. B. Davenport, “A Vector Approach to the Algebra of Rotations With Applications,” Tech. Rep. August, Na-
tional Aeronautics and Space Administration, 1968. 25

[55] M. D. Shuster and S. D. Oh, “Three-axis attitude determination from vector observations,” Journal of Guidance
and Control, vol. 4, pp. 70–77, 1981. 25

[56] F. L. Markley, “Attitude determination using vector observations and the singular value decomposition,” Journal
of the Astronautical Sciences, vol. 36, no. 3, p. 245258, 1988. 25

[57] M. D. Shuster, “A Simple Kalman Filter and Smoother for Spacecraft Attitude,” The Journal of the Astronautical
Sciences, vol. 37, no. 1, pp. 89–106, 1989. 25

99

[58] I. Y. Bar-Itzhack, “’REQUEST’ - A recursive ’QUEST’ algorithm for sequential attitude determination,” Journal
of Guidance, Control, and Dynamics, vol. 19, no. 5, pp. 1034–1038, 1996. 25

[59] M. L. Psiaki, “Extended quest attitude determination filtering,” Quest, vol. 23, no. 2, pp. 206–214, 2000. 25

[60] T. Frankel, The Geometry of Physics: An Introduction. Cambridge University Press, 1997. 26, 39, 75

[61] X. Pennec, “Intrinsic Statistics on Riemannian Manifolds: Basic Tools for Geometric Measurements,” Journal
of Mathematical Imaging and Vision, vol. 25, pp. 127–154, July 2006. 26

[62] D. Simon and T. L. Chia, “Kalman Filtering with state equality constraints,” IEEE Transactions on Aerospace
and Electronic Systems, vol. 38, no. 1, pp. 128–136, 2002. 26

[63] R. Kalman, “A New Approach to Linear Filtering and Prediction Problems,” Transactions of the ASME Journal
of Basic Engineering, pp. 35–45, 1960. 26

[64] S. J. Julier and J. Uhlmann, “A new extension of the Kalman filter to nonlinear systems,” in Int. Symp.
Aerospace/Defense Sensing, Simul. and Controls, vol. 3, (Oxford, UK), p. 26, University of Oxford, Citeseer,
1997. 26

[65] S. Soatto, R. Frezza, and P. Perona, “Recursive Motion Estimation on the Essential Manifold,” Lecture Notes in
Computer Science, vol. 801, pp. 60–72, 1994. 27

[66] M. D. Shuster and G. Natanson, “Quaternion computation from a geometric point of view,” Journal of the
Astronautical Sciences, vol. 41, no. 4, pp. 545–556, 1993. 27

[67] B. Triggs, P. McLauchlan, R. Hartley, and A. Fitzgibbon, “Bundle adjustment–a modern synthesis,” Vision Algo-
rithms: Theory and Practice, vol. 1883, pp. 298–372, 2000. 33

[68] T. Lefebvre, H. Bruyninckx, and J. De Schutter, “Kalman filters for non-linear systems: a comparison of perfor-
mance,” International Journal of Control, vol. 77, pp. 639–653, May 2004. 38

[69] X. Pennec, L’Incertitude dans les problemes de reconnaissance et de recalage: application en imagerie medicale
et biologie moleculaire. Phd, INRIA, Sophia-Antipolis, 1996. 66, 69, 70, 71, 95

[70] Y. Ma, S. Soatto, J. Kosecka, and S. S. Sastry, An Invitation to 3-D Vision. Springer-Verlag, 2004. 79

[71] R. Hartley and A. Zisserman, Multiple View Geometry in Compute Vision. Cambridge, UK: Cambridge Univer-
sity Press, 2006. 79

[72] R. Van Der Merwe and E. Wan, “The square-root unscented Kalman filter for state and parameter-estimation,”
in IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS SPEECH AND SIGNAL PROCESSING, vol. 6,
pp. 3461–3464, Citeseer, 2001. 85

[73] E. Wan and R. Van Der Merwe, “The unscented Kalman filter,” in Kalman filtering and neural networks, pp. 221–
280, Wiley Publishing, 2001. 85

[74] S. J. Julier, Jeffrey, and K. Uhlmann, “Unscented Filtering and Nonlinear Estimation,” PROCEEDINGS OF THE
IEEE, vol. 92, pp. 401 – 422, 2004. 85

[75] T. Lefebvre, H. Bruyninckx, and J. De Schuller, “Comment on "A new method for the nonlinear transformation of
means and covariances in filters and estimators" [and authors’ reply],” IEEE Transactions on Automatic Control,
vol. 47, no. 8, pp. 1406–1409, 2002. 85

[76] G. P. Huang, A. I. Mourikis, and S. I. Roumeliotis, “Analysis and improvement of the consistency of extended
Kalman filter based SLAM,” 2008 IEEE International Conference on Robotics and Automation, pp. 473–479,
May 2008. 85

[77] S. Huang and G. Dissanayake, “Convergence and Consistency Analysis for Extended Kalman Filter Based
SLAM,” IEEE Transactions on Robotics, vol. 23, no. 5, pp. 1036–1049, 2007. 85

100

[78] F. L. Markley, “Attitude Error Representations for Kalman Filtering,” AIAA Journal of Guidance, Control, and
Dynamics, vol. 26, p. 2003, 2003. 96

[79] T. Lee, N. H. Mcclamroch, and M. Leok, “A Lie Group Variational Integrator for the Attitude Dynamics of a
Rigid Body with Applications to the 3D Pendulum,” in Proc. of the 2005 IEEE Conference on Control Applica-
tions, (Toronto, Canada), pp. 962–967, 2005. 96

101

Index

chart, 41
conservativeness, 85
conservative filter, 85
cut locus, 46

differentiable manifold, 41
differentiable vector field, 45
dynamic system, 29

exponential chart, 46
exponential mapping, 43, 46

filter conservativeness, 85
filter consistency, 85
filter divergence, 85

geodesic, 45
group, 46

homogeneous manifold, 47

inner product, 40
inner product space, 40
isotropy group, 47

Lie Group, 46
logarithmic mapping, 43, 46

manifold, 41

placement function, 47
principal chart, 46

Riemannian manifold, 39, 45

scalar, 40
scalar field, 40
state, 29
system dynamic function, 29
system measurement function, 30

tangential cut locus, 46
tangent space, 43

vector field, 45
vector space, 40

dimension, 40

102

Part IV

Appendices

103

Appendix A

Useful Matrix Lemmata

In this appendix, we state and then prove several matrix lemmata used in the text, especially in the context of
the EKF and Manifold EKF derivations (Chapters 6 and 8 respectively).

We will provide proofs for the following lemmata:

Lemma 1. Inverse of an Augmented Matrix

M−1 =

[
A−1 +A−1B

(
D−CA−1B

)−1 CA−1 −A−1B
(
D−CA−1B

)−1

−
(
D−CA−1B

)−1 CA−1
(
D−CA−1B

)−1

]

=

[(
A−BD−1C

)−1 −
(
A−BD−1C

)−1 BD−1

−D−1C
(
A−BD−1C

)−1 D−1 +D−1C
(
A−BD−1C

)−1 BD−1

]
(A.0.1)

where M is a block matrix with sub-blocks labeled A,B,C, and D:

M =

[
A B
C D

]
, (A.0.2)

and where A and D are invertible matrices.

Lemma 2. Sherman-Morrison-Woodbury Lemma, a.k.a. Matrix Inversion Lemma

This Lemma allows us to add two matrices together and find the inverse of the sum from the inverses of the
individual components. Specifically, we will see that(

D−CA−1B
)−1

= D−1 +D−1C
(
A−BD−1C

)−1
BD−1. (A.0.3)

Lemma 3. Inverse Swapping Lemma

This Lemma allows us to “swap” a specific formula involving the inverse of the matrix D for one involving
the inverse of the matrix A: (

D−CA−1B
)−1

CA−1 = D−1C
(
A−BD−1C

)−1
. (A.0.4)

A.1 Inversion of an “Augmented” Matrix

In many cases, we have an invertible matrix A, and we wish to find the inverse of a larger matrix of which A
is the (1,1) sub-block. That is, given a matrix

M =

[
A B
C D

]
, (A.1.1)

we would like to compute M−1, given that A and D are both invertible1.

1Note that both A and D need not both be invertible for M to be invertible, and one of the two formulas given in this section for M−1 will
always work provided that M is in fact invertible. The only requirement for M to be invertible is that either

(
D−CA−1B

)
or
(
A−BD−1C

)
must be

invertible (which necessarily implies that A and D are invertible respectively).

104

In order to determine this result, we will perform Gaussian elimination to determine a series of block-matrix
multiplies which to both the matrix M and the block identity matrix:[

A B
C D

]
:
[

I 0
0 I

]
. (A.1.2)

Our goal will be to transform the left hand matrix into identity, which will cause the right-hand matrix to be M−1.
First, we will eliminate the (2,1) sub-block, summing scaled versions of the two rows to form a new second

row:

[
I 0

−CA−1 I

][
A B
C D

]
=

[
A B
0 −CA−1B+D

]
. (A.1.3)

We can then perform a right-multiplication to eliminate the (1,2) sub-block, summing scaled versions of the two
columns to form a new second column:[

I 0
−CA−1 I

][
A B
C D

][
I −A−1B
0 I

]
=

[
A 0
0 D−CA−1B

]
. (A.1.4)

Bringing the two block-triangular matrix operations to the other side of the equation yields:[
A B
C D

]
=

[
I 0

−CA−1 I

]−1 [A 0
0 D−CA−1B

][
I −A−1B
0 I

]−1

(A.1.5)

which is effectively a decomposition of M into a product of diagonal and triangular matrices. Note that the inverses of
the triangular matrices are easily computed:[

I 0
−Y I

]−1

=

[
I 0
Y I

]
, (A.1.6)

because [
I 0
−Y I

][
I 0
Y I

]
=

[
I 0
−Y I

][
I 0
Y I

]
=

[
II +0Y I0+0I
−Y I + IY −Y 0+ II

]
=

[
I 0
0 I

]
, (A.1.7)

and similarly: [
I −Y
0 I

]−1

=

[
I Y
0 I

]
, (A.1.8)

because [
I −Y
0 I

][
I Y
0 I

]
=

[
I −Y
0 I

][
I Y
0 I

]
=

[
II−Y 0 IY −Y I
0I + I0 0Y − II

]
=

[
I 0
0 I

]
, (A.1.9)

105

yielding [
A B
C D

]
=

[
I 0

CA−1 I

][
A 0
0 D−CA−1B

][
I A−1B
0 I

]
. (A.1.10)

Having this LDU decomposition of M allows us to easily find its inverse:

M−1 =

([
I 0

CA−1 I

][
A 0
0 D−CA−1B

][
I A−1B
0 I

])−1

, (A.1.11)[
A B
C D

]−1

=

[
I A−1B
0 I

]−1 [A−1 0
0

(
D−CA−1B

)−1

][
I 0

CA−1 I

]−1

=

[
I −A−1B
0 I

][
A−1 0

0
(
D−CA−1B

)−1

][
I 0

−CA−1 I

]
=

[
A−1 −A−1B

(
D−CA−1B

)−1

0
(
D−CA−1B

)−1

][
I 0

−CA−1 I

]
, (A.1.12)

[
A B
C D

]−1

=

[
A−1 +A−1B

(
D−CA−1B

)−1 CA−1 −A−1B
(
D−CA−1B

)−1

−
(
D−CA−1B

)−1 CA−1
(
D−CA−1B

)−1

]
. (A.1.13)

Equation A.1.13 is the first half of the lemma.
To see the second half, note that we arbitrarily chose to chancel the C term using row additions and the B

term using column additions. If we choose the other alternative, we can similarly find:[
I −BD−1

0 I

][
A B
C D

]
=

[
A−BD−1C 0

C D

]
,[

I −BD−1

0 I

][
A B
C D

][
I 0

−D−1C I

]
=

[
A−BD−1C 0

0 D

]
, (A.1.14)

[
A B
C D

]
=

[
I −BD−1

0 I

]−1 [A−BD−1C 0
0 D

][
I 0

−D−1C I

]−1

,[
A B
C D

]−1

=

[
I 0

−D−1C I

][(
A−BD−1C

)−1 0
0 D−1

][
I −BD−1

0 I

]
=

[(
A−BD−1C

)−1 0
−D−1C

(
A−BD−1C

)−1 D−1

][
I −BD−1

0 I

]
,

[
A B
C D

]−1

=

[(
A−BD−1C

)−1 −
(
A−BD−1C

)−1 BD−1

−D−1C
(
A−BD−1C

)−1 −D−1C
(
A−BD−1C

)−1

]
. (A.1.15)

In summary, then, the inverse of a block matrix can be found in either of two ways. One involves inverses of
A,

M−1 =

[
A−1 +A−1B

(
D−CA−1B

)−1 CA−1 −A−1B
(
D−CA−1B

)−1

−
(
D−CA−1B

)−1 CA−1
(
D−CA−1B

)−1

]
, (A.1.16)

while the other involves the explicit inverse of D

M−1 =

[(
A−BD−1C

)−1 −
(
A−BD−1C

)−1 BD−1

−D−1C
(
A−BD−1C

)−1 D−1 +D−1C
(
A−BD−1C

)−1 BD−1

]
. (A.1.17)

This derivation was performed assuming that both A and D are invertible. It is easy to show, however, that
if one of these matrices is not invertible, the form of M−1 which does not involve that inverse is still valid. Thus,

106

Equation A.1.16 is still valid if D is rank deficient, provided A is not: if the matrix M is full rank, this equation will
give the inverse. A similar statement is true of Equation A.1.17.

As we shall see, most of the other useful lemmata that we present in this section follow directly from equating
terms in these two matrices.

A.2 Woodbury Matrix Identity

The Woodbury matrix identity allows us to compute the inverse of an additively updated invertible matrix
with an additive update to its inverse:(

A−BD−1C
)−1

= A−1 +A−1B
(
D−CA−1B

)−1
CA−1. (A.2.1)

The left-hand side of this equation is simply the (1,1) sub-block in equation A.1.17, which the right-hand side is the
(1,1) sub-block in equation A.1.16. Note also that equating the (2,2) sub-blocks of the matrices in those two equations
and swapping A for D and B for C yields the same result.

A more common form of the same result can be obtained by letting E =−D−1:

(A+BEC)−1 = A−1−A−1B
(
E−1 +CA−1B

)−1
CA−1. (A.2.2)

A.3 Inverse Swapping

As we have seen, the Woodbury identity comes from equating either of the diagonal terms in equations A.1.17
and A.1.16. Similarly, by equating the off-diagonal terms, we obtain:(

D−CA−1B
)−1

CA−1 = D−1C
(
A−BD−1C

)−1
. (A.3.1)

This lemma allows us to swap the computation of A−1 for that of D−1 and vice versa.

107

	Filtering Techniques for Pose Estimation with Applications to Unmanned Air Vehicles
	BYU ScholarsArchive Citation

	Title Page
	Abstract
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	1 Introduction
	I Kalman Filtering with Visual Odometry
	2 Motivation and Related Work
	3 Visual Odometry Based Pose Estimator
	3.1 Visual Odometry System
	3.2 VO Covariance Estimation
	3.2.1 Propagating Errors In Image 1 Pose to Image 2
	3.2.2 Determining Covariance With Imperfect Registration

	4 Results and Analysis
	4.1 Pose Estimation During GPS dropout
	4.2 Computational Complexity

	II Kalman Filtering on Riemannian Manifolds
	5 Motivation and Related Work
	5.1 Related Work
	5.1.1 Nonlinear Filtering
	5.1.2 Attitude Estimation
	5.1.3 Constraint-based Kalman Estimation of Manifold Quantities
	5.1.4 Parameterization-based Kalman Estimation of Manifold Quantities

	5.2 Outline

	6 The EKF As A Suboptimal Least Squares Estimator
	6.1 The Extended Kalman Filter
	6.1.1 System and Notation
	6.1.2 Cost Function
	6.1.3 Jacobian and Hessian of Cost Function
	6.1.4 EKF Approximations
	6.1.4.1 Gauss-Newton Iteration
	6.1.4.2 Prior Initial Value
	6.1.4.3 Estimate Only Current State
	6.1.4.4 Single Iterative Update

	6.2 Analysis of EKF Assumptions

	7 Manifolds
	7.1 Definition of Inner Product Spaces
	7.2 Definition of a Manifold
	7.3 Distance on Manifolds
	7.3.1 Tangent Space to a Manifold Point
	7.3.2 Riemannian Manifolds and Manifold Distance
	7.3.3 Geodesics and the Exponential and Logarithmic Mappings

	7.4 Respecting Distance Invariants on Manifolds
	7.5 The Principal Chart of a Manifold
	7.6 Vector Spaces Are Also Manifolds
	7.7 Probability and Mahalanobis Distance on Manifolds

	8 Kalman Filtering on Manifolds
	8.1 Joint Update Case
	8.1.1 Cost Function
	8.1.2 Computing the Jacobian J(Xk)
	8.1.3 Computing the Approximate Hessian Hk(Xk)
	8.1.4 Computing the Inverse Hessian Pk(Xk)
	8.1.4.1 Computing { Hk-1} (2,1)
	8.1.4.2 Computing Pk

	8.1.5 Total Filter Update Equations

	8.2 Time-only Update
	8.2.1 Computing the Approximate Hessian Hk(Xk)
	8.2.2 Computing { Hk-1} (2,1)
	8.2.3 Computing Pk

	8.3 Measurement-only Update
	8.4 Discussion

	9 Manifold EKF Implementation Examples
	9.1 SO3 Under SO3
	9.1.1 Principal Chart Representation
	9.1.2 Group Operations
	9.1.2.1 Composition
	9.1.2.2 Inversion

	9.1.3 Manifold Operations
	9.1.3.1 Placement Function
	9.1.3.2 Group Action
	9.1.3.3 Action on R3
	9.1.3.4 Rescaling

	9.1.4 Invariant Metrics

	9.2 S2 Under SO3
	9.2.1 Principal Chart Representation
	9.2.2 Global to Principal Chart Coordinate Conversions
	9.2.2.1 Global to Principal Chart Coordinates
	9.2.2.2 Principal Chart to Global Coordinate Conversion

	9.2.3 Manifold Operations
	9.2.3.1 Placement Function
	9.2.3.2 Group Action
	9.2.3.3 Rescale Operation

	9.2.4 Invariant Metrics

	9.3 Fb3: State Space for a Flying Vehicle in 3-space
	9.3.1 Principal Chart Representation
	9.3.2 Group Operations
	9.3.2.1 Composition
	9.3.2.2 Inversion

	9.3.3 Manifold Operations
	9.3.3.1 Placement Function
	9.3.3.2 Group Action
	9.3.3.3 Action of Fb3 on R3
	9.3.3.4 Rescaling

	9.3.4 Invariant Metrics

	10 Manifold EKF Performance
	10.1 Consistency of Measurement Update
	10.1.1 Metrics
	10.1.2 Results and Discussion

	10.2 Camera-In-Hand Performance Comparison
	10.2.1 Simulation Methodology
	10.2.1.1 True System Dynamics
	10.2.1.2 Estimator System Dynamics
	10.2.1.3 System Measurements

	10.2.2 Results and Discussion

	III Conclusion
	11 Conclusions and Future Work
	11.1 Conclusions
	11.2 Future Work
	11.2.1 Application to a Broader Array of Manifolds
	11.2.2 Removing Effect of Coordinate Singularity on Filter Performance
	11.2.3 Optimal Cost Function of the Manifold EKF

	Bibliography

	IV Appendices
	A Useful Matrix Lemmata
	A.1 Inversion of an ``Augmented'' Matrix
	A.2 Woodbury Matrix Identity
	A.3 Inverse Swapping

