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ABSTRACT 
 

 Measurement of Thermal Diffusivites Using the  
Distributed Source, Finite Absorption Model 

  
James B. Hall 

Department of Mechanical Engineering, BYU 
Master of Science 

 
Thermal diffusivity in an important thermophysical property that quantifies the ratio of 

the rate at which heat is conducted through a material to the amount of energy stored in a 
material.  The pulsed laser diffusion (PLD) method is a widely used technique for measuring 
thermal diffusivities of materials.  This technique is based on the fact that the diffusivity of a 
sample may be inferred from measurement of the time-dependent temperature profile at a point 
on the surface of a sample that has been exposed to a pulse of radiant energy from a laser or flash 
lamp. 

 
An accepted standard approach for the PLD method is based on a simple model of a PLD 

measurement system. However, the standard approach is based on idealizations that are difficult 
to achieve in practice. Therefore, models that treat a PLD measurement system with greater 
fidelity are desired.  The objective of this research is to develop and test a higher fidelity model 
that more accurately represents the spatial and temporal variations in the input power. This 
higher fidelity model is referred to as Distributed Source Finite Absorption (DSFA) model. 

 
The cost of the increased fidelity associated with the DSFA model is an increase in the 

complexity of inferring values of the thermal diffusivity. A new method of extracting values 
from time dependent temperature measurements based on a genetic algorithm and on reduced 
order modeling was developed.  The primary contribution of this thesis is a detailed discussion of 
the development and numerical verification of this proposed new method for measuring the 
thermal diffusivity of various materials. 

 
Verification of the proposed new method was conducted using numerical experiments. A 

detailed model of a PLD system was created using advanced engineering software, and detailed 
simulations, including conjugate heat transfer and solution of the full Navier-Stokes equations, 
were used to generate multiple numerical data sets. These numerical data sets were then used to 
infer the thermal diffusivity and other properties of the sample using the proposed new method. 
These numerical data sets were also used as inputs to the standard approach. The results of this 
verification study show that the proposed new method is able to infer the thermal diffusivity of 
samples to within 4.93%, the absorption coefficient to within 10.57 % and the heat capacity of 
the samples to within 5.37 %. Application of the standard approach to these same data sets gave 
much poorer estimates of the thermal diffusivity, particularly when the absorption coefficient of 
the material was relatively low. 
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1 INTRODUCTION 

1.1 Motivation 

The thermal diffusivity of a material 

 

c
k
ρ

α =
 

(1-1) 

 

is an important physical property that quantifies the ratio of the rate at which heat is conducted 

through the material relative to the amount of energy that is stored in the material.  A material 

with a large diffusivity will more quickly come to thermal equilibrium when the temperature of 

its surroundings fluctuates, while materials that have small diffusivities take longer to come to 

equilibrium.  Values for thermal diffusivities vary from 10-3 m2/s for metallic materials to 10-7 

m2/s for nonmetallic materials. 

Accurate knowledge of the thermal diffusivity of a material is critical in selecting 

materials to meet design specifications, in modeling transient thermal transfer, and in calibrating 

temperature sensors and heat flux gauges [Hay et al].  In addition to their intrinsic worth, 

measurements of diffusivity are frequently used in conjunction with independent measurements 

of the materials density and specific heat to calculate the thermal conductivity of materials 

[ASTM].  The thermal conductivity of a material is an important thermal transport property, and 
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accurate thermal conductivity measurements are essential to the analysis of conduction heat 

transfer. 

Since the thermal diffusivity quantifies the rate at which a material comes to thermal 

equilibrium with its surroundings, a logical approach to measuring α is to perturb the temperature 

of a sample and to monitor its time-dependent temperature as it returns to equilibrium.  The 

Flash Method [Hay et al., ASTM] is a common implementation of this approach.  Initially 

proposed by Parker in 1961 [Parker], the underlying premise of the flash method is very 

straightforward.  One face of a thin sample is exposed to a pulse of radiant energy which is 

emitted by a laser or by a flash lamp.  The resulting time-dependent temperature profile at a point 

on the opposite face is recorded, and comparison of this measured profile with the temperature 

profile generated by a thermal model of the process is used to infer the diffusivity of the material.  

Over the years, the theory and application of the flash method have been refined and 

improved by a number of investigators [Hay et al., Maglić, Vozar, Baba].  In particular, non-

ideal phenomena occurring in practical measurement systems have been treated with greater 

fidelity through the use of increasingly complex thermal models.  However, the complexity and 

computational expense of these algorithms used to infer the thermal diffusivity from transient 

temperature measurements have increased in parallel with the increased complexity of the 

thermal models. 

Methods such as the flash method fall into a class of problems known as parameter 

estimation [Tarantola], which is a type of inverse problem.  Problems of this class rely on a 

model of a dynamic process, which is generally expressed as a partial differential equation.  This 

governing equation involves a dependent variable and one or more independent variables.  There 

are sources or sinks and properties of the system control how variations in these and the 
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independent variables influence the dependent variable. The dependent variable in the governing 

equation is often referred to as the state variable and the properties are generally referred to as 

parameters.  State variables are observable, meaning they can be measured directly, whereas 

parameters are generally not observable.  Therefore, estimation of a parameter requires 

postulating a relationship between the state variable and the targeted parameter.  This 

relationship is then used to infer the parameter based on measurements of the state variable 

[Beck and Arnold].  In the flash method, the state variable is the time-dependent temperature 

profile at some location within the sample, and the targeted parameter is the thermal diffusivity. 

The objective of the research presented in this thesis is to develop a parameter estimation 

algorithm for a pulsed laser diffusivity measurement (PLD) system based on reduced order 

modeling (ROM) and a Genetic Algorithm (GA).  Tests of the proposed data reduction algorithm 

are conducted using simulated measurements.  The proposed algorithm is shown to be superior 

to the parameter estimation method recommended in the most recent ASTM standard [ASTM]. 

1.2 Outline 

The model currently implemented in the ASTM standard for PLD measurement systems 

is developed and described in Chapter 2. Limitations associated with the ASTM standard 

approach are clearly revealed by thoroughly examining its theoretical basis and derivations of its 

fundamental equations. 

Chapter 3 presents a more physically realistic thermal model which has been developed 

for this study.  This model is called the Distributed Source Finite Absorption (DSFA) model.  

This model incorporated the effects of three phenomena neglected by the ASTM standard – heat 

loss off the top surface of the sample, finite laser pulse durations, and nonuniform heating of the 
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sample.  These three phenomena have been identified as the most significant by Vozar and 

Hohenauer [Vozar].  Although an analytical model is obtained, evaluation of this high fidelity 

model is computationally expensive, requiring approximately 0.85 seconds using a desktop PC 

with 2.30 GHz processor and 2.00 GB of RAM.  It is also not possible to develop a simple 

relationship between measured temperatures and thermal diffusivities based on the DSFA model.  

A random search procedure utilizing a genetic algorithm (GA) is described and implemented to 

solve the inverse problem.  Due to the computational requirements of the GA, a reduced order 

model (ROM) has been developed to use in conjunction with the GA, resulting in a more 

computationally efficient approach.  The primary result described in Chapter 3 is the 

demonstration that the inverse problem of evaluating properties from a temperature profile can 

be solved efficiently using ROM with a GA. 

Chapter 4 contains results of five blind test cases in which temperature profiles generated 

by FLUENT were used as inputs.  Thermal diffusivity values were obtained using the proposed 

method are compared with the actual values and to values obtained using the ASTM standard.  

The results of these blind test cases indicate that the DSFA model based ROM with GA is more 

robust and accurate than the ASTM standard. 

Chapter 5 summarizes the work done and gives recommendations for further 

investigations.  Several appendices follow the list of references. The appendices contain the 

derivation of the Parker model – the base of the ASTM method, complete derivation of the 

DSFA, Matlab source codes that were written to run the DSFA model, the GA, and the ROM. 
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2 PREVIOUS PULSED LASER DIFFUSION MODELS 

2.1 Introduction 

Thermal diffusivity measurements based on the laser flash method, also known as Pulsed 

Laser Diffusion (PLD), were first introduced in 1961 by Parker et al [Parker].  It is a method to 

find the thermal diffusivity with use of a laser pulse on the surface of a material sample.  Parker 

et al. theorized that one could pulse a laser on a material sample and based on the thermal 

response of the rear surface calculate the diffusivity of the sample.  PLD is currently being used 

widely in material science and composites [Vozar], carbon nanotubes [Haydari], and the 

electronics industry [Fullem]. 

Over the years, many researchers have improved the model originated by Parker.  There 

have been modifications to the analytical solutions to try and improve accuracy and reliability of 

the models [Maglić].  There is also discussion in the literature of the effects of the assumptions 

of the Parker model [Hay], [McMasters].  With all the work that has been done, the Parker model 

is still the backbone of the ASTM standard method used today [ASTM]. 

2.2 Parker Model Development 

The approach developed by Parker is based on a simple model [Parker].  The thermal 

model used is a one dimensional model of temperature profile in the material sample.    A 

schematic of this model is shown in Figure 2-1. 
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Figure 2-1: Parker Model Schematic 
 

The development of the thermal model starts with the heat equation.  The heat equation 

with volumetric heat generation in radial coordinates is shown in Eq. (2-1). 
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Based on symmetry, Parker’s model neglects temperature variations in the the r and φ  

directions.  Parker also assumes no internal heat generation as all the energy is absorbed in a very 

small thickness on top of the sample designated by δ.  These assumptions reduce the heat 

equation from Eq. (2-1) to Eq. (2-2). 
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Further simplifications are achieved by assuming constant properties such that k, ρ and c 

are uniform and independent of temperature giving Eq. (2-3). 

 

t
T

z
T

∂
∂

=
∂
∂

2

2

α  (2-3) 

 

Assuming that the pulse is absorbed instantaneously at the surface leads to the 

assumption that the initial temperature profile may be approximated by the step function given in 

Eq. (2.4). 
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The solution to this partial differential equation is an infinite series solution.  The 

derivation of the solution is shown in Appendix A.  The solution in infinite series form is given 

in Eq. (2-5). 
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There are two dimensionless parameters that are introduced, V and ω, as shown in Eq. (2-

6) and Eq. (2-7) where TM is the maximum temperature from the laser pulse that is reached by 

the rear face.  

 



8 

MTtLTtLV /),(),( =  (2-6) 

 

22 / Ltαπω =  (2-7) 

 

Combining Eq. (2-5), Eq. (2-6), and Eq. (2-7) yields Eq. (2-8) 

 

( ) ( )∑
∞

=

−−+=
1

2exp121
n

n nV ω  (2-8) 

 

This yields the common form that is used for determining the diffusivity based on the 

time that is takes the sample to go half way to its maximum value after the laser pulse, t0.5, as 

shown in Eq. (2-9) as the nondimensional temperature rise, V, and nondimensional time, ω, are 

shown in Figure 2-2.   

 

 

Figure 2-2: Nondimensional Temperature Rise from Parker Equations 
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As is shown in Appendix A, when V is set to be 0.5, or half the maximum temperature 

rise, the value for ω is 1.3698.  Once a temperature profile of a sample of thickness L is known 

in time, one just needs to determine the time taken to reach the midpoint temperature, and α may 

be directly evaluated with Eq. (2-9). 

 

5.0
2

23698.1
t

L
π

α =  (2-9) 

2.3 Maglić Method 

The method introduced by Maglić in 1992 [Maglić] is based on the same model as Parker 

[Parker].  Due to having the same base model, all the same assumptions carry over from the 

Parker model.  The novelty of this method is that it does not restrict the calculation of only the 

time at half the temperature rise.  It allows for finding the time to reach a number of different 

percent rises along the profile and averaging the returned values of α, which gives a more 

accurate measurement of the thermal diffusivity.  With the increase in flexibility of the method, 

the equation for α is slightly different than that of Parker in Eq. (2-9).  The Maglić method 

equation is shown in Eq. (2-10) Where Kx is a constant that corresponds to an x percent rise, and 

tx is the time for the temperature to get to that x percent rise. 

 

x

x

t
LK 2

=α  (2-10) 
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Values of Kx and percent temperature rise, x, are shown in Table 2-1 [Maglić]. It is 

proposed by Maglić to not just use one single point, but to use as many as possible to reduce the 

error in the system and provide for more accurate evaluations of the diffusivity. 

 

Table 2-1: Values of Kx for Eq. (2-10) for Constant Laser Power [Maglić] 
x (%) Kx  x (%) Kx 

10 0.066108  60 0.162236 
20 0.084251  66 0.181067 
25 0.092725  70 0.191874 
30 0.101213  75 0.210493 
33 0.106976  80 0.233200 
40 0.118960  90 0.303520 
50 0.138785    

 

2.4 ASTM Method 

The ASTM method also uses the same model as Parker [ASTM].  Similarly with the 

Maglić method, the same base assumptions from the Parker model also carry into the ASTM 

method.  The calculation that it uses for determining α is the same as Eq. (2-10) with the values 

as shown in Table 2-2. 

 

Table 2-2: Values of Kx for Eq. (2-10) for Constant Laser Power in ASTM Method 
x (%) Kx 

25 0.092725 
50 0.138785 
75 0.210493 

 

It is clear that the ASTM method is a balance between the Parker and Maglić methods.  

The value of 0.138785 is the same as the Parker where 0.138785 = 1.36975/π2.  The value of 

0.138785 corresponds to the value of the 50% temperature rise as is seen in Table 2-1.  The 
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ASTM method finds the balance of the Parker and Maglić methods by stating that to check the 

validity of the measurement, use the equation developed by Maglić, Eq. (2-10), at a minimum of 

two other points along the profile of the rise curve, generally the 25% and 75% rise times as 

shown in Table 2-2.  With the three measurements it allows a moderate level of confidence that 

the value returned is the diffusivity if they correlate within 5%.  If the values do not correlate 

within the given level, then the response curve is to be analyzed to determine what effects are 

causing the error in the solution.  The ASTM standard mentions that if errors are large, look at 

effects of a non-infinitesimally short laser pulse, radiant effects, and non-uniform heating 

[ASTM].  There are a number of corrections that are made to the model to account for these 

influences as stated previously in efforts to improve the solution.   

2.5 Summary of Previous Models 

It is seen that the Parker [Parker] model is the basis for PLD system calculation.  The 

temperature of the rear surface is measured after a laser pulse. The time required for the 

measurement to get to a predetermined percent of the temperature rise is then used in an equation 

to return the diffusivity of the substance.  This can be done with one point in time, or many 

points in time, but the core idea is the same. 

This base model involves a number of simplifying assumptions.  There are assumptions 

about the laser pulse power being constant and infinitesimally short.  There are assumptions 

about the material sample absorbing all the energy uniformly in a thin layer on the top surface, 

that the heat transfer in the sample is one-dimensional, and that the properties of the material are 

constant.  There is also the assumption that convective and radiative heat losses from the top 

surface are negligible.  Each of these assumptions simplifies the physics of the problem and 
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removes some of the physical realism of the model.  A new model for finding α is desired that 

does not use all the assumptions that are used in the current models so that the accuracy of the 

system can be improved.  With a new higher-fidelity model, the temperature profiles are 

simulated more accurately.  More accurate temperature profiles should allow for more accurate 

measurement of the diffusivity of the material. 
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3 PARAMETER IDENTIFCATION BASED ON AN IMPROVED PLD MODEL 

3.1 Parameter Identification 

The objective of this study is to develop an improved PLD model that may be used to 

determine the thermal diffusivity and possibly other material parameters based on measurements 

of the time-dependent temperature profile on the surface of the sample. The proposed new model 

is referred to as the Distributed Source Finite Absorption (DSFA) model, because it accounts for 

spatial variations in the pulse and in the absorption of the pulse within the sample. The DSFA 

model also accounts for convective and radiative heat losses from the uninsulated top surface of 

the sample, as illustrated in Figure 3-1. Note that for convenience the origin of the coordinate 

system is placed at the center of the lower surface instead of at the center of the top surface, 

where it was located in developing the Parker model as shown in Figure 2-1.  

  The DSFA model requires four inputs.  In additions to the heat transfer coefficient, h, 

which quantifies both convective and radiative heat loss from the uninsulated upper surface, the 

DSFA model depends on the following material properties of the sample: 

• The thermal diffusivity, α 

• The heat capacity, ρc 

• The absorption coefficient, κ 
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Figure 3-1: DSFA Model Schematic 
 

The DSFA model produces the time-dependent, axisymetrical temperature profile in the 

sample, T(r,z,t).  However, it is desirable to use the time-dependent temperature profile at a 

simple point on the lower surface of the sample as data that may be used to measure the thermal 

diffusivity and other input parameters.  For convenience, the origin will be used as the data 

acquisition point.  A schematic of the forward problem is shown in Figure 3-2.  The coordinate 

system used in this work is also shown in Figure 3-1. 

 

 

Figure 3-2: Forward Model Schematic 
 

With fewer assumptions, the DSFA model more accurately represents the heat transfer 

process occurring in an actual PLD system. 
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It is desirous to be able to take the output from the model, T(0,0,t), and perform the 

inverse operation to return results of the thermal diffusivity, heat capacity, absorption coefficient 

and heat transfer coefficient. The inverse operation is illustrated schematically in Figure 3-3.   

 

 

Figure 3-3: Inverse Model Schematic 
 

3.2 Inversion of the DSFA Model 

Because the DSFA model represents a PLD system with greater fidelity, this improved 

model does not result in a simple relationship between the targeted parameter, thermal 

diffusivity, and the measured temperature profile as was the case for the simplified Parker model. 

Therefore, an iterative, random search process based on a genetic algorithm (GA) [Ostrowski] is 

proposed.  A schematic representation of the inversion of the DSFA model is shown in Figure 

3-4. 

Due to the complexity of the DSFA model, each run is computationally expensive – a 

typical MATLAB run requires approximately 0.85 seconds on a 2.3 GHz processor.  In running a 

GA, the model is called many times.  Solution of the inverse problem using a GA typically 

requires that the DSFA model can be executed more than 7500 times.  Performing the operation 

from Figure 3-4 would require more than 17 hours to complete.   
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Figure 3-4: Inversion of the DSFA Model 
 

To speed the process of the GA, a highly-accurate reduced order model (ROM) is 

developed.  The ROM is able to simulate the DSFA model with high levels of accuracy over the 

entire profile and is much faster than the DSFA model.  The modified process takes the 

computationally expensive DSFA process that is shown in Figure 3-4 and replaces it with a 

ROM in order to solve the inverse problem, as shown in Figure 3-5.   

 

 

Figure 3-5: Inversion of the DSFA Model using ROM 
 

Using the ROM in place of the DSFA allows the inverse problem to be solved in a 

fraction of the time.  A typical MATLAB run of the ROM on a 2.3 GHz processor is only 0.0025 

seconds.  Since running the DSFA requires approximately 0.85 seconds, the inverse problem 
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with ROM can be solved in 0.3 percent of the time that would be required to solve the problem 

using the DSFA, or about three minutes.  Since the ROM is so much faster than the DSFA 

model, it is more efficient to utilize the ROM as the simulation technique, although either model 

can return accurate solutions. 

3.3 Model Definition 

The DSFA model captures more of the true physics of the problem by the use of more 

appropriate assumptions.  Using assumptions that more closely match the actual physics should 

allow for more accurate data.  As shown in Figure 3-6, the top surface of the sample is not 

insulated, so there will be heat loss due to convection and radiation from this surface.  These 

losses are modeled using h as the heat transfer coefficient.  The bottom and outside 

circumferential surfaces are well insulated and assumed to be adiabatic.  The laser irradiation is 

modeled as a Gaussian profile in r and as a triangle pulse in t.  This model of the temporal 

variation in the pulse follows the recommendations of ASTM [ASTM].   

 

 

Figure 3-6: DSFA Model of PLD Schematic 
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As in other PLD models, the thermal and physical material properties are assumed to be 

uniform constants. 

3.4 DSFA Model Equation Development 

The equation that determines the spatial and time dependent temperature profiles in the 

sample are shown in Eq. (3-1).   
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Since the model is axisymetric, temperature variations in the φ  direction are neglected.  

The constant property assumption is also implemented to yield Eq. (3-2). 
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The volumetric heat generation, q , is dependent on the laser pulse size, radial position, 

and the axial position into the material due to optical depth.  Eq. (3-3) gives the function of q  

where P is the laser power, κ is the absorption coefficient, ro is a measure of the radius of the 

beam, and f(t) is the laser power duration function. 
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The function, f(t) represents how the strength of the pulse varies in time.  It is suggested 

in the literature that a triangle pulse be used [ASTM].  The strength of the pulse is assumed to 

increase linearly from zero at t = 0 to a maximum, at t = tm.  From t = tm, the strength of the 

pulse decreases linearly back to zero at t = tp.  The values for tm and tp may be determined by 

measuring the time dependence of the laser pulse power with an optical detector.  This is 

dependent on the system that is being used as not all lasers will have the same temporal 

characteristics. Eq. 3-4 gives f(t) for the recommended profile and f(t) is plotted in Figure 3-7. 
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Figure 3-7: Triangle Pulse of the Laser 
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For a second order partial differential equation in two dimensions with a time 

dependence, four boundary conditions are required and also one initial condition.  The boundary 

conditions and initial condition are shown in Eq. (3-5) and Eq. (3-6). 
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In order to simplify the solution, the problem is nondimensionalized as outlined in the 

Appendix B.  The nondimensional equation is Eq. (3-7). 
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The boundary conditions, initial condition, and time dependent laser pulse function are 

also nondimensionalized.  The nondimensional boundary condition is Eq. (3-8), the initial 

condition is Eq. (3-9), and the laser pulse function in Eq. (3-10).   The Biot number, Bi, is given 

by Bi=hL/k. 
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3.4.1 Eigenfunction Expansion 

With the equation nondimensionalized, the Eigenfunction expansion method can be 

performed to obtain the nondimensional temperature profiles, θ.  The expansion of θ can be done 

according to Eq. (3-11).   
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The functions Rn(υ) and Zm(ζ) are obtained by the solution of the associated Sturm-

Louisville problems.  Rn(υ) is found to be J0(λnυ) and Zm(ζ) is found to be cos(βmζ).  Ji is the 

Bessel Function of the first kind, i is the order of the Bessel Function.  The expanded solution of 

θ is shown in Eq. (3-12). 

( ) ( ) ( ) ( )
( )

( )
( ) ( )

( ) ( )

( ) ( )
( )

( )

( )

( )

( )( )

( ) 2

2

2

222

2

2

2

22

1

0
02

0

1

1 0
0

01

1
1

2

2

0

2

2

RP
krTT

L
Ra,R

r,R
t,L

z,L
r,LS

c
hL

k
hLBi

a

eee

ee

eee

eee

BiBi
SecosSBi

S
G

dJe
J

F

GFb
J

Bitan

Jcosb,,

o

o
o

m

qpqp

pmpmp
mpqpm

pm

qpmm

qpmpppm

pmqpm

mqp
qpm

qp

q

S
q

q

q

p
p

p

qpqpqp

p

qq

q p
pqqp

pqpmqp
qp

qpqp

qpmqpqp

qpqp
qp

o

κ
πθ

ρατξρκ

αρ

βλγ

ττττττ
ττγτ

τττ
τγττ

γτττττ

ττγτ

τττγ
γτ

τ

β
β

β

ρρλρ
λ

ττ

λ

ββ

ρλξβττξρθ

τγτγ
τγ

τγτγ

τγτγτγ

τγτγ
τγ

ρ
ρ

∞

−

−

−

−

−

∞

=

∞

=

−=

======

==

+=


















>+−−
−

≤<













+−

−+−

−

≤≤+−

=Τ

++

−+







+

=

=

Τ=

=

=

=

∫

∑∑

 (3-12) 

The values of βm are the roots of the equation Bi = βm tan(βm).  The values of λn are the 

roots of the equation J1(λn) = 0.  Whereas there is no zero root of the βm equation, the infinite 

summation starts at one.  There is, however, a zero root of the λn equation, and thus the infinite 
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sum is started at n = 0.  The coefficient b is modified for the zero value of n, and thus it is 

separated from the double infinite sum.  The rest of the development of the Eigenfunction 

expansion is mathematically complex and the entire derivation is covered in Appendix B.  Eq. 

(3-12) is returned from the derivation in Appendix B. 

3.4.2 Infinite Series Truncation 

With increased amount of terms, the computational time increases geometrically as each 

point is calculated from the truncated series.  With the truncation at NT terms on both indices, Eq. 

(3-12) becomes Eq. (3-13).  The other constants and functions previously defined in Eq. (3-12) 

stay the same and are not repeated for simplicity. 
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This equation is a mathematical solution to the original heat equation and boundary 

conditions.  The accuracy of this equation in comparison to the analytical model can only be 

shown by a large number of terms in the truncated series.   

To determine that there were sufficient values being used; a study was performed using 5, 

10, 15, 30 and 50 terms.  There was no change in any of the profiles when using 10 terms or 

more, and thus the 10 term solution was determined to be used as the base.  Having decided on 

10 terms for the study, the first 10 eigenvalues were needed.  Table 3-1 is an example of what 

one of the eigenvalue sets contains when the Biot number is 8.081 E -4.   
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Table 3-1: First 10 Eigenvalues Including 0 for Bi=8.081 E -4 
Eigenvalue λn Βm 

1 0 0.0284 
2 3.8317 3.1418 
3 7.0156 6.2833 
4 10.1735 9.4249 
5 13.3237 12.5664 
6 16.4706 15.7080 
7 19.6159 18.8496 
8 22.7601 21.9912 
9 25.9037 25.1328 
10 29.0468 28.2744 

 

3.4.3 DSFA Model Validation 

The DSFA validation was completed by comparing the results from the model from Eq. 

(3-13) to the ASTM method for PLD and comparing the results of diffusivity to the predicted 

results of the diffusivity.  The DSFA model that has been developed for this analysis uses a 

spatially varying Gaussian laser intensity profile with a triangle pulse.  For model validation, the 

radius was made to be much larger than the sample.  The distance to one sigma from center was 

twice that of the sample size.  This resulted in the laser power that was incident on the top 

surface of the sample to be very nearly constant.  For the large laser radius, the measurement 

location on the back of the sample does not affect the results.  This is due to the fact that the laser 

pulse is approximately uniform, having no radial dependence.  The laser power time dependence 

was also reduce to be more close to infinitesimally short.  The convective heat coefficient was 

set to be 1 as values of zero would alter the equations and to protect against divide by zero.  The 

value for the absorption coefficient was set to be much higher, simulation an even larger optical 

depth.  This simulates more closely the behavior of all the energy absorbed in a very thin layer 

on top of the sample.  The values returned by the DSFA model were all similar and the averages 
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of the values have small error, approximately 5%, between these values in Table 2-1 and any of 

the cases analyzed.  As the ASTM standard is accurate within 5% [ASTM], this is an acceptable 

range.  As is shown in Figure 3-8, the non-dimensional temperature profiles of the DSFA and the 

Parker are very similar. 

 

 

Figure 3-8: Comparison of Parker and DSFA 
 

The differences in diffusivities between the tested cases are up to orders of magnitude 

different and this verifies that the values in Table 2-1 themselves are not dependent on the 

material.  As the Eq. (2-8) and Eq. (2-9) include the thickness term, the values given are also 

independent of thickness of the sample. 

3.5 Genetic Algorithm Development and Implementation 

Due to the complexity of the DFSA model, it cannot be inverted such that inputting a 

temperature profile will return a value for α.  The DSFA model can only solve the forward 

problem when diffusivity is known.  Thus, the DSFA model developed in this work needs a 
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search technique to be able to determine α of the tested material.  To solve the inverse problem, a 

search technique needs to run the forward problem many times to compare the experimental 

profile to the analytical profiles calculated by the DSFA model.  A GA can be used as the search 

technique for the method. 

The solutions to inverse problems are often found by repeated tests of parameter cases 

until the desired solution is returned.  This method of iterative process solution is 

computationally intensive.  It must perform many simulations in an organized search so that the 

desired result may be found.  The process returns the value for the time-dependent temperature, 

Ti(0,0,t) for each of the parameter sets generated.  It then compares the returned temperature 

profile to the measured temperature profile and calculates a fitness value.  After all parameter 

sets have been created for the generation, convergence is tested using the fitness values.  

Convergence of a GA is when all the parameter sets in a population consist of similar individuals 

[Davis].  When convergence is achieved, the process is stopped and the parameter set of α, κ, ρc, 

and h is returned as the solution to the inverse problem.  If convergence is not reached in the 

current generation, the parameter sets in the population are modified using tournament selection, 

crossover, and mutation.  This process is done for each of the population members by the GA.  

New generations are created until the GA has converged. 

Simple GAs are widely used in many practical problems.  A GA has its foundations 

based on the concept of diversity, inheritance, and fitness pressure.  The GA randomly selects the 

values from within the parameter bounds to make up the first group of parameter sets for the 

generation.  It then calculates the fitness values of the members of the population and the 

generational progression can begin.  Diversity is introduced into the procedure by the 

modification of the parameters in the sets.  Inheritance is the concept of having the changes made 
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from one generation to the next where new parameter sets gain the positive traits of the previous 

generation.  The fitness pressure is what allows the algorithm to achieve a desirable solution.  

Fitness values are calculated by the program and compared one with another to determine the 

best values. 

The GA for the DSFA model was run with the fitness function that uses an average error 

of the temperature values along temperature profile of length M, the absolute error in the 

maximum temperature, and a penalty function.  The penalty function utilizes the larger of 

tmaxrise,input/tmaxrise,DSFA and tmaxrise,DSFA/tmaxrise,input.  The maximum of the two values is used as it 

gives the largest penalty for variations in the curve.  This penalty function only is used when the 

values for tmaxrise,input and tmaxrise,DSFA are not the same, when they are the same, the penalty 

function returns zero.  The total fitness function with the penalty function is shown in Eq. (3-14). 
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The absolute values in the fitness function allow the GA to find the difference and always 

ensure that the value is a positive number.  The negative sign at the start flips the value which 

allows the fitness pressure to be maximized.  The maximization procedure forces small error to 
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bring the fitness value closer and closer to zero.  This is done so that the fitness value is never 

being able to cross over zero and then increase the error. 

For this case, there were 150 parameter sets generated randomly.  The random 

distribution of the fitness values of the first population of a sample test is shown in Figure 3-9. 

 

 

Figure 3-9: Distribution of Fitness Values at First Generation before the start of the GA 
 

At the start of each generation, the parameter sets compete in pairs against one another to 

determine the better set.  This competition is done using tournament selection.  Inheritance of 

characteristics in the GA is due to the use of this selection technique.  The fitness value of one 

parameter set is compared with the value of the other.  The set with the higher value is then 

selected.  This is done to populate the next generation with the parameter sets which have the 

highest fitness values.  Each of the parameter sets in the population compete with the others and 

are combined to yield the highest possible fitness values for that population.  
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After the tournament selection, the GA performs crossover and mutation on the 

parameter sets.  These processes allow for the introduction of diversity that leads to the 

improvements in fitness values [Goldberg]. 

For real valued and continuous GAs, blend crossover can assist in the obtaining a 

solution in an efficient manner.  The crossover allows for changes in the parameter sets that may 

create better fitness values.  Crossover pulls a random number and if it is above a certain 

predetermined threshold, then the crossover function is used.  The threshold for the testing done 

with this GA was set to be 50%.  This number was found to achieve convergence in relatively 

few generations.  Blend crossover uses the value of two paired parameter sets and mixes them 

based on a blend fraction r that was also pulled as a random number.   

The GA would select two parameter sets and pair them up.  It would then take the first 

parameter of their sets and if the pulled random number was higher than the threshold it would 

mix them as shown in Eq. (3-15).   

 

( ) ( )
( ) ( ) 212

211

1
1

parameterrparameterry
parameterrparameterry
⋅+⋅−=
⋅−+⋅=

 (3-15) 

 

The values from the crossover y1 and y2 then replace the values for parameter1 and 

parameter2 respectively in their own parameter sets. If the random number was above the 

threshold, it would perform the crossover and continue to the next parameter.  This was done 

until all four of the parameters were tested for the pair. 

Mutation is a process where one of the parameters in the set is changed to a new, random 

value in the bounded set.  This is also done in an effort to increase the diversity of the 

population.  Opportunity for mutation is determined by a mutation parameter.  The mutation 
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parameter in this GA is a changing value that allows for high probability early on when the 

fitness values are not very good and as the generations pass, and the fitness values improve, the 

likelihood of mutation decreases.  This type of mutation is called dynamic mutation.  The 

mutation for this GA utilized a dynamic mutation rate where the likelihood of mutation would 

decrease according to Eq. (3-16). 
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The constant in front of the exponential expression gives the starting probability of 

mutation and was also selected through testing to be an appropriate value for achieving 

convergence in a reasonable amount of runs.  As is seen in Figure 3-10 this is a parabolic 

decrease in the percent chance for mutation starting at the given constant of 75% down to near 

zero chance when the generation number, iGen, is equal to a maximum number of generations 

plus one that the GA will run, NGen.   

As the generation number increases, the stronger parameter sets begin to dominate the 

population and the mutation probability decreases.  Mutation is less desirable as the fitness 

values are driven to zero.  This is due to the parameter sets beginning to resemble one another 

and large changes are less likely to improve the fitness values of the population. 

After the tournament selection, crossover, and mutation, the fitness values are found for 

each new parameter set.  The values are compared and the best value is stored as the first value 

of the next generation.  The mandatory continuation of a certain parameter set is called elitism 

and allows for the current best value to always continue [Davis].  This allows for sets with the 
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best fitness values to positively affect the other sets in the population.  This procedure continues 

for each generational step for as many steps as is set by the designer of the GA and convergence 

is reached. 

 

 

Figure 3-10: Change of Mutation Probability by Generation 
 

The use of GA is broad and the values and procedure used for crossover, mutation, and 

elitism can be changed for each desired application of the GA [Goldberg], [Davis].  The 

increased diversity in the population from crossover and mutation can allow for the stronger 

fitness values to begin dominating the populations.  When the mutation and crossover procedures 

create parameter sets with poor fitness values, the poor fitness value sets are removed from 

future populations by the tournament selection.   

The generational progression of the best fitness value of the population is seen in Figure 

3-11 and Figure 3-12.  These figures show that there is an early jump in the fitness values, but 

there is still much progress made throughout the progression of the generations.  As is seen in 

these figures, there are jumps where the GA finds a better solution than it previously had known.  
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The jumps are due to the new best case fitness value as found by the GA.  At these times, the GA 

has come to an all-time better solution to what it previously had.  That case is then propagated 

forward allowing all cases to improve and possibly find yet a better solution. 

 

 

Figure 3-11: Progression of Best Case Fitness Value of the Population in the Generational 
Progression of the GA 

 

The distribution of the fitness values for the 150 parameter sets in the final generation of 

the sample GA is shown in Figure 3-13.  The outliers are due to mutations as all the other 

parameter sets are similar and thus blending would not change their values by much.   

It is seen in Figure 3-13 that although the values look the same, they are slightly different.  

It is seen in the scaling of the figure that they are very close, but the parameter sets returned are 

slightly different from one another.   
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Figure 3-12: Zoomed in Progression of Best Case Fitness Value of the Population in the 
Generational Progression of the GA 

 

 

Figure 3-13: Distribution of Fitness Values after Completion, 369 Generations of the GA 
 

Once parameters begin to become very similar, mutation is the only way to introduce 

diversity in the system to attempt to find a better solution.  As there have been already 334 
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generations of possible 500 to get to this result, the likelihood of a much better solution due to 

random chance is low and so the mutation probability is also low. 

Convergence determines when the GA will stop and return its solution.  Convergence is 

defined as when all the parameter sets have become similar to each other [Davis].  Convergence 

is determined by calculating the standard deviation of the fitness values for each parameter set in 

the current population, and comparing it against a convergence parameter, ε.  If the standard 

deviation of the fitness values in the population is below the value set for the convergence 

parameter, then the GA stops.  The convergence criteria should be small, but setting is too low 

will cause the GA to run for more generations than is necessary.  An appropriate value of ε needs 

to be determined for the case to ensure that the desired solution is to be met.  This requires the 

testing of different values and determining the best value for the computational effort.  For this 

testing that was performed, ε was set at 0.05.  The set shown in Figure 3-13 terminated at 369 

generations because the convergence criteria had been met.   

Figure 3-14 shows the generational progression of the convergence criteria of the case as 

shown in the above figures.  In Figure 3-14, it is seen that the initial values of the standard 

deviation are very high and sporadic.  The values generally decrease as the parameters begin to 

become more similar and closer in range due to the efforts of the tournament selections removing 

the parameter sets with poor fitness values, crossover to blend the values to find potentially 

better values, and decreasing the mutational diversity with increasing generation number. 
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Figure 3-14:  Generational Progression of Standard Deviation of Fitness Values 
 

The flow of the iterative process is shown in Figure 3-15.  In this case, it generated 150 

parameter sets and continues processing on theses sets for up to 500 generations.  For this GA to 

process there are up to 75,100 function calls to find the time dependant temperature profiles by 

the forward problem.   

 

Figure 3-15:  Flowchart for the GA Process 
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With all the efforts to speed the solution of the DSFA model, it still takes approximately 

0.85 seconds to return the temperature profile.  For the GA to make 75,100 function calls of the 

DSFA, it would require the GA program to run for more than 17 hours.   

It is desired to have a method that can allow for faster solutions of the model to speed the 

iterative process.  ROM is a technique that can evaluate models very quickly.  Using a ROM 

instead of the DSFA model will speed the evaluation of the temperature profiles.  This will allow 

the solution of the inverse problem to be found approximately 240 times faster. 

3.6 Reduced Order Model Development 

ROM is a technique that has been developed to allow simulations of engineering models 

to run in a more computationally efficient manner.  ROM is based on the theory of proper 

orthogonal decomposition (POD).  POD was developed in the early twentieth century for the 

manipulation of statistical data [Pearson].  Its use has been utilized by the ROM in allowing 

matrix manipulations to be performed on model data rather than requiring the direct solution 

[Ostrowski], [Rambo], [Bergman]. 

ROM uses interpolation functions on known solution sets from accurate engineering 

models to simulate the models with high levels of accuracy.  The ROM performs matrix 

manipulations on the data sets to execute its simulations of the model rather than the complex 

equations from the thermal engineering model.  The use of matrix manipulation allows the ROM 

simulations to be run at a high rate of speed. 

ROM is based on Eq. (3-17) where A is an N × M matrix that contains the solution values 

based on the orthogonal basis set of governing parameters [Larson].  The matrix Φ is an N × m 
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matrix that is formed from the basis set of solutions.  B is an m × M matrix that contains the 

expansion coefficients for each set of governing parameters.   

 

BA Φ=  (3-17) 

 

In solving the model for each set of governing parameters, the matrix A is built by each 

column being the values of the solution for each set of governing parameters.  After all desired 

cases have been run, a singular value decomposition (SVD) is performed on the matrix A.  Using 

the SVD, A is factored into an N × N orthogonal matrix U, an N × M diagonal matrix Σ and an 

M × M orthogonal matrix V as is shown in Eq. (3-18) [Strang]. 

 

T
AAA VUA Σ=  (3-18) 

 

The elements in ΣA are called the singular values.  They are sorted by the SVD algorithm 

from highest to lowest.  The number of nonzero singular values of a matrix is the same as the 

rank of that matrix.  The rank of the matrix A is given the symbol rA.  The non-zero singular 

values are represented by the symbols σAi, i=1,…,rA [Strang]. 

The rank defines the amount of columns in UA that form an orthonormal basis for the 

column space of A.  It is not necessary to use the entire basis set in order to represent the data, 

and so the matrix UA is truncated at m to reduce the amount of computational effort in solving 

the matrix manipulations.  This truncation gives a close approximation of the data from UA 

required to produce the set of basis vectors Φ required by Eq. (3-17).  The cutoff, m, is 

dependent on the system and will vary from model to model.  The decision of where to place the 
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cutoff is to be made by the model designer.  The value can be determined by looking at the 

singular values of A and choosing an appropriate value.  The value can also be determined 

through trial and error in finding a solution that closely fits the desired or known data and is still 

computationally efficient.  An example of a plot of the singular values of an A matrix is shown 

in Figure 3-16. 

Evaluating B is easy by simply rearranging Eq. (3-17) and using the orthogonality 

characteristics of Φ yields Eq. (3-19). 

 

AB TΦ=  (3-19) 

 

Estimating the expansion coefficients is performed by interpolation of the results given in 

Eq. (3-19).  To do this, a coefficient matrix C is defined as shown in Eq. (3-20). 

 

 

Figure 3-16: Singular Values of A 
 

CFB ≡  (3-20) 
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F is an M × M matrix of the interpolating functions.  Interpolation functions can vary 

from model to model and are to be used in such a way that fits best to the data and provides the 

best results.  The designer of the ROM must determine the best function for their case.  In the 

literature, it has been shown that inverse multiquadratic functions are useful in interpolating data 

in multi-dimensions [Hardy 1971], [Hardy 1990].  F is defined such that the ith column is 

calculated by using the determined interpolation function chosen for each of the parameter sets 

that were used to create A.  The modified multiquadratic function is shown in Eq. (3-21) where fi 

represents the ith column of F. 
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The multiquadratic function had to be modified so that it could properly interpolate the 

logarithmically scaled parameters along with the linearly scaled parameters.  The modification of 

the base of x2 and x3 into the log scale interpolates correctly with the logarithmic variation of the 

parameters.  Each of the values x1, x2, x3 correspond to the separate governing parameters that 

define the system A.  The maximum values are the largest values of each of the governing 

parameters within the defined bounds. 
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F may be a singular matrix and thus cannot be inverted and multiplied to isolate and 

solve for C.  The Moore-Penrose pseudoinverse is a method that can be used to isolate and solve 

for C in Eq. (3-22) [Strang], [Press].  The Moore-Penrose pseudoinverse, F+, is found based an 

SVD of the interpolation matrix F similar to Eq. (3-18) as shown in Eq. (3-22). 

 

T
FFF VUF Σ=  (3-22) 

 

The matrices UF, ΣF, VF have the same meaning as described above with the A matrix.  

The pseudoinverse is post-multiplied onto both sides of Eq. (3-22) as shown in Eq. (3-23). 

 

IUSVVUUSFV =Σ= TTT
FFFFFFFFF  (3-23) 

 

The matrix SF is the diagonal matrix of the inverse of the singular values from the matrix 

ΣF.  SF is defined in Eq. (3-24).  
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1S  (3-24) 

 

The values along the diagonal of ΣF are defined as σF,i, i=1,…,rF similar to what was 

done in the decomposition of the A matrix.  To completely define the pseudoinverse, all values 

of σF,i > 0 must be used.  However, a truncation can also be performed on the data for F similar 

to what was done on A to reduce the amount of data needed to represent the data accurately and 

efficiently.  The modeler selects a value to be the minimum allowable value of σF,i.  All values 
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that fall below this value are set to zero.  These singular values can also be plotted to allow the 

modeler to see the data in order to choose an appropriate value for the cutoff as is shown in 

Figure 3-17. 

 

 

Figure 3-17: Singular Values of F 
 

From Eq. (3-23), it is clear to see that the pseudoinverse of F, or F+, is given by Eq. (3-

25). 

 

T
FFF USVF =+  (3-25) 

 

With the pseudoinverse of F known, it can be used to isolate the coefficient matrix C in 

Eq. (3-20) by post-multiplying F+ to both sides to yield Eq. (3-26). 

 

+= BFC  (3-26) 
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The coefficient matrix is built by a bounded set of governing parameters based on the 

interpolation function matrix and is thus assumed to be valid for arbitrary parameters that are 

also bounded by the original set of parameters that built the model.  The expansion coefficients 

for any arbitrary case k that lies within the bounds can also be found by multiplying the 

coefficient matrix with the interpolation function of those parameters as shown in Eq. (3-27). 

 

( ) ( )kCfkb =  (3-27) 

 

The vector for the interpolation function f(k) is found using the arbitrary parameters in 

the single column vector shown in Eq. (3-28).   
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The expansion coefficients b(k) returned from Eq. (3-27) for the arbitrary set of 

governing parameters are then used in Eq. (3-29) to return Zk.  Zk is the vector that contains the 

temperature values that are output by the ROM.  In testing the ROM, the values of Zk for a given 
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set of parameters that were used in the creation of the solution matrix A should match closely to 

the returned value of Zk for that set. 

 

( )kbZk Φ≈  (3-29) 

 

Where the principle of ROM states from Eq. (3-29) that you can use the Φ matrix 

multiplied by the expansion coefficient vector b(k) to return a desired temperature profile, Zk, 

you cannot just invert the Φ matrix and multiply it by Zk to get the coefficient vector b(k).  This 

is due to the singularity of the Φ matrix.  When the inverse of Φ is multiplied by Zk, large errors 

in the calculation of the b(k) vector exist.  Even if the vector b(k) was returned accurately, it still 

does not return the parameters, but the expansion coefficients.  To get the parameters, you have 

to do the inverse of Eq. (3-27) to get the values for f(k).  As is seen in Eq. (3-28), f(k) is a 

function of the three governing parameters k and cannot be inverted for a unique solution that 

would return the parameters.  There are many different sets of parameters that can create the 

same interpolation function values.   

As the inverse solution of the ROM cannot be performed directly, an iterative search 

technique, such as a GA, must be performed to solve the inverse problem. 

3.6.1 Defining Parameters 

Once the model is defined and verified, a group of solution sets need to be created in 

order to run the ROM.  The ROM used as governing parameters to be optical depth (S), Biot 

Number (Bi), and nondimensional time to peak laser power (τm) as the governing parameter set.  

These nondimensional parameters are obtained by varying dimensional parameters of absorption   
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coefficient, κ, thermal diffusivity, α, heat capacity, ρc, and convection coefficient, h.  Other non-

varying system parameters are used in the determination of the nondimensional parameters.  The 

other system parameters are ro, R, L, tp, tm, P, and T∞. 

Absorption coefficients are selected to yield a broad range of temperature profiles for the 

laser power selected.  The range was selected from a search of common semiconductor materials 

[Palik][Weber].  With a 0.002 m thickness the seven values for κ used and their corresponding 

rear face optical depths, S, are shown in Table 3-2.   

 

Table 3-2: Parameters used for κ, S 
Case κ (m-1) S 

1 400 0.80 
2 1000 2.00 
3 1600 3.20 
4 2200 4.40 
5 2800 5.60 
6 3400 6.80 
7 4000 8.00 

 

The convection coefficient is in the range of free convection [Incropera and DeWitt] and 

is taken to be the set as shown in Table 3-3.  

 

Table 3-3: Parameters used for h 
Case h (W/m2K) 

1 20.0 
2 30.0 
3 40.0 

 

The thermal diffusivity is dependent on material properties.  The range of values is based 

on a general range of common materials taken from tables of properties of semiconductor 
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materials [Dargys et al][Goldbery eta al][Yamaguchi et al].  The range of values is shown in 

Table 3-4. 

 

Table 3-4: Parameters used for α 
Case α (m2/sec) 

1 1.00 E -6 
2 3.00 E -6 
3 1.00 E -5 
4 3.00 E -5 
5 1.00 E -4 

 

Heat capacity was also utilized in building the parameter sets, as it was a required 

parameter for creating of the nondimensional parameters.  The range of values for heat capacity 

was also taken from a range of common materials from tables of properties of semiconductor 

materials [Le-Ping et al][Goldbery et al][Yamaguchi et al].  The range of values for heat capacity 

is shown in Table 3-5. 

 

Table 3-5: Parameters used for ρc 

Case ρc (J/m3K) 
1 0.50 E 6 
2 1.50 E 6 
3 2.50 E 6 
4 3.50 E 6 
5 4.50 E 6 
6 5.50 E 6 

 

The output values are the nondimensional temperature profiles at the point of the bottom 

surface of the sample directly below the center of the laser pulse with respect to nondimensional 

time, ( )τθ ,0,0 .  The nondimensional temperature values then become a vector of length M, 

where M is the number of nondimensional time steps taken. 
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3.6.2 Creation of Solution Sets 

Once the parameters are determined, the code runs the forward simulations of the high 

order equations.  It stores the solutions in the matrix A that will be used in the ROM.  It also 

stores the matrix B based on the input governing parameters of the model.  The number of 

governing parameters that are used is N.  This leaves A as an M × N matrix of solution sets 

where M is the number of time steps taken.  A flowchart to the process of creating the basis set 

of values for ( )τθ ,0,0  is shown in Figure 3-18. 

 

 

Figure 3-18: Flowchart for Creation of Basis Set of Solutions for ROM 
 

3.7 ROM Model Verification 

Once the ROM is prepared and the required matrices are created, any bounded 

parameters can be input into the model.  The ROM performs the matrix manipulations on the 

input parameter and returns the desired values.  This process is very fast, due to the fact that all 
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that is done is the calculation of the interpolation vector, a matrix manipulation of the coefficient 

matrix C to the vector, and multiplication of that product to the previously calculated Φ matrix. 

The ROM for the DSFA model was modified so that it would match cases that would be 

input into the model.  The number of significant eigenvalues that the ROM would use was set to 

be 25.  This allowed for the fastest solution of the model while still maintaining acceptable 

accuracy of the profile.  The singularity tolerance of the F matrix was set to be 1.0 E -13. 

These parameters allowed the ROM to simulate the solution of the profile against a case 

known from the creation of the basis set of solutions – where the parameter set was α = 3.0 E -5, 

ρc = 3.5 E 6, h = 30, and κ = 2800.  The ROM simulated this case with an average error of less 

than 9.439 E -7% with a maximum error of 3.762 E -6%.  The error of the temperature value as 

reported at each step, Errori, is calculated in Eq. (3-30). 
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As is seen in Figure 3-19, the ROM simulation matches well along the whole length of 

the profile.  In this known case, it shows that the interpolation functions are able to recreate a 

known case with very high accuracy. 

The case that is run and shown in Figure 3-19 is a case that is solved for by the 

coefficient builder program and thus the solution is known.  The case in Figure 3-20 is a case 

with random parameters that are away from the known parameters.  It is shown in Figure 3-20 

that ROM still performs adequately when the parameter set is not from known parameters.  This 

case has the parameter set of h = 22.28, κ = 1258, α = 1.432 E -5, and ρc = 2.986 E 6.  The 
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average error between the DSFA model solution and the ROM output solution is 0.225% with a 

maximum error of 0.821%.   

 

 

Figure 3-19: Example Case of Comparison of DSFA and ROM for Known Case 
 

 

 

Figure 3-20: Example Case of Comparison of DSFA and ROM for Arbitrary Case 1 
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The largest errors in the cases exist in the early on areas of the model near the peak of the 

temperature.  As is seen in Figure 3-21, the largest percentage in the error is 0.401%.  This case 

from Figure 3-21 has the parameter set of h = 35.84, κ = 2168, α = 7.568 E -6, and ρc = 3.785  E 

6.  The average error between the DSFA model solution and the ROM output solution is 0.225% 

with a maximum error of 0.821%. 

 

Figure 3-21: Example Case of Comparison of DSFA and ROM for Arbitrary Case 2 
 

This shows that the ROM is able to simulate with moderately good accuracy the 

temperature profile for a previously unknown case.  This shows that the closer the unknown 

parameter set is to a known solution, the better the interpolation will return an accurate 

temperature profile.  Even when the profile is far from a known case, the solution is still fairly 

accurate throughout the majority of the profile.  When looking at the dimensional parameters, the 

values are quite strong with the average errors and the maximum errors being much smaller.   

The time that is required by the ROM to run the simulations is an average of 0.0026 

seconds to return each profile.  The complete DSFA model solution takes an average of 0.85 

seconds to complete each profile.  This means that the ROM is able to run approximately 340 
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times faster than the DSFA solution.  As the average error is still small in the ROM cases, the 

ROM can be used to speed the GA solution. 

3.8 Example Case Testing 

To test the capability of the GA process with using ROM, sample cases were made from 

actual material properties and run in a FLUENT simulation using the same assumptions as the 

DSFA model.  These profiles gave an independent profile for which to test the GA with ROM 

against.  There were a number of cases developed and four of the test cases were used to refine 

the GA and ensure that it would be able to return accurate data. 

3.8.1 Gallium Arsenide 

The data for Gallium Arsenide was input the GA and run for five tests to ensure 

consistent convergence.  The input profile was also used with the ASTM method to determine 

what it evaluates as the diffusivity.  The input values for the Gallium Arsenide case are shown in 

Table 3-6 [Dargys et al][Carlson et al][Sharmin et al]. 

 

Table 3-6: Gallium Arsenide Input and Outputs 
Parameter True Value GA/ROM ASTM 

α 3.133 E -5 3.097 E -5 6.224 E -5 
κ 3400 3142 - 
ρc 1.756 E 6 1.774 E 6 - 
h 37.2 33.9 - 

 

The comparisons of the temperatures from the input FLUENT profile, the parameter 

output from the GA/ROM as input into the DSFA, and the DSFA when using the true, known 

values directly as input into the DSFA are shown in Figure 3-22 for the bottom surface and 

Figure 3-23 for the top surface, both at the centerline of the sample.  The figures show the high 
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level of accuracy returned by both the GA/ROM solution and the accuracy of the DSFA with 

matching a profile with known parameters.  In the figures, the correlation is seen by all three 

curves laying almost entirely on each other. 

 

Figure 3-22: Gallium Arsenide Bottom Temperature Profile Comparisons 
 

 

Figure 3-23: Gallium Arsenide Top Temperature Profile Comparisons 
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The errors for the parameters from GA/ROM are consistently good for this case.  The 

error in α is 1.14%, κ is 7.59%, ρc is 1.05% and h is 2.54%.  The returned error from the ASTM 

calculation is 98.67%. 

3.8.2 Silicon 

As with the data for the Gallium Arsenide case, the data from Silicon was input the GA 

and run for five tests to ensure consistent convergence.  The input profile was also used with the 

ASTM method to determine what it evaluates as the diffusivity.  The input values for the Silicon 

case are shown in Table 3-7 [Palik][Okhotin et al]. 

 

Table 3-7: Silicon Input and Outputs 
Parameter True Value GA/ROM ASTM 

α 9.139 E -5 8.784 E -5 2.702 E -4 
κ 2000 1734 - 
ρc 1.630 E 6 1.715 E 6 - 
h 37.1 27.41 - 

 

The comparisons of the temperatures from the input FLUENT profile, the parameter 

output from the GA/ROM as input into the DSFA, and the DSFA when using the true, known 

values directly as input into the DSFA are shown in Figure 3-24 for the bottom surface and 

Figure 3-25 for the top surface.  The figures show the high level of accuracy returned by both the 

GA/ROM solution and the accuracy of the DSFA with matching a profile with known 

parameters.  In the figures, the correlation is seen by all three curves laying almost entirely on 

each other.  The GA/ROM profile is just slightly off on both surfaces from the FLUENT and 

DSFA profiles which lay almost literally on top of each other on both sides. 
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The errors for the parameters from GA/ROM are consistently good for this case.  The 

error in α is 3.89%, κ is 13.3%, ρc is 5.24% and h is 26.16%.  The returned error from the ASTM 

calculation is 195%. 

 

 

Figure 3-24: Silicon Bottom Temperature Profile Comparisons 
 

 

Figure 3-25: Silicon Top Temperature Profile Comparisons 
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3.8.3 Cupric Oxide 

Again, as with the data for Gallium Arsenide and Silicon, the data from Cupric Oxide 

was input the GA and run for five tests to ensure consistent convergence.  The input profile was 

also used with the ASTM method to determine what it evaluates as the diffusivity.  The input 

values for the Cupric Oxide case are shown in Table 3-8 [Le-Ping et al][Palik]. 

 

Table 3-8: Cupric Oxide Input and Outputs 
Parameter True Value GA/ROM ASTM 

α 3.959 E -6 3.425 E -6 4.254 E -4 
κ 960.5 790 - 
ρc 5.052 E 6 5.285 E 6 - 
h 23.0 31.0 - 

 

The comparisons of the temperatures from the input FLUENT profile, the result of the 

GA/ROM profile and the DSFA when using the true, known values directly as input into the 

DSFA are shown in Figure 3-26 for the bottom surface and Figure 3-27 for the top.  Figure 3-26 

shows very strong matching returned by the GA/ROM solution.  Figure 3-27 shows that the 

profile is not as good of a match from the top surface as the DSFA.  The matching by the DSFA 

with known parameters was not as strong at the peak temperature on the bottom surface, but did 

match better with the top temperature profile than did the GA/ROM profile. 

The errors for the parameters from GA/ROM are consistently good for this case.  The 

error in α is 13.48%, κ is 4.61%, ρc is 17.75% and h is 34.78%.  The returned error from the 

ASTM calculation is two orders of magnitude. 
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Figure 3-26: Cupric Oxide Bottom Temperature Profile Comparisons 
 

 

Figure 3-27: Cupric Oxide Top Temperature Profile Comparisons 
 

3.8.4 Aluminum Antimony 

Aluminum Antimony was run the same way as the three previous cases.  The temperature 

profile was input the GA and run for five tests to ensure consistent convergence.  The input 
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profile was also used with the ASTM method to determine what it evaluates as the diffusivity.  

The input values for the Aluminum Antimony case are shown in Table 3-9 [Adachi][Chryssis et 

al]. 

The comparisons of the temperatures from the input FLUENT profile, the result of the 

GA/ROM profile input into the DSFA, and the DSFA when using the true, known values directly 

as input into the DSFA are shown in Figure 3-28 and Figure 3-29 for bottom and top surfaces 

respectively.  The figures both show the high level of accuracy returned by both the GA/ROM 

solution and the accuracy of the DSFA with matching a profile with known parameters.  In this 

case, the GA/ROM profile lays better against the FLUENT profile for the entire curve, with the 

DSFA profile once again slightly under at the peak temperature value on both top and bottom 

profiles. 

 

Table 3-9: Aluminum Antimony Input and Outputs 
Parameter True Value GA/ROM ASTM 

α 2.006 E -5 2.195 E -5 4.495 E -4 
κ 486.0 476.2 - 
ρc 1.346 E 6 1.260 E 6 - 
h 36.6 23.5 - 

 

The errors for the parameters from GA/ROM are consistently good for this case.  The 

error in α is 9.44%, κ is 6.40%, ρc is 2.01% and h is 35.79%.  The returned error from the ASTM 

calculation is more than 2000%. 

The data show the strength of the GA/ROM in its capability to return accurate profiles 

along the bottom surface that can be utilized to accurately predict the key material properties of 

the known samples.  The value for convective coefficient is just not strong enough to be able to 
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force much effect and its accuracy is more of a case of luck in the GA/ROM more than the 

strength of the routine. 

 

Figure 3-28: Aluminum Antimony Bottom Temperature Profile Comparisons 

 

 

Figure 3-29: Aluminum Antimony Top Temperature Profile Comparisons 
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4 RESULTS 

4.1 Blind Test Cases 

Similar to what was done for the four cases in Section 3.8, cases were run from FLUENT 

and used as inputs to the GA/ROM program.  In these cases, the parameters were not known 

beforehand.  The data were run and the solutions returned back to the creator of the FLUENT 

profiles for checking.  This process was done to avoid any potential contamination of the results 

and to exercise the capability to perform a true blind study. 

Once the data were run, the true parameters were revealed for evaluation of error as is 

shown above and also so that the DSFA can be run with the true values to evaluate the accuracy 

of the DSFA for those parameters as well. 

4.1.1 Iron Disilicide 

The first full blind test was Iron Disilicide (FeSi2).  The provided data did not have a 

convective coefficient, and as such, the error for h cannot be calculated for the case.  The only 

data provided were arrays of time, bottom temperature, and top temperature.  Once the data were 

run and the GA/ROM returned parameters, they were resent to the creator of the input 

temperature profiles in FLUENT.  The results from the GA/ROM and ASTM methods for the 

case are shown in Table 4-1 [Milosavljević et al] [Kojima].   
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Table 4-1: Iron Disilicide Input and Outputs 
Parameter True Value GA/ROM ASTM 

α 3.163 E -6 3.027 E -6 7.285 E -6 
κ 3384 3138 - 
ρc 2.846 E 6 2.882 E 6 - 
h - 27.3 - 

 

The errors for the parameters from GA/ROM are consistently good for this case.  The 

error in α is 4.29%, κ is 7.29%, ρc is 1.27% and h is unknown.  The returned error from the 

ASTM calculation is more than 130%. 

The plots of the top and bottom temperature profiles are shown in Figure 4-1 and Figure 

4-2.  In both the figures, the DSFA Profile lays directly on top of the FLUENT Profile.  The 

accuracy of the GA/ROM parameters are clearly seen as the DSFA Profile lays very nearly with 

them as well.  In Figure 4-2, it is impossible to see any differences in any of the three profiles. 

 

 

Figure 4-1: Iron Disilicide Bottom Temperature Profile Comparisons 
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Figure 4-2: Iron Disilicide Top Temperature Profile Comparisons 
 

The errors in the GA/ROM profile from Iron Disilicide are very small and show the 

accuracy of the entire process from DSFA solution sets through the ROM and GA.  The returned 

data is significantly more accurate than the ASTM method would have predicted for this 

temperature sample. 

4.1.2 Gallium Phosphide 

For the blind test of Gallium Phosphide the only data provided were arrays of time, 

bottom temperature, and top temperature.  Once the data were run and the GA/ROM returned 

parameters, they were resent to the creator of the input temperature profiles in FLUENT.  The 

results from the GA/ROM and ASTM methods for the case are shown in Table 4-2 [Goldbery et 

al] [Aspnes and Studna].  Once the GA/ROM and ASTM data from Table 4-2 were returned, the 

parameters were returned to the creator of the profile for comparison to the true values that were 

used to create the temperature profiles. 
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Table 4-2: Gallium Phosphide Input and Outputs 
Parameter True Value GA/ROM ASTM 

α 6.179 E -5  6.043 E -5 1.023 E -4 
κ 3680 2826 - 
ρc 1.780 E 6 1.913 E 6 - 
h 37.0 28.3 - 

 

The errors for the parameters from GA/ROM are consistently good for this case.  The 

error in α is 2.20%, κ is 23.2%, ρc is 7.46% and h is 29.0%.  The returned error from the ASTM 

calculation is 67.0%. 

The plots of the top and bottom temperature profiles are shown in Figure 4-3 and Figure 

4-4.  In both the figures, the DSFA Profile lays directly on top of the FLUENT Profile.  The 

accuracy of the GA/ROM parameters are clearly seen as the DSFA Profile lays very nearly with 

them as well. 

 

 

Figure 4-3: Gallium Phosphide Bottom Temperature Profile Comparisons 
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Figure 4-4: Gallium Phosphide Top Temperature Profile Comparisons 
 

The errors in the GA/ROM bottom profile from case of Gallium Phosphide are small and 

show the accuracy of the entire process from DSFA solution sets through the ROM and GA.  The 

top temperature profiles have a larger amount of error than the bottom and that is displayed in 

the error in the parameters.  The DSFA parameters with the true values are much closer and so 

more accurate temperature profiles would return more accurate parameter sets.  The GA/ROM 

for the five runs of Gallium Phosphide all successfully converged.  The returned data is more 

accurate than the ASTM method would have predicted for this temperature sample. 

4.1.3 Indium Phosphide 

The only data provided for the Indium Phosphide case were arrays of time, bottom 

temperature, and top temperature.  Once the data were run and the GA/ROM returned 

parameters, they were resent to the creator of the input temperature profiles in FLUENT.  The 

results from the GA/ROM and ASTM methods for the case are shown in Table 4-3 [Dargus and 

Kundrotas][Aspnes and Studna].  Once the GA/ROM and ASTM data from Table 4-3 were 
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returned, the parameters were returned to the creator of the profile for comparison to the true 

values that were used to create the temperature profiles. 

 

Table 4-3: Indium Phosphide Input and Outputs 
Parameter True Value GA/ROM ASTM 

α 4.560 E -5 3.066 E -5 4.424 E -4 
κ 985.2 642.7 - 
ρc 1.491 E 6 1.693 E 6 - 
h 37.2 36.3 - 

 

The errors for the parameters from GA/ROM are consistently good for this case.  The 

error in α is 32.8%, κ is 34.8%, ρc is 13.5% and h is 2.41%.  The returned error from the ASTM 

calculation is more than 870%. 

The plots of the top and bottom temperature profiles are shown in Figure 4-5 and Figure 

4-6.  In both the figures, the DSFA Profile lays near to the FLUENT Profile.  The accuracy of the 

GA/ROM parameters are clearly seen as the DSFA Profile lays nearly with them as well.   

 

 

Figure 4-5: Indium Phosphide Bottom Temperature Profile Comparisons 
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In Figure 4-6, it is seen that there is a significant difference in the GA/ROM profile and 

the FLUENT profile.  This is a case where the measurement of the top surface would be able to 

be used for calculating the material properties.  If the data were taken on the top and utilized 

similarly to what is done by the bottom surface temperature, there would be a good probability 

that the inverse solution to the temperature curve would return better solutions. 

The return of improved solutions would be to the increase in fitness values that would be 

returned by the top temperature profile being more accurate.  As is shown in Figure 4-5, the data 

returned by GA/ROM did not lie perfectly on the profile, but it was near to it.  With increased 

fitness pressure coming as well from the top profile, the likelihood of returning parameters with 

the same amount of error would be small. 

 

 

Figure 4-6: Indium Phosphide Top Temperature Profile Comparisons 
 

The errors in the GA/ROM profile from Indium Phosphide are generally small for the 

bottom surface.  The top profiles are not as similar and that is due to the errors in the parameters 

returned by the GA/ROM against the true values.  The temperature profiles matching fairly well 
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on the bottom show that there is a possibility for near non-unique solutions.  It is not to be 

inferred that the profiles will match exactly with varying parameters, but that there can be large 

variations in parameters that can produce bottom profiles that are similar.  The distinction can be 

made by investigating the top surface along with the bottom surface.  The combination of top 

profiles and bottom profiles are unique.  If there are profiles along the bottom that are near when 

the parameters are far, there will be large differences in the top profiles as shown in Figure 4-5 

and Figure 4-6. 

The returned data is still much more accurate than the ASTM method would have 

predicted for this temperature sample. The DSFA parameters with the true values are much 

closer and so more accurate temperature profiles would return more accurate parameter sets.  

The GA/ROM for the five runs of Indium Phosphide converged successfully each time without 

timing out of its 500 generation limit. 

4.1.4 Zinc Selenide 

For the case of Zinc Selenide, the only data provided were arrays of time, bottom 

temperature, and top temperature.  Once the data were run and the GA/ROM returned 

parameters, they were resent to the creator of the input temperature profiles in FLUENT.  The 

results from the GA/ROM and ASTM methods for the case are shown in Table 4-4 [Crystran].  

Once the GA/ROM and ASTM data from Table 4-4 were returned, the parameters were returned 

to the creator of the profile for comparison to the true values that were used to create the 

temperature profiles.  

The errors for the parameters from GA/ROM are consistently good for this case.  The 

error in α is 0.54%, κ is 6.86%, ρc is 8.05% and h is 39.4%.  The returned error from the ASTM 

calculation is more than 4000%. 
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Table 4-4: Zinc Selenide Input and Outputs 
Parameter True Value GA/ROM ASTM 

α 1.008 E -5 1.013 E -5 4.147 E -4 
κ 517.9 482.4 - 
ρc 1.787 E 6 1.643 E 6 - 
h 37.6 22.76 - 

 

The plots of the top and bottom temperature profiles are shown in Figure 4-7 and Figure 

4-8.  In both the figures, the DSFA Profile lays directly on top of the FLUENT Profile.  The 

accuracy of the GA/ROM parameters are clearly seen as the DSFA Profile lays very nearly with 

them as well.  In Figure 4-8, it is impossible to see any differences in any of the three profiles. 

 

 

Figure 4-7: Zinc Selenide Bottom Temperature Profile Comparisons 
 

The errors in the GA/ROM profile from Zinc Selenide are very small and show the 

accuracy of the entire process from DSFA solution sets through the ROM and GA.  The top 

temperature profiles have a larger amount of error than the bottom and that is displayed in the 

error in the parameters.  The DSFA parameters with the true values are much closer and so more 

accurate temperature profiles would return more accurate parameter sets.   
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Figure 4-8: Zinc Selenide Top Temperature Profile Comparisons 
 

The returned data is significantly more accurate than the ASTM method would have 

predicted for this temperature sample.  For each test run with Zinc Selenide, the simulation was 

able to successfully converge before reaching its 500 generation limit. 

4.1.5 Aluminum Gallium Arsenide 

The last blind test case was Aluminum Gallium Arsenide.  The only data provided were 

arrays of time, bottom temperature, and top temperature.  Once the data were run and the 

GA/ROM returned parameters, they were resent to the creator of the input temperature profiles 

in FLUENT.  The results from the GA/ROM and ASTM methods for the case are shown in 

Table 4-5 [Goldbery et al] [Kelso et al].   

Once the GA/ROM and ASTM data from Table 4-5 were returned, the parameters were 

returned to the creator of the profile for comparison to the true values that were used to create the 

temperature profiles. 
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Table 4-5: Aluminum Gallium Arsenide Input and Outputs 
Parameter True Value GA/ROM ASTM 

α 6.009 E -5 5.958 E -5 9.547 E -5 
κ 4089.6 2877.7 - 
ρc 1.771 E 6 1.925 E 6 - 
h 12.1 25.3 - 

 

The errors for the parameters from GA/ROM are consistently good for this case.  The 

error in α is 6.84%, κ is 29.63%, ρc is 8.72% and h is 110%.  The returned error from the ASTM 

calculation is 58.9%. 

The plots of the top and bottom temperature profiles are shown in Figure 4-9 and Figure 

4-10.  In both the figures, the DSFA Profile lays directly on top of the FLUENT Profile.  The 

accuracy of the GA/ROM parameters are clearly seen as the DSFA Profile lays very nearly with 

them as well.  In Figure 4-10, it is impossible to see any differences in any of the three profiles. 

 

Figure 4-9: Aluminum Gallium Arsenide Bottom Temperature Profile Comparisons 
 

The errors in the GA/ROM bottom profile from Aluminum Gallium Arsenide are small 

and show the accuracy of the entire process from DSFA solution sets through the ROM and GA.  

The top temperature profiles have a larger amount of error than the bottom and that is displayed 
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in the error in the parameters.  The DSFA parameters with the true values are much closer and so 

more accurate temperature profiles would return more accurate parameter sets.  The GA/ROM 

for the five runs of Aluminum Gallium Arsenide all successfully converged.  The returned data is 

more accurate than the ASTM method would have predicted for this temperature sample. 

 

 

Figure 4-10: Aluminum Gallium Arsenide Top Temperature Profile Comparisons 
 

For each of the blind case tests, the parameters for diffusivity returned by the GA were 

more accurate than the calculation using the ASTM method.  The errors in the temperature 

profiles are generally quite small and thus GA/ROM is able to quickly and accurately determine 

the desired parameter of diffusivity.  The procedure is also able to return parameters for heat 

capacity and optical depth of the unknown materials.  The values for convective heat transfer are 

not strong enough to give a high level of confidence in their measurements, but the parameter is 

not a material property. 

The convergence criterion was met for each run of the GA.  There were no tests in which 

the convergence criterion was not able to be met in the 500 generations.  The GA was run for 
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each profile five times to ensure that the GA would be able to return consistent solutions as the 

GA process is inherently random and non-deterministic.  The data was investigated and shown to 

be able to return results that were both accurate and consistent as their variations were small. 
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5 SUMMARY AND CONCLUSIONS 

Modern engineering practice increasingly relies on the ability to perform precise 

numerical simulations in order to optimize the design of systems. The accuracy of these 

numerical simulations depends on the accuracy of the material properties that are required input 

parameters. Therefore, the ability to accurately measure material properties is critical in modern 

engineering practices. 

The thermal diffusivity is a key material property needed to perform thermal analyses of 

engineered systems. Over the last few decades, pulsed laser diffusion (PLD) systems have 

become the method of choice for making measurements of thermal diffusivity. Previous PLD 

models have been based on a number of highly restrictive assumptions. The results presented in 

this thesis show how a higher fidelity PLD model may be implemented and used to more 

accurately measure the thermal diffusivity and other properties of various materials.. The 

Distributed Source – Finite Absorption (DSFA) model proposed in this thesis accounts for the 

most important effects that were neglected in previous DSFA models.   The top surface was not 

taken to be adiabatic, but allowed for free convection to affect the material sample.  The laser 

pulse power was not assumed to be completely absorbed at the top surface, but realistically 

modeled as being absorbed throughout the sample.  The laser power was assumed to take on a 

Gaussian profile rather than a uniform profile across the sample surface.  The laser pulse was not 

taken to be infinitesimally short, but to be a triangle pulse rising to a maximum temperature at a 
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certain time and returning back to zero.  As demonstrated through comparison with full CFD 

simulations of a PLD system, the DSFA results in a high fidelity model of a practical PLD 

system. 

In this thesis, the development and performance of previous PLD models have been 

thoroughly reviewed.  The method first established by Parker in 1961 was introduced and 

developed.  The model was based on a number of assumptions about the physics of the process. 

The Parker model assumes: 

• one-dimensional heat transfer 

• uniform heating in a thin layer on the top surface of the sample 

• all surfaces are adiabatic 

• infinitesimally short pulse time 

• uniform energy on the top surface of the sample 

• no radiative effects 

Parker proposed that α can be found by inputting the thickness of the sample and the time 

that it takes for the rear face to get to half of its maximum value in a simple equation shown in 

Eq. (2-13). 

Maglić utilized the same model development as Parker and used an expanded form of the 

Parker equation for finding α as shown in Eq. (2-14).  He uses a set of values that correspond to 

the percent rise of the temperature as shown in Table 2-1.  The values of α can then be averaged 

over the temperature rise curve for the α of the sample. 

ASTM has accepted a method that also uses the same development from Parker and the 

same expanded equation from Maglić.  It suggests that you compare the values of the 50% rise 

time to those of the 25% rise time and the 75% rise time.  If they match within 5% of each other, 
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then the value computed is the accepted α.  The ASTM method is the generally accepted industry 

standard. 

In order to avoid the use of the same assumptions as is done in the previous models, the 

DSFA model is proposed.  The DSFA model returns the temperature at any point in the sample 

at any time.  The new model allows for two-dimensional heat transfer, non-uniform heating 

effects in time and space, and heat loss from the exposed surface. 

ROM is a fairly accurate technique that can be used to solve the new equation.  The ROM 

is faster than the full computation solution of the new technique.  The errors introduced by 

running the ROM are generally small.  However, using the ROM developed in this work does 

add the possibility for non-unique solutions. 

The data clearly shows a trend that as the noise in the parameter sets grows, the errors in 

the predictions for the individual parameters also grows.  These tests show the robustness of the 

method of GA solving the inverse problem with ROM.  In the presence of noise the GA with 

ROM can consistently perform and return an acceptable set of parameters.  Due to the non-

uniqueness of the solution sets, the returned solution can come to a number of different values. 

The time required to return the nondimensional profile is minimized due to the use of the 

ROM being utilized.  The GA was run for each case up to 500 generations.  Running all 500 

generations of a population set of 150 is 75100 function calls.  The time for each function call of 

the ROM is 0.0025 sec making the GA return a value in approximately 187.8 seconds or about 

3.13 minutes.  For the GA to use the DSFA, which returns a profile in approximately 0.85 sec, 

the GA would take more than 17 hours to return a solution.  The ROM allows for processing at a 

rate of 340 times faster. 
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Future work that can be done to improve the accuracy of the inverse operation could 

include measurement of the top surface of the sample that is being irradiated.  The case that had 

larger errors were due to nonuniqueness of the solution for the bottom temperature.  When the 

top surface is investigated, it is shown that the returned parameters created a profile that did not 

well match.  If the top surface temperature errors were included in the fitness value, it stands to 

reason that the GA would have returned parameters with smaller errors.  The inclusion of the top 

surface would likely also reduce the errors in the calculation when the errors were not large.  The 

improvement in accuracy of the measurement technique could be a driving force for standard 

testing procedure modification. 
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APPENDIX A. PARKER MODEL DEVELOPMENT 
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φφ
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The one-dimensional analysis is such that
 

0,0 =
∂
∂

=
∂
∂

r
TT

φ
  

Assuming constant k, ρm, and c allows 

c
k
mρ

α =
 

No internal heat generation gives 

0=q
 

To return the simplified heat equation to 

t
T

z
T

∂
∂

=
∂
∂

α
1

2
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With the adiabatic boundary conditions of
 

0
0

=
∂
∂

=
∂
∂

== Lzz z
T

z
T  

The initial condition is defined as 






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≤≤+
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δρ
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Non-dimensionalization is done by allowing 

2
0 ,,

L
t

L
z

cLA
Q

TT ατζ

ρ

θ ==







−
=  

The heat equation now non-dimensionalized is 

τ
θ

ζ
θ

∂
∂

=
∂
∂

2

2

 

With the non-dimensionalized boundary conditions of 

0
10

=
∂
∂

=
∂
∂

== ζζ ζ
θ

ζ
θ

 

And the non-dimensionalized initial condition of 








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≤≤
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0
)0,(

ζδ

δζ
δζθ

L

L
L

 

The equation can now be solved using the technique of separation of variables.  The base 

equation is defined as 

( ) ( )τζθ ΤΖ=
 

The base definition is substituted into the differential equation 

τζ ∂
Τ∂

Ζ=
∂
Ζ∂

Τ 2

2

 

The equation is now separated with the eigenvalue defined 

2
2

2 11 λ
τζ

−=
∂
Τ∂

Τ
=

∂
Ζ∂

Ζ  
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The individual equations can now be evaluated separately.  First, the Z equation will be 

solved: 

02
2

2

=Ζ+
∂
Ζ∂ λ

ζ  

For the basic second order equation, we can solve using the sin and cos functions 

( ) ( )λζλζ sincos 21 CC +=Ζ
 

Now, the T equation will be solved: 

02 =Τ+
∂
Τ∂ λ
τ  

The first order equation can be solved with an exponential 

( )τλ2
3 exp −=Τ C

 

The Z and T equation are recombined 

( ) ( ) ( )[ ]λζλζτλθ sincosexp 21
2

3 CCC +−=
 

The equation is differentiated so the boundary conditions can be applied to begin to solve 

for the constants 

( ) ( ) ( )[ ]λζλζλτλ
ζ
θ cossinexp 21

2
3 CCC +−−=

∂
∂

 

0
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=
∂
∂

=
∂
∂

== ζζ ζ
θ

ζ
θ

 

The boundary conditions force C2 = 0 as the value of cos(0) is not 0, the only way for the 

expression to be 0 is if the constant is 0.  The value of sin(λ) is 0 when and only when λ=nπ 

 

( )
( ) ,2,1,0,0sin

000cos 2

==→=
=→≠

nwhenn
C

πλλ  
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The equation is now a solved with an infinite sum starting at 0 with both constants C1 and 

C3 can be combined to Cn 

( ) ( )∑
∞

=

−=
0

22 cosexp
n

n nnC πζτπθ
 

To solve for the values of Cn, orthogonality is used to isolate and solve in the summation 
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n
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∞

=

−=
0

1

0

22
1

0

coscosexpcos
 

Recall the orthogonality rules that 
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
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



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≠
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02/1

0
coscos

1
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Applying the orthogonality rules 
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∫

=
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1

0
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For m = 0 
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0

1

0
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L
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ζ
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For m ≠ 0 
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As the radiation is assumed to be absorbed is a very small depth, the small angle 

approximation is used to remove the sin term 

2

sin
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
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mC
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m
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Substituting the constants back into the base equation,   
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Redimensionalize the equation 
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Solve for temperature at the bottom surface, z = L 
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Solve for the ½ temperature rise on the bottom surface where at t = t0.5 
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As cosine is an odd function, the infinite sum of the cos term can be substituted for (-1)n 
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=
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



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Evaluate the expression at one term 
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Solving for the expression yields 
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Solving for α gives 

5.0

214046.0
t

L
=α

 

Evaluating the expression at two terms 
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Isolating a single exponential
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Using the single term approximation for the exponential term 
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Solving for α for two terms gives 
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Evaluating the expression and solving for three terms 
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Isolating a single exponential
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Using the two term approximation for the exponential term 
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Solving for α for three terms gives 
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Evaluating the expression and solving for four terms 
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Isolating a single exponential
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Using the three term approximation for the exponential term 
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Solving for α for four terms gives 

5.0

213879.0
t

L
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The solution for four terms is the same as the solution for three terms at the numerical 

precision used.  Thus, we are able to say that the solution has converged and three terms are all 

that are needed for the infinite sum and the solution given can be used. 
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APPENDIX B. DSFA DEVELOPMENT 
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Assuming constant k, ρm, and c allows 
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From Figure 3-7 the pulse is modeled as: 
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Boundary Conditions: 
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Nondimensionalize the equation with the following parameters: 
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Rearranging the nondimensional values: 
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Substituting in to yield nondimensional equation: 
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Nondimensional boundary conditions: 
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Using the method of Eigenfunction Expansion: 
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Sturm-Louisville Problem in ρ: 
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Boundary condition: 
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For Neumann condition boundary conditions, use Bessel function for solution: 
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Thus to satisfy the boundary condition: 
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Which returns the Bessel function: 
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With the derivative: 
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Thus λn equals the roots of J1(λn) = 0 starting at n = 0 as λ0 = 0 and J1(0) = 0.  The value 

of C1 cannot be zero as that would yield a trivial solution, as it can be any constant, there is no 

need for the negative sign, as it could be positive or negative nonzero constant. 

When λ0 = 0, n = 0: 
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Integrate both sides in ρ: 
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Sturm-Louisville Problem in ζ: 
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Boundary conditions: 

m
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For Robin conditions, use sin and cos: 

( ) ( ) ( )ζβζβζ mmm cosCsinCZ 65 +=  
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( ) ( )ζββζββ
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Using boundary conditions: 
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d
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With cos(0) = 1, and sin(0) = 0: 

( ) ( )ζβζβ mmm cosCZCC 655 00 =→=→=  

Using the other boundary condition: 
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Thus: 

( ) ( ) ( )mmmmm tanBisincosBi βββββ =→=  

Which makes the values for βm the solutions to the equation ( )mm tanBi ββ= .  There is 

no zero eigenvalues in β, as there is no solution where there is a non-zero value for Bi.  Thus in 

the infinite summation, the value of m is indexed from 1 through infinity rather than from 0 as is 

n. 

Now recall that: 

( ) ( )ρλρ nn JR 0=  

Where λn is the roots to the equation J1(λn) = 0 from n = 0 through infinity and: 

( ) ( )ζβζ mm cosZ =  

Where βm is the roots to the equation ( )mm tanBi ββ=  from m = 1 through infinity.  The 

value for θ can be evaluated: 
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The value for θ can now be reinserted into the heat equation yielding: 

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )







∂
∂

=









−−

−
+







∂
∂

+

















∂
∂

∂
∂

∑∑

∑∑

∑∑

∞

=

∞

=

∞

=

∞

=

∞

=

∞

=

0 1
0

2

2

0 1
02

2
2

0 1
0

1

1

n m
mnnm

on m
mnnm

n m
mnnm

cosJb

SexpcosJba

cosJb

ζβρλτ
τ

τφζ
ρ
ρζβρλτ

ζ

ζβρλτ
ρ

ρ
ρρ

 

Which can be simplified: 

( ) ( ) ( )( )

( ) ( ) ( )( ) ( )( ) ( )

( ) ( )∑∑

∑∑

∑∑

∞

=

∞

=

−−








 −
∞

=

∞

=

∞

=

∞

=

∂
∂

=

+
∂
∂

+









∂
∂

∂
∂

0 1
0

1
2

2

0 1
0

2

0
0 1

2

2

1

n m
mn

nm

S
m

n m
nnm

n
n m

mnm

cosJb

eecosJba

Jcosb

o

ζβρλ
τ

τφζβ
ζ

ρλτ

ρλ
ρ

ρ
ρρ

ζβτ

ζρ
ρ

 

Remembering that: 

( ) ( ) ( )( ) ( )ρλλρλ
ρ

ρ
ρρ

ρλλ
ρ
ρλ

nnnnn
n JJJJ

0
2

01
0 1

−=







∂
∂

∂
∂

→−=
∂

∂
 

( ) ( )ζββ
ζ

ζβ
mm

m coscos 2
2

2

−=
∂

∂  

Substituting into the previous equation: 

( ) ( ) ( ) ( ) ( ) ( )

( )( ) ( ) ( ) ( )∑∑

∑∑∑∑
∞

=

∞

=

−−








 −

∞

=

∞

=

∞

=

∞

=

∂
∂

=+

−−

0 1
0

1

2

0 1
0

2
0

2

0 1

2

2

n m
mn

nmS

mm
n m

nnmnn
n m

mnm

cosJbee

cosJbaJcosb

o ζβρλ
τ

τφ

ζββρλτρλλζβτ

ζρ
ρ  

Multiply all by ( )ρλρ qJ 0  and integrating in ρ from 0 to 1: 
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( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( )( ) ( ) ( ) ( ) ( ) ( ) ρρλρλρζβ
τ

ρρλρτφ

ρρλρλρζβτβ

ρρλρλρλζβτ

ρ
ρ

ζ dJJcosbdJee

dJJcosba

dJJcosb

nq
n m

m
nm

q
S

nq
n m

mnmm

nqn
n m

mnm

o
0

1

0 0
0 1

1

0 0
1

0

1

0 0
0 1

22

0

1

0 0
2

0 1

2

2

∫∑∑∫

∫∑∑

∫∑∑

∞

=

∞

=










 −

−−

∞

=

∞

=

∞

=

∞

=

∂
∂

=+

−

−

 

Using orthogonality: 

( ) ( ) ( )






=

≠
=∫ qnif

J
qnif

dJJ qnq

2

0
00

1

0 0 λρρλρλρ  

This is proved by using the equation from the SLP in ρ: 

( ) ( ) 00
20 =+







 ρλρλ
ρ
ρλρ

ρ nn
n J

d
dJ

d
d

 

( ) ( ) 00
20 =+








ρλρλ

ρ
ρλ

ρ
ρ qq

q J
d

dJ
d
d  

Subtract the second equation from the first to yield: 

( ) ( ) ( ) ( ) ( )ρλρλρλλ
ρ
ρλ

ρ
ρρ

ρλρ
ρ qnqn

qn JJ
d

dJ
d
d

d
dJ

d
d

00
2200 −−=








−






  

Integrate by ρ from 0 to 1: 

( ) ( ) ( ) ( )
















−








−

= ∫∫∫
1

0

01

0
0

22

1

0 00
1 ρ

ρ
ρλ

ρ
ρ

ρ
ρ
ρλρ

ρλλ
ρρλρλρ d

d
dJ

d
dd

d
dJ

d
ddJJ qn

nq
qn  

( ) ( )

( ) ( )

( ) ( )




















+−

−

−
=

==

==

∫

0

0

1

0

0

0

1

0

22

1

0 00
1

ρρ

ρρ

ρ
ρλ

ρ
ρ
ρλ

ρ

ρ
ρλρ

ρ
ρλρ

λλ
ρρλρλρ

d
dJ

d
dJ

d
dJ

d
dJ

dJJ
qq

nn

nq
qn  

Which simplifies to: 
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( ) ( ) ( ) ( )













−

−
=

==
∫

1

0

1

0
22

1

0 00
1

ρρ ρ
ρλ

ρ
ρλ

λλ
ρρλρλρ

d
dJ

d
dJdJJ qn

nq
qn  

Again using the identity of ( ) ( )ρλλ
ρ
ρλ

nn
n JJ

1
0 −=
∂

∂  and 
( ) ( )ρλλ
ρ
ρλ

qq
q J

J
1

0 −=
∂

∂
 

( ) ( ) ( ) ( )( )
111122

1

0 00
1

==
+−

−
=∫ ρρ

ρλλρλλ
λλ

ρρλρλρ qqnn
nq

qn JJdJJ  

( ) ( ) ( ) ( )( )qqnn
nq

qn JJdJJ λλλλ
λλ

ρρλρλρ 1122

1

0 00
1

+−
−

=∫  

From the eigenvalues, ( ) ( ) 011 == qn JJ λλ  for all eigenvalues λ from 0 to infinity: 

( ) ( ) qnqn iffdpJJ λλρλρλρ ≠=∫ 00

1

0 0  

For λn = λq: 

( ) ( ) ( )∫∫ =
1

0

2
00

1

0 0 dpJdpJJ qqn ρλρρλρλρ  

Using the previous identity: 

( ) ( ) 00
20 =+








ρλρλ

ρ
ρλ

ρ
ρ qq

q J
d

dJ
d
d  

With a multiplication factor: 

( ) ( ) 00
20 =+








ρλρλ

ρ
ρλ

ρ
ρ qq

q J
d

dJ
d
d  

( ) ( ) ( ) ( ) 00
20200 =+








ρλλ

ρ
ρλ

ρ
ρ
ρλ

ρ
ρρ

ρλ
ρ qq

qqq J
d

dJ
d

dJ
d
d

d
dJ

 

( ) ( )
ρ

ρλ
ρλ

ρ
ρλ

ρ
ρ d

dJ
d

dJ
d
d q

q
q

2
022

2
0 −=




















 

Integrate in ρ from 0 to 1: 
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( ) ( )
ρ

ρ
ρλ

ρλρ
ρ
ρλ

ρ
ρ

d
d

dJ
d

d
dJ

d
d q

q
q ∫∫ −=



















 1

0

2
0221

0

2
0  

Integrate by parts: 

( )( )
( )ρλρρ

ρλ
ρ

ρ

q

q

Jvddu

J
d
ddvu

2
0

2
0

2

2 ==

==
 

( ) ( )[ ] ( ) 




 −−=




















∫

1

0

2
0

1

0
2

0
22

1

0

2
0 2 dpJJ
d

dJ
qqq

q ρλρρλρλ
ρ
ρλ

ρ  

( ) ( ) ( )[ ] ( ) 




 −−=
























∫

1

0

2
0

1

0
2

0
22

1

0

00 2 dpJJ
d

dJ
d

dJ
qqq

qq ρλρρλρλ
ρ
ρλ

ρ
ρ
ρλ

ρ  

The left side of the equation is simplified: 

( ) ( ) ( )
0

0

1

0
1

0

0

==








−








=









ρρ
ρ
ρλ

ρ
ρ
ρλ

ρ
ρ
ρλ

ρ
d

dJ
d

dJ
d

dJ qqq  

( ) ( )
1

0
1

0

0

=








=









ρ
ρ
ρλ

ρ
ρλ

ρ
d

dJ
d

dJ qq  

Again using the identity: 

( ) ( )ρλλ
ρ
ρλ

qq
q J

d
dJ

1
0 −=  

( ) ( )qq
q J

d
dJ

λλ
ρ
ρλ

ρ 1

1

0

0 −=







 

From the eigenvalues we know ( )qJ λ1  for all λq thus the left hand side of the equation is 

zero, which of course forces the right hand side to also be zero: 

( )[ ] ( ) 




 −−= ∫

1

0

2
0

1

0
2

0
22 20 dpJJ qqq ρλρρλρλ  



99 

Evaluate the first portion: 

( ) ( ) ( )
0

2
0

2

1

2
0

21

0

2
0

2

==
−=

ρρ
ρλρρλρρλρ qqq JJJ  

( ) ( )qq JJ λρλρ 2
0

1

0

2
0

2 =  

Substituting it back into the equation: 

( ) ( ) 




 −−= ∫

1

0

2
0

2
0

2 20 dpJJ qqq ρλρλλ  

Divide by 2
qλ  to simplify: 

( ) ( )∫+−=
1

0

2
0

2
0 20 dpJJ qq ρλρλ  

Which yields for n = q: 

( ) ( )
2

2
01

0

2
0

q
q

J
dpJ

λ
ρλρ =∫  

This is now input into the heat equation for n = q: 

( ) ( ) ( ) ( ) ( ) ( )

( )( ) ( ) ( ) ( ) ( )∑∫

∑∑
∞

=










 −

−−

∞

=

∞

=

∂

∂
=+

−−

1

2
01

0 0
1

1

2
2

0
2

1

2
0

2

2

22

2

2

m
m

qmq
q

S

m
mqmm

q

m
mqm

qq

cos
bJ

dJee

cosb
Ja

cosb
J

o ζβ
τ

λ
ρρλρτφ

ζβτβ
λ

ζβτ
λλ

ρ
ρ

ζ

 

Simplify: 

( ) ( ) ( ) ( ) ( )

( )( ) ( )
( ) ( ) ρρλρ
λ

τφ

ζβ
τ

ζβτβζβτλ

ρ
ρζ

dJe
J

e

cos
b

cosbacosb

q
q

S

m
m

qm

m
mqmm

m
mqmq

o∫

∑∑∑










 −−−

∞

=

∞

=

∞

=

=

∂

∂
++

1

0 02
0

1

11

22

1

2

2

2

2
 

Simplify to: 

( ) ( ) ( )( ) ( )τφζβτγ
τ

ζ−−
∞

=

=







+

∂

∂
∑ 1

1

S
q

m
mqmqm

qm eFcosb
b
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Where: 

222
mqqm a βλγ +=  

( ) ( ) ρρλρ
λ

ρ
ρ

dJe
J

F q
q

q
o∫










 −

=
1

0 02
0

2

2

2  

Using a computationally efficient technique for finding the integral in Fq: 

( ) ρρλρ ρ
ρ

dJeI qq
o∫










 −

=
1

0 0

2

2

 

Let: 

0χρρ
ρ
ρχ =→=

o

 

ρ
ρ

χ dd
0

1
=  

Making an integral substitution: 

( ) χρχρλχρρ χ dJeI qq 0

1

0 000
0

2

∫ −=  

Let: 

0ρλλ qq
~ =  

Substitute into the integral: 

( ) χχλχρ ρ χ d~JeI qq ∫ −= 0
2

1

0 0
2

0  

From integral table, #6631.4 

( )
( ) 







 −
= +

∞ −+∫ α
β

α
βχβχχ αχ

42

2

10

1 2

expdJe v

v

v
v  

Thus, if : 
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∞≈→<<=
0

0
0

11 ρρ R
r  

The substitution can be made to the integral rather than computing the integral 

numerically: 

( ) χχλχρ χ d~JeI qq ∫
∞ −≈

0 0
2

0

2

 











≈

42

22
0

2
0 q

q expI
λρρ

 

Substituting into Fq: 

( ) 









≈

42
2

22
0

2
0

2
0

q

q
q exp

J
F

λρρ
λ

 

Simplify: 

( ) 









≈

4

22
0

2
0

2
0 q

q
q exp

J
F

λρ

λ
ρ

 

This assumption is good for 500 .<ρ .  When the value is greater than 0.5, a numerical 

integration must be used to approximate the integral in Fq.   

Evaluating F0 for use in the equation when q = 0, from eigenvalues: 

0=oλ  

( ) ( ) 1010 0
2

0 =→= JJ  

Substituted into the exact definition of Fq: 

∫
−

=
1

00

2
0

2

2 ρρ ρ
ρ

deF  

∫
−

=
1

0 2
0

2
00

22
0

2

ρ
ρ
ρρ ρ

ρ

deF  
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Using a u substitution: 

ρ
ρ
ρ

ρ
ρ dduu 2

0
2

0

2 2
=→=  

∫ −= 2
0

1

0

2
00

ρρ dueF u  

[ ] 2
0

1

0
2

00
ρρ ueF −−=  














+−=

−

0
1

2
00

2
0 eeF ρρ  














−=

−
2

0

1
2

00 1 ρρ eF  

Returning to the heat equation, we have: 

( ) ( ) ( )( ) ( )τφζβτγ
τ

ζ−−
∞

=

=







+

∂

∂
∑ 1

1

S
q

m
mqmqm

qm eFcosb
b

 

We use orthogonality to remove the summation in m by multiplying by cos(βpζ) and 

integrating from 0 to 1 in ζ. 

( ) ( ) ( ) ( ) ( )( ) ( )∫∫ ∑ −−
∞

=

=







+

∂

∂ 1

0

11

0
1

ζζβτφζζβζβτγ
τ

ζ dcoseFdcoscosb
b

p
S

q
m

mpqmqm
qm

 

This can be simplified by rearranging: 

( ) ( ) ( ) ( ) ( )( ) ( )∫∫∑ −−
∞

=

=







+

∂

∂ 1

0

11

0
1

ζζβτφζζβζβτγ
τ

ζ dcoseFdcoscosb
b

p
S

qmp
m

qmqm
qm

 

Using orthogonality: 

( ) ( ) ( )( )






=
++

≠
=∫ pmifBiBi

pmif
dcoscos

p

mp
2

1

0
11

2
1

0

β
ζζβζβ
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This is proved using identities of the trigonometric cos, recall: 

( ) ( ) ( ) ( )βαβαβα −++= coscoscoscos2

 
This applied yields: 

( ) ( ) ( ) ( ) ζζβζβζζβζβζζβζβ dcosdcosdcoscos pmpmmp ∫∫∫ −++=
1

0

1

0

1

0 2
1

2
1

 

( ) ( ) ( )[ ] ( )[ ] ζζββζζββζζβζβ dcosdcosdcoscos pmpmmp ∫∫∫ −++=
1

0

1

0

1

0 2
1

2
1

 

The integrals are evaluated: 

( ) ( ) ( )[ ] ( )[ ] 1

0

1

0

1

0 2
1

2
1













−

−
+













+

+
=∫

pm

pm

pm

pm
mp

sinsin
dcoscos

ββ
ζββ

ββ
ζββ

ζζβζβ

 

( ) ( ) ( ) ( )[ ]

( ) ( )[ ]











−

−
−

−

−

+










+

+
−

+

+
=∫

pm

pm

pm

pm

pm

pm

pm

pm
mp

sinsin

sinsin
dcoscos

ββ
ββ

ββ
ββ

ββ
ββ

ββ
ββ

ζζβζβ

0
2
1

0
2
11

0

 

( ) ( ) ( ) ( )











−

−
+










+

+
=∫

pm

pm

pm

pm
mp

sinsin
dcoscos

ββ
ββ

ββ
ββ

ζζβζβ
2
1

2
11

0

 

This is simplified: 

( ) ( ) ( ) ( ) ( ) ( ) ( )[ ]pmpmpmpm
pm

mp sinsindcoscos ββββββββ
ββ

ζζβζβ −+++−
−

=∫ 22

1

0 2
1

 

( ) ( ) ( ) ( ) ( ) ( ) ( )[ ]pmpmpmpm
pm

mp sinsindcoscos ββββββββ
ββ

ζζβζβ −+++−
−

=∫ 22

1

0 2
1

 Expanding with tan: 
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( ) ( ) ( )

( )
( )

( )
( ) ( )

( )
( )

( )
( ) ( )



















−









++

+









−

−
=∫

pm
p

pp

m

mm

pm
p

pp

m

mm

pm
mp

sin
tan

tan
tan

tan

sin
tan

tan
tan

tan

dcoscos

ββ
β
ββ

β
ββ

ββ
β
ββ

β
ββ

ββ
ζζβζβ 22

1

0 2
1  

 

Recall that ( ) Bitan mm =ββ : 

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )


















−









++

+









−

−
=∫

pm
pm

pm
pm

pm
mp

sin
tan

Bi
tan

Bi

sin
tan

Bi
tan

Bi

dcoscos

ββ
ββ

ββ
ββ

ββ
ζζβζβ 22

1

0 2
1

 

This is simplified: 

( ) ( ) ( )
( ) ( )

( ) ( )
( ) ( )

( ) ( )
( ) ( )
( ) ( ) 































−









++












+









−

−
=∫

pm

pm

pm

pm

pm

pm

pm
mp

sincos
cossin

tantan

sincos
cossin

tantanBidcoscos

ββ

ββ

ββ

ββ

ββ

ββ

ββ
ζζβζβ

11

11

2 22

1

0  

Substituting: 

( )

( )
( ) ( )
( ) ( )pm

pm

p

m

sincosd
cossinc

tan
b

tan
a

ββ

ββ

β

β

=

=

=

=

1

1

 

Simplifies the equation: 

( ) ( ) ( ) ( )( ) ( )( )[ ]dcbadcbaBidcoscos
pm

mp −+++−
−

=∫ 22

1

0 2 ββ
ζζβζβ  

This is expanded and simplified: 
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( ) ( ) ( )[ ]bdacBidcoscos
pm

mp 22
2 22

1

0
−

−
=∫ ββ

ζζβζβ  

Simplifying the expression and reinserting the expressions for a, b, c, and d: 

( ) ( ) ( ) ( )
( )

( ) ( )
( ) 











−

−
=∫

p

pm

m

pm

pm
mp tan

sincos
tan

cossinBidcoscos
β

ββ
β

ββ

ββ
ζζβζβ 22

1

0  

Using simple trigonometric identities it is simplified again: 

( ) ( ) ( ) ( ) ( ) ( )[ ]pmpm
pm

mp coscoscoscosBidcoscos ββββ
ββ

ζζβζβ −
−

=∫ 22

1

0  

It is clearly seen that this expression is zero as the two expressions inside the brackets are 

the same.  When they are subtracted, zero is returned and the expression evaluates to zero when

pm ββ ≠ . 

When βm = βp, the base equation is simpler: 

( ) ( ) ( ) ζζβζζβζβ dcosdcoscos ppm ∫∫ =
1

0

21

0  

Recall the trigonometric identity: 

( ) ( )[ ]αα 21
2
12 coscos +=  

This is input into the integral: 

( ) ( )[ ] ζζβζζβ dcosdcos pp ∫∫ +=
1

0

1

0

2 21
2
1

 

( ) ( ) 1

0

1

0

2

2
2

2
1












+=∫

p

p
p

sin
dcos

β
ζβ

ζζζβ  

( ) ( ) ( )











+−+=∫

pp

p
p

sinsin
dcos

ββ
β

ζζβ
2

00
2

2
1

2
11

0

2
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( ) ( )










+=∫

p

p
p

sin
dcos

β
β

ζζβ
2

2
1

2
11

0

2
 

( ) ( )









 +
=∫

p

pp
p

sin
dcos

β
ββ

ζζβ
2

22
2
11

0

2
 

Recall from the half angle formula: 

( ) ( ) ( )ppp sincossin βββ 22 =  

Substitute into the previous equation: 

( ) ( ) ( )
p

ppp
p

sincos
dcos

β
βββ

ζζβ
4

221

0

2 +
=∫  

( ) ( ) ( )
p

ppp
p

sincos
dcos

β
βββ

ζζβ
2

1

0

2 +
=∫  

Multiply by a cos(βp) / cos(βp): 

( )
( ) ( ) ( )

( )
p

p

p
ppp

p

cos
cos

sincos
dcos

β

β
β

βββ

ζζβ
2

1

0

2










+

=∫  

Simplify: 

( ) ( ) ( )
p

ppp
p

tancos
dcos

β
βββ

ζζβ
2

2
1

0

2 +
=∫  

Recall: 

( ) Bitan pp =ββ  

Multiply the last term also by βp / βp: 

( )
( ) ( )

p

p

pp
pp

p

tan
cos

dcos
β

β
ββ

ββ
ζζβ

2

2

1

0

2

+

=∫  
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This can simplify: 

( )
( )

p

p
pp

p

Bicos
dcos

β
β

ββ
ζζβ

2

2

1

0

2

+

=∫  

Recalling the trigonometric identity: 

( ) ( ) 122 =+ pp cossin ββ  

It can be derived that: 

( ) ( )p
p tan

cos
β

β 2
2

1
1

+
=  

Substitute this into the prior equation: 

( ) ( )
p

pp
p

p

Bi
tan

dcos
β

ββ
β

ζζβ
2

1
1

2
1

0

2





















+
+

=∫  

From the definition of Bi: 

( ) ( )
p

ppp
BitanBitan
β

βββ =→=  

Substitute into the equation: 

( )
p

p

p

p

p

Bi
Bi

dcos
β

β
β

β

ζζβ
2

1

1

2
2

1

0

2












+
+

=∫  

This simplifies: 

( )
p

pp
p

p

BiBi

dcos
β

ββ
β

ζζβ
2

1 2

2

1

0

2

+









+

=∫  
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( )
p

pp
p

p

BiBi

dcos
β

ββ
β

ζζβ
2

2

1

0

2

++

=∫  

( ) ( )
2

2
1

0

2

2
1

p

p
p

BiBi
dcos

β

β
ζζβ

++
=∫  

Resulting in the end of the value for which is proved: 

( ) ( ) pmwhenBiBidcos
p

p =








 +
+=∫ 2

1

0

2 11
2
1

β
ζζβ

 

Using orthogonality on the heat equation: 

( ) ( ) ( ) ( )( ) ( )∫ −−=








 +
+








+

1

0

1
2

11
2
1 ζζβτφ

β
τγ

τ
ζ dcoseFBiBib

d
db

p
S

q
p

qpqp
qp

 

( ) ( ) ( ) ( ) ( ) ( )∫−=








 +
+








+

1

02

11
2
1 ζζβτφ

β
τγ

τ
ζ dcoseeFBiBib

d
db

p
SS

q
p

qpqp
qp

 

Evaluating the integral by parts: 

( ) ( )
( ) ( )

p

pS

p
S

sin
vdSedu

dcosdveu

β
ζβ

ζ

ζζβ
ζ

ζ

==

==

 

( ) ( )
( ) ( ) ( ) ( )

ζ
β

ζβ
β

ζβ
ζζβ

ζζ
ζ d

sinSesine
dcose

p

p
S

p

p
S

p
S ∫∫ −












=

1

0

1

0

1

0
 

Yields the equation: 

( ) ( ) ( ) ( ) ( ) ( ) ( )
ζ

β
ζβ

ββ
β

β
β

ζζβ
ζ

ζ d
sineSsin

e
sine

dcose
p

p
S

pp

pS

p

p
S

p
S ∫∫ −

⋅
−= ⋅ 1

0

01

0

0

 

Which simplifies to: 



109 

( ) ( ) ( ) ( ) ( )
ζ

β
ζβ

ββ
β

ζζβ
ζ

ζ d
sineSsine

dcose
p

p
S

pp

p
S

p
S ∫∫ −=

1

0

1

0
 

Integration by parts can be done on the integral using: 

( ) ( )
( ) ( )

p

pS

p
S

cos
vdSedu

dsindveu

β
ζβ

ζ

ζζβ

ζ

ζ

−
==

==

 

( ) ( ) ( ) ( ) ( ) ( )













+





















 −
−= ∫∫ ζζβ

ββ
ζβ

ββ
β

ζζβ ζζζ dcoseScos
eSsine

dcose p
S

pp

pS

pp

p
S

p
S 1

0

1

0

1

0
 

Evaluating and simplifying to: 

( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ζζβ
β

β
ββ

β
ζζβ ζζ dcoseScosecoseSsine

dcose p
S

p
p

S

pp

p
S

p
S ∫∫ +−+=

1

02

2
0

2

1

0
0

 

( ) ( ) ( ) ( )( ) ( ) ( ) ζζβ
β

β
ββ

β
ζζβ ζζ dcoseScoseSsine

dcose p
S

p
p

S

pp

p
S

p
S ∫∫ +−+=

1

02

2

2

1

0
1

 

( ) ( ) ( ) ( )( )11 22

21

0
−+=










+





 ∫ p

S

pp

p
S

p
p

S coseSsineSdcose β
ββ

β

β
ζζβζ

 

( ) ( ) ( ) ( )( )








−+










+=∫ 111 22

21

0 p
S

pp

p
S

p
p

S coseSsineSdcose β
ββ

β
β

ζζβζ

 

( ) ( ) ( ) ( )









 −+










+=∫ 22

21

0
11

p

p
S

p
S

p

p
p

S ScosSesineSdcose
β

βββ
β

ζζβζ

 

( ) ( ) ( ) ( )( )ScosSesine
S

dcose p
S

p
S

p
p

p
S −+











+
=∫ βββ

β
ζζβζ

22

1

0

1

 

( ) ( ) ( ) ( )( )( )ScosSsine
S

dcose ppp
S

p
p

S −+










+
=∫ βββ

β
ζζβζ

22

1

0

1
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Recall: 

( ) ( )p
ppp tan

BiBitan
β

βββ =⇒=  

Substitute into previous equation and simplify: 

( ) ( ) ( ) ( ) ( )










−









+











+
=∫ ScosSsin

tan
Bie

S
dcose pp

p

S

p
p

S ββ
ββ

ζζβζ
22

1

0

1

 

( ) ( ) ( ) ( )( )( )ScosScosBie
S

dcose pp
S

p
p

S −+










+
=∫ ββ

β
ζζβζ

22

1

0

1

 

( ) ( ) ( )( )( )SSBicose
S

dcose p
S

p
p

S −+










+
=∫ β

β
ζζβζ

22

1

0

1

 

( ) ( ) ( )( )
22

1

0 S
SSBicose

dcose
p

p
S

p
S

+

−+
=∫ β

β
ζζβζ

 

Using the solution to the integral: 

( ) ( ) ( )( )











+

−+
=





 −− ∫ 22

1

0 S
SSBicose

edcosee
p

p
S

S
p

SS

β
β

ζζβζ

 

( ) ( ) ( )( )
22

1

0 S
SeSBicos

dcosee
p

S
p

p
SS

+

−+
=







−
− ∫ β

β
ζζβζ

 

Substitute into the base heat equation: 

( ) ( ) ( ) ( )( )
222

11
2
1

S
SeSBicos

FBiBib
b

p

S
p

q
p

qpqp
qp

+

−+
=









 +
+








+

∂

∂ −

β

β
τφ

β
τγ

τ
 

The second half of the left hand side of the equation can be simplified: 

( ) ( )









 +
+=









 +
+ 22

2

2

1
2
111

2
1

pp

p

p

BiBiBiBi
ββ

β

β  
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( ) ( )









 ++
=









 +
+ 2

2

2

1
2
111

2
1

p

p

p

BiBiBiBi
β

β

β  

( ) ( )
2

2

2 2
111

2
1

p

p

p

BiBiBiBi
β

β

β

++
=









 +
+

 

Substituting back into the base heat equation and simplifying: 

( ) ( ) ( ) ( )( )
222

2

2
1

S
SeSBicos

F
BiBi

b
b

p

S
p

q
p

p
qpqp

qp

+

−+
=









 ++








+

∂

∂ −

β

β
τφ

β

β
τγ

τ
 

( )
( )

( ) ( )( )
222

2

1
2

S
SeSBicos

F
BiBi

b
d

db

p

S
p

q
p

p
qpqp

qp

+

−+

++
=+

−

β

β
τφ

β

β
τγ

τ
 

( ) ( ) ( )
( )

( )τφ
β

β

β

τγ
τ q

p

S
p

p

qpqp
qp F

BiBi
SecosSBi

S
b

d
db












++

−+







+

=+
−

22 1
1

2

 

Let: 

( ) ( )
( ) 











++

−+







+

=
−

22 1
1

2

p

S
p

p

p BiBi
SecosSBi

S
G

β

β

β  

Then: 

( ) ( )τφτγ
τ pqqpqp
qp GFb

d
db

=+
 

Solve for bqp(τ) using the initial conditions: 

( ) ( ) 0000 == qpbif,,ζρθ
 

Use the integration factor τγ qpe :
 

( ) ( )τφτγ
τ

τγτγ
pqqpqp

qp GFeb
b

e qpqp =







+

∂

∂
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( ) ( ) ττφτ
τ

τ τγτγτ
′′=′

′ ∫∫
′′ deGFdbe

d
d qpqp

pqqp 00
 

( ) ( ) ( ) ττφτ
τ τγγτγ ′′=− ∫

′ deGFbebe qpqpqp
pqqpqp 0

0 0
 

( ) ( ) ττφτ
τ τγτγ ′′= ∫

′ deGFbe qpqp
pqqp 0

 

( ) ( ) ττφτ
τ τγτγ ′′= ∫

′− deeGFb qpqp
pqqp 0

 

Checking the initial condition by substituting a small value, ε for τ and taking the limit as 

ε goes to zero: 

( ) ( ) ττφε
ε τγεγ ′′= ∫

′− deeGFb qpqp
pqqp 0

 

( ) 0
00 =′′= ∫

′−
→ ττφ

ε τγεγ
ε deeGFblim qpqp

pqqp

 

The initial condition is satisfied as when ε goes to zero, the integral goes to zero and the 

expression before the integral goes to FqGp as the exponential goes to one. 

Now, let: 

( ) ( ) ττφτ
τ τγτγ ′′=Τ ∫

′− dee qpqp
qp 0

 
Remembering that ( )τφ  varies in time, ( )τqpΤ  will be solved in sections, for the first time 

segment, mττ ≤≤0 : 

( )
mτ
ττφ =  

Substituting into the equation and simplifying: 

( ) τ
τ
ττ

τ τγτγ ′
′

=Τ ∫
′−Α dee

m
qp

qpqp

0
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Using Maple 12 to evaluate the integral returns: 

( ) ( )τγτγ
τγ

τγ
γτ

τ qpqp
qp

eee
qp

qpm
qp +−=Τ

−
Α 12

 

Continuing with the second segment of ( )τqpΤ  where pm τττ ≤< : 

( )
mp

p

ττ
ττ

τφ
−

−
=

 

( )











′

−

′−
+′

′
=Τ ∫∫

′′−Β τ
ττ
ττ

τ
τ
ττ

τ

τ

τγτ τγτγ dedee
m

qpm qpqp

mp

p

m
qp 0

 

Using Maple 12 to evaluate the integral for the second segment returns: 

( ) ( ) 













+−

−+−

−
=Τ

−
Β

τγτγ

τγτγτγ

τγττ

γτττττ

ττγτ
τ

qpqp

qpmqpqp

ee

eee

qpmm

qpmpppm

pmqpm
qp 2

 

Finishing with the third segment of ( )τqpΤ  where pττ > : 

( ) 0=τφ  

( )











′

−

′−
+′

′
=Τ ∫∫

′′− τ
ττ
ττ

τ
τ
ττ

τ

τ

τγτ τγτγ dedee p

m

qpm qpqp

mp

p

m
qp 0

C

 

Using Maple 12 to evaluate the integral for the third segment returns: 

( ) ( )( )pqpmqp
qp

eee
mpmp

mpqpm
qp

τγτγ
τγ

ττττ
ττγτ

τ +−−
−

=Τ
−

2
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The value of ( )τqpΤ  is solved for all values of τ : 
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The equation is complete once all the segments of the function T are completed for all the 

segments.  The complete solution of the nondimensional temperature in the sample is a 

combination of all the equations: 



115 

( ) ( ) ( ) ( )
( )

( )
( ) ( )

( ) ( )

( ) ( )
( )

( )

( )

( )

( )( )

( ) 2

2

2

222

2

2

2

22

1

0
02

0

1

1 0
0

01

1
1

2

2

0

2

2

RP
krTT

L
Ra,R

r,R
t,L

z,L
r,LS

c
hL

k
hLBi

a

eee

ee

eee

eee

BiBi
SecosSBi

S
G

dJe
J

F

GFb
J

Bitan

Jcosb,,

o

o
o

m

qpqp

pmpmp
mpqpm

pm

qpmm

qpmpppm

pmqpm

mqp
qpm

qp

q

S
q

q

q

p
p

p

qpqpqp

p

qq

q p
pqqp

pqpmqp
qp

qpqp

qpmqpqp

qpqp
qp

o

κ
πθ

ρατξρκ

αρ

βλγ

ττττττ
ττγτ

τττ
τγττ

γτττττ

ττγτ

τττγ
γτ

τ

β
β

β

ρρλρ
λ

ττ

λ

ββ

ρλξβττξρθ

τγτγ
τγ

τγτγ

τγτγτγ

τγτγ
τγ

ρ
ρ

∞

−

−

−

−

−

∞

=

∞

=

−=

======

==

+=


















>+−−
−

≤<













+−

−+−

−

≤≤+−

=Τ

++

−+







+

=

=

Τ=

=

=

=

∫

∑∑

 

 

 

  



117 

APPENDIX C.   SOURCE CODE FOR CREATION OF THE GOVERNING 
PARAMETER SETS FOR THE DSFA THERMAL MODEL 

Source code file: DSFA_code_builder.m 

Compile instructions: Ensure all the required functions are located 

in the same working directory as the 

program.  Once the file is loaded in the 

editor window, simply click ‘run’ or type the 

name of the file in the command window. 

User inputs: None 

Program input files: None 

Required program functions: Matlab programmed functions bessel.m, 

trigfunc.m, Fint.m need to be saved in a 

directory that the current path in Matlab has 

defined. 

Program output files: DSFA_630.xls.  Values of the time 

dependent nondimensional temperature 

profiles for each of the given parameter sets 

along with their respective parameter values. 

 

Program source code: 
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% DSFA_code_builder.m 
 
% This code is used to solve the non-dimensional temperature profiles  
% in time for a small cylindrical sample that is irradiated upon by a  
% laser with a Gaussian power distribution.  The time varying pulse is  
% a triangle wave starting at zero, increasing linearly to a time, t_m,  
% and then decreasing linearly back to zero at t_p. 
  
clear all; clc; 
  
tic; 
  
% Set the governing parameters for 630 parameter sets 
  
% Change the values of alpha and rhoc to match metals 
alp_cas = [1e-4, 3e-5, 1e-5, 3e-6, 1e-6]; 
rhoc_cas = [0.5e6, 1.5e6, 2.5e6, 3.5e6, 4.5e6, 5.5e6]; 
h_cas = [20,30,40]; 
Kap_cas = [400,1000,1600, 2200, 2800, 3400, 4000]; 
  
size_Kap=size(Kap_cas,2); 
size_alp=size(alp_cas,2); 
size_rhoc=size(rhoc_cas,2); 
size_h=size(h_cas,2); 
  
cases=size_Kap*size_alp*size_rhoc*size_h; 
  
max_alp=max(alp_cas); 
min_alp=min(alp_cas); 
max_rhoc=max(rhoc_cas); 
min_rhoc=min(rhoc_cas); 
max_h=max(h_cas); 
min_h=min(h_cas); 
max_Kap=max(Kap_cas); 
min_Kap=min(Kap_cas); 
  
P = 1000.0;         % Watts, power of the laser 
r_o = 0.001;        % m, 1 sigma of the Gaussian curve away from center  
                    %    of laser 
R = 0.01;           % m, radius of the sample (should be >= 3*r_o) 
L = 0.002;          % m, thickness of the sample 
Tinf = 300.0;       % K, initial temp and temp of surroundings 
t_m = 0.001;        % sec, time for pulse to get to peak power 
t_p = 0.003;        % sec, time for pulse to finish 
rho=0.0;            % m, location of center of pulse from center of  
                    %    sample 
  
% Define non-dimensional parameters 
  
a = R / L;          % Aspect ratio 
rho_o = r_o / R;    % Ratio of laser power curve to radius of sample 
  
count = 1; 
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for conv=1:size_h 
    for OpDep=1:size_Kap 
        for alph=1:size_alp 
            for rhocp=1:size_rhoc 
  
h = h_cas(conv); 
Kap = Kap_cas(OpDep); 
alpha = alp_cas(alph); 
heatcap = rhoc_cas(rhocp); 
k = alpha * heatcap; 
  
tau_m = t_m * alpha / R^2; 
tau_p = t_p * alpha / R^2; 
  
S = Kap * L; 
Bi = h * L / k; 
  
dimpar(count,:) = [h, Kap, alpha, heatcap, k]; 
  
Par(count,:) = [S, Bi, tau_m]; 
Check(count,:) = S * Bi * tau_m; 
  
N=10;  % number of terms 
  
% Calculate the Eigenvalues 
% Eigenvalues in Lambda 
lam(1)=0; 
for n=2:N 
    format long 
    con=lam(n-1)+3; 
    lam(n) = fzero(@bessel, con); 
end 
  
% Eigenvalues in Beta 
beta(1)= fzero(@(x) trigfunc(x,Bi), 3e-4); 
if beta(1)<0 
    beta(1)=-beta(1); 
end 
for m=2:N 
    format long 
    con=beta(m-1)+3; 
    beta(m)= fzero(@(x) trigfunc(x,Bi), con); 
end 
  
% Calculate Non-Dimensional Temperature at any non-dimensional location  
% in non-dimensional time 
for i=1:200 
    tau = ( i - 1 ) * 0.0001;        % non-dimensional time 
    tau_ar(count,i) = tau; 
    time_ar(count,i) = R ^ 2 * tau / alpha; 
    zeta = 0; 
    zet = 1; 
    Theta(zet,i)=0; 
    for n=1:10 
        % Evaluate Bessel J at each eigenvalue 
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        Jo(n)=besselj(0,lam(n)); 
        Jop(n)=besselj(0,lam(n)*rho); 
        for m=1:N 
            gam=lam(n)^2+a^2*beta(m)^2; 
            if tau <= tau_m  
                T=1/(gam*tau_m)*(tau-(1-exp(-gam*tau))/gam); 
            elseif tau <= tau_p 
                T=1/gam^2*((gam*(tau_p-tau)+1)/(tau_p-tau_m)+(... 
                    exp(-gam*tau)-exp(gam*(tau_m-tau)))/tau_m-...  
                    (exp(gam*(tau_m-tau)))/(tau_p-tau_m)); 
            else 
                T=1/gam^2*((exp(-gam*tau)-exp(gam*(tau_m-tau)))/...  
                    tau_m+(exp(gam*(tau_p-tau))-exp(gam*(tau_m-...  
                    tau)))/(tau_p-tau_m)); 
            end 
            if rho_o < 0.5 
                F=rho_o^2/Jo(n)^2*exp(-rho_o^2*lam(n)^2/4); 
            else 
                F=2*Fint(rho_o,lam(n))/Jo(n)^2; 
            end 
            G=2*(beta(m)^2+Bi^2)*(cos(beta(m))*(Bi+S)-S*exp(-S))/... 
                (beta(m)^2+Bi^2+Bi)/(beta(m)^2+S^2); 
            GM(n,m)=G; 
            b=F*G*T; 
            Fnm(n,m)=F; 
            Theta(zet,i)=Theta(zet,i)+b*cos(beta(m)*zeta)*Jop(n); 
            Time(i)=tau*R^2/alpha; 
            TAU(i)=tau; 
        end 
    end 
end 
Tref = P * Kap * R^2 /( pi * r_o^2 * k); 
Temp(count,:) = Theta * Tref + Tinf; 
THETA(count,:) = Theta; 
t_end(count,:) = toc; 
count = count + 1; 
  
            end 
        end 
    end 
end 
  
time_end = toc; 
  
% Write the variables to file DFSA_630.xls for use in ROM and GA 
xlswrite('DSFA_630',Par,'Sheet1','A4') 
xlswrite('DSFA_630',THETA,'Sheet1','D4') 
xlswrite('DSFA_630',t_end,'Sheet2','A1') 
xlswrite('DSFA_630',time_end,'Sheet3','A1') 
xlswrite('DSFA_630',tau_ar(1,:),'Sheet1','D3') 
xlswrite('DSFA_630',Temp,'Sheet4','A1') 
xlswrite('DSFA_630',time_ar,'Sheet5','A1') 
xlswrite('DSFA_630',r_o,'Vars','A5') 
xlswrite('DSFA_630',R,'Vars','A6') 
xlswrite('DSFA_630',L,'Vars','A7') 
xlswrite('DSFA_630',t_p,'Vars','A8') 
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xlswrite('DSFA_630',t_m,'Vars','A9') 
xlswrite('DSFA_630',P,'Vars','A10') 
xlswrite('DSFA_630',Tinf,'Vars','A11') 
xlswrite('DSFA_630',tau_ar(1,2),'Vars','A12') 
xlswrite('DSFA_630',max_alp,'Vars','A1') 
xlswrite('DSFA_630',min_alp,'Vars','B1') 
xlswrite('DSFA_630',max_rhoc,'Vars','A2') 
xlswrite('DSFA_630',min_rhoc,'Vars','B2') 
xlswrite('DSFA_630',max_h,'Vars','A3') 
xlswrite('DSFA_630',min_h,'Vars','B3') 
xlswrite('DSFA_630',max_Kap,'Vars','A4') 
xlswrite('DSFA_630',min_Kap,'Vars','B4') 
xlswrite('DSFA_630',dimpar,'dimpar','A1') 
% end 630 parameter case 
 

Required functions source code: 

% bessel.m 

bessel.m 

  
function J1 = f(Z); 
J1 = besselj(1,Z); 
 

% trigfunc.m 

trigfunc.m 

  
function trig = f(Z,Bi); 
trig = Z*tan(Z)-Bi; 
 

% Fint.m 

Fint.m  

  
function F=f(po,lam); 
val=0; 
num=100; 
H=0; 
for rhoi = 1:num 
    p=rhoi/num; 
    H=p*exp(-p^2/po^2)*besselj(0,lam*p); 
    val=val+H; 
end 
F=val; 
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APPENDIX D.   SOURCE CODE FOR THE DSFA MODEL FOR THE MATRIX 
CREATION OF THE ROM IN MATLAB 

Source code file: ROM_code_matrix.m 

Compile instructions: Ensure the Excel file is saved in the same 

working directory that Matlab is in.  Once 

the file is loaded in the editor window, 

simply click ‘run’ or type the name of the 

file in the command window. 

User Inputs: None 

Program input files: DSFA_630.xls.  Raw solutions from the 

coefficient builder program for each 

parameter set. 

Required program functions: None 

Program output files:

 

 DSFA_630.xls.  Values of the time 

dependent nondimensional temperature 

profiles for each of the given parameter sets 

along with their respective parameter values.  

Contains the new data added to the file from 

this program. 
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% ROM_code_matrix.m 

Program source code: 

  
% Reduced Order Modeling program for the calculation of time dependant 
% temperature profiles in a Pulsed Laser Diffusion test. 
% Opens Microsoft Excel file DSFA_630.xls which contains the basis set  
% of parameters and solved values. 
% Reads 'DSFA_630' matrix from with database of governing parameters 
% and their respective nondimensional time dependant profiles from 
% 0.0 to 0.0199 Fourier numbers stepping in 0.0001 Fourier numbers 
  
% Writes to DSFA_630.xls other needed parameters and sets that are  
% stored and read in by the program that accepts arbitrary parameters  
% and returns the arbitrary profile. 
  
clear all; clc; 
tic;                 % clock start 
  
% Input matrix A from DSFA - Ensure that the range is correct 
  
a=xlsread('DSFA_630', 'Sheet1', 'D4:GU633'); 
  
A=a'; 
  
[M,N]=size(A); 
  
% Read parameters used to create the A matrix 
  
par=xlsread('DSFA_630', 'Sheet1', 'A4:C633');     
  
% Ensure that the range is correct 
k = par'; 
kplus = pinv(k); 
  
% Set values from read in values for use in ROM 
S=par(:,1); 
Bi=par(:,2); 
tau_m=par(:,3); 
maxS=max(S); 
minS=min(S); 
maxBi=max(Bi); 
minBi=min(Bi); 
maxtau_m=max(tau_m); 
mintau_m=min(tau_m); 
  
% For singularity values 
tol=1e-13; 
  
% Build matrix of interpolation functions 
for i=1:N 
    for j=1:N 
        Svar(i,j)=((par(i,1)-par(j,1))/(maxS))^2; 
        Bivar(i,j)=((log10(par(i,2))-log10(par(j,2)))/log10(maxBi))^2; 
        tau_mvar(i,j)=((log10(par(i,3))-log10(par(j,3)))/... 
            log10(maxtau_m))^2; 
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        F(i,j)=1/(Svar(i,j)+Bivar(i,j)+tau_mvar(i,j)+1)^(1/2); 
    end 
end 
  
% Number of significant eigenvalues 
n_fe=25; 
  
% Singular value decomposition of A 
[U_A SIG_A V_A]=svd(A);          
  
fe=U_A(:,1:n_fe); 
  
% Calculate coefficient matrix 
B=fe'*A; 
Bp=B'; 
festar=B*kplus; 
  
% Perform Singular Value Decomposition on F to get Moore-Penrose  
% inverse 
[U_F SIG_F V_F]=svd(F); 
Sa=SIG_F; 
  
% Zero out small singular values 
for i=1:N 
    if SIG_F(i,i) > tol 
        S_F(i,i)=1/SIG_F(i,i); 
    else 
        S_F(i,i)=0; 
    end 
end 
  
% Get C matrix using singular value decomposition 
C=B*V_F*S_F*U_F'; 
  
Fplus=V_F*S_F*U_F'; 
  
s=diag(SIG_A); 
f=diag(SIG_F); 
  
V = min(M,N); 
  
% Plot the Singular values of A for determination of truncation 
figure;%(2) 
semilogy (s(1:V,1),'o') 
xlabel('Number') 
ylabel('Singular Value of A') 
  
% Plot the singular values of F for determination of truncation 
figure;%(3) 
semilogy (f(1:N,1),'-') 
xlabel('Number') 
ylabel('Singular Value of F') 
  
Cp=C'; 
  
% Write parameters to Excel to be used in the GA program 
warning off MATLAB:xlswrite:AddSheet 
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xlswrite('DSFA_630', Cp, 'C', 'A1')         % Ensure this matrix call 
xlswrite('DSFA_630', fe, 'fe', 'A1')        % is the same as above that 
xlswrite('DSFA_630', Bp, 'B', 'A1')         % the matrix is read from 
xlswrite('DSFA_630', festar, 'festar', 'A1') 
xlswrite('DSFA_630', maxS, 'Vars', 'C1') 
xlswrite('DSFA_630', minS, 'Vars', 'D1') 
xlswrite('DSFA_630', maxBi, 'Vars', 'C2') 
xlswrite('DSFA_630', minBi, 'Vars', 'D2') 
xlswrite('DSFA_630', maxtau_m, 'Vars', 'C3') 
xlswrite('DSFA_630', mintau_m, 'Vars', 'D3') 
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APPENDIX E.   SOURCE CODE FOR THE INPUT OF ARBITRARTY 
PARAMETERS FOR THE ROM IN MATLAB 

Source code file: ROM_code_AP.m 

Compile instructions: Ensure the Excel file is saved in the same 

working directory that Matlab is in.  Once 

the file is loaded in the editor window, 

simply click ‘run’ or type the name of the 

file in the command window. 

User inputs: Input the arbitrary parameters for the ROM 

in the code.  For comparison to the input 

values, input the correct file and rows to 

retrieve the values for ‘w’ and ‘tim’ so the 

profiles may be plotted together. 

Program input files: DSFA_630.xls.  Raw solutions from the 

coefficient builder program for each 

parameter set and the additions from the 

ROM_code_matrix.m program. 

Required program functions: None 

Program output files: None 

Program source code: 
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% ROM_code_AP.m 
  
% Reduced Order Modeling simulation for the calculation time dependant 
% temperature profiles in a Pulsed Laser Diffusion experiment 
% Input Arbitrary parameters, read the Excel file with matrix data  
% stored 
% Returns Temperature, As. 
% With correlating data from the Excel file, will plot the ROM data  
% versus the numerical data from PLD Code. 
  
clear all; clc; 
  
tic;            % Start time clock 
t1=toc; 
  
% Read in Excel files that contain the ROM data 
% File A.xls 
Cp=xlsread('DSFA_630', 'C', 'A1:Y630');        % Ensure that the 
par=xlsread('DSFA_630', 'Sheet1', 'A4:C633');  % range of all these  
maxS=xlsread('DSFA_630', 'Vars', 'C1');        % read in matrices 
maxBi=xlsread('DSFA_630', 'Vars', 'C2');       % match the actual 
maxtau_m=xlsread('DSFA_630', 'Vars', 'C3');    % ranges in the Excel 
fe=xlsread('DSFA_630', 'fe', 'A1:Y200');       % files 
festar=xlsread('DSFA_630', 'festar', 'A1:C25'); 
Bp=xlsread('DSFA_630', 'B', 'A1:Y630'); 
r_o=xlsread('DSFA_630', 'Vars', 'A5'); 
R=xlsread('DSFA_630', 'Vars', 'A6'); 
L=xlsread('DSFA_630', 'Vars', 'A7'); 
t_p=xlsread('DSFA_630', 'Vars', 'A8'); 
t_m=xlsread('DSFA_630', 'Vars', 'A9'); 
P=xlsread('DSFA_630', 'Vars', 'A10'); 
Tinf=xlsread('DSFA_630', 'Vars', 'A11'); 
  
B=Bp'; 
C=Cp'; 
[i,M]=size(C); 
[N,i]=size(fe); 
  
t2=toc; 
  
%Arbitrary Profile 
  
% Manually input arbitrary conditions 
alphaa=3.959e-6; 
rho_cpa=5.052e6; 
ha=37; 
Kapa=960.5; 
  
t2 = toc; 
  
con=alphaa*rho_cpa; 
  
% Non-Dimensionalize 
Sa=Kapa*L; 
Bia=ha*L/(alphaa*rho_cpa); 
tau_ma=alphaa*t_m/R^2; 
Pa=[Sa Bia tau_ma]; 



129 

  
%interpolation function 
for i=1:M 
    Svara(i)=((Pa(1)-par(i,1))/maxS)^2; 
    Bivara(i)=((log10(Pa(2))-log10(par(i,2)))/log10(maxBi))^2; 
    tau_mvara(i)=((log10(Pa(3))-log10(par(i,3)))/log10(maxtau_m))^2; 
    Fa(i)=1/(Svara(i)+Bivara(i)+tau_mvara(i)+1)^(1/2); 
end 
t3=toc; 
  
Ba=C*Fa'; 
t4=toc; 
  
%arbitrary field 
Asl=fe*Ba; 
for i = 1:N 
    As(i,1)=Asl(i); 
end 
t5=toc; 
  
% festar=B*pinv(par'); 
Bn=pinv(fe)*As; 
k=pinv(festar)*Bn; 
  
time = toc;             %final clock time 
time1=t2-t1; 
time2=t3-t2; 
time3=t4-t3; 
time4=t5-t4; 
report=t5-t2; 
  
% Input for comparison to a known case, change the row to match 
parameters 
w=xlsread('tc1','Sheet1', 'D67:Y67'); 
  
W=w'; 
  
tim=xlsread('tc1','Sheet1', 'D66:Y66'); 
  
% Redimensionalize to return temperature in time 
ts = tim * R^2 / alphaa; 
Temp = P * Kapa * R^2 * As / (con * pi * r_o^2) + Tinf; 
TRet = P * Kapa * R^2 * W / (con * pi * r_o^2) + Tinf; 
  
% Plot comparison of Input Profile and ROM Profile 
figure; 
plot(tim,w,'-') 
hold on 
plot(tim,Temp,'o') 
legend({'DSFA Model';'ROM'}) 
ylabel('Temperature (K)') 
xlabel('Time (s)') 
hold off 
 
AS=As'; 
TEMP=Temp'; 
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APPENDIX F.   SOURCE CODE FOR SOLVING THE INVERSE PROBLEM OF 
DSFA WITH GA 

Source code file: GA.m 

Compile instructions: Ensure the Excel file is saved in the same 

working directory that Matlab is in.  Once 

the file is loaded in the editor window, 

simply click ‘run’ or type the name of the 

file in the command window. 

User inputs: None 

Program input files: DSFA_par_360.xls.  Raw solutions from the 

coefficient builder program for each 

parameter set and the additions from the 

ROM_code_matrix.m program. 

Required program functions: Matlab programmed function ROM_Func.m 

needs to be saved in a directory that the 

current path in Matlab has defined. 

Program output files: None 

% GA.m 

Program source code: 

  
% Genetic Algorithm Program for determining governing parameters h,  
% kappa,alpha that would yield an arbitrary input temperature profile. 
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% Reads in parameters from the ROM_code_matrix.m program saved in Excel  
% at 'DSFA_630.xls' and uses them in the ROM subroutine ROM_Func.m 
  
% Inputs the FLUENT case from 'Blind_Test_##.xls' after running DSFA  
% model 
  
clear all; clc; 
tic 
  
Cp=xlsread('DSFA_630', 'C', 'A1:Y630');         % Ensure that the range 
param=xlsread('DSFA_630', 'Sheet1', 'A4:C633'); % of all these read in 
Smax=xlsread('DSFA_630', 'Vars', 'C1');         % matrices match the 
Smin=xlsread('DSFA_630', 'Vars', 'D1');         % actual ranges in the 
bimax=xlsread('DSFA_630', 'Vars', 'C2');        % Excel files 
bimin=xlsread('DSFA_630', 'Vars', 'D2'); 
Tau_mmax=xlsread('DSFA_630', 'Vars', 'C3'); 
Tau_mmin=xlsread('DSFA_630', 'Vars', 'D3'); 
almax=xlsread('DSFA_630', 'Vars', 'A1'); 
almin=xlsread('DSFA_630', 'Vars', 'B1'); 
hcapmax=xlsread('DSFA_630', 'Vars', 'A2'); 
hcapmin=xlsread('DSFA_630', 'Vars', 'B2'); 
hmax=xlsread('DSFA_630', 'Vars', 'A3'); 
hmin=xlsread('DSFA_630', 'Vars', 'B3'); 
kapmax=xlsread('DSFA_630', 'Vars', 'A4'); 
kapmin=xlsread('DSFA_630', 'Vars', 'B4'); 
ro=xlsread('DSFA_630', 'Vars', 'A5'); 
R=xlsread('DSFA_630', 'Vars', 'A6'); 
L=xlsread('DSFA_630', 'Vars', 'A7'); 
tp=xlsread('DSFA_630', 'Vars', 'A8'); 
tm=xlsread('DSFA_630', 'Vars', 'A9'); 
P=xlsread('DSFA_630', 'Vars', 'A10'); 
Tinf=xlsread('DSFA_630', 'Vars', 'A11'); 
timestep=xlsread('DSFA_630','Vars','A12'); 
fe=xlsread('DSFA_630', 'fe', 'A1:Y200'); 
Bp=xlsread('DSFA_630', 'B', 'A1:Y630'); 
  
% Input time and temperature profiles 
  
% timereadin =xlsread('Blind_Test_1_new','Sheet1','D2:D40002'); 
% Treadin=xlsread('Blind_Test_1_new','Sheet1','E2:E40002'); 
% timereadin=xlsread('Blind_Test_2','Sheet1','D2:D35302'); 
% Treadin=xlsread('Blind_Test_2','Sheet1','E2:E35302'); 
% timereadin=xlsread('Blind_Test_3','Sheet1','D2:D65536'); 
% Treadin=xlsread('Blind_Test_3','Sheet1','E2:E65536'); 
% timereadin = xlsread('Blind_Test_5','Sheet1','A2:A65536'); 
% Treadin = xlsread('Blind_Test_5','Sheet1','B2:B65536'); 
% timereadin = xlsread('Blind_Test_7','Sheet1','A2:A40002'); 
% Treadin = xlsread('Blind_Test_7','Sheet1','B2:B40002'); 
% timereadin = xlsread('Blind_Test_8','Sheet1','A2:A40002'); 
% Treadin = xlsread('Blind_Test_8','Sheet1','B2:B40002'); 
% timereadin = xlsread('Blind_Test_9','Sheet1','A2:A40002'); 
% Treadin = xlsread('Blind_Test_9','Sheet1','B2:B40002'); 
% timereadin = xlsread('Blind_Test_11','Sheet1','D2:D40002'); 
% Treadin = xlsread('Blind_Test_11','Sheet1','F2:F40002');  
timereadin = xlsread('Blind_Test_12','Sheet1','A2:A65536'); 
Treadin = xlsread('Blind_Test_12','Sheet1','B2:B65536'); 
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Bimax=log10(bimax);             % Convert to logarithmic for faster 
Bimin=log10(bimin);             % ROM times 
tau_mmax=log10(Tau_mmax); 
tau_mmin=log10(Tau_mmin); 
SP=size(param,1); 
for i=1:SP 
    param(i,2)=log10(param(i,2)); 
    param(i,3)=log10(param(i,3)); 
end 
  
clear SDev 
clear value 
  
t1=toc; 
  
C=Cp'; 
B=Bp'; 
  
testcases = 5;     % Run the case 5 times to ensure consistent 
convergence. 
for aaa = 1:testcases 
    Tins(:,aaa)=Treadin; 
    timein(:,aaa)=timereadin; 
end 
  
for tests=1:testcases 
     
clear SDev 
clear value 
tests 
call = 0; 
Tin=Tins(:,tests); % Input profile 
  
[tin_max,locin]=max(Tin); 
trisein=timein(locin); 
Ti=Tin; 
  
[len, i]=size(Ti); 
ep=.05;                  % convergence criteria 
  
N = 150;                 % Number of parameter sets 
  
BEST_EVER(5) = -1e9;     % Initialize fitness check 
Gen=1; 
  
% Create Initial Parameter sets 
for i=1:N 
    % Conv. coefficient 
    h = hmin+(hmax-hmin)*rand();   
    % Absorbtion coefficient 
    kappa = kapmin+(kapmax-kapmin)*rand(); 
    % Thermal Diffusivity 
    alpha = 10^(log10(almin)+(log10(almax)-log10(almin))*rand()); 
    % Heat Capacity 
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    hcap = hcapmin+(hcapmax-hcapmin)*rand();     
  
    S=kappa*L; 
    Bi=log10(h*L/(alpha*hcap)); 
    tau_m=log10(alpha*tm/R^2); 
     
    % Determine Temperature profile for parameter set 
    theta = ROM_Func(S,Bi,tau_m,C,B,param,Smax,Bimax,tau_mmax,fe); 
    Temp = theta*(P*kappa*R^2/(pi*ro^2*alpha*hcap))+Tinf; 
    call=call+1; 
     
    for RT = 1:length(Temp) 
        ROMtime(RT) = R^2 * timestep*(RT-1) / alpha; 
    end 
     
    % Find time of maximum temperature rise 
    [t_max,loc]=max(Temp); 
    trise=timein(loc); 
    triseg=ROMtime(loc); 
     
    % Create interpolated time and temperature arrays for comparison 
    timeint(1) = timein(1); 
    Tempint(1) = Tins(1); 
    intp(1,:) = [1,0]; 
    t_i = 2; 
    for itp = 2:length(Temp) 
        while ((ROMtime(itp) > timein(t_i-1))&&(t_i-1 < numel(timein))) 
            t_i = t_i + 1; 
        end 
        if t_i > numel(timein) 
            t_i = numel(timein); 
        end 
        omega = (timein(t_i-1) - ROMtime(itp))/(timein(t_i-1)-... 
            timein(t_i-2)); 
        intp(itp,:) = [t_i-1,omega]; 
        timeint(itp) = ROMtime(itp); 
        Tempint(itp) = Tins(t_i-1)-omega*(Tins(t_i-1)-Tins(t_i-2)); 
        t_i = t_i + 1; 
    end 
  
    % Calculate Fitness Function for Randomly compiled parameter sets 
    val=0; 
    for jj=2:length(Temp) 
        val=abs(Tempint(jj)-Temp(jj))/Tempint(jj)*100+val; 
    end 
    avdif=val/len*100; 
    maxdiff = abs(tin_max-t_max)/(tin_max-Tinf) * 10; 
  
    if trisein == triseg 
        timediff = 0; 
    else 
        timediff = (max(trisein/triseg,triseg/trisein)-1)*10; 
    end 
     
    % Calculate Fitness Function 
    f = -(avdif+maxdiff+timediff); 
    start_par(i,:)=[h, kappa, alpha, hcap, f]; 
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    % Store the best fitness function team 
    if f > BEST_EVER(5) 
        BEST_EVER(1,:)=[h, kappa, alpha, hcap, f]; 
    end 
    C1 = max(start_par(:,5)); 
    value(Gen,1) = C1; 
         
end 
t2=toc; 
  
par=start_par;     
C1 = max(par(:,5)); 
val = C1; 
SDev(Gen)=std(par(:,5)); 
SDEV=std(par(:,5)); 
  
NGen = 500;       % Number of Generations 
  
  
  
% Generation Loop 
while SDEV>ep 
     
     
    % Start Tournament 
    for i = 2:N 
        first = ceil(N*rand()); 
        second = ceil(N*rand()); 
         
        % Tournament selections 
        if par(first,5) > par(second,5) 
            tourney(i) = first; 
        else 
            tourney(i) = second; 
        end 
    end 
     
    par(1,:)=BEST_EVER; 
     
    % Store set that won the tourney as the set 
    for i = 2:N 
        par(i,:)=par(tourney(i),:); 
    end 
     
    % Crossover, Blend Crossover 
    i = 1; 
    while i < N 
         
        parent1=par(i,:);      % Store set i as Parent 1 
        parent2=par(i+1,:);    % Store set i+1 as Parent 2 
         
        for m=1:2 
            if rand() < .5      % 50% Probability of crossover 
                r=rand(); 
                y1=r*parent1(m)+(1-r)*parent2(m); 
                y2=(1-r)*parent1(m)+r*parent2(m); 
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                parent1(m)=y1; 
                parent2(m)=y2; 
            end 
        end 
        for m=3:3 
            if rand() < .5      % 50% Probability of crossover 
                r=rand(); 
                y1=10^(r*log10(parent1(m))+(1-r)*log10(parent2(m))); 
                y2=10^((1-r)*log10(parent1(m))+r*log10(parent2(m))); 
                parent1(m)=y1; 
                parent2(m)=y2; 
            end 
        end 
        for m=4:4 
            if rand() < .5      % 50% Probability of crossover 
                r=rand(); 
                y1=r*parent1(m)+(1-r)*parent2(m); 
                y2=(1-r)*parent1(m)+r*parent2(m); 
                parent1(m)=y1; 
                parent2(m)=y2; 
            end 
        end 
         
        par(i,:)=parent1;      % set team i as child 1 (parent1) 
        par(i+1,:)=parent2;    % set team i+1 as child 2 (parent2) 
         
        i=i+2; 
    end 
     
    % Mutation Algorithm 
     
    for i = 1:N 
        SPM = .75;                      % Starting prob. for mutation 
        alfa(Gen) = SPM*(1-(Gen-1)/NGen)^4;  % Change power for rate 
        % Check case with random number against alfa for mutation 
        for j = 1:4 
            % Convective Coefficient Mutation 
            if j == 1 
                if rand()<alfa(Gen) 
                    hmut = hmin+(hmax-hmin)*rand(); 
                    par(i,j)=hmut; 
                end 
                 
            % Absorbtion Coefficient Mutation 
            elseif j == 2 
                if rand()<alfa(Gen) 
                    kapmut = kapmin+(kapmax-kapmin)*rand(); 
                    par(i,j)=kapmut; 
                end 
                 
            % Thermal Diffusivity Mutation 
            elseif j == 3 
                if rand()<alfa(Gen) 
                    almut = 10^(log10(almin)+(log10(almax)- ...  
                        log10(almin))*rand()); 
                    par(i,j)=almut; 
                end 
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            % Heat Capacity Mutation             
            elseif j == 4 
                if rand()<alfa(Gen) 
                    hcapmut = hcapmin+(hcapmax-hcapmin)*rand(); 
                    par(i,j)=hcapmut; 
                end 
            end 
        end 
    end 
     
    % Calculate Fitness function of new sets after tournament,  
    % crossover, and mutation 
  
    for i = 1:N 
         
        h=par(i,1); 
        kappa=par(i,2); 
        alpha=par(i,3); 
        hcap=par(i,4); 
         
        S = par(i,2)*L; 
        Bi = log10(par(i,1)*L/(par(i,3)*par(i,4))); 
        tau_m = log10(par(i,3)*tm/R^2); 
         
        % Calculate Temperature profile for the set 
        theta = ROM_Func(S,Bi,tau_m,C,B,param,Smax,Bimax,tau_mmax,fe); 
        Temp = theta*(P*kappa*R^2/(pi*ro^2*alpha*hcap))+Tinf; 
        call=call+1; 
         
        for RT = 1:length(Temp) 
            ROMtime(RT) = R^2 * timestep*(RT-1) / alpha; 
        end 
  
        [t_max,loc]=max(Temp); 
        trise=timein(loc); 
        triseg=ROMtime(loc); 
         
        % Create interpolated time and temperature arrays for 
        % comparison 
        timeint(1) = timein(1); 
        Tempint(1) = Tins(1); 
        intp(1,:) = [1,0]; 
        t_i = 2; 
        for itp = 2:length(Temp) 
            while ((ROMtime(itp) > timein(t_i-1)) && (t_i-1 < ... 
                    numel(timein))) 
                t_i = t_i + 1; 
            end 
            if t_i > numel(timein) 
                t_i = numel(timein); 
            end 
            omega = (timein(t_i-1) - ROMtime(itp))/(timein(t_i-1)-... 
                timein(t_i-2)); 
            intp(itp,:) = [t_i-1,omega]; 
            timeint(itp) = ROMtime(itp); 
            Tempint(itp) = Tins(t_i-1)-omega*(Tins(t_i-1)-Tins(t_i-2)); 
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            t_i = t_i + 1; 
        end 
         
        % Calculate Fitness Functions for the sets 
        val=0; 
        for jj=2:length(Temp) 
            val=abs(Tempint(jj)-Temp(jj))/Tempint(jj)*100+val; 
        end 
        avdif=val/len*100; 
        maxdiff = abs(tin_max - t_max)/(tin_max-Tinf)*10; 
        if trisein == triseg 
            timediff = 0; 
        else 
            timediff = (max(trisein/triseg,triseg/trisein)-1)*10; 
        end 
         
        % Calculate Fitness Function 
        f = -(avdif+maxdiff+timediff); 
        par(i,5)= f; 
         
        if f > BEST_EVER(5) 
            BEST_EVER(1,:)=[par(i,1), par(i,2), par(i,3), par(i,4), f]; 
        end 
  
    end 
     
    % Increment Generation number 
    Gen=1+Gen; 
    % Keep the best set on to the next generation (elitism) 
    Geners(tests)=Gen;   % Keep amount of generations run for each test 
    par(1,:)=BEST_EVER(1,:); 
    C1 = max(par(:,5)); 
    value(Gen,1) = C1; 
    SDev(Gen)=std(par(:,5)); 
    SDEV=SDev(Gen); 
    if SDev(Gen)<ep 
        break 
    end 
    if Gen>NGen 
        break 
    end 
  
end 
time = toc; 
  
h = BEST_EVER(1,1); 
kappa = BEST_EVER(1,2); 
alpha = BEST_EVER(1,3); 
hcap = BEST_EVER(1,4); 
  
S = kappa*L; 
Bi = log10(h*L/(alpha*hcap)); 
taum = log10(BEST_EVER(1,3)*tm/R^2); 
  
theta = ROM_Func(S,Bi,tau_m,C,B,param,Smax,Bimax,tau_mmax,fe); 
dimTemp=P*kappa*R^2*theta/(alpha*hcap*pi*ro^2)+Tinf; 
dimTempin=P*kappa*R^2*Tin/(alpha*hcap*pi*ro^2)+Tinf; 
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dtime = timein*R^2/alpha; 
  
done(tests,:)=[kappa; alpha; hcap; h]; 
  
figure; 
plot(timein,Tins); 
hold all 
plot(ROMtime,Temp,'bo'); 
hold off 
xlabel('Time (sec)') 
ylabel('Temperature (K)') 
legend('Input Temperature Profile','GA with ROM Profile') 
  
end 
 
 

% Rom_Func.m 

Required functions source code: 

  
% Reduced Order Modeling simulation subroutine for the calculation time  
% dependant temperature profiles in a Pulsed Laser Diffusion  
% experiment. 
 
% Parameters are brought in from GA.m program and input into subroutine  
% for the ROM to simulate temperature profile. 
 
% Returns Temperature, As. 
  
function ROM_Func=f(Sa,Bia,tauma,C,B,par,maxS,maxBi,maxtaum,fe); 
  
[i,M]=size(C); 
[N,i]=size(fe); 
  
% Read input arbitrary conditions from GA program 
Pa=[Sa Bia tauma]; 
  
%interpolation function 
for i=1:M 
    Svara(i)=((Pa(1)-par(i,1))/maxS)^2; 
    Bivara(i)=(((Pa(2))-(par(i,2)))/(maxBi))^2; 
    taumvara(i)=(((Pa(3))-(par(i,3)))/(maxtaum))^2; 
    Fa(i)=1/(Svara(i)+Bivara(i)+taumvara(i)+1)^(1/2); 
end 
  
% ROM matrix manipulation to return As 
  
Ba=C*Fa'; 
  
Asl=fe*Ba; 
for i = 1:N 
    As(i,1)=Asl(i); 
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end 
  
ROM_Func=As; 
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