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ABSTRACT

An Applied Investigation of Gaussian
Markov Random Fields

Jessica Lyn Olsen
Department of Statistics, BYU

Master of Science

Recently, Bayesian methods have become the essence of modern statistics, specif-
ically, the ability to incorporate hierarchical models. In particular, correlated data, such
as the data found in spatial and temporal applications, have benefited greatly from the
development and application of Bayesian statistics. One particular application of Bayesian
modeling is Gaussian Markov Random Fields. These methods have proven to be very useful
in providing a framework for correlated data. I will demonstrate the power of GMRFs by
applying this method to two sets of data; a set of temporal data involving car accidents in
the UK and a set of spatial data involving Provo area apartment complexes. For the first set
of data, I will examine how including a seatbelt covariate effects our estimates for the num-
ber of car accidents. In the second set of data, we will scrutinize the effect of BYU approval
on apartment complexes. In both applications we will investigate Laplacian approximations
when normal distribution assumptions do not hold.

Keywords: Gaussian Markov Random Fields, Spatial, Correlated Data
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chapter 1

INTRODUCTION

Although the discipline of statistics has long been employed in aiding and supporting re-

searchers and scientists solve complex problems, there seems to be no foreseeable end to the

areas in which statistics can be beneficial and valuable. Karl Pearson, esteemed mathemati-

cian and founder of the worlds first department of statistics, once noted that, “Statistics

is the grammar of science” (Pearson, 1911). With that, we can argue that statistics is the

means by which we are able to transform the study of natural phenomena into not only the

understanding of natural phenomena, but also the communication of the why, where, how,

and when of scientific events of interest. As a result of the universal need and ubiquitous

demand for explanation and exploration of the world around us, the field of statistics will

continue to grow and expand, in areas that have long been established as well as disciplines

that have yet to be discovered.

Appealing to a very economic sense of creation driven by demand, statistics is an

ever evolving and developing field of study. As new problems arise, new methodology and

techniques for dealing with those problems are developed, tested, and scrutinized. Spatial

statistics is an exemplary case of this principle. Although evidence of statistics for spatial

data can be traced back to very simple weather data maps from the 17th century, true sta-

tistical spatial models did not appear until much later. More recently, hierarchical modeling

via the Bayesian paradigm has permitted scientists and researchers to analyze increasingly

complex systems of correlated spatial data. One such method is Gaussian Markov Random

Fields, a method that focuses on defining covariance structures via precision matrices.
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The ultimate aim of this investigation is to understand Gaussian Markov Random

Fields; how they can be measured, quantified and utilized. After an in depth investigation

into the theory surrounding classical prediction methods, and hierarchical Bayesian methods,

we will demonstrate the powerful nature of Gaussian Markov Random fields via temporal and

spatial data applications. Through this inquiry we will gain a better idea of how Gaussian

Markov Random Fields behave and determine efficient techniques for estimation of specific

data types.
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chapter 2

CLASSICAL APPROACH TO SPATIAL STATISTICS

2.1 Brief Introduction to the General Spatial Model and Kriging

Generally speaking, kriging is a member of the least-squares class of statistical methods.

Ultimately, kriging attempts to find optimal interpolation of unobserved quantities of a

function, Z(·) using regression on some collection of the weighted observed Z(·) values.

The method is named after D.G. Krige, a mining engineer from South Africa, who first

used a crude method to determine actual ore-grade behavior based on sample ore grades

(Oliver, 2010). French mathematician, George Matheron, formally developed the theoretical

foundation for interpolation and extrapolation based on Krige’s work (Waller and Gotway,

2004). Methods have since been developed to relax model assumptions and improve model

fit.

2.2 Defining the Spatial Model

We begin this section by making appropriate definitions and explanations of the general

spatial model. Doing so will allow us to establish the language for kriging. The notation

used here is borrowed from Cressie (Cressie, 1993). This conventional presentation is flexible

enough to be applied to a wide set of problems and purposes. Let s ∈ Rd be a generic data

location in d -dimensional Euclidean space. We will define Z(s) to be a random data point

measured at spatial location s. We can then allow s to vary over the indexed set D ⊂ Rd.

Doing so results in a generation of the multivariate random process

{Z(s) : s ∈ D} .
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Realizations from this random process are represented by {z(s) : s ∈ D}. While randomness

is not strictly assumed when defining the indices in D or the process Z, in practical appli-

cations, these quantities are usually fixed. This notation can be used to describe a number

of spatial areas of interest including geostatistical data, lattice data, and point patterns.

While much of the statistical approach focuses on developing models and methodologies, it

is equally important to allot time and attention to the outcomes that a particular model pro-

duces. In spatial statistics, this concept translates into building models where prediction is

the desired outcome. It is imperative to create methodological frameworks that accurately

portray the dependence structures that inherently exist in spatial data. To continue, we

must further define and expand the spatial model.

2.3 Variogram Structures

Any discussion of spatial models is not complete without a complete understanding of the

correlation structure. As such, we will investigate the variogram, the covariogram, and the

correlelogram; the three standard measures used in setting up spatial dependencies. These

quantities become critically important in laying the foundation for the assumptions sur-

rounding the random process, Z(·). Thus, understanding these terms is paramount to the

framework for kriging.

The variogram is the function that describes the strength and form of the relationship

between points. In essence, the variogram defines the amount of spatial dependency in a

model. I will further define

V ar(Z(s1)− Z(s2)) = 2γ(s1 − s2),

where 2γ(·) is called the variogram and γ(·) is called the semivariogram. The valuation of

this function is directly related to assumptions concerning the stationarity of the function
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Z(·). Stationarity refers to how the Z(·) process changes as we move from si to sj in our de-

fined space. Strict stationarity requires that the joint distribution of the Z(·) process remain

invariable from one location to another. This is a very strong, and sometimes unrealistic

assumption. Even the most basic methods of kriging do require strict stationarity. Rather,

kriging generally requires one of the following forms:

Intrinsic Stationarity: The weakest form of stationary, Intrinsic Stationarity requires two

main conditions:

E[Z(s + h)− Z(s)] = 0,

V ar[Z(s + h)− Z(s)] = 2γ(h).

where the variogram, 2γ(h), is known.

Second-Order Stationarity: Also known as wide-sense stationarity, requires the following

conditions:

E[Z(s)] = µ,

Cov[Z(s1), Z(s2)] = C(s1 − s2).

The quantity C(·), called the covariogram, is a function of direction and distance between

points. Unlike intrinsic stationarity, which is heavily dependent on s and h for defining

the first moment of the process, second-order stationarity restricts the first moment of the

process to be a finite constant. In both instances, the covariance structure (expressed through

the variogram or the covariogram) depend only on h, and not s. Under the assumption of

second-order stationarity we can show that

5



2γ(h) = 2[C(0)− C(h)],

which is a convenient relationship between the variogram and the covariogram.

Finally, it is convenient to define dependencies in terms of correlations. Under the

provision that C(0) > 0, we can define the correlelogram to be

ρ(h) ≡ C(h)/C(0).

The manner in which the process behaves with respect to spatial dependency is cru-

cial to the model. As such, estimation of dependency is a subject that has received a lot of

attention in spatial statistics. Different assumptions of stationarity and sample sizes suggest

different optimal methods for estimating this quantity. Cressie (Cressie, 1993) makes the

argument that it is nearly always preferable to estimate the variogram rather than the co-

variogram since the covariogram is not always an identifiable parameter in a model. French

geologist Georges Matheron developed the first procedure for estimating variograms by using

the Method of Moments techniques (Piegorsch and Bailer, 2005). When the random process

Z(·) is intrinsically stationary, this quantity is unbiased for the variogram. However, if the

process is truly second-order stationary, this measure has bias of O(1/n), which may present

issues with small sample sizes.

In addition to Matheron’s original approach to the problem, other statisticians have

suggested more robust measures of the variograms. Cressie and Hawkins (1980) use fourth

roots of squared differences and incorporate corrections for biased behavior to provide robust

estimators of the variogram. Building upon the work of Cressie and Hawkins, Armstrong

and Delfiner (1980) have proposed scale and quantile estimators. More recently, Dan Nord-
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man has proposed an empirical likelihood method for estimation.

In many cases, we are more concerned with the “noiseless” form of the random

process, S(s), where

Z(s) = S(s) + ε(s) s ∈ D,

and ε(·) is a white-noise measurement-error process. The field of spatial prediction is pri-

marily interested in predicting a function of either Z(·) or S(·) using the information that

we actually observe. We can further decompose S(·) into the sum of a deterministic mean

structure and two zero-mean intrinsically stationary processes. This gives

Z(s) = µ(s) +W (s) + η(s) + ε(s), s ∈ D,

where:

µ(·) ≡ E[Z(·)] denotes the deterministic mean structure (also called large-scale

variation),

W (·) is a zero mean intrinsically stationary process representing the variogram

of the smooth process, S(·), and

η(·) is an additional zero mean intrinsically stationary process representing the

variogram capturing microscale variation.

2.4 Different Kriging Methods

Much of the differentiation between kriging methods relies on how we define µ(s), the de-

terministic mean structure. Keeping in mind that each of the following methods assumes

7



wide sense stationarity (i.e., strict or intrinsic stationarity) of the field, several methods are

summarized below.

Simple

• The mean structure, µ(s), is assumed to be 0 everywhere

• Known variogram

Ordinary

• Assumes unknown, but constant mean structure, µ(s)

• Unknown variogram, but must have sufficient data to estimate the function

Universal

• Assumes unknown and inconstant mean structure, µ(s) (assumes a genearl linear trend

model)

• Unknown variogram, but must have sufficient data to estimate the function

2.5 Types of Spatial Data

Spatial data is generally classified into several broad categories. I now provide a short

summary of two of these categories, point-reference data and areal data, where kriging

methods are most typically employed.

Point-Reference Data

Often referred to as geostatistical data or point-level data, point-referenced data allows the

location of index s to vary randomly and continuously over fixed subset D. In this type
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of data structure, we observe r points within our subset D, and allow correlation between

points to vary by some measure of distance between the points (Banjerjree, et. al, 2004).

Areal Data

Areal Data, also called lattice data, also assumes that D is some fixed subset, but introduces

spatial correlation through the notion of blocks; the r points (as with geostatistical data)

are grouped together into blocks. These blocks define neighborhood structures that are used

to characterize semivariogram functions (Banjerjree, et. al, 2004). Although blocks can be

defined a number of different ways, blocks often have real world interpretations such as zip

codes, counties, etc.

My project proposal concerns the second data type, areal data. Although classical

statistical methods are satisfactory for many applications, I will investigate whether or not

introducing the Bayesian paradigm through Gaussian Markov Random Fields can improve

model fit and spatial prediction. In order to properly execute this task, we must first

understand the theory that supports Gaussian Markov Random Fields, a brief introduction

to which is found in the next chapter.
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chapter 3

HIERARCHICAL SPATIAL PREDICTION METHODS: GAUSSIAN MARKOV

RANDOM FIELDS

Although Bayes rule, which governs the Bayesian paradigm, has been established for cen-

turies, use of a fully Bayesian model has only become possible more recently with the advent

of faster and more efficient computing power. Bayesian models allow us to incorporate an-

tecedent beliefs about parameter behavior, as well as incorporate and account for uncertainty

in our beliefs. Frequentist perspectives offer very little leeway in this respect, and force a

single layered approach to a problem. Complex hierarchical modeling, which is arguably the

core of modern statistics, can be achieved through adoption of the Bayesian paradigm.

The aim of the following section is to explore the properties of a specific type of

hierarchical modeling, Gaussian Markov Random Fields (GMRFs). I will first discuss some

of the theory and basic properties of GMRFs and then discuss a particular application to

temporal modeling. Our goal is to understand what GMRF’s are, why they work, and how

they contribute to the expanding world of statistical techniques and methodology.

3.1 Brief Lesson on Gaussian Markov Random Fields

Theory Behind Gaussian Markov Random Fields

Although specific implementation of Gaussian Markov Random Fields can prove to be quite

complex, the basic concept of a GMRF is quite simple. A GMRF is simply a random

vector (Random Field) of finite-dimension that follows a multivariate normal distribution

(Gaussian). In the most relaxed and basic settings, we assume independence of elements

in a random vector, however, practical application restricts the GMRF to satisfy additional

conditional independence assumptions (Markov). A more formal mathematical definition is

10



given by

GMRF:A random vector x = (xi, ..., xn)T ∈ Rn is called a GMRF with respect to a graph

G = (V , E) with mean µ and precision matrix Q > 0, iff its density has the form

π(x) = (2π)−n/2|Q|1/2exp
(
−1

2
(x− µ)TQ(x− µ)

)

where V and E are the set of nodes in the graph, and the set of edges in the graph, respectively.

In laymen’s terms, a GMRF governs connected points (nodes) are within a well-defined (by

edges) set are connected. These nodes and areas typically represent movements in space,

time, or space-time. We will assume that these relationships can be modeled by a multi-

variate normal distribution. Under this construct, we must further define parameterization

for the multivariate normal distribution, namely a mean and covariance. For this, we turn

to the properties of a sparse precision matrix (instead of explicitly defining a covariance

matrix), and theorems regarding conditional expectations. Namely,

xi ⊥ xj|x−ij ⇔ Qij = 0.

A sparse precision matrix greatly increases computational efficiencies. Conditional Markov

results prove to be important and useful. If we partition a set of data into A and B, and in

turn, condition A upon B the following result holds true.

Let x ∼ NC(b,Q), then

xA|xB ∼ NC(bA −QABxB,QAA)

11



Later on we will define x and xA|xB to be Gaussian Markov Random Fields. These are

presented in canonical form, where N(µ,Q−1) = NC(Qµ,Q). Most notable from this pa-

rameterization is the fact that we can successively update without explicitly computing the

mean until we actually need it! While this is certainly a very short course on what GMRFs,

we now have enough of the general theory behind GMRFs to implement these techniques in

data analysis.

3.2 General Areas of Applications of GMRF’s

Gaussian Markov Random Fields offer a very general and flexible framework correlated data,

making them easily applicable to a number of different hierarchical modeling structures.

Autoregressive models, which are used extensively in structural time-series analysis, are

GMRFs on a linear space. Gaussian Markov Random Fields have also proven to be very

useful in longitudinal and survival data (Rue and Held, 2005). Not surprisingly, GMRFs

are used extensively in spatial statistics. More recently, researchers have been exploring the

properties of using GMRFs on spatial binary data. Graphical models and image analysis

have also made wide use of GMRF techniques.

3.3 Estimation of GMRFs with Laplacian Approximations

Although specifying correlation through precision matrices within the construct of Gaus-

sian Mark Random Fields can be computationally convenient, high-dimension problems can

present issues. As such, a method which approximates posterior distributions has been pro-

posed. Rather than directly sampling from posterior distributions, we can estimate these

distributions. Consider the marginal posterior density of parameter θi with hyperpriors π(λ)

as

12



π(θi|y) =

∫
λ

π(θi|λ, y)π(λ|y)dθ.

Integrated Nested Laplacian Approximation (INLA) uses an iteratively weighted average of

the ith component of the posterior parameters. Namely

π̃(θi|y) =
∑
k

π̃(θi|Λk, y)π̃(θk|y)∆k.

Estimating π̃(λ|y) also requires some theoretical background. We begin with the strict

definition of π(θ, λ, y) as

π(θ, λ, y) = π(θ|λ, y)π(λ|y)π(y),

which implies

π(λ|y) ∝ π(θ, λ, y)

π(θ|λ, y)
.

Since we already have explicitly information about the numerator, our task is to estimate

the denominator. Tierney and Kadane (1986) proposed the Laplacian approximation, for

which INLA get its name. Further work by Havard and Rue (2009) suggested a Gaussian

approximation. Finally, Azzalini and Capitano (1999) suggested addition of a cubic spline

for improved fit.

13



Held, Rue, and Schrodle (2009) explored comparisons of MCMC and INLA Bayesian

inference using leave-one-out cross-validatory predictive checks. They found that this mea-

sure established INLA as comparable to actual MCMC draws.

14



chapter 4

DATA APPLICATION: UK DRIVER DATA

4.1 Data Description

Our data represent the monthly totals of car drivers in Great Britain killed or seriously

injured from January 1969 to December 1984. Count data traditionally do not exhibit

normal properties, however, a square root transformation offers acceptable approximations

to a Gaussian distribution. We assume that the data are conditionally independent normal

variables, or more formally,

yi ∼ N(si + ti, 1/κy).

The mean is represented as the combination of a smoothing trend and a seasonal effect,

while the variance is defined by precision parameter κ. The smoothing trend, ti, follows

a second-order Random Walk model, and the season effect, si, follows a seasonal model.

Methods, to be discussed later, will allow us to side step specific forms of the distributions

of the seasonal and smoothing trends.

An initial plot of the data, seen in Figure 4.1, shows a seasonal pattern. Although not as

obvious as the seasonal variation, visual inspection also identifies a slight downward trend.

The black horizontal line represents the point in time at which compulsory seatbelt laws were

enforced. This significantly reduced the number of deaths and serious accidents. Hopefully,

we will capture these separate effects via our specification of s and t. However, we must

make two important observations. First, we assume that s and t are a priori independent.

Secondly, we assume that these models are both governed by respective precision parameters,

15



Figure 4.1: Initial Data Plot

denoted as κ. Therefore, our parameter vector has five elements: κy, κs, κt, s, t. Ultimately,

this parameter vector is our primary object of inference.

Although we will eventually do inference on (s, t, κ), our analysis begins with deriving

the joint density

π(s, t,y|κ) = π(y|s, t, κ)π(s|κs)π(t|κt),

which is a GMRF with precision matrix, Q. If we condition this distribution on y, we will

arive at one density of interest, π(s, t|y, κ). In order to do this we write the likelihood as

π(s, t|y, κ) =
n∏
i=1

(κy
2π

)−.5
exp

[
−κy

2
(yi − si − ti)2

]
∝ exp

n∑
i=1

[
−κy

2
(yi − si − ti)2

]
.

If we multiply out the squared term in the exponent, we see that the likelihood induces

pairwise independence between yi, si, and ti. To account for this, we partition the precision

matrix Q into

16



Q =


Qss Qst Qsy

Qts Qtt Qty

Qys Qyt Qyy

 .

We can now derive π(s, t|y, κ) by using theorems regarding conditional expectations, which

were discussed earlier. The distribution that results is bivariate normal distribution with

canonical parameterization

s

t

 = N

−
Qsy

Qsy

y,

Qsy Qst

Qty Qtt

 .



Our acceptance probability for use during MCMC successive sampling then becomes

α = min

{
1,
π(s∗, t∗, κ∗|y)

π(s, t, κ|y)
× π(s, t|y)

π(s∗, t∗|y)

}
= min

{
1,
π(κ∗|y)

π(κ|y)

}
.

Since we are integrating out (s, t), only our posterior marginals and the normalizing con-

stants from π(s) and π(t) are included in our acceptance probability. This greatly reduces

computation. We use Gamma priors on all precision parameters, so the full conditionals

become

[κ] ∝ κακ−1exp(−bκκ)exp

[
−κy

2

n∑
i=1

(yi − si − ti)2
]( κs

2π

)1/2 ( κs
2π

)1/2
.

The distribution of κ can then be used to find the center of the bivariate normal distribution

of π(s, t|y, κ).

17



4.2 Prior Specification

Now that the problem has been discussed, we can show how Integrated Nested Laplacian

Approximation works in practice. First we will explicitly define our prior distributions for

the κ vector. Following recommendations from Rue and Held (2005), each κ distribtuion

will have a Gamma form where E(κ) = b/a. Prior parameter values are found in Table 4.1

Parameter a b

κy 4 4

κs 1 .1

κt 1 .005

Table 4.1: Prior Parameter Values

These values resulted in a practical prior predictive distribution throughout the time series,

as shown in Figure 4.2.

The black line represents the mean value over a thousand iterations at each point in time.

The dotted bands are 95% probability intervals.

Even with all of the computational niceties that result from the theorems regarding Gaussian

Markov Random Fields, this problem still presents issues in actual evaluation; convergence

was problematic and actual computation time was interminable. This is likely due to the

high dimensionality of the problem (we are attempting to calculate several parameters per

data point). Harvard and Rue suggest using a Laplacian Approximation as suggested in

Schrodle and Held (2005) and described in Chapter 2.

Using Integrated Nested Laplacian Approximation (INLA) significantly reduced computa-

tion time, and made model comparison possible. We fit three models to the data. These

models are

18



Figure 4.2: Initial Data Plot

Model 1: y ∼ Normal(si + ti, 1/κy),

Model 2: y ∼ Normal(si + ti + β1I(Belt = 1), 1/κy), and

Model 3: y ∼ Normal(si + ti + β1I(Belt = 1) + gi, 1/κy).

The models increase in complexity. The first model is the base model described earlier in

this chatper. The second model adds a covariate for a seatbelt indicator fixed effect. The

third model adds both a covariate for a seatbelt indicator and a gas price random effect.

We use a flat, non informative prior for β1 and allowed gas price to follow an RW(1) model.

This model is written as

19



π(g|κg) ∝ κ(n−1)/2g exp

(
−κg

2

n−1∑
i=1

(gi − gi−1)2
)

π(κg) ∼ Gamma(1, .05).

4.3 Model Assessment

I examined four different model assessment techniques. The first three, AIC, BIC, and DIC,

are information criterion, which have different penalites to account for additional model

complexity. Specifically,

Akaike Information Criterion = 2k - 2L,

Bayesian Information Criterion = k ln(n) - 2L, and

Deviance Information Criterion = pD + D̄

Table 4.2: Model Evaluation Criterion

where k is the number of parameters in the model, L is the log-likelihood, pD is the number

of effective parameters and D̄ is the expected model deviance. The values for each measure

applied to each model are given in Table 4.3.

Model 1 Model 2 Model 3
AIC 771.92 753.13 752.88
BIC 879.46 861.83 860.93
DIC 682.81 670.30 670.16

Table 4.3: Summary of the Information Criterion Model Assessment

All of the criterion tell the same story: Models 2 and 3 are significantly better than Model

1, however, there is little difference between Models 2 and 3. This is confirmed in the fourth

model assessment technique, Bayes Factors.
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Bayes Factors are the Bayesian equivalent of the likelihood ratio test. However, instead

of computing a test statistic and comparing to some asymptotic distribution, we compute

values of K, where

Ki,j =
P (Data|Modeli)

P (Data|Modelj)

and inherit K using the rules found in Table 4.4. Actual computed values of K can be found

in Table 4.5.

Value of K Decision
Less than 1 Support Model j

1-3 Barely worth mentioning
3-10 Substantial

10 - 30 Strong
30 - 100 Very strong

Greater than 100 Decisive

Table 4.4: Bayes Factors strength of evidence

K2,1 = 17,188
K3,1 = 15,892
K2,3 = .92453

Table 4.5: Bayes Factors for all possible model comparison

As we expected, Models 2 and 3 are clearly superior to Model 1, but the difference

between Model 2 and 3 is marginal at best. This suggests that gas price is insignificant in

our model.
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4.4 Posterior Results: Model 2

We now present some of the interesting features of our INLA model choice. First we examine

the two fixed effects, the overall intercept and the seatbelt indicator variable. The posterior

distributions are given in Figure 4.3.

Figure 4.3: Posterior Distributions of Fixed Effects

We can examine the random effects, the seasonal trend and the smoothing trend. The

posterior distributions are given in Figure 5.6. These distributions are of particular interest

since they are specified through precision matrices.
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Figure 4.4: Posterior Distributions of Random Effects

The posterior distribution for the smoothing trend is not as smooth as might be expected.

In fact, for the first several years of observations there seems to be a bit of a cycle in the

smoothing trend itself. However, the downward trend is clearly visible. Also worth noting,

is the fact that the trend effect seems to diminish as the time increases. The posterior

distribution for the season effect appears as if there are peaks in winter and summer, with

lulls in the spring and fall. Unlike the downward smoothing trend, the season variation

remains relatively constant over time.
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chapter 5

DATA APPLICATION: PROVO APARTMENT DATA

Now that we have examined a temporal application of Integrated Nested Laplacian Ap-

proximation techniques, we will analyze a set of spatially correlated data. As a member

of the Provo, UT community and a former student of Brigham Young University (BYU), I

have always been strangely fascinated by the variables that determine rental prices. This

investigation will probe at the heart of this very question.

5.1 Data Description

Our data set represent a number of characteristics and qualities of 118 apartment buildings

from Utah County. This is an original data set, meaning it was collected and verified by

myself. This involved a great deal of effort, including, but not limited to, emails, phone calls,

searching county records, and collecting information from apartment directories maintained

by various institutions. A description of the data collected pertaining to each apartment

building can be found in the Table 5.1 through Table 5.4.

Informational Variables

Variable Name Description

Address Physical Address of Building (Lat/Long)

Apartment Name Name of the Apartment

Contact Contact information (phone number, email, etc.)

Table 5.1: Informational Variables Collected
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Spatial Variables

Variable Name Description Details

Ward Membership

Used Address field to determine Within the data set, 23 unique

which LDS ward the apartment wards are represented

building belongs to

Distance from BYU Campus

Used Address field to determine Used the Spencer W.

how far away the apartment Kimball Tower as

is from BYU campus a point of reference

Table 5.2: Spatial Variables Collected

Other Variables

Square Footage

Total Square footage for the Many apartment buildings had a

apartment varied square footage. This

measure is an average of the

high and low square footage given

Average Monthly Rent

Independent variable of Many apartment buildings had a

interest varied monthly rent. This

measure is an average of the

high and low monthly rent given

Year
Year the apartment building was

originally constructed

Students in Unit
The average number of students

occupying a unit

Table 5.3: Other Variables Collected
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Indicator Variables

Variable Name Description

BYU Approved
Does the apartment building

meet BYU approval standards

Power
Indicator variable for whether or

not electricity is included in the rent

Trash
Indicator variable for whether or

not trash collection is included in the rent

Gas
Indicator variable for whether or

not gas is included in the rent

Internet
Indicator variable for whether or

not internet is included in the rent

Sewer
Indicator variable for whether or

not sewer is included in the rent

Water
Indicator variable for whether or

not water is included in the rent

Furnished
Indicator variable for whether or

not the apartment is furnished

Air Conditioning
Indicator variable for whether or

not the apartment is air conditioned

Dishwasher
Indicator variable for whether or

not the apartment has a dishwasher

Disposal
Indicator variable for whether or

not the apartment has a garbage disposal
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Indicator Variables (continued)

Microwave
Indicator variable for whether or

not the apartment has a microwave

Washer and Dyer
Indicator variable for whether or

not the apartment has a washer and dryer

Laundry Hookups
Indicator variable for whether or

not the apartment has laundry hookups

Cable
Indicator variable for whether or

cable is included in the rent

Cable Hookups
Indicator variable for whether or

not the apartment has a cable hookups

Internet Hookups
Indicator variable for whether or

not the apartment has a internet hookups

On-sight Coin Laundry
Indicator variable for whether or

not the apartment has an on-sight coin laundry

Recreation Area
Indicator variable for whether or

not the apartment has a recreation area

Pool
Indicator variable for whether or

not the apartment has a pool

Spa
Indicator variable for whether or

not the apartment has a spa

Storage
Indicator variable for whether or

not the apartment has a storage facility

Table 5.4: Indicator Variables Collected

This data represents a set of spatially correlated data which will be fit with a geoadditive,

Bayesian semiparametric regression model. Using this data set, we will investigate the
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properties of INLA in estimating the fixed and random effects represented by the variables

detailed above. A regression analysis could provide potential rental guidelines for new and

existing apartment buildings in the area, as well as offer insight into the effect of requiring

students to live in BYU approved housing units.

5.2 Model Setup

Response Variable and Nonparametric Effects

We must first establish that we are working within the framework of a normal response

model, where the conditional mean is a linear function of underlying unknown parameters.

To help meet the conditions for normality, we investigated several transformations of our

response variable, Average Monthly Rent. In accordance with the literature, we satisfy

conditions for normality by modeling Rent per Square Foot (Rue and Held, 2005); thus,

yi = Rent per Square Foot.

Let us define

zS = Size of the apartment in Square Footage

and

zC = Year of Construction.

We will incorporate a nonparametric modeling approach for the effect of these two covariates.

Consequently, define vectors sS and sC as the ordered distinct covariate values of zS and zC.

Thus

sS = (sS1 , ..., s
S
n),

sC = (sC1 , ..., s
C
n ),

where sS values range from 500 to 3500 and sC values range from 1962 to 2007. In accor-

dance with a nonparametric approach, we will estimate a parameter at each value of sS and
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sC. These parameter values are denoted by vectors xS and xC. For all locations of both sS

and sC, we assume a Random Walk of Order 1. Due to this fact, our parameters can be

modeled as previously defined.

The precision parameter, κ, which defines the behavior of the GMRF for both square

footage and year of construction parameters, is fit with a LogGamma distribution. We chose

fairly diffuse priors, specifically

κS ∼ LogGamma(1, .01), and

κC ∼ LogGamma(1, .01).

Geoadditive Effect

Spatial models require that we define a neighborhood structure. For purposes of this study,

we define observations to be part of the same neighborhood if they belong to the same LDS

church ward. Determining which wards were neighbors was determined more objectively,

but is visually represented in Figure 5.1, showing a node graph and spatial matrix (where

neighbors are represented by dark entries).
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Figure 5.1: Node and Matrix Representation of Neighborhood Structure

30



Similarly to how we defined a corresponding vector of parameters for the nonparametric

effects, we now define a vector of covariates for the location effect of each ward, xL. These

effects are estimated with a spatial model where

xi|xj, i 6= j, κ ∼ N

(
1

n

∑
i∼j

xj,
1

njκ

)

where ni is the number of neighbors of node i, and i ∼ j indicates that the two nodes i

and j are neighbors. This model fits node i with a Normal distribution with mean equal to

the average of all neighbors of node i, and variance equal to precision κ weighted by the

number of neighbors of node i. The relationships defined in the node graph in Figure 5.1 are

followed in the expression of the spatial model in practice. Again, we specify the parameter

κ to be LogGamma with hyperparameters chosen to produce a fairly diffuse distribution.

More precisely,

κL ∼ LogGamma(1, .01)

Fixed Effects

Lastly, various indicator variables have been constructed to examine possible fixed effects.

These variables are variables seven through thirty described in above table, and will be

denoted as vector zi. Additionally, the continuous variables Distance from BYU Campus

and Students in Each Unit, are assumed to behave linearly. These covariates will be denoted

by vector β. Each element of β is assumed to Normally distributed with a prior mean of 0

and a prior precision of 1.
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Full Model

Combining the random, nonparametric, and fixed effects results in a model specification that

follows

yi ∼ N
(
µ+ xS(i) + xC(i) + xL(i) + xT (i)β, 1/κy

)
Finally, the distribution for κy and will follow the same distribution as all other precisions.

The full posterior distribution is

π(xS,xC ,xL, µ, β, κy|y) ∝ π(xS|κS)π(xL|κL)π(xC |κC)π(µ)

×π(β)π(κy)π(y|xS,xC ,xL, µ, β, κy)

We assume a priori conditional independence among our parameter vectors, however, once

we condition upon the data, we introduce dependence, which is clearly seen by examining

the exponential term of the posterior distribution,

exp

(∑
i

(yi − (µ+ xS(i) + xC(i) + xL(i) + zTi β))2

)
.

Each combination of parameter values introduces dependence, and therefore, the precision

matrix will be nonsparse. We can make use of a subblock algorithm, introduced in Hue and

Reld (2005) by grouping the precision matrix into four subblocks, namely

(xS, κS), (xC , κC), (xL, κL), (β, κy, µ).

Consequently, each block of the precision matrix updates one at a time and accepts or rejects

κ and x parameter vectors jointly. Deriving the full precision matrix for x can be illustrated
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by first introducing a set of data for prediction, ỹ. Let us first examine π(xL,∗|all else) by

defining

ỹi = yi − (µ+ xS(i) + xC(i) + xC(i) + zTi β).

The full conditional of xL can then be defined as

π(xL|all else) ∝ exp(−κL
2

∑
i∼j

(xLi − xLj )2)

× exp(−κy
2

∑
i∼j

(ỹk − xL(k))2).

Furthermore, let ni represent the number of neighbors to location i and define

L(i) = {k : xL(k) = xLi }

such that its size is |L(I)|. We can then specify the full conditional of xL as a GMRF with

canonical parameters (b,Q), where

bi = κy
∑
k∈Li

ỹk

Qij =


κLni + κy|L(i)| if i = j

−κL if i ∼ j

0 otherwise

We can go through a similar process to define all other necessary precision matrices.

Even with all of the computational niceties that result from the theorems regarding

Gaussian Markov Random Fields, this problem still presents issues in actual evaluation;
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convergence was problematic and actual computation time was interminable. This is most

likely due to the high dimensionality of the problem (we are attempting to calculate several

parameters per data point). Harvard and Rue suggest using a Laplacian Approximation

as suggested in Schrodle and Held (2005) and described in Chapter 2 of this document.

Using an Integrated Nested Laplacian Approximation (INLA) significantly reduced compu-

tation time, and made model comparison possible. As such, we went through an extensive

process for fitting the data and selecting a model, which is described in the following section.

5.3 Model Selection

We built a script that employed a modified forward regression algorithm. My base model in-

cluded only the nonparametric and geoadditive effects, Year of Construction, Square Footage,

and Location. In addition to the Mean Absolute Percentage Error (MAPE) of the fitted val-

ues, for model comparison we used the same measurement criterion from the UK Driver data

analysis, AIC, BIC, and DIC, which are defined in Table 4.2.

Starting with the base model, the algorithm then examined the possible addition

of another variable out of all other remaining variables and then added the variable that

resulted in the best fit according to the different criteria. While the order in which variables

were added to the model was the same across all different measures of model fit, the optimal

number of parameters was not. Figure 5.2 shows the relationship between model fit and

number of variables for the different criterion.
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Figure 5.2: Information Criterion for Varying Levels of Covariates

The optimal number of parameters chosen by each criterion is shown in Table 5.5 and the

variables chosen in each of the models can be found in Table 5.6.

Measurement Type Number of Parameters

AIC 8

BIC 6

DIC 11

MAPE 14

Table 5.5: Number of Covariates to Include for each Information Criterion
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1. Students in Each Unit 8. Laundry Hookups

2. Distance from BYU Campus 9. Internet

3. Furnished 10. Air conditioning

4. Washer & Dryer 11. On-sight Coin Laundry

5. Disposal 12. Wheelchair Accessible

6. Storage 13. Gas

7. Cable Hookups 14. Internet Access

Table 5.6: Covariates Included for each Model

To make a final decision between the most efficacious models chosen by the different

techniques, I turned to Bayes Factor as defined in the previous chapter. As a reminder,

Bayes Factor is the ratio of the likelihoods of two different models (called K) and uses Table

4.4 as guidelines in determining which model is best. Actual computed values of K can be

found in Table 5.7, where the model labeled in the first row represents Modeli and subse-

quent rows represent Modelj.

Modeli = AIC
BIC 3.48
DIC 0.52

MAPE 0.86

Modeli = BIC
AIC 0.29
DIC 0.15

MAPE 0.25

Modeli = DIC
AIC 1.93
BIC 6.73

MAPE 1.67

Modeli = MAPE
AIC 1.16
BIC 4.03
DIC 0.60

Table 5.7: All Bayes Factors Values

With a Bayes Factor of less than 1 for each model comparison, the best model chosen using

BIC is clearly inferior to all other models. The comparisons of AIC, DIC, and MAPE models

prove less straightfoward. The Bayes Factor for each pair of these models ranges in the 1
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to 3, which according to Table 4.4 is barely worth mentioning. However, since DIC was the

only model that was, at a minimum, supported in all comparisons, we will conclude that the

model computed using DIC is the best.

5.4 Posterior Results: DIC Model

The final covariates included in the DIC model are given in Table 5.8. We now present some

of the interesting findings of our INLA model of choice, beginning with the posterior results.

First we will examine the fixed effects. The posterior distributions are given in Figure 5.3.

Fixed Effects Included Random Effects Included Spatial Effects Included

1. Students in Each Unit Year of Construction Ward Membership

2. Distance from BYU Campus Square Footage

3. Furnished

4. Washer & Dryer

5. Disposal

6. Storage

7. Cable Hookups

8. Laundry Hookups

9. Internet

10. Air Conditioning

11. On-sight Coin Laundry

Table 5.8: Final Covariates Included
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Figure 5.3: Posterior Distributions of Fixed Effects

Many of the posterior distributions contain 0 within their 95% Credibility Intervals, however

there are several which do not, which we shall discuss further. The first interesting thing

to note is the exclusion of the BYU Approved indicator variable. In the forward regression,

this variable was not selected until step 19. This may indicate that it is insignificant in

predicting or determining apartment rental prices in Utah County. I believe that this effect

is being hidden by an interaction of the Distance from BYU variable (see in the second

posterior distribution) and another variable which is not represented: apartment condition.

I think a variable for the general condition of the apartment could provide some evidence

that conditions in BYU approved apartments close to campus tend to be poorer than their
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non-BYU approved counterparts.

One particularly interesting facet to note is the sign of the Furnished effect, see in

Figure 5.4,which is not only negative, but also the largest effect in either direction.

Figure 5.4: Posterior Distribution of Furnished Effect

With a mean of -1.306, this suggests that unfurnished apartments are significantly more ex-

pensive than furnished apartments. I would expect that the cost to the owner of furnishing

an apartment would increase the cost of the rent charged on the apartment. This could also

be related to the BYU approved variable: in our sample, 1.09% of the BYU approved apart-

ments were unfurnished, as opposed to 15.38% of non-BYU approved apartments. There

appears to be a relationship between furnished and non-furnished apartments and their BYU

approved status that has not been reflected in our model.

39



The direct of the effect of the Internet indicator variable is also counterintuitive, with

a posterior mean of -0.151.

Figure 5.5: Posterior Distribution of Internet Effect

This implies the average monthly rent per square foot for apartments where internet access

is included in the price of rent is $0.15 less than an apartment of the same condition that

does not include internet access.

Now we can examine the random effects, the Year of Construction and Square footage.

The posterior distributions are given in Figure 5.6. These distributions are of particular

interest since they were specified through precision matrices.
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Figure 5.6: Posterior Distributions of Random Effects

We notice that there is certainly a nonlinear effect present in the square footage, as the effect

is positive for smaller apartment units. The effect of Year of Construction is slightly linear

at best, although it appears negligible at all points. Later years appear to have a slight
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positive effect.

Finally, we examine the location effect in Figure 5.7, which we specified with a spatial

model.

Figure 5.7: Posterior Distributions of Geoadditive Effect

I believe that this variable suffered the most from such a small sample size. Many of the

districts contained only one data point. Having said that, the model suggests that a spatial

effect is trivial at best.

5.5 Conclusion

Although the BYU approved effect was not incorporated into our final model, we were

able to build a solid model for estimating the rental prices of apartments in the Provo,

UT community and surrounding areas. Some of our results seem counterintuitive, but could

possibly be explained by interactions with the BYU approved variable, but these interactions
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were not tested in our model. We also observed a nonlinear effect for the square footage and

a relatively linear, but small effect of the Year of Construction.

5.6 Future Work

While I feel that this analysis was thorough, I do believe that this exploration has opened

up several questions that could be answered with more research. First and foremost, I

think that some of the effects, particularly the two random effects and the spatial effect

may have suffered from a small sample size. Any further study would certain improve with

an increase in sample size, particularly with non-BYU approved housing available in Utah

county. Second, as mentioned in some of the model discussion, I think any future work

should include interaction effects between the BYU approved variable and several of the

fixed effects. I think this would offer greater insight into how much the BYU approved

variable really effects apartment rental prices. Last, it would be interesting to compare

these results to a similar analysis done for apartments surrounding the University of Utah or

Utah State University where no such living location approval by the university is required.
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