
Brigham Young University Brigham Young University

BYU ScholarsArchive BYU ScholarsArchive

Theses and Dissertations

2012-09-05

Automatic Content-Based Temporal Alignment of Image Automatic Content-Based Temporal Alignment of Image

Sequences with Varying Spatio-Temporal Resolution Sequences with Varying Spatio-Temporal Resolution

Samuel R. Ogden
Brigham Young University - Provo

Follow this and additional works at: https://scholarsarchive.byu.edu/etd

 Part of the Computer Sciences Commons

BYU ScholarsArchive Citation BYU ScholarsArchive Citation
Ogden, Samuel R., "Automatic Content-Based Temporal Alignment of Image Sequences with Varying
Spatio-Temporal Resolution" (2012). Theses and Dissertations. 3303.
https://scholarsarchive.byu.edu/etd/3303

This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion
in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please
contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.

http://home.byu.edu/home/
http://home.byu.edu/home/
https://scholarsarchive.byu.edu/
https://scholarsarchive.byu.edu/etd
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F3303&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsarchive.byu.edu%2Fetd%2F3303&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/3303?utm_source=scholarsarchive.byu.edu%2Fetd%2F3303&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu,%20ellen_amatangelo@byu.edu

Automatic Content-Based Temporal Alignment of Image Sequences

with Varying Spatio-Temporal Resolution

Samuel R. Ogden

A thesis submitted to the faculty of
Brigham Young University

in partial fulfillment of the requirements for the degree of

Master of Science

Bryan S. Morse, Chair
Michael A. Goodrich

Sean C. Warnick

Department of Computer Science

Brigham Young University

December 2012

Copyright c© 2012 Samuel R. Ogden

All Rights Reserved

ABSTRACT

Automatic Content-Based Temporal Alignment of Image Sequences
with Varying Spatio-Temporal Resolution

Samuel R. Ogden
Department of Computer Science, BYU

Master of Science

Many applications use multiple cameras to simultaneously capture imagery of a scene
from different vantage points on a rigid, moving camera system over time. Multiple cameras
often provide unique viewing angles but also additional levels of detail of a scene at different
spatio-temporal resolutions. However, in order to benefit from this added information the
sources must be temporally aligned. As a result of cost and physical limitations it is often
impractical to synchronize these sources via an external clock device. Most methods attempt
synchronization through the recovery of a constant scale factor and offset with respect to time.
This limits the generality of such alignment solutions. We present an unsupervised method
that utilizes a content-based clustering mechanism in order to temporally align multiple
non-synchronized image sequences of different and varying spatio-temporal resolutions. We
show that the use of temporal constraints and dynamic programming adds robustness to
changes in capture rates, field of view, and resolution.

Keywords: multi-resolution temporal alignment, video alignment, hierarchical clustering,
dynamic programming

ACKNOWLEDGMENTS

Many thanks to my thesis adviser, Dr. Bryan Morse, for his time in providing valuable

feedback and wisdom throughout this process, as well as to my committee members Dr.

Michael Goodrich and Dr. Sean Warnick. Thanks to fellow Computer Vision students for

assistance with general day to day implementation challenges.

Also, thanks to members of the collaborative research group, Wilderness Search

and Rescue (WiSAR), for aiding in the acquisition of aerial footage for the purposes of

experimentation.

Finally, a special thanks to my parents for their support and encouragement, and

to my wonderful wife, Brittany, for her many sacrifices and countless hours spent offering

support.

Without any of these individuals, certainly none of this would have been possible.

Table of Contents

List of Figures vi

1 Introduction 1

1.1 Motivation . 1

1.2 Existing Work . 3

1.3 Overview . 5

1.3.1 Image Comparison . 5

1.3.2 Alignment . 7

2 Research Paper 8

2.1 Introduction . 9

2.2 Image Comparison and Retrieval . 11

2.2.1 Features . 11

2.2.2 Image-Based Comparison . 12

2.3 Content-Based Alignment . 13

2.3.1 Problem Formulation . 13

2.3.2 Creation of Image Vectors . 14

2.3.3 Cost Function . 15

2.3.4 Alignment through Dynamic Programming 17

2.3.5 Complexity . 18

2.4 Evaluation . 21

2.4.1 Synthetic Data Limitations . 22

iv

2.4.2 Affect of Noise on Accuracy . 22

2.4.3 Primary to Secondary Ratio . 25

2.4.4 Scale and Field of View Changes . 25

2.4.5 Locally Ambiguous Solutions and Accuracy 28

2.4.6 Performance . 28

2.4.7 Real-World Data . 32

2.5 Conclusion . 34

2.6 Acknowledgments . 36

3 Conclusion and Future Work 37

A Text-Based Document Comparison 39

References 41

v

List of Figures

1.1 Temporal mapping between two image sources 2

1.2 Example high- and low-resolution images transmitted from UAV 3

1.3 Example scale-invariant features extracted from image 6

1.4 Visual words (clustered features) from multiple images 6

2.1 Temporal mapping between two image sources 10

2.2 Example features extracted from image . 12

2.3 Visualization of the cost function D(s, p) . 16

2.4 Monotonically increasing graph . 17

2.5 Visualization of the accumulated cost function, q(s, p) 19

2.6 Visualization of cost function for a noisy dataset 23

2.7 Accuracy of DP and greedy methods as image-noise variance increases 23

2.8 RMS alignment error of DP and greedy methods as image-noise increases. . . 24

2.9 Accuracy of DP and greedy methods to within 5 frames. 24

2.10 Accuracy vs. change in ratio of primary to secondary images 26

2.11 Example side-by-side of different fields of view. 26

2.12 Accuracy of DP and greedy methods as scale decreases 27

2.13 Accuracy of DP and greedy methods as field of view decreases 28

2.14 Example cost function with an 80 frame loop 29

2.15 Example cost function with 20 overlapping sweeps 30

2.16 Accuracy of DP and greedy as loop duration increases 30

2.17 Accuracy increases with the number of features per image 32

vi

2.18 Overall run-time complexity growth with the number of images 33

2.19 Alignment run-time complexity growth with image count 33

2.20 Visualization of cost-function of real-world data 35

A.1 Example TF-IDF vectors . 40

vii

Chapter 1

Introduction

With the growth of video usage, applications that use multiple imaging devices within

a rigid configuration to simultaneously acquire content from different view points have become

common. It is often the case where in such configurations, content from one source needs to

be located in the alternate source as well. However, there needs to exist a temporal ordering

or mapping between each image sequence, either partial or total, in order to identify such

correspondences. To this end, we present a solution to the image sequence alignment problem

that provides a mapping between two independently ordered image sequences. We also show

that through the use of temporal constraints and dynamic programming, our method is

robust to variations in temporal and geometric resolutions.

1.1 Motivation

Image sequence alignment, or video alignment, is the process of matching images from two or

more independently ordered sequences (such as from a video stream or a series of images

known to be in a particular order) that are most similar in content but in a fashion that

maintains the original ordering of each sequence (Figure 1.1). We call this a temporal

mapping or alignment. A somewhat trivial solution to this problem is to synchronize frames

according to an external timing device. There are, however, several scenarios that limit

the use of such hardware such as budget constraints, physical limitations of the system

(e.g., distance between cameras), or situations where the data has already been recorded. A

few applications that depend on the temporal alignment of sequences include stereoscopic

1

tPrimary
Secondary

Figure 1.1: Temporal mapping between two image sources. The primary source is high-
framerate, low-resolution, while the secondary source is low-framerate, high-resolution.

processing of multiple sequences, dynamic scene reconstruction [21], identification of content

of interest in video surveillance, image mosaicking, and independent recordings of historical

events. One particular application of our method is in video-aided search and rescue scenarios.

In Wilderness Search and Rescue (WiSAR) aided by unmanned aerial vehicles (UAV),

the acquisition and streaming of video sequences provides critical imagery for ground searchers

to be able to quickly identify areas of interest for directing further search (Figure 1.2). However,

in many cases due to hardware constraints imposed by a relatively small UAV such as limited

transmission bandwidth, image quality needs to be reduced in order to improve transmitted

video playback quality (e.g. maintain a particular frame rate). Thus, in order to provide

additional high-quality visual information the UAV is also mounted with a camera that can

capture high-resolution imagery but that stores the images to a local memory card for later

use. Due to hardware limitations only the low-resolution data is transmitted wirelessly back

to the ground crew. Additionally, frames are dropped from the transmitted source in order

to maintain playback quality, which further increases frame rate differences between sources.

Finally, after the flight, offline searchers must be able to identify a valid mapping between

both the low-resolution video sequence and the offline high-resolution images. By doing so,

once content of interest is identified within one sequence its corresponding location in the

alternate, aligned, source can be quickly determined.

2

(a) High-Resolution (b) Low-Resolution

Figure 1.2: Example high- and low-resolution images transmitted from UAV to ground search
crew.

1.2 Existing Work

Current literature categorizes solutions to the video alignment problem under two groups:

feature-based [1, 3, 6, 9–11, 13, 15, 16, 18, 19, 21], and direct [2, 4, 14, 17]. Direct methods

usually involve metrics for comparing images as a whole (such as in sequence-to-sequence

alignment involving the minimization of differences in pixel intensities between images [2]).

As a result, such methods suffer in accuracy from changes that affect an image as a whole

such as differences in lighting or contrast between frames. Feature-based alignment addresses

this problem by focusing on localized groupings of pixels (features) within an image and how

they change (location, size, etc...) between images (possibly over time across multiple frames).

An example of such is the use of a feature’s path as it changes locations across multiple

frames, its trajectory, to align different sequences [3, 10, 13]. Feature-based approaches

generally work best when there is large variance between images as a result of a greater view

baseline [9]. This is because many feature detection algorithms tend to be robust to modest

3

changes in viewing angles. Current solutions in both categories make several assumptions

that prevent the realization of a more general solution.

Most solutions assume that there is a constant time delay between sources [2–4, 10, 15–

19]. This assumption means that once the start-time offset and the capture-rate scale factor

between each source are recovered, corresponding frames between sources can be quickly

computed. The problem with this however is that alignment calculations will be inaccurate

for sources that have a variable frame rate, or intermittent footage (such as in a sequence of

image still shots, or a system that drops frames to maintain playback quality).

Other solutions require that the camera system is stationary or rigid and that the

subject is moving in order to accurately determine the path of a point or feature of interest

across several frames, such as in [18]. In such a case, in order to recover a start-time offset

and scale factor between sequences, trajectories from each sequence are matched in both time

and space.

Perhaps most related is work by Fraundorfer [6] that uses a scalable image retrieval

structure, proposed by Nister and Stewenius [8], as a means for robotic self-location. An

offline database of images (of the area to be traveled) is queried with the robot’s current

view to find the most similar image match, and as a result the associated location. If the

offline set was originally temporally ordered, this process over time could be used to define a

temporal mapping.

Similarly, our solution utilizes a hierarchical structure as developed by [8] for efficient

image comparison. However, we also impose temporal constraints through dynamic program-

ming in order to explicitly determine a temporal mapping between sequences. Because we

align sequences according to image content, there is no need to be concerned with consistency

of frame rate. Thus we present a video alignment solution that is robust to changes in both

spatial and temporal resolution.

4

1.3 Overview

1.3.1 Image Comparison

In order to find a temporal mapping between two image sequences, we must be able to

quantify the similarity between two images. To this end, we use the image-based method

described by Nister and Stewenius [8] which draws from a technique in Natural Language

Processing referred to as “Bag of Words” for content-based text-document search.

This technique is used in traditional document retrieval for being able to rank doc-

uments according to how similar a document’s content is to a given query. Specifics of

this technique and the ranking process is further given in Appendix A. In order to use

this text-based document comparison method with images, however, the notion of words is

replaced by that of visual words or clustered image features.

Ideally, features are distinguishing regions of content (or collections of pixels) within an

image such as corners, edges, or holes (Figure 1.3). Using a feature detection and descriptor

algorithm, such as SIFT (scale invariant feature tracking), these features can be represented

numerically, such as by a 128-dimensional vector or feature descriptor. SIFT is a valuable

feature detection algorithm for its ability to identify features that are invariant to changes in

scale, rotation, and modest amounts of warping between images. For further details on SIFT

we defer to work by Lowe [7].

In a set of images, a visual word is simply a common feature, one that potentially

exists across multiple images, or even multiple times within a single image and is found by

clustering features from all images (Figure 1.4). [8] makes this process efficient by clustering

features through an iterative, hierarchical process into a tree structure. The leaf nodes of

this structure represents a dictionary of visual words, or a “Bag of Words”, that represent

the original set of images. Now, in the same manner as text-based document retrieval, the

dictionary becomes a basis whereby images can be compared according to their use of common

visual words from the dictionary.

5

Figure 1.3: Example scale-invariant features extracted from image

Figure 1.4: Visual words (clustered features) from multiple images

6

1.3.2 Alignment

Given two independently ordered image sequences, for the purposes of alignment, we designate

the source with a higher framerate as the primary source and the other as the secondary

source. The purpose of alignment is to find a mapping from each image of the secondary

source to images from the primary source with respect to image similarity while maintaining

the original ordering of each set. To do so, we represent all possible image pairs as nodes

within a graph and impose temporal constraints via the links between nodes. Each link is

assigned a cost according to the associated image pair’s similarity. Thus, our method uses

dynamic programming to find a least cost path through this graph, one that minimizes the

accumulated pairwise cost according to the imposed temporal constraints.

Further details and problem formulation for these methods are given in Chapter 2, a

self-contained research paper submitted for publication to the IEEE Workshop for Applications

of Computer Vision, August 2012. This paper includes an evaluation of the robustness of our

methods to changes in noise, capture rates, field of view, and resolution via experiments on

both synthetic and real-world data.

7

Chapter 2

Research Paper

Submitted to IEEE Workshop for Applications of Computer Vision, August 2012.

Abstract

Many applications use multiple cameras to simultaneously capture imagery of a scene from

a rigid, moving camera system over time. Multiple cameras often provide unique viewing

angles but also additional levels of detail of a scene at different spatio-temporal resolutions.

However, in order to benefit from this added information the sources must often be temporally

aligned. As a result of cost and physical limitations it is often impractical to synchronize

these sources via an external clock device. Most methods attempt synchronization through

the recovery of a constant scale factor and offset with respect to time. This limits the

generality of such solutions. We present an unsupervised method that utilizes a content-based

clustering mechanism in order to temporally align multiple non-synchronized image sequences

of different and varying spatio-temporal resolutions. We show that the use of temporal

constraints and dynamic programming adds robustness to changes in capture rates, field of

view, and resolution.

8

2.1 Introduction

Multi-camera configurations are used in many applications today such as stereoscopic pro-

cessing of multiple sequences, dynamic scene reconstruction [21], video surveillance, image

mosaicking, and independent recordings of historical events. In such configurations it is

common that identified content from one source needs to be located in the alternate source

as well. However, in order to identify such correspondences there needs to exist a temporal

ordering or mapping between the image sequences (Figure 2.1).

In particular, during Wilderness Search and Rescue aided by unmanned aerial vehicles

(UAV), the acquisition and streaming of video sequences provides critical imagery for ground

searchers to be able to quickly identify areas of interest for directing further search. However,

in order to transmit video using equipment that can be carried by a relatively small UAV, it

is necessary that the video sequences be of low resolution. In order to provide high-quality

visual information of the surrounding view, the UAV is mounted with a camera that supports

low-resolution high-frame-rate video with intermittent high-resolution imagery. Due to

hardware limitations only the low-resolution data is transmitted wirelessly back to the ground

crew, and the high-resolution low-frame-rate imagery is stored locally for offline search. After

the flight, searchers must be able to identify a mapping between the live video sequence

and the offline high resolution images. By determining a mapping between these sequences,

identified content of interest within one sequence can be easily located within the aligned

sequence. To this end, we present a solution to the image sequence alignment problem that

provides a mapping between two independently ordered image sequences. We also show that

our method is robust to variations in capture rates, field of view, and resolution.

Solutions to the video-alignment problem typically fall into two groups: feature-

based [1, 3, 6, 9–11, 13, 15, 16, 18, 19, 21], and direct [2, 4, 14, 17]. Direct methods rely

on comparing images as a whole (such as in sequence-to-sequence alignment involving the

optimization of inter-image sum of squared differences [2]) and as a result struggle with

changes in lighting, scale, and/or contrast between frames. Feature-based alignment addresses

9

tPrimary
Secondary

Figure 2.1: Temporal mapping between two image sources. The primary source is high-
framerate, low-resolution, while the secondary source is low-framerate, high-resolution.

this problem by focusing on visual features and how they change spatially and/or over

multiple frames. An example of such is the use of the path of a feature across multiple frames,

its trajectory, to align different sequences [3, 10, 13]. Direct methods tend to perform best

when intensities and lighting are similar between images, while feature-based approaches

generally work best when there is large variance between images as a result of a greater view

baseline [9]. Current solutions in both categories make several assumptions that prevent the

realization of a more general solution.

Most solutions assume that there is a constant time delay between sources [2–4, 10, 15–

19]. This allows for the recovery of a time offset and scale factor, which can then be used

for quickly finding inter-sequence correspondences. The problem with this, however, is that

some sources have a variable frame rate, or intermittent footage (such as in a sequence of

image still shots, or a system that drops frames to maintain playback quality), which causes

alignment calculations that depend on constant frame-rates to be inaccurate.

Other solutions require that the subject is moving and that the camera rig is stationary

or rigid in order to accurately determine the path of a point or feature of interest across

several frames, such as in [18]. With such a trajectory defined, the temporal alignment is

found by determining which trajectories from each sequence match in time and space. These

trajectories allow for a time offset and scale factor to be discovered.

10

Perhaps most related is work by Fraundorfer [6] that uses a scalable image lookup

and comparison structure, proposed by Nister and Stewenius [8], as a means for robotic

self-location. With an offline database of images covering an area to be traveled, a view

image is queried against the data structure to find the most similar image match, and as a

result the associated location. Through self-localization over time, an ordering for captured

images is implicitly defined. This method does not however place temporal constraints on

the source image set.

Our solution utilizes a hierarchical structure along with scale invariant features

(SIFT) [7] as a mechanism for efficiently comparing images as well as for obtaining spatial

invariance. In addition to the tree structure we explicitly determine an inter-sequence temporal

mapping by imposing a temporal constraint through dynamic programming. Because we

choose a temporal ordering that optimizes the image pair similarities, there is no need to be

concerned with consistency of frame rate. Thus we present a solution to the video alignment

problem that is robust to changes in both spatial and temporal resolution.

2.2 Image Comparison and Retrieval

In order to map two sequences, our method depends on the quantification of image similarities.

To do this efficiently, we leverage SIFT features extracted from a training set of images and

clustered into a hierarchical image-query scheme as developed by Nister [8]. The combination

of these two concepts provides a spatially invariant mechanism for comparing images.

2.2.1 Features

SIFT is a common algorithm for locating and describing distinctive scale invariant visual

elements, such as edges or corners, within an image [7]. Features are extracted from the

image at different scales, and features that exist in multiple (or all) scale levels remain. Once

extracted, these features are represented in 128-dimensional vectors, known as descriptors,

11

Figure 2.2: Example features extracted from image

according to the features’ corresponding gradient orientations, thereby adding rotational

invariance.

Another common feature-extraction method includes the identification of maximally

stable extremal regions, or MSERs [5], which are located by finding regions of images that

do not change size dramatically as the image is thresholded at changing thresholds. This

is generally well suited for finding holes or blobs within an image and tends to work at

small variations in scales (Figure 2.2). However, with variations in scale, the set of features

produced may change due to the existence of smaller (or larger and thus more stable) extremal

regions [5]. In order to reduce noise added by this inconsistency across scales, we use SIFT

for our feature extraction method because of its invariance to such scale changes.

2.2.2 Image-Based Comparison

Nister’s work uses a document retrieval technique known as “bag of words”, adapted to

images by [12] for efficient image retrieval. Features are extracted from a set of images and

then clustered using hierarchical k-means. The set of leaf-clusters from this tree represent a

trained dictionary that can be used as a metric for comparing images.

Once the dictionary has been trained, any image can be defined with respect to the

dictionary. For a given image, features are extracted and then classified by descending the

12

tree. An n-dimensional vector (where each element corresponds to a leaf cluster in the tree)

is then computed according to the frequency with which the features of the current image

arrive at each of the leaf nodes. We use these vectors as the basis for image comparison.

With these vectors, image similarity is simply computed via the comparison of these

vectors using either the Mahalanobis distance or an L-norm distance metric. [8] shows that

the L1 norm tends to provide more accurate results than the L2 norm because of its ability

to better handle variance. For this reason, we use the L1 norm for vector distance.

2.3 Content-Based Alignment

With a method for quantifying the similarity between images, the problem becomes one of

optimization with respect to the inter-image similarity scores. Initially we assume that there

are two sources to be aligned. Of the two, the image sequence with the highest frame rate is

designated as the primary source. This set can be thought of as the sequence to which an

alternate secondary source is aligned. This source is used as for training the visual dictionary

as previously described. Each image in the secondary source is then defined in terms of the

dictionary and subsequently compared against the primary set and aligned using dynamic

programming.

2.3.1 Problem Formulation

Using the metrics defined in the previous section, let the similarity between two images s

and p be the distance between their respective vectors, or D(s, p). Given P and S as the set

of images from the primary and secondary sources respectively, we find the mapping M from

all images in S to images in P :

M : s→ p | s ∈ S, p ∈ P (2.1)

13

that minimizes the overall image-matching score:

C(M) =
∑
s∈S

D(s,M(s)) (2.2)

subject to the following temporal ordering constraint:

∀s ∈ S : si < sj ⇒M(si) ≤M(sj) (2.3)

This temporal monotonicity constraint ensures that the initial frame ordering of each source

is maintained across the resultant mapping. Though not necessary for alignment, the

monotonicity constraint can be made more restrictive (and implemented more effectively)

by incorporating knowledge of how far apart frames of the secondary source are (in time)

relative to the primary source:

∀s ∈ S : 0 ≤M(si+1)−M(si) ≤ k (2.4)

This allows us to place an upper bound, k, on how many frames to look ahead for matches to

a given frame and as a result reduce the search space. Keep in mind that k does not imply

knowledge of actual frame rates but rather allows one to place a loose constraint on how far

ahead to search.

2.3.2 Creation of Image Vectors

In order to align two image sources, we must first compute the tree-vectors for all images

of each image source. These vectors allow us to quantitatively compare two images and

ultimately determine the cost associated with each graph link. As described in Section 2.2.2,

features are first extracted from the primary image source (Figure 2.2) and are used to train

the vocabulary tree described by Nister [8]. Then, we take each image from both sources

individually along with their corresponding features, and classify each feature by descending

14

the vocabulary tree. Each element of this vector corresponds to a leaf node in the vocabulary

tree and is computed according to the frequency of occurrences of that cluster within the

associated image and weighted by the uniqueness of that particular cluster among all images

of the training set, also known as the term-frequency inverse document-frequency (TF-IDF)

score in natural language processing [12].

2.3.3 Cost Function

With TF-IDF vectors computed for both sources, we can now create the cost function, D(s, p)

for all s ∈ S and p ∈ P , which is visualized in Figure 2.3. Within this image each pixel (x, y)

corresponds to a pairing (s, p) of an image from the primary source to one from the secondary

source. The brightness of each pixel is proportional to the distance, D(s, p), between the

corresponding pair’s TF-IDF vectors. The darker the pixel, the more similar the two images

of the pair are.

In the example shown in Figure 2.3, the ratio of primary to secondary images is 1:1

and the correct solution lies along the diagonal. D(s, p) demonstrates strong dark regions that

follow the diagonal of the image but manifest as a thicker band due to normal frame-to-frame

overlap. The uniform banding pattern present in the background is a result of each vector

having a different quantity of features. A vector with fewer features has fewer associated

clusters, thus reducing its score when compared to other vectors. The low-cost regions off

the diagonal correspond to areas where multiple images share similar content such as when

the same portion of the scene is observed at different times.

For distance, we use the L1-norm because of its ability to better handle image variance

than the L2-norm as described by [8] though any multi-dimensional metric, such as the

Mahalanobis distance, is certainly viable.

15

Figure 2.3: Visualization of the cost function D(s, p) between two image sources S and
P . Dark pixels correspond to image pairs that have a low cost (are a good match). The
correct solution for this simple example lies along the diagonal manifested as a thicker band
due to image overlap. Off-diagonal low-cost regions are a result of multiple occurrences of
similar image content at different times. The uniform pattern in the background is a result
of variance in the number of features between images.

16

Figure 2.4: Monotonically increasing graph. Constructed with k = 3 look ahead, and from
ordered sets P = {1, 2, 3, 4, 5, 6}, S = {A,B,C,D}.

2.3.4 Alignment through Dynamic Programming

Given the cost function, D(s, p), Equation 2.2 can be trivially minimized by

M(s) = argmin
p

D(s, p) (2.5)

in order to find a mapping between image sources. This method, which we refer to as

“greedy”, does not however meet the temporal constraints defined in Equation 2.3.

To implement these constraints we treat the problem as a least-cost path optimization.

We construct a graph (Figure 2.4) with nodes that represent a pairing of two images, one from

each source, and links arranged according to the defined temporal constraints. Horizontal

links are added between nodes so as to allow the mapping of multiple secondary images to

a single primary image such as when frames are missing from the primary source. Links

leading to a given node are weighted according to the similarity score of the paired images at

17

that node. The solution then is the least-cost path through the constructed graph, which we

solve via dynamic programming (DP).

To find the least cost path, we define the minimum accumulated cost, q, of the pairing

of a primary image, p, to a secondary image, s, as the cost, D(s, p), of the pair plus the

minimum accumulated cost of that pair’s possible predecessor nodes. By accumulating the

cost values we are able to determine the least-cost path leading to each node. This can be

visualized as the construction of a topological surface in which to find a valley that connects

the start and end nodes of the graph (Figure 2.5). The number of possible predecessor nodes,

t, is limited by the temporal constraint, k, defined in Equation 2.4. Formulated as a typical

dynamic programming problem,

q(s, p) =

∞ if p < 1

D(s, p) if s = 1

D(s, p) + mint∈T{q(s− 1, p− t)} otherwise

(2.6)

where

T = {0, ..., k} (2.7)

Note that when t = 0, there is a small penalty added so as to discourage always following

horizontal links and choosing a trivial low-cost solution, such as when many secondary images

map to a single primary image in the absence of distinguishing features.

Once q(s, p) has been computed for all pairs, the minimum cost path is found by

selecting the pair, (s, p), with the lowest accumulated score that corresponds with the most

recent secondary image (right-most column in Figure 2.4).

2.3.5 Complexity

Initially, the most general graph structure with H primary frames and L secondary frames

has a DP solution complexity of O(H2L). By imposing monotonicity with forward or lateral

18

Figure 2.5: Visualization of the accumulated cost function, q(s, p), from a graph with a
k-lookahead of 3. Each pixel corresponds to a node in the constructed graph (Figure 2.4),
the brightness of each is determined by the accumulate cost of the least-cost-path to the
associated node. The least-cost-path is highlighted in green.

19

links, as well as a loose limit, k, on the number of frames to look ahead for matching, each

node can only connect to at most k other nodes (Figure 2.4). Thus, the complexity is reduced

to O(HLk).

This still has a high-order complexity which can be reduced through a coarse-to-fine

strategy. Because the primary source contains a denser set of frames, there is greater potential

for frame overlap. As a result, we can create a subset of frames from the primary source

such that the set is reduced in size but that the spatial overlap is maintained. Overlap is

important so as to provide enough information for accurate alignment with the secondary

source. This reduction factor r not only decreases the size of the primary source to H
r

, but the

frame look-ahead to k
r

as well, giving a new complexity of O(HLk
r2

). There is a cost associated

with refinement after reduction occurs, O(Lr2), however it has lower complexity than the

initial reduction, so it does not increase the overall complexity.

Furthermore, by recognizing that k is limited by how much larger H is than L, k can

be considered to be proportional to the ratio of H to L:

k ∝ H

L
(2.8)

As mentioned before, the reduction factor r is dependent on how dense the primary

source is, so it is proportional to the frame rate fp of the primary source:

r ∝ fp (2.9)

Finally, H is a direct function of the frame rate of the primary source and its total

duration, t:

H = fpt (2.10)

20

These final observations allow us to generalize our problem complexity to O(t2), which

shows that complexity increases only with the total video duration, not its frame rate or that

of the secondary source.

2.4 Evaluation

In this section we quantitatively evaluate the performance of the methods proposed in

Sections 2.2 & 2.3. In order to do so effectively we use synthetic datasets, which allows us

to more precisely determine ground-truth alignments for accuracy measurements as well

as have more control over each dataset’s parameters and allow more in-depth analysis. To

address biases present in synthetic data, we also evaluate the accuracy of our methods on

non-synthetic data.

Each of the synthetic datasets we analyze are generated from 1800 (approximately

one minute) 1280× 960 colored images extracted from aerial videos. To synthesize a primary

set with low resolution and a reduced field of view, images from the original source are

down-sampled by 40% and cropped to 640× 480. Secondary images are left unscaled and are

extracted from the original video using a Poisson distribution with a mean according to the

needed primary-to-secondary image ratio. Unless specified, the primary-to-secondary ratio is

roughly 8:1. We also corrupt the images from both datasets with Gaussian noise in order to

reduce benefits of generating both from the same video source. We do not, however, explore

changes in rotation or perspective between sources since SIFT is known to be rotationally

invariant and robust to modest variations in warping [7].

Once primary and secondary sets are generated, the accuracy of a computed mapping

is based on the number of image-pair mismatches with respect to ground truth data. In

practice, however, due to differences in fields of view and overlapping content there may be

ambiguous alignments such as when secondary images are of a higher resolution and share

content from multiple primary images. Thus, for the purposes of this application, it is more

useful to define accuracy as correct to within some number of frames. For our experiments,

21

unless specified otherwise, a mapping is correct if it is to within 5 frames of ground truth.

We further motivate this later by looking at the root-mean-square (RMS) of the disparity of

chosen and ground truth primary image indices.

Additionally, to prevent DP from choosing trivial solutions (Section 2.3.4), we add a

small cost of 10−4 to horizontal links during dynamic programming which we have empirically

found to work well.

From initial observations of a cost function for a given dataset (Figure 2.3), it is

apparent that the greedy method will work quite well in simple situations (such as with

minimal noise). We show, however, that because of the lack of temporal constraints the

greedy method is not robust to situations such as noisy images, lack of features, or locally

ambiguous options. In each experiment we show the results of our dynamic programming

and greedy methods, using greedy as a baseline for comparison.

2.4.1 Synthetic Data Limitations

The generation of the primary source in the described manner results in features from

the primary source being a subset of the secondary source. To address this bias we ran

experiments where we removed each image from the primary set that has an associated

secondary match.

On the base-set previously mentioned, with removal the accuracy of DP was 99.481%

with greedy at 97.403%, compared to 99.481% and 99.221% respectively without removal.

Such similar results did not motivate further addressing this bias.

2.4.2 Affect of Noise on Accuracy

Despite the performance of the greedy approach in situations of low noise, lack of noise is

not realistic to real-world data. As noise increases within images, the optimal solution with

respect to image similarity becomes less pronounced (Figure 2.6) and the accuracy of both

22

Figure 2.6: Visualization of cost function for a noisy dataset with a primary to secondary
image ratio of 8:1. Datasets were generated using Gaussian noise with σ = 16 for the primary
set and σ = 64 for the secondary set.

0

0.2

0.4

0.6

0.8

1

0 6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96 10
2

10
8

11
4

12
0

12
6

%
 C

or
re

ct
 (

ex
ac

t
 a

lig
nm

en
t)

Noise (std. dev.)

DP

Greedy

Figure 2.7: Accuracy of DP and greedy methods as image-noise variance increases. Primary
to secondary image ratio is 8:1 with exact matches.

23

0

100

200

300

400

500

600

700

800

0 8 16 24 32 40 48 56 64 72 80 88 96 104112120

Al
ig

nm
en

t R
M

S

Noise (std. dev.)

DP

Greedy

Figure 2.8: RMS alignment error of DP and greedy methods as image-noise increases.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96 10
2

10
8

11
4

12
0

12
6

%
 C

or
re

ct
 (t

o
w

ith
in

 5
 fr

am
es

)

Noise (std. dev.)

DP

Greedy

Figure 2.9: Accuracy of DP and greedy methods to within 5 frames.

24

methods decreases (Figure 2.7). Despite this decrease in accuracy, dynamic programming

has a slower rate of decay because of temporal constraints.

Although the accuracy of each solution decays with noise, the RMS alignment error of

each differs drastically (Figure 2.8). Because of this disparity in RMS error, and, as discussed

previously, due to the fact that most alignment applications benefit from finding frames

within a certain proximity to the exact match, we can mark pairs that are within five frames

of ground truth to be correct. In doing so, the average accuracy of DP increases while that

of greedy remains relatively unaffected (Figure 2.9).

2.4.3 Primary to Secondary Ratio

In order to show that our method is robust to differences in frame rates between sources,

it is important to show how accuracy changes with an increase of the ratio of primary to

secondary images. This is done by gradually increasing the mean of our Poisson sampling

distribution. Not only does this increase the mean ratio of primary to secondary images, but

the variance of sampling as well (σ2 = µ).

Our results show that although there is a slight decrease in accuracy, our method

remains robust to increases in the ratio of primary to secondary images up to 60 primary

frames for every secondary frame, or frame rates of 30 fps and 0.5 fps respectively (Figure 2.10).

2.4.4 Scale and Field of View Changes

It is not uncommon in a multi-camera configuration for there to be differences in scale

and field of view between the cameras (Figure 2.11). Here we examine the affect of these

differences on accuracy.

To simulate scale differences we gradually down-sample the primary source without

cropping (e.g. down-sample by 30%). Field of view is simulated by simply cropping the

primary images by the same scale factors (e.g. crop by 30%). We only affect the primary

25

0.62

0.64

0.66

0.68

0.7

0.72

0.74

0.76

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58

%
 C

or
re

ct
 (t

o
w

ith
in

 5
 fr

am
es

)

Ratio of Primary to Secondary Images

DP

Greedy

Figure 2.10: Accuracy vs. change in ratio of primary to secondary images. Datasets were
generated using normal noise with σ = 64 and k = 350.

Figure 2.11: Example side-by-side of different fields of view.

26

0

0.2

0.4

0.6

0.8

1

0.
34

4
0.

32
7

0.
31

0
0.

29
3

0.
27

5
0.

25
8

0.
24

1
0.

22
4

0.
20

7
0.

18
9

0.
17

2
0.

15
5

0.
13

8
0.

12
0

0.
10

3
0.

08
6

0.
06

9
0.

05
2

0.
03

4
0.

01
7

%
 C

or
re

ct
 (t

o
w

ith
in

 5
 fr

am
es

)

Scale (% of original)

DP

Greedy

Figure 2.12: Accuracy of DP and greedy methods as the primary source scale decreases. Data
set images were corrupted with Gaussian noise with σ = 16.

source in either of these changes since our initial assumption is that the secondary source is

of a higher image resolution.

As images are reduced in size (whether by scale or by a change in field of view),

there is an inherent reduction in the quantity or quality of features. This reduction yields

falsely-similar, or low, comparison scores uniformly against all other images due to a lack of

distinguishing features in general, thus diminishing accuracy. Beyond a particular downsample,

however, scale actually changes features directly (in addition to reducing the feature set)

while cropping the image only reduces the set. This explains the non-linear linear drop-off

in accuracy due to changes in scale (Figure 2.12) and more gradual decay in accuracy with

changes in field-of-view (Figure 2.13).

Without sufficient quantity or quality of features, DP may choose a trivial solution

and underperform a greedy solution. However, in this situation both methods already suffer

in accuracy due to a lack of features.

27

0

0.2

0.4

0.6

0.8

1

0.
68

9
0.

65
4

0.
62

0
0.

58
5

0.
55

1
0.

51
6

0.
48

2
0.

44
8

0.
41

3
0.

37
9

0.
34

4
0.

31
0

0.
27

5
0.

24
1

0.
20

7
0.

17
2

0.
13

8
0.

10
3

0.
06

9
0.

03
4%

 C
or

re
ct

 (t
o

w
ith

in
 5

 fr
am

es
)

Scale (Field of View)

DP

Greedy

Figure 2.13: Accuracy of DP and greedy methods as the primary source field of view decreases.
Data set images were corrupted with Gaussian noise with σ = 16.

2.4.5 Locally Ambiguous Solutions and Accuracy

Alignment ambiguity (and the need for temporal constraints) becomes most apparent when

the same portion of the scene is viewed multiple times. We experiment with two scenarios

that produce such ambiguities: loops (Figure 2.14), and sweeping patterns (Figure 2.15).

A loop attempts to simulate when the video covers content multiple times. A sweep,

also known as a lawn-mower-pattern, is a means for uniform coverage of a particular area

with overlapping sweeps. In either case, as the number of ambiguous options increases, the

accuracy of the greedy solution is negatively affected in a linear fashion, while DP is relatively

unaffected (Figure 2.16).

2.4.6 Performance

Each of the presented tests ran on a machine with an Intel i7 2.8 GHz quad-core, 24 GB of

RAM, NVIDIA GeForce GTX 480 GPU, and solid state drive.

All computations were performed in memory and then subsequently written to disk.

To do this we statically pre-allocate memory according to estimated needs. Due to the lack

of memory management or disk I/O overhead this empirically improved runtime performance.

28

Figure 2.14: Example cost function with an 80 frame loop overlayed with DP path (red),
greedy path (cyan), and both (green).

29

Figure 2.15: Example cost function with 20 overlapping sweeps overlayed with DP (red) and
greedy (cyan) paths

0

0.2

0.4

0.6

0.8

1

0 60 12
0

18
0

24
0

30
0

36
0

42
0

48
0

54
0

60
0

66
0

72
0

78
0

84
0

90
0

96
0

10
20%

 C
or

re
ct

 (t
o

w
ith

in
 5

 fr
am

es
)

Loop Duration (frames)

DP(1 & 2 loops)

Grdy(1 loop)

Grdy(2 loops)

Figure 2.16: Accuracy of DP and greedy as loop duration increases. DP and Greedy are each
shown with both one and two loops. Using k-lookahead of 3, primary to secondary ratio of
1:1, and minimal noise.

30

This also increases total memory consumption (around 6 GB for 3600, 640× 480 images with

approx. 3000 features per image). A more dynamic memory scheme may be used in order to

achieve a smaller memory footprint.

The extraction of features from the primary and secondary sources are independent of

each other. Thus, to save time, while the vocabulary tree is being from the primary source,

we simultaneously extract features from the secondary. This gives a 23% speedup of the

entire process on average.

Additionally, we implement various components of our method on the GPU. We use

Wu’s ([20]) SIFT implementation for the GPU and are able to achieve between 15–20 fps for

feature extraction. Clustering is the most time consuming portion of our method running

at 9,300 features per second, or 8 fps. The computation of TF-IDF vectors is usually at

around 22 fps. The cost function computation and DP alignment takes about 11 seconds for

3600 1× 7k vectors (totaling around 24M elements across all vectors). Finally, we run vector

alignment on the GPU using OpenCL.

We can further improve run times (and memory performance) by reducing the number

of features per image without much affect on accuracy. The reduction of features impacts

the amount of data that needs to be clustered and, subsequently, reduces vector sizes.

Experiments show that we can reduce from 3000 to between 100 and 200 features per image

and still achieve comparable accuracy (Figures 2.17).

For small data sets, run time appears to achieve linear time-complexity with the

number of images (Figure 2.18). This is because the O(n2) complexity of alignment is dwarfed

by those of feature extraction and clustering for small sets. We would expect however that as

the data set grows the alignment run time should eventually bypass and exceed the run-time

of other components. If we isolate only the alignment component, we can see this quadratic

behavior (Figure 2.19).

To reduce the run-time complexity of alignment, as described in Section 2.3.5, we can

reduce the primary set by a particular reduction factor and perform a rough alignment. We

31

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

16 51 89 11
6

15
1

18
6

21
3

24
3

28
0

31
2

33
8

36
9

39
6

42
9

45
8

48
7

52
0

54
9

57
4

59
7%

 C
or

re
ct

 (t
o

w
ith

in
 5

 fr
am

es
)

Features per Image

DP

Greedy

Figure 2.17: Accuracy increases with the number of features per image. Images corrupted
with noise of σ = 32.

refine the initial alignment by aligning all neighboring primary images not included in the

original alignment phase to local secondary images. In doing so, despite overhead perceptible

in smaller data sets, the quadratic run-time complexity is delayed.

In order to determine the practicality of our method on real-world scenarios, we ran

our method on larger data sets. With 5 minutes worth of video, and 2500 features per image,

total run time was about 50 minutes. However, by reducing the features to approximately

150 features per image, and using a reduction factor of 5, total run-time was reduced to 12

minutes with comparable accuracy (93%). Memory consumption was likewise reduced from 9

GB to 800 MB. Similar results were achieved with a 15 minute dataset at 90% accuracy and

a run time of 30 minutes (with roughly 150 features per image).

2.4.7 Real-World Data

In this experiment, we run our methods on non-synthetic data acquired by an HD GoPro

Hero mounted to the bottom of an unmanned aerial vehicle (UAV).

The GoPro video feed was recorded to a local SD card for offline use as well as

simultaneously transmitted live to a ground unit where the feed was also recorded. Offline

images were captured at 30 fps and stored at a resolution of 1280× 960 while the live signal

32

0

200

400

600

800

1000

1200

1400

30 18
0

33
0

48
0

63
0

78
0

93
0

10
80

12
30

13
80

15
30

16
80

18
30

19
80

21
30

22
80

24
30

25
80

Ru
n-

Ti
m

e
(S

ec
on

ds
)

of Frames

3200 ftrs/img

320 ftrs/img

Figure 2.18: Overall run-time complexity growth with the number of images. Because of
the data-set size, alignment run-time is dwarfed by the run-times of feature extraction and
clustering. Thus, the overall run-times appear linear.

0

0.5

1

1.5

2

2.5

30 18
0

33
0

48
0

63
0

78
0

93
0

10
80

12
30

13
80

15
30

16
80

18
30

19
80

21
30

22
80

24
30

25
80

Al
ig

nm
en

t R
un

-T
im

e
(s

ec
on

ds
)

of Primary Images

1

10

Figure 2.19: Alignment run-time complexity growth with the number of images using reduction
factors of 1 and 10. As reduction factor increases the quadratic behavior of alignment run-time
is delayed.

33

was recorded at 15 fps (interlaced) at 640×480. Both sources cover approximately 40 seconds

of video, which yields 1300 and 595 frames between the offline and live sources respectively.

Due to the higher frame rate of the offline GoPro data, we designated the offline data

as the primary source and the streamed transmission as the secondary source. Also, for

quantitative analysis, we created a ground truth alignment between the sources by manually

selecting the appropriate mapping from all secondary images to images from the primary

source. Additionally, for alignment we used a k-look-ahead of 14, and a horizontal penalty of

10−5.

With these parameters, the use of temporal constraints via DP resulted in 522 of 595

exact matches (with 100% to within 5 frames) and an RMS alignment error of 1.12, while a

greedy approach matched 492 of 595 pairs (with 97.5% to within 5 frames) and an error of

89.20. A visualization of the associated cost function is shown in Figure 2.20.

2.5 Conclusion

We have presented a method for the temporal alignment of two image sequences that is

robust to changes in imaging resolution, frame rate, scale, and field of view. Our solution is

able to achieve spatial invariance through the utilization of a hierarchical SIFT-based feature

clustering mechanism. The imposition of temporal constraints through dynamic programming

provided a means for robustness to ambiguous alignment solutions created by image noise,

high occurrence of content overlap, or differences in scale between sources.

We have also shown that the quantity of features can be reduced in order to achieve

higher run-time and memory performance and still maintain comparable accuracy. Addi-

tionally, through a reduction and refinement process the computational requirements of our

method can be reduced even further. Through these optimizations larger video segments can

be aligned within a practical amount of time.

34

Figure 2.20: Visualization of cost-function of real-world data generated from HD GoPro Hero
mounted to unmanned aerial vehicle.

35

2.6 Acknowledgments

This work was partially supported by the National Science Foundation under grant numbers

0534736 and 0812653. Any opinions, findings, and conclusions or recommendations expressed

are those of the authors and do not necessarily reflect the views of the National Science

Foundation.

36

Chapter 3

Conclusion and Future Work

We have demonstrated that through the imposition of temporal constraints, the

accuracy of our method is robust to variations in spatial resolution, frame rate, field of view,

and scale. Additionally, through the use of SIFT features, scale and rotational invariance is

achieved in the presence of modest levels of noise.

We have also shown that higher run-time and memory performance can be achieved

with little to no affect on accuracy by reducing the quantity of features extracted from each

image. The computational requirements of our method can be further reduced through a

reduction and refinement process. As a result of these improvements, it is possible to align

larger video segments within a practical amount of time.

Although we presented a method for finding a direct temporal mapping between frames,

further refinement is necessary in order to achieve a total ordering. One such refinement can

be to search local neighbors of a primary image to find the optical flow between frames at the

point of alignment. Using a computed homography that maps the secondary image to the

primary image, where the secondary image lies relative to the center of the primary image

with respect to the optical flow should indicate whether the secondary image comes before or

after the primary image in time.

Additionally, though our method was able to improve upon the complexity of dynamic

programming through an initial alignment with a reduced primary set, performance could be

further improved through a reduction of the secondary source as well.

37

During the refinement phase of the reduction process, each sub-alignment is indepen-

dent of other sub-alignments. Thus, a distributed solution could be considered in order to

allow the processing of even larger datasets.

38

Appendix A

Text-Based Document Comparison

To begin, a dictionary of words is created from all documents of interest, called a

“bag of words.” Each word in the dictionary is assigned a weight, per document, known as

the term-frequency inverse-document-frequency (TF-IDF) score, according to the word’s

commonality and uniqueness across the set of documents. The TF-IDF score for a single

word, i, and document, d, given N documents, is given by:

ti =
nid
nd

log
N

Ni

(A.1)

The first component,nid

nd
, is the term-frequency weighting portion. Here, given the

frequency that word i appears in document d, nid, and the total number of words in document

d, nd, this simply gives weight to a particular word by how frequently it appears within a

single document.

The second component, log N
Ni

, is the inverse-document-frequency. Given the total

number of documents within the data set, N , and the total number of documents that contain

word i, Ni, this portion diminishes the TF-IDF score as the number of documents that

contain a particular word increases. As a result, this term gives more weight to words that

appear less frequently in the entire data set.

Combining the two terms, the TF-IDF score, therefore, favors words that are unique

among all documents while fairly prevalent within a subset of the documents. In contrast,

words that occur a few times in a single document are given less weight (ε
α
≈ 0 when ε≪ α)

as well as those that occur in all documents (log 1 = 0).

39

Figure A.1: Two TF-IDF vectors defined by visual descriptors in dictionary (tree)

A vector of TF-IDF scores, Td = (t1, t2, ..., tn), is created for each document based on

how many of each word a given document uses from the dictionary (Figure A.1). Finally, the

content similarity between two documents is quantified by finding the distance between their

respective TF-IDF vectors.

A common method for comparing two vectors is the Mahalanobis distance, which

utilizes the inverse covariance matrix for normalization as used by [12]. Although other

L-norm distance metrics can easily be substituted and have different impacts on accuracy, [8]

shows that the L1 norm tends to provide more accurate results than the L2 norm because of

its ability to better handle variance. Thus we use the L1 norm for distance in our method.

40

References

[1] D. Brito, F. Padua, G. Pereira, and R. Carceroni. Temporal synchronization of non-

overlapping videos using known object motion. Pattern Recognition Letters, 32(1):38–46,

2011.

[2] Y. Caspi and M. Irani. A step towards sequence-to-sequence alignment. In Proceedings

of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition,

volume 2, pages 682–689, 2000.

[3] Y. Caspi, D. Simakov, and M. Irani. Feature-based sequence-to-sequence matching.

International Journal of Computer Vision, 68:53–64, 2006.

[4] C. Dai, Y. Zheng, and X. Li. Accurate video alignment using phase correlation. IEEE

Signal Processing Letters, 13(12):737–740, December 2006.

[5] P.-E. Forssen and D.G. Lowe. Shape descriptors for maximally stable extremal regions.

In Proceedings of the IEEE 11th International Conference on Computer Vision, pages

1–8, October 2007.

[6] F. Fraundorfer, C. Engels, and D. Nister. Topological mapping, localization and naviga-

tion using image collections. In Proceedings of the IEEE/RSJ International Conference

on Intelligent Robots and Systems, pages 3872–3877, November 2007.

[7] D. Lowe. Distinctive image features from scale-invariant keypoints. International Journal

of Computer Vision, 60:91–110, 2004.

[8] D. Nistér and H. Stewénius. Scalable recognition with a vocabulary tree. In Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition, volume 2, pages

2161–2168, 2006.

[9] F. Padua, R. Carceroni, G. Santos, and K. Kutulakos. Linear sequence-to-sequence

alignment. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32:304–320,

February 2010.

41

[10] C. Rao, A. Gritai, M. Shah, and T. Syeda-Mahmood. View-invariant alignment and

matching of video sequences. In Proceedings of the IEEE International Conference on

Computer Vision, volume 2, pages 939–945, October 2003.

[11] P. Sand and S. Teller. Video matching. ACM Transactions on Graphics, 23:592–599,

August 2004.

[12] J. Sivic and A. Zisserman. Efficient visual search of videos cast as text retrieval. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 31(4):591–606, April 2009.

[13] G. P. Stein. Tracking from multiple view points: Self-calibration of space and time. In

Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern

Recognition, volume 1, page 1521, 1999.

[14] Z. Szlávik, T. Szirányi, and L. Havasi. Video camera registration using accumulated

co-motion maps. ISPRS Journal of Photogrammetry and Remote Sensing, 61(5):298–306,

2007.

[15] P. Tresadern and I. Reid. Synchronizing image sequences of non-rigid objects. In

Proceedings of the 14th British Machine Vision Conference, pages 629–638, 2003.

[16] T. Tuytelaars and L. Van Gool. Synchronizing video sequences. In Proceedings of

the IEEE Computer Society Conference on Computer Vision and Pattern Recognition,

volume 1, pages I-762–I-768, June 2004.

[17] M. Ushizaki, T. Okatani, and K. Deguchi. Video synchronization based on co-occurrence

of appearance changes in video sequences. In Proceedings of the 18th International

Conference on Pattern Recognition, volume 3, pages 71–74, 2006.

[18] A. Whitehead, R. Laganiere, and P. Bose. Temporal synchronization of video sequences

in theory and in practice. In Proceedings of the 7th IEEE Workshop on Applications of

Computer Vision, volume 2, pages 132–137, January 2005.

[19] L. Wolf and A. Zomet. Sequence-to-sequence self calibration. In European Conference

on Computer Vision, volume 2351 of Lecture Notes in Computer Science, pages 530–533.

Springer Berlin, 2002.

[20] C. Wu. SiftGPU: A GPU implementation of scale invariant feature transform (SIFT).

http://cs.unc.edu/~ccwu/siftgpu, 2007.

42

http://cs.unc.edu/~ccwu/siftgpu

[21] J. Yan and M. Pollefeys. Video synchronization via space-time interest point distribution.

In Proceedings of the 6th International Conference on Advanced Concepts for Intelligent

Vision Systems, 2004.

43

	Automatic Content-Based Temporal Alignment of Image Sequences with Varying Spatio-Temporal Resolution
	BYU ScholarsArchive Citation

	Title Page
	Abstract
	Table of Contents
	List of Figures
	1 Introduction
	1.1 Motivation
	1.2 Existing Work
	1.3 Overview
	1.3.1 Image Comparison
	1.3.2 Alignment

	2 Research Paper
	2.1 Introduction
	2.2 Image Comparison and Retrieval
	2.2.1 Features
	2.2.2 Image-Based Comparison

	2.3 Content-Based Alignment
	2.3.1 Problem Formulation
	2.3.2 Creation of Image Vectors
	2.3.3 Cost Function
	2.3.4 Alignment through Dynamic Programming
	2.3.5 Complexity

	2.4 Evaluation
	2.4.1 Synthetic Data Limitations
	2.4.2 Affect of Noise on Accuracy
	2.4.3 Primary to Secondary Ratio
	2.4.4 Scale and Field of View Changes
	2.4.5 Locally Ambiguous Solutions and Accuracy
	2.4.6 Performance
	2.4.7 Real-World Data

	2.5 Conclusion
	2.6 Acknowledgments

	3 Conclusion and Future Work
	A Text-Based Document Comparison
	References

