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ABSTRACT

Measurement of Thermal Diffusivites Using the
Distributed Source, Finite Absorption Model

James B. Hall
Department of Mechanical Engineering, BYU
Master of Science

Thermal diffusivity in an important thermophysical property that quantifies the ratio of
the rate at which heat is conducted through a material to the amount of energy stored in a
material. The pulsed laser diffusion (PLD) method is a widely used technique for measuring
thermal diffusivities of materials. This technique is based on the fact that the diffusivity of a
sample may be inferred from measurement of the time-dependent temperature profile at a point
on the surface of a sample that has been exposed to a pulse of radiant energy from a laser or flash
lamp.

An accepted standard approach for the PLD method is based on a simple model of a PLD
measurement system. However, the standard approach is based on idealizations that are difficult
to achieve in practice. Therefore, models that treat a PLD measurement system with greater
fidelity are desired. The objective of this research is to develop and test a higher fidelity model
that more accurately represents the spatial and temporal variations in the input power. This
higher fidelity model is referred to as Distributed Source Finite Absorption (DSFA) model.

The cost of the increased fidelity associated with the DSFA model is an increase in the
complexity of inferring values of the thermal diffusivity. A new method of extracting values
from time dependent temperature measurements based on a genetic algorithm and on reduced
order modeling was developed. The primary contribution of this thesis is a detailed discussion of
the development and numerical verification of this proposed new method for measuring the
thermal diffusivity of various materials.

Verification of the proposed new method was conducted using numerical experiments. A
detailed model of a PLD system was created using advanced engineering software, and detailed
simulations, including conjugate heat transfer and solution of the full Navier-Stokes equations,
were used to generate multiple numerical data sets. These numerical data sets were then used to
infer the thermal diffusivity and other properties of the sample using the proposed new method.
These numerical data sets were also used as inputs to the standard approach. The results of this
verification study show that the proposed new method is able to infer the thermal diffusivity of
samples to within 4.93%, the absorption coefficient to within 10.57 % and the heat capacity of
the samples to within 5.37 %. Application of the standard approach to these same data sets gave
much poorer estimates of the thermal diffusivity, particularly when the absorption coefficient of
the material was relatively low.

Keywords: heat transfer, thermal diffusivity, reduced order modeling, genetic algorithm
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1 INTRODUCTION

1.1 Motivation

The thermal diffusivity of a material

I (1-1)

is an important physical property that quantifies the ratio of the rate at which heat is conducted
through the material relative to the amount of energy that is stored in the material. A material
with a large diffusivity will more quickly come to thermal equilibrium when the temperature of
its surroundings fluctuates, while materials that have small diffusivities take longer to come to
equilibrium. Values for thermal diffusivities vary from 10° m?/s for metallic materials to 107
m?/s for nonmetallic materials.

Accurate knowledge of the thermal diffusivity of a material is critical in selecting
materials to meet design specifications, in modeling transient thermal transfer, and in calibrating
temperature sensors and heat flux gauges [Hay et al]. In addition to their intrinsic worth,
measurements of diffusivity are frequently used in conjunction with independent measurements
of the materials density and specific heat to calculate the thermal conductivity of materials

[ASTM]. The thermal conductivity of a material is an important thermal transport property, and



accurate thermal conductivity measurements are essential to the analysis of conduction heat
transfer.

Since the thermal diffusivity quantifies the rate at which a material comes to thermal
equilibrium with its surroundings, a logical approach to measuring a is to perturb the temperature
of a sample and to monitor its time-dependent temperature as it returns to equilibrium. The
Flash Method [Hay et al., ASTM] is a common implementation of this approach. Initially
proposed by Parker in 1961 [Parker], the underlying premise of the flash method is very
straightforward. One face of a thin sample is exposed to a pulse of radiant energy which is
emitted by a laser or by a flash lamp. The resulting time-dependent temperature profile at a point
on the opposite face is recorded, and comparison of this measured profile with the temperature
profile generated by a thermal model of the process is used to infer the diffusivity of the material.

Over the years, the theory and application of the flash method have been refined and
improved by a number of investigators [Hay et al., Magli¢, Vozar, Baba]. In particular, non-
ideal phenomena occurring in practical measurement systems have been treated with greater
fidelity through the use of increasingly complex thermal models. However, the complexity and
computational expense of these algorithms used to infer the thermal diffusivity from transient
temperature measurements have increased in parallel with the increased complexity of the
thermal models.

Methods such as the flash method fall into a class of problems known as parameter
estimation [Tarantola], which is a type of inverse problem. Problems of this class rely on a
model of a dynamic process, which is generally expressed as a partial differential equation. This
governing equation involves a dependent variable and one or more independent variables. There

are sources or sinks and properties of the system control how variations in these and the



independent variables influence the dependent variable. The dependent variable in the governing
equation is often referred to as the state variable and the properties are generally referred to as
parameters. State variables are observable, meaning they can be measured directly, whereas
parameters are generally not observable. Therefore, estimation of a parameter requires
postulating a relationship between the state variable and the targeted parameter. This
relationship is then used to infer the parameter based on measurements of the state variable
[Beck and Arnold]. In the flash method, the state variable is the time-dependent temperature
profile at some location within the sample, and the targeted parameter is the thermal diffusivity.
The objective of the research presented in this thesis is to develop a parameter estimation
algorithm for a pulsed laser diffusivity measurement (PLD) system based on reduced order
modeling (ROM) and a Genetic Algorithm (GA). Tests of the proposed data reduction algorithm
are conducted using simulated measurements. The proposed algorithm is shown to be superior

to the parameter estimation method recommended in the most recent ASTM standard [ASTM].

1.2 Outline

The model currently implemented in the ASTM standard for PLD measurement systems
is developed and described in Chapter 2. Limitations associated with the ASTM standard
approach are clearly revealed by thoroughly examining its theoretical basis and derivations of its
fundamental equations.

Chapter 3 presents a more physically realistic thermal model which has been developed
for this study. This model is called the Distributed Source Finite Absorption (DSFA) model.
This model incorporated the effects of three phenomena neglected by the ASTM standard — heat

loss off the top surface of the sample, finite laser pulse durations, and nonuniform heating of the



sample. These three phenomena have been identified as the most significant by Vozar and
Hohenauer [Vozar]. Although an analytical model is obtained, evaluation of this high fidelity
model is computationally expensive, requiring approximately 0.85 seconds using a desktop PC
with 2.30 GHz processor and 2.00 GB of RAM. 1t is also not possible to develop a simple
relationship between measured temperatures and thermal diffusivities based on the DSFA model.
A random search procedure utilizing a genetic algorithm (GA) is described and implemented to
solve the inverse problem. Due to the computational requirements of the GA, a reduced order
model (ROM) has been developed to use in conjunction with the GA, resulting in a more
computationally efficient approach. The primary result described in Chapter 3 is the
demonstration that the inverse problem of evaluating properties from a temperature profile can
be solved efficiently using ROM with a GA.

Chapter 4 contains results of five blind test cases in which temperature profiles generated
by FLUENT were used as inputs. Thermal diffusivity values were obtained using the proposed
method are compared with the actual values and to values obtained using the ASTM standard.
The results of these blind test cases indicate that the DSFA model based ROM with GA is more
robust and accurate than the ASTM standard.

Chapter 5 summarizes the work done and gives recommendations for further
investigations. Several appendices follow the list of references. The appendices contain the
derivation of the Parker model — the base of the ASTM method, complete derivation of the

DSFA, Matlab source codes that were written to run the DSFA model, the GA, and the ROM.



2 PREVIOUS PULSED LASER DIFFUSION MODELS

2.1 Introduction

Thermal diffusivity measurements based on the laser flash method, also known as Pulsed
Laser Diffusion (PLD), were first introduced in 1961 by Parker et al [Parker]. It is a method to
find the thermal diffusivity with use of a laser pulse on the surface of a material sample. Parker
et al. theorized that one could pulse a laser on a material sample and based on the thermal
response of the rear surface calculate the diffusivity of the sample. PLD is currently being used
widely in material science and composites [Vozar], carbon nanotubes [Haydari], and the
electronics industry [Fullem].

Over the years, many researchers have improved the model originated by Parker. There
have been modifications to the analytical solutions to try and improve accuracy and reliability of
the models [Magli¢]. There is also discussion in the literature of the effects of the assumptions
of the Parker model [Hay], [McMasters]. With all the work that has been done, the Parker model

is still the backbone of the ASTM standard method used today [ASTM].

2.2 Parker Model Development

The approach developed by Parker is based on a simple model [Parker]. The thermal
model used is a one dimensional model of temperature profile in the material sample. A

schematic of this model is shown in Figure 2-1.



Uniform
Laser Pulse

i Iz 1)
Figure 2-1: Parker Model Schematic

The development of the thermal model starts with the heat equation. The heat equation

with volumetric heat generation in radial coordinates is shown in Eq. (2-1).

or) r- 09\ 0¢) 0z\ oz

r or
Based on symmetry, Parker’s model neglects temperature variations in the the » and ¢
directions. Parker also assumes no internal heat generation as all the energy is absorbed in a very

small thickness on top of the sample designated by J. These assumptions reduce the heat

equation from Eq. (2-1) to Eq. (2-2).

o( eT\ or
k| = pe = 2-2
az( azj r (2-2)



Further simplifications are achieved by assuming constant properties such that &, p and ¢

are uniform and independent of temperature giving Eq. (2-3).

o’T _or

PR 3)

Assuming that the pulse is absorbed instantaneously at the surface leads to the
assumption that the initial temperature profile may be approximated by the step function given in

Eq. (2.4).

Q < <
T(i=0)=11"" egq 05259 (2-4)

T 0<z<L

0

The solution to this partial differential equation is an infinite series solution. The
derivation of the solution is shown in Appendix A. The solution in infinite series form is given

in Eq. (2-5).

_9 S 1Y el 7 F ]
T(L,t)—ch(1+2nZ_;( 1) exp[ I atD (2-5)

There are two dimensionless parameters that are introduced, V' and w, as shown in Eq. (2-
6) and Eq. (2-7) where T), is the maximum temperature from the laser pulse that is reached by

the rear face.



V(L,t)=T(L,t)/T, (2-6)

o=r"at/ L’ (2-7)

Combining Eq. (2-5), Eq. (2-6), and Eq. (2-7) yields Eq. (2-8)

0

V=142 (1) expl-n’w) 2-8)

n=1

This yields the common form that is used for determining the diffusivity based on the
time that is takes the sample to go half way to its maximum value after the laser pulse, 7 s, as
shown in Eq. (2-9) as the nondimensional temperature rise, V, and nondimensional time, o, are

shown in Figure 2-2.

w=(7° o L7

Figure 2-2: Nondimensional Temperature Rise from Parker Equations



As is shown in Appendix A, when V'is set to be 0.5, or half the maximum temperature
rise, the value for w is 1.3698. Once a temperature profile of a sample of thickness L is known
in time, one just needs to determine the time taken to reach the midpoint temperature, and o may

be directly evaluated with Eq. (2-9).

1.36981*
o=—7F"

> 2-9)
Tt s

2.3 Magli¢ Method

The method introduced by Magli¢ in 1992 [Magli¢] is based on the same model as Parker
[Parker]. Due to having the same base model, all the same assumptions carry over from the
Parker model. The novelty of this method is that it does not restrict the calculation of only the
time at half the temperature rise. It allows for finding the time to reach a number of different
percent rises along the profile and averaging the returned values of a, which gives a more
accurate measurement of the thermal diffusivity. With the increase in flexibility of the method,
the equation for a is slightly different than that of Parker in Eq. (2-9). The Magli¢ method
equation is shown in Eq. (2-10) Where K, is a constant that corresponds to an x percent rise, and

t, 1s the time for the temperature to get to that x percent rise.

(2-10)



Values of K, and percent temperature rise, x, are shown in Table 2-1 [Magli¢]. It is

proposed by Magli¢ to not just use one single point, but to use as many as possible to reduce the

error in the system and provide for more accurate evaluations of the diffusivity.

Table 2-1: Values of K, for Eq. (2-10) for Constant Laser Power [Magli¢]

x (%) K, x (%) K,

10 0.066108 60 0.162236
20 0.084251 66 0.181067
25 0.092725 70 0.191874
30 0.101213 75 0.210493
33 0.106976 80 0.233200
40 0.118960 90 0.303520
50 0.138785

2.4 ASTM Method

The ASTM method also uses the same model as Parker [ASTM]. Similarly with the

Magli¢ method, the same base assumptions from the Parker model also carry into the ASTM

method. The calculation that it uses for determining o is the same as Eq. (2-10) with the values

as shown in Table 2-2.

Table 2-2: Values of K, for Eq. (2-10) for Constant Laser Power in ASTM Method

x (%) K,
25 0.092725
50 0.138785
75 0.210493

It is clear that the ASTM method is a balance between the Parker and Magli¢ methods.

The value of 0.138785 is the same as the Parker where 0.138785 = 1.36975/7°. The value of

0.138785 corresponds to the value of the 50% temperature rise as is seen in Table 2-1. The
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ASTM method finds the balance of the Parker and Magli¢ methods by stating that to check the
validity of the measurement, use the equation developed by Magli¢, Eq. (2-10), at a minimum of
two other points along the profile of the rise curve, generally the 25% and 75% rise times as
shown in Table 2-2. With the three measurements it allows a moderate level of confidence that
the value returned is the diffusivity if they correlate within 5%. If the values do not correlate
within the given level, then the response curve is to be analyzed to determine what effects are
causing the error in the solution. The ASTM standard mentions that if errors are large, look at
effects of a non-infinitesimally short laser pulse, radiant effects, and non-uniform heating
[ASTM]. There are a number of corrections that are made to the model to account for these

influences as stated previously in efforts to improve the solution.

2.5 Summary of Previous Models

It is seen that the Parker [Parker] model is the basis for PLD system calculation. The
temperature of the rear surface is measured after a laser pulse. The time required for the
measurement to get to a predetermined percent of the temperature rise is then used in an equation
to return the diffusivity of the substance. This can be done with one point in time, or many
points in time, but the core idea is the same.

This base model involves a number of simplifying assumptions. There are assumptions
about the laser pulse power being constant and infinitesimally short. There are assumptions
about the material sample absorbing all the energy uniformly in a thin layer on the top surface,
that the heat transfer in the sample is one-dimensional, and that the properties of the material are
constant. There is also the assumption that convective and radiative heat losses from the top

surface are negligible. Each of these assumptions simplifies the physics of the problem and
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removes some of the physical realism of the model. A new model for finding « is desired that
does not use all the assumptions that are used in the current models so that the accuracy of the
system can be improved. With a new higher-fidelity model, the temperature profiles are
simulated more accurately. More accurate temperature profiles should allow for more accurate

measurement of the diffusivity of the material.
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3 PARAMETER IDENTIFCATION BASED ON AN IMPROVED PLD MODEL

3.1 Parameter Identification

The objective of this study is to develop an improved PLD model that may be used to
determine the thermal diffusivity and possibly other material parameters based on measurements
of the time-dependent temperature profile on the surface of the sample. The proposed new model
is referred to as the Distributed Source Finite Absorption (DSFA) model, because it accounts for
spatial variations in the pulse and in the absorption of the pulse within the sample. The DSFA
model also accounts for convective and radiative heat losses from the uninsulated top surface of
the sample, as illustrated in Figure 3-1. Note that for convenience the origin of the coordinate
system is placed at the center of the lower surface instead of at the center of the top surface,
where it was located in developing the Parker model as shown in Figure 2-1.

The DSFA model requires four inputs. In additions to the heat transfer coefficient, 4,
which quantifies both convective and radiative heat loss from the uninsulated upper surface, the
DSFA model depends on the following material properties of the sample:

e The thermal diffusivity, a
e The heat capacity, pc

e The absorption coefficient, x

13
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k, pc

Figure 3-1: DSFA Model Schematic

The DSFA model produces the time-dependent, axisymetrical temperature profile in the
sample, 7(r,z,t). However, it is desirable to use the time-dependent temperature profile at a
simple point on the lower surface of the sample as data that may be used to measure the thermal
diffusivity and other input parameters. For convenience, the origin will be used as the data
acquisition point. A schematic of the forward problem is shown in Figure 3-2. The coordinate

system used in this work is also shown in Figure 3-1.

Input Operator Output
@
7| | DSFA Model |c=> 11000
h

Figure 3-2: Forward Model Schematic

With fewer assumptions, the DSFA model more accurately represents the heat transfer

process occurring in an actual PLD system.
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It is desirous to be able to take the output from the model, 7(0,0,¢), and perform the
inverse operation to return results of the thermal diffusivity, heat capacity, absorption coefficient

and heat transfer coefficient. The inverse operation is illustrated schematically in Figure 3-3.

Inverse

Input Operator Qutput
-1 a
T(0.04 - | DSFA Model —> | £°
h

Figure 3-3: Inverse Model Schematic

3.2 Inversion of the DSFA Model

Because the DSFA model represents a PLD system with greater fidelity, this improved
model does not result in a simple relationship between the targeted parameter, thermal
diffusivity, and the measured temperature profile as was the case for the simplified Parker model.
Therefore, an iterative, random search process based on a genetic algorithm (GA) [Ostrowski] is
proposed. A schematic representation of the inversion of the DSFA model is shown in Figure
3-4.

Due to the complexity of the DSFA model, each run is computationally expensive — a
typical MATLAB run requires approximately 0.85 seconds on a 2.3 GHz processor. In running a
GA, the model is called many times. Solution of the inverse problem using a GA typically
requires that the DSFA model can be executed more than 7500 times. Performing the operation

from Figure 3-4 would require more than 17 hours to complete.
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Figure 3-4: Inversion of the DSFA Model

To speed the process of the GA, a highly-accurate reduced order model (ROM) is
developed. The ROM is able to simulate the DSFA model with high levels of accuracy over the
entire profile and is much faster than the DSFA model. The modified process takes the
computationally expensive DSFA process that is shown in Figure 3-4 and replaces it with a

ROM in order to solve the inverse problem, as shown in Figure 3-5.

Guess Operator Output
a;
PC; :
X, ROM —> 710,00
h;
& o =

peivi| New Guess

Ki+;

hx’ﬂ‘

Figure 3-5: Inversion of the DSFA Model using ROM

Using the ROM in place of the DSFA allows the inverse problem to be solved in a
fraction of the time. A typical MATLAB run of the ROM on a 2.3 GHz processor is only 0.0025

seconds. Since running the DSFA requires approximately 0.85 seconds, the inverse problem
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with ROM can be solved in 0.3 percent of the time that would be required to solve the problem
using the DSFA, or about three minutes. Since the ROM is so much faster than the DSFA
model, it is more efficient to utilize the ROM as the simulation technique, although either model

can return accurate solutions.

3.3 Model Definition

The DSFA model captures more of the true physics of the problem by the use of more
appropriate assumptions. Using assumptions that more closely match the actual physics should
allow for more accurate data. As shown in Figure 3-6, the top surface of the sample is not
insulated, so there will be heat loss due to convection and radiation from this surface. These
losses are modeled using /# as the heat transfer coefficient. The bottom and outside
circumferential surfaces are well insulated and assumed to be adiabatic. The laser irradiation is
modeled as a Gaussian profile in » and as a triangle pulse in z. This model of the temporal

variation in the pulse follows the recommendations of ASTM [ASTM].

Tirzt) R

k, pc

Figure 3-6: DSFA Model of PLD Schematic
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As in other PLD models, the thermal and physical material properties are assumed to be

uniform constants.

3.4 DSFA Model Equation Development

The equation that determines the spatial and time dependent temperature profiles in the

sample are shown in Eq. (3-1).

ror\ or) o\ 0¢) o\ oz ot

Since the model is axisymetric, temperature variations in the ¢ direction are neglected.

The constant property assumption is also implemented to yield Eq. (3-2).

1 T T g 10T
10f,0r), 2 2 L4 _1or (3-2)
ror\ or oz k «a ot

The volumetric heat generation, ¢, is dependent on the laser pulse size, radial position,
and the axial position into the material due to optical depth. Eq. (3-3) gives the function of ¢

where P is the laser power, « is the absorption coefficient, 7, is a measure of the radius of the

beam, and f{?) is the laser power duration function.

q9=— eXPL r; —K (L—Z)Jf ®) (3-3)
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The function, f{?) represents how the strength of the pulse varies in time. It is suggested
in the literature that a triangle pulse be used [ASTM]. The strength of the pulse is assumed to
increase linearly from zero at + = 0 to a maximum, at ¢ = ¢,. From ¢ = t,, the strength of the
pulse decreases linearly back to zero at ¢ = ¢,. The values for #,, and ¢, may be determined by
measuring the time dependence of the laser pulse power with an optical detector. This is
dependent on the system that is being used as not all lasers will have the same temporal

characteristics. Eq. 3-4 gives f{?) for the recommended profile and f{?) is plotted in Figure 3-7.
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Figure 3-7: Triangle Pulse of the Laser
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For a second order partial differential equation in two dimensions with a time

dependence, four boundary conditions are required and also one initial condition. The boundary

conditions and initial condition are shown in Eq. (3-5) and Eq. (3-6).

T(r,z0)=T,

a _,

51” r=0

I o

61’ r=R

a

aZ z=0

NPl Wr(r,L,t)-T,)
aZ z=L

(3-5)

(3-6)

In order to simplify the solution, the problem is nondimensionalized as outlined in the

Appendix B. The nondimensional equation is Eq. (3-7).

1 0 00 , 0°0 -0’ 00
———|o— |+ +e -S{- =—
v 60( 80) ¢ oc? Xp[ v’ ( C)Jf(z‘) ot

o

3-7)

The boundary conditions, initial condition, and time dependent laser pulse function are

also nondimensionalized. The nondimensional boundary condition is Eq. (3-8), the initial

condition is Eq. (3-9), and the laser pulse function in Eq. (3-10). The Biot number, Bi, is given

by Bi=hL/k.
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f(r)= p— 1, <r<71, (3-10)
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0 T>7,

3.4.1 Eigenfunction Expansion

With the equation nondimensionalized, the Eigenfunction expansion method can be
performed to obtain the nondimensional temperature profiles, 8. The expansion of & can be done

according to Eq. (3-11).

0(v.£,7)= 3.3, (c)R, )2, (¢) (3-11)

n=0 m=0
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The functions R,(v) and Z,({) are obtained by the solution of the associated Sturm-
Louisville problems. R,(v) is found to be Jy(4,v) and Z,(() is found to be cos(f.{). J; is the
Bessel Function of the first kind, i is the order of the Bessel Function. The expanded solution of

6 is shown in Eq. (3-12).

B 2 (Bi + S)cos(ﬂq )— Se™*
1+(Sﬂqj Bi(Bi+1)+ 8,

e_quT
T
2(1—€qu +z7/qpey‘”1) 0<r<rt,
_ VopT, VT
VanT — q-m.__ qp
T ( )_ e’” Tm Tp+Tpe sz-m?/qpe e
w\T)=7" 2( ) Yot Yot 7,<T=<T,
Tl T =T\ —7,€ +7,7Y €
8_7611’7
T T
_ (z'p—rm—z'peyq” +rmey"”) r>7,
T ¥ iZ'p -7, )

a2 252
}/qp_;tp +aﬁq

Bi:h—L: hL
k  p.ca
_ _ _ _ _ - R
Sk L= Y e (3-12)
'’k
O=(T-T ©
( oo)PK_RZ

The values of f,, are the roots of the equation Bi = f,, tan(f,,). The values of 4, are the
roots of the equation J;(4,) = 0. Whereas there is no zero root of the f,, equation, the infinite

summation starts at one. There is, however, a zero root of the 4, equation, and thus the infinite
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sum is started at n» = (. The coefficient b is modified for the zero value of n, and thus it is
separated from the double infinite sum. The rest of the development of the Eigenfunction
expansion is mathematically complex and the entire derivation is covered in Appendix B. Eq.

(3-12) is returned from the derivation in Appendix B.

3.4.2 Infinite Series Truncation

With increased amount of terms, the computational time increases geometrically as each
point is calculated from the truncated series. With the truncation at N7 terms on both indices, Eq.
(3-12) becomes Eq. (3-13). The other constants and functions previously defined in Eq. (3-12)

stay the same and are not repeated for simplicity.

0(v.¢.7)= 3 by, (£)eos(,)+ 3D b, (7)eos(B,6 M, (4,0) (3-13)

This equation is a mathematical solution to the original heat equation and boundary
conditions. The accuracy of this equation in comparison to the analytical model can only be
shown by a large number of terms in the truncated series.

To determine that there were sufficient values being used; a study was performed using 5,
10, 15, 30 and 50 terms. There was no change in any of the profiles when using 10 terms or
more, and thus the 10 term solution was determined to be used as the base. Having decided on
10 terms for the study, the first 10 eigenvalues were needed. Table 3-1 is an example of what

one of the eigenvalue sets contains when the Biot number is 8.081 E -4.
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Table 3-1: First 10 Eigenvalues Including 0 for Bi=8.081 E -4

Eigenvalue A B,
1 0 0.0284
2 3.8317 3.1418
3 7.0156 6.2833
4 10.1735 9.4249
5 13.3237 12.5664
6 16.4706 15.7080
7 19.6159 18.8496
8 22.7601 21.9912
9 25.9037 25.1328
10 29.0468 28.2744

3.4.3 DSFA Model Validation

The DSFA validation was completed by comparing the results from the model from Eq.
(3-13) to the ASTM method for PLD and comparing the results of diffusivity to the predicted
results of the diffusivity. The DSFA model that has been developed for this analysis uses a
spatially varying Gaussian laser intensity profile with a triangle pulse. For model validation, the
radius was made to be much larger than the sample. The distance to one sigma from center was
twice that of the sample size. This resulted in the laser power that was incident on the top
surface of the sample to be very nearly constant. For the large laser radius, the measurement
location on the back of the sample does not affect the results. This is due to the fact that the laser
pulse is approximately uniform, having no radial dependence. The laser power time dependence
was also reduce to be more close to infinitesimally short. The convective heat coefficient was
set to be 1 as values of zero would alter the equations and to protect against divide by zero. The
value for the absorption coefficient was set to be much higher, simulation an even larger optical
depth. This simulates more closely the behavior of all the energy absorbed in a very thin layer

on top of the sample. The values returned by the DSFA model were all similar and the averages
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of the values have small error, approximately 5%, between these values in Table 2-1 and any of
the cases analyzed. As the ASTM standard is accurate within 5% [ASTM], this is an acceptable
range. As is shown in Figure 3-8, the non-dimensional temperature profiles of the DSFA and the

Parker are very similar.

e Tl

—DSFA |
———Parker

3] 7 g
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Figure 3-8: Comparison of Parker and DSFA

The differences in diffusivities between the tested cases are up to orders of magnitude
different and this verifies that the values in Table 2-1 themselves are not dependent on the
material. As the Eq. (2-8) and Eq. (2-9) include the thickness term, the values given are also

independent of thickness of the sample.

3.5 Genetic Algorithm Development and Implementation

Due to the complexity of the DFSA model, it cannot be inverted such that inputting a
temperature profile will return a value for «. The DSFA model can only solve the forward

problem when diffusivity is known. Thus, the DSFA model developed in this work needs a
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search technique to be able to determine a of the tested material. To solve the inverse problem, a
search technique needs to run the forward problem many times to compare the experimental
profile to the analytical profiles calculated by the DSFA model. A GA can be used as the search
technique for the method.

The solutions to inverse problems are often found by repeated tests of parameter cases
until the desired solution is returned. This method of iterative process solution is
computationally intensive. It must perform many simulations in an organized search so that the
desired result may be found. The process returns the value for the time-dependent temperature,
73(0,0,¢) for each of the parameter sets generated. It then compares the returned temperature
profile to the measured temperature profile and calculates a fitness value. After all parameter
sets have been created for the generation, convergence is tested using the fitness values.
Convergence of a GA is when all the parameter sets in a population consist of similar individuals
[Davis]. When convergence is achieved, the process is stopped and the parameter set of a, «, pc,
and 4 is returned as the solution to the inverse problem. If convergence is not reached in the
current generation, the parameter sets in the population are modified using tournament selection,
crossover, and mutation. This process is done for each of the population members by the GA.
New generations are created until the GA has converged.

Simple GAs are widely used in many practical problems. A GA has its foundations
based on the concept of diversity, inheritance, and fitness pressure. The GA randomly selects the
values from within the parameter bounds to make up the first group of parameter sets for the
generation. It then calculates the fitness values of the members of the population and the
generational progression can begin. Diversity is introduced into the procedure by the

modification of the parameters in the sets. Inheritance is the concept of having the changes made
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from one generation to the next where new parameter sets gain the positive traits of the previous
generation. The fitness pressure is what allows the algorithm to achieve a desirable solution.
Fitness values are calculated by the program and compared one with another to determine the
best values.

The GA for the DSFA model was run with the fitness function that uses an average error
of the temperature values along temperature profile of length M, the absolute error in the
maximum temperature, and a penalty function. The penalty function utilizes the larger of
Emaxrise,input tmaxrise, DSFA QNG tyaxrise DSFA/tmaxrise,inpur.  1he maximum of the two values is used as it
gives the largest penalty for variations in the curve. This penalty function only is used when the
values for fyavriseinpur ANd tyaxrise psr4 are not the same, when they are the same, the penalty

function returns zero. The total fitness function with the penalty function is shown in Eq. (3-14).

M —
100 * Z T;’,input 7-;',DSFA
%k _

. i=1 T;',input 10 Tmax,input Tmax,DSFA o
Fitness = — + + Penalty |-100%
M Tmax,input 1o

O tmaxrise,input = tmaxrise,DSFA
Penalty = L, risei L, .
* . maxrise,input maxrise DSFA |
]0 maximum > 1 tmaxrise,input > Z‘maxrise,DSFA

tmaxrise,DSFA tmaxrise,input

(3-14)

The absolute values in the fitness function allow the GA to find the difference and always

ensure that the value is a positive number. The negative sign at the start flips the value which

allows the fitness pressure to be maximized. The maximization procedure forces small error to
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bring the fitness value closer and closer to zero. This is done so that the fitness value is never

being able to cross over zero and then increase the error.

For this case, there were 150 parameter sets generated randomly.

The random

distribution of the fitness values of the first population of a sample test is shown in Figure 3-9.
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Figure 3-9: Distribution of Fitness Values at First Generation before the start of the GA

At the start of each generation, the parameter sets compete in pairs against one another to

determine the better set. This competition is done using tournament selection. Inheritance of

characteristics in the GA is due to the use of this selection technique. The fitness value of one

parameter set is compared with the value of the other. The set with the higher value is then

selected. This is done to populate the next generation with the parameter sets which have the

highest fitness values. Each of the parameter sets in the population compete with the others and

are combined to yield the highest possible fitness values for that population.
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After the tournament selection, the GA performs crossover and mutation on the
parameter sets. These processes allow for the introduction of diversity that leads to the
improvements in fitness values [Goldberg].

For real valued and continuous GAs, blend crossover can assist in the obtaining a
solution in an efficient manner. The crossover allows for changes in the parameter sets that may
create better fitness values. Crossover pulls a random number and if it is above a certain
predetermined threshold, then the crossover function is used. The threshold for the testing done
with this GA was set to be 50%. This number was found to achieve convergence in relatively
few generations. Blend crossover uses the value of two paired parameter sets and mixes them
based on a blend fraction » that was also pulled as a random number.

The GA would select two parameter sets and pair them up. It would then take the first
parameter of their sets and if the pulled random number was higher than the threshold it would

mix them as shown in Eq. (3-15).

YV = (r) parameter; + (1 - r)- parameter,
(3-15)
Yy, = (1 - r)- parameter; + (r) parameter,

The values from the crossover y; and y, then replace the values for parameter; and
parameter; respectively in their own parameter sets. If the random number was above the
threshold, it would perform the crossover and continue to the next parameter. This was done
until all four of the parameters were tested for the pair.

Mutation is a process where one of the parameters in the set is changed to a new, random
value in the bounded set. This is also done in an effort to increase the diversity of the

population. Opportunity for mutation is determined by a mutation parameter. The mutation
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parameter in this GA is a changing value that allows for high probability early on when the
fitness values are not very good and as the generations pass, and the fitness values improve, the
likelihood of mutation decreases. This type of mutation is called dynamic mutation. The
mutation for this GA utilized a dynamic mutation rate where the likelihood of mutation would

decrease according to Eq. (3-16).

4
1
Mutation = 0.75(1 —’GLJ (3-16)

G

The constant in front of the exponential expression gives the starting probability of
mutation and was also selected through testing to be an appropriate value for achieving
convergence in a reasonable amount of runs. As is seen in Figure 3-10 this is a parabolic
decrease in the percent chance for mutation starting at the given constant of 75% down to near
zero chance when the generation number, ig.,, 1S equal to a maximum number of generations
plus one that the GA will run, Ngy.

As the generation number increases, the stronger parameter sets begin to dominate the
population and the mutation probability decreases. Mutation is less desirable as the fitness
values are driven to zero. This is due to the parameter sets beginning to resemble one another
and large changes are less likely to improve the fitness values of the population.

After the tournament selection, crossover, and mutation, the fitness values are found for
each new parameter set. The values are compared and the best value is stored as the first value
of the next generation. The mandatory continuation of a certain parameter set is called elitism

and allows for the current best value to always continue [Davis]. This allows for sets with the
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best fitness values to positively affect the other sets in the population. This procedure continues
for each generational step for as many steps as is set by the designer of the GA and convergence

1s reached.
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Figure 3-10: Change of Mutation Probability by Generation

The use of GA is broad and the values and procedure used for crossover, mutation, and
elitism can be changed for each desired application of the GA [Goldberg], [Davis]. The
increased diversity in the population from crossover and mutation can allow for the stronger
fitness values to begin dominating the populations. When the mutation and crossover procedures
create parameter sets with poor fitness values, the poor fitness value sets are removed from
future populations by the tournament selection.

The generational progression of the best fitness value of the population is seen in Figure
3-11 and Figure 3-12. These figures show that there is an early jump in the fitness values, but
there is still much progress made throughout the progression of the generations. As is seen in

these figures, there are jumps where the GA finds a better solution than it previously had known.
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The jumps are due to the new best case fitness value as found by the GA. At these times, the GA
has come to an all-time better solution to what it previously had. That case is then propagated

forward allowing all cases to improve and possibly find yet a better solution.
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Figure 3-11: Progression of Best Case Fitness Value of the Population in the Generational
Progression of the GA

The distribution of the fitness values for the 150 parameter sets in the final generation of
the sample GA is shown in Figure 3-13. The outliers are due to mutations as all the other
parameter sets are similar and thus blending would not change their values by much.

It is seen in Figure 3-13 that although the values look the same, they are slightly different.
It is seen in the scaling of the figure that they are very close, but the parameter sets returned are

slightly different from one another.
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Figure 3-12: Zoomed in Progression of Best Case Fitness Value of the Population in the
Generational Progression of the GA
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Figure 3-13: Distribution of Fitness Values after Completion, 369 Generations of the GA

Once parameters begin to become very similar, mutation is the only way to introduce

diversity in the system to attempt to find a better solution. As there have been already 334
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generations of possible 500 to get to this result, the likelihood of a much better solution due to
random chance is low and so the mutation probability is also low.

Convergence determines when the GA will stop and return its solution. Convergence is
defined as when all the parameter sets have become similar to each other [Davis]. Convergence
is determined by calculating the standard deviation of the fitness values for each parameter set in
the current population, and comparing it against a convergence parameter, ¢. If the standard
deviation of the fitness values in the population is below the value set for the convergence
parameter, then the GA stops. The convergence criteria should be small, but setting is too low
will cause the GA to run for more generations than is necessary. An appropriate value of ¢ needs
to be determined for the case to ensure that the desired solution is to be met. This requires the
testing of different values and determining the best value for the computational effort. For this
testing that was performed, ¢ was set at 0.05. The set shown in Figure 3-13 terminated at 369
generations because the convergence criteria had been met.

Figure 3-14 shows the generational progression of the convergence criteria of the case as
shown in the above figures. In Figure 3-14, it is seen that the initial values of the standard
deviation are very high and sporadic. The values generally decrease as the parameters begin to
become more similar and closer in range due to the efforts of the tournament selections removing
the parameter sets with poor fitness values, crossover to blend the values to find potentially

better values, and decreasing the mutational diversity with increasing generation number.
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Figure 3-14: Generational Progression of Standard Deviation of Fitness Values

The flow of the iterative process is shown in Figure 3-15. In this case, it generated 150
parameter sets and continues processing on theses sets for up to 500 generations. For this GA to
process there are up to 75,100 function calls to find the time dependant temperature profiles by
the forward problem.

Other defined model

constants
ro R L, 1, Non-dimensional
il R
parameters for
ﬂ ROM
Guess

Inputs a S
pPe : ; ; Bi
Start ———> |, |C——>| Non-dimensionalize | —> o = ROM
h

Modify
Inputs
Compare to —R e Re- < o
| known T(t) ! dimensionalize &
convergence
g Non-dimensional
temperature profile

Temperature profile for
ﬂ comparisonto input

End

Figure 3-15: Flowchart for the GA Process
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With all the efforts to speed the solution of the DSFA model, it still takes approximately
0.85 seconds to return the temperature profile. For the GA to make 75,100 function calls of the
DSFA, it would require the GA program to run for more than 17 hours.

It is desired to have a method that can allow for faster solutions of the model to speed the
iterative process. ROM is a technique that can evaluate models very quickly. Using a ROM
instead of the DSFA model will speed the evaluation of the temperature profiles. This will allow

the solution of the inverse problem to be found approximately 240 times faster.

3.6 Reduced Order Model Development

ROM is a technique that has been developed to allow simulations of engineering models
to run in a more computationally efficient manner. ROM is based on the theory of proper
orthogonal decomposition (POD). POD was developed in the early twentieth century for the
manipulation of statistical data [Pearson]. Its use has been utilized by the ROM in allowing
matrix manipulations to be performed on model data rather than requiring the direct solution
[Ostrowski], [Rambo], [Bergman].

ROM uses interpolation functions on known solution sets from accurate engineering
models to simulate the models with high levels of accuracy. The ROM performs matrix
manipulations on the data sets to execute its simulations of the model rather than the complex
equations from the thermal engineering model. The use of matrix manipulation allows the ROM
simulations to be run at a high rate of speed.

ROM is based on Eq. (3-17) where A is an N X M matrix that contains the solution values

based on the orthogonal basis set of governing parameters [Larson]. The matrix ®@ is an N x m
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matrix that is formed from the basis set of solutions. B is an m x M matrix that contains the

expansion coefficients for each set of governing parameters.

A=0B (3-17)

In solving the model for each set of governing parameters, the matrix A is built by each
column being the values of the solution for each set of governing parameters. After all desired
cases have been run, a singular value decomposition (SVD) is performed on the matrix A. Using
the SVD, A is factored into an N X N orthogonal matrix U, an N x M diagonal matrix £ and an

M x M orthogonal matrix V as is shown in Eq. (3-18) [Strang].

A=U_z V) (3-18)

The elements in X, are called the singular values. They are sorted by the SVD algorithm
from highest to lowest. The number of nonzero singular values of a matrix is the same as the
rank of that matrix. The rank of the matrix A is given the symbol 4. The non-zero singular
values are represented by the symbols 64;, i=1,...,74 [Strang].

The rank defines the amount of columns in U, that form an orthonormal basis for the
column space of A. It is not necessary to use the entire basis set in order to represent the data,
and so the matrix Uy, is truncated at m to reduce the amount of computational effort in solving
the matrix manipulations. This truncation gives a close approximation of the data from Uy
required to produce the set of basis vectors ® required by Eq. (3-17). The cutoff, m, is

dependent on the system and will vary from model to model. The decision of where to place the
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cutoff is to be made by the model designer. The value can be determined by looking at the
singular values of A and choosing an appropriate value. The value can also be determined
through trial and error in finding a solution that closely fits the desired or known data and is still
computationally efficient. An example of a plot of the singular values of an A matrix is shown
in Figure 3-16.

Evaluating B is easy by simply rearranging Eq. (3-17) and using the orthogonality

characteristics of @ yields Eq. (3-19).

B=0"A (3-19)

Estimating the expansion coefficients is performed by interpolation of the results given in

Eq. (3-19). To do this, a coefficient matrix C is defined as shown in Eq. (3-20).

Singular Value of A

o] 50 100 150 200
MNumber

Figure 3-16: Singular Values of A

B=CF (3-20)
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F is an M x M matrix of the interpolating functions. Interpolation functions can vary
from model to model and are to be used in such a way that fits best to the data and provides the
best results. The designer of the ROM must determine the best function for their case. In the
literature, it has been shown that inverse multiquadratic functions are useful in interpolating data
in multi-dimensions [Hardy 1971], [Hardy 1990]. F is defined such that the i column is
calculated by using the determined interpolation function chosen for each of the parameter sets
that were used to create A. The modified multiquadratic function is shown in Eq. (3-21) where f;

represents the i column of F.

1
i % i 1\? i 12
X=X + log,, x; —log,, x, + log,, x; —log,, x; 41
xl,max logIO x2,max 1OgIO x3,max
1
i % i % i %
f, = (xl —X ] + (loglo x, —log,, x; J + [loglo x; —log,, x{ ] 41 (3-21)

log,, X2 max log,, X3 max

xl,max

I

) 2 , 2 , 2
1 m 1 m 1 m

X, —Xx log,, x, —log,, x log,, x; —log,, x
1 1 n 810 X2 810 X2 n 810 X3 8o X3 +1
xl,max loglo x2,max 1OgIO x3,max

The multiquadratic function had to be modified so that it could properly interpolate the
logarithmically scaled parameters along with the linearly scaled parameters. The modification of
the base of x; and x3 into the log scale interpolates correctly with the logarithmic variation of the
parameters. Each of the values xj, x;, x3 correspond to the separate governing parameters that
define the system A. The maximum values are the largest values of each of the governing

parameters within the defined bounds.
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F may be a singular matrix and thus cannot be inverted and multiplied to isolate and
solve for C. The Moore-Penrose pseudoinverse is a method that can be used to isolate and solve
for C in Eq. (3-22) [Strang], [Press]. The Moore-Penrose pseudoinverse, F*, is found based an

SVD of the interpolation matrix F similar to Eq. (3-18) as shown in Eq. (3-22).
F=U,2,V,] (3-22)

The matrices Ug, £, Vi have the same meaning as described above with the A matrix.

The pseudoinverse is post-multiplied onto both sides of Eq. (3-22) as shown in Eq. (3-23).
FV,S,U; =U,X,.V.V,S U] =1 (3-23)

The matrix Sr is the diagonal matrix of the inverse of the singular values from the matrix

Y. Sris defined in Eq. (3-24).

S, = diag{L} (3-24)

Op,

The values along the diagonal of Xy are defined as of;, i=1,...,7F similar to what was
done in the decomposition of the A matrix. To completely define the pseudoinverse, all values
of 6r; > 0 must be used. However, a truncation can also be performed on the data for F similar
to what was done on A to reduce the amount of data needed to represent the data accurately and

efficiently. The modeler selects a value to be the minimum allowable value of 6;. All values
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that fall below this value are set to zero. These singular values can also be plotted to allow the

modeler to see the data in order to choose an appropriate value for the cutoff as is shown in

Figure 3-17.

Singular Value of F

0 100 200 300 400 500 600 700
Mumber

Figure 3-17: Singular Values of F

From Eq. (3-23), it is clear to see that the pseudoinverse of F, or F, is given by Eq. (3-

25).

F'=V,S, U] (3-25)

With the pseudoinverse of F known, it can be used to isolate the coefficient matrix C in

Eq. (3-20) by post-multiplying F" to both sides to yield Eq. (3-26).

C =BF"* (3-26)
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The coefficient matrix is built by a bounded set of governing parameters based on the
interpolation function matrix and is thus assumed to be valid for arbitrary parameters that are
also bounded by the original set of parameters that built the model. The expansion coefficients
for any arbitrary case k that lies within the bounds can also be found by multiplying the

coefficient matrix with the interpolation function of those parameters as shown in Eq. (3-27).
b(k) = Cf (k) (3-27)

The vector for the interpolation function f(K) is found using the arbitrary parameters in

the single column vector shown in Eq. (3-28).

1
k 1 2 1 k l 1 2 1 k 1 1 2
X —X n 0gp X, — 108, X, n 08y X3 —108,( X3 +1
xl,max 1OgIO x2,max 1OgIO x3,max
1
N\ 2 N\ 2 N2
f(k) - xlk —x{ n log,, x;{ —log,, x; n log,, x;{ —log,, xj 41 (3-28)
xl,max loglo xz,max 1OgIO x3,max
1

k m 2 k m 2 k m 2
X —X n log,, x, —log,, x] n x; —log,, x; +1
X1, max log,, X2 max log,, X3 max

The expansion coefficients b(k) returned from Eq. (3-27) for the arbitrary set of
governing parameters are then used in Eq. (3-29) to return Zyx. Z is the vector that contains the

temperature values that are output by the ROM. In testing the ROM, the values of Zy for a given
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set of parameters that were used in the creation of the solution matrix A should match closely to

the returned value of Zy for that set.

Z, ~ ®b(k) (3-29)

Where the principle of ROM states from Eq. (3-29) that you can use the @ matrix
multiplied by the expansion coefficient vector b(k) to return a desired temperature profile, Z,
you cannot just invert the @ matrix and multiply it by Zy to get the coefficient vector b(k). This
is due to the singularity of the @ matrix. When the inverse of @ is multiplied by Zy, large errors
in the calculation of the b(k) vector exist. Even if the vector b(k) was returned accurately, it still
does not return the parameters, but the expansion coefficients. To get the parameters, you have
to do the inverse of Eq. (3-27) to get the values for f(k). As is seen in Eq. (3-28), f(k) is a
function of the three governing parameters k and cannot be inverted for a unique solution that
would return the parameters. There are many different sets of parameters that can create the
same interpolation function values.

As the inverse solution of the ROM cannot be performed directly, an iterative search

technique, such as a GA, must be performed to solve the inverse problem.

3.6.1 Defining Parameters

Once the model is defined and verified, a group of solution sets need to be created in
order to run the ROM. The ROM used as governing parameters to be optical depth (S), Biot
Number (Bi), and nondimensional time to peak laser power (z,,) as the governing parameter set.

These nondimensional parameters are obtained by varying dimensional parameters of absorption
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coefficient, x, thermal diffusivity, a, heat capacity, pc, and convection coefficient, 4. Other non-
varying system parameters are used in the determination of the nondimensional parameters. The
other system parameters are r,, R, L, t,, t,y, P, and T,

Absorption coefficients are selected to yield a broad range of temperature profiles for the
laser power selected. The range was selected from a search of common semiconductor materials
[Palik][Weber]. With a 0.002 m thickness the seven values for x used and their corresponding

rear face optical depths, S, are shown in Table 3-2.

Table 3-2: Parameters used for x, .S

Case K (m'l) S
1 400 0.80
2 1000 2.00
3 1600 3.20
4 2200 4.40
5 2800 5.60
6 3400 6.80
7 4000 8.00

The convection coefficient is in the range of free convection [Incropera and DeWitt] and

1s taken to be the set as shown in Table 3-3.

Table 3-3: Parameters used for /
Case h( W/mZK)

1 20.0
2 30.0
3 40.0

The thermal diffusivity is dependent on material properties. The range of values is based

on a general range of common materials taken from tables of properties of semiconductor
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materials [Dargys et al][Goldbery eta al][Yamaguchi et al]. The range of values is shown in

Table 3-4.

Table 3-4: Parameters used for a

Case a (mz/sec)
1 1.00 E -6
2 3.00E -6
3 1.00 E -5
4 3.00E-5
5 1.00 E -4

Heat capacity was also utilized in building the parameter sets, as it was a required
parameter for creating of the nondimensional parameters. The range of values for heat capacity
was also taken from a range of common materials from tables of properties of semiconductor
materials [Le-Ping et al][Goldbery et al][Yamaguchi et al]. The range of values for heat capacity

is shown in Table 3-5.

Table 3-5: Parameters used for pc
Case pc (J/m’K)

1 0.50E 6
2 1.50E6
3 250E6
4 350E6
5 450E6
6 5.50E 6

The output values are the nondimensional temperature profiles at the point of the bottom
surface of the sample directly below the center of the laser pulse with respect to nondimensional

time, 9(0,0,1). The nondimensional temperature values then become a vector of length M,

where M is the number of nondimensional time steps taken.
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3.6.2 Creation of Solution Sets

Once the parameters are determined, the code runs the forward simulations of the high
order equations. It stores the solutions in the matrix A that will be used in the ROM. It also
stores the matrix B based on the input governing parameters of the model. The number of
governing parameters that are used is N. This leaves A as an M X N matrix of solution sets
where M is the number of time steps taken. A flowchart to the process of creating the basis set

of values for 6(0,0,7) is shown in Figure 3-18.

Input Other defined model
constants

¢

" ' _ Non-
P = [’0=R=L= ’P] —

; 5.2 T, dimensionalize
1

J

S
ND - DSFA ,
B
G < iy { r,;
Non-dimensional Non-dimensional parameters
temperature profile for model

Figure 3-18: Flowchart for Creation of Basis Set of Solutions for ROM

3.7 ROM Model Verification

Once the ROM is prepared and the required matrices are created, any bounded
parameters can be input into the model. The ROM performs the matrix manipulations on the

input parameter and returns the desired values. This process is very fast, due to the fact that all
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that is done is the calculation of the interpolation vector, a matrix manipulation of the coefficient
matrix C to the vector, and multiplication of that product to the previously calculated ® matrix.

The ROM for the DSFA model was modified so that it would match cases that would be
input into the model. The number of significant eigenvalues that the ROM would use was set to
be 25. This allowed for the fastest solution of the model while still maintaining acceptable
accuracy of the profile. The singularity tolerance of the F matrix was set to be 1.0 E -13.

These parameters allowed the ROM to simulate the solution of the profile against a case
known from the creation of the basis set of solutions — where the parameter set was a = 3.0 E -5,
pc=3.5E 6, h=30, and x = 2800. The ROM simulated this case with an average error of less
than 9.439 E -7% with a maximum error of 3.762 E -6%. The error of the temperature value as

reported at each step, Error;, is calculated in Eq. (3-30).

Error, = Tosras = Tron, % -100% (3-30)

‘ T DSFA,i

As is seen in Figure 3-19, the ROM simulation matches well along the whole length of
the profile. In this known case, it shows that the interpolation functions are able to recreate a
known case with very high accuracy.

The case that is run and shown in Figure 3-19 is a case that is solved for by the
coefficient builder program and thus the solution is known. The case in Figure 3-20 is a case
with random parameters that are away from the known parameters. It is shown in Figure 3-20
that ROM still performs adequately when the parameter set is not from known parameters. This

case has the parameter set of 7 = 22.28, x = 1258, o = 1.432 E -5, and pc = 2.986 E 6. The
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average error between the DSFA model solution and the ROM output solution is 0.225% with a

maximum error of 0.821%.
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Figure 3-19: Example Case of Comparison of DSFA and ROM for Known Case
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Figure 3-20: Example Case of Comparison of DSFA and ROM for Arbitrary Case 1
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The largest errors in the cases exist in the early on areas of the model near the peak of the
temperature. As is seen in Figure 3-21, the largest percentage in the error is 0.401%. This case
from Figure 3-21 has the parameter set of 7 = 35.84, x = 2168, a = 7.568 E -6, and pc =3.785 E
6. The average error between the DSFA model solution and the ROM output solution is 0.225%

with a maximum error of 0.821%.
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Figure 3-21: Example Case of Comparison of DSFA and ROM for Arbitrary Case 2

This shows that the ROM is able to simulate with moderately good accuracy the
temperature profile for a previously unknown case. This shows that the closer the unknown
parameter set is to a known solution, the better the interpolation will return an accurate
temperature profile. Even when the profile is far from a known case, the solution is still fairly
accurate throughout the majority of the profile. When looking at the dimensional parameters, the
values are quite strong with the average errors and the maximum errors being much smaller.

The time that is required by the ROM to run the simulations is an average of 0.0026
seconds to return each profile. The complete DSFA model solution takes an average of 0.85
seconds to complete each profile. This means that the ROM is able to run approximately 340
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times faster than the DSFA solution. As the average error is still small in the ROM cases, the

ROM can be used to speed the GA solution.

3.8 Example Case Testing

To test the capability of the GA process with using ROM, sample cases were made from
actual material properties and run in a FLUENT simulation using the same assumptions as the
DSFA model. These profiles gave an independent profile for which to test the GA with ROM
against. There were a number of cases developed and four of the test cases were used to refine

the GA and ensure that it would be able to return accurate data.

3.8.1 Gallium Arsenide

The data for Gallium Arsenide was input the GA and run for five tests to ensure
consistent convergence. The input profile was also used with the ASTM method to determine
what it evaluates as the diffusivity. The input values for the Gallium Arsenide case are shown in

Table 3-6 [Dargys et al][Carlson et al][Sharmin et al].

Table 3-6: Gallium Arsenide Input and Outputs

Parameter True Value  GA/ROM ASTM
a 3.133E-5 3.097E -5 6.224 E -5
K 3400 3142 -
pc 1.756 E 6 1.774 E 6 -
h 37.2 33.9 -

The comparisons of the temperatures from the input FLUENT profile, the parameter
output from the GA/ROM as input into the DSFA, and the DSFA when using the true, known
values directly as input into the DSFA are shown in Figure 3-22 for the bottom surface and

Figure 3-23 for the top surface, both at the centerline of the sample. The figures show the high
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level of accuracy returned by both the GA/ROM solution and the accuracy of the DSFA with
matching a profile with known parameters. In the figures, the correlation is seen by all three
curves laying almost entirely on each other.
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Figure 3-22: Gallium Arsenide Bottom Temperature Profile Comparisons
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Figure 3-23: Gallium Arsenide Top Temperature Profile Comparisons
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The errors for the parameters from GA/ROM are consistently good for this case. The
error in o is 1.14%, x is 7.59%, pc is 1.05% and 4 is 2.54%. The returned error from the ASTM

calculation is 98.67%.

3.8.2 Silicon
As with the data for the Gallium Arsenide case, the data from Silicon was input the GA
and run for five tests to ensure consistent convergence. The input profile was also used with the

ASTM method to determine what it evaluates as the diffusivity. The input values for the Silicon

case are shown in Table 3-7 [Palik][Okhotin et al].

Table 3-7: Silicon Input and Outputs

Parameter True Value GA/ROM ASTM
a 9.139E -5 8.784 E -5 2,702 E -4
K 2000 1734 -
pc 1.630E 6 1.715E 6 -
h 37.1 27.41 -

The comparisons of the temperatures from the input FLUENT profile, the parameter
output from the GA/ROM as input into the DSFA, and the DSFA when using the true, known
values directly as input into the DSFA are shown in Figure 3-24 for the bottom surface and
Figure 3-25 for the top surface. The figures show the high level of accuracy returned by both the
GA/ROM solution and the accuracy of the DSFA with matching a profile with known
parameters. In the figures, the correlation is seen by all three curves laying almost entirely on
each other. The GA/ROM profile is just slightly off on both surfaces from the FLUENT and

DSFA profiles which lay almost literally on top of each other on both sides.
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The errors for the parameters from GA/ROM are consistently good for this case. The
error in a is 3.89%, x is 13.3%, pc is 5.24% and & is 26.16%. The returned error from the ASTM

calculation is 195%.
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Figure 3-24: Silicon Bottom Temperature Profile Comparisons
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Figure 3-25: Silicon Top Temperature Profile Comparisons
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3.8.3 Cupric Oxide

Again, as with the data for Gallium Arsenide and Silicon, the data from Cupric Oxide
was input the GA and run for five tests to ensure consistent convergence. The input profile was
also used with the ASTM method to determine what it evaluates as the diffusivity. The input

values for the Cupric Oxide case are shown in Table 3-8 [Le-Ping et al][Palik].

Table 3-8: Cupric Oxide Input and Outputs

Parameter True Value  GA/ROM ASTM
o 3959 E-6 3425E-6 4254 E -4
K 960.5 790 -
pc 5.052E6 5285E6 -
h 23.0 31.0 -

The comparisons of the temperatures from the input FLUENT profile, the result of the
GA/ROM profile and the DSFA when using the true, known values directly as input into the
DSFA are shown in Figure 3-26 for the bottom surface and Figure 3-27 for the top. Figure 3-26
shows very strong matching returned by the GA/ROM solution. Figure 3-27 shows that the
profile is not as good of a match from the top surface as the DSFA. The matching by the DSFA
with known parameters was not as strong at the peak temperature on the bottom surface, but did
match better with the top temperature profile than did the GA/ROM profile.

The errors for the parameters from GA/ROM are consistently good for this case. The
error in o is 13.48%, «x is 4.61%, pc is 17.75% and #h is 34.78%. The returned error from the

ASTM calculation is two orders of magnitude.
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Figure 3-26: Cupric Oxide Bottom Temperature Profile Comparisons
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Figure 3-27: Cupric Oxide Top Temperature Profile Comparisons

3.8.4 Aluminum Antimony

Aluminum Antimony was run the same way as the three previous cases. The temperature

profile was input the GA and run for five tests to ensure consistent convergence.
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profile was also used with the ASTM method to determine what it evaluates as the diffusivity.
The input values for the Aluminum Antimony case are shown in Table 3-9 [Adachi][Chryssis et
al].

The comparisons of the temperatures from the input FLUENT profile, the result of the
GA/ROM profile input into the DSFA, and the DSFA when using the true, known values directly
as input into the DSFA are shown in Figure 3-28 and Figure 3-29 for bottom and top surfaces
respectively. The figures both show the high level of accuracy returned by both the GA/ROM
solution and the accuracy of the DSFA with matching a profile with known parameters. In this
case, the GA/ROM profile lays better against the FLUENT profile for the entire curve, with the
DSFA profile once again slightly under at the peak temperature value on both top and bottom

profiles.

Table 3-9: Aluminum Antimony Input and Outputs

Parameter True Value  GA/ROM ASTM
a 2006E-5 2.195E-5 4495 E -4
K 486.0 476.2 -
pc 1.346 E6 1.260E 6 -
h 36.6 23.5 -

The errors for the parameters from GA/ROM are consistently good for this case. The
error in a is 9.44%, x is 6.40%, pc is 2.01% and 4 is 35.79%. The returned error from the ASTM
calculation is more than 2000%.

The data show the strength of the GA/ROM in its capability to return accurate profiles
along the bottom surface that can be utilized to accurately predict the key material properties of

the known samples. The value for convective coefficient is just not strong enough to be able to
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force much effect and its accuracy is more of a case of luck in the GA/ROM more than the
strength of the routine.
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Figure 3-28: Aluminum Antimony Bottom Temperature Profile Comparisons
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Figure 3-29: Aluminum Antimony Top Temperature Profile Comparisons
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4 RESULTS

4.1 Blind Test Cases

Similar to what was done for the four cases in Section 3.8, cases were run from FLUENT
and used as inputs to the GA/ROM program. In these cases, the parameters were not known
beforehand. The data were run and the solutions returned back to the creator of the FLUENT
profiles for checking. This process was done to avoid any potential contamination of the results
and to exercise the capability to perform a true blind study.

Once the data were run, the true parameters were revealed for evaluation of error as is
shown above and also so that the DSFA can be run with the true values to evaluate the accuracy

of the DSFA for those parameters as well.

4.1.1 TIron Disilicide

The first full blind test was Iron Disilicide (FeSi2). The provided data did not have a
convective coefficient, and as such, the error for h cannot be calculated for the case. The only
data provided were arrays of time, bottom temperature, and top temperature. Once the data were
run and the GA/ROM returned parameters, they were resent to the creator of the input
temperature profiles in FLUENT. The results from the GA/ROM and ASTM methods for the

case are shown in Table 4-1 [Milosavljevi¢ et al] [Kojima].
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Table 4-1: Iron Disilicide Input and Outputs

Parameter True Value  GA/ROM ASTM
o 3163E-6 3.027E -6 7.285E -6
K 3384 3138 -
pc 2.846 E 6 2.882E6 -
h - 273 -

The errors for the parameters from GA/ROM are consistently good for this case. The
error in o is 4.29%, x is 7.29%, pc is 1.27% and & is unknown. The returned error from the
ASTM calculation is more than 130%.

The plots of the top and bottom temperature profiles are shown in Figure 4-1 and Figure
4-2. In both the figures, the DSFA Profile lays directly on top of the FLUENT Profile. The
accuracy of the GA/ROM parameters are clearly seen as the DSFA Profile lays very nearly with

them as well. In Figure 4-2, it is impossible to see any differences in any of the three profiles.

Iron Disilicide - Battom
316 T ;

— FLUENT Profile
— GAROM Profile H
—DSFA Profile

34 r

312¢

Temperature (K}
L8] A
(=) —u
[ss] i

[#5]

L]

[ao]
T

(%)

Lo}

I~
T

302 Hf

0z 04 06 0s 1
Time (sec)

3000

Figure 4-1: Iron Disilicide Bottom Temperature Profile Comparisons
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Figure 4-2: Iron Disilicide Top Temperature Profile Comparisons

The errors in the GA/ROM profile from Iron Disilicide are very small and show the
accuracy of the entire process from DSFA solution sets through the ROM and GA. The returned
data is significantly more accurate than the ASTM method would have predicted for this

temperature sample.

4.1.2 Gallium Phosphide

For the blind test of Gallium Phosphide the only data provided were arrays of time,
bottom temperature, and top temperature. Once the data were run and the GA/ROM returned
parameters, they were resent to the creator of the input temperature profiles in FLUENT. The
results from the GA/ROM and ASTM methods for the case are shown in Table 4-2 [Goldbery et
al] [Aspnes and Studna]. Once the GA/ROM and ASTM data from Table 4-2 were returned, the
parameters were returned to the creator of the profile for comparison to the true values that were

used to create the temperature profiles.
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Table 4-2: Gallium Phosphide Input and Outputs

Parameter True Value  GA/ROM ASTM
o 6.179 E -5 6.043 E -5 1.023 E -4
K 3680 2826 -
pc 1.780 E 6 1.913E6 -
h 37.0 28.3 -

The errors for the parameters from GA/ROM are consistently good for this case. The
error in o is 2.20%, x is 23.2%, pc is 7.46% and & is 29.0%. The returned error from the ASTM
calculation is 67.0%.

The plots of the top and bottom temperature profiles are shown in Figure 4-3 and Figure
4-4. 1In both the figures, the DSFA Profile lays directly on top of the FLUENT Profile. The
accuracy of the GA/ROM parameters are clearly seen as the DSFA Profile lays very nearly with

them as well.

Gallium Phosphide - Bottom

325 :
——FLUENT Prafile
—— GA/ROM Profile

3207 —— DSFA Profile

Temperature (k)
iy 7
i n

(%)

L}

o
T

300

0 0.0z 0.04 0.06 0.08 0.1

295

Time (sec)

Figure 4-3: Gallium Phosphide Bottom Temperature Profile Comparisons
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Figure 4-4: Gallium Phosphide Top Temperature Profile Comparisons

The errors in the GA/ROM bottom profile from case of Gallium Phosphide are small and
show the accuracy of the entire process from DSFA solution sets through the ROM and GA. The
top temperature profiles have a larger amount of error than the bottom and that is displayed in
the error in the parameters. The DSFA parameters with the true values are much closer and so
more accurate temperature profiles would return more accurate parameter sets. The GA/ROM
for the five runs of Gallium Phosphide all successfully converged. The returned data is more

accurate than the ASTM method would have predicted for this temperature sample.

4.1.3 Indium Phosphide

The only data provided for the Indium Phosphide case were arrays of time, bottom
temperature, and top temperature. Once the data were run and the GA/ROM returned
parameters, they were resent to the creator of the input temperature profiles in FLUENT. The
results from the GA/ROM and ASTM methods for the case are shown in Table 4-3 [Dargus and

Kundrotas][Aspnes and Studna]. Once the GA/ROM and ASTM data from Table 4-3 were

63



returned, the parameters were returned to the creator of the profile for comparison to the true

values that were used to create the temperature profiles.

Table 4-3: Indium Phosphide Input and Outputs

Parameter True Value  GA/ROM ASTM
o 4560 E -5 3.066 E -5 4424 E -4
K 985.2 642.7 -
pc 1491 E6 1.693E 6 -
h 37.2 36.3 -

The errors for the parameters from GA/ROM are consistently good for this case. The
error in o is 32.8%, x is 34.8%, pc is 13.5% and 4 is 2.41%. The returned error from the ASTM
calculation is more than 870%.

The plots of the top and bottom temperature profiles are shown in Figure 4-5 and Figure
4-6. In both the figures, the DSFA Profile lays near to the FLUENT Profile. The accuracy of the

GA/ROM parameters are clearly seen as the DSFA Profile lays nearly with them as well.
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Figure 4-5: Indium Phosphide Bottom Temperature Profile Comparisons
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In Figure 4-6, it is seen that there is a significant difference in the GA/ROM profile and
the FLUENT profile. This is a case where the measurement of the top surface would be able to
be used for calculating the material properties. If the data were taken on the top and utilized
similarly to what is done by the bottom surface temperature, there would be a good probability
that the inverse solution to the temperature curve would return better solutions.

The return of improved solutions would be to the increase in fitness values that would be
returned by the top temperature profile being more accurate. As is shown in Figure 4-5, the data
returned by GA/ROM did not lie perfectly on the profile, but it was near to it. With increased
fitness pressure coming as well from the top profile, the likelihood of returning parameters with

the same amount of error would be small.
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Figure 4-6: Indium Phosphide Top Temperature Profile Comparisons

The errors in the GA/ROM profile from Indium Phosphide are generally small for the
bottom surface. The top profiles are not as similar and that is due to the errors in the parameters
returned by the GA/ROM against the true values. The temperature profiles matching fairly well
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on the bottom show that there is a possibility for near non-unique solutions. It is not to be
inferred that the profiles will match exactly with varying parameters, but that there can be large
variations in parameters that can produce bottom profiles that are similar. The distinction can be
made by investigating the top surface along with the bottom surface. The combination of top
profiles and bottom profiles are unique. If there are profiles along the bottom that are near when
the parameters are far, there will be large differences in the top profiles as shown in Figure 4-5
and Figure 4-6.

The returned data is still much more accurate than the ASTM method would have
predicted for this temperature sample. The DSFA parameters with the true values are much
closer and so more accurate temperature profiles would return more accurate parameter sets.
The GA/ROM for the five runs of Indium Phosphide converged successfully each time without

timing out of its 500 generation limit.

4.1.4 Zinc Selenide

For the case of Zinc Selenide, the only data provided were arrays of time, bottom
temperature, and top temperature. Once the data were run and the GA/ROM returned
parameters, they were resent to the creator of the input temperature profiles in FLUENT. The
results from the GA/ROM and ASTM methods for the case are shown in Table 4-4 [Crystran].
Once the GA/ROM and ASTM data from Table 4-4 were returned, the parameters were returned
to the creator of the profile for comparison to the true values that were used to create the
temperature profiles.

The errors for the parameters from GA/ROM are consistently good for this case. The
error in o is 0.54%, x is 6.86%, pc is 8.05% and % is 39.4%. The returned error from the ASTM

calculation is more than 4000%.
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Table 4-4: Zinc Selenide Input and Outputs

Parameter True Value  GA/ROM ASTM
o 1.008 E -5 1.013E-5 4,147 E -4
K 517.9 482.4 -
pc 1.787 E 6 1.643E 6 -
h 37.6 22.76 -

The plots of the top and bottom temperature profiles are shown in Figure 4-7 and Figure
4-8. In both the figures, the DSFA Profile lays directly on top of the FLUENT Profile. The
accuracy of the GA/ROM parameters are clearly seen as the DSFA Profile lays very nearly with

them as well. In Figure 4-8, it is impossible to see any differences in any of the three profiles.
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Figure 4-7: Zinc Selenide Bottom Temperature Profile Comparisons

The errors in the GA/ROM profile from Zinc Selenide are very small and show the
accuracy of the entire process from DSFA solution sets through the ROM and GA. The top
temperature profiles have a larger amount of error than the bottom and that is displayed in the
error in the parameters. The DSFA parameters with the true values are much closer and so more

accurate temperature profiles would return more accurate parameter sets.

67



Zinc Selenicde - Top

440 T
—FLUENMT Profile
490 — GAROM P_rofile 1
—DSFA Profile
400 8
=
g 3380 .
o
g
= 360 8
1k}
'_
340 .
3201 8
300 1 1 L
0 0.05 01 015 02

Time (sec)

Figure 4-8: Zinc Selenide Top Temperature Profile Comparisons

The returned data is significantly more accurate than the ASTM method would have
predicted for this temperature sample. For each test run with Zinc Selenide, the simulation was

able to successfully converge before reaching its 500 generation limit.

4.1.5 Aluminum Gallium Arsenide

The last blind test case was Aluminum Gallium Arsenide. The only data provided were
arrays of time, bottom temperature, and top temperature. Once the data were run and the
GA/ROM returned parameters, they were resent to the creator of the input temperature profiles
in FLUENT. The results from the GA/ROM and ASTM methods for the case are shown in
Table 4-5 [Goldbery et al] [Kelso et al].

Once the GA/ROM and ASTM data from Table 4-5 were returned, the parameters were
returned to the creator of the profile for comparison to the true values that were used to create the

temperature profiles.
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Table 4-5: Aluminum Gallium Arsenide Input and Outputs

Parameter True Value  GA/ROM ASTM
o 6.009 E -5 5958 E -5 9.547 E -5
K 4089.6 2877.7 -
pc 1.771 E 6 1.925E 6 -
h 12.1 25.3 -

The errors for the parameters from GA/ROM are consistently good for this case. The
error in a is 6.84%, x is 29.63%, pc is 8.72% and & is 110%. The returned error from the ASTM
calculation is 58.9%.

The plots of the top and bottom temperature profiles are shown in Figure 4-9 and Figure
4-10. In both the figures, the DSFA Profile lays directly on top of the FLUENT Profile. The
accuracy of the GA/ROM parameters are clearly seen as the DSFA Profile lays very nearly with

them as well. In Figure 4-10, it is impossible to see any differences in any of the three profiles.
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Figure 4-9: Aluminum Gallium Arsenide Bottom Temperature Profile Comparisons

The errors in the GA/ROM bottom profile from Aluminum Gallium Arsenide are small
and show the accuracy of the entire process from DSFA solution sets through the ROM and GA.

The top temperature profiles have a larger amount of error than the bottom and that is displayed
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in the error in the parameters. The DSFA parameters with the true values are much closer and so
more accurate temperature profiles would return more accurate parameter sets. The GA/ROM
for the five runs of Aluminum Gallium Arsenide all successfully converged. The returned data is

more accurate than the ASTM method would have predicted for this temperature sample.
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Figure 4-10: Aluminum Gallium Arsenide Top Temperature Profile Comparisons

For each of the blind case tests, the parameters for diffusivity returned by the GA were
more accurate than the calculation using the ASTM method. The errors in the temperature
profiles are generally quite small and thus GA/ROM is able to quickly and accurately determine
the desired parameter of diffusivity. The procedure is also able to return parameters for heat
capacity and optical depth of the unknown materials. The values for convective heat transfer are
not strong enough to give a high level of confidence in their measurements, but the parameter is
not a material property.

The convergence criterion was met for each run of the GA. There were no tests in which

the convergence criterion was not able to be met in the 500 generations. The GA was run for
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each profile five times to ensure that the GA would be able to return consistent solutions as the
GA process is inherently random and non-deterministic. The data was investigated and shown to

be able to return results that were both accurate and consistent as their variations were small.
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S SUMMARY AND CONCLUSIONS

Modern engineering practice increasingly relies on the ability to perform precise
numerical simulations in order to optimize the design of systems. The accuracy of these
numerical simulations depends on the accuracy of the material properties that are required input
parameters. Therefore, the ability to accurately measure material properties is critical in modern
engineering practices.

The thermal diffusivity is a key material property needed to perform thermal analyses of
engineered systems. Over the last few decades, pulsed laser diffusion (PLD) systems have
become the method of choice for making measurements of thermal diffusivity. Previous PLD
models have been based on a number of highly restrictive assumptions. The results presented in
this thesis show how a higher fidelity PLD model may be implemented and used to more
accurately measure the thermal diffusivity and other properties of various materials.. The
Distributed Source — Finite Absorption (DSFA) model proposed in this thesis accounts for the
most important effects that were neglected in previous DSFA models. The top surface was not
taken to be adiabatic, but allowed for free convection to affect the material sample. The laser
pulse power was not assumed to be completely absorbed at the top surface, but realistically
modeled as being absorbed throughout the sample. The laser power was assumed to take on a
Gaussian profile rather than a uniform profile across the sample surface. The laser pulse was not

taken to be infinitesimally short, but to be a triangle pulse rising to a maximum temperature at a
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certain time and returning back to zero. As demonstrated through comparison with full CFD
simulations of a PLD system, the DSFA results in a high fidelity model of a practical PLD
system.

In this thesis, the development and performance of previous PLD models have been
thoroughly reviewed. The method first established by Parker in 1961 was introduced and
developed. The model was based on a number of assumptions about the physics of the process.

The Parker model assumes:

e one-dimensional heat transfer

e uniform heating in a thin layer on the top surface of the sample
e all surfaces are adiabatic

¢ infinitesimally short pulse time

e uniform energy on the top surface of the sample

e no radiative effects

Parker proposed that a can be found by inputting the thickness of the sample and the time
that it takes for the rear face to get to half of its maximum value in a simple equation shown in
Eq. (2-13).

Magli¢ utilized the same model development as Parker and used an expanded form of the
Parker equation for finding o as shown in Eq. (2-14). He uses a set of values that correspond to
the percent rise of the temperature as shown in Table 2-1. The values of a can then be averaged
over the temperature rise curve for the a of the sample.

ASTM has accepted a method that also uses the same development from Parker and the
same expanded equation from Magli¢. It suggests that you compare the values of the 50% rise

time to those of the 25% rise time and the 75% rise time. If they match within 5% of each other,
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then the value computed is the accepted a. The ASTM method is the generally accepted industry
standard.

In order to avoid the use of the same assumptions as is done in the previous models, the
DSFA model is proposed. The DSFA model returns the temperature at any point in the sample
at any time. The new model allows for two-dimensional heat transfer, non-uniform heating
effects in time and space, and heat loss from the exposed surface.

ROM is a fairly accurate technique that can be used to solve the new equation. The ROM
is faster than the full computation solution of the new technique. The errors introduced by
running the ROM are generally small. However, using the ROM developed in this work does
add the possibility for non-unique solutions.

The data clearly shows a trend that as the noise in the parameter sets grows, the errors in
the predictions for the individual parameters also grows. These tests show the robustness of the
method of GA solving the inverse problem with ROM. In the presence of noise the GA with
ROM can consistently perform and return an acceptable set of parameters. Due to the non-
uniqueness of the solution sets, the returned solution can come to a number of different values.

The time required to return the nondimensional profile is minimized due to the use of the
ROM being utilized. The GA was run for each case up to 500 generations. Running all 500
generations of a population set of 150 is 75100 function calls. The time for each function call of
the ROM is 0.0025 sec making the GA return a value in approximately 187.8 seconds or about
3.13 minutes. For the GA to use the DSFA, which returns a profile in approximately 0.85 sec,
the GA would take more than 17 hours to return a solution. The ROM allows for processing at a

rate of 340 times faster.

75



Future work that can be done to improve the accuracy of the inverse operation could
include measurement of the top surface of the sample that is being irradiated. The case that had
larger errors were due to nonuniqueness of the solution for the bottom temperature. When the
top surface is investigated, it is shown that the returned parameters created a profile that did not
well match. If the top surface temperature errors were included in the fitness value, it stands to
reason that the GA would have returned parameters with smaller errors. The inclusion of the top
surface would likely also reduce the errors in the calculation when the errors were not large. The
improvement in accuracy of the measurement technique could be a driving force for standard

testing procedure modification.
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APPENDIX A. PARKER MODEL DEVELOPMENT
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Assuming constant &, p,, and ¢ allows

No internal heat generation gives
q=0
To return the simplified heat equation to

o _1er
0z o ot

With the adiabatic boundary conditions of

6_T
Oz

_or

o Oz

=0

z=L

The initial condition is defined as

0
T o+ <
T(Z’O): 0 pch
T, 0<z<L

0<z<6
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Non-dimensionalization is done by allowing
ot

e

The heat equation now non-dimensionalized is

2’9 2
oC7 ot

With the non-dimensionalized boundary conditions of

26
og

06

=2 =0
-0 98

¢=l

And the non-dimensionalized initial condition of

L osgsé
oc0=1° 5 *
0 —<g<l

<<

The equation can now be solved using the technique of separation of variables. The base
equation is defined as
0 =2(¢)T(r)

The base definition is substituted into the differential equation

The equation is now separated with the eigenvalue defined

1oz _1oT_
2o Tor
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The individual equations can now be evaluated separately. First, the Z equation will be
solved:

0’7

2

+1*Z=0

For the basic second order equation, we can solve using the sin and cos functions

Z =C, cos(A¢)+C, sin(1¢)

Now, the T equation will be solved:

a—T+/12T=O
or

The first order equation can be solved with an exponential
T=C, exp(— /121)
The Z and T equation are recombined

0=C, exp(— /”LzrlCl cos(l§)+ C, sin(ig“)]

The equation is differentiated so the boundary conditions can be applied to begin to solve

for the constants

. i
LU
8( £=0 ag ¢=l

The boundary conditions force C;= 0 as the value of cos(0) is not 0, the only way for the

expression to be 0 is if the constant is 0. The value of sin(A) is 0 when and only when A=nn

cos(0)=0—>C, =0
sin(/I):O—>/1:n7r, whenn=0,1,2,---
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The equation is now a solved with an infinite sum starting at 0 with both constants C; and

C; can be combined to C,

0= iCn exp(— nzﬁzr)cos(nﬂg“)

n=0

To solve for the values of C,, orthogonality is used to isolate and solve in the summation

Ié’cos mal ¢ = ZC exp n’r chos (n7g)cos(mal &

0

Recall the orthogonality rules that

1 0 if m#n
Icos(n%é’)cos(m;ré’)d( =<1/2 if m=n#0
0 1 if m=n=0

Applying the orthogonality rules

je (£.0)cos(mal ¢

C, = je(g 0)d

Form=0
1 %y
C, = [0(¢,0)d¢ = jgdg—l
0 0
Form#0
/e

C, = 2j—cos (mal e

c g{wy

) mr |,

2L . (mﬂ'é'j
C,=—-—=sin| —
mmo L
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As the radiation is assumed to be absorbed is a very small depth, the small angle

approximation is used to remove the sin term

(mﬂ5j mnod
sinf —— | ——
L L

C, =2

Substituting the constants back into the base equation,

0=1+ 25: exp(— nzfrzr)cos(mr()

n=l1

Redimensionalize the equation

T(z,t)—T - —-n’rlat (nﬁzj
——— 2 =1+2) ex coS
o/ 2 p( r L
pcLA

Solve for temperature at the bottom surface, z = L

o0 2_2
T'(Lt—)z"n = 1 + 22 exp _n—7§at Cos(n”)
Q/ n=l1 L
pcLA

Solve for the !4 temperature rise on the bottom surface where at ¢ = 1y s

T(L,t,5)-T
s) Te -5
%
pclA

1/2=1+2) exp

n=1

2 2
(%m“j cos(nr)

As cosine is an odd function, the infinite sum of the cos term can be substituted for (-1)"

- nzﬂzato's
LZ

1/2=1+2i(—1)" exp

n=1

Evaluate the expression at one term
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—-rlat
-1/4= —exp(To'5

Solving for the expression yields

2
—7Tal
L2

=1In(1/4)=-1.3863

Solving for a gives

0.140461°
oO=—

t0.5

Evaluating the expression at two terms

—-rat —4r’at
—1/4:—GXP(TO'5 + eXp TOS

Isolating a single exponential

~rlat -37’at
-1/4= —exp(TO'5 1-exp L—ZOS

Using the single term approximation for the exponential term

2
_1/4= —exp(%f““J[l ~exp(3(=1.3863))

i 2 l‘
- exp(% = 0.25397

Solving for a for two terms gives

0.13887L°
o=—

tOAS
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Evaluating the expression and solving for three terms

1ot —4r’at — 97 at
~1/4= —exp(—L2 03 | +exp — 0 03 | —exp — 0 93

Isolating a single exponential

— ot -3t — 87 at
-1/4= —exp(—L2 03 I'1—exp — 0 03 |+ exp —Q 03

Using the two term approximation for the exponential term

_1/4= _exp(_”z#][l —exp(3(~1.3863))+ exp(8(~1.3863))]

2

- exp[% = 0.25416

Solving for a for three terms gives

0.138791*
oQ=—"

tO.S

Evaluating the expression and solving for four terms

—rlat —4r’at -9 at —167°at
—1/4= —exp(—L2 03 | 4 exp — Y 03 | —exp — 0 03 | +exp — 7 05

Isolating a single exponential

-t 37t —~87’at ~157°at
-1/ 4:—exp[—L2 03 I'1—exp —0 03 |+ exp — 0 03 | —exp — 0 0.3

Using the three term approximation for the exponential term
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~1/4= —exp(_”z#j[l —exp(3(~1.3698)) + exp(8(—1.3698)) — exp(15(—1.3698))]

- exp[ﬂ ~0.25417

L2

2
-l
LZ

=-1.3698

Solving for a for four terms gives

0.13879L°
o=—

tO.S
The solution for four terms is the same as the solution for three terms at the numerical
precision used. Thus, we are able to say that the solution has converged and three terms are all

that are needed for the infinite sum and the solution given can be used.
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APPENDIX B. DSFA DEVELOPMENT

10 ory 1 o(,0T) of(,oT) . oT
——\|kr—|t+—5—|k— |+ | k—|+q¢=p,c—
ror\ or) r-og\ 0¢) 0z\ 0Oz ot

o _, o'T
op  O¢’

=0

Assuming constant &, p,, and c allows

1a(aTj o’T ¢ 10T
—— | r— |t =t =—
or) & k aot

2

qu—iexp{‘i —K(L—zﬂf(z)

o

o

From Figure 3-7 the pulse is modeled as:

t
— 0<t<t,
tm

t, —t

flt)=1-2 t, <t<t,

t, —t

P m
0 t, <t

Boundary Conditions:

&9



or, _or _,

or|._, Or|_

oa g

0z |,

EpLCN WT(r,L,t)—Two)
0z|.,

Initial Condition:

oT

Al IR
0z

z=0

Nondimensionalize the equation with the following parameters:

Substituting variables into base equation:

1o RTref@H +Tr¢f829+i:z‘€f'%
PR Rop Rop L’o¢* k R or

1 a( aej R> 90 ¢R® 00

pop\"ap) o Tk, "o

gR>  PxR’ —-R*p’
= -S(1-
kT;‘ef Wosz;ef exp|: R2p02 ( é’) ¢(T)
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T
— 0<r<r,
Tm
T —T
_ P
#(r)= 7,<7<7,
T,-7T,
0 T,<7

1o( 00) ,0° gR* 06
———|p—|ta —+ =—
pop\" dp o¢” kT, ot
Thus requiring:

_ PR’

e 2
ref . k

o

Substituting in to yield nondimensional equation:

10(00) 100 [0 0 ol 00
L2 52 Sy =L -st-) 0

o

Nondimensional boundary conditions:

a0 o _
Pl Py
o,

¢

o =—Bif(p,l,7)
|,

Using the method of Eigenfunction Expansion:

0(p.¢.7)=33 b, (2R, ()2, (¢)

n=0 m=0

Sturm-Louisville Problem in p:

91



11( dR,

— p—j+/1n2Rn=O
pdp\  dp

Boundary condition:

dR,
dp

_dR,
p=0 dp

=0

p=l

For Neumann condition boundary conditions, use Bessel function for solution:
Rn (p) = _CIJO (//lnp)+ C2Yv0(/1np)

dR,
dp

= _Clﬂ’n‘]l (ﬂ’np)_ CZ/,{’anl (ﬂ’np)

Using boundary condition:

dR,
dp 0

= 0 = _Clﬂn‘]l (//ln O)_ CZin)/l (ﬂ’n O)

J,(0)=0, Y¥(0)=00

Thus to satisfy the boundary condition:
C,=0

Which returns the Bessel function:
R,(p)=-CiJ,(2,p)

With the derivative:

dR,
dp

= _Cl/lnjl (;Ln )= 0

Utilizing the other boundary condition:

dR,
dp -

=—C,A,J,(2,1)=0
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Thus 4, equals the roots of J;(4,) = 0 starting at n = 0 as 4o = 0 and J;(0) = 0. The value
of C; cannot be zero as that would yield a trivial solution, as it can be any constant, there is no
need for the negative sign, as it could be positive or negative nonzero constant.

When 4y =0, n =0:

pdp

dp
d deO 0
dp\" dp
Integrate both sides in p:
dR
d| p—> |=|0d4
J (p d/JJ Jod

dR0:C3_) _G
dp dp p

Utilize boundary condition:

dR,
dp

G
p=l P

0->C,=0>R,=C,

Sturm-Louisville Problem in {:

2
g

Boundary conditions:

dz,
g

dz,
g

—-BiZ,
c=1

9

¢=0

For Robin conditions, use sin and cos:

Z,(&)=Cysin(B,¢)+Cycos(B,<)
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dz,
¢

= B,.Cs cos(B,&) - B,,Cq sin(B,£)

Using boundary conditions:

dz

i<, =0=p,C;cos(f8,0)- B, C, sin(f3,0)

With cos(0) = 1, and sin(0) = 0:
ﬂmCS = 0 - CS = O - Zm (é/): C6 Cos(ﬂmé/)

Using the other boundary condition:

" =-BiC, cos(ﬂm 1) =—p,Cs Sin(ﬂm 1)

Bicos(B, )= p, sin(B,) > Bi= B, tan(B,)
Which makes the values for /3, the solutions to the equation Bi=f, tan(f,). There is

no zero eigenvalues in f, as there is no solution where there is a non-zero value for Bi. Thus in
the infinite summation, the value of m is indexed from 1 through infinity rather than from 0 as is

n.

Now recall that:

R,(p)=J,(2,p)

Where 4, is the roots to the equation J;(7,) = 0 from n = 0 through infinity and:

Z,(¢)=cos(8,£)

Where f3,, is the roots to the equation Bi = f3, tan(f3, ) from m = 1 through infinity. The

value for @ can be evaluated:
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o0 00

0(p.¢.t)=2" > b, (c)](4,p)cos(B,¢)

n=0 m=1
The value for 6 can now be reinserted into the heat equation yielding:

1o ( 2{E 5wl kosts 4))]

p n=0 m=1

a2 [iibm<r>Jo<znp>cos</s,,,;>j+exp{‘% —s<1—¢>}¢<r>

aé/z n=0 m=1

~ o7 [ZZ w(2),(2,0)cos(B,, g)j

n=0 m=l1

Which can be simplified:

iibm<r>cos<ﬁm;>%§[piuom,,p»j

n=0 m=1

+a’

0
n=0

1M

> (e MalAr)

bnm
or

¢’

J (/1 p)cos( B¢ )

[Me

m=

Remembering that:

YR0) 16,002 02 00D =2 000

o yoXo op
% -B, cos(B,¢)

Substituting into the previous equation:

=3 b, (D)eos(B, N (2,0) - X S b (W (1,08, cos(5,8)
s =33 2, (2, p)cos(5,)

n=0 m=1

Multiply all by o/, (xlq p) and integrating in p from 0 to 1:

95



S S b o BB | Al 0,

n=0 m=1

Y b, (0)eos(B,E)[ (1, 0V (2, 0)dp

n=0 m=l1

+el Ipe( ] (4,0l = ZZ 2 cos(B, O 2o (2,00,(2,0)d

n=0 m=1
Using orthogonality:

if n#q

0
Ioﬂfo(ﬁqp)/o(/’tnp)dpz Jol4,) if =g

2

This is proved by using the equation from the SLP in p:

d( d,(4p)

4|, NF) 2 _
e R e Jo(4,p)=0
d pd]o(iqp) +pA) (/1 ):0
dp dp q Y0\

Subtract the second equation from the first to yield:

i(pM]_i(pM}_(ﬂ;_ﬁ;) (upWalir)

dp dp dp dp

Integrate by p from 0 to 1:

O sl 7 Lo Ll (

0 dp
p d](’cgi"” ) ¥ chinp)
e hobnle, ok - 2, 1/1,12 d, (xlc,pp)=1 dJ, (/1qu=0
@ P
Which simplifies to:
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N (qp)dp— z[d‘](’(ﬂ“"p AT J

dp |p:1 dp ‘p:l

a‘]0 (/In p )
0,

YNV
Again using the identity of =—1,J,(4,p) and y =-4,J (/Iq p)
0

J-;,ajo(ﬂ“np)']o (ﬁqp)dp :#(_ A, (ﬂnplpzl +ﬂ“q']1 (/161'01;,_1)

-1

q n
J la]0 ﬂ“ p ( qp)dp_—( ﬂ“njl(ﬂ’n)-i_/lq']l(ﬂ’q))
From the eigenvalues, J, (1, )= J, (/1 . ): 0 for all eigenvalues A from 0 to infinity:

.Ep‘jo(lnp)]o(ﬂqp)dp=0 iff A, #2,

For A, = 44:

J.; P, (/Inp)]o (/qu)dp = J.Ol ,a]02 (/qu)dp
Using the previous identity:

i[pm

i s j+ pA, Ty (A,p)=0

With a multiplication factor:

i[pm

v G J+pﬂq2J0(iq )=0

dJO(;Lqp)i dJO(;tqp) + p? dJO(;tqp)l 2 (ﬁ, ):0
dp dp dp L dp !

dp

T IELE

Integrate in p from O to 1:



vd |( d(A,p)Y v dr (4 p)
L%Kp & ]}ps%zj"pz W

Integrate by parts:

u=p'  dv= %(Joz(ﬂqp))

du=2pdp v:Joz(/lqp)

(4 -

:(p dJ, (ﬂqp)j[p dJ, (&,p)ﬂl __ qu([szoz (4,0 - [200,2(, ,O)dp)

dp dp

The left side of the equation is simplified:

e e

dp dp dp

p=0

dp dp

L

p=1
Again using the identity:

dJO (/Iq p )
dp

ol

dp

=—4,J; (ﬂ“qp)

1

—-2.7,(2,)

0

From the eigenvalues we know J, (/Iq) for all A, thus the left hand side of the equation is

zero, which of course forces the right hand side to also be zero:
I 1
0= —ﬂqz[[p”oz(ﬂqp)]o -], 207 oz(lqp)dp)
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Evaluate the first portion:

szoz(ﬂqp]; = szoz(/lqu -p2J,(2,0)

p=0
1

p2J02 (ﬂqp]o = J02 (;Lq)

Substituting it back into the equation:

0=-2 (22 [ 20 G,

Divide by 4, to simplify:

0=—4, (3, }+2[ a1,* (2,0 Jip

Which yields for n = g:

[ 1,2, 3, pkip =000 ( )

This is now input into the heat equation for n = g:

/1 J ( )zqu COS ,3 é’) wgﬂm qm( )COS(,B é/)
+e S0 pe[ ] (o =2t 7l )m lagq;“ cos(3,¢)
Simplify:

Simplify to:

g[agr + ¥ b (7 )]cos(ﬂ £)=F e y(r)
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Where:

a2 2,502
qu_ﬂ’q +aﬂm

7—)_[ Pe[ ] ﬂ, P)j/?

Using a computationally efficient technique for finding the integral in F:

I —Ipe[ ] (2,0 lp

2= p=yp,

o

d;(zidp
Po

Making an integral substitution:

1

1,=|»pyye” oAy pox Joudx
Let:
Ay =4,P0
Substitute into the integral:
2 L 2 oy
I,=py o ze” J, (2,2 hix

From integral table, #6631.4

szwle—a/,jv(ﬂ;()l;(: (25;”1 exp(;’z j

Thus, if :
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_T I/~
po—%<<l—>/00~oo

The substitution can be made to the integral rather than computing the integral

numerically:

1,2, [ 2 1,0, 2 bz

2 2,2
P Py 4
I, = Oexp[ q]

2 4

Substituting into F:

Simplify:

2 2,42
Po Po )“q
F = exp

AS [ 4 j

This assumption is good for p, <0.5. When the value is greater than 0.5, a numerical

integration must be used to approximate the integral in F.

Evaluating F) for use in the equation when ¢ = 0, from eigenvalues:

A,=0

J,2(0)=1-J,(0)=1

Substituted into the exact definition of F;:

,pz

1 2
F, :2I0pep° dp

2 (! %2/0
Fy = py Le —dp

0
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Using a u substitution:

2
u:p—2—>du=2—€dp

Po Po

1

F, = p02j-oﬂ?e’”du

1

Ey :poz[_eﬁF

-1
2 2
Fy=p, | —e” +e°]

-1
F,=p, 1e”°2]

Returning to the heat equation, we have:

Z[ b, (z )]cos(ﬁ ¢)=F,e = g(z)

We use orthogonality to remove the summation in m by multiplying by cos(f,{) and

integrating from 0 to 1 in (.

I3[ %

This can be simplified by rearranging:

( )jcos(ﬁpg)cos(ﬁmé’)d{ = J.Oqu¢(r)e(_S(l_§)) cos(ﬁpé’)dé’

© (Ob 1 1
Z[ I b (r)} [ cos(,¢ )eos(8,)ds = Fp(z)] eV cos(p, ¢ g

m=l1
Using orthogonality:
0 if m#p

J- cos(,B é’)cos(ﬂ )¢ = ; (l"'Blﬁ(l"‘Bl)) if m=p
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This is proved using identities of the trigonometric cos, recall:

2c0s(a)c0s(ﬂ) = cos(a + ,B)+ cos(a — ﬂ)
This applied yields:

1 ¢l
I cos(ﬁ é’)cos(ﬁ é’) ¢ = I cos( §+ﬂp§}l§+5.ﬁ)cos(ﬂm§—ﬂp§)ﬂ’
Llcos(ﬂpé’)cos(ﬂmé’)dé’ = %Jz cos[(ﬂm +8, ){}i{ +%J.Olcos[(,b’m -B, ){}ig’

The integrals are evaluated:

1 Ca[sinllg, + 5, A[sinllg, -5, K]
) COS(ﬂpg)c"s(ﬁmg)dg_E_ B+ DB, L 2[ B.-B, |,
J.OICOS(ﬂpé/ )COS(ﬁmé/ )d& :% Sin;fi;fp )— Sin['(gi’":ﬁﬂpp )O]J+

1 Sin(ﬁm —ﬂp)_ sin[(ﬂm -8, b]}
2 ﬂm _ﬂp IBm _ﬁp

sin(B, + B, )] 1 (sm(ﬂm 3 )J

Jycos(p,¢Jeos(p, 4)”‘2[ B.+B, ) 2 B.,-B

This is simplified:

Jicos(B,¢ )eos(p,¢ e = W[(ﬁm =, )sin(B, + 5, )+ (8, + 5, )sin(p, - 8, )]
Jicos(B,¢ )eos(B,¢ i = W[(ﬁm -, )sin(B, + 5, )+ (8, + 5, )sinlp, - 5, )]

Expanding with tan:
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B, tan(,Bm ) B B, tan(ﬁp )J '
jlcos(ﬂ é’)cos(ﬂ £)d¢ = 1 ( tan(,) lan(ﬂp) Sln(ﬂm +,3p)
0 O\ m A, -5, B, tan(B,)  B,tan(B,)) (
' + sin\B, - 3 )
L m”(ﬁm) tan(ﬂp) »
Recall that f, tan(B,, )= Bi:
| Bi _

1 1
B A =
J-O cos(ﬁpé’)coS( ,C)dS ‘(Ez K _ﬂpz)

This is simplified:

1

1

( tan

J.(: cos(ﬁpg”)cos(ﬁmg“)dg" = E(ﬂmi;ﬂpz)

%YM%J

1 1
" [tan(ﬁm ) i tan(ﬂp
Substituting:
. 1
- tan(p,)

b=

taniﬂp )
c= sin(ﬁm )cos(ﬂp )
d= cos(ﬂm )sin(ﬂp )

Simplifies the equation:

Sin(ﬂm )cos(ﬂp )
+ cos(ﬂm )Sin(ﬂ ,

- cos(ﬂm )Sin(ﬂp

E cos(ﬁpg)cos(ﬂmg”)dg” = Zﬂi#)[(a —b)(c+ d)+ (a +b)(c —d)]

This is expanded and simplified:
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J‘; cos(ﬂpé')cos(ﬂmg”)d( = Z,Bmf%.ﬂpz)[zac - 2bd]

Simplifying the expression and reinserting the expressions for a, b, ¢, and d:

Bi sin(ﬁm )cos(ﬁp)_ cos(ﬂm )sin(ﬁp)
g B tan(B,) tan(p, )

1
[ cos(8,¢ )eos(B, ¢ ag =
Using simple trigonometric identities it is simplified again:

J‘(ICOS(ﬁpé’)COS(ﬁmé,)dé/ :%[Cos(ﬁm )COS(ﬁp )_ cos(ﬁm )cos(ﬁp )]

B =B,
It is clearly seen that this expression is zero as the two expressions inside the brackets are

the same. When they are subtracted, zero is returned and the expression evaluates to zero when
B, %P,

When f,, = f,, the base equation is simpler:

jol cos(ﬂmé)cos(ﬁpg“)ié’ = '[Olcosz(ﬂpg)ig“

Recall the trigonometric identity:
2 1

cos’(at)= 5[1 + cos(2a)]

This is input into the integral:

J‘Ol cos’ (ﬂp(;)ig” = ,L%[l + cos(Zﬂpé’)}ig”

1 I in\2 1
Lcosz(ﬂp:)de“:%_m%fg)l

N 1l sin(Zﬂp) i (0
[ cos (ﬁpg}zgzg_uw—m%}
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J‘Olcosz(ﬂpé’yé' =—|1+

1, sinl28, )J

2 28,
1 2 in\2
[eos’(p,chc =1 +2;j( . )]

Recall from the half angle formula:
sin(Zﬂp ): ZCos(ﬁ’p )sin(,b’p)

Substitute into the previous equation:

1 2 2 }
jocosz(ﬂpé/)jé/: ﬂp+ Cojélfp)sm(ﬁp)
JLeos* (g, g =2 +COS2(Z bf)

Multiply by a cos(B,) / cos(B):

B, +cos(B, )sin(B, {%ﬁ%;}

Jlolcosz(ﬁpé/)ig = 2ﬂp
Simplify:

1 2 t
L COSZ(ﬂpé,)ig = i +COS2(§3) an(ﬁp)
Recall:

ﬂp tan(ﬂp ): Bi
Multiply the last term also by £,/ f,:

B, tanlB,)

/i'p+cos (,Bp) ,Bp

28,

jolcosz (ﬂpg”)ié’ =
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This can simplify:
Bi
B,+ cosz(ﬁp )—

L]cosz(ﬂpé’ﬁg = 28 b

Recalling the trigonometric identity:

sinz(ﬂp)+cosz(/5’p)=1

It can be derived that:

1

cosz(ﬂp ): m@

Substitute this into the prior equation:

R e -
r 1+tanziﬂpi B,

2B,

_[;0052(ﬁp§)1§ =

From the definition of Bi:

B, tan(ﬂp): Bi —> tan(ﬂp):%

p

Substitute into the equation:

i
? 1 Bi? , ,Bp
",

fieos (g, e =
This simplifies:

| ﬂp{1+§f§]+g
Jyeos* (B, hg =—— i
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B, +Bi(l+Bi)
28,

Resulting in the end of the value for which is proved:

Ecosz(ﬂpé')ié' = %Ll + Bi(,lgtBi)J when m=p

P

Using orthogonality on the heat equation:

ddb:'p + 7qpb@ (T)]% 1+ Bi(;:zBi) = Fq¢(f)_[; el 50e) Cos(ﬂpé’)dé/

B b Y 1+ 2B e ol el

Evaluating the integral by parts:

u= e(SC) dv = cos(ﬂpé,)dé/
du=8e)ds  v= M
By

(5¢) o ! (5¢) o7
J-Ole(%)cos(ﬂpé')dé’:l:e . SZ:(IBpé/):L _J'Ol Se'* Zj(ﬂpg)dé/

Yields the equation:

e’ Sin(ﬁp)_e(so) sin(ﬁp -0)_ijl e(‘%)sin(ﬁpé’)

g, B, g, B, g

JL ) cos(,¢ Jag =

Which simplifies to:
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1 S o ! (8¢) o5
[[ ) cos( ¢ Jig = <) SZP(ﬂP)—ﬂ%L—de S;:(ﬂ e

Integration by parts can be done on the integral using:

u=els) dv = sin(ﬁ é')dé’
=S Sar  y=_0V <)
B,

[[€5) casl,¢ ¢ = < sin(p,) iues: (Mﬂ +ﬁi [let) cos(ﬂ,,;)rzg]

B, B B,

Evaluating and simplifying to:

J'Ol o5¢) Cos(ﬁpf)dé’ = ¢ SZZ('B”)+ ﬂSz (eS Cos(ﬂp )—eo cos(O))-i— ;22 J.Ole(sg) cOS<ﬂp§)j§
J‘Ol e(Sé)cos(ﬂPC)dg = ¢ SZ(ﬂp)+ E (eS cos(ﬂp)—1)+ﬂ—zzj:e(“) COS(,B,,C)%

Uole(sg)cos(ﬁpé’)d() 1+ S? ]: e’ Sin(ﬂp)+ ﬂSz (eS cos(ﬁp)—l)

J'Ole(sg) cos(ﬂpé)déV: /1+ 522 e’ Sin(ﬁp)+ 52 (eS cos(ﬂp )_1)}

e cos(p, i =

/1+ S?2 ,b’pes sin(ﬂp)+ Se® cos(ﬂp)—SJ
B’ B

Ee(ﬂ)cos(ﬁpé’)dé/ = ﬁ (ﬁpes sin(ﬂp)+ Se’ cos(ﬂp )—S)
J.le(“)cos(ﬁpg)dgz —21 - (es(ﬂp sin(ﬁp)+Scos(,B,,))—S)
0 B, +S
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Recall:

B,tan(B,)=Bi =8, :ﬁ;—)

Substitute into previous equation and simplify:

J‘Ol o(59) cos(ﬂpf)dé’ = [ﬁ}{es (ﬁ;_)sz'n(ﬂp )+ S cos(ﬂp )J - SJ

J:e(sg)cos(ﬂpé’)dé’: ﬁ (eS(Bi cos(ﬂp)+ Scos(ﬂp ))—S)
' (s¢) _ 1 s - _
[ cos(p,¢ e AT (¢* cos(, XBi +5)-5)

e’ cos(ﬂp XBi +S5)-S
B+

[e) cos(p,¢ ¢ =

Using the solution to the integral:

eSU;e(sc)COS(ﬂpg)dgj _ es(es cos(ﬁ’p \Bi +S)—SJ

B, +8?

Sl (s cos(,BpXBi +8)-Se”*
e (L e( 4)COS(,Bp§)d§): ,sz 4+ S2

Substitute into the base heat equation:

or 2 ! B, +5

P

The second half of the left hand side of the equation can be simplified:

1 (1+ Bill +ZBi)J 1 [ﬁpz Bl +zBi)j
2 B, 2\ B, B,
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L Bi(l+Bi)|_1[ p," +Bill+Bi)
i

N | —
=
=

(3]

|, Bill+Bi)) _ B, +Bi(1+ Bi)
28,

N |~
;Q
(3]

Substituting back into the base heat equation and simplifying:

(abqp Y (T)][ B, +Bi(l+ Bi)J iy (T)cos<ﬁp JBi +5)-Se

or qp = qp zﬂpz ﬂp2 +SZ

db 28, cos(B, \Bi +S)-Se™*
ap b _ P ) I
dr v »(?) ,Bp2+Bi(l+Bi)Fq¢(T} B, +S’
ab,, +7qpbqp(2')= 2 : (Bi +S)cos(ﬂp)—;5’e Fq¢(r)
dr H(y ) Bi(l+ Bi)+ 3,
B,
Let:
G - 2 L(Bi +S)cos(ﬂp)—Se_S}
? 1+(% ]2 Bi(l+ Bi)+ B,
Then:
P b6 = F,G,9(0)
dr

Solve for b,,(t) using the initial conditions:

0

0(p.£0)=0 i b,(0)

Use the integration factore’" :

o Ob .
( o mpbqp(f)}e“” F,G,4(0)
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r d ( & b T'=FquJ‘(:e“”f¢(r')dT'

0dr’

e;/qprbqp (Z_)_e7q1;0bqp (0): Fqu J.Ofe7qp7'¢(f’ﬁ2'!
eyqprbq ( FG J. Yop¥ yl,T

b,(r)=F,G,e” _[ " (M

Checking the initial condition by substituting a small value, ¢ for 7 and taking the limit as

€ goes to zero:

bqp(g)quGpe%”j " §(c' Yt

lim, b, = F,G,e” [ ¢ g(c' Mz =0
The initial condition is satisfied as when ¢ goes to zero, the integral goes to zero and the
expression before the integral goes to F,G, as the exponential goes to one.
Now, let:
T, (r)=¢"" I "o g M
Remembering that ¢(r) varies in time, T, (z‘) will be solved in sections, for the first time

segment, 0<7<7 :

Substituting into the equation and simplifying:

'
A P ] 4
T, (r)=e jo e’ —dr

m
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Using Maple 12 to evaluate the integral returns:

=7
e’”

TA(r)= - (1 —e’"" + T}/qpe””r)
Tn? gp

Continuing with the second segment of T , (T) where 7, <7<7,:

12 ’
_ T T T T =T
T8 (T):e Tart J. e’ —dr'+_|. et L dr’
» 0 T g T,-T
m m p m

Using Maple 12 to evaluate the integral for the second segment returns:

-y T _ YapTm __ Y™
e Yap T, Tp +Tp€ Tme]/qpe

B _
qu(r)— - (T _; ) Yt Yot
m}/qp m p _Tme +Tm7,7/qpe

Finishing with the third segment of T (T) where 7>7

!
p—re”qﬁrrdz-’

Using Maple 12 to evaluate the integral for the third segment returns:

~7.
e’”

C _ VapTm YapTp
qu(r)— ) r,—7,—T,e"" +7,e )

'

The value of T, (z‘) is solved for all values of 7:

113



e_}/qpr
_yla” 7qﬂ7)
> (1 e +ry,e
Tn?ap

VT _ YapTm _ Vap®
e v T,—T,+7,e T,T,Y €

Vap®

2
— Vap®
Tm}/qp (Tm TP) _Tme v +Tmz-7qpe

e*}’qpf

_ _ Vap¥m Yap®p
(Tp T, Tpe +7,€ )

e, -7
Tm]/qp Tp T,

The equation is complete once all the segments of the function T are completed for all the

segments. The complete solution of the nondimensional temperature in the sample is a

combination of all the equations:
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G - 2 (Bi+S)cos(ﬂq)—Se’S
1+(Sﬂqj Bi(Bi+1)+ 8,

e_quT
(l—ey‘fpr+ryqpey"”) 0<r<r

2
z-myqp

Vgt

_ VapTm Tap®
7, Tp +Tp€ Tme]/qpe

= <7<
qu (T) jﬁ Tap® Tap® z—m ¢ Tp
Tl T =T\ —17,€ +7,7Y €

“Va?

e YapTm 7qu1))
ﬁ—)z - (z'p —7,-7,&"" +7,e r>7,

a2 252
J/qp_;tp +aﬂq

Bi:h—L: hL
k  p.ca
'’k

O=(T-T ©
( oo)PKRZ
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APPENDIX C. SOURCE CODE FOR CREATION OF THE GOVERNING
PARAMETER SETS FOR THE DSFA THERMAL MODEL

Source code file:

Compile instructions:

User inputs:

Program input files:

Required program functions:

Program output files:

Program source code:

117

DSFA code builder.m

Ensure all the required functions are located
in the same working directory as the
program. Once the file is loaded in the
editor window, simply click ‘run’ or type the
name of the file in the command window.
None

None

Matlab programmed functions bessel.m,
trigfunc.m, Fint.m need to be saved in a
directory that the current path in Matlab has
defined.

DSFA 630.xls. Values of the time
dependent nondimensional temperature
profiles for each of the given parameter sets

along with their respective parameter values.



o\

o° 0 o° oP

o

cl

ti

o

°

%

DSFA code builder.m

This code is used to solve the non-dimensional temperature profiles
in time for a small cylindrical sample that is irradiated upon by a
laser with a Gaussian power distribution. The time varying pulse is
a triangle wave starting at zero, increasing linearly to a time, t m,
and then decreasing linearly back to zero at t p.

ear all; clc;
Cc;
Set the governing parameters for 630 parameter sets

Change the wvalues of alpha and rhoc to match metals

alp cas = [le-4, 3e-5, le-5, 3e-6, le-6];
rhoc cas = [0.5e6, 1.5e6, 2.5e6, 3.5e6, 4.5e6, 5.5e6];
h cas = [20,30,40];

Kap cas = [400,1000,1600, 2200, 2800, 3400, 4000];

si
si
si
si

ca

ma
mi
ma
mi
ma
mi
ma
mi

ze Kap=size (Kap cas,2);
ze alp=size(alp cas,2);
ze rhoc=size (rhoc cas,2);
ze h=size(h cas,2);

ses=size Kap*size alp*size rhoc*size h;

X _alp=max (alp cas);

n _alp=min(alp _cas);
x_rhoc=max (rhoc_ cas);
n _rhoc=min (rhoc cas);
X _h=max (h cas);
n_h=min (h cas);

X Kap=max (Kap_ cas);
n_Kap=min (Kap_cas);

P = 1000.0; % Watts, power of the laser

r o= 0.001; % m, 1 sigma of the Gaussian curve away from center
% of laser

R = 0.01; % m, radius of the sample (should be >= 3*r o)

L = 0.002; % m, thickness of the sample

Tinf = 300.0; % K, initial temp and temp of surroundings

t m=0.001; % sec, time for pulse to get to peak power

t p=20.003; % sec, time for pulse to finish

rho=0.0; % m, location of center of pulse from center of

%

a
rh

co

o

sample

Define non-dimensional parameters

=R / L; % Aspect ratio
oo=1ro/ R; % Ratio of laser power curve to radius of sample
unt = 1;
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for conv=l:size h
for OpDep=l:size Kap
for alph=l:size alp
for rhocp=l:size rhoc

h = h cas(conv);

Kap = Kap cas (OpDep) ;
alpha = alp cas(alph);
heatcap = rhoc_cas(rhocp);
k = alpha * heatcap;

tau m = t m * alpha / R"2;
tau p = t p * alpha / R"2;

S = Kap * L;
Bi =h * L / k;

dimpar (count, :) = [h, Kap, alpha, heatcap, k]:;
Par (count,:) = [S, Bi, tau m];
Check(count,:) = S * Bi * tau m;

N=10; % number of terms

% Calculate the Eigenvalues
% Eigenvalues in Lambda
lam(1l)=0;
for n=2:N
format long
con=lam(n-1)+3;
lam(n) = fzero (Q@Rbessel, con);
end

[)

% Eigenvalues in Beta
beta(l)= fzero(@(x) trigfunc(x,Bi), 3e-4);
if beta(1l)<0
beta (l)=-beta(l);
end
for m=2:N
format long
con=beta (m-1)+3;
beta(m)= fzero(Q@(x) trigfunc(x,Bi), con);
end

% Calculate Non-Dimensional Temperature at any non-dimensional location
% in non-dimensional time
for i=1:200

tau = (i -1 ) * 0.0001; % non-dimensional time
tau ar(count,i) = tau;

time ar(count,i) = R * 2 * tau / alpha;

zeta = 0;

zet = 1;

Theta (zet,1)=0;

for n=1:10

o)

% Evaluate Bessel J at each eigenvalue
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Jo (n)=bessel]j (0, lam(n));
Jop (n) =bessel]j (0, lam(n) *rho) ;
for m=1:N
gam=lam(n) *2+a”2*beta (m)"2;
if tau <= tau m
T=1/ (gam*tau m) * (tau- (1-exp (-gam*tau) ) /gam) ;
elseif tau <= tau p
T=1/gam”2* ( (gam* (tau p-tau)+1)/ (tau p-tau m)+ (...

exp (-gam*tau) -exp (gam* (tau _m-tau)))/tau m-...
(exp (gam* (tau m-tau)))/(tau _p-tau m));
else
T=1/gam”2* ( (exp (-gam*tau) —exp (gam* (tau m-tau)))/...
tau m+ (exp (gam* (tau p-tau))-exp (gam* (tau m-...
tau)))/(tau _p-tau m));
end

if rho o < 0.5

F=rho 0"2/Jo(n)"2*exp (-rho o"2*lam(n)"2/4)
else

F=2*Fint (rho o, lam(n))/Jo(n)"2;
end

G=2* (beta (m) “"2+Bi"2) * (cos (beta (m) ) * (Bi+S) -S*exp (-S)) /...

(beta (m) "2+B1i"2+B1i) / (beta (m) *2+S"2) ;
GM (n,m) =G;
b=F*G*T;
Fnm (n,m)=F;
Theta (zet, i) =Theta (zet, i) +b*cos (beta (m) *zeta) *Jop (n) ;
Time (i)=tau*R"2/alpha;
TAU (i) =tau;

end
end
end
Tref = P * Kap * R"2 /( pi * r o2 * k);
Temp (count, :) = Theta * Tref + Tinf;
THETA (count, :) = Theta;
t _end(count,:) = toc;
count = count + 1;
end
end
end
end

time end = toc;

% Write the variables to file DFSA 630.xls for use in ROM and GA
xlswrite ('DSFA 630',Par, 'Sheetl', 'A4")

xlswrite ('DSFA 630',THETA, 'Sheetl', 'D4")
xlswrite ('DSFA 630',t end, 'Sheet2', 'Al")
xlswrite ('DSFA 630',time_end, 'Sheet3', 'Al")
xlswrite ('DSFA 630',tau ar(l,:), 'Sheetl', 'D3")
xlswrite ('DSFA 630',Temp, 'Sheetd4', 'Al")
xlswrite ('DSFA 630',time ar, 'Sheet5', 'Al")
xlswrite ('DSFA 630',r o, 'Vars', 'A5")

xlswrite ('DSFA 630',R, 'Vars', 'A6")

xlswrite ('DSFA 630',L, 'Vars', 'A7")

xlswrite ('DSFA 630',t p,'Vars', 'A8")
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xlswrite ('DSFA 630',t m, 'Vars', 'A9")
xlswrite ('DSFA 630',P,'Vars','Al0")
xlswrite ('DSFA 630',Tinf, 'Vars', 'All")
xlswrite ('DSFA 630',tau ar(l,2),'Vars','Al2")
xlswrite ('DSFA 630',max alp, 'Vars', 'Al")
xlswrite ('DSFA 630',min alp, 'Vars', 'B1")
xlswrite ('DSFA 630',max rhoc, 'Vars', 'A2")
xlswrite ('DSFA 630',min rhoc, 'Vars', 'B2")
xlswrite ('DSFA 630',max h, 'Vars', 'A3")
xlswrite ('DSFA 630',min h, 'Vars', 'B3")
xlswrite ('DSFA 630',max Kap, 'Vars', 'A4")
xlswrite ('DSFA 630',min Kap, 'Vars', 'B4")

xlswrite ('DSFA 630',dimpar, 'dimpar', 'Al")

Q

% end 630 parameter case

Required functions source code:

bessel.m

Q

% bessel.m

function J1 = £(Z);
J1l = besselj(1l,2);

trigfunc.m

o)

% trigfunc.m

function trig = f(Z,Bi);
trig = Z*tan(Z)-Bi;

Fint.m

[)

% Fint.m

function F=f (po,lam);

val=0;

num=100;

H=0;

for rhoi = l:num
p=rhoi/num;
H=p*exp (-p"2/po”2) *bessel] (0, lam*p) ;
val=val+H;

end

F=val;
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APPENDIX D.
CREATION OF THE ROM IN MATLAB

Source code file:

Compile instructions:

User Inputs:

Program input files:

Required program functions:

Program output files:

123

SOURCE CODE FOR THE DSFA MODEL FOR THE MATRIX

ROM code matrix.m

Ensure the Excel file is saved in the same
working directory that Matlab is in. Once
the file is loaded in the editor window,
simply click ‘run’ or type the name of the
file in the command window.

None

DSFA 630.xls. Raw solutions from the

coefficient builder program for each
parameter set.

None

DSFA 630.xls. Values of the time
dependent nondimensional temperature

profiles for each of the given parameter sets
along with their respective parameter values.
Contains the new data added to the file from

this program.



Program source code:

o\

ROM code matrix.m

o

Reduced Order Modeling program for the calculation of time dependant
temperature profiles in a Pulsed Laser Diffusion test.

Opens Microsoft Excel file DSFA 630.xls which contains the basis set
of parameters and solved values.

Reads 'DSFA 630' matrix from with database of governing parameters
and their respective nondimensional time dependant profiles from

0.0 to 0.0199 Fourier numbers stepping in 0.0001 Fourier numbers

o® 00 o° o oe

o\°

o\

Writes to DSFA 630.xls other needed parameters and sets that are
stored and read in by the program that accepts arbitrary parameters
and returns the arbitrary profile.

o

o\

clear all; clc;
tic; % clock start

% Input matrix A from DSFA - Ensure that the range is correct
a=xlsread('DSFA 630', 'Sheetl', 'D4:GU633');

A=a';

[M,N]=size (A);

Q

% Read parameters used to create the A matrix
par=xlsread ('DSFA 630', 'Sheetl', 'A4:C633');

% Ensure that the range is correct
k = par';
kplus = pinv (k) ;

% Set values from read in values for use in ROM
S=par(:,1);

Bi=par(:,2);

tau m=par(:,3);

maxS=max (S) ;

minS=min (S) ;

maxBi=max (Bi) ;

minBi=min (Bi) ;

maxtau m=max (tau m);

mintau m=min (tau m);

% For singularity values
tol=1le-13;

[

% Build matrix of interpolation functions

for i=1:N
for j=1:N
Svar (i, j)=((par(i,1)-par(j, 1))/ (maxsS))"2;
Bivar (i, j)=((logl0(par(i,2))-logl0(par(j,2)))/1ogl0 (maxBi))"2;
tau mvar(i,j)=((logl0(par(i,3))-1ogl0(par(j,3)))/...

loglO (maxtau m))"2;
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F(i,j)=1/(Svar(i,j)+Bivar(i,j)+tau mvar(i,j)+1)"(1/2);
end
end

% Number of significant eigenvalues
n fe=25;

% Singular value decomposition of A
[U A SIG AV Al=svd(A);

fe=U A(:,1:n fe);
% Calculate coefficient matrix
B=fe'*A;

Bp=B';

festar=B*kplus;

% Perform Singular Value Decomposition on F to get Moore-Penrose
% inverse
[U F SIG F V_F]=svd(F);
Sa=SIG_F;
% Zero out small singular values
for i=1:N
if SIG F(i,i) > tol
S F(i,1)=1/SIG F(i,1i);
else
S F(i,1)=0;
end
end

% Get C matrix using singular value decomposition
C=B*V_F*S F*U F';

Fplus=V_F*S F*U F';

s=diag (SIG_A);
f=diag (SIG_F);

V = min (M, N) ;
% Plot the Singular values of A for determination of truncation
figure; % (2)

semilogy (s (1:V,1),'o")

xlabel ('Number')

ylabel ('Singular Value of A'")

% Plot the singular values of F for determination of truncation
figure; % (3)

semilogy (f£(1:N,1),'-")

xlabel ('Number')

ylabel ('Singular Value of F'")

Cp=C';

Q

% Write parameters to Excel to be used in the GA program
warning off MATLAB:xlswrite:AddSheet
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o

xlswrite ('DSFA 630', Cp, 'C', 'Al'") Ensure this matrix call

(
xlswrite ('DSFA 630', fe, 'fe', 'Al'") % is the same as above that
xlswrite ('DSFA 630', Bp, 'B', 'Al') % the matrix is read from
xlswrite ('DSFA 630', festar, 'festar',K 'Al'")
xlswrite ('DSFA 630', maxS, 'Vars', 'Cl'")
xlswrite ('DSFA 630', minS, 'Vars', 'Dl'")
xlswrite ('DSFA 630', maxBi, 'Vars', 'C2')
xlswrite ('DSFA 630', minBi, 'Vars', 'D2')
xlswrite ('DSFA 630', maxtau m, 'Vars',6 'C3'")
xlswrite ('DSFA 630', mintau m, 'Vars', 'D3'")
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APPENDIX E. SOURCE CODE FOR THE INPUT OF ARBITRARTY
PARAMETERS FOR THE ROM IN MATLAB

Source code file:

Compile instructions:

User inputs:

Program input files:

Required program functions:

Program output files:

Program source code:
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ROM code AP.m

Ensure the Excel file is saved in the same
working directory that Matlab is in. Once
the file is loaded in the editor window,
simply click ‘run’ or type the name of the
file in the command window.

Input the arbitrary parameters for the ROM
in the code. For comparison to the input
values, input the correct file and rows to
retrieve the values for ‘w’ and ‘tim’ so the
profiles may be plotted together.

DSFA 630.xls. Raw solutions from the
coefficient builder program for each
parameter set and the additions from the
ROM code matrix.m program.

None

None



o\

ROM code AP.m

o

o\

temperature profiles in a Pulsed Laser Diffusion experiment

Input Arbitrary parameters, read the Excel file with matrix data
stored

Returns Temperature, As.

With correlating data from the Excel file, will plot the ROM data
versus the numerical data from PLD Code.

o° 00 o oe

o\

clear all; clc;

tic; % Start time clock
tl=toc;

% Read in Excel files that contain the ROM data
$ File A.xls

Cp=xlsread('DSFA 630', 'C', 'Al:Y630'");
par=xlsread ('DSFA 630', 'Sheetl', 'A4:C633');
maxS=xlsread ('DSFA 630', 'Vars', 'Cl');
maxBi=xlsread ('DSFA 630', 'Vars', 'C2');

maxtau m=xlsread('DSFA 630', 'Vars', 'C3'");
fe=xlsread('DSFA 630', 'fe', 'Al:Y200");
festar=xlsread('DSFA 630', 'festar', 'Al:C25'");
Bp=xlsread('DSFA 630', 'B', 'Al:Y630');

r o=xlsread('DSFA 630', 'Vars', 'A5');
R=xlsread('DSFA 630', 'Vars', 'A6');
L=xlsread('DSFA 630', 'Vars', 'A7');

t p=xlsread('DSFA 630', 'Vars', 'A8');

t m=xlsread('DSFA 630', 'Vars', 'A9');
P=xlsread('DSFA 630', 'Vars', 'Al0');
Tinf=xlsread('DSFA 630', 'Vars', 'All'");

o

Ensure that the
range of all these
read in matrices
match the actual
ranges in the Excel
files

o o o oe

o

$Arbitrary Profile

% Manually input arbitrary conditions
alphaa=3.95%e-6;

rho _cpa=5.052e6;

ha=37;

Kapa=960.5;

t2 = toc;

con=alphaa*rho cpa;

% Non-Dimensionalize
Sa=Kapa*L;

Bia=ha*L/ (alphaa*rho cpa);
tau ma=alphaa*t m/R"2;
Pa=[Sa Bia tau mal;
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%interpolation function

for i=1:M
Svara(i)=((Pa(l)-par(i,1))/maxS)"2;
Bivara(i)=((logl0(Pa(2))-1logl0O(par(i,2)))/1logl0 (maxBi))"2;
tau mvara(l) ((loglO(Pa(3)) -1logl0(par(i,3)))/logl0l (maxtau m))"2;

=1/ (Svara (i) +Bivara (i) +tau _mvara (i) + 1)~ (1/2);

end

t3=toc;

a=C*Fa'

td=toc;

%arbitrary field

Asl=fe*Ba;

for i = 1:N
As(i,1)=Asl (1) ;

end

tb5=toc;

% festar=B*pinv(par');

Bn=pinv (fe) *As;

k=pinv (festar) *Bn;

time = toc; $final clock time
timel=t2-tl;
time2=t3-t2;
time3=t4-t3;
timed=t5-t4;
report=t5-t2;

% Input for comparison to a known case, change the row to match
parameters
w=xlsread('tcl', 'Sheetl', 'D67:Y67"');

W=w"';
tim=xlsread('tcl', 'Sheetl', 'D66:Y66");

% Redimensionalize to return temperature in time

ts = tim * R*2 / alphaa;

Temp = P * Kapa * R*"2 * As / (con * pi * r 0o"2) + Tinf;
TRet = P * Kapa * R*"2 * W / (con * pi * r 0o"2) + Tinf;

% Plot comparison of Input Profile and ROM Profile
figure;

plot (tim,w, '-")

hold on

plot (tim, Temp, '0")

legend ({'DSFA Model'; 'ROM'})

ylabel ('Temperature (K)"'")

xlabel ('Time (s)')

hold off

AS=As'
TEMP=Temp''
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APPENDIX F. SOURCE CODE FOR SOLVING THE INVERSE PROBLEM OF

DSFA WITH GA

Source code file:

Compile instructions:

User inputs:

Program input files:

Required program functions:

Program output files:

Program source code:

o

GA.m

o

%
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GA.m

Ensure the Excel file is saved in the same
working directory that Matlab is in. Once
the file is loaded in the editor window,
simply click ‘run’ or type the name of the
file in the command window.

None

DSFA par 360.xls. Raw solutions from the
coefficient builder program for each
parameter set and the additions from the
ROM code matrix.m program.

Matlab programmed function ROM_Func.m
needs to be saved in a directory that the

current path in Matlab has defined.

None

Genetic Algorithm Program for determining governing parameters h,
kappa,alpha that would yield an arbitrary input temperature profile.



o

oo

o

o\

model

clear all; clc;
tic

Cp=xlsread('DSFA 630', 'C', 'Al:Y630'");
param=xlsread('DSFA 630', 'Sheetl',

Smax=xlsread('DSFA 630', 'Vars',
Smin=xlsread('DSFA 630', 'Vars',
bimax=xlsread ('DSFA 630', 'Vars',
bimin=xlsread('DSFA 630', 'Vars',

Tau mmax=xlsread('DSFA 630', 'Vars',
Tau mmin=xlsread('DSFA 630', 'Vars',

almax=xlsread('DSFA 630', 'Vars',
almin=xlsread('DSFA 630', 'Vars',

hcapmax=xlsread('DSFA 630', 'Vars',
hcapmin=xlsread('DSFA 630', 'Vars',

hmax=xlsread('DSFA 630', 'Vars',
hmin=xlsread('DSFA 630', 'Vars',

kapmax=xlsread('DSFA 630', 'Vars',
kapmin=xlsread('DSFA 630', 'Vars',
ro=xlsread('DSFA 630', 'Vars', 'A5');
R=xlsread('DSFA 630', 'Vars', 'A6');
L=xlsread('DSFA 630', 'Vars', 'A7');
tp=xlsread ('DSFA 630', 'Vars', 'A8'");
tm=xlsread('DSFA 630', 'Vars', 'A9'");
P=xlsread('DSFA 630', 'Vars', 'Al0');

Tinf=xlsread('DSFA 630', 'Vars',

timestep=xlsread('DSFA 630', 'Vars', 'Al2");
fe=xlsread('DSFA 630', 'fe', 'Al:Y200");
Bp=xlsread('DSFA 630', 'B', 'Al:Y630');

o\

o° 00 0 0 A A° A° A° O A A o° O° o° o°

oe

'A4:C633");

Input time and temperature profiles

o o o oe

o

Reads in parameters from the ROM code matrix.m program saved in Excel
at 'DSFA 630.xls' and uses them in the ROM subroutine ROM Func.m

Inputs the FLUENT case from 'Blind Test ##.xls' after running DSFA

Ensure that the range
of all these read in
matrices match the
actual ranges in the
Excel files

timereadin =xlsread('Blind Test 1 new', 'Sheetl', 'D2:D40002");
Treadin=xlsread('Blind Test 1 new', 'Sheetl', 'E2:E40002");
timereadin=xlsread('Blind Test 2', 'Sheetl', 'D2:D35302");
Treadin=xlsread('Blind Test 2', 'Sheetl', 'E2:E35302");
timereadin=xlsread('Blind Test 3','Sheetl', 'D2:D65536");
Treadin=xlsread('Blind Test 3', 'Sheetl', 'E2:E65536");
timereadin = xlsread('Blind Test 5', 'Sheetl',6 'A2:A65536");
Treadin = xlsread('Blind Test 5', 'Sheetl', 'B2:B65536");
timereadin = xlsread('Blind Test 7', 'Sheetl',6 'A2:A40002");
Treadin = xlsread('Blind Test 7', 'Sheetl', 'B2:B40002");
timereadin = xlsread('Blind Test 8','Sheetl',6 'A2:A40002");
Treadin = xlsread('Blind Test 8', 'Sheetl', 'B2:B40002");
timereadin = xlsread('Blind Test 9','Sheetl',6 'A2:A40002");
Treadin = xlsread('Blind Test 9', 'Sheetl', 'B2:B40002");
timereadin = xlsread('Blind Test 11', 'Sheetl', 'D2:D40002");
Treadin = xlsread('Blind Test 11','Sheetl', 'F2:F40002");

timereadin = xlsread('Blind Test 12', 'Sheetl', 'A2:A65536");
Treadin = xlsread('Blind Test 12','Sheetl', 'B2:B65536");
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oe

Bimax=10glO0 (bimax) ; Convert to logarithmic for faster
Bimin=1o0gl0 (bimin) ; % ROM times
tau mmax=1ogl0 (Tau mmax) ;
tau mmin=1logl0 (Tau mmin) ;
SP=size (param,l);
for i=1:SP
param (i, 2)=1ogl0 (param(i,2));
param(i, 3)=1logl0 (param(i,3));
end

clear SDev
clear value

tl=toc;

C=Cp"';

B=Bp';

testcases = 5; % Run the case 5 times to ensure consistent
convergence.

for aaa = l:testcases

Tins (:,aaa)=Treadin;
timein(:,aaa)=timereadin;
end

for tests=l:testcases

clear SDev

clear value

tests

call = 0;

Tin=Tins (:,tests); % Input profile

[tin max,locin]=max (Tin) ;
trisein=timein (locin);

Ti=Tin;

[len, il]=size(Ti);

ep=.05; % convergence criteria

N = 150; % Number of parameter sets
BEST EVER(5) = -1e9; % Initialize fitness check
Gen=1;

% Create Initial Parameter sets

for i=1:N
% Conv. coefficient
h = hmin+ (hmax-hmin) *rand() ;
% Absorbtion coefficient
kappa = kapmin+ (kapmax-kapmin) *rand() ;

[

% Thermal Diffusivity
alpha = 10" (logl0 (almin)+ (logl0(almax)-1ogl0O (almin)) *rand());

Q

% Heat Capacity
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hcap = hcapmin+ (hcapmax-hcapmin) *rand() ;

S=kappa*L;

Bi=10gl0 (h*L/ (alpha*hcap)) ;

tau m=1logl0 (alpha*tm/R"2) ;

% Determine Temperature profile for parameter set

theta = ROM Func(S,Bi,tau m,C,B,param,Smax,Bimax, tau mmax, fe) ;
Temp = theta* (P*kappa*R"2/ (pi*ro”2*alpha*hcap))+Tinf;
call=call+l;

for RT = 1l:length(Temp)
ROMtime (RT) = R"2 * timestep* (RT-1) / alpha;
end

% Find time of maximum temperature rise

[t max,loc]=max (Temp) ;

trise=timein (loc);

triseg=ROMtime (loc) ;

% Create interpolated time and temperature arrays for comparison
timeint (1) = timein(1l);

Tempint (1) = Tins(1l);
intp(l,:) = [1,0];
ti=2;

for itp = 2:1length (Temp)
while ((ROMtime (itp) > timein(t i-1))&&(t_i-1 < numel (timein)))
ti=¢ti+1;

end

if £t i > numel (timein)
t i1 = numel (timein);

end

omega = (timein(t i-1) - ROMtime (itp))/ (timein(t i-1)-...
timein(t_i-2));

intp(itp,:) = [t _i-1,omegal;

timeint (itp) = ROMtime (itp);

Tempint (itp) = Tins(t_i-1)-omega* (Tins (t i-1)-Tins(t i-2));
ti=t i+ 1;
end
% Calculate Fitness Function for Randomly compiled parameter sets
val=0;
for jj=2:length (Temp)
val=abs (Tempint (jj)-Temp (JJ))/Tempint (jj)*100+val;
end
avdif=val/len*100;

maxdiff = abs(tin_max—t_max)/(tin_max—Tinf) * 10;
if trisein == triseg
timediff = 0;
else
timediff = (max(trisein/triseg,triseg/trisein)-1)*10;
end

% Calculate Fitness Function
f = - (avdif+maxdiff+timediff) ;
start par(i,:)=[h, kappa, alpha, hcap, f];
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% Store the best fitness function team
if £ > BEST_EVER(S)

BEST EVER(1,:)=[h, kappa, alpha, hcap, f]:;
end
Cl = max(start par(:,5));
value (Gen,1l) = C1l;
end
t2=toc;

par=start par;

Cl = max(par(:,5));

val = C1;

SDev (Gen)=std(par(:,5));
SDEV=std(par(:,5));

NGen = 500; % Number of Generations

Q

% Generation Loop
while SDEV>ep

[

% Start Tournament

for 1 = 2:N

first = ceil (N*rand()):;
second = ceil (N*rand()) ;

% Tournament selections
if par(first,5) > par(second,b)
tourney (i) = first;
else
tourney (i) = second;
end
end

par (1, :)=BEST EVER;
% Store set that won the tourney as the set
for i = 2:N

par (i, :)=par (tourney (i), :);
end

% Crossover, Blend Crossover
i 1;
while 1 < N

parentl=par (i, :); % Store set i as Parent 1
parent2=par (i+l,:); % Store set i+l as Parent 2
for m=1:2
if rand() < .5 % 50% Probability of crossover
r=rand () ;

yl=r*parentl (m)+ (l-r) *parent2 (m) ;
y2=(1l-r) *parentl (m) +r*parent2 (m) ;

135



parentl (m)=yl;

50% Probability of crossover

50% Probability of crossover

(parentl)
(parent?2)

parent?2 (m)=y2;
end
end
for m=3:3
if rand() < .5 %
r=rand () ;
y1=10"(r*1logl0 (parentl (m))+(1l-r)*1logl0 (parent2(m)));
y2=10"((1l-r) *1loglO (parentl (m))+r*1logl0 (parent2(m)));
parentl (m) =yl
parent2 (m)=y2;
end
end
for m=4:4
if rand() < .5 %
r=rand() ;
yl=r*parentl (m)+ (l-r) *parent2 (m) ;
y2=(1l-r) *parentl (m) +r*parent2 (m) ;
parentl (m)=yl;
parent2 (m)=y2;
end
end
par (i, :)=parentl; % set team i as child 1
par (i+l, :)=parent?2; $ set team i+l as child 2
i=i42;
end

% Mutation Algorithm

for i 1:N
SPM = .75;
alfa (Gen)

%
A

= SPM* (1- (Gen-1) /NGen) "4;

Starting prob.

%

for mutation
Change power for rate

% Check case with random number against alfa for mutation

for 7 = 1:4

% Convective Coefficient Mutation

== 1

if rand()<alfa (Gen)
hmut
par (i, j)=hmut;

end

if ]

% Absorbtion Coefficient Mutation

elseif j ==
if rand()<alfa (Gen)
kapmut =
par (i, j)=kapmut;
end

% Thermal Diffusivity Mutation
elseif j
if rand()<alfa (Gen)
almut 10" (1logl0(almin)
1logl0 (almin) ) *rand ()
par (i, j)=almut;
end
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hmin+ (hmax-hmin) *rand () ;

kapmin+ (kapmax-kapmin) *rand () ;

(loglO (almax) -
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[

% Heat Capacity Mutation
elseif j ==
if rand()<alfa (Gen)
hcapmut = hcapmin+ (hcapmax-hcapmin) *rand() ;
par (i, j)=hcapmut;
end
end
end
end

% Calculate Fitness function of new sets after tournament,
crossover, and mutation

o\

for 1 = 1:N

’

h=par(i,1);

kappa=par (i,2);

alpha=par (i, 3);
)

hcap=par (i, 4

S = par (i, 2)*L;

Bi = loglO(par(i,1)*L/ (par(i,3) *par(i,4)));

tau m = loglO(par (i, 3)*tm/R"2);

% Calculate Temperature profile for the set

theta = ROM Func(S,Bi,tau m,C,B,param,Smax,Bimax, tau mmax, fe) ;
Temp = theta* (P*kappa*R"2/ (pi*ro~2*alpha*hcap))+Tinf;
call=call+l;

for RT = 1l:length(Temp)
ROMtime (RT) = R"2 * timestep* (RT-1) / alpha;
end

[t _max,loc]=max (Temp) ;
trise=timein (loc);
triseg=ROMtime (loc) ;

% Create interpolated time and temperature arrays for
% comparison

timeint (1) = timein(1l);
Tempint (1) = Tins(1l);
intp(l,:) = [1,0];
ti=2;

for itp = 2:1length (Temp)
while ((ROMtime (itp) > timein(t i-1)) && (t_i-1 <
numel (timein)))
ti=¢ti+1;

end

if £t i > numel (timein)
t i1 = numel (timein);

end

omega = (timein(t i-1) - ROMtime (itp))/ (timein(t i-1)-...
timein(t _i-2));

intp(itp,:) = [t _i-1,omegal;

timeint (itp) = ROMtime (itp);

Tempint (itp) = Tins(t_i-1)-omega* (Tins (t i-1)-Tins(t i-2));
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ti=¢ti+1;
end
% Calculate Fitness Functions for the sets
val=0;
for jj=2:length (Temp)
val=abs (Tempint (jj)-Temp (jJ)) /Tempint (jj) *100+val;

end
avdif=val/len*100;
maxdiff = abs(tin max - t_max)/(tin_max—Tinf)*lO;
if trisein == triseg
timediff = 0;
else
timediff = (max(trisein/triseqg,triseg/trisein)-1)*10;
end
% Calculate Fitness Function
f = - (avdif+maxdiff+timediff) ;
par(i,5)= f;

if £ > BEST EVER(5)
BEST EVER(1,:)=[par(i,l), par(i,2), par(i,3), par(i,4), £];

end

end

Q

% Increment Generation number
Gen=1+Gen;

o)

% Keep the best set on to the next generation (elitism)

Geners (tests)=Gen; % Keep amount of generations run for each test
par (l, :)=BEST EVER(1, :);

Cl = max(par(:,5));

value (Gen,1l) = C1;

SDev (Gen)=std(par(:,5));
SDEV=SDevVv (Gen) ;
if SDev (Gen)<ep
break
end
if Gen>NGen
break
end

end
time = toc;

h = BESTiEVER(l,l),

kappa = BEST EVER(1,
alpha = BEST EVER(1,

hcap = BEST EVER(1,

2)7

3);

4);

S = kappa*L;

Bi = 1logl0(h*L/ (alpha*hcap));

taum = loglO (BEST EVER(1,3)*tm/R"2)

theta = ROM Func(S,Bi,tau m,C,B,param,Smax,Bimax, tau mmax, fe) ;

dimTemp= P*kappa*RAZ*theta/ alpha*hcap*pi*ro”2)+Tinf;
dimTempin=P*kappa*R"2*Tin/ (alpha*hcap*pi*ro”2)+Tinf;
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dtime = timein*R"2/alpha;

done (tests, :)=[kappa; alpha; hcap; hl;
figure;

plot (timein, Tins) ;

hold all

plot (ROMtime, Temp, 'bo') ;

hold off

xlabel ('Time (sec)')
ylabel ('Temperature (K)"'")
legend ('Input Temperature Profile','GA with ROM Profile')

end

Required functions source code:

oo

Rom Func.m

o\

Reduced Order Modeling simulation subroutine for the calculation time
dependant temperature profiles in a Pulsed Laser Diffusion
experiment.

o

oo

o

Parameters are brought in from GA.m program and input into subroutine
for the ROM to simulate temperature profile.

o\

oo

Returns Temperature, As.
function ROM Func=f (Sa,Bia, tauma,C,B,par,maxS,maxBi,maxtaum, fe);

[1,M]=size (C);
[N,i]=size (fe);

[)

% Read input arbitrary conditions from GA program
=[Sa Bia taumal];

%$interpolation function

for i=1:M
Svara (1)=((Pa (1) par( ,1)) /maxS) "2;
Bivara (i)=(((Pa(2) (par(i,Z)))/(maxBi))AZ;
taumvara (1 ):(((Pa( )) - (par (i, 3)))/ (maxtaum)) "~2;
=1/ (Svara (i) +Bivara (i)+taumvara (i)+1)~(1/2);
end

% ROM matrix manipulation to return As
a=C*Fa'
Asl=fe*Ba;

for i = 1:N
As(i,1)=Asl (1);
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end

ROM Func=As;
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