
Brigham Young University Brigham Young University

BYU ScholarsArchive BYU ScholarsArchive

Theses and Dissertations

2012-07-09

A Server-Based Tool for Automating MODFLOW Simulations for A Server-Based Tool for Automating MODFLOW Simulations for

Well Permitting Decision Support Well Permitting Decision Support

David J. Jones
Brigham Young University - Provo

Follow this and additional works at: https://scholarsarchive.byu.edu/etd

 Part of the Civil and Environmental Engineering Commons

BYU ScholarsArchive Citation BYU ScholarsArchive Citation
Jones, David J., "A Server-Based Tool for Automating MODFLOW Simulations for Well Permitting Decision
Support" (2012). Theses and Dissertations. 3333.
https://scholarsarchive.byu.edu/etd/3333

This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion
in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please
contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.

http://home.byu.edu/home/
http://home.byu.edu/home/
https://scholarsarchive.byu.edu/
https://scholarsarchive.byu.edu/etd
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F3333&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/251?utm_source=scholarsarchive.byu.edu%2Fetd%2F3333&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/3333?utm_source=scholarsarchive.byu.edu%2Fetd%2F3333&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu,%20ellen_amatangelo@byu.edu

A Server-Based Tool for Automating MODFLOW Simulations for

Well Permitting Decision Support

David J. Jones

A thesis submitted to the faculty of
Brigham Young University

in partial fulfillment of the requirements for the degree of

Master of Science

Norman L. Jones, Chair
E. James Nelson

Gustavious P. Williams

Department of Civil and Environmental Engineering

Brigham Young University

August 2012

Copyright © 2012 David J. Jones

All Rights Reserved

ABSTRACT

A Server-Based Tool for Automating MODFLOW Simulations for
Well Permitting Decision Support

David J. Jones

Department of Civil and Environmental Engineering, BYU
Master of Science

Numeric groundwater modeling techniques can assist water resources regulators pursuing

prudent and foresightful aquifer management decisions. Unfortunately, the amount of time and
professional expertise required to wield modern groundwater models often exceeds the resources
of regulating agencies – even for simple modeling tasks that are repetitive in nature. In an effort
to increase the accessibility of groundwater modeling resources, a server-based automated well
permitting decision support system was designed. The prototype system allows a user to 1) input
properties for any number of candidate wells, 2) execute an associated MOFLOW model, and 3)
view relevant results of the simulation on a map such as drawdown contours and regions of
decreased spring flow.

The system extends the existing concept of automated well permitting geoprocessing,
which involves customizable tools built with ArcGIS and Arc Hydro Groundwater
geoprocessing components, by moving the geoprocessing tool to a server and creating an
interactive web interface built with the Google Earth plug-in. Several strategies to initiate the
server-based geoprocessing tool were considered, with and without ArcGIS Server software. A
realistic case study was included to demonstrate the system in action. Such server-based
automated decision support systems have promising potential to increase the accessibility of
groundwater models, facilitating professional management of crucial water resources.

Keywords: well permitting, decision support, geoprocessing service, MODFLOW

v

TABLE OF CONTENTS

LIST OF TABLES .. vii

LIST OF FIGURES ... ix

1 Introduction ... 1

1.1 Literature Review ... 2

1.2 Unique Contribution ... 3

1.3 Objectives and Scope .. 3

2 System Design .. 5

2.1 MODFLOW Groundwater Model .. 6

2.2 MySQL Database .. 7

2.3 Arc Hydro Groundwater Tools ... 9

2.4 Geoprocessing Tool .. 9

2.4.1 Custom ArcGIS Tools Created with ModelBuilder or Python 10

2.4.2 Part 1 of the Workflow: Modify the WEL File ... 11

2.4.3 Part 2: Executing MODFLOW ... 13

2.4.4 Part 3: Creating Output KMZ Files .. 14

2.4.5 Part 4: Applying Symbology .. 14

2.5 Web Interface .. 17

2.5.1 Dojo JavaScript Toolkit .. 17

2.5.2 Google Earth Plug-in .. 21

2.5.3 Database Interaction .. 23

3 Service Strategies .. 25

3.1 Basic ArcGIS Server Strategy .. 25

3.1.1 Implementation with System Components ... 26

vi

3.1.2 Summary ... 31

3.2 Basic PHP and Python Strategy .. 32

3.2.1 Implementation with System Components ... 32

3.2.2 Summary ... 36

3.3 Enhanced PHP and Python Strategy ... 37

3.3.1 Implementation with System Components ... 37

3.3.2 Possible Python Script Enhancements .. 43

3.3.3 Summary ... 46

4 Case Study ... 49

4.1 Introduction to the Example Problem ... 49

4.2 Methods and Assumed Candidate Well Attributes ... 50

4.3 Tool Results .. 51

4.4 Computational Time ... 57

5 Conclusion ... 61

5.1 Evaluation of Objective Outcomes ... 61

5.2 Further Work ... 62

REFERENCES .. 65

vii

LIST OF TABLES

Table 3-1. List of ArcGIS Server REST URLs for Asynchronous Geoprocessing Tasks27

Table 3-2. Definition of Result File Messages Structure ...41

Table 4-1. MySQL Database Records Derived from Available Data ...51

Table 4-2. Summary of Values Used to Verify Results for MODFLOW Layer 1 Change
in Spring Flows ..57

Table 4-3. Comparison of Total Computational Time for Complete Case Study
Simulations Using Different Computers ..58

Table 4-4. Required Computational Time of Individual Components of the Well
Permitting Python Script for the Case Study by Three Different Computers....................59

ix

LIST OF FIGURES

Figure 2-1. Simplified Data Flow Diagram for the Well Permitting Tool.6

Figure 2-2. Description of Required Fields in the Well Table. ...8

Figure 2-3. Data Flow Diagram Including the MySQL Database. ..8

Figure 2-4. Simplified Geoprocessing Workflow for the MODFLOW Well Permitting
Analysis..12

Figure 2-5. Example Usage of the dojo.xhrGet Function. ...19

Figure 2-6. A Standard Title Pane Expanded to Show Tool Input Forms.20

Figure 2-7. Custom Title Panes Embedded within the Contents of Other Title Panes to
Form a Table of Contents for Map Layers...21

Figure 3-1. Data Flow Diagram for the ArcGIS Server Geoprocessing Task Method..................26

Figure 3-2. Data Flow Diagram for the Elementary PHP/Python Method.33

Figure 3-3. Data Flow Diagram for the Enhanced PHP/Python Method.38

Figure 4-1. Tool Inputs and Locations of Candidate Wells ...52

Figure 4-2. Results Generated by the Permitting Tool Showing Aquifer Drawdown in
MODFLOW Layer 3 with Contours Increments of 0.2 Feet. ..53

Figure 4-3. Drawdown Results Superimposed with Map of Horizontal Hydraulic
Conductivity. ..54

Figure 4-4. Drawdown Results Superimposed with Map of Existing Points of Diversion.54

Figure 4-5. Results Generated by the Permitting Tool Showing Decrease in Spring Flows
in MODFLOW Layer 3. ..55

Figure 4-6. Change in Spring Flows and Drawdown Results for MODFLOW Layer 1
with Identification of Drain Elements to Be Verified. ..56

1

1 INTRODUCTION

Judicious management of groundwater resources depends on reliable and meaningful

information. To evaluate groundwater extraction permits, regulating agencies require

information forecasting the long-term impacts caused by the change in well pumping. While

standard groundwater models can be used to obtain this information, the process can be costly

and time consuming. New methods that streamline the well permitting process could help these

agencies make better decisions with limited budgets.

In Utah, the Utah Division of Water Rights (UT-DWR) is responsible for processing

applications for groundwater withdrawal permits. The process currently used by UT-DWR to

analyze long-term aquifer impact due to candidate wells involves the modification of

MODFLOW models developed by the USGS. With software applications such as GMS, the

MODFLOW model for the relevant aquifer is opened and then edited to include new wells or to

reflect any other changes that would result from application approval. Since such analyses are

not an every-day task, UT-DWR has experienced difficulty maintaining a staff with the expertise

necessary to perform this analysis.

The objective of this thesis is to create a web application for UT-DWR that will automate

the well permitting analysis, making it possible for staff members without familiarity with

groundwater modeling techniques to process applications for subsurface water extraction rights.

2

1.1 Literature Review

The significant number of scholarly efforts aimed at improving water resource data

availability point to the relevant nature of such work. Many of these efforts incorporate the latest

developments in service techniques and relational database models that allow users to access

geographic information with a simple web-based map application. The Consortium of

Universities for the Advancement of Hydrologic Science, Inc. has been at the forefront of recent

collaborated academic efforts to facilitate hydrologic data sharing, providing standards for

database design [1] and web services [2]. This endeavor has also included efforts aimed at

sharing water models [3].

Web-based decision support systems have been widely discussed in the literature.

Molenaar and Songer [4] identified several advantages of web-based decision support systems

over traditional decision support systems for civil engineering applications, including increased

accessibility (since users require only a browser and an internet connection) and increased

centralization of system software (where modifications to the system must only be applied to the

servers). More recently, decision support web applications have been enhanced with GIS-based

web map technologies and applied to a variety of water resources management applications [5].

Several decision support systems for subsurface water management have been proposed,

both web-based and otherwise. One off-line approach demonstrated by a case study incorporates

monthly aquifer data to continuously calibrate and refine the model predictions to match the

measured values [6]. Web-based decision support systems for groundwater management have

traditionally been limited to data exploration and have not included modeling capabilities. One

such example is an open source web GIS system, using a PostgreSQL database and web map

application built with the standard Open Geospatial Consortium (OGC) web mapping services

3

(WMS, WFS, and WCS), that was used to improve groundwater management in Morocco [7].

Another web-based information system has been built by the USGS to make historic and current

Arizona groundwater condition data available to decision makers and the public [8].

Jones, Strassberg, and Lemon developed a decision support system for well permitting

analyses using a MODFLOW model [9]. The system uses the products of Strassberg’s

dissertation, the Arc Hydro Groundwater (AHGW) database design and geoprocessing tools [10]

to encapsulate a MODFLOW model within the ArcGIS environment for pre- and post-

processing. This transformation facilitates the creation of automated well permitting

geoprocessing workflows that may be crafted to produce relevant map layers, perhaps polygons

representing areas where drawdown exceeds a given threshold.

1.2 Unique Contribution

The work described in this thesis builds on the AHGW automated well-permitting

methods developed by Jones, Strassberg, and Lemon. It describes the design of a web-based

decision support system using the AHGW tools, making the system more accessible and even

somewhat more automated. These efforts will enable groundwater resource managers to run

simple MODFLOW simulations without any specialized software from an interface viewed in

any common internet browser. The advantages common to all web-based decision support

systems will become applicable to the realm of groundwater management.

1.3 Objectives and Scope

The server based system for automated well permitting was designed to meet the needs of

UT-DWR through the following capabilities:

• The system should be maintainable and changeable.

4

• The tool should be capable of processing complex applications, such as those

involving several wells.

• The web interface should be simple and easy to use while allowing the user to explore

other relevant geographic information together with simulation results.

The Northern Utah County groundwater model [11] was selected as a pilot model for the

server based system. It is a steady state model with multiple layers. Drawdown and change in

spring flow were identified as the desired results for the tool to output. In accordance with UT-

DWR practice, the tool does not immediately modify the MODFLOW model when groundwater

applications are approved. Transient models, aquifers that necessitate other output geometries,

and situations that require updating the model could be accounted for with similar designs, but

were not considered in this study.

5

2 SYSTEM DESIGN

For maximized usability, utility, and flexibility of water resource geoprocessing services,

Díaz et al. [12] recommended a layered approach where the distinct elements of the application –

the data, presentation, and analysis elements – all work together but can also be accessed

individually. The automated well permitting system may similarly be divided into three layers,

with the MODFLOW model as the data element, the geoprocessing tool as the analysis element,

and the web application as the presentation element. The foundational layer is the MODFLOW

model. The middle layer is a geoprocessing tool that automates the MODFLOW analysis. This

thesis is primarily concerned with the creation of the third layer, a web application that offers

increased accessibility by serving the geoprocessing tool. Figure 2-1 shows the data flow

diagram for the basic system design.

This layered components approach preserves the independent functionality of lower

layers. This improves sustainability; if problems arise with the use of the web application, for

example, the geoprocessing tool will likely remain functional and of some value until the web

application can be repaired.

6

Figure 2-1. Simplified Data Flow Diagram for the Well Permitting Tool.

The MODFLOW model, geoprocessing tool, and web application are described in this

chapter. The database used to input the candidate wells is also described. The next chapter

discusses and compares methods to access the server-based geoprocessing tool over a network.

2.1 MODFLOW Groundwater Model

The foundational system layer is a MODFLOW groundwater simulation model. The

prototype application is built to automate the Northern Utah County model, a model created and

recently updated by the USGS [11].

MODFLOW simulations involve several files. Input files effect the simulation, and

output files store the results of the simulation. The WEL file is typically the only input file that

needs to be modified to perform a well permitting analysis.

UT-DWR uses several USGS MODFLOW groundwater models, each covering different

areas, to evaluate groundwater extraction applications. Although software such as GMS may be

used to open a model, modify the WEL file, execute the model, and then visualize the results of

Web Application

MODFLOW Model

AHGW Tools

Geoprocessing Tool

Service Technique

7

MODFLOW simulations, this manual well permitting analysis requires technical expertise that

may not be readily available. The ArcGIS geoprocessing tool automates this process in a

customizable way.

2.2 MySQL Database

Before the geoprocessing tool is discussed, the approach used to input candidate well data

will be described. The geoprocessing tool requires information about the candidate wells that

will be analyzed; specifically, the well coordinates, screen top and bottom elevations, and

pumping rate must be supplied by the user. To allow a user of the web application to provide

these values quickly and accurately, especially for an application involving multiple wells, a

database is used. The database stores a table of candidate well records. As outlined in Figure 2-2,

it includes fields for the latitude, longitude, screen top elevation, screen bottom elevation, and

pumping rate. Since permitting applications often involve several wells, an Application ID field

was also included to group together well records that belong to the same application and should

be analyzed together. This database scheme simplifies the work required to use the tool from the

web interface; the interface user must only enter the appropriate Application ID into the tool

input forms – much less effort than entering an entire table of data. Given the user-supplied

Application ID, the geoprocessing tool queries the database to retrieve the complete dataset.

Both the web application and the geoprocessing tool interact with the database. In short,

the web interface allows a user to add and edit data in the table, while the geoprocessing tool

essentially uses the table as an input data source. The system design chart including the database

component is shown in Figure 2-3.

8

 Well
This database table contains the candidate wells attributes required by the
automated well permitting tool. Unless the geoprocessing tool incorporates
unit conversions, units should match MODFLOW model units.
Field Name Description
WellID (key) Uniquely identifies each candidate well record

ApplicationID
Identifies the water rights application associated with the
well; multiple candidate wells may be integrated into a
single water rights application

Latitude Latitude in decimal degrees
Longitude Longitude in decimal degrees
Flow Rate of water diversion to be simulated by MODFLOW

ScreenTopElev

Greatest sub-surface elevation at the well location where
water is transferred from aquifer to well; used to
determine the model layer to place the MODFLOW well
feature

ScreenBotmElev

Least sub-surface elevation at the well location where
water is transferred from aquifer to well; used to
determine the model layer to place the MODFLOW well
feature

Figure 2-2. Description of Required Fields in the Well Table.

Figure 2-3. Data Flow Diagram Including the MySQL Database.

Web Application

Service Technique

MODFLOW Model

MySQL
Database

AJAX & PHP Scripts

AHGW Tools

Geoprocessing Tool

9

MySQL was selected as the database server because it can easily be accessed with PHP

and is available for free. Unfortunately, MySQL is not officially supported by ArcGIS, the

software platform the geoprocessing tool is based upon. To allow the ArcGIS-based

geoprocessing tool to query records from the MySQL database, a custom script is used. Other

database software that is supported by ArcGIS could be utilized without this complication.

2.3 Arc Hydro Groundwater Tools

As previously mentioned, the Arc Hydro Groundwater tools allow a MODFLOW model

to be transformed to a geodatabase for use in the ArcGIS environment. The AHGW data model

provides a standard format for hydrogeology data to be stored within geographic information

systems. It is an extension to the surface water-oriented Arc Hydro Data Model. The book Arc

Hydro Groundwater: GIS for Hydrogeology [13] summarizes the data model and outlines a set of

geoprocessing tools that have been developed to incorporate the MODFLOW groundwater

model within a GIS environment. Tools for converting between MODFLOW input and output

files and an ArcGIS geodatabase allow MODFLOW models to be visualized within ESRI’s

ArcGIS applications. An Execute MODFLOW tool was also included, making it possible for a

core set of groundwater modeling tasks to be executed exclusively within a GIS environment.

The well permitting geoprocessing tool incorporates many of these AHGW tools in sequence to

automate the basic groundwater modeling process required for a well permitting analysis.

2.4 Geoprocessing Tool

The geoprocessing tool automates the work required to modify, execute, and interpret the

results of the MODFLOW simulation. The work is performed in an ArcGIS environment.

Although expensive, ArcGIS software is commonly used in practice. AHGW tools allow ArcGIS

10

to behave as a pre- and post-processer for MODFLOW. Utilizing this configuration, custom

tools can be developed to automate the well permitting process as described by Jones, Strassberg,

and Lemon. Because the geoprocessing workflow makes the server-based application possible,

the following description is provided. Modifications required to facilitate server-based

automation will be highlighted.

2.4.1 Custom ArcGIS Tools Created with ModelBuilder or Python

Some background information and definitions will be presented before the sequence of

the geoprocessing operations is discussed. ModelBuilder is an ArcGIS application that may be

used to connect a sequence of geoprocessing operations. It essentially creates customizable

geoprocessing macros. A sequence of geoprocessing operations defined with ModelBuilder is

sometimes referred to as a geoprocessing model, workflow, or custom tool since ModelBuilder

workflows can be used in the same manner as the standard ArcGIS geoprocessing tools. The

term “model” will be reserved for groundwater models rather than custom geoprocessing, the

term “tool” will be used to refer to the black-box process that generates desired output from

provided inputs, and the term “workflow” will be used when discussing the inner workings and

logic of the custom tool. Terms such as geoprocessing service and geoprocessing task have

specific meanings associated with ArcGIS Server; when an ArcGIS toolbox is published with

ArcGIS Server, the toolbox becomes a geoprocessing service, and each contained tool becomes a

geoprocessing task.

Python scripts provide an alternative to ModelBuilder workflows. Custom tools created

with ModelBuilder can only be used from other ArcGIS software like ArcMap or ArcCatalog.

Scripts created with Python are more flexible; they may be designed to function within an

ArcGIS application as custom script tools, behaving exactly like a ModelBuilder tool, or as

11

stand-alone geoprocessing scripts designed to run outside a standard ArcGIS application, perhaps

accessed from the command line. With little effort, a single script may be designed to function as

either a script tool or a stand-alone script.

The relative advantages and distinctions between a ModelBuilder workflow, a Python

script tool, and a stand-alone Python script will be discussed in the following chapter with

various techniques for serving the tool. The sequence of geoprocessing operations is the same for

the well permitting tool, whether it is constructed with ModelBuilder or Python.

The well-permitting workflow may be divided into four steps: 1) modify the MODFLOW

input files to account for the candidate wells, 2) run MODFLOW, 3) convert the MODFLOW

output files to resultant GIS datasets, and 4) for each resultant dataset, produce KMZ or PDF

result files that are specially formatted and styled to effectively convey meaningful information

to the user. The fundamental geoprocessing functions and tools for each of these steps are shown

in Figure 2-4.

2.4.2 Part 1 of the Workflow: Modify the WEL File

The MODFLOW WEL file must be modified to include new records for each of the

candidate wells before the simulation is run. The WEL file simply lists the pumping rate and the

I, J, K indices of the cell containing each well for each time-step. The first task of the

geoprocessing tool is to convert the coordinates and screen elevations of each candidate well into

I, J, K values and to write a new WEL file.

12

Figure 2-4. Simplified Geoprocessing Workflow for the MODFLOW Well Permitting Analysis.

The workflow starts with the Application ID provided from the user. A custom tool is

used to generate a table of candidate wells from this ID. This custom Python script tool uses the

urllib module to open and read the contents of PHP page, the same PHP page that is used by the

web application to query and add candidate wells to the map for a specific Application ID. The

query results, including the coordinates, pumping rate, and screen elevations for each candidate

well, are saved to an ArcGIS geodatabase table. While it is possible to use Python to query a

MySQL database directly, this functionality is only available after installing a custom module

such as MySQLdb. Using the urllib module allows the Python script to be transferred to another

machine and work without requiring a non-trivial Python module installation. A well permitting

tool built with an ArcGIS-supported database would use the Table Select tool rather than the

custom Python script to do this query. In both cases, the Application ID is used to form a query

Make Feature Layer

Apply Symbology
From Layer

Make XY Event
Layer

Create MODFLOW
Well Records

Export Package
WEL

Query MySQL DB
for Candidate Wells

Table

MODLFOW
Result Files

Run
MODFLOW

Application
ID

New
MODLFOW

WEL File

Import
MODFLOW

Output

Import Simulated
Equivalents

Create MODFLOW
Features (Node2d)

Interpolate to Raster

Contour

Calculate Field
(Change in Flow)

Create MODFLOW
Features (Cell2d)

Table of
Drain Flows

Table of
Drawdown

Layer To KML

Drain Flow
KMZ

PDF Export with
arcpy.mapping

Python scripting

PDF Report
with Maps

Drawdown
KMZ

3. Interpret Model Results 4. Produce Formatted & Styled Result Files

1. Modify Model 2. Execute Model

13

and a table of the candidate wells of interest is returned with the latitude, longitude, pumping

rate, and screen top and bottom elevations of each candidate well.

The next step is to convert the candidate well table into a map layer. This is accomplished

with the Make XY Event Layer tool using the latitude and longitude values stored in the table.

Then the Feature Class to Feature Class tool is used to convert the layer to a feature class and

also to update the spatial reference. Subsequent AHGW tools require the spatial reference of

each input dataset – the coordinate system, resolution, and tolerance – to match each other. The

environment settings for the Feature Class to Feature Class tool were set to modify the spatial

reference, causing the coordinate system to be projected from geographic to Utah State Plane.

With a feature class containing the candidate wells, the workflow can proceed in the

same manner described by Jones, Strassberg, and Lemon using AHGW tools. Create

MODFLOW Well Records appends the candidate well records to a table of all MODFLOW well

features, and Export Package WEL writes out the WEL file using this amalgamated table. With

the newly generated WEL file, the MODFLOW simulation is ready to be executed.

2.4.3 Part 2: Executing MODFLOW

The execution of the MODFLOW simulation is performed with a single AHGW tool,

Run MODFLOW. This tool requires two input parameters: the path to the MODFLOW name file,

and the path to the executable. A MODFLOW executable file is downloaded with the AHGW

tools and may be copied into a common directory, accessible with a relative path. If the

workflow is created in ModelBuilder, a precondition must be created to start the Run

MODFLOW tool only after the new WEL file is written.

14

2.4.4 Part 3: Creating Output KMZ Files

For the Northern Utah County model, aquifer drawdown and the change in spring

discharge were identified as the results of interest to have the geoprocessing tool calculate. The

AHGW tools facilitate obtaining these results from the MODFLOW result files.

The Import MODFLOW Output tool populates tables with the calculated drawdown for

each grid. The Create MODFLOW Features tool then joins this table with point geometries

representing the cell center of a single MODFLOW layer. A drawdown raster is then generated

with the Natural Neighbor tool, from which contour lines are produced with the Contour tool.

To obtain the change in spring flows, the workflow first uses the Import Simulated

Equivalents tool to populate the FLOB table with the simulated drain flows. Although the FLOB

table is meant to store flow observation data for parameter estimation runs, it may be pre-

populated with the baseline flows rather than flow observations. After the Import Simulated

Equivalents tool populates the observed flow field, the Calculate Field tool is used to calculate

the residual flow field which really represents the desired change in flow. Join Field then

appends the MODFLOW K values which indicate which layer each drain belongs to. The next

tool, Create MODFLOW Features, turns the table into a geographic feature class with

rectangular MODFLOW cell polygons for each drain element.

2.4.5 Part 4: Applying Symbology

Web interface users are not able to customize the appearance of geoprocessing results.

This makes it important for newly created geoprocessing results to be delivered with useful

symbology. This requirement may be satisfied through additions to the workflow. The

techniques that will be described are applicable to both result KMZ files and PDF maps, though

PDF output is not discussed until Section 3.3.

15

2.4.5.1 Applying Symbology to Single Independent Layers

The general procedure used to create deliberately formatted KMZ output files is as

follows:

1. The result feature class is converted to a layer with Make Feature Layer.

2. A predefined symbology is assigned to the new layer using Apply Symbology

From Layer.

3. Finally, the Layer to KML tool creates a nicely formatted KMZ representation of

the results.

The Make Feature Layer tool is required because only layer files, not feature classes, can

be converted to KML or KMZ files with the standard ArcGIS conversion tool. A few of the

enhanced geoprocessing outputs listed in Section 3.3.2 also require the geographic results to

store as a layer.

Predefined symbologies are layer files created in ArcMap. Using such layer files, the

Apply Symbology From Layer tool can be used to apply a graduated color ramp to features based

on values in the attribute table. The color ramp classification can either be held constant or

adjusted to fit the distribution of attribute values for the target feature layer. When the

symbologies template layer is made with a manual classification, the color ramp classification is

held constant; conversely, if a classification method like Equal Interval or Natural Breaks is

used, the color scale will update dynamically to fit the new range of values. The template layer

file can also be used to define other properties that will impact the usability of the final KMZ

result file. When a user clicks on a feature from a KML or KMZ file, an info-balloon displays

additional information. This content can be controlled to some degree using the symbology

template layer file.

16

Finally, the Layer to KML tool converts the layer to a KMZ file. KMZ files are simply

zip archives that combine a KML file with icon images or other data required for proper display.

KML and KMZ files can be interpreted by many clients, including the Google Earth plug-in.

2.4.5.2 Applying Matching Symbology Across MODFLOW Layers

In some cases, the Apply Symbology From Layer geoprocessing tool must be

supplemented with additional tools in order to achieve the desired results. One significant case

that requires consideration is when the well permitting simulation must create different KMZ

output files for the same variable of interest but for different MODFLOW layers. The color scale

should match across layers. In most cases, however, the different MODFLOW layers will have

different attribute value ranges, and this will cause the color scale to be different for each layer.

The change in spring flow output serves as an example of the issue. The North Utah

County MODFLOW model has drain features in layers 1, 2, and 3. Because many of the drains

in different MODFLOW layers have the same I and J coordinates, a convenient way to display

the results is to produce 3 different KMZ files, with separate files for layer 1, 2, and 3. The color

red might be used to signify drains with the maximum flow changes, but the minimum and

maximum flow change will almost certainly be different for each layer, and it would be

preferable for the color red to mean the same thing regardless of MODFLOW layer. This

challenge is overcome by combining the features for each MODFLOW layer, then using the

Apply Symbology From Layer tool, and finally splitting the results into separate MODFLOW

layers. The following operation achieves consistent formatting of multiple layer change in spring

flows output:

1. Create MODFLOW Features from a derivative of the FLOB table with no k value

specified. (The FLOB table is copied and then joined with the FLOBFactors table

17

to get the K field, the MODFLOW layer identifier necessary for operation 5

below.)

2. Copy Features

3. Make Feature Layer

4. Apply Symbology From Layer

5. Select Layer By Attribute

6. Delete Features

7. Layer To KML

8. Repeat 2 – 7 for each MODFLOW layer

A similar procedure could be used to match contour line symbology across layers.

2.5 Web Interface

The role of the web application is to provide simplified access to the well permitting

geoprocessing tool. In short, a set of form input boxes and a submit button allow the user to

execute the tool. While the server executes the tool, status messages may be updated and

displayed on the web interface. An interactive embedded map displays the final geographic

results. Since the tool input refers to values stored in a database table, the web application also

allows a user to view, modify, and add these database records. The web interface is HTML

enhanced with JavaScript and CSS. The Dojo JavaScript Toolkit and the Google Earth plug-in

are leveraged to increase usability.

2.5.1 Dojo JavaScript Toolkit

JavaScript is a client-side scripting language that makes HTML web pages more

dynamic. The Dojo Toolkit [17] is collection of high-level JavaScript tools. These tools are used

18

by the web interface to communicate in the background with the server, format the page with

specialized widgets, and ensure the application works the same in most browsers. There are

many other capable JavaScript libraries, and Dojo was initially selected because it is required by

the ArcGIS Server JavaScript API; however, the ArcGIS API ultimately was not used for any of

the service strategies described in Chapter 3.

The most valuable contribution of the Dojo JavaScript Toolkit is the tool that facilitates

background communication with the server, the dojo.xhrGet() function. Rather than redirecting

the user to a new page to display the results of the tool, this function allows the web application

to send the job request to the server and retrieve the results in the background. This web

development technique, sending and receiving information without reloading the page, is known

as Ajax. While the Dojo Toolkit is not required to use Ajax techniques, Dojo provides a

convenient tool that makes Ajax requests easier. (In fact, the Google Earth plug-in has its own

Ajax-based tool for loading KML or KMZ files in the background.)

For example, consider the code shown in Figure 2-5. When a user enters an Application

ID, the web interface should display any candidate wells with this ID on the map. To accomplish

this, the web application creates an Ajax request for the coordinates of candidate wells with a

specific Application ID. The URL of the resource, along with Application ID value that will be

appended to the URL to form a GET request, are passed into the dojo.xhr.Get() function.

Callback functions to complete when the resource is loaded or when it fails to load are also

specified. In this example, the resource is a PHP script that queries the MySQL database and

prints out coordinate information for candidate wells with the specified Application ID. Rather

than displaying the sets of coordinates as raw text in the browser, the text is stored by the results

19

variable and passed into the load function where it is then used to add well placemarks to the

map.

Figure 2-5. Example Usage of the dojo.xhrGet Function.

The web interface uses background Ajax requests extensively. All dynamic data is loaded

into the web interface in this manner. In most cases, the application uses specifically designed

PHP pages as the resource so the returned data can be dependent on arguments passed along

using the GET method; however, the resource may be any file type. The application employs

Ajax techniques not only to retrieve data, but also to initiate specific tasks – such as modifying

the database or executing a Python script – where the returned data would primarily indicate

whether the task was completed successfully.

Another use of the Dojo Toolkit is to enhance visual appeal and usability. A Combo Box

widget is used to create an advanced text box for the Application ID. It includes an auto-

complete dropdown menu containing valid Application IDs. Dojo formatting widgets are used to

organize the web page and to show and hide content. Cascading Style Sheets are used to control

20

the display of Dojo widgets and other web page elements in the application. Dojo uses a

predefined style sheet that can be modified or overridden.

Title pane widgets, such as the example show in Figure 2-6, are used to generate

collapsible DIV elements. A title above the collapsible content is always visible and may be

clicked to show or hide the underlying content. Title panes were used by the prototype web

application to hold the tool input form and to hold the list of optional map layers. Modified title

pane widgets were embedded within each other to create this list of map layers. The user can

toggle layers on and off, open and collapse sub-layers, and view legends for each layer. Dojo

widgets may be modified simply by creating a new style class and specifying the desired

formatting in a CSS file. Then the custom style class is assigned to the title pane HTML element

with the class attribute. The custom title pane style eliminated the border, background, and

padding around the label; and includes only a dotted line border on the left side of the contents.

Figure 2-7 shows an example. A display similar to the Google Earth “Layers” pane or the

ArcMap “Table of Contents” was the goal. Title panes allow content to be organized and

condensed, reducing the required display area.

Figure 2-6. A Standard Title Pane Expanded to Show Tool Input Forms.

21

Figure 2-7. Custom Title Panes Embedded within the Contents of Other Title Panes to Form a
Table of Contents for Map Layers.

One final benefit from the Dojo Toolkit is enhanced cross-browser compatibility. Users

expect web applications to function identically on all major browsers. Dojo reduces the effort

and technical expertise required to meet this demand.

2.5.2 Google Earth Plug-in

The Google Earth plug-in is another free JavaScript extension. An embedded Google

Earth map is used to display the locations of candidate wells, the output from the geoprocessing

task, and other KML and KMZ files that enhance the well permitting process. The Google Earth

map interface has many benefits over other web mapping options. It responds quickly to user

interaction and includes useful features such as 3D terrain, street-view imagery, and historic

imagery. The display of these components and layers may be toggled on and off. A disadvantage

is that the end user must download and install a plug-in, and that it is not supported by all

browsers and operating systems.

22

A critical capability of the Google Earth plug-in is the ability to add KML and KMZ files

directly to the map. This feature is leveraged by the application to display tool results. The result

of the geoprocessing tool is a series of KMZ files; after the tool completes, it send back the

URLs of these KMZ files, and they can be added to the map. Dynamically-added check boxes

allow these KMZ layers to be toggled on or off. Without the capability of importing KMZ files,

the geoprocessing tool would have to convert the results to a table of coordinates, and the

application would have to convert these coordinates back to geographic features. KMZ file are

preferable to coordinate output not only because it simplifies the web application source code,

but also because it is a widely recognized file format supported by several applications.

The web application also allows the user to browse pre-created KML and KMZ layers

that display a variety of useful information. KML layers displaying inputs to the MODFLOW

model were created with AHGW tools and are listed as optional layers that a user may toggle on

and off. These MODFLOW layers include ground overlay images showing the model active

grid, baseline head, and hydraulic conductivity. KML point and polygon features were created to

represent MODFLOW sources and sinks such as wells, drains, evapotranspiration, streams, and

recharge. The opacity of each individual layer may be adjusted. The Google Earth plug-in allows

layers to be grouped into folders, and the opacity of folders may be adjusted as well.

UT-DWR has a collection of KML files with pertinent water rights information. One

such KML file contains a network link that displays the locations of individual water rights, each

including an info balloon with a link to more information. This KML file and others were added

as optional layers to the application. With results from the tool and these KML network links, it

is possible to visualize the specific water rights that will be affected by candidate wells.

23

Other embeddable map interfaces were considered. The Google Maps JavaScript API has

many of the same benefits of the Google Earth API and is more widely used by web developers.

It also allows KML and KMZ files to be directly added to the display, but the current version

limits the size of the KML file, the number of network links, and the total number of features that

may be in memory at a time [14]. As a result, it may not be possible for an application built with

the Maps API to load medium to large results from the geoprocessing tool or to display all the

available map layers simultaneously. ESRI has developed an extension to the Maps API that

helps developers display geoprocessing service result geometries on an embedded Google Map;

however, this extension was built for the outdated version 2 of the Maps API. Further, the

extension only works with ArcGIS geoprocessing services. ESRI created this extension using the

Ajax tools of the Dojo toolkit, tools that were used to add the same functionality to the Google

Earth API based application being described and could be applied to version 3 of the Maps API.

2.5.3 Database Interaction

The web application allows multiple avenues of interaction with the candidate well

records from the MySQL database. When an Application ID is entered in the input text box, the

map automatically displays the locations of all the wells associated with this application. The

data stored for each well is displayed in an info-balloon when a particular well is clicked by the

user. An optional layer allows the user to view the well records for all Application IDs.

The web application also displays the database in tabular form, allowing read and write

access. Ajax techniques are used to submit PHP scripts that retrieve records for display or

modify a record. Separate PHP scripts for editing, adding, and deleting records were created.

25

3 SERVICE STRATEGIES

The geoprocessing service must at minimum allow a user of the well permitting

application to perform two fundamental functions:

1. Initiate the remote execution of the geoprocessing tool with supplied arguments, and

2. Access the results.

This chapter discusses several strategies that may be employed to provide these functions. Two

methods for initiating a geoprocessing service will be described. The first initiation method uses

ArcGIS Server software, and the second uses a PHP and Python solution. Two possible result

retrieval paradigms are described for the PHP and Python solution. The basic retrieval paradigm

is appropriate for tradition ArcGIS geoprocessing tools for which the nature of the expected

output is pre-defined; an advanced retrieval paradigm that allows more flexibility and interaction

between the geoprocessing tool and the web interface is also described. In all, three

geoprocessing service strategies will be described, each with distinct advantages.

3.1 Basic ArcGIS Server Strategy

ArcGIS Server is software that can be used to share geographic data across a network.

One way it facilitates data sharing is with web services. Geoprocessing web services can be

created to share geoprocessing capabilities over a network. Conventionally, a published

geoprocessing toolbox is called a service, and each tool inside the toolbox is called a task. Any

26

developed application can be programmed to utilize an ArcGIS web service. Published services

can also be utilized within applications like ArcMap and ArcGIS Explorer.

3.1.1 Implementation with System Components

Figure 3-1 shows the system design for an application built around an ArcGIS

geoprocessing service. (In contrast to the basic data flow diagrams of Chapter 2, the service

technique is displayed as an element rather than a transitional method in order to show added

detail.) The ArcGIS Server implementation requires the geoprocessing tool to be converted to a

geoprocessing task and the web application to be designed to communicate with the ArcGIS

Server REST Interface. Also, the server must be configured in a way that will satisfy the AHGW

tools license manager. These issues are discussed in the following sections.

Figure 3-1. Data Flow Diagram for the ArcGIS Server Geoprocessing Task Method.

Web Application

ArcGIS Server REST
API

AJAX

ArcGIS Server
Geoprocessing Task
(ModelBuilder Tool)

MODFLOW Model

MySQL
Database

AJAX & PHP Scripts

AHGW Tools

27

3.1.1.1 ArcGIS Server REST Interface

ArcGIS Server web services allow client applications to access resources through a REST

interface. This interface allows clients of the well permitting geoprocessing task to initiate a

MODFLOW simulation by accessing a URL resource, and to retrieve the results of the

simulation using other URLs as defined in the ArcGIS Server REST API [15]. Table 3-1

summarizes the available URLs from the REST API specifically for asynchronous geoprocessing

tasks.

Table 3-1. List of ArcGIS Server REST URLs for Asynchronous Geoprocessing Tasks

Service Resource URL

Access task metadata http://<gpservice-url>/<taskName>

Submit a job http://<gpservice-url>/<taskName>/submitJob

Get job status and
messages http://<gpservice-url>/<taskName>/job/<job-id>/results

Get job results http://<gpservice-url>/<taskName>/job/<job-id>/results/<param-name>

Get job inputs http://<gpservice-url>/<taskName>/job/<job-id>/inputs/<param-name>

All the geoprocessing service resources are completely accessible through this set of

URLs. A client application tells the server to run a geoprocessing task by accessing the submit

job URL appended with arguments to specify input parameters. Because it is an asynchronous

geoprocessing task, the submit job URL does not return any results but rather returns a job-id

text string. The client application is expected to check back periodically by accessing the results

URL for the given job-id. When results are available, the client then accesses the result URL for

each output parameters of interest. In depth documentation of the ArcGIS Server REST API for

geoprocessing services is available from ESRI [15].

28

3.1.1.2 Server Configuration for AHGW Tools

Some AHGW tools are free to use without cost; others, including several used by the well

permitting tool, require an AHGW license. Every time a licensed AHGW tool is executed, the

tool checks to verify that the current user has obtained and configured an appropriate license

from Aquaveo. ArcGIS Server uses a specific user account, named ArcGISSOC by default, to

handle web services. In order for AHGW geoprocessing tools to function as part of a

geoprocessing task, an AHGW license must be enabled for this ArcGISSOC user account.

Whether AHGW tools are enabled for any other user is completely irrelevant to the functionality

of the geoprocessing service.

Configuring a license simply involves running an executable file included with the

AHGW tools download and specifying the network location where a network hardware lock

resides. With the ArcGISSOC user account name and password, an administrator may log onto

the server and enable the AHGW license in this manner.

Even after the AHGW license is properly configured, tools requiring an AHGW license

have been found to behave poorly when used with an ArcGIS Server geoprocessing service. The

first errand of each licensed tool, completing AHGW license verification, was identifies as

taking an inordinate amount of time to complete – about a minute. Unfortunately, the cause of

this poor performance was not identified. This unresolved issue significantly increases the time

required for the geoprocessing tool to execute, diminishing the value and appeal of the

application.

3.1.1.3 Geoprocessing Tool Requirements and Modifications

An ArcGIS Server geoprocessing task is built from a specially configured ArcGIS

geoprocessing tool, either a ModelBuilder workflow or a Python script tool. Detailed

29

configuration requirements for the tool configuration may be found in the ArcGIS Server

documentation [16]. In short, input and output parameters must be formally defined, the

scratchworkspace variable must be used to define the location of outputs, and intermediate data

must be managed deliberately.

Because the purpose of many geoprocessing web services is to generate geographic

features that can be displayed on a simple web map, and due to the fact that common ArcGIS file

types such as shapefiles and feature classes within geodatabases are difficult for light-weight

web applications to interpret, an ArcGIS Server geoprocessing service automatically converts

output geographic features to a simplified data structure. The desired output data structure may

be specified using the REST interface. Conveniently, KMZ file output is one of the possible

output formats. This capability allows for a minor simplification to the geoprocessing workflow;

the workflow may optionally omit the conversion processes performed by the web service: the

conversion of the drawdown contour lines feature class to a layer file, the explicit Apply

Symbology from Layer tool, and the explicit use of Layer to KML. If ModelBuilder is used,

template symbology layer files should be assigned to each output parameter feature class to

prevent arbitrary output symbology.

When ArcGIS Server is used to generate a geoprocessing service from a geoprocessing

workflow, several configuration settings must be considered. For the automated well permitting

tool, the following settings are recommended:

• Asynchronous execution – Because the tool takes more than a couple of seconds to

complete, it should be configured as an asynchronous service rather than as a

synchronous service. According to ArcGIS Server help documentation, synchronous

geoprocessing services are not appropriate for time-intensive services that return large

30

amounts of output data. The difference between synchronous and asynchronous

services is illustrated by the fact that synchronous geoprocessing tasks require

accessing a single REST interface URL that accepts input arguments, executes the

tool, and returns all the output results. As a result, intermediate status messages

cannot be provided by synchronous services.

• Show messages enabled – The web application uses these messages to provide status

updates.

• Maximum number of instances limited to one – Errors due to simultaneous request

to access and modify the same datasets can be avoided by limiting the number of

service processes to one. ArcGIS Server will assign a “Waiting” status message to

new geoprocessing tasks when an existing task is being executed. Upon completion

of the existing task, the oldest waiting submission will be executed.

3.1.1.4 Web Application Modifications

The web application features that allow a user to submit a job, view status messages, and

view the results each require interaction with the geoprocessing services REST interface.

Although ESRI provides various APIs with these capabilities to developers for certain web

mapping interfaces, a custom interface to interact with the geoprocessing service was created as

part of this research. This custom interface was built using Dojo Ajax requests, the same method

that is likely used by at least one of the APIs maintained by ESRI.

As discussed in Section 2.5.1, Ajax requests allow a user to access URL resources in the

background. This makes it relatively easy to access the geoprocessing service REST framework

to submit jobs, check and update the status, and display the results. A custom JavaScript object

was created with these capabilities and used by the web application.

31

3.1.2 Summary

The basic ArcGIS Server strategy, using ArcGIS Server to initiate the geoprocessing tool

and a custom implementation of the REST API to retrieve status messages and KMZ results, has

advantages and limitations that will be discussed.

3.1.2.1 Advantages

ArcGIS Server provides several capabilities that enhance maintainability. The software

comes with documentation, tutorials, and examples that could be used by anyone to learn the

procedures for maintaining services. As mentioned previously, tools have been developed to

facilitate the development of ArcGIS web map applications, applications that can make

geoprocessing services and many other GIS resources available through a web browser.

Although a custom web mapping solution was implemented rather than an ArcGIS web mapping

solution in order to achieve project-specific objectives, it is possible that some organizations

would give up the interactive Google Earth interface for web applications that are easier to create

with ArcGIS Server. These generic web-map applications could back-up the primary web

interface, ensuring some level of service in the event of unforeseen problems with the highly

customized interface.

ArcGIS Server Software, although expensive, provides the legal permissions required to

publish ArcGIS geoprocessing tools over the internet. While access over a local network may be

sufficient for many situations, others may call for increased access to the application. When a

Server license is required to satisfy legal permissions, the cost deterrents is eliminated and

agencies may be more inclined to exploit the corresponding software.

32

3.1.2.2 Limitations

A critical drawback of this method is the excessive amount of time required by licensed

AHGW tools to authenticate. Before committing to a serious implementation of this method, an

organization would want to better understand this issue.

Another shortcoming of this basic ArcGIS Server method is the amount of effort required

to customize the web interface to work with the REST API. Although this effort is comparable to

the work required by the other methods that will be discussed, a common selling point for

ArcGIS Server software is that customized web-map applications incorporating the services are

easy to produce. As a result of this method’s custom web interface, professionals familiar with

ArcGIS Server products may not necessarily have the background required to maintain the entire

system as described.

3.2 Basic PHP and Python Strategy

Python and PHP may be used to make a custom light-weight geoprocessing service. This

simplified method may be appropriate for making the server-based geoprocessing tool accessible

over local intranets in a very simplified manner.

3.2.1 Implementation with System Components

Implementation of the simplified PHP/Python method necessitates additional system

components and attention to the data flow methods. Figure 3-2 displays a summary of the

resulting system.

33

Figure 3-2. Data Flow Diagram for the Elementary PHP/Python Method.

The ArcGIS geoprocessing tool can be either a ModelBuilder workflow or Python script

tool, as described in Section 2.4.1.

3.2.1.1 PHP Script and Python Script

The PHP and Python scripts play vital but limited roles in the simple method. Used in

succession, their role is to remotely initiate the geoprocessing tool and return the results to the

Web Application

PHP Script

AJAX

ArcGIS
Geoprocessing Tool

MODFLOW Model

MySQL
Database

AJAX & PHP Scripts

AHGW Tools

Python Script

Command-Line

arcpy Module

34

web application. The web application uses Dojo Ajax techniques to call the PHP script; the PHP

script initiates the Python script; finally, the Python script initiates the geoprocessing tool.

The Python script is designed to run from the command shell. It uses the arcpy module to

execute the ArcGIS geoprocessing tool built with ModelBuilder. The Python script takes

arguments from the command line and passes them directly to the ArcGIS geoprocessing tool.

When the tool concludes, the geoprocessing messages are returned. Adding this layer to the

system allows the geoprocessing tool to be initiated in a non-ArcGIS environment.

PHP has standard functions that may be used to execute external programs, programs

such as the Python script. The PHP script takes arguments supplied in its URL reference by the

client and passes them directly to the Python script. When the Python script completes and

returns the geoprocessing messages, these messages are printed out to the PHP page for viewing

by the client. As a result, the PHP script layer accomplishes the main goal of making the

geoprocessing tool accessible over a network with a URL.

There are likely alternative methods for publishing the geoprocessing tool. For example,

it is possible to configure a server to serve Python scripts, possibly eliminating the need for the

PHP script; however, PHP is already used by the web application for MySQL interaction and is a

more popular service language than Python. While it may be possible for other programming

languages to call the ArcGIS geoprocessing tool, Python is the preferred language for most

automated ArcGIS applications due to the recent focus of ESRI development. The use of the

combined PHP/Python approach is also favorable for adding the additional functionality of the

more involved PHP/Python approach, discussed in Section 3.3.

35

3.2.1.2 Server Configuration

The AHGW license must be enabled for the account that remotely executes the

geoprocessing tool. The solution for the ArcGIS Server method as described in Section 3.1.2 was

simply to enable the AHGW license for the ArcGISSOC user account, the account ArcGIS

Server utilizes to execute its tasks. A similar solution must be implemented for this alternative

service method.

In IIS 7, anonymous authentication can be used to permit a client to access published

resources without requesting a user name and password. A user account may be specified for the

client to assume, defining the level of access that will be granted. This authentication scheme,

with the built-in IUSR user account credentials, is the default configuration. A simple way to

accommodate the AHGW licensing requirement is to use anonymous authentication and, rather

than using the default IUSR account, to provide an anonymous authentication user account that

has already enabled the AHGW tools. For unknown reasons, successful AHGW license

validation also requires the user account to have a separate process running on the machine at the

time of execution. A primitive means to satisfy this stipulation is to leave the user account

continuously logged on. Alternatively, the ArcGISSOC account is a convenient choice for the

anonymous authentication, provided ArcGIS Server is available, since it always has a process

running when ArcGIS Server is enabled.

Because the PHP and Python scripts requires more time than normal web resources to

load, further configuration may be necessary to prevent the server from timing out. For example,

implementations with Windows Server may require adjustment of the CGI timeout variable and

the FastCGI activity timeout and request timeout variables.

36

3.2.2 Summary

The basic PHP and Python strategy and the basic ArcGIS Server strategy both

accomplish the same general objective of making an ArcGIS geoprocessing tool accessible over

a network, but the respective implementation methods differ significantly. The advantages and

disadvantages of the PHP and Python strategy will now be considered.

3.2.2.1 Advantages

The simplicity of the service configuration is the primary advantage of this service

strategy. Although new PHP and Python elements are introduced, their role is simply to initiate

the server-based geoprocessing tool; as a result, these scripts are relatively short and

straightforward. Other system components are only minimally affected.

Interoperability is an important benefit stemming from the simplicity of the system.

Unlike the ArcGIS Server method, the geoprocessing workflow does not require any specialized

configurations unique to the geoprocessing service; rather, the same well permitting

geoprocessing tool that is called by the PHP and Python scripts can be used “manually” with

ArcMap. This simplifies the modification and testing procedures.

ArcGIS Server is expensive software that is designed to create robust web services. If all

the high-end features of an ArcGIS geoprocessing service are not needed, a custom strategy may

save resources. If the web permitting is to be limited to a private network rather than the world-

wide internet, the application may comply with the ArcGIS concurrent-use license agreement,

eliminating the need for an ArcGIS Server license.

37

3.2.2.2 Limitations

The simplified PHP and Python service strategy as described has a few limitations. It

only supports a single user at any given time, and returns an error when used simultaneously. It

also does not make progress or status messages available to the web interface; this limitation is

addressed with the enhanced PHP and Python strategy, though the approach introduces new

limitations and trade-offs.

The capacity to store previous simulation results is also lacking. ArcGIS Server stores

past geoprocessing results for a configurable amount of time. The basic PHP and Python method,

on the other hand, overwrites the previous result files with each execution. This simplification

allows the application to avoid the task of assigning a unique file location for each simulation

and the obligation of managing these historic results over time; however, the ability to retrieve

previous simulations may be important for some cases.

3.3 Enhanced PHP and Python Strategy

Two changes to the system design allow many useful features to be added to the well

permitting application. First, the geoprocessing tool is merged into the Python script. The second

change involves a results file that the geoprocessing tool writes and the web application reads.

These modifications demand implementation considerations discussed in Section 3.3.1 and allow

the addition of specialized features that are outlined in Section 3.3.2.

3.3.1 Implementation with System Components

The two modifications to the system design are incorporated into Figure 3-3. Only the

Python geoprocessing tool and the web application require significant changes.

38

Figure 3-3. Data Flow Diagram for the Enhanced PHP/Python Method.

3.3.1.1 Python Script as Geoprocessing Tool

As discussed in Section 2.4.1, custom ArcGIS geoprocessing tools can be built as

ModelBuilder workflows or as Python scripts, and Python scripts can either be designed as

stand-alone tools that run from the command line or as ArcGIS-encapsulated tools that can only

be executed using software like ArcMap or ArcCatalog. Because the geoprocessing tool must be

autonomously initiated from a PHP script, the Python geoprocessing tool must be designed as a

stand-alone tool.

A stand-alone geoprocessing script tool has much more flexibility than a ModelBuilder

workflow. It can more easily incorporate loops, if statements, and other logic controls into the

Web Application

AJAX

Output/Results
File

PHP Script

MODFLOW Model

MySQL
Database

AJAX & PHP Scripts

AHGW Tools

Python Geoprocessing
Tool

Command-Line

AJAX

39

workflow. The capabilities of diverse module extensions can be exploited for highly customized

functionality.

One of the first tasks the script must complete is retrieving the input arguments that

define the Application ID to be analyzed and output options like contour interval. The

arcpy.getParameter() functions are not applicable to stand-alone scripts; rather, the sys module is

used in the script to retrieve the input arguments. The basic syntax for calling a Python script

from the command line requires the Python file name followed by script arguments:

WellPermittingTool.py '1001' '1'

The string '1001' is stored as sys.argv[1] in the Python script, and the string '1' is

stored as sys.argv[2]. sys.argv[0] stores the Python script name, either a full path or

just the value entered in the command line, depending on the operating system. The Windows

Server 2008 operating system, used for the case study implementation, returns the full path of the

script. It is useful to be able to access the full path to the directory containing the Python script so

relative references can be used for the data sources.

After retrieving the script arguments, the script creates the results file. The results file

must be generated or cleared soon after the script initiates to ensure it exists before the web

application starts repeatedly reading it. Preliminary tasks that take several seconds to complete,

such as importing the arcpy module and importing custom toolboxes, are addressed after the

initialization of the results file.

For custom tools – such as the AHGW tools – to be usable in a stand-alone script, the

encapsulating toolbox must first be imported by the script, loading into memory the information

required to use the tools. For faster import execution, a toolbox with only the required AHGW

tools should be imported rather than the entire AHGW toolbox. Any other custom geoprocessing

40

tools, such as the script used to query candidate well attributes using an Application ID, should

also be added to this toolbox and imported. If ArcGIS extensions such as Spatial Analyst or 3D

Analyst are required, they must be explicitly enabled. These issues are addressed automatically

when a ModelBuilder workflow is used.

After the script addresses each of the preliminary tasks, it begins executing the well

permitting workflow. Rather than merely saving KMZ files and other output to pre-specified

locations anticipated by the web interface, the enhanced PHP and Python method requires the

geoprocessing tool to communicate with increased flexibility with the web interface. A

geoprocessing results file is used as an intermediary for this purpose.

3.3.1.2 Geoprocessing Results File

The result file is a simple text file written by the stand-alone Python geoprocessing tool

and is interpreted by the web application. As the geoprocessing tool is running, it periodically

updates the results file with status messages, links to KMZ results, and additional information as

it becomes available. After a user initiates the tool execution, the web application checks the

results file every couple of seconds; if the file has a new status message, the web application

displays it; likewise, if the file has one or more new KMZ results, the web application adds it to

the display.

The result file must be written in a consistent format that can be parsed by applications

seeking the tool output. Each line of the results file stores a unique result message, and each

message consists of components separated by commas. The message type is always identified by

the first component, and identifies one of the following message type classes: background

information, geoprocessing status updates, KML results, a HTML results, or termination status.

41

The number and expected format of following components depend on the message type, as

outlined in Table 3-2.

Table 3-2. Definition of Result File Messages Structure

Component 1 Component 2 Component 3 Component 4

INFO Text describing the
information

STATUS Text describing the status

KML_RESULT Label or layer name HTML content URL of KMZ file

HTML_RESULT HTML content

END Text describing whether the
tool was successful or failed

The background information (INFO) message type is used to store information like start-

time and the input parameters, data that should be stored but that the user doesn’t necessarily

need displayed. STATUS messages are added to the results file at certain points in the Python

script to update the user on the progress of the tool. Like the background information message

type, STATUS messages only have one component after the type identifier, simply a text string

of the status message. KML_RESULT messages have several components. The web application

requires the URL of the resultant KMZ file and the layer label. Supplied HTML content will

display beneath the layer label, possibly showing a legend or any necessary layer descriptions. A

HTML_RESULT message instructs the web application to add the supplied HTML content to

the page, but without adding any KMZ features. This could be used to highlight important

numeric or text results, possibly the area surrounded by a certain drawdown contour, or to

provide links to download output files. Finally, if the geoprocessing tool is no longer running, the

42

results file should conclude with an END message that tells the web application to quite

checking for updates and describes whether the tool completed without errors.

3.3.1.3 Web Application Configuration

For the elementary system configuration, the web application only needs to access the

URL of the PHP script and wait for the results. The enhanced configuration requires more

modifications to the web application. After accessing the URL of the PHP script, the web

application turns its attention to the results file rather than waiting for results from the PHP page.

The application must be programmed to parse the results file and take the appropriate action for

each message.

When the web application encounters a status message from the results file, it updates the

geoprocessing status of the results region of the web application.

When the application encounters a KML_RESULT message, it downloads the KMZ file

and adds it to the map as before. A checkbox controlling the visibility of the new results layer

and a customized Dojo title pane object are created on the fly and placed next to each other in the

results area. The title pane initially only displays the layer label, but expands when it is clicked to

display the HTML content passed from the results file. Results are added to the interface in the

same order they are listed in the results file, somewhat limiting the layout control.

When the application encounters an HTML_RESULT message, the supplied HTML is

similarly added to the results table of contents area of the web application. This is used to show

text or links that do not correspond to a KMZ file. The enhanced Python script facilitates great

flexibility and customization of results presentation; the HTML_RESULT message is provided

to match this flexibility. A checkbox is not needed nor created, distinguishing the HTML result

entry from KML results.

43

When the final message is interpreted and no END message has been encountered, the

web application arranges to check for updates in a few seconds. On the other hand, if an END

message is found, a final status message will be added and the results file will not be checked

again.

This system configuration is conducive to adding stored simulation results to the web

interface map since the same function can be used to interpret a stored results file. Of course, the

URL references in the results file must be maintained.

3.3.2 Possible Python Script Enhancements

Some limitations and difficulties inherent in the strict ArcGIS ModelBuilder approach to

custom automated geoprocessing may be overcome with Python scripting. This section will

describe several enhancements to the geoprocessing tool possible with a stand-alone Python

geoprocessing script.

3.3.2.1 Generate PDF Output

While the Google Earth-based map rendering provides a simple and intuitive interface for

users of the web application, a more formal and permanent form of documentation is generally

needed to communicate the results of the simulation. To address this need, a geoprocessing tool

can be configured to produce print-quality PDF report with maps of the results. The

arcpy.mapping module for ArcGIS 10 allows Python script to automate the processes required to

add a formatted layer file to a pre-created template map document, adjust the positioning and text

of map elements, and save the resulting document as a PDF file. If the template map document

includes a legend, layers that are added programmatically to the map will also be added to the

legend.

44

The symbology best suited for generating KMZ files for Google Earth differs from the

ideal symbology for PDF map prints. Lines and points converted to a KMZ file and viewed on

the web application appear thinner and smaller compared to the lines and points using the same

symbology exported to a PDF. Other cartographic considerations may also require specialized

styling be applied to an output layer before it is added to a PDF map. This may easily be

accomplished within the geoprocessing Python script.

The arcpy.mapping module has several additional capabilities worth mentioning.

Multiple PDF document may be appended together, allowing a multi-page report to be

generated, perhaps displaying drawdown for each MODFLOW layer on separate pages. Map

document elements may be repositioned on the page, and text can be modified. Maps may be

exported to many different image formats, not only PDF. A complete documentation of the

arcpy.mapping module is available online [16]. It should be noted that some features, such as

configuring feature labels, lack the same degree of control that could be obtained manually with

ArcMap.

3.3.2.2 Create Legends for KMZ Output

It may be desirable to display a graphical legend indicating the symbology associated

with geographical result features. These legend graphics could be placed in collapsible title pane

elements within the table of contents in the web interface. Unfortunately, the KMZ symbology

color assignments for layers like drawdown and change in spring flow are not static, but rather

were made to depend on the results for the particular simulation. Further, the Layer to KML

geoprocessing tool does not generate associated legends.

The same arcpy.mapping Python module that facilitates PDF map output can be used to

generate specialize legend images for each output KMZ file. The approach is to make a simple

45

ArcGIS map document with a customized page layout that exports only a legend object. After

the geoprocessing tool creates the output feature, converts it to a layer, and applies symbology,

the layer may be added to the legend map document; this will add the layer symbology to the

legend object, and then the map can be exported to an image format, perhaps JPEG or PNG,

rather than PDF. The URL of this image is then referenced by the HTML included in the results

file for the KMZ results.

3.3.2.3 Embedded HTML Output

PDF results obviously cannot be displayed on the Google Earth map interface. As

previously described, the results file allows any HTML to be passed from the geoprocessing tool

into the web application. Although embedded HTML output capabilities were only utilized by

the case study web application to provide the web interface user a link to PDF results, there are

other compelling HTML outputs that could be generated by the geoprocessing tool. An

application could easily be designed to print out non-geographic results as simple text strings or

with HTML tables or images.

3.3.2.4 Display Results Immediately

Because the web application reads the results file several times while the tool is still

running, it is possible to add simulation results as soon as they become ready. This is unlike both

the ArcGIS Service method and the elementary PHP/Python method where all the results were

returned at the same time; it effectively reduces the time a user must wait before beginning result

interpretation.

46

3.3.2.5 User-Selected Output

Another possible feature that may be added to a geoprocessing Python script is allowing

the user to select which output to compute and which output is not needed. The extended time

required for the tool to generate results makes this an attractive capability. It is easily

implemented with Python, only requiring additional input arguments and the inclusion of simple

if statements surrounding the part of the workflow to be made optional.

3.3.3 Summary

The primary difference between the enhanced and basic PHP and Python strategies is the

results retrieval method. The enhanced results retrieval method provides several features that

would be unattainable with the basic methods.

3.3.3.1 Advantages

The enhanced PHP and Python service technique vastly improves the capabilities of the

well permitting tool. The result file provides a direct line of communication from the

geoprocessing tool to the web application. This allows the web application to incorporate real-

time status update, add result KMZ files with the URL defined in the message file, and add

HTML content embedded in the results file. Having the Python script act as the geoprocessing

tool allows much greater flexibility in what the tool generates and how it does it. For example,

high quality PDF maps can be created, legends may be added, and the user may be enabled to

select which output need to calculate.

The benefits from interoperability and independence from ArcGIS Server discussed in

Section 3.2.2.1 also apply to this service strategy.

47

3.3.3.2 Limitations

Compared to the basic PHP and Python strategy, the primary drawback of the enhanced

technique is maintainability. While Python code is more flexible and powerful than the

ModelBuilder framework, it is perhaps more difficult to understand and to modify.

The enhancements do not replicate all the ArcGIS geoprocessing service capabilities.

Both PHP and Python strategies do not natively support simultaneous users and are not

provisioned to store simulation results for a prolonged period of time. Implementation of these

features would require further customization.

49

4 CASE STUDY

A case study based on a recent permit application submitted the City of Saratoga Springs

will be presented. This demonstration will illustrate how a server-based automated well

permitting system could be leveraged in water management practice. The computational time

required by the permitting tool will also be discussed.

4.1 Introduction to the Example Problem

In December of 2009 the City of Saratoga Springs submitted an “Application for

Permanent Change of Water,” desiring to transfer the rights to divert 450 acre-feet of water from

four agricultural wells southeast of Utah Lake to eleven wells northeast of Utah Lake and use the

water for municipal purposes. In response to this proposed action, several parties submitted

formal notices of protest, arguing that the proposed extraction would infringe on existing water

rights by depleting the aquifer and decreasing flows in the Jordan River. [18]

UT-DWR eventually approved the application, with a stipulation. To prevent a greater

reduction of Jordan River flows than could be attributed to the original pumping south of Utah

Lake, approval was granted provided that the resulting depletion would not exceed the estimated

historical depletion associated with the same water rights. The city was instructed to maintain

records to prove that their depletion did not exceed a prescribed volume.

50

The case study will use the well permitting tool to investigate whether the results of an

automated MODFLOW simulation support the decision made by UT-DWR; specifically, aquifer

drawdown and decrease in spring flows near the proposed wells will be considered. The

Decision Memorandum [18] cited USGS’s Scientific Investigations Report 2008-5197 to counter

the argument that the proposed modification would deplete the existing aquifer.

4.2 Methods and Assumed Candidate Well Attributes

Because of the great distance between the original wells southeast of Utah Lake and the

proposed wells northeast of Utah Lake, only the proposed wells were analyzed. The original

wells, in fact, lie in a distinct water rights policy area and are not within the region covered by

the Northern Utah County MODFLOW model. Had these original well locations been closer to

the proposed locations, the cessation of water diversion at these points may have been accounted

for by adding a copy of the wells at these locations with mirrored (positive) pumping rates to

simulate the removal of the wells from the model.

The automated well permitting tool requires information regarding candidate wells to be

added to a database. The latitude, longitude, pumping rate, screen top elevation, and screen

bottom elevation of each candidate well are required. UT-DWR uses the Public Land Survey

system to represent point locations, and the unit of acre-feet to represent water rights holdings.

Location values were converted to decimal degree latitudes and longitudes, and yearly water

volume allotments were converted to cubic feet per day. The change application requests an

allotment of 450 acre-feet per year be granted to the eleven proposed wells. Lacking details on

how the allotment would be distributed, the analysis assumed a uniformly distributed pumping

rate of 4,882 cubic feet per day. For this application, no screen elevation data was available.

These elevations were estimated with the intention of locating the screens of each well in the

51

MODFLOW layer most likely to conduct the highest flow; layer 3 was identified as a relatively

thick, conductive, and accessible layer. An alternative approach could be to execute multiple

simulations with the wells placed at various depths.

Table 4-1 lists the candidate well records compiled for this single case study analysis.

Each well has the same application identifier to indicate that all the records shown are part of the

same water rights application. The latitude and longitude values are in decimal degrees, the flow

is in cubic feet per day with the negative sign indicating extraction, and the screen elevations are

in feet above sea level.

Table 4-1. MySQL Database Records Derived from Available Data

Well ID Application ID Latitude Longitude Flow (cfd) Screen Top
Elev. (ft)

Screen Botm.
Elev. (ft)

23 36127 40.36255 -111.88699 -4882 4400 4000
24 36127 40.36516 -111.88421 -4882 4400 4000
25 36127 40.39560 -111.92313 -4882 4400 4000
26 36127 40.40061 -111.91242 -4882 4400 4000
27 36127 40.39311 -111.89718 -4882 4400 4000
28 36127 40.38820 -111.90139 -4882 4400 4000
29 36127 40.37765 -111.88800 -4882 4400 4000
30 36127 40.37030 -111.89188 -4882 4400 4000
31 36127 40.36522 -111.88950 -4882 4400 4000
32 36127 40.32007 -111.91004 -4882 4400 4000
33 36127 40.30969 -111.89203 -4882 4400 4000

4.3 Tool Results

After the required well parameters were entered into the database, the automated well

permitting tool was used to estimate the drawdown and change in spring flows that would be

52

expected after approval of Saratoga Springs’ request. The proper Application ID and a

drawdown contour interval of 0.2 feet were entered in the tool input forms as shown in Figure

4-1. After the Application ID was entered, the locations of candidate wells were displayed on the

map for verification.

Figure 4-1. Tool Inputs and Locations of Candidate Wells

The submit button was clicked to execute the tool. After several minutes, the tool

computed drawdown and spring flow and added result layers to the map. As expected, the

greatest drawdown and spring flow decreases near the proposed wells were found in the results

corresponding to MODFLOW layer 3, the layer where the wells were located due to the screen

elevation assumptions. Figure 4-2 shows the drawdown contours results for layer 3. The largest

computed drawdown contour was 1.6 feet.

53

Figure 4-2. Results Generated by the Permitting Tool Showing Aquifer Drawdown in
MODFLOW Layer 3 with Contours Increments of 0.2 Feet.

Other static map layers were used to verify the reasonableness of the drawdown results.

Figure 4-3 shows the drawdown results along with the layer 3 hydraulic conductivity values used

by the MODFLOW model. As expected, the anticipated drawdown is largest in locations where

the new wells extract water from areas of low conductivity. As shown by Figure 4-3, the contour

lines are not exactly centered over the candidate wells, but rather are centered over MODFLOW

cell centers. This is a symptom of coarse MODFLOW grid resolution.

The UT-DWR maintains a particularly useful map layer that shows the locations of all

authorized points of diversion. Figure 4-4 shows the expected drawdown contours overlaid with

the locations of neighboring wells and other points of water diversion. Due to the vast number of

wells in the neighborhood, this map shows only the northern-most drawdown area.

54

Figure 4-3. Drawdown Results Superimposed with Map of Horizontal Hydraulic Conductivity.

Figure 4-4. Drawdown Results Superimposed with Map of Existing Points of Diversion.

55

The decreases in spring flows for layer 3 are shown in Figure 4-5. The proximity of these

springs to the Jordan River seems to validate the concern that the proposed action could impact

this river, and to justify the depletion limitation stipulated within the Decision Memorandum.

Figure 4-5. Results Generated by the Permitting Tool Showing Decrease in Spring Flows in
MODFLOW Layer 3.

The springs are represented as MOFLOW drain elements. To facilitate verification of

change in spring flow results, the web interface includes a drain conductance layer. Unusual

results may then be investigated using the relationship between drawdown, change in flow, and

conductance for the drain elements in question.

Suspicious results returned by the case study provide an example to demonstrate this

utility. The change in spring flow for MODFLOW layer 1 reports substantial flow decreases in

56

locations far from any candidate wells. Figure 4-6 shows these questionable results, marking

three drain elements that will be investigated and verified.

Figure 4-6. Change in Spring Flows and Drawdown Results for MODFLOW Layer 1 with
Identification of Drain Elements to Be Verified.

For each of the three investigated drains, the change in flow was obtained from the results

KMZ file, conductance was obtained from the general drain conductance KMZ file, and

drawdown was back-calculated as the ratio of the change in flow and conductance. These values

are listed in Table 4-2.

IJK : 1992

IJK : 1991

IJK : 2061

57

Table 4-2. Summary of Values Used to Verify Results for MODFLOW Layer 1
Change in Spring Flows

IJK Conductance
(ft/day)

Change in Flow
(ft3/day)

Drawdown
 (ft)

1991 128,822 157.0 0.0012

1992 126,937 222.2 0.0018

2061 729 27.5 0.0377

The drawdown contour layer, with increments of 0.2 feet, establishes that the change in

head at the drain elements must be less than 0.2 feet. A subsequent simulation was executed with

a smaller contour interval and found that the back-calculated drawdown values match the

simulated drawdown values. The unusual results are not due to a post-processing error, but rather

to extremely large conductance values. The fidelity of the MODFLOW model to the actual

system, however, may merit question. This exercise highlights the remaining importance of

critical user evaluation of the results.

4.4 Computational Time

This discussion will be limited to two primary factors that impact the amount of time

required to execute the well permitting tool: the design of the geoprocessing workflow –

including what results to calculated, whether to create a PDF report document and whether to

calculate results for every MODFLOW layer – and the processor of the machine running the

tool.

 To investigate the computational time required by the permitting tool, a PHP-Python

system similar to the one described in Section 3.3 was used. The tool was made to generate KMZ

and PDF results showing the locations of the input wells, drawdown contours for each

58

MODFLOW layer, change in spring flows for each layer, and total change in spring flows. The

underlying Python script was slightly modified to print out the time required to complete each

major geoprocessing tool. To facilitate testing with machines not configured as servers, the case

study simulation was executed by the Python script independent of the PHP script and the web

application. The time test was performed using three computers. The total required

computational times that were obtained for each computer are listed in Table 4-3. The results

show machines with multi-core processors reduce the required computational time.

Table 4-3. Comparison of Total Computational Time for Complete Case Study
Simulations Using Different Computers

Computer Run Time
(sec) Operating System Processor RAM

1 677 Windows Server
2008

Intel Xeon CPU
X5650 @ 2.80 GHz, 2793 Mhz,

1 Core, 2 Logical Processors
8 GB

2 565 Windows 7
Intel Core 2 CPU

6600 @ 2.40 GHz, 2400 Mhz,
2 Cores, 2 Logical Processors

2 GB

3 467 Windows 7
Intel Xeon CPU

X5650 @ 2.67 GHz, 2666 Mhz,
6 Cores, 12 Logical Processors

8 GB

Table 4-4 shows the time required by the three test computers to complete individual

components of the geoprocessing workflow. Most of these components are geoprocessing tools,

and several are repeated multiple times in the workflow in order to calculate results for each

MODFLOW layer. Geoprocessing tools not listed required less than one second for each test.

59

Table 4-4. Required Computational Time of Individual Components of the Well Permitting
Python Script for the Case Study by Three Different Computers.

Geoprocessing Tool/Command Type Computer 1
Time (sec)

Computer 2
Time (sec)

Computer 3
Time (sec)

Import Simulated Equivalents AHGW 66.2 74.8 118.0
Run MODFLOW AHGW 32.5 38.1 43.1
Create MODFLOW Well Records AHGW 26.2 30.0 33.1
Create MODFLOW Features AHGW 25.1 28.0 29.3
Export Package WEL AHGW 21.7 26.9 29.8
Create PDF map page Other 16.1 19.8 21.7
Import arcpy module Other 7.0 6.3 9.3
Import Canidate Well Table Custom 7.0 11.1 10.8
Import MODFLOW Output AHGW 6.3 8.6 18.8
Join Field ArcGIS 4.5 5.7 11.2
Import custom toolbox Other 3.3 5.8 8.6
Natural Neighbor ArcGIS 2.5 3.8 3.9
Copy Rows ArcGIS 2.1 3.1 4.1
Copy Features ArcGIS 1.9 3.1 3.6
Copy Rows ArcGIS 1.6 1.9 3.2
Layer To KML ArcGIS 1.5 2.0 3.9
Contour ArcGIS 1.4 2.2 2.5
Dissolve ArcGIS 1.2 2.0 2.3
Feature Class To Feature Class ArcGIS 1.0 0.9 2.3
Calculate Field ArcGIS 0.5 0.7 1.5

These exploratory results indicate which geoprocessing tools demand significant time

resources. Most of these computational intensive tools are AHGW tools that are necessary to

convert between MODFLOW input or result files. Optimized design of the well permitting tool

can minimize the number of times these tools must be used. For example, in cases requiring

change in spring flows for each MODFLOW layer, the Import Simulated Equivalents and Create

MODFLOW Features tools should only be executed once rather than for each individual layer.

60

Also, the workflow may be modified for situations that don’t require results for both drawdown

and spring flows, results for each MODFLOW layer, or a PDF summary of the results.

61

5 CONCLUSION

In closing, the objectives outlines in the initial chapter will be revisited for evaluation.

Similarly, the project scope will be recalled and possible improvement and novel applications

will be suggested.

5.1 Evaluation of Objective Outcomes

The objectives of the server-based well permitting decision support system, as defined in

the opening chapter, called for a maintainable and changeable configuration, the capacity to

processes multi-well applications, and a powerful but user-friendly web application.

Maintainability was achieved by dividing the system into distinct components.

Component interdependencies were limited, to varying degrees for each method described in

Chapter 3, in order to confine potential modifications to a particular component. The web

applications for each of the methods, aside from the basic PHP and Python method, load any

result returned by the geoprocessing tool so the geoprocessing tool may be modified without

affecting the web interface. Unfortunately, prospective changes to the input arguments for the

geoprocessing tool would require pervasive modifications, affecting the web interface, the

geoprocessing service, and the geoprocessing tool. If the desired change would involve required

well attributes stored in the MySQL database, the geoprocessing tool and web application would

only require modification.

62

The maintainability objective was also the incentive for investigating both ArcGIS Server

and PHP/Python service strategies. The appropriate implementation depends on the capabilities,

experience, and preferences of the implementing organization. ArcGIS Server software comes

with significant training and documentation resources, but also with a significant price tag. The

Python and PHP custom service strategies permit significant customization of the geoprocessing

tool, even beyond customary ArcGIS geoprocessing capabilities, but the programming requires

more effort and technical knowledge.

For the system to be applicable to real scenarios, it was imperative for the system to be

capable of analyzing applications involving multiple wells. This objective was achieved by

purposefully designing the well permitting workflow and by incorporating a candidate well

database table. This MySQL table was used to store requires inputs and deliver them to the

geoprocessing tool when queried.

A system that purports to offer increased accessibility to modeling capabilities must have

a usable interface. JavaScript extensions such as Dojo and the Google Earth plug-in were

incorporated for enhanced usability and functionality. The pursuit of this objective may have

come in conflict with the goal of keeping the system maintainable; web programming techniques

and requirements are liable to change dramatically over short periods of time as internet

browsers evolve, and complicated application are more likely to be affected than simple

applications.

5.2 Further Work

Nearly every component of the described system could be further developed and adapted.

Similar systems could be developed reaching beyond the scope of this work for a variety of

useful purposes.

63

The custom service strategies that were presented did not solve the simultaneous user

problem. With further work, a PHP and Python geoprocessing service system could be

developed to allow one user access to the geoprocessing tool at a time, with a queue to handle

any concurrent requests. Additionally, some implementations may benefit from previous results

being stored for a managed amount of time, a feature the described PHP and Python system

doesn’t natively accommodate. Similarly, not every potential ArcGIS Server feature was

explored. For instance, ArcSDE geodatabases were not utilized. ArcSDE includes database

versioning capabilities that might facilitate simultaneous, concurrent geoprocessing tool usage,

and other enhanced resource publishing.

Further development and enhancement of the AHGW tools would encourage future

implementations. The significant computational time required by some AHGW tools may reduce

the attractiveness of the decision support system for some cases. These existing tools could be

streamlined for improved performance. More tools could be developed to provide additional

capabilities. The ability to import MODPATH flow lines into a workflow, for example, could

potentially be very useful to automated analyses.

This work exclusively utilized steady state MODFLOW simulations to analyze the long-

term effects of new wells. Although well simulations are important for water management,

MODFLOW models involve many other aquifer features and attributes that may be varied to

simulate diverse scenarios. The same methods presented for serving automated well permitting

simulations could be transferred to other groundwater modeling purposes. Applications could be

developed, for example, to allow modifications to stream features, constant head features, or

recharge. Such developments would primarily be implemented within the geoprocessing tool.

64

Further work could refine the web interface for increased usability, maintainability, and

simplicity. The incorporation of sophisticated features such as custom widgets, a MySQL

database for candidate wells, and the Google Earth map come at the expense of simplicity. The

necessity of these components, and perhaps their maintenance costs, can be evaluated over time.

While the ideal configuration will vary, future work could further explore the diverse and ever-

changing design options for web maps.

Future development should fulfill the needs of water management decision makers.

While the server-based well permitting decision support system pattern is a first step towards

accessible groundwater modeling, more work remains.

65

REFERENCES

[1] Horsburgh, J.S., D.G. Tarboton, D.R. Maidment, and I. Zaslavsky, 2008. A relational model

for environmental and water resources data. Water Resources Research 44:W05406.

[2] Horsburgh, J.S., D.G. Tarboton, M. Piasecki, D.R. Maidment, I. Zaslavsky, D. Valentine, and

T. Whitenack, 2009. An integrated system for publishing environmental observations

data. Environmental Modelling & Software 24:879.

[3] Castronova, A.M., and J.L. Goodall, 2010. A generic approach for developing process-level

hydrologic modeling components. Environmental Modelling & Software 25:819-825.

[4] Molenaar, K.R., and A.D. Songer. 2001. Web-based decision support systems: Case study in

project delivery. Journal of Computing in Civil Engineering 15:259-267.

[5] Dymond, R.L., B. Regmi, V.K. Lohani, and R. Dietz, 2004. Interdisciplinary web-enabled

spatial decision support system for watershed management. Journal of Water Resources

Planning & Management 130:290-300.

[6] Cheng, W.-C., M. Putti, D. R. Kendall, and W. W.-G. Yeh, 2011. A real‐time groundwater

management model using data assimilation. Water Resources Research 47:W06528.

[7] Oulidi, J., Hassane, R. Löwner, L. Benaabidate, and J. Wächter, 2009. HydrIS: An open

source GIS decision support system for groundwater management (Morocco). Geo-

Spatial Information Science 12:212-216.

66

[8] Tillman, F.D., S.A. Leake, M.E. Flynn, J.T. Cordova, and K.T. Schonauer, 2007. An online

interactive map service for displaying ground-water conditions in Arizona: U.S.

Geological Survey Open-File Report 2007-1436. http://pubs.usgs.gov/of/2007/1436/,

accessed June 14, 2012.

[9] Jones, N.L., G. Strassberg, and A. Lemon, 2010. Automated Well Permitting via GIS

Geoprocessing Tools. ASCE Conf. Proc. doi:10.1061/41114(371)74. World

Environmental and Water Resources Congress 2010: Challenges of Change Proceedings

of the World Environmental and Water Resources Congress 2010.

[10] Strassberg, G. 2005. A geographic data model for groundwater systems. Ph.D. diss.,

Department of Civil Engineering, The University of Texas at Austin.

 [11] Cederberg, J.R., P.M. Gardner, and S.A. Thiros, 2009. Hydrology of Northern Utah Valley,

Utah County, Utah, 1975-2005: U.S. Geological Survey Scientific Investigations Report

2008-5197, 114 p.

[12] Díaz, L., S. Costa, C. Granell, and M. Gould, 2007. Migrating geoprocessing routines to

web services for water resource management applications. In M. Wachowicz & L.

Bodum (Eds.), AGILE 2007 Proceedings. Aalborg: AGILE.

[13] Strassberg, G., 2011. Arc hydro groundwater : GIS for hydrogeology. Ed. Norman L. Jones

and David R Maidment. Redlands, Calif.: ESRI Press.

[14] KML Support. Google. https://developers.google.com/kml/documentation/mapsSupport

[15] ArcGIS Server REST API. ESRI. http://help.arcgis.com/en/arcgisserver/10.0/apis/rest/

[16] ArcGIS Help. ESRI. http://resources.arcgis.com/content/web-based-help

67

[17] Dojo Toolkit. The Dojo Foundation. http://dojotoolkit.org/

[18] Utah Department of Natural Resources Division of Water Rights, 2010. “Order of the State

Engineer: For Permanent Change Application Number 53-1686 (a36127)”

http://waterrights.utah.gov/docImport/0530/05309227.pdf

	A Server-Based Tool for Automating MODFLOW Simulations for Well Permitting Decision Support
	BYU ScholarsArchive Citation

	TITLE PAGE
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	1 INTRODUCTION
	1.1 Literature Review
	1.2 Unique Contribution
	1.3 Objectives and Scope

	2 SYSTEM DESIGN
	2.1 MODFLOW Groundwater Model
	2.2 MySQL Database
	2.3 Arc Hydro Groundwater Tools
	2.4 Geoprocessing Tool
	2.4.1 Custom ArcGIS Tools Created with ModelBuilder or Python
	2.4.2 Part 1 of the Workflow: Modify the WEL File
	2.4.3 Part 2: Executing MODFLOW
	2.4.4 Part 3: Creating Output KMZ Files
	2.4.5 Part 4: Applying Symbology
	2.4.5.1 Applying Symbology to Single Independent Layers
	2.4.5.2 Applying Matching Symbology Across MODFLOW Layers

	2.5 Web Interface
	2.5.1 Dojo JavaScript Toolkit
	2.5.2 Google Earth Plug-in
	2.5.3 Database Interaction

	3 SERVICE STRATEGIES
	3.1 Basic ArcGIS Server Strategy
	3.1.1 Implementation with System Components
	3.1.1.1 ArcGIS Server REST Interface
	3.1.1.2 Server Configuration for AHGW Tools
	3.1.1.3 Geoprocessing Tool Requirements and Modifications
	3.1.1.4 Web Application Modifications

	3.1.2 Summary
	3.1.2.1 Advantages
	3.1.2.2 Limitations

	3.2 Basic PHP and Python Strategy
	3.2.1 Implementation with System Components
	3.2.1.1 PHP Script and Python Script
	3.2.1.2 Server Configuration

	3.2.2 Summary
	3.2.2.1 Advantages
	3.2.2.2 Limitations

	3.3 Enhanced PHP and Python Strategy
	3.3.1 Implementation with System Components
	3.3.1.1 Python Script as Geoprocessing Tool
	3.3.1.2 Geoprocessing Results File
	3.3.1.3 Web Application Configuration

	3.3.2 Possible Python Script Enhancements
	3.3.2.1 Generate PDF Output
	3.3.2.2 Create Legends for KMZ Output
	3.3.2.3 Embedded HTML Output
	3.3.2.4 Display Results Immediately
	3.3.2.5 User-Selected Output

	3.3.3 Summary
	3.3.3.1 Advantages
	3.3.3.2 Limitations

	4 CASE STUDY
	4.1 Introduction to the Example Problem
	4.2 Methods and Assumed Candidate Well Attributes
	4.3 Tool Results
	4.4 Computational Time

	5 CONCLUSION
	5.1 Evaluation of Objective Outcomes
	5.2 Further Work

	REFERENCES

