
Brigham Young University Brigham Young University

BYU ScholarsArchive BYU ScholarsArchive

Theses and Dissertations

2012-11-27

Measurement of Thermal Diffusivities Using the Distributed Measurement of Thermal Diffusivities Using the Distributed

Source, Finite Absorption Model Source, Finite Absorption Model

James B. Hall
Brigham Young University - Provo

Follow this and additional works at: https://scholarsarchive.byu.edu/etd

 Part of the Mechanical Engineering Commons

BYU ScholarsArchive Citation BYU ScholarsArchive Citation
Hall, James B., "Measurement of Thermal Diffusivities Using the Distributed Source, Finite Absorption
Model" (2012). Theses and Dissertations. 3467.
https://scholarsarchive.byu.edu/etd/3467

This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion
in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please
contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.

http://home.byu.edu/home/
http://home.byu.edu/home/
https://scholarsarchive.byu.edu/
https://scholarsarchive.byu.edu/etd
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F3467&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=scholarsarchive.byu.edu%2Fetd%2F3467&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/3467?utm_source=scholarsarchive.byu.edu%2Fetd%2F3467&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu,%20ellen_amatangelo@byu.edu

Measurement of Thermal Diffusivities Using the

Distributed Source, Finite Absorption Model

James B. Hall

A thesis submitted to the faculty of
Brigham Young University

in partial fulfillment of the requirements for the degree of

Master of Science

Matthew R. Jones, Chair
 W. Jerry Bowman
Steven E. Gorrell

Department of Mechanical Engineering

Brigham Young University

November 2012

Copyright © 2012 James B. Hall

All Rights Reserved

ABSTRACT

 Measurement of Thermal Diffusivites Using the
Distributed Source, Finite Absorption Model

James B. Hall

Department of Mechanical Engineering, BYU
Master of Science

Thermal diffusivity in an important thermophysical property that quantifies the ratio of

the rate at which heat is conducted through a material to the amount of energy stored in a
material. The pulsed laser diffusion (PLD) method is a widely used technique for measuring
thermal diffusivities of materials. This technique is based on the fact that the diffusivity of a
sample may be inferred from measurement of the time-dependent temperature profile at a point
on the surface of a sample that has been exposed to a pulse of radiant energy from a laser or flash
lamp.

An accepted standard approach for the PLD method is based on a simple model of a PLD

measurement system. However, the standard approach is based on idealizations that are difficult
to achieve in practice. Therefore, models that treat a PLD measurement system with greater
fidelity are desired. The objective of this research is to develop and test a higher fidelity model
that more accurately represents the spatial and temporal variations in the input power. This
higher fidelity model is referred to as Distributed Source Finite Absorption (DSFA) model.

The cost of the increased fidelity associated with the DSFA model is an increase in the

complexity of inferring values of the thermal diffusivity. A new method of extracting values
from time dependent temperature measurements based on a genetic algorithm and on reduced
order modeling was developed. The primary contribution of this thesis is a detailed discussion of
the development and numerical verification of this proposed new method for measuring the
thermal diffusivity of various materials.

Verification of the proposed new method was conducted using numerical experiments. A

detailed model of a PLD system was created using advanced engineering software, and detailed
simulations, including conjugate heat transfer and solution of the full Navier-Stokes equations,
were used to generate multiple numerical data sets. These numerical data sets were then used to
infer the thermal diffusivity and other properties of the sample using the proposed new method.
These numerical data sets were also used as inputs to the standard approach. The results of this
verification study show that the proposed new method is able to infer the thermal diffusivity of
samples to within 4.93%, the absorption coefficient to within 10.57 % and the heat capacity of
the samples to within 5.37 %. Application of the standard approach to these same data sets gave
much poorer estimates of the thermal diffusivity, particularly when the absorption coefficient of
the material was relatively low.

Keywords: heat transfer, thermal diffusivity, reduced order modeling, genetic algorithm

ACKNOWLEDGMENTS

 I would like to thank Dr. Matthew Jones for his constant counsel, guidance, and help in

my returning to school after working in industry. His help in this project and many other

academic ventures have been critical in my educational pursuits. I appreciate his patience and

willingness in the process that this research has taken. I acknowledge Dr. Vladimir Solovjov and

his assistance in the mathematical realm of thermal transport. I also thank Dr. Steven Gorrell

and Dr. Jerry Bowman for their gracious help in this pursuit. I am also very grateful to my

fellow BYU students Jeremy LeFevre, Trevor Terrill and Joshua Thornock for their help in

developing and testing the FLUENT solutions that became the basis for validation for the DSFA

model and created blind tests. Without their selfless efforts, this project could never have been

completed.

Many times, this research was made possible by the loving support of those who are

around me. I would like to thank the support of my family and friends, especially my wife

Melony. Their patience and support during this work will not soon be forgotten. I also

recognize the hand of my Heavenly Father, as there have been many answers to prayers in

regards to making my research successful.

I would like to thank the Mechanical Engineering Department and Brigham Young

University for giving me the opportunity to continue my educational pursuits and expand my

learning.

 v

TABLE OF CONTENTS

LIST OF TABLES .. vii

LIST OF FIGURES ... ix

NOMENCLATURE ... xi

1 Introduction ... 1

1.1 Motivation ... 1

1.2 Outline .. 3

2 Previous Pulsed Laser Diffusion Models .. 5

2.1 Introduction ... 5

2.2 Parker Model Development .. 5

2.3 Maglić Method .. 9

2.4 ASTM Method .. 10

2.5 Summary of Previous Models ... 11

3 Parameter Identifcation based on an Improved PLD Model ... 13

3.1 Parameter Identification .. 13

3.2 Inversion of the DSFA Model .. 15

3.3 Model Definition ... 17

3.4 DSFA Model Equation Development ... 18

3.4.1 Eigenfunction Expansion .. 21

3.4.2 Infinite Series Truncation ... 23

3.4.3 DSFA Model Validation ... 24

3.5 Genetic Algorithm Development and Implementation ... 25

3.6 Reduced Order Model Development .. 36

3.6.1 Defining Parameters .. 43

 vi

3.6.2 Creation of Solution Sets .. 46

3.7 ROM Model Verification .. 46

3.8 Example Case Testing .. 50

3.8.1 Gallium Arsenide .. 50

3.8.2 Silicon ... 52

3.8.3 Cupric Oxide ... 54

3.8.4 Aluminum Antimony .. 55

4 Results .. 59

4.1 Blind Test Cases ... 59

4.1.1 Iron Disilicide ... 59

4.1.2 Gallium Phosphide .. 61

4.1.3 Indium Phosphide ... 63

4.1.4 Zinc Selenide .. 66

4.1.5 Aluminum Gallium Arsenide .. 68

5 Summary and Conclusions ... 73

REFERENCES .. 77

Appendix A. Parker Model Development .. 81

Appendix B. DSFA Development ... 89

Appendix C. Source Code for Creation of the Governing Parameter Sets for the DSFA
Thermal Model .. 117

Appendix D. Source Code for the DSFA Model for the Matrix Creation of the ROM in
Matlab .. 123

Appendix E. Source Code for the Input of Arbitrarty Parameters for the ROM in
Matlab .. 127

Appendix F. Source Code for Solving the Inverse Problem of DSFA with GA 131

 vii

LIST OF TABLES

Table 2-1: Values of Kx for Eq. (2-10) for Constant Laser Power [Maglić] 10

Table 2-2: Values of Kx for Eq. (2-10) for Constant Laser Power in ASTM Method 10

Table 3-1: First 10 Eigenvalues Including 0 for Bi=8.081 E -4 ..24

Table 3-2: Parameters used for κ, S ...44

Table 3-3: Parameters used for h ...44

Table 3-4: Parameters used for α ...45

Table 3-5: Parameters used for ρc ...45

Table 3-6: Gallium Arsenide Input and Outputs ..50

Table 3-7: Silicon Input and Outputs ...52

Table 3-8: Cupric Oxide Input and Outputs ..54

Table 3-9: Aluminum Antimony Input and Outputs ..56

Table 4-1: Iron Disilicide Input and Outputs ...60

Table 4-2: Gallium Phosphide Input and Outputs ...62

Table 4-3: Indium Phosphide Input and Outputs ...64

Table 4-4: Zinc Selenide Input and Outputs ..67

Table 4-5: Aluminum Gallium Arsenide Input and Outputs ...69

 ix

LIST OF FIGURES

Figure 2-1: Parker Model Schematic ...6

Figure 2-2: Nondimensional Temperature Rise from Parker Equations ...8

Figure 3-1: DSFA Model Schematic ...14

Figure 3-2: Forward Model Schematic ..14

Figure 3-3: Inverse Model Schematic ..15

Figure 3-4: Inversion of the DSFA Model ...16

Figure 3-5: Inversion of the DSFA Model using ROM ...16

Figure 3-6: DSFA Model of PLD Schematic ..17

Figure 3-7: Triangle Pulse of the Laser ...19

Figure 3-8: Comparison of Parker and DSFA ...25

Figure 3-9: Distribution of Fitness Values at First Generation before the start of the GA 28

Figure 3-10: Change of Mutation Probability by Generation ..31

Figure 3-11: Progression of Best Case Fitness Value of the Population in the Generational
Progression of the GA ..32

Figure 3-12: Zoomed in Progression of Best Case Fitness Value of the Population in the
Generational Progression of the GA ..33

Figure 3-13: Distribution of Fitness Values after Completion, 369 Generations of the GA 33

Figure 3-14: Generational Progression of Standard Deviation of Fitness Values 35

Figure 3-15: Flowchart for the GA Process ..35

Figure 3-16: Singular Values of A ...38

Figure 3-17: Singular Values of F ...41

Figure 3-18: Flowchart for Creation of Basis Set of Solutions for ROM 46

Figure 3-19: Example Case of Comparison of DSFA and ROM for Known Case 48

Figure 3-20: Example Case of Comparison of DSFA and ROM for Arbitrary Case 1 48

 x

Figure 3-21: Example Case of Comparison of DSFA and ROM for Arbitrary Case 2 49

Figure 3-22: Gallium Arsenide Bottom Temperature Profile Comparisons 51

Figure 3-23: Gallium Arsenide Top Temperature Profile Comparisons 51

Figure 3-24: Silicon Bottom Temperature Profile Comparisons ...53

Figure 3-25: Silicon Top Temperature Profile Comparisons ..53

Figure 3-26: Cupric Oxide Bottom Temperature Profile Comparisons ...55

Figure 3-27: Cupric Oxide Top Temperature Profile Comparisons ..55

Figure 3-28: Aluminum Antimony Bottom Temperature Profile Comparisons 57

Figure 3-29: Aluminum Antimony Top Temperature Profile Comparisons 57

Figure 4-1: Iron Disilicide Bottom Temperature Profile Comparisons ...60

Figure 4-2: Iron Disilicide Top Temperature Profile Comparisons ...61

Figure 4-3: Gallium Phosphide Bottom Temperature Profile Comparisons 62

Figure 4-4: Gallium Phosphide Top Temperature Profile Comparisons 63

Figure 4-5: Indium Phosphide Bottom Temperature Profile Comparisons 64

Figure 4-6: Indium Phosphide Top Temperature Profile Comparisons ...65

Figure 4-7: Zinc Selenide Bottom Temperature Profile Comparisons ..67

Figure 4-8: Zinc Selenide Top Temperature Profile Comparisons ..68

Figure 4-9: Aluminum Gallium Arsenide Bottom Temperature Profile Comparisons 69

Figure 4-10: Aluminum Gallium Arsenide Top Temperature Profile Comparisons 70

 xi

NOMENCLATURE

Latin Characters

A – Solution set matrix

A – Nondimensional equation

As – Exposed surface area

a – Nondimensional diffusivity

B – Expansion coefficient matrix

B – Nondimensional equation

b – Expansion coefficient vector

b – Expansion coefficient

Bi – Biot number

C – Coefficient matrix

C – Nondimensional equation

c – Heat capacity

D – Nondimensional equation

F – Interpolation matrix

F – Nondimensional equation

f – Interpolation vector

f – Laser power duration function

G – Nondimensional equation

g – Thickness energy is absorbed in

H – Incident irradiation from source

 xii

h – Convection coefficient

I – Identity matrix

iGen – Generation number index

J – Bessel function

K – Coefficient corresponding to rise time

k – Arbitrary case of parameters

k – Thermal conductivity

L – Sample thickness

M – Number of time steps

mc – Matrix cutoff value

N – Number of parameter sets

NGen – Number of generations

NT – Number of terms

 n – Index

P – Laser power

parameter – Input value from parameter set

Q – Incident energy

q – Volumetric heat generation

R – Outside radius of sample

Rn – Expansion factor

r – Radial coordinate

r0 – One standard deviation from center of laser power

rA – Rank of A

 xiii

rF – Rank of F

rm – Initial probability of mutation

S – Diagonal matrix of singular values

S – Optical depth

T – Temperature

t – Time

U – Orthogonal matrix

V – Orthogonal matrix

V – Normalized temperature rise

Vs – Sample volume

x1, x2, x3 – Governing parameters

y – Output value for parameter set

Zk – Vector of temperature profile

Zm – Expansion function

z – Vertical coordinate

Greek Characters

α – Thermal diffusivity

β – Time to maximum power in laser pulse

βm – Eigenvalue

ε – Convergence parameter

ζ – Nondimensional thickness

θ – Nondimensional temperature

κ – Absorption coefficient

 xiv

λn – Eigenvalue

ν – Nondimensional radius

ν0 – Nondimensional one standard deviation from center of laser power

ρ – Density

Σ – Diagonal matrix

σ – Singular values

τ – Nondimensional time

Φ – Basis set matrix

φ – Angular coordinate

χ – Integration parameter

ω – Normalized rise time

Subscripts

0 – Zero index

0.5 – Temperature half rise time

1 – First parameter set

2 – Second parameter set

A – From A matrix

DSFA – From DSFA values

F – From F matrix

i – Index

initial – Initial state

input – Input parameter

M – Maximum

 xv

m – Index

maxrise – Point of maximum temperature

n – Index

p – End of pulse

x – Percent rise of temperature

β – Point of maximum pulse power

∞ – Initial or surrounding

Superscripts

i – Index

j – Index

m – Index

n – Index

T – Transpose

+ – Moore-Penrose Pseudoinverse

1

1 INTRODUCTION

1.1 Motivation

The thermal diffusivity of a material

c
k
ρ

α =

(1-1)

is an important physical property that quantifies the ratio of the rate at which heat is conducted

through the material relative to the amount of energy that is stored in the material. A material

with a large diffusivity will more quickly come to thermal equilibrium when the temperature of

its surroundings fluctuates, while materials that have small diffusivities take longer to come to

equilibrium. Values for thermal diffusivities vary from 10-3 m2/s for metallic materials to 10-7

m2/s for nonmetallic materials.

Accurate knowledge of the thermal diffusivity of a material is critical in selecting

materials to meet design specifications, in modeling transient thermal transfer, and in calibrating

temperature sensors and heat flux gauges [Hay et al]. In addition to their intrinsic worth,

measurements of diffusivity are frequently used in conjunction with independent measurements

of the materials density and specific heat to calculate the thermal conductivity of materials

[ASTM]. The thermal conductivity of a material is an important thermal transport property, and

2

accurate thermal conductivity measurements are essential to the analysis of conduction heat

transfer.

Since the thermal diffusivity quantifies the rate at which a material comes to thermal

equilibrium with its surroundings, a logical approach to measuring α is to perturb the temperature

of a sample and to monitor its time-dependent temperature as it returns to equilibrium. The

Flash Method [Hay et al., ASTM] is a common implementation of this approach. Initially

proposed by Parker in 1961 [Parker], the underlying premise of the flash method is very

straightforward. One face of a thin sample is exposed to a pulse of radiant energy which is

emitted by a laser or by a flash lamp. The resulting time-dependent temperature profile at a point

on the opposite face is recorded, and comparison of this measured profile with the temperature

profile generated by a thermal model of the process is used to infer the diffusivity of the material.

Over the years, the theory and application of the flash method have been refined and

improved by a number of investigators [Hay et al., Maglić, Vozar, Baba]. In particular, non-

ideal phenomena occurring in practical measurement systems have been treated with greater

fidelity through the use of increasingly complex thermal models. However, the complexity and

computational expense of these algorithms used to infer the thermal diffusivity from transient

temperature measurements have increased in parallel with the increased complexity of the

thermal models.

Methods such as the flash method fall into a class of problems known as parameter

estimation [Tarantola], which is a type of inverse problem. Problems of this class rely on a

model of a dynamic process, which is generally expressed as a partial differential equation. This

governing equation involves a dependent variable and one or more independent variables. There

are sources or sinks and properties of the system control how variations in these and the

3

independent variables influence the dependent variable. The dependent variable in the governing

equation is often referred to as the state variable and the properties are generally referred to as

parameters. State variables are observable, meaning they can be measured directly, whereas

parameters are generally not observable. Therefore, estimation of a parameter requires

postulating a relationship between the state variable and the targeted parameter. This

relationship is then used to infer the parameter based on measurements of the state variable

[Beck and Arnold]. In the flash method, the state variable is the time-dependent temperature

profile at some location within the sample, and the targeted parameter is the thermal diffusivity.

The objective of the research presented in this thesis is to develop a parameter estimation

algorithm for a pulsed laser diffusivity measurement (PLD) system based on reduced order

modeling (ROM) and a Genetic Algorithm (GA). Tests of the proposed data reduction algorithm

are conducted using simulated measurements. The proposed algorithm is shown to be superior

to the parameter estimation method recommended in the most recent ASTM standard [ASTM].

1.2 Outline

The model currently implemented in the ASTM standard for PLD measurement systems

is developed and described in Chapter 2. Limitations associated with the ASTM standard

approach are clearly revealed by thoroughly examining its theoretical basis and derivations of its

fundamental equations.

Chapter 3 presents a more physically realistic thermal model which has been developed

for this study. This model is called the Distributed Source Finite Absorption (DSFA) model.

This model incorporated the effects of three phenomena neglected by the ASTM standard – heat

loss off the top surface of the sample, finite laser pulse durations, and nonuniform heating of the

4

sample. These three phenomena have been identified as the most significant by Vozar and

Hohenauer [Vozar]. Although an analytical model is obtained, evaluation of this high fidelity

model is computationally expensive, requiring approximately 0.85 seconds using a desktop PC

with 2.30 GHz processor and 2.00 GB of RAM. It is also not possible to develop a simple

relationship between measured temperatures and thermal diffusivities based on the DSFA model.

A random search procedure utilizing a genetic algorithm (GA) is described and implemented to

solve the inverse problem. Due to the computational requirements of the GA, a reduced order

model (ROM) has been developed to use in conjunction with the GA, resulting in a more

computationally efficient approach. The primary result described in Chapter 3 is the

demonstration that the inverse problem of evaluating properties from a temperature profile can

be solved efficiently using ROM with a GA.

Chapter 4 contains results of five blind test cases in which temperature profiles generated

by FLUENT were used as inputs. Thermal diffusivity values were obtained using the proposed

method are compared with the actual values and to values obtained using the ASTM standard.

The results of these blind test cases indicate that the DSFA model based ROM with GA is more

robust and accurate than the ASTM standard.

Chapter 5 summarizes the work done and gives recommendations for further

investigations. Several appendices follow the list of references. The appendices contain the

derivation of the Parker model – the base of the ASTM method, complete derivation of the

DSFA, Matlab source codes that were written to run the DSFA model, the GA, and the ROM.

5

2 PREVIOUS PULSED LASER DIFFUSION MODELS

2.1 Introduction

Thermal diffusivity measurements based on the laser flash method, also known as Pulsed

Laser Diffusion (PLD), were first introduced in 1961 by Parker et al [Parker]. It is a method to

find the thermal diffusivity with use of a laser pulse on the surface of a material sample. Parker

et al. theorized that one could pulse a laser on a material sample and based on the thermal

response of the rear surface calculate the diffusivity of the sample. PLD is currently being used

widely in material science and composites [Vozar], carbon nanotubes [Haydari], and the

electronics industry [Fullem].

Over the years, many researchers have improved the model originated by Parker. There

have been modifications to the analytical solutions to try and improve accuracy and reliability of

the models [Maglić]. There is also discussion in the literature of the effects of the assumptions

of the Parker model [Hay], [McMasters]. With all the work that has been done, the Parker model

is still the backbone of the ASTM standard method used today [ASTM].

2.2 Parker Model Development

The approach developed by Parker is based on a simple model [Parker]. The thermal

model used is a one dimensional model of temperature profile in the material sample. A

schematic of this model is shown in Figure 2-1.

6

Figure 2-1: Parker Model Schematic

The development of the thermal model starts with the heat equation. The heat equation

with volumetric heat generation in radial coordinates is shown in Eq. (2-1).

t
Tcq

z
Tk

z
Tk

rr
Tkr

rr ∂
∂

=+







∂
∂

∂
∂

+







∂
∂

∂
∂

+







∂
∂

∂
∂ ρ

φφ


2

11
 (2-1)

Based on symmetry, Parker’s model neglects temperature variations in the the r and φ

directions. Parker also assumes no internal heat generation as all the energy is absorbed in a very

small thickness on top of the sample designated by δ. These assumptions reduce the heat

equation from Eq. (2-1) to Eq. (2-2).

t
Tc

z
Tk

z ∂
∂

=







∂
∂

∂
∂ ρ (2-2)

7

Further simplifications are achieved by assuming constant properties such that k, ρ and c

are uniform and independent of temperature giving Eq. (2-3).

t
T

z
T

∂
∂

=
∂
∂

2

2

α (2-3)

Assuming that the pulse is absorbed instantaneously at the surface leads to the

assumption that the initial temperature profile may be approximated by the step function given in

Eq. (2.4).







≤<

≤≤+
==

∞

∞

LzT

z
Ac

QTtzT
δ

δ
δρ

0)0,((2-4)

The solution to this partial differential equation is an infinite series solution. The

derivation of the solution is shown in Appendix A. The solution in infinite series form is given

in Eq. (2-5).

() 














 −
−+= ∑

∞

=1
2

22

exp121),(
n

n t
L
n

cL
QtLT απ
ρ

 (2-5)

There are two dimensionless parameters that are introduced, V and ω, as shown in Eq. (2-

6) and Eq. (2-7) where TM is the maximum temperature from the laser pulse that is reached by

the rear face.

8

MTtLTtLV /),(),(= (2-6)

22 / Ltαπω = (2-7)

Combining Eq. (2-5), Eq. (2-6), and Eq. (2-7) yields Eq. (2-8)

() ()∑
∞

=

−−+=
1

2exp121
n

n nV ω (2-8)

This yields the common form that is used for determining the diffusivity based on the

time that is takes the sample to go half way to its maximum value after the laser pulse, t0.5, as

shown in Eq. (2-9) as the nondimensional temperature rise, V, and nondimensional time, ω, are

shown in Figure 2-2.

Figure 2-2: Nondimensional Temperature Rise from Parker Equations

9

As is shown in Appendix A, when V is set to be 0.5, or half the maximum temperature

rise, the value for ω is 1.3698. Once a temperature profile of a sample of thickness L is known

in time, one just needs to determine the time taken to reach the midpoint temperature, and α may

be directly evaluated with Eq. (2-9).

5.0
2

23698.1
t

L
π

α = (2-9)

2.3 Maglić Method

The method introduced by Maglić in 1992 [Maglić] is based on the same model as Parker

[Parker]. Due to having the same base model, all the same assumptions carry over from the

Parker model. The novelty of this method is that it does not restrict the calculation of only the

time at half the temperature rise. It allows for finding the time to reach a number of different

percent rises along the profile and averaging the returned values of α, which gives a more

accurate measurement of the thermal diffusivity. With the increase in flexibility of the method,

the equation for α is slightly different than that of Parker in Eq. (2-9). The Maglić method

equation is shown in Eq. (2-10) Where Kx is a constant that corresponds to an x percent rise, and

tx is the time for the temperature to get to that x percent rise.

x

x

t
LK 2

=α (2-10)

10

Values of Kx and percent temperature rise, x, are shown in Table 2-1 [Maglić]. It is

proposed by Maglić to not just use one single point, but to use as many as possible to reduce the

error in the system and provide for more accurate evaluations of the diffusivity.

Table 2-1: Values of Kx for Eq. (2-10) for Constant Laser Power [Maglić]
x (%) Kx x (%) Kx

10 0.066108 60 0.162236
20 0.084251 66 0.181067
25 0.092725 70 0.191874
30 0.101213 75 0.210493
33 0.106976 80 0.233200
40 0.118960 90 0.303520
50 0.138785

2.4 ASTM Method

The ASTM method also uses the same model as Parker [ASTM]. Similarly with the

Maglić method, the same base assumptions from the Parker model also carry into the ASTM

method. The calculation that it uses for determining α is the same as Eq. (2-10) with the values

as shown in Table 2-2.

Table 2-2: Values of Kx for Eq. (2-10) for Constant Laser Power in ASTM Method
x (%) Kx

25 0.092725
50 0.138785
75 0.210493

It is clear that the ASTM method is a balance between the Parker and Maglić methods.

The value of 0.138785 is the same as the Parker where 0.138785 = 1.36975/π2. The value of

0.138785 corresponds to the value of the 50% temperature rise as is seen in Table 2-1. The

11

ASTM method finds the balance of the Parker and Maglić methods by stating that to check the

validity of the measurement, use the equation developed by Maglić, Eq. (2-10), at a minimum of

two other points along the profile of the rise curve, generally the 25% and 75% rise times as

shown in Table 2-2. With the three measurements it allows a moderate level of confidence that

the value returned is the diffusivity if they correlate within 5%. If the values do not correlate

within the given level, then the response curve is to be analyzed to determine what effects are

causing the error in the solution. The ASTM standard mentions that if errors are large, look at

effects of a non-infinitesimally short laser pulse, radiant effects, and non-uniform heating

[ASTM]. There are a number of corrections that are made to the model to account for these

influences as stated previously in efforts to improve the solution.

2.5 Summary of Previous Models

It is seen that the Parker [Parker] model is the basis for PLD system calculation. The

temperature of the rear surface is measured after a laser pulse. The time required for the

measurement to get to a predetermined percent of the temperature rise is then used in an equation

to return the diffusivity of the substance. This can be done with one point in time, or many

points in time, but the core idea is the same.

This base model involves a number of simplifying assumptions. There are assumptions

about the laser pulse power being constant and infinitesimally short. There are assumptions

about the material sample absorbing all the energy uniformly in a thin layer on the top surface,

that the heat transfer in the sample is one-dimensional, and that the properties of the material are

constant. There is also the assumption that convective and radiative heat losses from the top

surface are negligible. Each of these assumptions simplifies the physics of the problem and

12

removes some of the physical realism of the model. A new model for finding α is desired that

does not use all the assumptions that are used in the current models so that the accuracy of the

system can be improved. With a new higher-fidelity model, the temperature profiles are

simulated more accurately. More accurate temperature profiles should allow for more accurate

measurement of the diffusivity of the material.

13

3 PARAMETER IDENTIFCATION BASED ON AN IMPROVED PLD MODEL

3.1 Parameter Identification

The objective of this study is to develop an improved PLD model that may be used to

determine the thermal diffusivity and possibly other material parameters based on measurements

of the time-dependent temperature profile on the surface of the sample. The proposed new model

is referred to as the Distributed Source Finite Absorption (DSFA) model, because it accounts for

spatial variations in the pulse and in the absorption of the pulse within the sample. The DSFA

model also accounts for convective and radiative heat losses from the uninsulated top surface of

the sample, as illustrated in Figure 3-1. Note that for convenience the origin of the coordinate

system is placed at the center of the lower surface instead of at the center of the top surface,

where it was located in developing the Parker model as shown in Figure 2-1.

 The DSFA model requires four inputs. In additions to the heat transfer coefficient, h,

which quantifies both convective and radiative heat loss from the uninsulated upper surface, the

DSFA model depends on the following material properties of the sample:

• The thermal diffusivity, α

• The heat capacity, ρc

• The absorption coefficient, κ

14

Figure 3-1: DSFA Model Schematic

The DSFA model produces the time-dependent, axisymetrical temperature profile in the

sample, T(r,z,t). However, it is desirable to use the time-dependent temperature profile at a

simple point on the lower surface of the sample as data that may be used to measure the thermal

diffusivity and other input parameters. For convenience, the origin will be used as the data

acquisition point. A schematic of the forward problem is shown in Figure 3-2. The coordinate

system used in this work is also shown in Figure 3-1.

Figure 3-2: Forward Model Schematic

With fewer assumptions, the DSFA model more accurately represents the heat transfer

process occurring in an actual PLD system.

15

It is desirous to be able to take the output from the model, T(0,0,t), and perform the

inverse operation to return results of the thermal diffusivity, heat capacity, absorption coefficient

and heat transfer coefficient. The inverse operation is illustrated schematically in Figure 3-3.

Figure 3-3: Inverse Model Schematic

3.2 Inversion of the DSFA Model

Because the DSFA model represents a PLD system with greater fidelity, this improved

model does not result in a simple relationship between the targeted parameter, thermal

diffusivity, and the measured temperature profile as was the case for the simplified Parker model.

Therefore, an iterative, random search process based on a genetic algorithm (GA) [Ostrowski] is

proposed. A schematic representation of the inversion of the DSFA model is shown in Figure

3-4.

Due to the complexity of the DSFA model, each run is computationally expensive – a

typical MATLAB run requires approximately 0.85 seconds on a 2.3 GHz processor. In running a

GA, the model is called many times. Solution of the inverse problem using a GA typically

requires that the DSFA model can be executed more than 7500 times. Performing the operation

from Figure 3-4 would require more than 17 hours to complete.

16

Figure 3-4: Inversion of the DSFA Model

To speed the process of the GA, a highly-accurate reduced order model (ROM) is

developed. The ROM is able to simulate the DSFA model with high levels of accuracy over the

entire profile and is much faster than the DSFA model. The modified process takes the

computationally expensive DSFA process that is shown in Figure 3-4 and replaces it with a

ROM in order to solve the inverse problem, as shown in Figure 3-5.

Figure 3-5: Inversion of the DSFA Model using ROM

Using the ROM in place of the DSFA allows the inverse problem to be solved in a

fraction of the time. A typical MATLAB run of the ROM on a 2.3 GHz processor is only 0.0025

seconds. Since running the DSFA requires approximately 0.85 seconds, the inverse problem

17

with ROM can be solved in 0.3 percent of the time that would be required to solve the problem

using the DSFA, or about three minutes. Since the ROM is so much faster than the DSFA

model, it is more efficient to utilize the ROM as the simulation technique, although either model

can return accurate solutions.

3.3 Model Definition

The DSFA model captures more of the true physics of the problem by the use of more

appropriate assumptions. Using assumptions that more closely match the actual physics should

allow for more accurate data. As shown in Figure 3-6, the top surface of the sample is not

insulated, so there will be heat loss due to convection and radiation from this surface. These

losses are modeled using h as the heat transfer coefficient. The bottom and outside

circumferential surfaces are well insulated and assumed to be adiabatic. The laser irradiation is

modeled as a Gaussian profile in r and as a triangle pulse in t. This model of the temporal

variation in the pulse follows the recommendations of ASTM [ASTM].

Figure 3-6: DSFA Model of PLD Schematic

18

As in other PLD models, the thermal and physical material properties are assumed to be

uniform constants.

3.4 DSFA Model Equation Development

The equation that determines the spatial and time dependent temperature profiles in the

sample are shown in Eq. (3-1).

t
Tcq

z
Tk

z
Tk

rr
Tkr

rr ∂
∂

=+







∂
∂

∂
∂

+







∂
∂

∂
∂

+







∂
∂

∂
∂ ρ

φφ


2

11
 (3-1)

Since the model is axisymetric, temperature variations in the φ direction are neglected.

The constant property assumption is also implemented to yield Eq. (3-2).

t
T

k
q

z
T

r
Tr

rr ∂
∂

=+
∂
∂

+







∂
∂

∂
∂

α
11

2

2 
 (3-2)

The volumetric heat generation, q , is dependent on the laser pulse size, radial position,

and the axial position into the material due to optical depth. Eq. (3-3) gives the function of q

where P is the laser power, κ is the absorption coefficient, ro is a measure of the radius of the

beam, and f(t) is the laser power duration function.

())(exp
2

2

2
tfzL

r
r

r
Pq

oo










−−

−
= κ
π
κ

 (3-3)

19

The function, f(t) represents how the strength of the pulse varies in time. It is suggested

in the literature that a triangle pulse be used [ASTM]. The strength of the pulse is assumed to

increase linearly from zero at t = 0 to a maximum, at t = tm. From t = tm, the strength of the

pulse decreases linearly back to zero at t = tp. The values for tm and tp may be determined by

measuring the time dependence of the laser pulse power with an optical detector. This is

dependent on the system that is being used as not all lasers will have the same temporal

characteristics. Eq. 3-4 gives f(t) for the recommended profile and f(t) is plotted in Figure 3-7.





























>

≤<
−

−

≤<

=

p

pm
mp

p

m
m

tt

ttt
tt
tt

tt
t
t

tf

0

0

)((3-4)

Figure 3-7: Triangle Pulse of the Laser

20

For a second order partial differential equation in two dimensions with a time

dependence, four boundary conditions are required and also one initial condition. The boundary

conditions and initial condition are shown in Eq. (3-5) and Eq. (3-6).

∞= TzrT),,(0 (3-5)

()()∞
=

=

=

=

−=
∂
∂

−

=
∂
∂

=
∂
∂

=
∂
∂

TtLrTh
z
Tk

z
T
r
T
r
T

Lz

z

Rr

r

,,

0

0

0

0

0

 (3-6)

In order to simplify the solution, the problem is nondimensionalized as outlined in the

Appendix B. The nondimensional equation is Eq. (3-7).

() ()
τ
θτζ

υ
υ

ζ
θ

υ
θυ

υυ ∂
∂

=









−−

−
+

∂
∂

+







∂
∂

∂
∂ fSa

o

1exp1
2

2

2

2
2 (3-7)

The boundary conditions, initial condition, and time dependent laser pulse function are

also nondimensionalized. The nondimensional boundary condition is Eq. (3-8), the initial

condition is Eq. (3-9), and the laser pulse function in Eq. (3-10). The Biot number, Bi, is given

by Bi=hL/k.

21

()τυθ
ζ
θ

ζ
θ

υ
θ
υ
θ

ζ

ζ

υ

υ

,1,

0

0

0

1

0

1

0

Bi−=
∂
∂

=
∂
∂

=
∂
∂

=
∂
∂

=

=

=

=

 (3-8)

() 00,, =ζυθ (3-9)





























>

≤<
−

−

≤≤

=

p

pm
mp

p

m
m

f

ττ

τττ
ττ
ττ

ττ
τ
τ

τ

0

0

)((3-10)

3.4.1 Eigenfunction Expansion

With the equation nondimensionalized, the Eigenfunction expansion method can be

performed to obtain the nondimensional temperature profiles, θ. The expansion of θ can be done

according to Eq. (3-11).

() () () ()∑∑
∞

=

∞

=

=
0 0

,,
n m

mnnm ZRb ζυττζυθ (3-11)

22

The functions Rn(υ) and Zm(ζ) are obtained by the solution of the associated Sturm-

Louisville problems. Rn(υ) is found to be J0(λnυ) and Zm(ζ) is found to be cos(βmζ). Ji is the

Bessel Function of the first kind, i is the order of the Bessel Function. The expanded solution of

θ is shown in Eq. (3-12).

() () () ()
()

()
() ()

() ()

() ()
()

()

()

()

()()

() 2

2

2

222

2

2

2

22

1

0
02

0

1

1 0
0

01

1
1

2

2

0

2

2

RP
krTT

L
Ra,R

r,R
t,L

z,L
r,LS

c
hL

k
hLBi

a

eee

ee

eee

eee

BiBi
SecosSBi

S
G

dJe
J

F

GFb
J

Bitan

Jcosb,,

o

o
o

m

qpqp

pmpmp
mpqpm

pm

qpmm

qpmpppm

pmqpm

mqp
qpm

qp

q

S
q

q

q

p
p

p

qpqpqp

p

qq

q p
pqqp

pqpmqp
qp

qpqp

qpmqpqp

qpqp
qp

o

κ
πθ

ρατξρκ

αρ

βλγ

ττττττ
ττγτ

τττ
τγττ

γτττττ

ττγτ

τττγ
γτ

τ

β
β

β

ρρλρ
λ

ττ

λ

ββ

ρλξβττξρθ

τγτγ
τγ

τγτγ

τγτγτγ

τγτγ
τγ

ρ
ρ

∞

−

−

−

−

−

∞

=

∞

=

−=

======

==

+=


















>+−−
−

≤<













+−

−+−

−

≤≤+−

=Τ

++

−+







+

=

=

Τ=

=

=

=

∫

∑∑

 (3-12)

The values of βm are the roots of the equation Bi = βm tan(βm). The values of λn are the

roots of the equation J1(λn) = 0. Whereas there is no zero root of the βm equation, the infinite

summation starts at one. There is, however, a zero root of the λn equation, and thus the infinite

23

sum is started at n = 0. The coefficient b is modified for the zero value of n, and thus it is

separated from the double infinite sum. The rest of the development of the Eigenfunction

expansion is mathematically complex and the entire derivation is covered in Appendix B. Eq.

(3-12) is returned from the derivation in Appendix B.

3.4.2 Infinite Series Truncation

With increased amount of terms, the computational time increases geometrically as each

point is calculated from the truncated series. With the truncation at NT terms on both indices, Eq.

(3-12) becomes Eq. (3-13). The other constants and functions previously defined in Eq. (3-12)

stay the same and are not repeated for simplicity.

() () () () () ()∑ ∑∑
= = =

+=
T T TN

m

N

n

N

m
nmnmmm Jbb

1 1 1
00 coscos,, υλζβτζβττζυθ (3-13)

This equation is a mathematical solution to the original heat equation and boundary

conditions. The accuracy of this equation in comparison to the analytical model can only be

shown by a large number of terms in the truncated series.

To determine that there were sufficient values being used; a study was performed using 5,

10, 15, 30 and 50 terms. There was no change in any of the profiles when using 10 terms or

more, and thus the 10 term solution was determined to be used as the base. Having decided on

10 terms for the study, the first 10 eigenvalues were needed. Table 3-1 is an example of what

one of the eigenvalue sets contains when the Biot number is 8.081 E -4.

24

Table 3-1: First 10 Eigenvalues Including 0 for Bi=8.081 E -4
Eigenvalue λn Βm

1 0 0.0284
2 3.8317 3.1418
3 7.0156 6.2833
4 10.1735 9.4249
5 13.3237 12.5664
6 16.4706 15.7080
7 19.6159 18.8496
8 22.7601 21.9912
9 25.9037 25.1328
10 29.0468 28.2744

3.4.3 DSFA Model Validation

The DSFA validation was completed by comparing the results from the model from Eq.

(3-13) to the ASTM method for PLD and comparing the results of diffusivity to the predicted

results of the diffusivity. The DSFA model that has been developed for this analysis uses a

spatially varying Gaussian laser intensity profile with a triangle pulse. For model validation, the

radius was made to be much larger than the sample. The distance to one sigma from center was

twice that of the sample size. This resulted in the laser power that was incident on the top

surface of the sample to be very nearly constant. For the large laser radius, the measurement

location on the back of the sample does not affect the results. This is due to the fact that the laser

pulse is approximately uniform, having no radial dependence. The laser power time dependence

was also reduce to be more close to infinitesimally short. The convective heat coefficient was

set to be 1 as values of zero would alter the equations and to protect against divide by zero. The

value for the absorption coefficient was set to be much higher, simulation an even larger optical

depth. This simulates more closely the behavior of all the energy absorbed in a very thin layer

on top of the sample. The values returned by the DSFA model were all similar and the averages

25

of the values have small error, approximately 5%, between these values in Table 2-1 and any of

the cases analyzed. As the ASTM standard is accurate within 5% [ASTM], this is an acceptable

range. As is shown in Figure 3-8, the non-dimensional temperature profiles of the DSFA and the

Parker are very similar.

Figure 3-8: Comparison of Parker and DSFA

The differences in diffusivities between the tested cases are up to orders of magnitude

different and this verifies that the values in Table 2-1 themselves are not dependent on the

material. As the Eq. (2-8) and Eq. (2-9) include the thickness term, the values given are also

independent of thickness of the sample.

3.5 Genetic Algorithm Development and Implementation

Due to the complexity of the DFSA model, it cannot be inverted such that inputting a

temperature profile will return a value for α. The DSFA model can only solve the forward

problem when diffusivity is known. Thus, the DSFA model developed in this work needs a

26

search technique to be able to determine α of the tested material. To solve the inverse problem, a

search technique needs to run the forward problem many times to compare the experimental

profile to the analytical profiles calculated by the DSFA model. A GA can be used as the search

technique for the method.

The solutions to inverse problems are often found by repeated tests of parameter cases

until the desired solution is returned. This method of iterative process solution is

computationally intensive. It must perform many simulations in an organized search so that the

desired result may be found. The process returns the value for the time-dependent temperature,

Ti(0,0,t) for each of the parameter sets generated. It then compares the returned temperature

profile to the measured temperature profile and calculates a fitness value. After all parameter

sets have been created for the generation, convergence is tested using the fitness values.

Convergence of a GA is when all the parameter sets in a population consist of similar individuals

[Davis]. When convergence is achieved, the process is stopped and the parameter set of α, κ, ρc,

and h is returned as the solution to the inverse problem. If convergence is not reached in the

current generation, the parameter sets in the population are modified using tournament selection,

crossover, and mutation. This process is done for each of the population members by the GA.

New generations are created until the GA has converged.

Simple GAs are widely used in many practical problems. A GA has its foundations

based on the concept of diversity, inheritance, and fitness pressure. The GA randomly selects the

values from within the parameter bounds to make up the first group of parameter sets for the

generation. It then calculates the fitness values of the members of the population and the

generational progression can begin. Diversity is introduced into the procedure by the

modification of the parameters in the sets. Inheritance is the concept of having the changes made

27

from one generation to the next where new parameter sets gain the positive traits of the previous

generation. The fitness pressure is what allows the algorithm to achieve a desirable solution.

Fitness values are calculated by the program and compared one with another to determine the

best values.

The GA for the DSFA model was run with the fitness function that uses an average error

of the temperature values along temperature profile of length M, the absolute error in the

maximum temperature, and a penalty function. The penalty function utilizes the larger of

tmaxrise,input/tmaxrise,DSFA and tmaxrise,DSFA/tmaxrise,input. The maximum of the two values is used as it

gives the largest penalty for variations in the curve. This penalty function only is used when the

values for tmaxrise,input and tmaxrise,DSFA are not the same, when they are the same, the penalty

function returns zero. The total fitness function with the penalty function is shown in Eq. (3-14).









≠









−










=

=

⋅





















+
−

−
+

−

−=
∞

=
∑

DSFArisemaxinputrisemax
inputmaxrise,

DSFAmaxrise,

DSFArisemax

inputmaxrise,

DSFArisemaxinputrisemax

inputmax

DSFAmaxinputmax

M

i inputi

DSFAiinputi

tt
t
t

t
t

imummax*10

tt

Penalty

Penalty
TT

TT
M

T
TT

Fitness

,,
,

,,

,

,,1 ,

,,

1,

0

%100
*10

*100

 (3-14)

The absolute values in the fitness function allow the GA to find the difference and always

ensure that the value is a positive number. The negative sign at the start flips the value which

allows the fitness pressure to be maximized. The maximization procedure forces small error to

28

bring the fitness value closer and closer to zero. This is done so that the fitness value is never

being able to cross over zero and then increase the error.

For this case, there were 150 parameter sets generated randomly. The random

distribution of the fitness values of the first population of a sample test is shown in Figure 3-9.

Figure 3-9: Distribution of Fitness Values at First Generation before the start of the GA

At the start of each generation, the parameter sets compete in pairs against one another to

determine the better set. This competition is done using tournament selection. Inheritance of

characteristics in the GA is due to the use of this selection technique. The fitness value of one

parameter set is compared with the value of the other. The set with the higher value is then

selected. This is done to populate the next generation with the parameter sets which have the

highest fitness values. Each of the parameter sets in the population compete with the others and

are combined to yield the highest possible fitness values for that population.

29

After the tournament selection, the GA performs crossover and mutation on the

parameter sets. These processes allow for the introduction of diversity that leads to the

improvements in fitness values [Goldberg].

For real valued and continuous GAs, blend crossover can assist in the obtaining a

solution in an efficient manner. The crossover allows for changes in the parameter sets that may

create better fitness values. Crossover pulls a random number and if it is above a certain

predetermined threshold, then the crossover function is used. The threshold for the testing done

with this GA was set to be 50%. This number was found to achieve convergence in relatively

few generations. Blend crossover uses the value of two paired parameter sets and mixes them

based on a blend fraction r that was also pulled as a random number.

The GA would select two parameter sets and pair them up. It would then take the first

parameter of their sets and if the pulled random number was higher than the threshold it would

mix them as shown in Eq. (3-15).

() ()
() () 212

211

1
1

parameterrparameterry
parameterrparameterry
⋅+⋅−=
⋅−+⋅=

 (3-15)

The values from the crossover y1 and y2 then replace the values for parameter1 and

parameter2 respectively in their own parameter sets. If the random number was above the

threshold, it would perform the crossover and continue to the next parameter. This was done

until all four of the parameters were tested for the pair.

Mutation is a process where one of the parameters in the set is changed to a new, random

value in the bounded set. This is also done in an effort to increase the diversity of the

population. Opportunity for mutation is determined by a mutation parameter. The mutation

30

parameter in this GA is a changing value that allows for high probability early on when the

fitness values are not very good and as the generations pass, and the fitness values improve, the

likelihood of mutation decreases. This type of mutation is called dynamic mutation. The

mutation for this GA utilized a dynamic mutation rate where the likelihood of mutation would

decrease according to Eq. (3-16).

4
1175.0 






 −
−=

Gen

Gen

N
iMutation (3-16)

The constant in front of the exponential expression gives the starting probability of

mutation and was also selected through testing to be an appropriate value for achieving

convergence in a reasonable amount of runs. As is seen in Figure 3-10 this is a parabolic

decrease in the percent chance for mutation starting at the given constant of 75% down to near

zero chance when the generation number, iGen, is equal to a maximum number of generations

plus one that the GA will run, NGen.

As the generation number increases, the stronger parameter sets begin to dominate the

population and the mutation probability decreases. Mutation is less desirable as the fitness

values are driven to zero. This is due to the parameter sets beginning to resemble one another

and large changes are less likely to improve the fitness values of the population.

After the tournament selection, crossover, and mutation, the fitness values are found for

each new parameter set. The values are compared and the best value is stored as the first value

of the next generation. The mandatory continuation of a certain parameter set is called elitism

and allows for the current best value to always continue [Davis]. This allows for sets with the

31

best fitness values to positively affect the other sets in the population. This procedure continues

for each generational step for as many steps as is set by the designer of the GA and convergence

is reached.

Figure 3-10: Change of Mutation Probability by Generation

The use of GA is broad and the values and procedure used for crossover, mutation, and

elitism can be changed for each desired application of the GA [Goldberg], [Davis]. The

increased diversity in the population from crossover and mutation can allow for the stronger

fitness values to begin dominating the populations. When the mutation and crossover procedures

create parameter sets with poor fitness values, the poor fitness value sets are removed from

future populations by the tournament selection.

The generational progression of the best fitness value of the population is seen in Figure

3-11 and Figure 3-12. These figures show that there is an early jump in the fitness values, but

there is still much progress made throughout the progression of the generations. As is seen in

these figures, there are jumps where the GA finds a better solution than it previously had known.

32

The jumps are due to the new best case fitness value as found by the GA. At these times, the GA

has come to an all-time better solution to what it previously had. That case is then propagated

forward allowing all cases to improve and possibly find yet a better solution.

Figure 3-11: Progression of Best Case Fitness Value of the Population in the Generational
Progression of the GA

The distribution of the fitness values for the 150 parameter sets in the final generation of

the sample GA is shown in Figure 3-13. The outliers are due to mutations as all the other

parameter sets are similar and thus blending would not change their values by much.

It is seen in Figure 3-13 that although the values look the same, they are slightly different.

It is seen in the scaling of the figure that they are very close, but the parameter sets returned are

slightly different from one another.

33

Figure 3-12: Zoomed in Progression of Best Case Fitness Value of the Population in the
Generational Progression of the GA

Figure 3-13: Distribution of Fitness Values after Completion, 369 Generations of the GA

Once parameters begin to become very similar, mutation is the only way to introduce

diversity in the system to attempt to find a better solution. As there have been already 334

34

generations of possible 500 to get to this result, the likelihood of a much better solution due to

random chance is low and so the mutation probability is also low.

Convergence determines when the GA will stop and return its solution. Convergence is

defined as when all the parameter sets have become similar to each other [Davis]. Convergence

is determined by calculating the standard deviation of the fitness values for each parameter set in

the current population, and comparing it against a convergence parameter, ε. If the standard

deviation of the fitness values in the population is below the value set for the convergence

parameter, then the GA stops. The convergence criteria should be small, but setting is too low

will cause the GA to run for more generations than is necessary. An appropriate value of ε needs

to be determined for the case to ensure that the desired solution is to be met. This requires the

testing of different values and determining the best value for the computational effort. For this

testing that was performed, ε was set at 0.05. The set shown in Figure 3-13 terminated at 369

generations because the convergence criteria had been met.

Figure 3-14 shows the generational progression of the convergence criteria of the case as

shown in the above figures. In Figure 3-14, it is seen that the initial values of the standard

deviation are very high and sporadic. The values generally decrease as the parameters begin to

become more similar and closer in range due to the efforts of the tournament selections removing

the parameter sets with poor fitness values, crossover to blend the values to find potentially

better values, and decreasing the mutational diversity with increasing generation number.

35

Figure 3-14: Generational Progression of Standard Deviation of Fitness Values

The flow of the iterative process is shown in Figure 3-15. In this case, it generated 150

parameter sets and continues processing on theses sets for up to 500 generations. For this GA to

process there are up to 75,100 function calls to find the time dependant temperature profiles by

the forward problem.

Figure 3-15: Flowchart for the GA Process

36

With all the efforts to speed the solution of the DSFA model, it still takes approximately

0.85 seconds to return the temperature profile. For the GA to make 75,100 function calls of the

DSFA, it would require the GA program to run for more than 17 hours.

It is desired to have a method that can allow for faster solutions of the model to speed the

iterative process. ROM is a technique that can evaluate models very quickly. Using a ROM

instead of the DSFA model will speed the evaluation of the temperature profiles. This will allow

the solution of the inverse problem to be found approximately 240 times faster.

3.6 Reduced Order Model Development

ROM is a technique that has been developed to allow simulations of engineering models

to run in a more computationally efficient manner. ROM is based on the theory of proper

orthogonal decomposition (POD). POD was developed in the early twentieth century for the

manipulation of statistical data [Pearson]. Its use has been utilized by the ROM in allowing

matrix manipulations to be performed on model data rather than requiring the direct solution

[Ostrowski], [Rambo], [Bergman].

ROM uses interpolation functions on known solution sets from accurate engineering

models to simulate the models with high levels of accuracy. The ROM performs matrix

manipulations on the data sets to execute its simulations of the model rather than the complex

equations from the thermal engineering model. The use of matrix manipulation allows the ROM

simulations to be run at a high rate of speed.

ROM is based on Eq. (3-17) where A is an N × M matrix that contains the solution values

based on the orthogonal basis set of governing parameters [Larson]. The matrix Φ is an N × m

37

matrix that is formed from the basis set of solutions. B is an m × M matrix that contains the

expansion coefficients for each set of governing parameters.

BA Φ= (3-17)

In solving the model for each set of governing parameters, the matrix A is built by each

column being the values of the solution for each set of governing parameters. After all desired

cases have been run, a singular value decomposition (SVD) is performed on the matrix A. Using

the SVD, A is factored into an N × N orthogonal matrix U, an N × M diagonal matrix Σ and an

M × M orthogonal matrix V as is shown in Eq. (3-18) [Strang].

T
AAA VUA Σ= (3-18)

The elements in ΣA are called the singular values. They are sorted by the SVD algorithm

from highest to lowest. The number of nonzero singular values of a matrix is the same as the

rank of that matrix. The rank of the matrix A is given the symbol rA. The non-zero singular

values are represented by the symbols σAi, i=1,…,rA [Strang].

The rank defines the amount of columns in UA that form an orthonormal basis for the

column space of A. It is not necessary to use the entire basis set in order to represent the data,

and so the matrix UA is truncated at m to reduce the amount of computational effort in solving

the matrix manipulations. This truncation gives a close approximation of the data from UA

required to produce the set of basis vectors Φ required by Eq. (3-17). The cutoff, m, is

dependent on the system and will vary from model to model. The decision of where to place the

38

cutoff is to be made by the model designer. The value can be determined by looking at the

singular values of A and choosing an appropriate value. The value can also be determined

through trial and error in finding a solution that closely fits the desired or known data and is still

computationally efficient. An example of a plot of the singular values of an A matrix is shown

in Figure 3-16.

Evaluating B is easy by simply rearranging Eq. (3-17) and using the orthogonality

characteristics of Φ yields Eq. (3-19).

AB TΦ= (3-19)

Estimating the expansion coefficients is performed by interpolation of the results given in

Eq. (3-19). To do this, a coefficient matrix C is defined as shown in Eq. (3-20).

Figure 3-16: Singular Values of A

CFB ≡ (3-20)

39

F is an M × M matrix of the interpolating functions. Interpolation functions can vary

from model to model and are to be used in such a way that fits best to the data and provides the

best results. The designer of the ROM must determine the best function for their case. In the

literature, it has been shown that inverse multiquadratic functions are useful in interpolating data

in multi-dimensions [Hardy 1971], [Hardy 1990]. F is defined such that the ith column is

calculated by using the determined interpolation function chosen for each of the parameter sets

that were used to create A. The modified multiquadratic function is shown in Eq. (3-21) where fi

represents the ith column of F.











































+








 −
+









 −
+









 −

+








 −
+









 −
+









 −

+








 −
+









 −
+









 −

=

1
log

loglog
log

loglog

1

1
log

loglog
log

loglog

1

1
log

loglog
log

loglog

1

2

max,310

310310

2

max,210

210210

2

max,1

11

2

max,310

310310

2

max,210

210210

2

max,1

11

2

max,310

1
310310

2

max,210

1
210210

2

max,1

1
11

x
xx

x
xx

x
xx

x
xx

x
xx

x
xx

x
xx

x
xx

x
xx

mimimi

jijiji

iii

i





f (3-21)

The multiquadratic function had to be modified so that it could properly interpolate the

logarithmically scaled parameters along with the linearly scaled parameters. The modification of

the base of x2 and x3 into the log scale interpolates correctly with the logarithmic variation of the

parameters. Each of the values x1, x2, x3 correspond to the separate governing parameters that

define the system A. The maximum values are the largest values of each of the governing

parameters within the defined bounds.

40

F may be a singular matrix and thus cannot be inverted and multiplied to isolate and

solve for C. The Moore-Penrose pseudoinverse is a method that can be used to isolate and solve

for C in Eq. (3-22) [Strang], [Press]. The Moore-Penrose pseudoinverse, F+, is found based an

SVD of the interpolation matrix F similar to Eq. (3-18) as shown in Eq. (3-22).

T
FFF VUF Σ= (3-22)

The matrices UF, ΣF, VF have the same meaning as described above with the A matrix.

The pseudoinverse is post-multiplied onto both sides of Eq. (3-22) as shown in Eq. (3-23).

IUSVVUUSFV =Σ= TTT
FFFFFFFFF (3-23)

The matrix SF is the diagonal matrix of the inverse of the singular values from the matrix

ΣF. SF is defined in Eq. (3-24).









=
iF

F diag
,σ

1S (3-24)

The values along the diagonal of ΣF are defined as σF,i, i=1,…,rF similar to what was

done in the decomposition of the A matrix. To completely define the pseudoinverse, all values

of σF,i > 0 must be used. However, a truncation can also be performed on the data for F similar

to what was done on A to reduce the amount of data needed to represent the data accurately and

efficiently. The modeler selects a value to be the minimum allowable value of σF,i. All values

41

that fall below this value are set to zero. These singular values can also be plotted to allow the

modeler to see the data in order to choose an appropriate value for the cutoff as is shown in

Figure 3-17.

Figure 3-17: Singular Values of F

From Eq. (3-23), it is clear to see that the pseudoinverse of F, or F+, is given by Eq. (3-

25).

T
FFF USVF =+ (3-25)

With the pseudoinverse of F known, it can be used to isolate the coefficient matrix C in

Eq. (3-20) by post-multiplying F+ to both sides to yield Eq. (3-26).

+= BFC (3-26)

42

The coefficient matrix is built by a bounded set of governing parameters based on the

interpolation function matrix and is thus assumed to be valid for arbitrary parameters that are

also bounded by the original set of parameters that built the model. The expansion coefficients

for any arbitrary case k that lies within the bounds can also be found by multiplying the

coefficient matrix with the interpolation function of those parameters as shown in Eq. (3-27).

() ()kCfkb = (3-27)

The vector for the interpolation function f(k) is found using the arbitrary parameters in

the single column vector shown in Eq. (3-28).

()











































+








 −
+









 −
+









 −

+








 −
+









 −
+









 −

+








 −
+









 −
+









 −

=

1
log

log
log

loglog

1

1
log

loglog
log

loglog

1

1
log

loglog
log

loglog

1

2

max,310

3103

2

max,210

210210

2

max,1

11

2

max,310

310310

2

max,210

210210

2

max,1

11

2

max,310

1
310310

2

max,210

1
210210

2

max,1

1
11

x
xx

x
xx

x
xx

x
xx

x
xx

x
xx

x
xx

x
xx

x
xx

mmm

jjj

kkk

kkk

kkk

kf





 (3-28)

The expansion coefficients b(k) returned from Eq. (3-27) for the arbitrary set of

governing parameters are then used in Eq. (3-29) to return Zk. Zk is the vector that contains the

temperature values that are output by the ROM. In testing the ROM, the values of Zk for a given

43

set of parameters that were used in the creation of the solution matrix A should match closely to

the returned value of Zk for that set.

()kbZk Φ≈ (3-29)

Where the principle of ROM states from Eq. (3-29) that you can use the Φ matrix

multiplied by the expansion coefficient vector b(k) to return a desired temperature profile, Zk,

you cannot just invert the Φ matrix and multiply it by Zk to get the coefficient vector b(k). This

is due to the singularity of the Φ matrix. When the inverse of Φ is multiplied by Zk, large errors

in the calculation of the b(k) vector exist. Even if the vector b(k) was returned accurately, it still

does not return the parameters, but the expansion coefficients. To get the parameters, you have

to do the inverse of Eq. (3-27) to get the values for f(k). As is seen in Eq. (3-28), f(k) is a

function of the three governing parameters k and cannot be inverted for a unique solution that

would return the parameters. There are many different sets of parameters that can create the

same interpolation function values.

As the inverse solution of the ROM cannot be performed directly, an iterative search

technique, such as a GA, must be performed to solve the inverse problem.

3.6.1 Defining Parameters

Once the model is defined and verified, a group of solution sets need to be created in

order to run the ROM. The ROM used as governing parameters to be optical depth (S), Biot

Number (Bi), and nondimensional time to peak laser power (τm) as the governing parameter set.

These nondimensional parameters are obtained by varying dimensional parameters of absorption

44

coefficient, κ, thermal diffusivity, α, heat capacity, ρc, and convection coefficient, h. Other non-

varying system parameters are used in the determination of the nondimensional parameters. The

other system parameters are ro, R, L, tp, tm, P, and T∞.

Absorption coefficients are selected to yield a broad range of temperature profiles for the

laser power selected. The range was selected from a search of common semiconductor materials

[Palik][Weber]. With a 0.002 m thickness the seven values for κ used and their corresponding

rear face optical depths, S, are shown in Table 3-2.

Table 3-2: Parameters used for κ, S
Case κ (m-1) S

1 400 0.80
2 1000 2.00
3 1600 3.20
4 2200 4.40
5 2800 5.60
6 3400 6.80
7 4000 8.00

The convection coefficient is in the range of free convection [Incropera and DeWitt] and

is taken to be the set as shown in Table 3-3.

Table 3-3: Parameters used for h
Case h (W/m2K)

1 20.0
2 30.0
3 40.0

The thermal diffusivity is dependent on material properties. The range of values is based

on a general range of common materials taken from tables of properties of semiconductor

45

materials [Dargys et al][Goldbery eta al][Yamaguchi et al]. The range of values is shown in

Table 3-4.

Table 3-4: Parameters used for α
Case α (m2/sec)

1 1.00 E -6
2 3.00 E -6
3 1.00 E -5
4 3.00 E -5
5 1.00 E -4

Heat capacity was also utilized in building the parameter sets, as it was a required

parameter for creating of the nondimensional parameters. The range of values for heat capacity

was also taken from a range of common materials from tables of properties of semiconductor

materials [Le-Ping et al][Goldbery et al][Yamaguchi et al]. The range of values for heat capacity

is shown in Table 3-5.

Table 3-5: Parameters used for ρc

Case ρc (J/m3K)
1 0.50 E 6
2 1.50 E 6
3 2.50 E 6
4 3.50 E 6
5 4.50 E 6
6 5.50 E 6

The output values are the nondimensional temperature profiles at the point of the bottom

surface of the sample directly below the center of the laser pulse with respect to nondimensional

time, ()τθ ,0,0 . The nondimensional temperature values then become a vector of length M,

where M is the number of nondimensional time steps taken.

46

3.6.2 Creation of Solution Sets

Once the parameters are determined, the code runs the forward simulations of the high

order equations. It stores the solutions in the matrix A that will be used in the ROM. It also

stores the matrix B based on the input governing parameters of the model. The number of

governing parameters that are used is N. This leaves A as an M × N matrix of solution sets

where M is the number of time steps taken. A flowchart to the process of creating the basis set

of values for ()τθ ,0,0 is shown in Figure 3-18.

Figure 3-18: Flowchart for Creation of Basis Set of Solutions for ROM

3.7 ROM Model Verification

Once the ROM is prepared and the required matrices are created, any bounded

parameters can be input into the model. The ROM performs the matrix manipulations on the

input parameter and returns the desired values. This process is very fast, due to the fact that all

47

that is done is the calculation of the interpolation vector, a matrix manipulation of the coefficient

matrix C to the vector, and multiplication of that product to the previously calculated Φ matrix.

The ROM for the DSFA model was modified so that it would match cases that would be

input into the model. The number of significant eigenvalues that the ROM would use was set to

be 25. This allowed for the fastest solution of the model while still maintaining acceptable

accuracy of the profile. The singularity tolerance of the F matrix was set to be 1.0 E -13.

These parameters allowed the ROM to simulate the solution of the profile against a case

known from the creation of the basis set of solutions – where the parameter set was α = 3.0 E -5,

ρc = 3.5 E 6, h = 30, and κ = 2800. The ROM simulated this case with an average error of less

than 9.439 E -7% with a maximum error of 3.762 E -6%. The error of the temperature value as

reported at each step, Errori, is calculated in Eq. (3-30).

%100
,

,, ⋅
−

=
iDSFA

iROMiDSFA
i T

TT
Error (3-30)

As is seen in Figure 3-19, the ROM simulation matches well along the whole length of

the profile. In this known case, it shows that the interpolation functions are able to recreate a

known case with very high accuracy.

The case that is run and shown in Figure 3-19 is a case that is solved for by the

coefficient builder program and thus the solution is known. The case in Figure 3-20 is a case

with random parameters that are away from the known parameters. It is shown in Figure 3-20

that ROM still performs adequately when the parameter set is not from known parameters. This

case has the parameter set of h = 22.28, κ = 1258, α = 1.432 E -5, and ρc = 2.986 E 6. The

48

average error between the DSFA model solution and the ROM output solution is 0.225% with a

maximum error of 0.821%.

Figure 3-19: Example Case of Comparison of DSFA and ROM for Known Case

Figure 3-20: Example Case of Comparison of DSFA and ROM for Arbitrary Case 1

49

The largest errors in the cases exist in the early on areas of the model near the peak of the

temperature. As is seen in Figure 3-21, the largest percentage in the error is 0.401%. This case

from Figure 3-21 has the parameter set of h = 35.84, κ = 2168, α = 7.568 E -6, and ρc = 3.785 E

6. The average error between the DSFA model solution and the ROM output solution is 0.225%

with a maximum error of 0.821%.

Figure 3-21: Example Case of Comparison of DSFA and ROM for Arbitrary Case 2

This shows that the ROM is able to simulate with moderately good accuracy the

temperature profile for a previously unknown case. This shows that the closer the unknown

parameter set is to a known solution, the better the interpolation will return an accurate

temperature profile. Even when the profile is far from a known case, the solution is still fairly

accurate throughout the majority of the profile. When looking at the dimensional parameters, the

values are quite strong with the average errors and the maximum errors being much smaller.

The time that is required by the ROM to run the simulations is an average of 0.0026

seconds to return each profile. The complete DSFA model solution takes an average of 0.85

seconds to complete each profile. This means that the ROM is able to run approximately 340

50

times faster than the DSFA solution. As the average error is still small in the ROM cases, the

ROM can be used to speed the GA solution.

3.8 Example Case Testing

To test the capability of the GA process with using ROM, sample cases were made from

actual material properties and run in a FLUENT simulation using the same assumptions as the

DSFA model. These profiles gave an independent profile for which to test the GA with ROM

against. There were a number of cases developed and four of the test cases were used to refine

the GA and ensure that it would be able to return accurate data.

3.8.1 Gallium Arsenide

The data for Gallium Arsenide was input the GA and run for five tests to ensure

consistent convergence. The input profile was also used with the ASTM method to determine

what it evaluates as the diffusivity. The input values for the Gallium Arsenide case are shown in

Table 3-6 [Dargys et al][Carlson et al][Sharmin et al].

Table 3-6: Gallium Arsenide Input and Outputs
Parameter True Value GA/ROM ASTM

α 3.133 E -5 3.097 E -5 6.224 E -5
κ 3400 3142 -
ρc 1.756 E 6 1.774 E 6 -
h 37.2 33.9 -

The comparisons of the temperatures from the input FLUENT profile, the parameter

output from the GA/ROM as input into the DSFA, and the DSFA when using the true, known

values directly as input into the DSFA are shown in Figure 3-22 for the bottom surface and

Figure 3-23 for the top surface, both at the centerline of the sample. The figures show the high

51

level of accuracy returned by both the GA/ROM solution and the accuracy of the DSFA with

matching a profile with known parameters. In the figures, the correlation is seen by all three

curves laying almost entirely on each other.

Figure 3-22: Gallium Arsenide Bottom Temperature Profile Comparisons

Figure 3-23: Gallium Arsenide Top Temperature Profile Comparisons

52

The errors for the parameters from GA/ROM are consistently good for this case. The

error in α is 1.14%, κ is 7.59%, ρc is 1.05% and h is 2.54%. The returned error from the ASTM

calculation is 98.67%.

3.8.2 Silicon

As with the data for the Gallium Arsenide case, the data from Silicon was input the GA

and run for five tests to ensure consistent convergence. The input profile was also used with the

ASTM method to determine what it evaluates as the diffusivity. The input values for the Silicon

case are shown in Table 3-7 [Palik][Okhotin et al].

Table 3-7: Silicon Input and Outputs
Parameter True Value GA/ROM ASTM

α 9.139 E -5 8.784 E -5 2.702 E -4
κ 2000 1734 -
ρc 1.630 E 6 1.715 E 6 -
h 37.1 27.41 -

The comparisons of the temperatures from the input FLUENT profile, the parameter

output from the GA/ROM as input into the DSFA, and the DSFA when using the true, known

values directly as input into the DSFA are shown in Figure 3-24 for the bottom surface and

Figure 3-25 for the top surface. The figures show the high level of accuracy returned by both the

GA/ROM solution and the accuracy of the DSFA with matching a profile with known

parameters. In the figures, the correlation is seen by all three curves laying almost entirely on

each other. The GA/ROM profile is just slightly off on both surfaces from the FLUENT and

DSFA profiles which lay almost literally on top of each other on both sides.

53

The errors for the parameters from GA/ROM are consistently good for this case. The

error in α is 3.89%, κ is 13.3%, ρc is 5.24% and h is 26.16%. The returned error from the ASTM

calculation is 195%.

Figure 3-24: Silicon Bottom Temperature Profile Comparisons

Figure 3-25: Silicon Top Temperature Profile Comparisons

54

3.8.3 Cupric Oxide

Again, as with the data for Gallium Arsenide and Silicon, the data from Cupric Oxide

was input the GA and run for five tests to ensure consistent convergence. The input profile was

also used with the ASTM method to determine what it evaluates as the diffusivity. The input

values for the Cupric Oxide case are shown in Table 3-8 [Le-Ping et al][Palik].

Table 3-8: Cupric Oxide Input and Outputs
Parameter True Value GA/ROM ASTM

α 3.959 E -6 3.425 E -6 4.254 E -4
κ 960.5 790 -
ρc 5.052 E 6 5.285 E 6 -
h 23.0 31.0 -

The comparisons of the temperatures from the input FLUENT profile, the result of the

GA/ROM profile and the DSFA when using the true, known values directly as input into the

DSFA are shown in Figure 3-26 for the bottom surface and Figure 3-27 for the top. Figure 3-26

shows very strong matching returned by the GA/ROM solution. Figure 3-27 shows that the

profile is not as good of a match from the top surface as the DSFA. The matching by the DSFA

with known parameters was not as strong at the peak temperature on the bottom surface, but did

match better with the top temperature profile than did the GA/ROM profile.

The errors for the parameters from GA/ROM are consistently good for this case. The

error in α is 13.48%, κ is 4.61%, ρc is 17.75% and h is 34.78%. The returned error from the

ASTM calculation is two orders of magnitude.

55

Figure 3-26: Cupric Oxide Bottom Temperature Profile Comparisons

Figure 3-27: Cupric Oxide Top Temperature Profile Comparisons

3.8.4 Aluminum Antimony

Aluminum Antimony was run the same way as the three previous cases. The temperature

profile was input the GA and run for five tests to ensure consistent convergence. The input

56

profile was also used with the ASTM method to determine what it evaluates as the diffusivity.

The input values for the Aluminum Antimony case are shown in Table 3-9 [Adachi][Chryssis et

al].

The comparisons of the temperatures from the input FLUENT profile, the result of the

GA/ROM profile input into the DSFA, and the DSFA when using the true, known values directly

as input into the DSFA are shown in Figure 3-28 and Figure 3-29 for bottom and top surfaces

respectively. The figures both show the high level of accuracy returned by both the GA/ROM

solution and the accuracy of the DSFA with matching a profile with known parameters. In this

case, the GA/ROM profile lays better against the FLUENT profile for the entire curve, with the

DSFA profile once again slightly under at the peak temperature value on both top and bottom

profiles.

Table 3-9: Aluminum Antimony Input and Outputs
Parameter True Value GA/ROM ASTM

α 2.006 E -5 2.195 E -5 4.495 E -4
κ 486.0 476.2 -
ρc 1.346 E 6 1.260 E 6 -
h 36.6 23.5 -

The errors for the parameters from GA/ROM are consistently good for this case. The

error in α is 9.44%, κ is 6.40%, ρc is 2.01% and h is 35.79%. The returned error from the ASTM

calculation is more than 2000%.

The data show the strength of the GA/ROM in its capability to return accurate profiles

along the bottom surface that can be utilized to accurately predict the key material properties of

the known samples. The value for convective coefficient is just not strong enough to be able to

57

force much effect and its accuracy is more of a case of luck in the GA/ROM more than the

strength of the routine.

Figure 3-28: Aluminum Antimony Bottom Temperature Profile Comparisons

Figure 3-29: Aluminum Antimony Top Temperature Profile Comparisons

59

4 RESULTS

4.1 Blind Test Cases

Similar to what was done for the four cases in Section 3.8, cases were run from FLUENT

and used as inputs to the GA/ROM program. In these cases, the parameters were not known

beforehand. The data were run and the solutions returned back to the creator of the FLUENT

profiles for checking. This process was done to avoid any potential contamination of the results

and to exercise the capability to perform a true blind study.

Once the data were run, the true parameters were revealed for evaluation of error as is

shown above and also so that the DSFA can be run with the true values to evaluate the accuracy

of the DSFA for those parameters as well.

4.1.1 Iron Disilicide

The first full blind test was Iron Disilicide (FeSi2). The provided data did not have a

convective coefficient, and as such, the error for h cannot be calculated for the case. The only

data provided were arrays of time, bottom temperature, and top temperature. Once the data were

run and the GA/ROM returned parameters, they were resent to the creator of the input

temperature profiles in FLUENT. The results from the GA/ROM and ASTM methods for the

case are shown in Table 4-1 [Milosavljević et al] [Kojima].

60

Table 4-1: Iron Disilicide Input and Outputs
Parameter True Value GA/ROM ASTM

α 3.163 E -6 3.027 E -6 7.285 E -6
κ 3384 3138 -
ρc 2.846 E 6 2.882 E 6 -
h - 27.3 -

The errors for the parameters from GA/ROM are consistently good for this case. The

error in α is 4.29%, κ is 7.29%, ρc is 1.27% and h is unknown. The returned error from the

ASTM calculation is more than 130%.

The plots of the top and bottom temperature profiles are shown in Figure 4-1 and Figure

4-2. In both the figures, the DSFA Profile lays directly on top of the FLUENT Profile. The

accuracy of the GA/ROM parameters are clearly seen as the DSFA Profile lays very nearly with

them as well. In Figure 4-2, it is impossible to see any differences in any of the three profiles.

Figure 4-1: Iron Disilicide Bottom Temperature Profile Comparisons

61

Figure 4-2: Iron Disilicide Top Temperature Profile Comparisons

The errors in the GA/ROM profile from Iron Disilicide are very small and show the

accuracy of the entire process from DSFA solution sets through the ROM and GA. The returned

data is significantly more accurate than the ASTM method would have predicted for this

temperature sample.

4.1.2 Gallium Phosphide

For the blind test of Gallium Phosphide the only data provided were arrays of time,

bottom temperature, and top temperature. Once the data were run and the GA/ROM returned

parameters, they were resent to the creator of the input temperature profiles in FLUENT. The

results from the GA/ROM and ASTM methods for the case are shown in Table 4-2 [Goldbery et

al] [Aspnes and Studna]. Once the GA/ROM and ASTM data from Table 4-2 were returned, the

parameters were returned to the creator of the profile for comparison to the true values that were

used to create the temperature profiles.

62

Table 4-2: Gallium Phosphide Input and Outputs
Parameter True Value GA/ROM ASTM

α 6.179 E -5 6.043 E -5 1.023 E -4
κ 3680 2826 -
ρc 1.780 E 6 1.913 E 6 -
h 37.0 28.3 -

The errors for the parameters from GA/ROM are consistently good for this case. The

error in α is 2.20%, κ is 23.2%, ρc is 7.46% and h is 29.0%. The returned error from the ASTM

calculation is 67.0%.

The plots of the top and bottom temperature profiles are shown in Figure 4-3 and Figure

4-4. In both the figures, the DSFA Profile lays directly on top of the FLUENT Profile. The

accuracy of the GA/ROM parameters are clearly seen as the DSFA Profile lays very nearly with

them as well.

Figure 4-3: Gallium Phosphide Bottom Temperature Profile Comparisons

63

Figure 4-4: Gallium Phosphide Top Temperature Profile Comparisons

The errors in the GA/ROM bottom profile from case of Gallium Phosphide are small and

show the accuracy of the entire process from DSFA solution sets through the ROM and GA. The

top temperature profiles have a larger amount of error than the bottom and that is displayed in

the error in the parameters. The DSFA parameters with the true values are much closer and so

more accurate temperature profiles would return more accurate parameter sets. The GA/ROM

for the five runs of Gallium Phosphide all successfully converged. The returned data is more

accurate than the ASTM method would have predicted for this temperature sample.

4.1.3 Indium Phosphide

The only data provided for the Indium Phosphide case were arrays of time, bottom

temperature, and top temperature. Once the data were run and the GA/ROM returned

parameters, they were resent to the creator of the input temperature profiles in FLUENT. The

results from the GA/ROM and ASTM methods for the case are shown in Table 4-3 [Dargus and

Kundrotas][Aspnes and Studna]. Once the GA/ROM and ASTM data from Table 4-3 were

64

returned, the parameters were returned to the creator of the profile for comparison to the true

values that were used to create the temperature profiles.

Table 4-3: Indium Phosphide Input and Outputs
Parameter True Value GA/ROM ASTM

α 4.560 E -5 3.066 E -5 4.424 E -4
κ 985.2 642.7 -
ρc 1.491 E 6 1.693 E 6 -
h 37.2 36.3 -

The errors for the parameters from GA/ROM are consistently good for this case. The

error in α is 32.8%, κ is 34.8%, ρc is 13.5% and h is 2.41%. The returned error from the ASTM

calculation is more than 870%.

The plots of the top and bottom temperature profiles are shown in Figure 4-5 and Figure

4-6. In both the figures, the DSFA Profile lays near to the FLUENT Profile. The accuracy of the

GA/ROM parameters are clearly seen as the DSFA Profile lays nearly with them as well.

Figure 4-5: Indium Phosphide Bottom Temperature Profile Comparisons

65

In Figure 4-6, it is seen that there is a significant difference in the GA/ROM profile and

the FLUENT profile. This is a case where the measurement of the top surface would be able to

be used for calculating the material properties. If the data were taken on the top and utilized

similarly to what is done by the bottom surface temperature, there would be a good probability

that the inverse solution to the temperature curve would return better solutions.

The return of improved solutions would be to the increase in fitness values that would be

returned by the top temperature profile being more accurate. As is shown in Figure 4-5, the data

returned by GA/ROM did not lie perfectly on the profile, but it was near to it. With increased

fitness pressure coming as well from the top profile, the likelihood of returning parameters with

the same amount of error would be small.

Figure 4-6: Indium Phosphide Top Temperature Profile Comparisons

The errors in the GA/ROM profile from Indium Phosphide are generally small for the

bottom surface. The top profiles are not as similar and that is due to the errors in the parameters

returned by the GA/ROM against the true values. The temperature profiles matching fairly well

66

on the bottom show that there is a possibility for near non-unique solutions. It is not to be

inferred that the profiles will match exactly with varying parameters, but that there can be large

variations in parameters that can produce bottom profiles that are similar. The distinction can be

made by investigating the top surface along with the bottom surface. The combination of top

profiles and bottom profiles are unique. If there are profiles along the bottom that are near when

the parameters are far, there will be large differences in the top profiles as shown in Figure 4-5

and Figure 4-6.

The returned data is still much more accurate than the ASTM method would have

predicted for this temperature sample. The DSFA parameters with the true values are much

closer and so more accurate temperature profiles would return more accurate parameter sets.

The GA/ROM for the five runs of Indium Phosphide converged successfully each time without

timing out of its 500 generation limit.

4.1.4 Zinc Selenide

For the case of Zinc Selenide, the only data provided were arrays of time, bottom

temperature, and top temperature. Once the data were run and the GA/ROM returned

parameters, they were resent to the creator of the input temperature profiles in FLUENT. The

results from the GA/ROM and ASTM methods for the case are shown in Table 4-4 [Crystran].

Once the GA/ROM and ASTM data from Table 4-4 were returned, the parameters were returned

to the creator of the profile for comparison to the true values that were used to create the

temperature profiles.

The errors for the parameters from GA/ROM are consistently good for this case. The

error in α is 0.54%, κ is 6.86%, ρc is 8.05% and h is 39.4%. The returned error from the ASTM

calculation is more than 4000%.

67

Table 4-4: Zinc Selenide Input and Outputs
Parameter True Value GA/ROM ASTM

α 1.008 E -5 1.013 E -5 4.147 E -4
κ 517.9 482.4 -
ρc 1.787 E 6 1.643 E 6 -
h 37.6 22.76 -

The plots of the top and bottom temperature profiles are shown in Figure 4-7 and Figure

4-8. In both the figures, the DSFA Profile lays directly on top of the FLUENT Profile. The

accuracy of the GA/ROM parameters are clearly seen as the DSFA Profile lays very nearly with

them as well. In Figure 4-8, it is impossible to see any differences in any of the three profiles.

Figure 4-7: Zinc Selenide Bottom Temperature Profile Comparisons

The errors in the GA/ROM profile from Zinc Selenide are very small and show the

accuracy of the entire process from DSFA solution sets through the ROM and GA. The top

temperature profiles have a larger amount of error than the bottom and that is displayed in the

error in the parameters. The DSFA parameters with the true values are much closer and so more

accurate temperature profiles would return more accurate parameter sets.

68

Figure 4-8: Zinc Selenide Top Temperature Profile Comparisons

The returned data is significantly more accurate than the ASTM method would have

predicted for this temperature sample. For each test run with Zinc Selenide, the simulation was

able to successfully converge before reaching its 500 generation limit.

4.1.5 Aluminum Gallium Arsenide

The last blind test case was Aluminum Gallium Arsenide. The only data provided were

arrays of time, bottom temperature, and top temperature. Once the data were run and the

GA/ROM returned parameters, they were resent to the creator of the input temperature profiles

in FLUENT. The results from the GA/ROM and ASTM methods for the case are shown in

Table 4-5 [Goldbery et al] [Kelso et al].

Once the GA/ROM and ASTM data from Table 4-5 were returned, the parameters were

returned to the creator of the profile for comparison to the true values that were used to create the

temperature profiles.

69

Table 4-5: Aluminum Gallium Arsenide Input and Outputs
Parameter True Value GA/ROM ASTM

α 6.009 E -5 5.958 E -5 9.547 E -5
κ 4089.6 2877.7 -
ρc 1.771 E 6 1.925 E 6 -
h 12.1 25.3 -

The errors for the parameters from GA/ROM are consistently good for this case. The

error in α is 6.84%, κ is 29.63%, ρc is 8.72% and h is 110%. The returned error from the ASTM

calculation is 58.9%.

The plots of the top and bottom temperature profiles are shown in Figure 4-9 and Figure

4-10. In both the figures, the DSFA Profile lays directly on top of the FLUENT Profile. The

accuracy of the GA/ROM parameters are clearly seen as the DSFA Profile lays very nearly with

them as well. In Figure 4-10, it is impossible to see any differences in any of the three profiles.

Figure 4-9: Aluminum Gallium Arsenide Bottom Temperature Profile Comparisons

The errors in the GA/ROM bottom profile from Aluminum Gallium Arsenide are small

and show the accuracy of the entire process from DSFA solution sets through the ROM and GA.

The top temperature profiles have a larger amount of error than the bottom and that is displayed

70

in the error in the parameters. The DSFA parameters with the true values are much closer and so

more accurate temperature profiles would return more accurate parameter sets. The GA/ROM

for the five runs of Aluminum Gallium Arsenide all successfully converged. The returned data is

more accurate than the ASTM method would have predicted for this temperature sample.

Figure 4-10: Aluminum Gallium Arsenide Top Temperature Profile Comparisons

For each of the blind case tests, the parameters for diffusivity returned by the GA were

more accurate than the calculation using the ASTM method. The errors in the temperature

profiles are generally quite small and thus GA/ROM is able to quickly and accurately determine

the desired parameter of diffusivity. The procedure is also able to return parameters for heat

capacity and optical depth of the unknown materials. The values for convective heat transfer are

not strong enough to give a high level of confidence in their measurements, but the parameter is

not a material property.

The convergence criterion was met for each run of the GA. There were no tests in which

the convergence criterion was not able to be met in the 500 generations. The GA was run for

71

each profile five times to ensure that the GA would be able to return consistent solutions as the

GA process is inherently random and non-deterministic. The data was investigated and shown to

be able to return results that were both accurate and consistent as their variations were small.

73

5 SUMMARY AND CONCLUSIONS

Modern engineering practice increasingly relies on the ability to perform precise

numerical simulations in order to optimize the design of systems. The accuracy of these

numerical simulations depends on the accuracy of the material properties that are required input

parameters. Therefore, the ability to accurately measure material properties is critical in modern

engineering practices.

The thermal diffusivity is a key material property needed to perform thermal analyses of

engineered systems. Over the last few decades, pulsed laser diffusion (PLD) systems have

become the method of choice for making measurements of thermal diffusivity. Previous PLD

models have been based on a number of highly restrictive assumptions. The results presented in

this thesis show how a higher fidelity PLD model may be implemented and used to more

accurately measure the thermal diffusivity and other properties of various materials.. The

Distributed Source – Finite Absorption (DSFA) model proposed in this thesis accounts for the

most important effects that were neglected in previous DSFA models. The top surface was not

taken to be adiabatic, but allowed for free convection to affect the material sample. The laser

pulse power was not assumed to be completely absorbed at the top surface, but realistically

modeled as being absorbed throughout the sample. The laser power was assumed to take on a

Gaussian profile rather than a uniform profile across the sample surface. The laser pulse was not

taken to be infinitesimally short, but to be a triangle pulse rising to a maximum temperature at a

74

certain time and returning back to zero. As demonstrated through comparison with full CFD

simulations of a PLD system, the DSFA results in a high fidelity model of a practical PLD

system.

In this thesis, the development and performance of previous PLD models have been

thoroughly reviewed. The method first established by Parker in 1961 was introduced and

developed. The model was based on a number of assumptions about the physics of the process.

The Parker model assumes:

• one-dimensional heat transfer

• uniform heating in a thin layer on the top surface of the sample

• all surfaces are adiabatic

• infinitesimally short pulse time

• uniform energy on the top surface of the sample

• no radiative effects

Parker proposed that α can be found by inputting the thickness of the sample and the time

that it takes for the rear face to get to half of its maximum value in a simple equation shown in

Eq. (2-13).

Maglić utilized the same model development as Parker and used an expanded form of the

Parker equation for finding α as shown in Eq. (2-14). He uses a set of values that correspond to

the percent rise of the temperature as shown in Table 2-1. The values of α can then be averaged

over the temperature rise curve for the α of the sample.

ASTM has accepted a method that also uses the same development from Parker and the

same expanded equation from Maglić. It suggests that you compare the values of the 50% rise

time to those of the 25% rise time and the 75% rise time. If they match within 5% of each other,

75

then the value computed is the accepted α. The ASTM method is the generally accepted industry

standard.

In order to avoid the use of the same assumptions as is done in the previous models, the

DSFA model is proposed. The DSFA model returns the temperature at any point in the sample

at any time. The new model allows for two-dimensional heat transfer, non-uniform heating

effects in time and space, and heat loss from the exposed surface.

ROM is a fairly accurate technique that can be used to solve the new equation. The ROM

is faster than the full computation solution of the new technique. The errors introduced by

running the ROM are generally small. However, using the ROM developed in this work does

add the possibility for non-unique solutions.

The data clearly shows a trend that as the noise in the parameter sets grows, the errors in

the predictions for the individual parameters also grows. These tests show the robustness of the

method of GA solving the inverse problem with ROM. In the presence of noise the GA with

ROM can consistently perform and return an acceptable set of parameters. Due to the non-

uniqueness of the solution sets, the returned solution can come to a number of different values.

The time required to return the nondimensional profile is minimized due to the use of the

ROM being utilized. The GA was run for each case up to 500 generations. Running all 500

generations of a population set of 150 is 75100 function calls. The time for each function call of

the ROM is 0.0025 sec making the GA return a value in approximately 187.8 seconds or about

3.13 minutes. For the GA to use the DSFA, which returns a profile in approximately 0.85 sec,

the GA would take more than 17 hours to return a solution. The ROM allows for processing at a

rate of 340 times faster.

76

Future work that can be done to improve the accuracy of the inverse operation could

include measurement of the top surface of the sample that is being irradiated. The case that had

larger errors were due to nonuniqueness of the solution for the bottom temperature. When the

top surface is investigated, it is shown that the returned parameters created a profile that did not

well match. If the top surface temperature errors were included in the fitness value, it stands to

reason that the GA would have returned parameters with smaller errors. The inclusion of the top

surface would likely also reduce the errors in the calculation when the errors were not large. The

improvement in accuracy of the measurement technique could be a driving force for standard

testing procedure modification.

77

REFERENCES

Adachi,S., (2004) Handbook on Physical Properties of Semiconductors: III-V Compounds
Semiconductors, Vol 2., Kluwer Academic Publishers, Norwell, MA.

Aspnes, D. E., Studna, A. A., (1983). “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs,

GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV,” Physics Review B, 27 (2), 985-1009.

ASTM E 1461-01 (2001). “Standard Test Method for Thermal Diffusivity by the Flash Method.”

ASTM International, West Conshohocken, PA.

Baba, T., Ono, A. (2001). “Improvements of the laser flash method to reduce uncertainty in

thermal diffusivity measurements.” Measurement Science and Technology, 12, 2046-
2057.

Beck, J. V., Arnold, K. J. (1977). Parameter Estimation in Engineering and Science, John Wiley

and Sons, Hoboken, NJ.

Bergman, M., Cordier, L., Brancher, J. P. (2005). “Optimal rotary control of the cylinder wake

using proper orthogonal decomposition reduced-order model.” Physics of Fluids, 17,
097101 (21 pgs.).

Carlson, R. O., Slack, G. A., Silverman, S. J., (1965). “Thermal Conductivity of GaAs and

GaAsP Laser Semiconductors”, Journal of Applied Physics, 36 (2), 505.

Carslaw, H. S., Jaeger, J. C. (1959). Conduction of Heat in Solids, 2nd Edition, Oxford

University Press, New York, NY.

Crystran, “Zinc Selenide Data Sheet.” Crystran, Ltd., Poole, UK.

Chryssis, A., Ryu, G., Dagenais, M., (2010) “Thermal Impedance of Epi-Up and Epi-Down

Interband Cascade Lasers.” 23rd Annual Meeting of the IEEE Photonics Society, Denver,
CO.

Davis, L. (1991). Handbook of Genetic Algorithms, Van Nostrand Reinhold, New York, NY.

Dargys A., Kundrotas, J. (1994). Handbook on Physical Properties of Ge, Si, GaAs and InP,

Vilnius, Science and Encyclopedia Publishers, 1994

Fullem, T. Z., Rae, D. F., Sharma, A., Wolcott, J. A., Cotts, E. J. (2008). “Thermal

characterization of thermal interface material bondlines.” ITHERM 2008. 11th

78

Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic
Systems, 2008. 174-179.

Goldberg, D. E. (1989). Genetic algorithms in search, optimization and machine learning,

Addison-Wesley, Reading, MA.

Goldbery, Y. A., Levinshtein, M., Rumyantsev , S., Shur, M. (1996). Handbook Series on

Semiconductor Parameters, Vol 1. World Scientific, London, UK.

Hardy, R. L. (1971). “Multiquadratic equations of topography and other irregular surfaces.”

Journal of Geophysics Research, 76, 1905-1915.

Hardy, R. L. (1990). “Theory and applications of the multiquadratic-biharmonic method: 20

years of discovery 1968-1988.” Computational Math Applications, 19, 163-208.

Hay, B., Filtz, J.R., Hameury, J., Rongione, L. (2005). “Uncertainty of Thermal Diffusivity

Measurements by Laser Flash Method.” International Journal of Thermodynamics, 26,
1883-1898.

Haydaryi, M., Moskin, M. M., Yahya, N., Yunus, W. M. M., Grozescu, V. I. (2005). “Thermal

Wave Study on Carbon Nanotube-filled Polymer Films at Low Temperatures by Using
Flash Technique.” American Journal of Applied Science, Special Issue, 49-52.

Incropera, F. P., DeWitt, D. P. (2002). Fundamentals of Heat and Mass Transfer, Fifth Edition,

John Wiley and Sons, Hoboken, NJ.

Kelso, S. M., Aspnes, D. E., Logan, R. A., Bhat, R., (1986). “Optical Properties of AlGaAs,”

Journal of Applied Physics, 60 (2), 754-767.

Kojima, T., (2006). “Semiconducting and Thermoelectric Properties of Sintered Iron Disilicide,”

Physica Status Solidi (a). 111, 233-242.

Larson, R. S. (2007). “Computationally Efficient Modeling of Transient Radiation in a Purely

Scattering Foam Layer.” Masters Thesis, Brigham Young University, Provo, UT.

Le-Ping Zhou, Bu-Xuan Wang, Xiao-Feng Peng, Xiao-Ze Du, and Yong-Ping Yang (2010). “On

the Specific Heat Capacity of CuO Nanofluid,” Advances in Mechanical Engineering,
vol. 2010, Article ID 172085, 4 pages.

Maglić, K. D., Cazairliyan, A., Peletsky, V. E. (1992). Compendium of Thermophysical Property

Measurement Methods Vol. 2, Plenum Press, New York, NY.

McMasters, R. L., Beck, J. V., Dinwiddie, R. B., Wang, H. (1999). “Accounting for Penetration

of Laser Heating in Flash Thermal Diffusivity Experiments.” Journal of Heat Transfer,
121, 15-21.

79

Milosavljević, M., Shao, G., Bibić, N., McKinty, C. N., Jeynes, C., Homewood, K. P., (2001).
“Amorphous-iron disilicide: A promising semiconductor.” Applied Physics Letters, 79,
10.

Ostrowski, Z., Bialecki, R. A., Kassab, A. J. (2005). “Estimation of constant thermal

conductivity by use of Proper Orthogonal Decomposition.” Computational Mechanics,
37, 52-59.

Ostrowski, Z., Bialecki, R. A., Kassab, A. J. (2007). “Solving inverse heat conduction problems

using trained POD-RBF network inverse method.” Inverse Problems in Science and
Engineering, 16(1), 39-54.

Okhotin, A. S., Pushkarskii, A. S., Gorbachev, V. V. (1972). Thermophysical Properties of

Semiconductors, “Atom” Publishing House, Moscow, Russia

Palik, E. D., (1985). Handbook of Optical Constants of Solids, Academic Press, San Diego, CA.

Parker, W. J., Jenkins, R. J., Butler, C. P., Abbot, G. L. (1961). “Flash Method of Determining

Thermal Diffusivity, Heat Capacity, and Thermal Conductivity.” Journal of Applied
Physics, 32, 1679-1684.

Pearson, K. (1901). “On Lines and Planes of Closest Fit to Systems of Points in Space.”

Philosophical Magazine, 2, 559-572.

Press, W. H., Teukolsky, S. A., Vetterling, W. T., Flannery, B. P. (1992). Numerical Recipes in

FORTRAN: The Art of Scientific Computing. Cambridge University Press, New York,
NY.

Rambo, J., Joshi, Y. (2007). “Reduced-order modeling of turbulent forced convection with

parametric conditions.” International Journal of Heat and Mass Transfer, 50, 539-551.

Sharmin, M., Choudhury, S., Akhtar, N., Begum, T., (2012). “Optical and Transport Properties

of p-Type GaAs.” Journal of Bandladech Academy of Sciences, 36 (1), 97-107.

Strang, G. (2006). Linear Algebra and Its Application, Thompson Learning/Brooks/Cole,

Belmont, CA.

Tarantola, A. (2005). Inverse Problem Theory and Methods for Model Parameter Estimation,

SIAM, Philadelphia, PA.

Vozar, L., Hohenauer, W. (2003/2004). “Flash method of measuring the thermal diffusivity. A

review.” High Temperatures-High Pressures, 35/36, 253-264.

Weber, M. J. (2003). Handbook of Optical Materials. CRC Press, Boca Raton, FL.

80

Yamaguchi, K., Itagaki, K., Yazawa, A. (1989) “High-Temperature Heat-Content Measurements
of the AlN, AlP, AlAs, AlSb, GaN, GaP, GaAs, GaSb, InN, InP, InAs, InSb,
Compounds.” Journal of the Japan Institute of Metals, 53(8), 764-770.

81

APPENDIX A. PARKER MODEL DEVELOPMENT

t
Tcq

z
Tk

z
Tk

rr
Tkr

rr m ∂
∂

=+







∂
∂

∂
∂

+







∂
∂

∂
∂

+







∂
∂

∂
∂ ρ

φφ
2

11

The one-dimensional analysis is such that

0,0 =
∂
∂

=
∂
∂

r
TT

φ

Assuming constant k, ρm, and c allows

c
k
mρ

α =

No internal heat generation gives

0=q

To return the simplified heat equation to

t
T

z
T

∂
∂

=
∂
∂

α
1

2

2

With the adiabatic boundary conditions of

0
0

=
∂
∂

=
∂
∂

== Lzz z
T

z
T

The initial condition is defined as







≤<

≤≤+
=

LzT

z
Ac

QTzT
δ

δ
δρ

0

0 0)0,(

82

Non-dimensionalization is done by allowing

2
0 ,,

L
t

L
z

cLA
Q

TT ατζ

ρ

θ ==







−
=

The heat equation now non-dimensionalized is

τ
θ

ζ
θ

∂
∂

=
∂
∂

2

2

With the non-dimensionalized boundary conditions of

0
10

=
∂
∂

=
∂
∂

== ζζ ζ
θ

ζ
θ

And the non-dimensionalized initial condition of









≤<

≤≤
=

10

0
)0,(

ζδ

δζ
δζθ

L

L
L

The equation can now be solved using the technique of separation of variables. The base

equation is defined as

() ()τζθ ΤΖ=

The base definition is substituted into the differential equation

τζ ∂
Τ∂

Ζ=
∂
Ζ∂

Τ 2

2

The equation is now separated with the eigenvalue defined

2
2

2 11 λ
τζ

−=
∂
Τ∂

Τ
=

∂
Ζ∂

Ζ

83

The individual equations can now be evaluated separately. First, the Z equation will be

solved:

02
2

2

=Ζ+
∂
Ζ∂ λ

ζ

For the basic second order equation, we can solve using the sin and cos functions

() ()λζλζ sincos 21 CC +=Ζ

Now, the T equation will be solved:

02 =Τ+
∂
Τ∂ λ
τ

The first order equation can be solved with an exponential

()τλ2
3 exp −=Τ C

The Z and T equation are recombined

() () ()[]λζλζτλθ sincosexp 21
2

3 CCC +−=

The equation is differentiated so the boundary conditions can be applied to begin to solve

for the constants

() () ()[]λζλζλτλ
ζ
θ cossinexp 21

2
3 CCC +−−=

∂
∂

0
10

=
∂
∂

=
∂
∂

== ζζ ζ
θ

ζ
θ

The boundary conditions force C2 = 0 as the value of cos(0) is not 0, the only way for the

expression to be 0 is if the constant is 0. The value of sin(λ) is 0 when and only when λ=nπ

()
() ,2,1,0,0sin

000cos 2

==→=
=→≠

nwhenn
C

πλλ

84

The equation is now a solved with an infinite sum starting at 0 with both constants C1 and

C3 can be combined to Cn

() ()∑
∞

=

−=
0

22 cosexp
n

n nnC πζτπθ

To solve for the values of Cn, orthogonality is used to isolate and solve in the summation

() () () () ζπζπζτπζπζθ dmnnCdm

n
n∑ ∫∫

∞

=

−=
0

1

0

22
1

0

coscosexpcos

Recall the orthogonality rules that

() ()








==
≠=

≠
=∫

01
02/1

0
coscos

1

0 nmif
nmif

nmif
dmn ζπζπζ

Applying the orthogonality rules

() ()

()∫

∫

=

=

1

0
0

1

0

0,

cos0,
2

ζζθ

ζπζζθ

dC

dm
Cm

For m = 0

() 10,
0

1

0
0 === ∫∫

L

dLdC
δ

ζ
δ

ζζθ

For m ≠ 0

()

()







=





=

= ∫

L
m

m
LC

m
mLC

dmLC

m

L

m

L

m

πδ
πδ

π
πζ

δ

ζπζ
δ

δ

δ

sin2

sin2

cos2

0

0

85

As the radiation is assumed to be absorbed is a very small depth, the small angle

approximation is used to remove the sin term

2

sin

=

≈







mC
L

m
L

m πδπδ

Substituting the constants back into the base equation,

() ()∑
∞

=

−+=
1

22 cosexp21
n

nn πζτπθ

Redimensionalize the equation

() ∑
∞

=















 −
+=

−

1
2

22

cosexp21
,

n

o

L
zn

L
tn

cLA
Q

TtzT παπ

ρ

Solve for temperature at the bottom surface, z = L

() ()∑
∞

=







 −
+=

−

1
2

22

cosexp21
,

n

o n
L

tn

cLA
Q

TtLT
παπ

ρ

Solve for the ½ temperature rise on the bottom surface where at t = t0.5

()
5.0

, 5.0 =
−

cLA
Q

TtLT o

ρ

()∑
∞

=







 −
+=

1
2

5.0
22

cosexp212/1
n

n
L

tn
π

απ

As cosine is an odd function, the infinite sum of the cos term can be substituted for (-1)n

()∑
∞

=







 −
−+=

1
2

5.0
22

exp1212/1
n

n

L
tn απ

Evaluate the expression at one term

86








 −
−=− 2

5.0
2

exp4/1
L

tαπ

Solving for the expression yields

() 3863.14/1ln2
5.0

2

−==
−

L
tαπ

Solving for α gives

5.0

214046.0
t

L
=α

Evaluating the expression at two terms








 −
+







 −
−=− 2

5.0
2

2
5.0

2 4
expexp4/1

L
t

L
t απαπ

Isolating a single exponential



















 −
−







 −
−=− 2

5.0
2

2
5.0

2 3
exp1exp4/1

L
t

L
t απαπ

Using the single term approximation for the exponential term

()()[]3863.13exp1exp4/1 2
5.0

2

−−






 −
−=−

L
tαπ

25397.0exp 2
5.0

2

=






 −
−

L
tαπ

3705.12
5.0

2

−=
−

L
tαπ

Solving for α for two terms gives

5.0

213887.0
t

L
=α

87

Evaluating the expression and solving for three terms








 −
−







 −
+







 −
−=− 2

5.0
2

2
5.0

2

2
5.0

2 9
exp

4
expexp4/1

L
t

L
t

L
t απαπαπ

Isolating a single exponential



















 −
+







 −
−







 −
−=− 2

5.0
2

2
5.0

2

2
5.0

2 8
exp

3
exp1exp4/1

L
t

L
t

L
t απαπαπ

Using the two term approximation for the exponential term

()() ()()[]3863.18exp3863.13exp1exp4/1 2
5.0

2

−+−−






 −
−=−

L
tαπ

25416.0exp 2
5.0

2

=






 −
−

L
tαπ

3698.12
5.0

2

−=
−

L
tαπ

Solving for α for three terms gives

5.0

213879.0
t

L
=α

Evaluating the expression and solving for four terms








 −
+







 −
−







 −
+







 −
−=− 2

5.0
2

2
5.0

2

2
5.0

2

2
5.0

2 16
exp

9
exp

4
expexp4/1

L
t

L
t

L
t

L
t απαπαπαπ

Isolating a single exponential



















 −
−







 −
+







 −
−







 −
−=− 2

5.0
2

2
5.0

2

2
5.0

2

2
5.0

2 15
exp

8
exp

3
exp1exp4/1

L
t

L
t

L
t

L
t απαπαπαπ

Using the three term approximation for the exponential term

88

()() ()() ()()[]3698.115exp3698.18exp3698.13exp1exp4/1 2
5.0

2

−−−+−−






 −
−=−

L
tαπ

25417.0exp 2
5.0

2

=






 −
−

L
tαπ

3698.12
5.0

2

−=
−

L
tαπ

Solving for α for four terms gives

5.0

213879.0
t

L
=α

The solution for four terms is the same as the solution for three terms at the numerical

precision used. Thus, we are able to say that the solution has converged and three terms are all

that are needed for the infinite sum and the solution given can be used.

89

APPENDIX B. DSFA DEVELOPMENT

t
Tcq

z
Tk

z
Tk

rr
Tkr

rr m ∂
∂

=+







∂
∂

∂
∂

+







∂
∂

∂
∂

+







∂
∂

∂
∂ ρ

φφ
2

11

0=
∂
∂
φ
T , 02

2

=
∂
∂
φ
T

Assuming constant k, ρm, and c allows

c
k
mρ

α =

t
T

k
q

z
T

r
Tr

rr ∂
∂

=+
∂
∂

+







∂
∂

∂
∂

α
11

2

2 

() ()tfzL
r
r

r
Pq

oo








−−

−
= κ
π
κ

2

2

2 exp

From Figure 3-7 the pulse is modeled as:

()















<

≤<
−

−

≤≤

=

tt

ttt
tt
tt

tt
t
t

tf

p

pm
mp

p

m
m

0

0

Boundary Conditions:

90

0
0

=
∂
∂

=
∂
∂

== Rrr r
T

r
T

0
0

=
∂
∂

=zz
T

()()∞−=
∂
∂

−
=

TtLrTh
z
Tk

Lz

,,

Initial Condition:

0
0

=
∂
∂

=zz
T

Nondimensionalize the equation with the following parameters:

k
hLBiLS

L
Ra

T
TT

R
t

L
z

R
r

ref

===
−

==== ∞ ,,,,,, 2 κθατζρ

Rearranging the nondimensional values:

α
τ

ζ
ζρ

2

,,, RtzLLzRr ====

Substituting variables into base equation:

τ
θ

ζ
θ

ρ
θ

ρ
ρρ ∂

∂
=+

∂

∂
+







∂

∂

∂
∂

222

21
R
T

k
q

L
T

R
T

R
RR

refrefref 

τ
θ

ζ
θ

ρ
θρ

ρρ ∂
∂

=+
∂
∂

+







∂
∂

∂
∂

refkT
Rq

L
R 2

2

2

2

21 

() ()τφζ
ρ
ρ

π
κ









−−

−
= 1exp 22

22

2

22

S
R

R
kTr
RP

kT
Rq

oreforef



91

()















<

≤<
−

−

≤≤

=

ττ

τττ
ττ
ττ

ττ
τ
τ

τφ

p

pm
mp

p

m
m

0

0

τ
θ

ζ
θ

ρ
θρ

ρρ ∂
∂

=+
∂
∂

+







∂
∂

∂
∂

refkT
Rqa

2

2

2
21 

Thus requiring:

kr
RPT

o
ref 2

2

π
κ

=

Substituting in to yield nondimensional equation:

() ()
τ
θτφζ

ρ
ρ

ζ
θ

ρ
θρ

ρρ ∂
∂

=







−−

−
+

∂
∂

+







∂
∂

∂
∂ 11

2

2

2

2
2 Sexpa

o

Nondimensional boundary conditions:

0
10

=
∂
∂

=
∂
∂

== ρρ ρ
θ

ρ
θ

0
0

=
∂
∂

=ζζ
θ

()τρθ
ζ ζ

,1,
1

BiT
−=

∂
∂

=

Using the method of Eigenfunction Expansion:

() () () ()∑∑
∞

=

∞

=

=
0 0

,,
n m

mnnm ZRb ζρττζρθ

Sturm-Louisville Problem in ρ:

92

01 2 =+







nn

n R
d
dR

d
d λ

ρ
ρ

ρρ

Boundary condition:

0
10

==
== ρρ ρρ d

dR
d
dR nn

For Neumann condition boundary conditions, use Bessel function for solution:

() () ()ρλρλρ nnn YCJCR 0201 +−=

() ()ρλλρλλ
ρ nnnn

n YCJC
d
dR

1211 −−=

Using boundary condition:

() ()000 1211
0

nnnn
n YCJC

d
dR λλλλ
ρ ρ

−−==
=

() () ∞== 0,00 11 YJ

Thus to satisfy the boundary condition:

02 =C

Which returns the Bessel function:

() ()ρλρ nn JCR 01−=

With the derivative:

() 011 =−= ρλλ
ρ nn

n JC
d
dR

Utilizing the other boundary condition:

() 0111
1

=−=
=

nn
n JC

d
dR λλ
ρ ρ

93

Thus λn equals the roots of J1(λn) = 0 starting at n = 0 as λ0 = 0 and J1(0) = 0. The value

of C1 cannot be zero as that would yield a trivial solution, as it can be any constant, there is no

need for the negative sign, as it could be positive or negative nonzero constant.

When λ0 = 0, n = 0:

001
0

20 =+






 R
d
dR

d
d

ρ
ρ

ρρ

00 =







ρ

ρ
ρ d

dR
d
d

Integrate both sides in ρ:

dp
d
dRd ∫∫ =







 00

ρ
ρ

ρρρ
ρ 30

3
0 C

d
dRC

d
dR

=→=

Utilize boundary condition:

403
3

1

0 00 CRCC
d
dR

=→=→==
= ρρ ρ

Sturm-Louisville Problem in ζ:

02
2

2

=+ mm
m Z

d
Zd β
ζ

Boundary conditions:

m
mm BiZ

d
dZ

d
dZ

−==
== 10

,0
ζζ ζζ

For Robin conditions, use sin and cos:

() () ()ζβζβζ mmm cosCsinCZ 65 +=

94

() ()ζββζββ
ζ mmmm

m sinCcosC
d
dZ

65 −=

Using boundary conditions:

() ()000 65
0

mmmm
m sinCcosC

d
dZ ββββ
ζ ζ

−==
=

With cos(0) = 1, and sin(0) = 0:

() ()ζβζβ mmm cosCZCC 655 00 =→=→=

Using the other boundary condition:

() ()11 66
1

mmm
m sinCcosBiC

d
dZ βββ
ζ ζ

−=−=
=

Thus:

() () ()mmmmm tanBisincosBi βββββ =→=

Which makes the values for βm the solutions to the equation ()mm tanBi ββ= . There is

no zero eigenvalues in β, as there is no solution where there is a non-zero value for Bi. Thus in

the infinite summation, the value of m is indexed from 1 through infinity rather than from 0 as is

n.

Now recall that:

() ()ρλρ nn JR 0=

Where λn is the roots to the equation J1(λn) = 0 from n = 0 through infinity and:

() ()ζβζ mm cosZ =

Where βm is the roots to the equation ()mm tanBi ββ= from m = 1 through infinity. The

value for θ can be evaluated:

95

() () () ()∑∑
∞

=

∞

=

=
0 1

0
n m

mnnm cosJb,, ζβρλττζρθ

The value for θ can now be reinserted into the heat equation yielding:

() () ()

() () () () ()

() () ()







∂
∂

=









−−

−
+







∂
∂

+

















∂
∂

∂
∂

∑∑

∑∑

∑∑

∞

=

∞

=

∞

=

∞

=

∞

=

∞

=

0 1
0

2

2

0 1
02

2
2

0 1
0

1

1

n m
mnnm

on m
mnnm

n m
mnnm

cosJb

SexpcosJba

cosJb

ζβρλτ
τ

τφζ
ρ
ρζβρλτ

ζ

ζβρλτ
ρ

ρ
ρρ

Which can be simplified:

() () ()()

() () ()() ()() ()

() ()∑∑

∑∑

∑∑

∞

=

∞

=

−−








 −
∞

=

∞

=

∞

=

∞

=

∂
∂

=

+
∂
∂

+









∂
∂

∂
∂

0 1
0

1
2

2

0 1
0

2

0
0 1

2

2

1

n m
mn

nm

S
m

n m
nnm

n
n m

mnm

cosJb

eecosJba

Jcosb

o

ζβρλ
τ

τφζβ
ζ

ρλτ

ρλ
ρ

ρ
ρρ

ζβτ

ζρ
ρ

Remembering that:

() () ()() ()ρλλρλ
ρ

ρ
ρρ

ρλλ
ρ
ρλ

nnnnn
n JJJJ

0
2

01
0 1

−=







∂
∂

∂
∂

→−=
∂

∂

() ()ζββ
ζ

ζβ
mm

m coscos 2
2

2

−=
∂

∂

Substituting into the previous equation:

() () () () () ()

()() () () ()∑∑

∑∑∑∑
∞

=

∞

=

−−








 −

∞

=

∞

=

∞

=

∞

=

∂
∂

=+

−−

0 1
0

1

2

0 1
0

2
0

2

0 1

2

2

n m
mn

nmS

mm
n m

nnmnn
n m

mnm

cosJbee

cosJbaJcosb

o ζβρλ
τ

τφ

ζββρλτρλλζβτ

ζρ
ρ

Multiply all by ()ρλρ qJ 0 and integrating in ρ from 0 to 1:

96

() () () ()

() () () ()

()() () () () () () ρρλρλρζβ
τ

ρρλρτφ

ρρλρλρζβτβ

ρρλρλρλζβτ

ρ
ρ

ζ dJJcosbdJee

dJJcosba

dJJcosb

nq
n m

m
nm

q
S

nq
n m

mnmm

nqn
n m

mnm

o
0

1

0 0
0 1

1

0 0
1

0

1

0 0
0 1

22

0

1

0 0
2

0 1

2

2

∫∑∑∫

∫∑∑

∫∑∑

∞

=

∞

=










 −

−−

∞

=

∞

=

∞

=

∞

=

∂
∂

=+

−

−

Using orthogonality:

() () ()






=

≠
=∫ qnif

J
qnif

dJJ qnq

2

0
00

1

0 0 λρρλρλρ

This is proved by using the equation from the SLP in ρ:

() () 00
20 =+







 ρλρλ
ρ
ρλρ

ρ nn
n J

d
dJ

d
d

() () 00
20 =+








ρλρλ

ρ
ρλ

ρ
ρ qq

q J
d

dJ
d
d

Subtract the second equation from the first to yield:

() () () () ()ρλρλρλλ
ρ
ρλ

ρ
ρρ

ρλρ
ρ qnqn

qn JJ
d

dJ
d
d

d
dJ

d
d

00
2200 −−=








−








Integrate by ρ from 0 to 1:

() () () ()
















−








−

= ∫∫∫
1

0

01

0
0

22

1

0 00
1 ρ

ρ
ρλ

ρ
ρ

ρ
ρ
ρλρ

ρλλ
ρρλρλρ d

d
dJ

d
dd

d
dJ

d
ddJJ qn

nq
qn

() ()

() ()

() ()




















+−

−

−
=

==

==

∫

0

0

1

0

0

0

1

0

22

1

0 00
1

ρρ

ρρ

ρ
ρλ

ρ
ρ
ρλ

ρ

ρ
ρλρ

ρ
ρλρ

λλ
ρρλρλρ

d
dJ

d
dJ

d
dJ

d
dJ

dJJ
qq

nn

nq
qn

Which simplifies to:

97

() () () ()













−

−
=

==
∫

1

0

1

0
22

1

0 00
1

ρρ ρ
ρλ

ρ
ρλ

λλ
ρρλρλρ

d
dJ

d
dJdJJ qn

nq
qn

Again using the identity of () ()ρλλ
ρ
ρλ

nn
n JJ

1
0 −=
∂

∂ and
() ()ρλλ
ρ
ρλ

qq
q J

J
1

0 −=
∂

∂

() () () ()()
111122

1

0 00
1

==
+−

−
=∫ ρρ

ρλλρλλ
λλ

ρρλρλρ qqnn
nq

qn JJdJJ

() () () ()()qqnn
nq

qn JJdJJ λλλλ
λλ

ρρλρλρ 1122

1

0 00
1

+−
−

=∫

From the eigenvalues, () () 011 == qn JJ λλ for all eigenvalues λ from 0 to infinity:

() () qnqn iffdpJJ λλρλρλρ ≠=∫ 00

1

0 0

For λn = λq:

() () ()∫∫ =
1

0

2
00

1

0 0 dpJdpJJ qqn ρλρρλρλρ

Using the previous identity:

() () 00
20 =+








ρλρλ

ρ
ρλ

ρ
ρ qq

q J
d

dJ
d
d

With a multiplication factor:

() () 00
20 =+








ρλρλ

ρ
ρλ

ρ
ρ qq

q J
d

dJ
d
d

() () () () 00
20200 =+








ρλλ

ρ
ρλ

ρ
ρ
ρλ

ρ
ρρ

ρλ
ρ qq

qqq J
d

dJ
d

dJ
d
d

d
dJ

() ()
ρ

ρλ
ρλ

ρ
ρλ

ρ
ρ d

dJ
d

dJ
d
d q

q
q

2
022

2
0 −=





















Integrate in ρ from 0 to 1:

98

() ()
ρ

ρ
ρλ

ρλρ
ρ
ρλ

ρ
ρ

d
d

dJ
d

d
dJ

d
d q

q
q ∫∫ −=



















 1

0

2
0221

0

2
0

Integrate by parts:

()()
()ρλρρ

ρλ
ρ

ρ

q

q

Jvddu

J
d
ddvu

2
0

2
0

2

2 ==

==

() ()[] () 




 −−=




















∫

1

0

2
0

1

0
2

0
22

1

0

2
0 2 dpJJ
d

dJ
qqq

q ρλρρλρλ
ρ
ρλ

ρ

() () ()[] () 




 −−=
























∫

1

0

2
0

1

0
2

0
22

1

0

00 2 dpJJ
d

dJ
d

dJ
qqq

qq ρλρρλρλ
ρ
ρλ

ρ
ρ
ρλ

ρ

The left side of the equation is simplified:

() () ()
0

0

1

0
1

0

0

==








−








=









ρρ
ρ
ρλ

ρ
ρ
ρλ

ρ
ρ
ρλ

ρ
d

dJ
d

dJ
d

dJ qqq

() ()
1

0
1

0

0

=








=









ρ
ρ
ρλ

ρ
ρλ

ρ
d

dJ
d

dJ qq

Again using the identity:

() ()ρλλ
ρ
ρλ

qq
q J

d
dJ

1
0 −=

() ()qq
q J

d
dJ

λλ
ρ
ρλ

ρ 1

1

0

0 −=








From the eigenvalues we know ()qJ λ1 for all λq thus the left hand side of the equation is

zero, which of course forces the right hand side to also be zero:

()[] () 




 −−= ∫

1

0

2
0

1

0
2

0
22 20 dpJJ qqq ρλρρλρλ

99

Evaluate the first portion:

() () ()
0

2
0

2

1

2
0

21

0

2
0

2

==
−=

ρρ
ρλρρλρρλρ qqq JJJ

() ()qq JJ λρλρ 2
0

1

0

2
0

2 =

Substituting it back into the equation:

() () 




 −−= ∫

1

0

2
0

2
0

2 20 dpJJ qqq ρλρλλ

Divide by 2
qλ to simplify:

() ()∫+−=
1

0

2
0

2
0 20 dpJJ qq ρλρλ

Which yields for n = q:

() ()
2

2
01

0

2
0

q
q

J
dpJ

λ
ρλρ =∫

This is now input into the heat equation for n = q:

() () () () () ()

()() () () () ()∑∫

∑∑
∞

=










 −

−−

∞

=

∞

=

∂

∂
=+

−−

1

2
01

0 0
1

1

2
2

0
2

1

2
0

2

2

22

2

2

m
m

qmq
q

S

m
mqmm

q

m
mqm

qq

cos
bJ

dJee

cosb
Ja

cosb
J

o ζβ
τ

λ
ρρλρτφ

ζβτβ
λ

ζβτ
λλ

ρ
ρ

ζ

Simplify:

() () () () ()

()() ()
() () ρρλρ
λ

τφ

ζβ
τ

ζβτβζβτλ

ρ
ρζ

dJe
J

e

cos
b

cosbacosb

q
q

S

m
m

qm

m
mqmm

m
mqmq

o∫

∑∑∑










 −−−

∞

=

∞

=

∞

=

=

∂

∂
++

1

0 02
0

1

11

22

1

2

2

2

2

Simplify to:

() () ()() ()τφζβτγ
τ

ζ−−
∞

=

=







+

∂

∂
∑ 1

1

S
q

m
mqmqm

qm eFcosb
b

100

Where:

222
mqqm a βλγ +=

() () ρρλρ
λ

ρ
ρ

dJe
J

F q
q

q
o∫










 −

=
1

0 02
0

2

2

2

Using a computationally efficient technique for finding the integral in Fq:

() ρρλρ ρ
ρ

dJeI qq
o∫










 −

=
1

0 0

2

2

Let:

0χρρ
ρ
ρχ =→=

o

ρ
ρ

χ dd
0

1
=

Making an integral substitution:

() χρχρλχρρ χ dJeI qq 0

1

0 000
0

2

∫ −=

Let:

0ρλλ qq
~ =

Substitute into the integral:

() χχλχρ ρ χ d~JeI qq ∫ −= 0
2

1

0 0
2

0

From integral table, #6631.4

()
() 







 −
= +

∞ −+∫ α
β

α
βχβχχ αχ

42

2

10

1 2

expdJe v

v

v
v

Thus, if :

101

∞≈→<<=
0

0
0

11 ρρ R
r

The substitution can be made to the integral rather than computing the integral

numerically:

() χχλχρ χ d~JeI qq ∫
∞ −≈

0 0
2

0

2











≈

42

22
0

2
0 q

q expI
λρρ

Substituting into Fq:

() 









≈

42
2

22
0

2
0

2
0

q

q
q exp

J
F

λρρ
λ

Simplify:

() 









≈

4

22
0

2
0

2
0 q

q
q exp

J
F

λρ

λ
ρ

This assumption is good for 500 .<ρ . When the value is greater than 0.5, a numerical

integration must be used to approximate the integral in Fq.

Evaluating F0 for use in the equation when q = 0, from eigenvalues:

0=oλ

() () 1010 0
2

0 =→= JJ

Substituted into the exact definition of Fq:

∫
−

=
1

00

2
0

2

2 ρρ ρ
ρ

deF

∫
−

=
1

0 2
0

2
00

22
0

2

ρ
ρ
ρρ ρ

ρ

deF

102

Using a u substitution:

ρ
ρ
ρ

ρ
ρ dduu 2

0
2

0

2 2
=→=

∫ −= 2
0

1

0

2
00

ρρ dueF u

[] 2
0

1

0
2

00
ρρ ueF −−=














+−=

−

0
1

2
00

2
0 eeF ρρ














−=

−
2

0

1
2

00 1 ρρ eF

Returning to the heat equation, we have:

() () ()() ()τφζβτγ
τ

ζ−−
∞

=

=







+

∂

∂
∑ 1

1

S
q

m
mqmqm

qm eFcosb
b

We use orthogonality to remove the summation in m by multiplying by cos(βpζ) and

integrating from 0 to 1 in ζ.

() () () () ()() ()∫∫ ∑ −−
∞

=

=







+

∂

∂ 1

0

11

0
1

ζζβτφζζβζβτγ
τ

ζ dcoseFdcoscosb
b

p
S

q
m

mpqmqm
qm

This can be simplified by rearranging:

() () () () ()() ()∫∫∑ −−
∞

=

=







+

∂

∂ 1

0

11

0
1

ζζβτφζζβζβτγ
τ

ζ dcoseFdcoscosb
b

p
S

qmp
m

qmqm
qm

Using orthogonality:

() () ()()






=
++

≠
=∫ pmifBiBi

pmif
dcoscos

p

mp
2

1

0
11

2
1

0

β
ζζβζβ

103

This is proved using identities of the trigonometric cos, recall:

() () () ()βαβαβα −++= coscoscoscos2

This applied yields:

() () () () ζζβζβζζβζβζζβζβ dcosdcosdcoscos pmpmmp ∫∫∫ −++=
1

0

1

0

1

0 2
1

2
1

() () ()[] ()[] ζζββζζββζζβζβ dcosdcosdcoscos pmpmmp ∫∫∫ −++=
1

0

1

0

1

0 2
1

2
1

The integrals are evaluated:

() () ()[] ()[] 1

0

1

0

1

0 2
1

2
1













−

−
+













+

+
=∫

pm

pm

pm

pm
mp

sinsin
dcoscos

ββ
ζββ

ββ
ζββ

ζζβζβ

() () () ()[]

() ()[]











−

−
−

−

−

+










+

+
−

+

+
=∫

pm

pm

pm

pm

pm

pm

pm

pm
mp

sinsin

sinsin
dcoscos

ββ
ββ

ββ
ββ

ββ
ββ

ββ
ββ

ζζβζβ

0
2
1

0
2
11

0

() () () ()











−

−
+










+

+
=∫

pm

pm

pm

pm
mp

sinsin
dcoscos

ββ
ββ

ββ
ββ

ζζβζβ
2
1

2
11

0

This is simplified:

() () () () () () ()[]pmpmpmpm
pm

mp sinsindcoscos ββββββββ
ββ

ζζβζβ −+++−
−

=∫ 22

1

0 2
1

() () () () () () ()[]pmpmpmpm
pm

mp sinsindcoscos ββββββββ
ββ

ζζβζβ −+++−
−

=∫ 22

1

0 2
1

 Expanding with tan:

104

() () ()

()
()

()
() ()

()
()

()
() ()



















−









++

+









−

−
=∫

pm
p

pp

m

mm

pm
p

pp

m

mm

pm
mp

sin
tan

tan
tan

tan

sin
tan

tan
tan

tan

dcoscos

ββ
β
ββ

β
ββ

ββ
β
ββ

β
ββ

ββ
ζζβζβ 22

1

0 2
1

Recall that () Bitan mm =ββ :

() () ()
() () ()

() () ()


















−









++

+









−

−
=∫

pm
pm

pm
pm

pm
mp

sin
tan

Bi
tan

Bi

sin
tan

Bi
tan

Bi

dcoscos

ββ
ββ

ββ
ββ

ββ
ζζβζβ 22

1

0 2
1

This is simplified:

() () ()
() ()

() ()
() ()

() ()
() ()
() () 































−









++












+









−

−
=∫

pm

pm

pm

pm

pm

pm

pm
mp

sincos
cossin

tantan

sincos
cossin

tantanBidcoscos

ββ

ββ

ββ

ββ

ββ

ββ

ββ
ζζβζβ

11

11

2 22

1

0

Substituting:

()

()
() ()
() ()pm

pm

p

m

sincosd
cossinc

tan
b

tan
a

ββ

ββ

β

β

=

=

=

=

1

1

Simplifies the equation:

() () () ()() ()()[]dcbadcbaBidcoscos
pm

mp −+++−
−

=∫ 22

1

0 2 ββ
ζζβζβ

This is expanded and simplified:

105

() () ()[]bdacBidcoscos
pm

mp 22
2 22

1

0
−

−
=∫ ββ

ζζβζβ

Simplifying the expression and reinserting the expressions for a, b, c, and d:

() () () ()
()

() ()
() 











−

−
=∫

p

pm

m

pm

pm
mp tan

sincos
tan

cossinBidcoscos
β

ββ
β

ββ

ββ
ζζβζβ 22

1

0

Using simple trigonometric identities it is simplified again:

() () () () () ()[]pmpm
pm

mp coscoscoscosBidcoscos ββββ
ββ

ζζβζβ −
−

=∫ 22

1

0

It is clearly seen that this expression is zero as the two expressions inside the brackets are

the same. When they are subtracted, zero is returned and the expression evaluates to zero when

pm ββ ≠ .

When βm = βp, the base equation is simpler:

() () () ζζβζζβζβ dcosdcoscos ppm ∫∫ =
1

0

21

0

Recall the trigonometric identity:

() ()[]αα 21
2
12 coscos +=

This is input into the integral:

() ()[] ζζβζζβ dcosdcos pp ∫∫ +=
1

0

1

0

2 21
2
1

() () 1

0

1

0

2

2
2

2
1












+=∫

p

p
p

sin
dcos

β
ζβ

ζζζβ

() () ()











+−+=∫

pp

p
p

sinsin
dcos

ββ
β

ζζβ
2

00
2

2
1

2
11

0

2

106

() ()










+=∫

p

p
p

sin
dcos

β
β

ζζβ
2

2
1

2
11

0

2

() ()









 +
=∫

p

pp
p

sin
dcos

β
ββ

ζζβ
2

22
2
11

0

2

Recall from the half angle formula:

() () ()ppp sincossin βββ 22 =

Substitute into the previous equation:

() () ()
p

ppp
p

sincos
dcos

β
βββ

ζζβ
4

221

0

2 +
=∫

() () ()
p

ppp
p

sincos
dcos

β
βββ

ζζβ
2

1

0

2 +
=∫

Multiply by a cos(βp) / cos(βp):

()
() () ()

()
p

p

p
ppp

p

cos
cos

sincos
dcos

β

β
β

βββ

ζζβ
2

1

0

2










+

=∫

Simplify:

() () ()
p

ppp
p

tancos
dcos

β
βββ

ζζβ
2

2
1

0

2 +
=∫

Recall:

() Bitan pp =ββ

Multiply the last term also by βp / βp:

()
() ()

p

p

pp
pp

p

tan
cos

dcos
β

β
ββ

ββ
ζζβ

2

2

1

0

2

+

=∫

107

This can simplify:

()
()

p

p
pp

p

Bicos
dcos

β
β

ββ
ζζβ

2

2

1

0

2

+

=∫

Recalling the trigonometric identity:

() () 122 =+ pp cossin ββ

It can be derived that:

() ()p
p tan

cos
β

β 2
2

1
1

+
=

Substitute this into the prior equation:

() ()
p

pp
p

p

Bi
tan

dcos
β

ββ
β

ζζβ
2

1
1

2
1

0

2





















+
+

=∫

From the definition of Bi:

() ()
p

ppp
BitanBitan
β

βββ =→=

Substitute into the equation:

()
p

p

p

p

p

Bi
Bi

dcos
β

β
β

β

ζζβ
2

1

1

2
2

1

0

2












+
+

=∫

This simplifies:

()
p

pp
p

p

BiBi

dcos
β

ββ
β

ζζβ
2

1 2

2

1

0

2

+









+

=∫

108

()
p

pp
p

p

BiBi

dcos
β

ββ
β

ζζβ
2

2

1

0

2

++

=∫

() ()
2

2
1

0

2

2
1

p

p
p

BiBi
dcos

β

β
ζζβ

++
=∫

Resulting in the end of the value for which is proved:

() () pmwhenBiBidcos
p

p =








 +
+=∫ 2

1

0

2 11
2
1

β
ζζβ

Using orthogonality on the heat equation:

() () () ()() ()∫ −−=








 +
+








+

1

0

1
2

11
2
1 ζζβτφ

β
τγ

τ
ζ dcoseFBiBib

d
db

p
S

q
p

qpqp
qp

() () () () () ()∫−=








 +
+








+

1

02

11
2
1 ζζβτφ

β
τγ

τ
ζ dcoseeFBiBib

d
db

p
SS

q
p

qpqp
qp

Evaluating the integral by parts:

() ()
() ()

p

pS

p
S

sin
vdSedu

dcosdveu

β
ζβ

ζ

ζζβ
ζ

ζ

==

==

() ()
() () () ()

ζ
β

ζβ
β

ζβ
ζζβ

ζζ
ζ d

sinSesine
dcose

p

p
S

p

p
S

p
S ∫∫ −












=

1

0

1

0

1

0

Yields the equation:

() () () () () () ()
ζ

β
ζβ

ββ
β

β
β

ζζβ
ζ

ζ d
sineSsin

e
sine

dcose
p

p
S

pp

pS

p

p
S

p
S ∫∫ −

⋅
−= ⋅ 1

0

01

0

0

Which simplifies to:

109

() () () () ()
ζ

β
ζβ

ββ
β

ζζβ
ζ

ζ d
sineSsine

dcose
p

p
S

pp

p
S

p
S ∫∫ −=

1

0

1

0

Integration by parts can be done on the integral using:

() ()
() ()

p

pS

p
S

cos
vdSedu

dsindveu

β
ζβ

ζ

ζζβ

ζ

ζ

−
==

==

() () () () () ()













+





















 −
−= ∫∫ ζζβ

ββ
ζβ

ββ
β

ζζβ ζζζ dcoseScos
eSsine

dcose p
S

pp

pS

pp

p
S

p
S 1

0

1

0

1

0

Evaluating and simplifying to:

() () () () ()() () () ζζβ
β

β
ββ

β
ζζβ ζζ dcoseScosecoseSsine

dcose p
S

p
p

S

pp

p
S

p
S ∫∫ +−+=

1

02

2
0

2

1

0
0

() () () ()() () () ζζβ
β

β
ββ

β
ζζβ ζζ dcoseScoseSsine

dcose p
S

p
p

S

pp

p
S

p
S ∫∫ +−+=

1

02

2

2

1

0
1

() () () ()()11 22

21

0
−+=










+





 ∫ p

S

pp

p
S

p
p

S coseSsineSdcose β
ββ

β

β
ζζβζ

() () () ()()








−+










+=∫ 111 22

21

0 p
S

pp

p
S

p
p

S coseSsineSdcose β
ββ

β
β

ζζβζ

() () () ()









 −+










+=∫ 22

21

0
11

p

p
S

p
S

p

p
p

S ScosSesineSdcose
β

βββ
β

ζζβζ

() () () ()()ScosSesine
S

dcose p
S

p
S

p
p

p
S −+











+
=∫ βββ

β
ζζβζ

22

1

0

1

() () () ()()()ScosSsine
S

dcose ppp
S

p
p

S −+










+
=∫ βββ

β
ζζβζ

22

1

0

1

110

Recall:

() ()p
ppp tan

BiBitan
β

βββ =⇒=

Substitute into previous equation and simplify:

() () () () ()










−









+











+
=∫ ScosSsin

tan
Bie

S
dcose pp

p

S

p
p

S ββ
ββ

ζζβζ
22

1

0

1

() () () ()()()ScosScosBie
S

dcose pp
S

p
p

S −+










+
=∫ ββ

β
ζζβζ

22

1

0

1

() () ()()()SSBicose
S

dcose p
S

p
p

S −+










+
=∫ β

β
ζζβζ

22

1

0

1

() () ()()
22

1

0 S
SSBicose

dcose
p

p
S

p
S

+

−+
=∫ β

β
ζζβζ

Using the solution to the integral:

() () ()()











+

−+
=





 −− ∫ 22

1

0 S
SSBicose

edcosee
p

p
S

S
p

SS

β
β

ζζβζ

() () ()()
22

1

0 S
SeSBicos

dcosee
p

S
p

p
SS

+

−+
=







−
− ∫ β

β
ζζβζ

Substitute into the base heat equation:

() () () ()()
222

11
2
1

S
SeSBicos

FBiBib
b

p

S
p

q
p

qpqp
qp

+

−+
=









 +
+








+

∂

∂ −

β

β
τφ

β
τγ

τ

The second half of the left hand side of the equation can be simplified:

() ()









 +
+=









 +
+ 22

2

2

1
2
111

2
1

pp

p

p

BiBiBiBi
ββ

β

β

111

() ()









 ++
=









 +
+ 2

2

2

1
2
111

2
1

p

p

p

BiBiBiBi
β

β

β

() ()
2

2

2 2
111

2
1

p

p

p

BiBiBiBi
β

β

β

++
=









 +
+

Substituting back into the base heat equation and simplifying:

() () () ()()
222

2

2
1

S
SeSBicos

F
BiBi

b
b

p

S
p

q
p

p
qpqp

qp

+

−+
=









 ++








+

∂

∂ −

β

β
τφ

β

β
τγ

τ

()
()

() ()()
222

2

1
2

S
SeSBicos

F
BiBi

b
d

db

p

S
p

q
p

p
qpqp

qp

+

−+

++
=+

−

β

β
τφ

β

β
τγ

τ

() () ()
()

()τφ
β

β

β

τγ
τ q

p

S
p

p

qpqp
qp F

BiBi
SecosSBi

S
b

d
db












++

−+







+

=+
−

22 1
1

2

Let:

() ()
() 











++

−+







+

=
−

22 1
1

2

p

S
p

p

p BiBi
SecosSBi

S
G

β

β

β

Then:

() ()τφτγ
τ pqqpqp
qp GFb

d
db

=+

Solve for bqp(τ) using the initial conditions:

() () 0000 == qpbif,,ζρθ

Use the integration factor τγ qpe :

() ()τφτγ
τ

τγτγ
pqqpqp

qp GFeb
b

e qpqp =







+

∂

∂

112

() () ττφτ
τ

τ τγτγτ
′′=′

′ ∫∫
′′ deGFdbe

d
d qpqp

pqqp 00

() () () ττφτ
τ τγγτγ ′′=− ∫

′ deGFbebe qpqpqp
pqqpqp 0

0 0

() () ττφτ
τ τγτγ ′′= ∫

′ deGFbe qpqp
pqqp 0

() () ττφτ
τ τγτγ ′′= ∫

′− deeGFb qpqp
pqqp 0

Checking the initial condition by substituting a small value, ε for τ and taking the limit as

ε goes to zero:

() () ττφε
ε τγεγ ′′= ∫

′− deeGFb qpqp
pqqp 0

() 0
00 =′′= ∫

′−
→ ττφ

ε τγεγ
ε deeGFblim qpqp

pqqp

The initial condition is satisfied as when ε goes to zero, the integral goes to zero and the

expression before the integral goes to FqGp as the exponential goes to one.

Now, let:

() () ττφτ
τ τγτγ ′′=Τ ∫

′− dee qpqp
qp 0

Remembering that ()τφ varies in time, ()τqpΤ will be solved in sections, for the first time

segment, mττ ≤≤0 :

()
mτ
ττφ =

Substituting into the equation and simplifying:

() τ
τ
ττ

τ τγτγ ′
′

=Τ ∫
′−Α dee

m
qp

qpqp

0

113

Using Maple 12 to evaluate the integral returns:

() ()τγτγ
τγ

τγ
γτ

τ qpqp
qp

eee
qp

qpm
qp +−=Τ

−
Α 12

Continuing with the second segment of ()τqpΤ where pm τττ ≤< :

()
mp

p

ττ
ττ

τφ
−

−
=

()











′

−

′−
+′

′
=Τ ∫∫

′′−Β τ
ττ
ττ

τ
τ
ττ

τ

τ

τγτ τγτγ dedee
m

qpm qpqp

mp

p

m
qp 0

Using Maple 12 to evaluate the integral for the second segment returns:

() () 













+−

−+−

−
=Τ

−
Β

τγτγ

τγτγτγ

τγττ

γτττττ

ττγτ
τ

qpqp

qpmqpqp

ee

eee

qpmm

qpmpppm

pmqpm
qp 2

Finishing with the third segment of ()τqpΤ where pττ > :

() 0=τφ

()











′

−

′−
+′

′
=Τ ∫∫

′′− τ
ττ
ττ

τ
τ
ττ

τ

τ

τγτ τγτγ dedee p

m

qpm qpqp

mp

p

m
qp 0

C

Using Maple 12 to evaluate the integral for the third segment returns:

() ()()pqpmqp
qp

eee
mpmp

mpqpm
qp

τγτγ
τγ

ττττ
ττγτ

τ +−−
−

=Τ
−

2
C

The value of ()τqpΤ is solved for all values of τ :

114

()

()

()

()()

















>+−−
−

≤<













+−

−+−

−

≤≤+−

=Τ

−

−

−

pmpmp
mpqpm

pm

qpmm

qpmpppm

pmqpm

mqp
qpm

qp

pqpmqp
qp

qpqp

qpmqpqp

qpqp
qp

eee

ee

eee

eee

ττττττ
ττγτ

τττ
τγττ

γτττττ

ττγτ

τττγ
γτ

τ

τγτγ
τγ

τγτγ

τγτγτγ

τγτγ
τγ

2

2

2 01

The equation is complete once all the segments of the function T are completed for all the

segments. The complete solution of the nondimensional temperature in the sample is a

combination of all the equations:

115

() () () ()
()

()
() ()

() ()

() ()
()

()

()

()

()()

() 2

2

2

222

2

2

2

22

1

0
02

0

1

1 0
0

01

1
1

2

2

0

2

2

RP
krTT

L
Ra,R

r,R
t,L

z,L
r,LS

c
hL

k
hLBi

a

eee

ee

eee

eee

BiBi
SecosSBi

S
G

dJe
J

F

GFb
J

Bitan

Jcosb,,

o

o
o

m

qpqp

pmpmp
mpqpm

pm

qpmm

qpmpppm

pmqpm

mqp
qpm

qp

q

S
q

q

q

p
p

p

qpqpqp

p

qq

q p
pqqp

pqpmqp
qp

qpqp

qpmqpqp

qpqp
qp

o

κ
πθ

ρατξρκ

αρ

βλγ

ττττττ
ττγτ

τττ
τγττ

γτττττ

ττγτ

τττγ
γτ

τ

β
β

β

ρρλρ
λ

ττ

λ

ββ

ρλξβττξρθ

τγτγ
τγ

τγτγ

τγτγτγ

τγτγ
τγ

ρ
ρ

∞

−

−

−

−

−

∞

=

∞

=

−=

======

==

+=


















>+−−
−

≤<













+−

−+−

−

≤≤+−

=Τ

++

−+







+

=

=

Τ=

=

=

=

∫

∑∑

117

APPENDIX C. SOURCE CODE FOR CREATION OF THE GOVERNING
PARAMETER SETS FOR THE DSFA THERMAL MODEL

Source code file: DSFA_code_builder.m

Compile instructions: Ensure all the required functions are located

in the same working directory as the

program. Once the file is loaded in the

editor window, simply click ‘run’ or type the

name of the file in the command window.

User inputs: None

Program input files: None

Required program functions: Matlab programmed functions bessel.m,

trigfunc.m, Fint.m need to be saved in a

directory that the current path in Matlab has

defined.

Program output files: DSFA_630.xls. Values of the time

dependent nondimensional temperature

profiles for each of the given parameter sets

along with their respective parameter values.

Program source code:

118

% DSFA_code_builder.m

% This code is used to solve the non-dimensional temperature profiles
% in time for a small cylindrical sample that is irradiated upon by a
% laser with a Gaussian power distribution. The time varying pulse is
% a triangle wave starting at zero, increasing linearly to a time, t_m,
% and then decreasing linearly back to zero at t_p.

clear all; clc;

tic;

% Set the governing parameters for 630 parameter sets

% Change the values of alpha and rhoc to match metals
alp_cas = [1e-4, 3e-5, 1e-5, 3e-6, 1e-6];
rhoc_cas = [0.5e6, 1.5e6, 2.5e6, 3.5e6, 4.5e6, 5.5e6];
h_cas = [20,30,40];
Kap_cas = [400,1000,1600, 2200, 2800, 3400, 4000];

size_Kap=size(Kap_cas,2);
size_alp=size(alp_cas,2);
size_rhoc=size(rhoc_cas,2);
size_h=size(h_cas,2);

cases=size_Kap*size_alp*size_rhoc*size_h;

max_alp=max(alp_cas);
min_alp=min(alp_cas);
max_rhoc=max(rhoc_cas);
min_rhoc=min(rhoc_cas);
max_h=max(h_cas);
min_h=min(h_cas);
max_Kap=max(Kap_cas);
min_Kap=min(Kap_cas);

P = 1000.0; % Watts, power of the laser
r_o = 0.001; % m, 1 sigma of the Gaussian curve away from center
 % of laser
R = 0.01; % m, radius of the sample (should be >= 3*r_o)
L = 0.002; % m, thickness of the sample
Tinf = 300.0; % K, initial temp and temp of surroundings
t_m = 0.001; % sec, time for pulse to get to peak power
t_p = 0.003; % sec, time for pulse to finish
rho=0.0; % m, location of center of pulse from center of
 % sample

% Define non-dimensional parameters

a = R / L; % Aspect ratio
rho_o = r_o / R; % Ratio of laser power curve to radius of sample

count = 1;

119

for conv=1:size_h
 for OpDep=1:size_Kap
 for alph=1:size_alp
 for rhocp=1:size_rhoc

h = h_cas(conv);
Kap = Kap_cas(OpDep);
alpha = alp_cas(alph);
heatcap = rhoc_cas(rhocp);
k = alpha * heatcap;

tau_m = t_m * alpha / R^2;
tau_p = t_p * alpha / R^2;

S = Kap * L;
Bi = h * L / k;

dimpar(count,:) = [h, Kap, alpha, heatcap, k];

Par(count,:) = [S, Bi, tau_m];
Check(count,:) = S * Bi * tau_m;

N=10; % number of terms

% Calculate the Eigenvalues
% Eigenvalues in Lambda
lam(1)=0;
for n=2:N
 format long
 con=lam(n-1)+3;
 lam(n) = fzero(@bessel, con);
end

% Eigenvalues in Beta
beta(1)= fzero(@(x) trigfunc(x,Bi), 3e-4);
if beta(1)<0
 beta(1)=-beta(1);
end
for m=2:N
 format long
 con=beta(m-1)+3;
 beta(m)= fzero(@(x) trigfunc(x,Bi), con);
end

% Calculate Non-Dimensional Temperature at any non-dimensional location
% in non-dimensional time
for i=1:200
 tau = (i - 1) * 0.0001; % non-dimensional time
 tau_ar(count,i) = tau;
 time_ar(count,i) = R ^ 2 * tau / alpha;
 zeta = 0;
 zet = 1;
 Theta(zet,i)=0;
 for n=1:10
 % Evaluate Bessel J at each eigenvalue

120

 Jo(n)=besselj(0,lam(n));
 Jop(n)=besselj(0,lam(n)*rho);
 for m=1:N
 gam=lam(n)^2+a^2*beta(m)^2;
 if tau <= tau_m
 T=1/(gam*tau_m)*(tau-(1-exp(-gam*tau))/gam);
 elseif tau <= tau_p
 T=1/gam^2*((gam*(tau_p-tau)+1)/(tau_p-tau_m)+(...
 exp(-gam*tau)-exp(gam*(tau_m-tau)))/tau_m-...
 (exp(gam*(tau_m-tau)))/(tau_p-tau_m));
 else
 T=1/gam^2*((exp(-gam*tau)-exp(gam*(tau_m-tau)))/...
 tau_m+(exp(gam*(tau_p-tau))-exp(gam*(tau_m-...
 tau)))/(tau_p-tau_m));
 end
 if rho_o < 0.5
 F=rho_o^2/Jo(n)^2*exp(-rho_o^2*lam(n)^2/4);
 else
 F=2*Fint(rho_o,lam(n))/Jo(n)^2;
 end
 G=2*(beta(m)^2+Bi^2)*(cos(beta(m))*(Bi+S)-S*exp(-S))/...
 (beta(m)^2+Bi^2+Bi)/(beta(m)^2+S^2);
 GM(n,m)=G;
 b=F*G*T;
 Fnm(n,m)=F;
 Theta(zet,i)=Theta(zet,i)+b*cos(beta(m)*zeta)*Jop(n);
 Time(i)=tau*R^2/alpha;
 TAU(i)=tau;
 end
 end
end
Tref = P * Kap * R^2 /(pi * r_o^2 * k);
Temp(count,:) = Theta * Tref + Tinf;
THETA(count,:) = Theta;
t_end(count,:) = toc;
count = count + 1;

 end
 end
 end
end

time_end = toc;

% Write the variables to file DFSA_630.xls for use in ROM and GA
xlswrite('DSFA_630',Par,'Sheet1','A4')
xlswrite('DSFA_630',THETA,'Sheet1','D4')
xlswrite('DSFA_630',t_end,'Sheet2','A1')
xlswrite('DSFA_630',time_end,'Sheet3','A1')
xlswrite('DSFA_630',tau_ar(1,:),'Sheet1','D3')
xlswrite('DSFA_630',Temp,'Sheet4','A1')
xlswrite('DSFA_630',time_ar,'Sheet5','A1')
xlswrite('DSFA_630',r_o,'Vars','A5')
xlswrite('DSFA_630',R,'Vars','A6')
xlswrite('DSFA_630',L,'Vars','A7')
xlswrite('DSFA_630',t_p,'Vars','A8')

121

xlswrite('DSFA_630',t_m,'Vars','A9')
xlswrite('DSFA_630',P,'Vars','A10')
xlswrite('DSFA_630',Tinf,'Vars','A11')
xlswrite('DSFA_630',tau_ar(1,2),'Vars','A12')
xlswrite('DSFA_630',max_alp,'Vars','A1')
xlswrite('DSFA_630',min_alp,'Vars','B1')
xlswrite('DSFA_630',max_rhoc,'Vars','A2')
xlswrite('DSFA_630',min_rhoc,'Vars','B2')
xlswrite('DSFA_630',max_h,'Vars','A3')
xlswrite('DSFA_630',min_h,'Vars','B3')
xlswrite('DSFA_630',max_Kap,'Vars','A4')
xlswrite('DSFA_630',min_Kap,'Vars','B4')
xlswrite('DSFA_630',dimpar,'dimpar','A1')
% end 630 parameter case

Required functions source code:

% bessel.m

bessel.m

function J1 = f(Z);
J1 = besselj(1,Z);

% trigfunc.m

trigfunc.m

function trig = f(Z,Bi);
trig = Z*tan(Z)-Bi;

% Fint.m

Fint.m

function F=f(po,lam);
val=0;
num=100;
H=0;
for rhoi = 1:num
 p=rhoi/num;
 H=p*exp(-p^2/po^2)*besselj(0,lam*p);
 val=val+H;
end
F=val;

123

APPENDIX D. SOURCE CODE FOR THE DSFA MODEL FOR THE MATRIX
CREATION OF THE ROM IN MATLAB

Source code file: ROM_code_matrix.m

Compile instructions: Ensure the Excel file is saved in the same

working directory that Matlab is in. Once

the file is loaded in the editor window,

simply click ‘run’ or type the name of the

file in the command window.

User Inputs: None

Program input files: DSFA_630.xls. Raw solutions from the

coefficient builder program for each

parameter set.

Required program functions: None

Program output files:

 DSFA_630.xls. Values of the time

dependent nondimensional temperature

profiles for each of the given parameter sets

along with their respective parameter values.

Contains the new data added to the file from

this program.

124

% ROM_code_matrix.m

Program source code:

% Reduced Order Modeling program for the calculation of time dependant
% temperature profiles in a Pulsed Laser Diffusion test.
% Opens Microsoft Excel file DSFA_630.xls which contains the basis set
% of parameters and solved values.
% Reads 'DSFA_630' matrix from with database of governing parameters
% and their respective nondimensional time dependant profiles from
% 0.0 to 0.0199 Fourier numbers stepping in 0.0001 Fourier numbers

% Writes to DSFA_630.xls other needed parameters and sets that are
% stored and read in by the program that accepts arbitrary parameters
% and returns the arbitrary profile.

clear all; clc;
tic; % clock start

% Input matrix A from DSFA - Ensure that the range is correct

a=xlsread('DSFA_630', 'Sheet1', 'D4:GU633');

A=a';

[M,N]=size(A);

% Read parameters used to create the A matrix

par=xlsread('DSFA_630', 'Sheet1', 'A4:C633');

% Ensure that the range is correct
k = par';
kplus = pinv(k);

% Set values from read in values for use in ROM
S=par(:,1);
Bi=par(:,2);
tau_m=par(:,3);
maxS=max(S);
minS=min(S);
maxBi=max(Bi);
minBi=min(Bi);
maxtau_m=max(tau_m);
mintau_m=min(tau_m);

% For singularity values
tol=1e-13;

% Build matrix of interpolation functions
for i=1:N
 for j=1:N
 Svar(i,j)=((par(i,1)-par(j,1))/(maxS))^2;
 Bivar(i,j)=((log10(par(i,2))-log10(par(j,2)))/log10(maxBi))^2;
 tau_mvar(i,j)=((log10(par(i,3))-log10(par(j,3)))/...
 log10(maxtau_m))^2;

125

 F(i,j)=1/(Svar(i,j)+Bivar(i,j)+tau_mvar(i,j)+1)^(1/2);
 end
end

% Number of significant eigenvalues
n_fe=25;

% Singular value decomposition of A
[U_A SIG_A V_A]=svd(A);

fe=U_A(:,1:n_fe);

% Calculate coefficient matrix
B=fe'*A;
Bp=B';
festar=B*kplus;

% Perform Singular Value Decomposition on F to get Moore-Penrose
% inverse
[U_F SIG_F V_F]=svd(F);
Sa=SIG_F;

% Zero out small singular values
for i=1:N
 if SIG_F(i,i) > tol
 S_F(i,i)=1/SIG_F(i,i);
 else
 S_F(i,i)=0;
 end
end

% Get C matrix using singular value decomposition
C=B*V_F*S_F*U_F';

Fplus=V_F*S_F*U_F';

s=diag(SIG_A);
f=diag(SIG_F);

V = min(M,N);

% Plot the Singular values of A for determination of truncation
figure;%(2)
semilogy (s(1:V,1),'o')
xlabel('Number')
ylabel('Singular Value of A')

% Plot the singular values of F for determination of truncation
figure;%(3)
semilogy (f(1:N,1),'-')
xlabel('Number')
ylabel('Singular Value of F')

Cp=C';

% Write parameters to Excel to be used in the GA program
warning off MATLAB:xlswrite:AddSheet

126

xlswrite('DSFA_630', Cp, 'C', 'A1') % Ensure this matrix call
xlswrite('DSFA_630', fe, 'fe', 'A1') % is the same as above that
xlswrite('DSFA_630', Bp, 'B', 'A1') % the matrix is read from
xlswrite('DSFA_630', festar, 'festar', 'A1')
xlswrite('DSFA_630', maxS, 'Vars', 'C1')
xlswrite('DSFA_630', minS, 'Vars', 'D1')
xlswrite('DSFA_630', maxBi, 'Vars', 'C2')
xlswrite('DSFA_630', minBi, 'Vars', 'D2')
xlswrite('DSFA_630', maxtau_m, 'Vars', 'C3')
xlswrite('DSFA_630', mintau_m, 'Vars', 'D3')

127

APPENDIX E. SOURCE CODE FOR THE INPUT OF ARBITRARTY
PARAMETERS FOR THE ROM IN MATLAB

Source code file: ROM_code_AP.m

Compile instructions: Ensure the Excel file is saved in the same

working directory that Matlab is in. Once

the file is loaded in the editor window,

simply click ‘run’ or type the name of the

file in the command window.

User inputs: Input the arbitrary parameters for the ROM

in the code. For comparison to the input

values, input the correct file and rows to

retrieve the values for ‘w’ and ‘tim’ so the

profiles may be plotted together.

Program input files: DSFA_630.xls. Raw solutions from the

coefficient builder program for each

parameter set and the additions from the

ROM_code_matrix.m program.

Required program functions: None

Program output files: None

Program source code:

128

% ROM_code_AP.m

% Reduced Order Modeling simulation for the calculation time dependant
% temperature profiles in a Pulsed Laser Diffusion experiment
% Input Arbitrary parameters, read the Excel file with matrix data
% stored
% Returns Temperature, As.
% With correlating data from the Excel file, will plot the ROM data
% versus the numerical data from PLD Code.

clear all; clc;

tic; % Start time clock
t1=toc;

% Read in Excel files that contain the ROM data
% File A.xls
Cp=xlsread('DSFA_630', 'C', 'A1:Y630'); % Ensure that the
par=xlsread('DSFA_630', 'Sheet1', 'A4:C633'); % range of all these
maxS=xlsread('DSFA_630', 'Vars', 'C1'); % read in matrices
maxBi=xlsread('DSFA_630', 'Vars', 'C2'); % match the actual
maxtau_m=xlsread('DSFA_630', 'Vars', 'C3'); % ranges in the Excel
fe=xlsread('DSFA_630', 'fe', 'A1:Y200'); % files
festar=xlsread('DSFA_630', 'festar', 'A1:C25');
Bp=xlsread('DSFA_630', 'B', 'A1:Y630');
r_o=xlsread('DSFA_630', 'Vars', 'A5');
R=xlsread('DSFA_630', 'Vars', 'A6');
L=xlsread('DSFA_630', 'Vars', 'A7');
t_p=xlsread('DSFA_630', 'Vars', 'A8');
t_m=xlsread('DSFA_630', 'Vars', 'A9');
P=xlsread('DSFA_630', 'Vars', 'A10');
Tinf=xlsread('DSFA_630', 'Vars', 'A11');

B=Bp';
C=Cp';
[i,M]=size(C);
[N,i]=size(fe);

t2=toc;

%Arbitrary Profile

% Manually input arbitrary conditions
alphaa=3.959e-6;
rho_cpa=5.052e6;
ha=37;
Kapa=960.5;

t2 = toc;

con=alphaa*rho_cpa;

% Non-Dimensionalize
Sa=Kapa*L;
Bia=ha*L/(alphaa*rho_cpa);
tau_ma=alphaa*t_m/R^2;
Pa=[Sa Bia tau_ma];

129

%interpolation function
for i=1:M
 Svara(i)=((Pa(1)-par(i,1))/maxS)^2;
 Bivara(i)=((log10(Pa(2))-log10(par(i,2)))/log10(maxBi))^2;
 tau_mvara(i)=((log10(Pa(3))-log10(par(i,3)))/log10(maxtau_m))^2;
 Fa(i)=1/(Svara(i)+Bivara(i)+tau_mvara(i)+1)^(1/2);
end
t3=toc;

Ba=C*Fa';
t4=toc;

%arbitrary field
Asl=fe*Ba;
for i = 1:N
 As(i,1)=Asl(i);
end
t5=toc;

% festar=B*pinv(par');
Bn=pinv(fe)*As;
k=pinv(festar)*Bn;

time = toc; %final clock time
time1=t2-t1;
time2=t3-t2;
time3=t4-t3;
time4=t5-t4;
report=t5-t2;

% Input for comparison to a known case, change the row to match
parameters
w=xlsread('tc1','Sheet1', 'D67:Y67');

W=w';

tim=xlsread('tc1','Sheet1', 'D66:Y66');

% Redimensionalize to return temperature in time
ts = tim * R^2 / alphaa;
Temp = P * Kapa * R^2 * As / (con * pi * r_o^2) + Tinf;
TRet = P * Kapa * R^2 * W / (con * pi * r_o^2) + Tinf;

% Plot comparison of Input Profile and ROM Profile
figure;
plot(tim,w,'-')
hold on
plot(tim,Temp,'o')
legend({'DSFA Model';'ROM'})
ylabel('Temperature (K)')
xlabel('Time (s)')
hold off

AS=As';
TEMP=Temp';

131

APPENDIX F. SOURCE CODE FOR SOLVING THE INVERSE PROBLEM OF
DSFA WITH GA

Source code file: GA.m

Compile instructions: Ensure the Excel file is saved in the same

working directory that Matlab is in. Once

the file is loaded in the editor window,

simply click ‘run’ or type the name of the

file in the command window.

User inputs: None

Program input files: DSFA_par_360.xls. Raw solutions from the

coefficient builder program for each

parameter set and the additions from the

ROM_code_matrix.m program.

Required program functions: Matlab programmed function ROM_Func.m

needs to be saved in a directory that the

current path in Matlab has defined.

Program output files: None

% GA.m

Program source code:

% Genetic Algorithm Program for determining governing parameters h,
% kappa,alpha that would yield an arbitrary input temperature profile.

132

% Reads in parameters from the ROM_code_matrix.m program saved in Excel
% at 'DSFA_630.xls' and uses them in the ROM subroutine ROM_Func.m

% Inputs the FLUENT case from 'Blind_Test_##.xls' after running DSFA
% model

clear all; clc;
tic

Cp=xlsread('DSFA_630', 'C', 'A1:Y630'); % Ensure that the range
param=xlsread('DSFA_630', 'Sheet1', 'A4:C633'); % of all these read in
Smax=xlsread('DSFA_630', 'Vars', 'C1'); % matrices match the
Smin=xlsread('DSFA_630', 'Vars', 'D1'); % actual ranges in the
bimax=xlsread('DSFA_630', 'Vars', 'C2'); % Excel files
bimin=xlsread('DSFA_630', 'Vars', 'D2');
Tau_mmax=xlsread('DSFA_630', 'Vars', 'C3');
Tau_mmin=xlsread('DSFA_630', 'Vars', 'D3');
almax=xlsread('DSFA_630', 'Vars', 'A1');
almin=xlsread('DSFA_630', 'Vars', 'B1');
hcapmax=xlsread('DSFA_630', 'Vars', 'A2');
hcapmin=xlsread('DSFA_630', 'Vars', 'B2');
hmax=xlsread('DSFA_630', 'Vars', 'A3');
hmin=xlsread('DSFA_630', 'Vars', 'B3');
kapmax=xlsread('DSFA_630', 'Vars', 'A4');
kapmin=xlsread('DSFA_630', 'Vars', 'B4');
ro=xlsread('DSFA_630', 'Vars', 'A5');
R=xlsread('DSFA_630', 'Vars', 'A6');
L=xlsread('DSFA_630', 'Vars', 'A7');
tp=xlsread('DSFA_630', 'Vars', 'A8');
tm=xlsread('DSFA_630', 'Vars', 'A9');
P=xlsread('DSFA_630', 'Vars', 'A10');
Tinf=xlsread('DSFA_630', 'Vars', 'A11');
timestep=xlsread('DSFA_630','Vars','A12');
fe=xlsread('DSFA_630', 'fe', 'A1:Y200');
Bp=xlsread('DSFA_630', 'B', 'A1:Y630');

% Input time and temperature profiles

% timereadin =xlsread('Blind_Test_1_new','Sheet1','D2:D40002');
% Treadin=xlsread('Blind_Test_1_new','Sheet1','E2:E40002');
% timereadin=xlsread('Blind_Test_2','Sheet1','D2:D35302');
% Treadin=xlsread('Blind_Test_2','Sheet1','E2:E35302');
% timereadin=xlsread('Blind_Test_3','Sheet1','D2:D65536');
% Treadin=xlsread('Blind_Test_3','Sheet1','E2:E65536');
% timereadin = xlsread('Blind_Test_5','Sheet1','A2:A65536');
% Treadin = xlsread('Blind_Test_5','Sheet1','B2:B65536');
% timereadin = xlsread('Blind_Test_7','Sheet1','A2:A40002');
% Treadin = xlsread('Blind_Test_7','Sheet1','B2:B40002');
% timereadin = xlsread('Blind_Test_8','Sheet1','A2:A40002');
% Treadin = xlsread('Blind_Test_8','Sheet1','B2:B40002');
% timereadin = xlsread('Blind_Test_9','Sheet1','A2:A40002');
% Treadin = xlsread('Blind_Test_9','Sheet1','B2:B40002');
% timereadin = xlsread('Blind_Test_11','Sheet1','D2:D40002');
% Treadin = xlsread('Blind_Test_11','Sheet1','F2:F40002');
timereadin = xlsread('Blind_Test_12','Sheet1','A2:A65536');
Treadin = xlsread('Blind_Test_12','Sheet1','B2:B65536');

133

Bimax=log10(bimax); % Convert to logarithmic for faster
Bimin=log10(bimin); % ROM times
tau_mmax=log10(Tau_mmax);
tau_mmin=log10(Tau_mmin);
SP=size(param,1);
for i=1:SP
 param(i,2)=log10(param(i,2));
 param(i,3)=log10(param(i,3));
end

clear SDev
clear value

t1=toc;

C=Cp';
B=Bp';

testcases = 5; % Run the case 5 times to ensure consistent
convergence.
for aaa = 1:testcases
 Tins(:,aaa)=Treadin;
 timein(:,aaa)=timereadin;
end

for tests=1:testcases

clear SDev
clear value
tests
call = 0;
Tin=Tins(:,tests); % Input profile

[tin_max,locin]=max(Tin);
trisein=timein(locin);
Ti=Tin;

[len, i]=size(Ti);
ep=.05; % convergence criteria

N = 150; % Number of parameter sets

BEST_EVER(5) = -1e9; % Initialize fitness check
Gen=1;

% Create Initial Parameter sets
for i=1:N
 % Conv. coefficient
 h = hmin+(hmax-hmin)*rand();
 % Absorbtion coefficient
 kappa = kapmin+(kapmax-kapmin)*rand();
 % Thermal Diffusivity
 alpha = 10^(log10(almin)+(log10(almax)-log10(almin))*rand());
 % Heat Capacity

134

 hcap = hcapmin+(hcapmax-hcapmin)*rand();

 S=kappa*L;
 Bi=log10(h*L/(alpha*hcap));
 tau_m=log10(alpha*tm/R^2);

 % Determine Temperature profile for parameter set
 theta = ROM_Func(S,Bi,tau_m,C,B,param,Smax,Bimax,tau_mmax,fe);
 Temp = theta*(P*kappa*R^2/(pi*ro^2*alpha*hcap))+Tinf;
 call=call+1;

 for RT = 1:length(Temp)
 ROMtime(RT) = R^2 * timestep*(RT-1) / alpha;
 end

 % Find time of maximum temperature rise
 [t_max,loc]=max(Temp);
 trise=timein(loc);
 triseg=ROMtime(loc);

 % Create interpolated time and temperature arrays for comparison
 timeint(1) = timein(1);
 Tempint(1) = Tins(1);
 intp(1,:) = [1,0];
 t_i = 2;
 for itp = 2:length(Temp)
 while ((ROMtime(itp) > timein(t_i-1))&&(t_i-1 < numel(timein)))
 t_i = t_i + 1;
 end
 if t_i > numel(timein)
 t_i = numel(timein);
 end
 omega = (timein(t_i-1) - ROMtime(itp))/(timein(t_i-1)-...
 timein(t_i-2));
 intp(itp,:) = [t_i-1,omega];
 timeint(itp) = ROMtime(itp);
 Tempint(itp) = Tins(t_i-1)-omega*(Tins(t_i-1)-Tins(t_i-2));
 t_i = t_i + 1;
 end

 % Calculate Fitness Function for Randomly compiled parameter sets
 val=0;
 for jj=2:length(Temp)
 val=abs(Tempint(jj)-Temp(jj))/Tempint(jj)*100+val;
 end
 avdif=val/len*100;
 maxdiff = abs(tin_max-t_max)/(tin_max-Tinf) * 10;

 if trisein == triseg
 timediff = 0;
 else
 timediff = (max(trisein/triseg,triseg/trisein)-1)*10;
 end

 % Calculate Fitness Function
 f = -(avdif+maxdiff+timediff);
 start_par(i,:)=[h, kappa, alpha, hcap, f];

135

 % Store the best fitness function team
 if f > BEST_EVER(5)
 BEST_EVER(1,:)=[h, kappa, alpha, hcap, f];
 end
 C1 = max(start_par(:,5));
 value(Gen,1) = C1;

end
t2=toc;

par=start_par;
C1 = max(par(:,5));
val = C1;
SDev(Gen)=std(par(:,5));
SDEV=std(par(:,5));

NGen = 500; % Number of Generations

% Generation Loop
while SDEV>ep

 % Start Tournament
 for i = 2:N
 first = ceil(N*rand());
 second = ceil(N*rand());

 % Tournament selections
 if par(first,5) > par(second,5)
 tourney(i) = first;
 else
 tourney(i) = second;
 end
 end

 par(1,:)=BEST_EVER;

 % Store set that won the tourney as the set
 for i = 2:N
 par(i,:)=par(tourney(i),:);
 end

 % Crossover, Blend Crossover
 i = 1;
 while i < N

 parent1=par(i,:); % Store set i as Parent 1
 parent2=par(i+1,:); % Store set i+1 as Parent 2

 for m=1:2
 if rand() < .5 % 50% Probability of crossover
 r=rand();
 y1=r*parent1(m)+(1-r)*parent2(m);
 y2=(1-r)*parent1(m)+r*parent2(m);

136

 parent1(m)=y1;
 parent2(m)=y2;
 end
 end
 for m=3:3
 if rand() < .5 % 50% Probability of crossover
 r=rand();
 y1=10^(r*log10(parent1(m))+(1-r)*log10(parent2(m)));
 y2=10^((1-r)*log10(parent1(m))+r*log10(parent2(m)));
 parent1(m)=y1;
 parent2(m)=y2;
 end
 end
 for m=4:4
 if rand() < .5 % 50% Probability of crossover
 r=rand();
 y1=r*parent1(m)+(1-r)*parent2(m);
 y2=(1-r)*parent1(m)+r*parent2(m);
 parent1(m)=y1;
 parent2(m)=y2;
 end
 end

 par(i,:)=parent1; % set team i as child 1 (parent1)
 par(i+1,:)=parent2; % set team i+1 as child 2 (parent2)

 i=i+2;
 end

 % Mutation Algorithm

 for i = 1:N
 SPM = .75; % Starting prob. for mutation
 alfa(Gen) = SPM*(1-(Gen-1)/NGen)^4; % Change power for rate
 % Check case with random number against alfa for mutation
 for j = 1:4
 % Convective Coefficient Mutation
 if j == 1
 if rand()<alfa(Gen)
 hmut = hmin+(hmax-hmin)*rand();
 par(i,j)=hmut;
 end

 % Absorbtion Coefficient Mutation
 elseif j == 2
 if rand()<alfa(Gen)
 kapmut = kapmin+(kapmax-kapmin)*rand();
 par(i,j)=kapmut;
 end

 % Thermal Diffusivity Mutation
 elseif j == 3
 if rand()<alfa(Gen)
 almut = 10^(log10(almin)+(log10(almax)- ...
 log10(almin))*rand());
 par(i,j)=almut;
 end

137

 % Heat Capacity Mutation
 elseif j == 4
 if rand()<alfa(Gen)
 hcapmut = hcapmin+(hcapmax-hcapmin)*rand();
 par(i,j)=hcapmut;
 end
 end
 end
 end

 % Calculate Fitness function of new sets after tournament,
 % crossover, and mutation

 for i = 1:N

 h=par(i,1);
 kappa=par(i,2);
 alpha=par(i,3);
 hcap=par(i,4);

 S = par(i,2)*L;
 Bi = log10(par(i,1)*L/(par(i,3)*par(i,4)));
 tau_m = log10(par(i,3)*tm/R^2);

 % Calculate Temperature profile for the set
 theta = ROM_Func(S,Bi,tau_m,C,B,param,Smax,Bimax,tau_mmax,fe);
 Temp = theta*(P*kappa*R^2/(pi*ro^2*alpha*hcap))+Tinf;
 call=call+1;

 for RT = 1:length(Temp)
 ROMtime(RT) = R^2 * timestep*(RT-1) / alpha;
 end

 [t_max,loc]=max(Temp);
 trise=timein(loc);
 triseg=ROMtime(loc);

 % Create interpolated time and temperature arrays for
 % comparison
 timeint(1) = timein(1);
 Tempint(1) = Tins(1);
 intp(1,:) = [1,0];
 t_i = 2;
 for itp = 2:length(Temp)
 while ((ROMtime(itp) > timein(t_i-1)) && (t_i-1 < ...
 numel(timein)))
 t_i = t_i + 1;
 end
 if t_i > numel(timein)
 t_i = numel(timein);
 end
 omega = (timein(t_i-1) - ROMtime(itp))/(timein(t_i-1)-...
 timein(t_i-2));
 intp(itp,:) = [t_i-1,omega];
 timeint(itp) = ROMtime(itp);
 Tempint(itp) = Tins(t_i-1)-omega*(Tins(t_i-1)-Tins(t_i-2));

138

 t_i = t_i + 1;
 end

 % Calculate Fitness Functions for the sets
 val=0;
 for jj=2:length(Temp)
 val=abs(Tempint(jj)-Temp(jj))/Tempint(jj)*100+val;
 end
 avdif=val/len*100;
 maxdiff = abs(tin_max - t_max)/(tin_max-Tinf)*10;
 if trisein == triseg
 timediff = 0;
 else
 timediff = (max(trisein/triseg,triseg/trisein)-1)*10;
 end

 % Calculate Fitness Function
 f = -(avdif+maxdiff+timediff);
 par(i,5)= f;

 if f > BEST_EVER(5)
 BEST_EVER(1,:)=[par(i,1), par(i,2), par(i,3), par(i,4), f];
 end

 end

 % Increment Generation number
 Gen=1+Gen;
 % Keep the best set on to the next generation (elitism)
 Geners(tests)=Gen; % Keep amount of generations run for each test
 par(1,:)=BEST_EVER(1,:);
 C1 = max(par(:,5));
 value(Gen,1) = C1;
 SDev(Gen)=std(par(:,5));
 SDEV=SDev(Gen);
 if SDev(Gen)<ep
 break
 end
 if Gen>NGen
 break
 end

end
time = toc;

h = BEST_EVER(1,1);
kappa = BEST_EVER(1,2);
alpha = BEST_EVER(1,3);
hcap = BEST_EVER(1,4);

S = kappa*L;
Bi = log10(h*L/(alpha*hcap));
taum = log10(BEST_EVER(1,3)*tm/R^2);

theta = ROM_Func(S,Bi,tau_m,C,B,param,Smax,Bimax,tau_mmax,fe);
dimTemp=P*kappa*R^2*theta/(alpha*hcap*pi*ro^2)+Tinf;
dimTempin=P*kappa*R^2*Tin/(alpha*hcap*pi*ro^2)+Tinf;

139

dtime = timein*R^2/alpha;

done(tests,:)=[kappa; alpha; hcap; h];

figure;
plot(timein,Tins);
hold all
plot(ROMtime,Temp,'bo');
hold off
xlabel('Time (sec)')
ylabel('Temperature (K)')
legend('Input Temperature Profile','GA with ROM Profile')

end

% Rom_Func.m

Required functions source code:

% Reduced Order Modeling simulation subroutine for the calculation time
% dependant temperature profiles in a Pulsed Laser Diffusion
% experiment.

% Parameters are brought in from GA.m program and input into subroutine
% for the ROM to simulate temperature profile.

% Returns Temperature, As.

function ROM_Func=f(Sa,Bia,tauma,C,B,par,maxS,maxBi,maxtaum,fe);

[i,M]=size(C);
[N,i]=size(fe);

% Read input arbitrary conditions from GA program
Pa=[Sa Bia tauma];

%interpolation function
for i=1:M
 Svara(i)=((Pa(1)-par(i,1))/maxS)^2;
 Bivara(i)=(((Pa(2))-(par(i,2)))/(maxBi))^2;
 taumvara(i)=(((Pa(3))-(par(i,3)))/(maxtaum))^2;
 Fa(i)=1/(Svara(i)+Bivara(i)+taumvara(i)+1)^(1/2);
end

% ROM matrix manipulation to return As

Ba=C*Fa';

Asl=fe*Ba;
for i = 1:N
 As(i,1)=Asl(i);

140

end

ROM_Func=As;

	Measurement of Thermal Diffusivities Using the Distributed Source, Finite Absorption Model
	BYU ScholarsArchive Citation

	Title Page

	Abstract

	Acknowledgements

	Table of Contents

	List of Tables

	List of Figures

	Nomenclature

	1 Introduction
	1.1 Motivation
	1.2 Outline

	2 Previous Pulsed Laser Diffusion Models
	2.1 Introduction
	2.2 Parker Model Development
	2.3 Maglić Method
	2.4 ASTM Method
	2.5 Summary of Previous Models

	3 Parameter Identifcation based on an Improved PLD Model
	3.1 Parameter Identification
	3.2 Inversion of the DSFA Model
	3.3 Model Definition
	3.4 DSFA Model Equation Development
	3.4.1 Eigenfunction Expansion
	3.4.2 Infinite Series Truncation
	3.4.3 DSFA Model Validation

	3.5 Genetic Algorithm Development and Implementation
	3.6 Reduced Order Model Development
	3.6.1 Defining Parameters
	3.6.2 Creation of Solution Sets

	3.7 ROM Model Verification
	3.8 Example Case Testing
	3.8.1 Gallium Arsenide
	3.8.2 Silicon
	3.8.3 Cupric Oxide
	3.8.4 Aluminum Antimony

	4 Results
	4.1 Blind Test Cases
	4.1.1 Iron Disilicide
	4.1.2 Gallium Phosphide
	4.1.3 Indium Phosphide
	4.1.4 Zinc Selenide
	4.1.5 Aluminum Gallium Arsenide

	5 Summary and Conclusions
	References

	Appendix A. Parker Model Development
	Appendix B. DSFA Development
	Appendix C. Source Code for Creation of the Governing Parameter Sets for the DSFA Thermal Model
	Appendix D. Source Code for the DSFA Model for the Matrix Creation of the ROM in Matlab
	Appendix E. Source Code for the Input of Arbitrarty Parameters for the ROM in Matlab
	Appendix F. Source Code for Solving the Inverse Problem of DSFA with GA

