
Brigham Young University Brigham Young University 

BYU ScholarsArchive BYU ScholarsArchive 

Theses and Dissertations 

2012-06-13 

Multi-User Methods for FEA Pre-Processing Multi-User Methods for FEA Pre-Processing 

Prasad Weerakoon 
Brigham Young University - Provo 

Follow this and additional works at: https://scholarsarchive.byu.edu/etd 

 Part of the Mechanical Engineering Commons 

BYU ScholarsArchive Citation BYU ScholarsArchive Citation 
Weerakoon, Prasad, "Multi-User Methods for FEA Pre-Processing" (2012). Theses and Dissertations. 
3255. 
https://scholarsarchive.byu.edu/etd/3255 

This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion 
in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please 
contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu. 

http://home.byu.edu/home/
http://home.byu.edu/home/
https://scholarsarchive.byu.edu/
https://scholarsarchive.byu.edu/etd
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F3255&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=scholarsarchive.byu.edu%2Fetd%2F3255&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/3255?utm_source=scholarsarchive.byu.edu%2Fetd%2F3255&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu,%20ellen_amatangelo@byu.edu


 

    

Multi-User Methods for FEA Pre-Processing 
 
 
 
 
 

Prasad Weerakoon 
 
 
 
 
 

A thesis submitted to the faculty of 
Brigham Young University 

in partial fulfillment of the requirements for the degree of 
 

Master of Science 
 
 
 
 
 
 

Walter E. Red, Chair 
C. Greg Jensen 

Steven E. Benzley 
 
 
 
 
 
 
 

Department of Mechanical Engineering 

Brigham Young University 

June 2012 

 
 

Copyright © 2012 Prasad Weerakoon 

All Rights Reserved 



 

    

ABSTRACT 

 Multi-User Methods for FEA Pre-Processing 
 

Prasad Weerakoon 
Department of Mechanical Engineering, BYU 

Master of Science 
 
 Collaboration in engineering product development leads to shorter product development 
times and better products. In product development, considerable time is spent preparing the CAD 
model or assembly for Finite Element Analysis (FEA). In general Computer-Aided Applications 
(CAx) such as FEA deter collaboration because they allow only a single user to check out and 
make changes to the model at a given time.  
 

Though most of these software applications come with some collaborative tools, they are 
limited to simple tasks such as screen sharing and instant messaging. This thesis discusses 
methods to convert a current commercial FEA pre-processing program into a multi-user 
program, where multiple people are allowed to work on a single FEA model simultaneously.  

 
This thesis discusses a method for creating a multi-user FEA pre-processor and a robust, 

stable multi-user FEA program with full functionality has been developed using CUBIT. A 
generalized method for creating a networking architecture for a multi-user FEA pre-processor is 
discussed and the chosen client-server architecture is demonstrated. Furthermore, a method for 
decomposing a model/assembly using geometry identification tags is discussed. A working 
prototype which consists of workspace management Graphical User Interfaces (GUI) is 
demonstrated.  

 
A method for handling time-consuming tasks in an asynchronous multi-user environment 

is presented using Central Processing Unit (CPU) time as a time indicator. Due to architectural 
limitations of CUBIT, this is not demonstrated. Moreover, a method for handling undo sequences 
in a multi-user environment is discussed. Since commercial FEA pre-processors do not allow 
mesh related actions to be undone using an undo option, this undo handling method is not 
demonstrated.    
 
 
 
 
 
 
 
 
 
 
Keywords: multi-user collaboration, collaborative design, multi-user decomposition, multi-user 
architectures, collaborative architectures, CAx, multi-user FEA pre-processing, CUBIT, CUBIT 
Connect, workspace assignment, workspace decomposition 



 

    

ACKNOWLEDGEMENTS 
 
 
 I would like to thank all those who have helped me complete my research. I would like to 

thank my advisor, Dr. Ed Red, for accepting me as a graduate student, and also for guiding me 

every step of the way. I would like to acknowledge my committee members Dr. Greg Jensen and 

Dr. Steven Benzley for their support and advice throughout my research. I am also thankful to 

the industry members of the Center for e-Design and the National Science Foundation (NSF) for 

funding this research. I am grateful to Miriam Busch who has been a guiding light throughout 

my graduate career at Brigham Young University.  

I would like to thank Dr. Karl Merkley and all the staff at CSIMSOFT for helping me 

with understanding CUBIT’s source code. I would also like to thank Dr. Chia-Chi Teng, James 

Wu, Tim Bright, for their time help with getting CUBIT Connect implemented. I would like to 

acknowledge Jared Briggs, and Aaron Ford for proof reading my thesis and for their invaluable 

feedback.  

I owe my deepest gratitude to my family; this thesis would not have been possible if it 

were not for my parents, Shantha and Sardha Weerakoon and my wife Dinali. Lastly, I offer my 

appreciation to all of those who have supported me and helped me in any respect during the 

completion of my thesis.  

 

 

 

 

 

  



 

v 

TABLE OF CONTENTS 
 
 
List of Tables ................................................................................................................................ ix 

List of Figures ............................................................................................................................... xi 

1 Introduction ........................................................................................................................... 1 

1.1 Motivation ....................................................................................................................... 2 

1.2 Research Objectives ........................................................................................................ 3 

2 Background ........................................................................................................................... 5 

2.1 Current State of Multi-User FEA Applications .............................................................. 5 

2.2 Motivation ....................................................................................................................... 6 

3 Method ................................................................................................................................... 9 

3.1 Multi-User FEA Pre-Processor ....................................................................................... 9 

3.1.1 Capturing User Interaction with the CAx Application ............................................... 9 

3.1.2 Filtering Relevant User Actions ................................................................................ 10 

3.1.3 Proposed Criteria for a Multi-User FEA Pre-Processor ........................................... 10 

3.1.4 Synchronous Versus Asynchronous Architectures ................................................... 11 

3.1.5 Keeping Models Consistent Across Users ................................................................ 13 

3.2 Networking Model for Multi-User FEA Pre-Processor ................................................ 14 

3.2.1 Centralized Server ..................................................................................................... 14 

3.2.2 Data Capture Module on a Client Computer ............................................................ 16 

3.2.3 Multi-User Tagging .................................................................................................. 17 

3.3 Model Decomposition/ Workspace Allotment ............................................................. 20 

3.3.1 Assigning Workspaces Using Geometry IDs ........................................................... 21 

3.3.2 Access Rights Using Geometry ID Tags .................................................................. 23 

3.4 Time-Consuming Task Handling .................................................................................. 24 



 

vi 

3.4.1 Using a Timer ........................................................................................................... 24 

3.5 Multi-User FEA Undo Handling .................................................................................. 29 

4 Implementation ................................................................................................................... 33 

4.1 CUBIT .......................................................................................................................... 33 

4.1.1 CUBIT Architecture .................................................................................................. 33 

4.1.2 Why CUBIT? ............................................................................................................ 35 

4.2 Multi-User FEA Pre-Processor: CUBIT Connect ........................................................ 35 

4.2.1 Cubit Connect Prototypes – Client’s Side................................................................. 36 

4.3 Networking Architecture .............................................................................................. 40 

4.3.1 Client ......................................................................................................................... 42 

4.3.2 Server ........................................................................................................................ 45 

4.3.3 Current Capabilities of the Networking Architecture ............................................... 46 

4.4 Multi-User Workspace Decomposition ........................................................................ 48 

4.4.1 Workspace Implementation in CUBIT Connect ....................................................... 48 

4.4.2 Workspace Handling GUI ......................................................................................... 51 

4.5 Time-Consuming Task Handling .................................................................................. 55 

4.6 Multi-User Undo Handling ........................................................................................... 56 

4.7 Time Comparison between Single-User and Multi-User CUBIT ................................ 57 

5 Conclusions and Recommendations .................................................................................. 61 

5.1 Conclusions ................................................................................................................... 61 

5.1.1 Architectural Challenges ........................................................................................... 63 

5.1.2 Workspace Decomposition ....................................................................................... 64 

5.1.3 Handling of Time-Consuming Tasks ........................................................................ 64 

5.1.4 Undo Handling .......................................................................................................... 65 

5.2 Future Work .................................................................................................................. 65 



 

vii 

5.2.1 Cloud Computing FEA Pre-Processor ...................................................................... 65 

5.2.2 HP Remote Graphics Software (RGS) Architecture ................................................. 67 

5.2.3 Integration with MMORPG Server ........................................................................... 70 

References .................................................................................................................................... 71 

Appendix A. Programming CODE ........................................................................................... 75 

A.1   Unaltered cmd( ) Function in CubitInterface.cpp ............................................................ 75 

A.2   Modified cmd( ) Function for Multi-User Handling........................................................ 76 

A.3 CUBIT GGeomPicker.cpp Workspace Handling Implementation .................................... 80 

Appendix B. CUBIT Peer to Peer Implementation Documentation ...................................... 91 

B.1 Introduction ........................................................................................................................ 91 

B.2 Problem Statement: Cubit Connect .................................................................................... 92 

B.3 Building Cubit on a Local Machine ................................................................................... 93 

B.4 Documentation from Sandia (Reference) ........................................................................... 99 

B.5 Transforming Cubit into a Multi-User Program .............................................................. 101 

B.6 Cubit Sample Tutorial ...................................................................................................... 108 

B. 7 Conclusions: .................................................................................................................... 111 

B.8 Recommendations: ........................................................................................................... 111 

Appendix C. CUBIT Client-Server and GUI driven implementation v3.0 ......................... 113 

C.1 Introduction ...................................................................................................................... 113 

C.2 Problem Statement: Cubit Connect V3.0 ......................................................................... 114 

C.3 GUI Implementation ........................................................................................................ 115 

C.4 Installation Instructions .................................................................................................... 116 

C.5 Test Tutorial ..................................................................................................................... 124 

C.6 Demo Tutorial .................................................................................................................. 126 

C.7 Conclusions: ..................................................................................................................... 132 



 

viii 

C.8 Future Recommendations: ............................................................................................... 132 

 
 
  



 

ix 

 
LIST OF TABLES 

 
Table 1: User Commands Tagged with Command Execution Time (T) ...............................25 

Table 2: CUBIT’s Entity ID System ......................................................................................49 

Table 3: Meshing Time Comparison between Single-User and Multi-User  ........................59 

  

 

 

 

 

 

 

 

 

 

 

 

 



 

xi 

 
LIST OF FIGURES 

 
 
Figure 3-1:  Proposed Multi-User FEA Pre-Processor Architecture .....................................12 

Figure 3-2 a, b: Integer ID Inconsistency Issue .....................................................................13 

Figure 3-3 a, b: Schematics of P2P and CS Networking Models ..........................................15 

Figure 3-4: Proposed Networking Architecture for Multi-User FEA Pre-Processor ............16 

Figure 3-5: Mouse Cursor User Identification in a Multi-User Environment .......................19 

Figure 3-6: An Example Geometry Identification System ....................................................21 

Figure 3-7: FE Model Decomposition Scheme .....................................................................22 

Figure 3-8: Calculating CPU Time in a Multi-User CAx Application ..................................25 

Figure 3-9: Time-Consuming Task Handing Flow-Diagram ................................................27 

Figure 3-10: LQ with a List of All Users ...............................................................................28 

Figure 3-11: User Queue with a List of all Commands from One User ................................29 

Figure 3-12: Undo Handling Architecture .............................................................................31 

Figure 4-1:  CUBIT-Interface ................................................................................................34 

Figure 4-2 Client’s Side Architecture of P2P Cubit Connect ................................................37 

Figure 4-3 Client’s Side Architecture of CS Cubit Connect..................................................39 

Figure 4-4: CUBIT Connect CS Message Handling Scheme ................................................39 

Figure 4-5: Switching between Multi-User Mode and Single-User Mode ............................40 

Figure 4-6: CUBIT Connect CS Architecture .......................................................................41 

Figure 4-7 Named Pipes Connection on Each CUBIT Connect Local Machine (Client) .....42 

Figure 4-8: External Client Instance on the Local Machine ..................................................44 

Figure 4-9: CUBIT Connect Server Instance.........................................................................46 

Figure 4-10: CUBIT Connect Multi-User Session ................................................................47 

Figure 4-11 CUBIT Connect Workspace Assignment ..........................................................50 



 

xii 

Figure 4-12: User Login GUI ................................................................................................51 

Figure 4-13: Multiple Project/Model Management GUI .......................................................52 

Figure 4-14: Workspace GUI for Administrator ...................................................................53 

Figure 4-15:  Workspace GUI for Normal User ....................................................................54 

Figure 4-16: Workspace Highlight ........................................................................................54 

Figure 4-17:  CPU Timer Function in CUBIT .......................................................................55 

Figure 4-18 CUBIT Undo Example .......................................................................................56 

Figure 4-19: CAD-Generated and Meshed Models of Engine Front Frame .........................57 

Figure 4-20: Single-User Mesh Completion Time ................................................................57 

Figure 4-21: Pre-Assigned Workspaces for Front Frame 3-User Demonstration .................58 

Figure 4-22: Multi-User (3 Users) Mesh Completion Time ..................................................59 

Figure 5-1: Severing Connection between CUBIT GUI & Core ...........................................66 

Figure 5-2: Cloud Computing CUBIT Connect Architecture ................................................66 

Figure 5-3: Block Diagram of HP RGS Software (www.hp.com) ........................................68 

Figure 5-4: Cubit Connect in an HP RGS Setup ...................................................................69 

Figure B-0-1: CUBIT Process Hierarchy ..............................................................................91 

Figure B-0-2: CS Architecture ...............................................................................................92 

Figure B-0-3: CUBIT Connect Modules ...............................................................................92 

Figure B-0-4: Tortoise SVN Checkout ..................................................................................93 

Figure B-0-5: Snapshot of Cubit project in Visual Studio 2008 ............................................96 

Figure B-0-6: Running Cubit (GUI) ......................................................................................97 

Figure B-0-7: Snapshot of the Cubit GUI Version 13.1b 32bit Version ...............................98 

Figure B-0-8: Preliminary Cubit-Connect Architecture ........................................................101 

Figure C-0-1: CUBIT Connect v2.0 Architecture .................................................................113 

Figure C-0-2: Part Decomposition in NX ..............................................................................114 



 

xiii 

Figure C-0-3: CUBIT Connect Architecture .........................................................................114 

Figure C-0-4: User Login GUI ..............................................................................................115 

Figure C-0-5: Multiple Project/Model Management GUI .....................................................115 

Figure C-0-6: Workspace GUI for Administrator .................................................................116 



 

   1 

 INTRODUCTION 1

Current computer-aided engineering (CAx) applications allow only a single user to 

create/manipulate geometry, or prepare the model/assembly for analysis at a given time (Red, 

Jensen, et al. 2011). Though the technology is available to enable multiple users to interact with 

each other and make modifications in online environments within the same platform, these 

advancements have not yet made their way into the industry-wide engineering process. An 

example of this would be the advancements in massively multiplayer online role-playing games 

(MMORPG) (Wikipedia 2012) such as World of Warcraft, Everquest 2, etc.  Even though it is 

not a simple task to convert traditional CAx tools to an environment similar to that of an 

MMORPG, most of the networking/programming principles behind the MMORPG platforms 

could be used as a basis for implementing a multi-user architecture for CAx applications.  

In engineering, it is a basic requirement for products to be analyzed through a finite 

element analysis (FEA) program before starting full-scale production. FEA, undoubtedly, is one 

of the most time-consuming tasks in the product development (PD) phase. Mesh 

generation/cleanup is the most time-consuming process within FEA (Owen, et al. 2008). At 

present, when performing FEA pre-processing, only a single engineer can check-out the master 

model/assembly at a time and make the required modifications. That engineer then passes the 

model to another whom then works on a different part of it. For models/assemblies that have 

hundreds of millions of elements, this takes a substantial amount of time. This serial process is 

also true for Computer Aided Design (CAD) software as well (Lee, Kim and Banerjee 2010).  



 

   2 

The Collaborative CAx methods developed by ν-CAx (new-CAx) researchers at Brigham 

Young University (Red, Holyoak, et al. 2010) would greatly benefit the field of multi-user FEA. 

The primary focus of the aforementioned research was CAD software (Red, Jensen, et al. 2011). 

Although FEA programs are similar in some ways to the CAD software, they have to be treated 

separately when developing multi-user environments.   

 Motivation 1.1

Having more than one person collaborate on a task can decrease the task completion time 

considerably. This is also applicable when it comes to using CAx tools to design and analyze a 

product.  It can be safely argued that, when multiple engineers work on the same model 

simultaneously, with predetermined workspaces and boundaries, this level of collaboration 

would decrease the overall PD time significantly.  

In 2005, a survey at Sandia National Labs was conducted to determine where the 

majority of time in Finite Element modeling and simulation, is being used (Owen, et al. 2008). It 

was found that 73% of the time was consumed in developing a solid model for analysis, 

including meshing, and applying boundary conditions, etc., and only 4% of the time was being 

utilized by the actual running of the simulation. Of this 73%, much of the time was spent 

cleaning up the model. A multi-user pre-processing approach such as CUBIT Connect, as 

introduced later, is an ideal solution to this problem. Allowing multiple engineers to 

collaboratively clean-up a mesh of a single solid model would reduce the pre-processing time 

significantly, as demonstrated later. 

If multiple users are allowed to access and create pre-determined components of a 

product at the same time, as well as see the entire model on their screens, it can potentially 

decrease the modeling time and enhance the entire engineering change order system. Since 



 

   3 

engineers would be able to see each other’s work on their screen, it would be easier for them to 

understand and see potential problem areas within the modeling stage itself. 

This research involves using an existing FEA pre-processing software tool to develop the 

discussed multi-user architecture. The main purpose of this thesis is to conduct the research that 

will define and propose new architectures for multi-user FEA, develop methods of assigning 

workspaces, decomposing a model or assembly (Bu, Jiang and Chen 2006), and identifying 

overall conflicts with multi-user CAx implementations relating to FEA pre-processing. 

 Research Objectives 1.2

The finite element method (FEM) is a numerical method that transforms the partial 

differential equations of continuum mechanics into a large number of linear algebraic equations 

that is then solved using a computer (Zienkiewicz, Taylor and Zhu 2005). This is a recursive 

method that uses a lot of computing power and time (Balling n.d.). Therefore, this process is one 

of the main bottlenecks in PD. With the advancement of computers, a substantial amount of 

research has been done in finding ways of optimizing these FEM algorithms.  

This thesis proposes a method to reduce the amount of time used when performing finite 

element analysis mesh generation by distributing the FEA portion of an engineering project 

amongst multiple engineers working simultaneously. This is done by allocating a specific area of 

the model to each engineer to work on. This is not feasible using current software as all 

mainstream commercial FEA pre-processors are created for serial FEA modeling rather than 

parallel (multi-user) collaborative product development, as mentioned in the problem statement.  

The objective of this thesis is to convert an existing FEA mesh generation software 

program into a multi-user platform, and then study and propose ways of decomposing 

complicated CAD models to minimize or eliminate conflicts among collaborating engineers. An 



 

   4 

FEA mesh generation program called CUBIT, developed by Sandia National Laboratories, will 

be used as the platform in which all testing will be done (Sandia National Laboratories n.d.).  

Using the data collected from testing the proposed multi-user FEA pre-processor software, a new 

standard for FEA model decomposition in a multi-user environment will be recommended.   

The main objectives for this thesis are: 

1. Modify an existing FEA program to allow multiple users (clients) to simultaneously edit 

and observe a common complex model or assembly. 

2. Propose and test a candidate networking architecture for the multi-user FEA platform. 

3. Develop methods to partition/decompose the model among a set of users and to regulate 

editing interactions of the distributed users.  These methods may extend to geometric 

partitioning/decomposing the model-space among several users, with constraint surfaces 

that will limit model access to assigned users. 

4. Develop methods to regulate the processing of time-constrained algorithms among multi-

users in a collaborative FEA processing session.  

5. Develop new methods for handling undo sequences when several users are collaborating 

on a model or assembly, and when merging modeling operations from several distributed 

users.



 

   5 

 BACKGROUND 2

 Current State of Multi-User FEA Applications 2.1

 Collaboration using CAx applications is not a new idea. According to Nidamarthi 

(Nidamarthi, Allen and Sriram 2001) the first ideas in engineering collaboration appeared in the 

early 1990s. In 1991, Sriram predicted that engineering collaboration would be done on “a 

network of computers/users” where all users would share information through a centralized 

communication medium or a server (Sriram, Logcher and Fukuda 1991). Since then, there have 

been various advances in collaborative engineering using CAx applications as outlined below.  

A considerable amount of research has been conducted in the field of multi-user CAD 

applications (Red, Jensen, et al. 2011); however, there has not been any notable research done in 

the field of multi-user FEA applications. For the past 3 years research directed by Dr. Greg 

Jensen and Dr. Edward Red (Red, Holyoak, et al. 2010) (Xu, Red and Jensen 2011) (Red, 

Jensen, et al. 2011) at Brigham Young University has yielded several multi-user CAD tools. NX 

Connect uses a client-server architecture and updates each client’s model using an SQL database 

(Red, Holyoak, et al. 2010) . CATIA Connect uses a similar architecture and both NX Connect 

and CATIA Connect use native APIs to pass the changes to the server (Red, Jensen, et al. 2011).  

Research has been done at Stanford University on developing a collaborative FEA 

program that can handle new technologies without relying on an individual software developer 

(Peng, et al. 2000). This program allows developers to submit and update the software 



 

   6 

collaboratively. There has also been research done on how to collaboratively design 

electromagnets on an FEA system by Anbo (Anbo, et al. 2002).  

Furthermore, research has been conducted at both Beijing Jiaotong University and Texas 

Tech on making FEA collaboration more effective by integrating multiple CAx tools to FEA 

programs at various stages in the analysis phase of the PD cycle (Yu, et al. 2010). However, 

none of the aforementioned studies allows collaborative model modification at the same time. 

Google Docs (Google n.d.) is a well-known example of a real-time multi-user collaborative 

environment. Unfortunately, implementing a similar architecture in CAx applications may not be 

straightforward.   

As demonstrated by Winn (Winn 2012) some elements of multiplayer games (MMOG- 

Massively Multi-Player Online Gaming) can be incorporated into multi-user CAx software to 

make networking and model management more efficient.  

 Motivation 2.2

FEA software is most commonly employed in new product development and/or product 

refinement, but is also often used in failure analysis and event reconstruction. FEA methodology 

is not exclusive to mechanical engineers. It is also widely used by civil engineers to analyze 

structures, buildings, bridges, etc., as well as by electrical engineers to analyze circuits and 

thermal casings and by chemical engineers to model chemical reactions and heat and mass 

transfer. Therefore, having multiple users work on the same FEA model/assembly at a will have 

a major impact on many areas of engineering. 

File and model management methods in CAD have been proposed and demonstrated 

successfully. Also, a system to automatically decompose a complex structure into an assembly 



 

   7 

containing sub-parts has been demonstrated by two researchers in Lithuania (Bonneau and 

Gabrielaitis 2009).  

Marshall, a researcher at BYU, has successfully demonstrated CAD workspace 

decomposition using Siemen’s NX CAD software (Marshall 2011). Even though the FEA 

workspace is different from the CAD workspace, an approach similar to that of Marshall’s can 

be employed in the FEA environment. The same partitioning methodologies (such as using 

coordinate planes) can be implemented in the FEA analysis space.  

  



 

   9 

 METHOD  3

 Multi-User FEA Pre-Processor 3.1

The main goal of an FEA pre-processor is to prepare the CAD-generated model for finite 

element analysis. Preparation includes manipulating geometry (generating meshes, correcting 

meshes, etc.) to make the model suitable for FEA. This section discusses methods involved in 

converting a traditional single user FEA pre-processor into a multi-user environment. 

3.1.1  Capturing User Interaction with the CAx Application 

In a multi-user environment it is necessary for all users to receive model changes from 

the other users. This means a method to capture each user’s model changes has to be developed. 

In NX Connect, the developers make use of undo marks to keep track of any model changes 

(Winn 2012) . Whenever an undo mark is created by a client’s NX application, the changes that 

resulted in the undo mark are propagated to other users and their models are updated 

accordingly. This has been done at the API level. At the source level, a different approach should 

be utilized. Programming languages and styles may differ among CAx applications. However, 

when a user interacts with the GUI of a CAx program, there should be a common point (or 

points) where that interaction is captured and sent to the program’s processing core for 

execution. Depending on the program’s architecture, this can either be as simple as creating a 

command string (Merkley 2006) to be sent to the processing core, or as complicated as calling 



 

   10 

many different interdependent functions located throughout the source code. For example, 

CUBIT has a single point --CUBIT Interface--where all user-GUI interactions are sent to the 

core for processing.  

Studying the source code and the architecture of the specific program is the best way to 

figure out the most effective method to capture all of the relevant data.  

3.1.2 Filtering Relevant User Actions 

In a multi-user environment, not all actions of a specific user need to be sent to other 

users. Only actions that are relevant to the overall model need to be shared among users (peer-

relevant actions). Therefore, actions that are only relevant to the specific user and not relevant to 

the integrity of the overall model (user-specific actions) have to be filtered out.  

Examples of user-specific actions are display actions (such as model rotations, panning, 

zooming, highlighting) and other actions such as opening/saving the model on your local 

computer, etc. Thus, a complete list of user-specific actions has to be compiled and those actions 

have to be filtered out when propagating actions to peer users. 

3.1.3 Proposed Criteria for a Multi-User FEA Pre-Processor 

After reviewing related literature and the architectures of some CAx programs, the 

following criteria for a multi-user FEA pre-processor were determined: 

• Intercept all user interactions with the model 

• Filter out user-specific actions (i.e. model rotations, pan, zoom, etc.) 

• Propagate only the actions that are relevant to the overall model (peer-relevant 

actions) to other users 

• Update the model on each client to reflect the changes from other users 



 

   11 

Figure 3-1 shows the architecture diagram for the proposed multi-user FEA pre-

processor.  

With the implementation of the aforementioned approach, several critical issues arise: 

• How to keep the models consistent across all client computers 

• How to properly and securely manage incoming and outgoing data 

• How to handle user workspaces 

• How to keep users from interfering with other users’ workspaces 

Data management and workspace handling are discussed in detail in Chapter 3. 

3.1.4 Synchronous Versus Asynchronous Architectures 

In FEA mesh generation, some tasks take longer to execute than others. Therefore, a 

synchronous multi-user architecture may not be an ideal collaborative FEA pre-processing 

environment. For example, if User A receives a complex meshing command from User B that 

takes two hours to compute, executing that command on User A’s computer would potentially 

freeze that computer making it difficult for User A to continue with his/her own work on the 

model. Therefore, the need to investigate an asynchronous multi-user FEA pre-processor 

architecture arises.  

The characteristic of a synchronous architecture is that all users get updates from peers in 

real-time and those changes get reflected on their screens as soon as those peer-commands are 

received and executed on their machines.  This means that the users have little control over the 

incoming commands from peers. 

 In an asynchronous architecture, all users get updates from peers in real-time. However, 

those users have the option of choosing which updates to execute on their computers, depending 



 

   12 

on their preferences. A time-considerate FEA command-handling architecture is discussed in 

section 3.4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-1:  Proposed Multi-User FEA Pre-Processor Architecture  

All Commands 

Peer Relevant 
Commands 

Pass commands to 
the entire network 
(to peers) 

Read incoming command strings 
from network (from peers) 

Network Client 

            Filter  

Intercept User Actions 

Processing 
CORE 

FEA Program GUI 

Graphics Facets 
back to GUI 

To Network 

From Network 



 

   13 

3.1.5 Keeping Models Consistent Across Users 

In the proposed implementation of the multi-user FEA pre-processor, each user’s 

computer has a local copy of the model which gets modified. Changes from each user are sent to 

all users so their models are synced with each other.  It is of utmost importance to have these 

models stay consistent between users. The whole purpose of a multi-user CAx application falls 

apart if users have different models. 

Each CAx system has some sort of entity identification system to identify various entities 

that are created, such as volumes, faces, nodes, etc. Whenever additional commands are executed 

upon these geometries, they will identify the feature by the integer ID. When users receive peer 

commands, each user has to receive those commands in the same order as they were submitted in 

order to keep the integer ID system consistent. Figure 3-2 shows an example of when users have 

the same model, but different integer ID numbers. In this case, any further action executed upon 

these models will have different results.  Therefore, by keeping these integer IDs uniform across 

all users, their models stay consistent. This will happen only if each user receives all changes 

from peers.  

 

    
(a)                                           (b) 

Figure 3-2 a, b: Integer ID Inconsistency Issue 



 

   14 

Figure 3-2 (a) & (b) shows two users in a multi-user environment creating multiple 

volumes that lead to the same overall model. Notice the difference in colors between the two 

models. This particular CAx application has a color system that denotes different volume 

numbers. Therefore, the difference in colors signifies a difference in volume ID tags even though 

the entire model was created in the same multi-user session and both models are geometrically 

identical. Any further action on these two models will result in different outcomes for the two 

users. For example: if the user on the left hand side issues a command to mesh volume 1 (the 

dark blue cylinder) and it is sent to the user on the right hand side, volume 1 may not be the same 

cylinder for that user. It may result in that user getting a mesh on some other geometry which, on 

their computer, is identified as volume 2.   

To avert this problem, all users’ commands have to be sequentially executed on each 

user’s computer. This will involve routing commands to a central queue on the network and then 

sending those commands back to all users for execution in the same order.     

 Networking Model for Multi-User FEA Pre-Processor 3.2

For a multi-user CAx application, another important aspect is to have a reliable 

networking architecture that can handle multi-user connections reliably and efficiently. A slow, 

unreliable connection would defeat the purpose of a multi-user environment and it can also be 

counterproductive.   

3.2.1 Centralized Server 

As mentioned in Section 3.1, it is important to properly and securely manage the 

incoming and outgoing data streams of all users in the collaborative session. Several networking 

architectures were considered in order to select the most suitable one for a multi-user 



 

   15 

environment. A peer-to-peer (P2P) model and a client-server (CS) model were investigated 

(sections B.3, B5). Figure 3-3 shows network diagrams of each of these models.  

 

 

          

(a) P2P Networking Model                                  (b) CS Networking Model 
http://picasaweb.google.com/lh/photo/WIN006CImw1DeqqCcuWeog               http://en.wikipedia.org/wiki/File:Client-server-model.svg 

Figure 3-3 a, b: Schematics of P2P and CS Networking Models 

 

 

Chapter 4 discusses these implementations and their advantages and limitations in a 

multi-user environment. A centralized system for handling all connections is proposed and 

implemented in this research instead of the peer to peer system.  The centralized system has a 

server that is connected to all clients, enabling the server to act as the central hub of information-

sharing. The determined functionality criteria of the server are: 

• Be able to identify commands from individual users, as well as direct data to 

individual users 

http://picasaweb.google.com/lh/photo/WIN006CImw1DeqqCcuWeog
http://en.wikipedia.org/wiki/File:Client-server-model.svg


 

   16 

 

• Store a master log file of all incoming commands that can be used to recreate the 

model, if needed 

• Store a log file containing all commands from  each user 

• Be able to handle users who connect at different times and send updates to those 

users to get their models synchronized to the latest version (asynchronous 

collaboration)  

 

 

 

 

  

  

 

  

 

 

 

Figure 3-4: Proposed Networking Architecture for Multi-User FEA Pre-Processor 

 

3.2.2 Data Capture Module on a Client Computer 

The data capture model resides on the client computer and has two main responsibilities: 

1. Gather changes from the client’s CAx application and send those to the server 

2. Receive changes from the server and send those to the client’s CAx application 

 

 

Reading 
Interface 

Writing 
Interface 



 

   17 

For the purposes above, a multi-threaded data capture module is proposed. One thread 

will be dedicated to gathering and sending local data while the other will be dedicated to 

receiving updates from the server and sending those off to the CAx application. The determined 

functionality criteria of the client data capture module are: 

• Establish a stable connection with the server 

• Communicate with the CAx application and gather all peer-relevant actions 

• Send these commands to the server along with the IP address of the client computer 

• Communicate with the server and gather all data coming in from other users 

• Pass those commands to the CAx application for processing 

3.2.3 Multi-User Tagging 

To identify different users in a multi-user environment, a unique identifier can be used to 

distinguish a user from all other users.  A unique identifier can be obtained by using a 

combination of: 

• A unique username for each user 

• IP address of the user’s computer 

The username should be coupled with the IP address of the user’s current computer for 

security purposes.  Since IP addresses are computer specific, it should not be used as the only 

identifier. These identifiers can then be encoded to the message passed with the user’s action to 

the central server.  The server can then propagate the command, along with the user ID, to other 

multi-users in the multi-user session. Each client computer can decode the user ID from the data 

coming from the server. A new system of GUIs and methods to handle users and security in a 



 

   18 

multi-user environment should be established. These GUIs and security measures are discussed 

and demonstrated in Section 4.4.2.  

 

Using this unique user ID, the following can be implemented in a multi-user 

environment: 

• Workspace assignment  

• Easier moderation/administration 

• User’s view angle observation can be implemented (if this data is sent as a peer-

relevant command) 

• Assign a unique identifier on to the mouse curser of each user when viewing the whole 

model with user interaction 

•  More security measures can be implemented  

• A peer to peer video/chat messaging system can be implemented 

 

Workspace Assignment using User ID 

The unique ID allows you to assign regions in which an individual user is authorized to 

work. Each client computer can pull workspace assignments from a central database using the 

user ID. This is discussed further in Sections 3.3 and 4.4. 

 

Easier Moderation/Administration 

 An administrator can allow or disallow access to specific parts of a model/assembly to 

users via their user ID’s. This can be useful when giving access privileges in a multi-user system. 



 

   19 

Note that this includes, but is not limited to workspace assignment, assigning user rights/roles 

(administrator, observer), etc. 

 

User’s View Angle Observation 

 By having a unique user ID, graphics data from a specific user (along with their user ID) 

can be tunneled to another user. The graphics facets can then be decoded by other users 

according to the accompanying user ID. 

 

Assigning a Unique Identifier to the Mouse Curser of Multi-Users 

Being able to see what multi-users are doing in a multi-user environment is something 

that is valuable to an administrator. It can also be used to study and enhance collaborative skills 

in the multi-user environment. The mouse curser, or other feature selection technique, can 

accompany the user’s username and can be color coded according to username (Figure 3-5). 

 

Figure 3-5: Mouse Cursor User Identification in a Multi-User Environment 



 

   20 

Enhanced Security Measures 

User IDs can be used to better control the multi-user environment by prompting for 

passwords along with the username or similar security authentication methods. 

 

Peer to Peer Text/Video Messaging System 

The User ID can be used to build a text, VOIP, or a video messaging system as 

demonstrated by Xu (Xu, A Flexible Context Architecture for a Multi-User GUI (Master's 

Thesis) 2010). 

 Model Decomposition/ Workspace Allotment  3.3

When a geometric model is ready to be analyzed through an FEA solver program 

(structural, thermal, CFD, etc.), the model is usually fully developed and no further complicated 

modeling needs to be performed. Unlike CAD (Marshall 2011), where assigning a workspace is 

somewhat ambiguous, FEA can be somewhat less challenging. As in other CAx applications, 

FEA workspaces can be divided using volumetric bounding planes. Since there are finite 

geometries in an imported model, FEA workspaces can be decomposed using these different 

geometries.  

Typically, CAx systems use some form of geometry identification scheme to identify 

geometric identities. For example, two curves join to create a surface. Three surfaces join to 

create a volume, and two volumes combine to create a body. These identification schemes are 

application specific, but each CAx application has a well-defined scheme of geometry 

identification. Figure 3-6 shows a sample geometry identification system.  



 

   21 

 

Figure 3-6: An Example Geometry Identification System  

 

3.3.1 Assigning Workspaces Using Geometry IDs 

As mentioned earlier, this identification scheme can be used to decompose a part or 

assembly and then assign workspaces to different users. Expertise varies among members of an 

engineering team. Therefore, a method to divide a model among users based on their areas of 

expertise is proposed. This method would allow a streamlined way to mesh and eliminate 

discontinuities in an FEA model within a multi-user environment. If you take a team meshing a 

race car as an example, some members would be experienced in meshing cylindrical regions 



 

   22 

such as wheels, while others may have expertise in meshing wings, or the cockpit area, nose 

cone, etc. Since each of these regions (cockpit, wheels, wings, etc.) is identified by their assigned 

geometry ID’s in the FEA program, the model can be decomposed using those ID’s. 

 

 

Figure 3-7: FE Model Decomposition Scheme 



 

   23 

Figure 3-7 shows an example method of FE model multi-user decomposition, where 

these steps would decompose the project and assign tasks like the following to a set of multi-

users:  

1) Import the model from the CAD system into the FE program  

2) Team leader (administrator) inspects the model  

3) Team leader identifies regions in the model and matches them with the team’s 

expertise 

 4) Regions are assigned to team members using the geometry ID tags 

3.3.2 Access Rights Using Geometry ID Tags 

As illustrated in the previous section, a model or assembly can be decomposed using 

geometry tags. These tags can also be used to assign user workspaces and restrict them from 

modifying the workspaces of others.  This method allows users to view other multi-user regions, 

but they cannot select or modify the geometry. The workspace essentially locks the user to a 

certain range of geometry IDs.   

Once the region is assigned, the GUI enables mouse cursor interactions only to those 

regions assigned to a multi-user. The user can select, click, mesh or do any operation within that 

region. As mentioned, however, locking does not restrict the user from browsing other regions of 

the model or assembly. 

 

 



 

   24 

 Time-Consuming Task Handling  3.4

Some modeling/analysis tasks can take a considerable amount of time to complete, 

depending on the complexity of the task. In multi-user applications, if User A receives an action 

from User B that takes a long time to execute, it would potentially freeze the computer of User A 

until that task is complete. It is important distinguish between meshing algorithms (pre-

processor) and solving algorithms (processor). Solving algorithms are executed once the FEA 

model is complete. Since running solving algorithms is an automated process, multi-user 

technology may not improve this.  Especially in the case of FEM meshing algorithms, it 

sometimes takes days to complete a single task.   That means User A has to stop whatever he/she 

was doing and sit idle. This happens in a synchronous multi-user environment where all users get 

updates from others in real-time without any prejudice. However, if  each user  was able to 

decide which updates  he/she wants to  accept from a list of incoming peer user updates, they can 

decide to let those complete whenever it is convenient for them.  This can be addressed by an 

asynchronous multi-user architecture.   

3.4.1 Using a Timer 

A timer can be used to calculate how much time was spent on running a particular task. 

CPU time is the best method to use in such a situation. CPU time calculates how much time the 

CPU spent processing a task from a certain application. This time is different from the elapsed 

real time. CPU time is independent of the number of processing cores or threads a particular 

computer has. It is calculated by multiplying the total time the computer spent processing a task 

by the number of cores and by the number of threads per core. However, this time is dependent 

on the processing power of a single thread of a single core on that computer. This changes from 



 

   25 

computer to computer. However, a general idea of the time spent can be obtained from this 

number.  

In the multi-user environment, a timer can be used to calculate the total CPU time the 

application utilized to run a certain algorithm. It can be achieved by sending a timer start 

command along with every user action that is sent to the CPU. This timer can be set to stop when 

the task completion notification is sent back to the GUI (Figure 3-8).  

 

Figure 3-8: Calculating CPU Time in a Multi-User CAx Application 

 

 

After obtaining the task completion time, it can be sent to the server along with multi-

user command. This can be done similar to the method outlined in Multi-User Tagging (Table 1).  

 

Table 1: User Commands Tagged with Command Execution Time (T) 

Command User ID Utilized CPU Time (T) 
cmd 1 user 1 27.84600 seconds 
cmd 2 user 2 5234.9600 seconds 
cmd 3 user 1 145.5400 seconds 
cmd 4 user 3 3.4600 seconds 
cmd n user m y seconds 

 

 



 

   26 

The following flow diagram (Figure 3-9) shows the proposed method for handling time-

consuming commands in an asynchronous multi-user environment.  Commands from peers are 

analyzed one by one to see if they qualify for a pre-set “user preferred time”. This time is a 

variable that is changed by the user. If the peer-command’s execution time is less than the user 

preferred time, it is sent to the “Immediate Queue (IQ)”. The commands in the IQ are executed 

automatically. It should be noted that most of the current commercial FEA pre-processors are not 

multi-threaded; the method outlined here assumes a single -hreaded software architecture. When 

operations (GUI, meshing, etc.) are threaded and allowed to be run in parallel, time-consuming 

task handling in an asynchronous multi-user FEA environment does not cause a serious problem. 

That means users can continue to use the GUI while operations are executed in the background. 

Therefore, it is suggested that multi-user FEA pre-processing programs be multi-threaded to 

avoid the issue of the GUI freezing when time-consuming algorithms are run. 

If the peer-command execution time is greater than the user preferred time, that command 

will be sent to the “Later Queue (LQ)”. The user ID from which this command originated is then 

flagged. Any further commands originating from the user ID are then sent to the LQ, regardless 

of the execution time. This is done to resolve conflicts that may originate from commands that 

build on top of commands that were sent earlier to the LQ.  Once again, it should be noted that 

the method discussed here assumes that the multi-user FEA program is single-threaded.  

 

 

 

 

 



 

   27 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-9: Time-Consuming Task Handing Flow-Diagram 

 

 

However, complications arise when multiple users are working on the same area of a 

model. Even though there may be clearly restricted workspaces, sometimes a different user 

might have to work on an area that another user previously worked on. If the previous user’s 

commands are in the LQ, the new user’s work might not get executed on another client’s 

Yes 

No 

Read multi-
user command 
from server 

User ID ⊆ Flagged  
                  User List 
 

Later Queue 

Yes 

User 
Preferred 
Time 

Command 
Time  <

  

No Put name in 
Flagged 
User List 

Immediate 
Queue 

Client Computer 



 

   28 

computer. This is because the previous user’s work has not been executed yet. Therefore, it is 

absolutely necessary for all multi-users to be informed of such situations so that they can get 

their respective models up-to-date.  

In this asynchronous multi-user environment, the user has the ability to run all commands 

that are in the LQ at their convenience (Figure 3-10). They can be given the choice of running all 

commands from specific users that are in the LQ (Figure 3-11).   

 

 

 

Figure 3-10: LQ with a List of All Users 



 

   29 

 

Figure 3-11: User Queue with a List of all Commands from One User 

 

  Multi-User FEA Undo Handling 3.5

After studying some commercial FEA pre-processing and post processing software, it 

was found that almost all FEA programs do not have an undo function (or Ctrl+Z) for most 

meshing-related operations. The software that were considered were; Altair’s HyperMesh, 

Sandia Labs’ CUBIT, and ANSYS.  

HyperMesh allows undo in display operations and some auto-mesh operations, but does 

not offer undo in other related operations. However, HyperMesh has a reject function which can 

act as an undo function. The user is given the option to accept or reject each action. 

Unfortunately, after the user accepts the change, the user can no longer reject or undo it. The 

only option is to delete that change. ANSYS too has no undo option. Once a component is 

created in ANSYS it has to be deleted, or once a component is deleted it has to be recreated 



 

   30 

(Haghichi and Nyquist 2007).  CUBIT’s undo capability is implemented for geometry 

commands such as geometry creation, transformations and Booleans. The undo functionality is 

not currently enabled for most meshing commands (Cubit 13.1 User Documentation n.d.). With 

these architectural limitations in mind, the following method is proposed for multi-user undo 

handling. Implementation of this method may not be possible due to the aforementioned 

architectural challenges.  

 Each command generated and sent to the server for propagation is appended with a user 

ID by the client computer. When the server receives the command, the message is again 

appended with a time stamp by the server.  The server needs to have two distinct databases in 

order to implement this (Figure 3-12): 

 

• Master Database (MDB): contains all commands from all users 

• User Database (UDB): each user has a separate database that contains their 

commands 

 

An Undo command is usually a reverse command that is meant to nullify the previous 

action. Undo only works for the current state of an application and the undo stack is cleared once 

the user exists out of it. However, in this implementation undo can be set up to reverse actions 

that were done in previous sessions as well.  

 

 

 

 



 

   31 

 

 

Figure 3-12: Undo Handling Architecture 

 

 

When a user hits undo, the client computer looks up the last action of that particular user 

and issues a command that reverses that action. That command can then be propagated to other 

users in order to make the necessary changes on their computers as well. If one user’s undo 

affects the work done by another user, then it should pop up a warning before execution. This 

can be done by checking if the undo command modifies any entities in a different user’s 

workspace, thereby throwing an exception or a warning on the screen of the user issuing the 

undo if a conflict is found.  

 

  



 

   33 

 IMPLEMENTATION 4

 CUBIT 4.1

CUBIT is a mesh generation tool developed primarily by Sandia National Laboratories   

and it is the primary platform on which mesh generation and geometry preparation (FEA pre-

processing) are done at Sandia and its collaborating laboratories around the United States. Sandia 

has allowed CUBIT to be used for academic research purposes by providing its source code to 

academic institutions. Therefore, the ν-CAx research group at Brigham Young University (v-

CAx 2011) was able to obtain the CUBIT source code in order to develop multi-user CAx 

applications. It should be noted that CUBIT’s source code is not open-source and is owned by 

Sandia National Laboratories.  

4.1.1 CUBIT Architecture  

The initial version of CUBIT was only a command-line mesh generation program. In 

2003 a GUI, named CLARO, was added on top of the command-line version to make CUBIT 

more user-friendly (Merkley 2006). The original command-driven system and the command 

language were preserved in this new GUI driven CUBIT through an interface called “CUBIT-

Interface”. Whenever the user makes any modification to the model, the GUI creates a command 

string and passes it down to the CUBIT core through CUBIT-Interface. The core then runs the 



 

   34 

respective computational algorithms and updates the model while sending the new graphical 

facets to update the GUI (Figure 4-1). 

The CUBIT core is written in C++, while Python and Qt Creator (Nokia Corporation 

2012) were used to create the GUI. Since both high level and low level programming languages 

are used to program CUBIT, the management of data transfer between them is managed by a tool 

called SWIG (SWIG 2012). 

 

 

 

Figure 4-1:  CUBIT-Interface 

 

 

Note that CUBIT Interface is only used to pass the command strings down to the CUBIT 

core and only task completion events (flags) are passed back through it. Graphics are not passed 

back through CUBIT Interface. After running the relevant calculations, the core passes back 

graphics and other relevant data, to the GUI, through several other routes that are scattered 

throughout the source code.   



 

   35 

4.1.2 Why CUBIT? 

CUBIT is used as the primary development platform for multi-user FEA pre-processing 

because of the working relationship BYU has with Sandia National Laboratories and 

Computational Simulation Software, LLC (CSIMSOFT). CSIMSOFT is involved in selling 

commercial licenses of CUBIT. As mentioned earlier, the ν-CAx research group was able to 

obtain the source code of CUBIT, and therefore was able to make the necessary changes at the 

source level. The other multi-user CAD prototypes (NX and CATIA) developed at BYU use the 

respective programs’ Application Programming Interface (API) calls to perform the multi-user 

tasks. Their functionality is dramatically reduced due to the limited availability of API libraries 

from the software manufacturers (Red, Jensen, et al. 2011). However, with the availability of the 

CUBIT source code, CUBIT Connect (the multi-user version of CUBIT) can therefore be 

programmed to be more robust and to have more functionality. 

 Multi-User FEA Pre-Processor: CUBIT Connect 4.2

CUBIT Connect is the name given to the multi-user version of CUBIT. The multi-user 

version has been created using the method outlined in section 3.1. CUBIT Interface (figure 4-1) 

provides an interception point for capturing all the changes that are made to the model by the 

user.  Figure 4-2 shows the architecture of CUBIT Connect on the client side of the computer.   

When the user interacts with the GUI, the GUI generates a command string that is then 

sent to the core for processing. This command string is sent through a function named “cmd()” in 

a C++ file “CubitInterface.cpp” in the source code of CUBIT. The unaltered cmd function is 

found in Appendix A.1 and the modified cmd function for multi-user handling is found in 

Appendix A.2. 



 

   36 

After intercepting the command string, it is checked to see if it is a user-specific 

command. The user-specific commands are blocked from being sent to other users as mentioned 

in section 3.1. Some of the user-specific commands CUBIT uses are: graphics, draw, list, 

display, quality, preview, etc.). If it is a peer-relevant command, it is then sent to a server which 

broadcasts those messages to other users in the session.  

4.2.1 Cubit Connect Prototypes – Client’s Side 

Two major prototypes were developed to demonstrate the multi-user environment using 

CUBIT. The first prototype consisted of a peer-to-peer architecture and the second architecture 

was a client-server (CS) one. The networking architecture is discussed in detail in section 4.3. 

Figure 4-2 shows the complete architecture on the client’s side of the P2P implementation. The 

complete implementation details of the P2P program can be found in Appendix B.  

Even though the basic concept of intercepting and transmitting user commands is the 

same for both implementations, there are some important differences between these. In the P2P 

implementation all commands are sent to that user’s core for processing while sending the peer-

relevant commands to other users.  This means that the user’s actions are implemented 

immediately, while commands from peer users are sent to a queue. The user is given the option 

to execute those peer commands at their convenience. This asynchronous architecture provides 

users to work on their portion of the model without interruptions caused by other users’ updates.  

They can sync the model with other users’ updates once they are done. However, this 

implementation has an important limitation. As discussed in section 3.1.5, keeping the model 

consistent between users is of utmost importance in a multi-user environment. In this 

asynchronous architecture, without a central model database, the model from user to user does 

not stay consistent. This is further discussed below.  



 

   37 

 

Figure 4-2 Client’s Side Architecture of P2P Cubit Connect 

 

 

CUBIT identifies geometries by assigning each of them with a unique integer ID. 

Whenever an additional command is executed upon these geometries, the command string 

generated refers to that geometry’s original integer ID.  A problem arises since these integer IDs 



 

   38 

are sequentially assigned in the order of command execution. When one client updates the 

commands from other users, the CUBIT core will assign IDs that may be different from the IDs 

on another user’s machine. Therefore, further command execution will result in significantly 

different models and meshes. At present, CUBIT does not have the ability to assign or reassign 

these numbers artificially. 

 With this limitation in mind, the CS prototype was developed. In the CS model, only the 

user-specific commands are sent to the user’s core, and all peer-relevant commands are sent to a 

central server. The architecture of the CS prototype on the client’s side can be found in Figure 

4-3. The user-specific commands do not alter the model and therefore, do not affect the ID 

system of CUBIT. The server then distributes all the commands in the order they are received to 

all clients for execution (Figure 4-4). By executing commands in the same order on all clients, 

the models are kept consistent among multi-users. The downside to this synchronous method is 

that users do not have the ability to work uninterrupted without receiving other users’ updates. 

The CS version of CUBIT Connect was used for further testing and feature implementation for 

the purposes of this thesis. The complete implementation details of the CS architecture can be 

found in Appendices B.3 and B.5.  



 

   39 

 

 Figure 4-3 Client’s Side Architecture of CS Cubit Connect 

 

Figure 4-4: CUBIT Connect CS Message Handling Scheme 



 

   40 

It is understood that users may not need to use the multi-user mode for everything they do 

with an FEA program. Therefore, the ability to switch between multi-user mode and the single-

user mode can be useful. With this in mind, CUBIT Connect is programmed to allow the user to 

switch between multi-user mode and the single-user mode with a click of a button as shown in 

Figure 4-5. It is important that users do not modify models individually that are also being 

worked on by others in the multi-user environment.  In single-user mode, the original single-user 

architecture is brought back while temporarily suppressing the multi-user architecture.   

 

 

 

Figure 4-5: Switching between Multi-User Mode and Single-User Mode 

 

 

 Networking Architecture 4.3

The CS version of CUBIT Connect utilizes Windows Named Pipes (NP) (Microsoft 

Developer Network 2012) for inter-process communication (IPC) and TCP/IP sockets for 

network communications. Two networking clients (External & Internal Clients) reside on each 



 

   41 

local computer. This will be discussed in detail in section 4.3.1. C# was chosen to program the 

External Client (EC) that runs on the local computer as well as to program the server. C# was 

used as the programming language because of its superior network programming abilities. The 

basic architecture of CUBIT Connect is shown in Figure 4-6. 

 

 

 

Figure 4-6: CUBIT Connect CS Architecture Utilizing both Named Pipes and TCP/IP Clients 

 

 

 



 

   42 

4.3.1 Client 

As mentioned above, the Client consists of two separate programs; Internal Client(IC) 

which is built into the source code of CUBIT and the EC which runs outside of CUBIT. To 

facilitate the communication between the IC and the EC, two NP’s are created as illustrated in 

Figure 4-7. 

 

 

 

Figure 4-7 Named Pipes Connection on Each CUBIT Connect Local Machine (Client) 

 

 

Internal Client 

The IC is written in C++ and has two main functions.  

1. Intercept the command strings from CUBIT and send them via NP to the 

EC 

2. Gather incoming multi-user commands from the EC and execute them in 

CUBIT 

The IC is built directly into the CUBIT source code.  It consists of two running threads, 

one dedicated to sending commands and the other dedicated to receiving.  Whenever a client 



 

   43 

computer connects to both reading and writing pipes generated by the EC, it will create a Client 

Listening Thread (CLT) dedicated to checking the pipe for incoming messages from the EC.  

While the main thread is constantly sending unfiltered messages, the CLT is constantly reading 

for incoming messages in the writing pipe as shown in Figure 4-7.  If there is a message, the 

reading thread will immediately place the message inside of a Client Queue (CQ) for CUBIT 

Connect to extract and process.  This constant process is placed in a while loop, and the IC will 

constantly go through the CQ and update accordingly. 

 

External Client 

The EC is where the majority of client identification and message categorization takes 

place.  Every time the EC is executed (Figure 4-8), it generates reading and writing pipes that 

wait for the internal client to finish the network hand shaking process.  Once the pipes are 

established, it will initiate the connection to the central server through TCP/IP sockets.  All of 

these processes have to be done sequentially in order to prevent any race conditions.  

The EC is not only an important transition point between CUBIT and the server, but it is 

also where different types of messages are organized through a serialization process.  Here, 

different message types such as the client’s unique ID and the original message are combined 

into message structures.  Some of the common message structures established in the EC are 

command message, master trigger, and database reset.  Command messages are messages 

generated from the CUBIT GUI for the CUBIT core to process (e.g. “create sphere” or “mesh 

volume 1”).   

 

 



 

   44 

 

 

Figure 4-8: External Client Instance on the Local Machine 

 

Master trigger messages are messages initiated by the user to re-synchronize their model 

with the master database (e.g. in situations such as when a client computer encounters 

unexpected difficulties, or when clients join the work environment at different times).  Database 

reset messages are messages created by the user to clean up the master database (e.g. in 

situations where an unexpected difficulty is encountered during the collaboration process which 

requires the entire project to be re-established).  These message structures help the server to 

distinguish between different CUBIT Connect operations so it can respond accordingly. 

 

 



 

   45 

4.3.2 Server 

In the global scale, WAN (Wide Area Network) communication is handled through 

TCP/IP sockets, where a centralized server provides sockets for client computers to initiate 

connections.  The basic functionalities of the CUBIT server are generating TCP/IP sockets, 

storing messages to the database, and sending commands back into the TCP stream.  Whenever a 

client connects to the server, a Client Thread (CT) is generated, which is separate from the main 

thread.  While the separate CT runs on its own, the main thread loops and creates another 

instance of the TCP/IP stream that waits for new clients to connect.  For this design, there are no 

limits assigned to neither thread nor pipe instances, which means the server is capable of 

handling as many users as the network and resources allow.  

While the main thread waits for more clients, the established CT immediately listens for 

client messages from the TCP/IP stream.  Once a message comes through the stream, it will be 

processed and stored into a master database.  After message processing is complete, the server 

immediately puts the message into the stream for all the clients to pick up.  The constant 

communication between the server and client is established through an infinite while loop and 

the process will not terminate unless the client terminates the connection or a network error 

occurs. Further networking implementation details are found in Appendices B.3 and B.5. Figure 

4-9 shows an instance of the CUBIT Connect Server with one client computer connected.  

 

 



 

   46 

 

Figure 4-9: CUBIT Connect Server Instance 

 

4.3.3 Current Capabilities of the Networking Architecture  

The current capabilities of CUBIT Connect Client and Server include: 

1. The ability to handle multiple projects at a given time 

2. Distinguishing between different users and user levels (admin, normal user, etc.) 

3. Secure login using a username and password 

4. A comprehensive SQL database (command string, user credential storing, etc.) 

5. Workspace assignment (section 4.4) 

 

Figure 4-10 shows three users simultaneously editing the elements of a race car, each 

assigned a different region.  



 

   47 

 

Figure 4-10: CUBIT Connect Multi-User Session 

User 1 

User 
 

User 3 



 

   48 

 Multi-User Workspace Decomposition 4.4

In a multi-user environment, it is necessary to assign different areas (workspaces) for 

different users to work on. Causally assigning a workspace to a user may not be effective, 

because it is likely the user will accidently cross into another user’s workspace. That means, 

assigning workspaces without physically restricting users to certain workspace boundaries in the 

model would not be effective. This would ultimately create chaos and could make the 

collaborative environment less productive. Therefore, users should be restricted to their own 

workspaces and they should not be allowed to make changes to areas of the model that do not 

belong to their workspace. This does not mean that users should be barred from viewing the 

entire model. It only means the user cannot make any modifications to the areas to which they 

are not assigned.  

It is proposed to have different user levels in a multi-user environment.  The role of the 

user would determine which areas of the model he/she has access to. For this prototype, two user 

groups were created: administrator and ordinary user. An administrator has access to the entire 

model and is the one who assigns workspaces to other users. The ordinary user only has access to 

an assigned portion of the model and cannot modify other regions of the model. A GUI was 

setup for managing and assigning user workspaces. 

4.4.1 Workspace Implementation in CUBIT Connect 

As illustrated in section 3.3, a model or assembly can be decomposed using geometry 

tags. These tags can also be used to assign user workspaces and restrict users from modifying the 

workspaces of others. This method gives a user the ability to view regions of the model that 

belong to other users, without being able to modify any geometry or other entities in those 

regions.  



 

   49 

The geometry ID scheme in CUBIT is similar to that of the scheme illustrated in Figure 

3-6 and it is explained further in Table 2. 

 

Table 2: CUBIT’s Entity ID System 

Geometry Tag Description  
Vertex A point 
Curve A collection of points 
Surface A collection curves 
Volume A collection of surfaces 
Body A collection of volumes 
 

 

Using CUBIT’s numbering system, regions can be assigned as well as restricted. For this 

prototype, volume ID’s were used to decompose a model or assembly. As illustrated in Table 2, 

volumes consist of vertices, curves, and surfaces. It should be noted that workspaces can be 

restricted using any of the aforementioned geometry ID tags. However, it would be the most 

effective to use surfaces and volumes in CUBIT. If needed, any combination of the geometry IDs 

can be used simultaneously.  However, the type of geometry tag to be used in model 

decomposition actually depends on the specific model and its topology.  As show in Figure 4-11 

these geometry tags can be used to easily distinguish between regions of a racecar model. The 

racecar model is divided among three users where user 1 is assigned the wing areas, user 2 is 

assigned the wheel areas, and user 3 is assigned the nose cone area.   

To allow workspace restriction, the CUBIT source file GGeomPicker.cpp (Appendix 

A.3), was modified. Whenever the user clicks on the model, a function checks to see what 

volume ID the clicked-on geometry belongs to. If that volume ID is on the list of permitted 

volume IDs for that user, the function lets the mouse click go through, selecting the geometry. 



 

   50 

Otherwise, the mouse click is not allowed to go through and the user is barred from selecting the 

area of the model.  

 

 

Figure 4-11 CUBIT Connect Workspace Assignment 



 

   51 

4.4.2 Workspace Handling GUI 

A series of GUI’s were added to CUBIT Connect to handle and streamline workspace 

assignment. Figure 4-12 shows the User Login GUI (ULGUI) that checks user credentials and 

allows the user to proceed to select a model or part to work on. This also checks what level of 

user rights (administrator, normal user, etc.) the current user is assigned from the information 

stored in the server database. Furthermore, new users are given the ability to add their 

information to the database using this GUI.  

 

 

 

Figure 4-12: User Login GUI 

 

 

After the user successfully logs in, the Model Management GUI (MMGUI) pops up 

(Figure 4-13). The MMGUI then queries the server for a list of models/parts currently stored on 

the server and displays them. The user can then locate the file that he/she would like to work on 

the local computer and open it. The server then routes all the multi-user commands associated to 

that specific model from other multi-users working on the same model.  



 

   52 

In the event that the user is an administrator, the Admin Workspace Manager (AWM) 

GUI comes up. This GUI lets the administrator assign workspaces to different users (Figure 

4-14). The administrator has to input the username of the user they are assigning the workspaces 

to as well as the volume ID numbers to which that user has access.  He/she then has the option to 

check the workspaces they just assigned by highlighting those in the model using the “Check 

Workspace” button. The “Set Workspace” button sends the user and workspace information to 

the server. Detailed implementation information of the workspace GUIs can be found in 

Appendix C.  

 

 

 

Figure 4-13: Multiple Project/Model Management GUI 

 



 

   53 

 

Figure 4-14: Workspace GUI for Administrator 

 

 

If the user is an ordinary user, the dialog box shown in Figure 4-15 comes up.  This 

queries the workspace data that is already stored on the server for that particular user and saves 

that data to a configuration file stored on the local computer. This file is then read by 

GGeomPicker.cpp (Appendix A.3) to check mouse interaction authorizations. The user can use 

the “Highlight My Workspace” button to highlight the area of the mode they have access to as 

shown in Figure 4-16. 

 



 

   54 

 

Figure 4-15:  Workspace GUI for Normal User 

 

 

 

 

Figure 4-16: Workspace Highlight; The User has Access to the Body Area of the Car Only 

 

 



 

   55 

 Time-Consuming Task Handling 4.5

As mentioned in Section 3.4, time-consuming task handling becomes an important issue 

in an asynchronous FEA environment. However, since the current architecture of native CUBIT 

does not allow a successful implementation of an asynchronous environment, a comprehensive 

implementation of the time-consuming task handler was not attempted. The reason being that, in 

an asynchronous CUBIT Connect environment all of the users’ models cannot be kept consistent.   

A timer function, allows the user to see how much CPU time was utilized for a certain 

algorithm to run. Figure 4-17 shows an example of how the timer function works in CUBIT.  

 

 

 

Figure 4-17:  CPU Timer Function in CUBIT 

 

 



 

   56 

The user calls the timer function in the CUBIT command windows by typing “timer 

start”. The user then runs the desired meshing command and after the command is completed, 

the user stops the timer function by typing “timer stop” in the command window. Utilized CPU 

time is then displayed on the command window. This time can be captured and sent to the server 

with the respective command. Then a GUI that is similar to the one discussed in section 3.4 can 

be implemented.  

 Multi-User Undo Handling 4.6

As mentioned in section 3.5, CUBIT’s undo system does not allow the undoing of mesh 

creation, moving of nodes, or any other major meshing functions (Figure 4-18). Undo is turned 

off by default and if the user wants to use the undo feature, they have to turn it on. Undo works 

for creating and changing geometry only. However, for meshing needs, a delete function is used 

in the place of undo. When the delete function is called, it goes ahead and removes the specified 

mesh or node. The delete function works well in the multi-user mode. Therefore, using the delete 

function to undo changes is recommended. Since most commercial FEA programs lack an undo 

system for mesh related tasks, an undo handling system was not developed for this thesis.  

 

 

Figure 4-18 CUBIT Undo Example 

 



 

   57 

 Time Comparison between Single-User and Multi-User CUBIT 4.7

A CAD-generated turbine engine front frame (Figure 4-19) was used to calculate the time 

saving advantages of single-user verses multi-user FEA pre-processing. A single user was given 

the CAD-generated model and asked to generate crude surface meshes covering the entire 

surface of the front frame with CUBIT. The single user took 19 minutes and 33 seconds to mesh 

the entire model with the aforementioned meshes (Figure 4-20).     

 

 

               

Figure 4-19: CAD-Generated and Meshed Models of Engine Front Frame 

 

 

Figure 4-20: Single-User Mesh Completion Time 



 

   58 

Three users were assigned three different areas of the front frame and were asked to 

generate crude surface meshes on their assigned areas using the multi-user CUBIT Connect. 

These three areas collectively form the entire front frame and they are shown in Figure 4-21; the 

times each user took to completely mesh their areas are shown in the figures as well.  

  

  

   

          

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-21: Pre-Assigned Workspaces for Front Frame 3-User Demonstration 

 

 

User 1 User 2 

User 3 

7:51 min 8:03 min 

5:00 min 



 

   59 

 The total time it took for the three users to complete the entire model was 08 minutes and 

03 seconds (Figure 4-22), while the total number of minutes spent by all three users was 20 

minutes and 54 seconds.  The time to complete the model was reduced by 11 minutes and 30 

seconds, which is about 60% less time than was needed with the single-user method. These 

results are summarized in Table 3. 

 

 

 

Figure 4-22: Multi-User (3 Users) Mesh Completion Time 

   

 

Table 3: Meshing Time Comparison between Single-User and Multi-User FEA Pre-Processing 

User Type Time (Minutes) 
Single User 19:33 
Multi-User 1 12:44 
Multi-User 2 8:03 
Multi-User 3 5:00 
Total Multi-User  
(Model completion) 8:03 

MU Time Saving 11:30 (58.8%) 
 
 
 
 
 
 
 
 
 



 

   61 

 CONCLUSIONS AND RECOMMENDATIONS  5

Mesh generation remains the bottleneck in the modeling process of PD cycle for very 

large models. Often times, mesh clean up and geometry preparation may take up to 75% of the 

total FEA process. A robust multi-user mesh generation environment, as outlined in this thesis, 

has the potential to dramatically reduce this time and thus, significantly improve the efficiency of 

the PD process.  

Furthermore, model decomposition and workspace assignment in a multi-user FEA pre-

processor will change the current paradigms that depend on single-user tools. This thesis has 

shown that it is both possible and feasible to decompose a multi-user model using geometry IDs 

while restricting users to only their assigned regions.  It was also shown that using three users as 

opposed to one user to complete a meshing task, a time saving of about 60% was accomplished.  

 Conclusions 5.1

This research fully meets three of the five objectives stated in the introduction and the 

other two objectives were met partially.  This was mainly due to the limitations in the software 

tools used.  A brief summary of the final objectives follow: 

1. A generalized method for creating a multi-user FEA pre-processor was outlined in 

section 3.1. By using that method a robust and stable multi-user environment with full 

functionality was developed using CUBIT as outlined in Chapter 4. 



 

   62 

2. A generalized method of creating a networking architecture for a multi-user FEA pre-

processor was discussed in section 3.2, and complete implementations using both P2P 

and CS architectures were discussed in section 4.2. The CS architecture was chosen 

for further development and testing due to its better functionality over the P2P 

architecture.  

3. Model decomposition using geometry ID tags was discussed in section 3.3.  Using 

that method, a working prototype along with a comprehensive workspace 

management GUI was implemented as described in section 4.4 

4. A method for handling time-consuming tasks in an asynchronous multi-user 

architecture was discussed in depth in section 3.4. Because model consistency issues 

arose in the asynchronous environment, this was not fully implemented. However, 

getting the CPU time of a completed algorithm was demonstrated in section 4.5  

5. A method for handling undo in a multi-user environment was described in section 

3.5. However, due to architectural limitations within CUBIT, this was not 

implemented. 

 

The most challenging part of this research was working with an existing software 

package which has been under development for more than three decades. The program contained 

over 52,000 different data files and about 10 gigabytes of data. Simply put, CUBIT was not 

meant to be used as a multi-user program and radical changes need to be made to its architecture 

to make it an effective multi-user FEA pre-processor.  



 

   63 

5.1.1 Architectural Challenges 

CUBIT’s GUI and core run on a single thread. For this reason, CUBIT GUI freezes while 

a complex and time-consuming algorithm runs in the core. This presents an enormous challenge 

in a multi-user environment. When users receive updates from others, they are unable to work on 

their model until all of those updates are executed. The GUI and core should each be made to run 

on separate threads in order to achieve a truly time-saving multi-user environment. Currently, 

CUBIT does not have the capability to utilize the multiple threads and computational cores that 

are available in modern Central Processing Units (CPUs). This further complicates the algorithm 

completion times. 

The model table (geometry kernel) of CUBIT (ACIS) does not allow substantial 

modifications and therefore, the possibility of having a master model reside on the server is 

limited. ACIS is a set of closed third party libraries that do not allow modifications. Furthermore, 

the default ACIS operations are not thread safe. This means that all operations on the geometry 

kernel must be done from either a single thread or mutated in such a way that it guarantees that 

operations are complete on a given thread before continuing. 

  For the CUBIT Connect implementation, users have a local model on each computer 

and that model is updated to reflect changes from other users. Also, CUBIT does not have 

functionality to modify the entity IDs after they are created. Therefore, an asynchronous multi-

user architecture, which needs to have the capability to change entity IDs, cannot be 

implemented. 

CUBIT is written in C++ and therefore, integrating new features has to be programmed in 

C++ in order for them to be included in the source. Also, CUBIT takes about an hour to fully 

compile.  



 

   64 

5.1.2 Workspace Decomposition  

Section 4.3 describes a successful implementation of workspace restriction using entity 

ID’s. In this implementation, only mouse interaction is restricted to areas where the user has 

access. However, the user can still use CUBIT’s command line to execute changes to other areas 

of the model. A check has to be put in place in the “cmd( )” in CubitInteface.cpp to curb this. 

More research is needed to create methods to add this functionality.  

 The current implementation of workspace assignment only works in volume picking and 

surface picking modes. If the user utilizes a different mode of picking geometry (i.e. body 

picking, curve picking, or vertex picking), workspace assignment would fail to work properly. 

The method discussed in section 3.3 can be extended to these modes too. However, 

programming them inside of CUBIT is not straightforward and has to be studied in depth.   

 Some interesting questions arise from having restricted workspaces in FEA. The 

existence of boundaries between user workspaces makes multi-user collaboration complex. 

Answers to the following questions require thorough and complex research: 

 

1. What happens at the boundary of two workspaces? 

2. How can boundaries be merged in a multi-user setting so that the mesh stays consistent 

through the boundary? 

3. How do you handle an action of a user that affects the workspace of some other user? 

5.1.3 Handling of Time-Consuming Tasks  

As mentioned in section 4.4, time-consuming task handling was not fully implemented in 

CUBIT Connect. This was because the asynchronous multi-user environment brought about 

complications in keeping the model consistent among users. Even after conducting in-depth 



 

   65 

research, a workaround was not found. The only solution is to have a way in CUBIT to force the 

entity numbering system to renumber the entities. Currently, CUBIT does not have functionality 

to achieve this and adding this functionality would require a significant amount of expert 

programming.  

5.1.4 Undo Handling 

As mentioned in section 4.5, the undo system of CUBIT is not fully developed and mesh 

related actions do not have an undo capability. Some FEA programs do not even give the user an 

undo option. CUBIT’s undo is only functional in geometry-creation mode and it is not allowed in 

meshing mode. Since, the main purpose of an FEA pre-processor is to create meshes, and undo 

handling was not available in meshing mode, the proposed undo handling scheme was not 

implemented in CUBIT Connect.  

 Future Work 5.2

5.2.1 Cloud Computing FEA Pre-Processor 

The cloud environment is more suitable for multi-user architectures because it eliminates 

having expensive hardware on the client computers, and it also streamlines global wide-area 

connectivity. This implementation of CUBIT should consist of a strong server and a thin client, 

where the CUBIT GUI resides on the client side and the core resides on the server side. That 

means the server will handle the computations. This would require CUBIT to be cleanly 

separated between the GUI and the core, so that both components can execute separately on 

different machines (Figure 5-1). 



 

   66 

 

Figure 5-1: Severing Connection between CUBIT GUI & Core 

 

 

         

Figure 5-2: Cloud Computing CUBIT Connect Architecture  



 

   67 

The server bridge shown in Figure 5-2 will have the capability to manage network traffic. 

It has to order the incoming messages into a command queue and notify an administrator when 

traffic is approaching the processing limit. Then it has to equally distribute the load among 

CUBIT cores to minimize processing times. The intention of this environment is to incorporate 

multiple cores capable of parallel processing. Whenever the server bridge notifies the 

administrator upon process limitation, a new CUBIT core can be easily created by the server to 

reduce the workload. This will allow the resources to be dynamically allocated, so the minimum 

amount of resources is used to perform the task.  

At present, Sandia Labs is involved in revamping the architecture of CUBIT to separate 

the GUI and the core. Sandia wants a CS architecture for CUBIT with a thin client and a strong 

server. The final goal is to have the GUI and the graphics subsystem of CUBIT to reside on the 

client while the computational portion is on the server. The intent is to setup and run different 

types of analyses of a model/assembly concurrently on different servers. One server would run a 

structural analysis while another one would run a Computational Fluid Dynamics (CFD) analysis 

at the same time. Other types of analyses would be thermal and electromagnetic, etc. After the 

CUBIT architecture is modified for the multi-physics version, the implementation of the cloud 

multi-user environment should not take too much effort. Sandia Labs is hoping to get the 

separation completed by the end of year 2012.  

5.2.2 HP Remote Graphics Software (RGS) Architecture 

Another implementation to consider would be the HP RGS implementation where both 

the GUI and the Core reside on blade servers (Hewlett-Packard Development Company, L.P. 

n.d.). HP RGS (Figure 5-3) is a client server architecture that is especially developed to handle 

applications that are graphics intensive. There are three components to the HP RGS: 



 

   68 

1. Sender – a blade workstation residing in a central facility with high end graphics 

capabilities 

2. Receiver – a thin client with minimal processing and graphics capabilities 

3. TCP/IP network – communication link between the Sender & the Receiver  

 

 

 

Figure 5-3: Block Diagram of HP RGS Software (www.hp.com) 

 

 

The thin client establishes a one-to-one link with a blade workstation via the TCP/IP 

network. All the processing is done by the blade and the thin client acts only as an input terminal 

and a display terminal.  

As a user logs on to the RGS network, the RGS Controller looks for a blade that is not 

being used and then assigns it to the user (Figure 5-4). As mentioned before, this creates a one-

to-one link between the user and the blade. Each keystroke and mouse event is captured by the 



 

   69 

RGS software installed on the thin client (user) and sent to the blade. Essentially, the user can 

control the blade from the thin client similar to that of the Microsoft’s Remote Desktop Protocol 

(RDP) software. 

For the purposes of Cubit-Connect, each blade computer has to be installed with Cubit 

software. There are two options for assigning a server: 

1. The RGS Controller assigns a server dynamically in the blade stack 

2. A blade is dedicated as a server (static) 

Assigning a dedicated server would be a safe way to minimize conflicts, and dynamic 

server assignment should be studied further. The server then makes connections to all the blades 

that are using Cubit software and starts communicating. A similar approach as proposed in 

concept 1 can be used here to deploy Cubit-Connect.  

 

 

 

Figure 5-4: Cubit Connect in an HP RGS Setup 



 

   70 

There are several advantages to using HP RGS software in a multi-user environment: 

1. Centralized server and blades minimize security risks and protects intellectual property 

2. Thin clients at the user’s end do not have to be expensive computers and will not need to 

be upgraded regularly as their function is only to capture input and display what is being 

relayed by the blades. 

3. Resources can be maximized and consolidated as a finite number of blades could be used 

and those are only assigned when there is a need. 

4. High quality graphics on the inferior client computer. 

5. Minimized maintenance as everything is centralized and software can be easily installed 

and upgraded. 

 

Disadvantages: 

1. High bandwidth usage due to graphics being tunneled through the TCP/IP connection. 

2. Would have problems when used in a wide area network (WAN) as opposed to a LAN. 

5.2.3 Integration with MMORPG Server 

Another important step is to integrate CUBIT Connect with the MMORPG architecture 

Winn developed at Brigham Young University (Winn 2012). This would allow developers to add 

functionality to the server side without too much effort as different services could be 

programmed into the MMORPG server without re-writing the core server code. Also, this 

architecture has better data handling capabilities and would allow faster and reliable connections. 

With the current setup of CUBIT Connect, it should not be hard to change over to the MMORPG 

server.   



 

   71 

REFERENCES 

 
Anbo, W, G Yingsan, Z Guogang, and W Jianhua. "An agent-based collaborative FEA system 

for the optimal design of electromagnets." International Conference on Power System 
Technology. IEEE Xplore, 2002. 2150 - 2154. 

 
Balling, R J. Finite Elements. Vol. II. BYU Academic Publishing, n.d. 
 
Bonneau, P, and L Gabrielaitis. "Applying multi-user technology for modeling complex CAD 

objects." Engineering Structures and Technologies, 2009. 
 
Bu, J, B Jiang, and C Chen. "Maintaining semantic consistency in real-time collaborative 

graphics editing systems." IJCSNS International Journal of Computer Science and 
Network Security 6, no. 4 (April 2006): 57-61. 

 
"Cubit 13.1 User Documentation." CUBIT. n.d. http://cubit.sandia.gov/help-

version13.1/Cubit_13.1_User_Documentation.pdf. 
 
Douglas, S, E Tanin, A Harwood, and S Karunasekera. "Enabling Massively Multi-Player Online 

Gaming Applications on a P2P Architecture." In Proceedings of the IEEE International 
Conference on Information and Automation. IEEE, 2005. 7--12. 

 
Google . Google Docs. n.d. http://docs.google.com. 
 
Haghichi, K, and C Nyquist. "Introduction to Ansys." Purdue University. 2007. 

https://engineering.purdue.edu/~abe601/ansys/ansys_overview_v81_601.pdf. 
 
Hewlett-Packard Development Company, L.P. HP Remote Graphics Software. n.d. 

http://www.hp.com/united-states/campaigns/workstations/remote-graphics-
software.html#.T6QdM-tDwjU. 

 
Lee, H, J Kim, and A Banerjee. "Collaborative intelligent CAD framework incorporating design 

history tracking algorithm." Computer-Aided Design (Elsevier) 42, no. 12 (December 
2010): 1125-1142. 

 
Marshall, F. Model Decomposition and Constraints to Parametrically Partition Design Space in 

a Collaborative CAx Environment. (Master's Thesis). Brigham Young University, 2011. 
 
Merkley, K G. The Tool Set for Building Claro-A Component Loading Architecture. Sandia 

National Laboratories, 2006. 



 

   72 

Microsoft Developer Network. Named Pipes. 2 13, 2012. http://msdn.microsoft.com/en-
us/library/windows/desktop/aa365590(v=vs.85).aspx. 

 
Nidamarthi, S, R H Allen, and R D Sriram. "Observations from supplementing the traditional 

design process via Internet-based collaboration tools." International Journal of Computer 
Integrated Manufacturing 14, no. 1 (2001): 95-107. 

 
Nokia Corporation. Qt- Cross-platform application and UI framework. 2012. 

http://qt.nokia.com/. 
 
Owen, S J, et al. "An Immersive Topology Environment for Meshing." 16th International 

Meshing Roundtable. Seattle, WA, 2008. 
 
Peng, J, F Mckenna, G L Fenves, and K H Law. "An Open Collaborative Model for 

Development of Finite Element Program." Proceedings of the Eighth International 
Conference on Computing in Civil and Building Engineering (ICCCBE-VIII}. 2000. 
1309--1316. 

 
Red, E, G Jensen, D French , and P Weerakoon. "Multi-user architectures for computer-aided 

engineering collaboration." 17th International Conference on Concurrent Enterprising 
(ICE). Aachen, Germany: IEEE Xplore, 2011. 1-10. 

 
Red, E, V Holyoak, G Jensen, F Marshall , J Ryskamp, and Y Xu. "n-CAx: A Research Agenda 

for Collaborative Computer-Aided Applications." Computer-Aided Design and 
Applications 7, no. 3 (2010): 387-404. 

 
Sandia National Laboratories. CUBIT. n.d. http://cubit.sandia.gov/. 
 
Sriram, D, R Logcher, and S Fukuda. "Computer-Aided Cooperative Product Development." 

MIT-JSME Workshop, Lecture Notes in Computer Science. Cambridge, USA: Springer-
Verlag, 1991. 

 
SWIG. Simplified Wrapper and Interface Generator. 02 19, 2012. http://www.swig.org/. 
 
v-CAx. New Multi-User Computer-Aided Applications. 2011. http://v-cax.byu.edu/. 
 
Wikipedia. Massively multiplayer online role-playing game. March 07, 2012. 

http://en.wikipedia.org/wiki/Mmorpg. 
 
Winn, J. "Integration of Massive Multi-User Online Role Playing Game Architecture with Multi-

User CAx Applications (Master's Thesis)." Brigham Young University, 2012. 
 
Xu, Y. A Flexible Context Architecture for a Multi-User GUI (Master's Thesis). Brigham Young 

University, 2010. 
 



 

   73 

Xu, Y, E Red, and C G Jensen. "A Flexible Context Architecture for a Multi-User GUI." 
Computer-Aided Design and Applications 8, no. 4 (2011): 479-497. 

 
Yu, J, J Cha, Y Lu, W Xu, and M Sobolewski. "A CAE-integrated distributed collaborative 

design system for finite element analysis of complex product based on SOOA." Advances 
in Engineering Software (Elsevier Science Ltd) 41, no. 4 (2010): 590-603. 

 
Zienkiewicz, O C, R L Taylor, and J Z Zhu. The Finite Element Method: Its Basis and 

Fundamentals, 6th Edition. 6. Butterworth-Heinemann, 2005. 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

   75 

APPENDIX A. PROGRAMMING CODE 

All the CUBIT Connect files can be found in the v-CAx SVN  

svn://it.et.byu.edu:1667/svn in subfolders: 

CubitConnect 

CUBITCONNECT TCPIP and NP 

GUIDrivenCUBIT 

A.1   Unaltered cmd( ) Function in CubitInterface.cpp 

// Sends a command directy to cubit 
void CubitInterface::cmd(const char *input_string) 
{ 
  was_undoable = false; 
  int ss = CubitUndoManager::number_undo_groups(); 
  CIUserInterface *ui = CIUserInterface::instance(); 
  if(ui && ui->get_playback_handler()) 
    ui->parse_input_line(input_string); 
  else  
    UserInterface::instance()->parse_input_line_and_files(input_string); 
  was_undoable = CubitUndo::get_undo_enabled() && 
(CubitUndoManager::number_undo_groups() > ss); 
  if(!gsObserver) return; 
  std::list<CubitInterface::CIObserve*>::iterator iter = gsObserver-
>mGUIObserver.begin(); 
  for (; iter != gsObserver->mGUIObserver.end(); iter++) 
  { 
    (*iter)->notify_command_complete(); 
  } 
} 

 

 



 

   76 

A.2   Modified cmd( ) Function for Multi-User Handling 

//Multi-User Namedpipe Implementation Initiation 
PipeClient* chat = PipeClient::Instance(); 
ServerInterface* serverlet = ServerInterface::Instance(); 
 
 
 
// Sends a command directy to cubit 
void CubitInterface::cmd(const char *input_string) 
{  
  was_undoable = false; 
  int ss = CubitUndoManager::number_undo_groups(); 
 
  //Multi-User 
 if(getMultiUser()== true) 
 { 
   
     //Check to see if the command is user-specific  
 string no_cmd[] = 
{"graphics","draw","list","display","quality","preview","visibility", "null", 
"color", "updatecubit", "undo", "reset","open","import", "save", "highlight", 
"hardcopy"}; //list of user specific commands 
 int NO_CMD_LEN = sizeof(no_cmd)/sizeof(string);  //# of user-specific 
commands so far 
 
 //See if the input_string contains a user-specific command 
 bool toSend = true; 
 string in_str(input_string); 
 for(int i=0;i<NO_CMD_LEN;i++) 
 { 
  if(in_str.find(no_cmd[i]) != string::npos) 
  { 
    //If incoming command does contain any user-specific commands, 
it will do straight to the CUBIT core for execution 
   was_undoable = false; 
   int ss = CubitUndoManager::number_undo_groups(); 
   CIUserInterface *ui = CIUserInterface::instance(); 
   if(ui && ui->get_playback_handler()) 
   { 
    ui->parse_input_line(input_string); 
   }  
   else 
   { 
    UserInterface::instance()-
>parse_input_line_and_files(input_string); 
 
   } 
   was_undoable = CubitUndo::get_undo_enabled() && 
(CubitUndoManager::number_undo_groups() > ss); 
   if(!gsObserver) return; 
 
   std::list<CubitInterface::CIObserve*>::iterator iter = 
gsObserver->mGUIObserver.begin(); 
   for (; iter != gsObserver->mGUIObserver.end(); iter++) 
   { 



 

   77 

    (*iter)->notify_command_complete(); 
   } 
   toSend = false; 
  }   
 } 
 //If It is not a user specific command, send to server 
 try 
 {   
  if (toSend) 
  { 
   PRINT_INFO("Multi User Command Sent  \n "); 
    
   //CUBIT sending multi-user cammands to the server 
   chat->SendMessage(input_string);    
  } 
  if (!toSend) PRINT_INFO("User-Specific Command Sent \n"); 
  //if it is not user specific, send to other people on "chat" 
   
 } 
 catch (std::exception& e) 
 { 
  const char* name1; 
  name1= e.what(); 
  PRINT_INFO (name1); 
  PRINT_INFO ("Exception \n"); 
 } 
 
 //to receive incomming command strings 
 if(in_str.find("updatecubit") != string::npos) 
 { 
  PRINT_INFO("Updating commands \n"); 
  //vector for update command 
  vector <string> update_input_string_in ; 
  //check client queue for upadted commands 
  while(serverlet->returnQueueObject().size() > 0) 
  { 
   update_input_string_in.push_back(serverlet->GetCmdQueue()); 
  } 
  //If inputfile in not empty, send the command string to Cubit 
Core for execution 
  if(!update_input_string_in.empty()) 
  { 
   was_undoable = false; 
   int ss = CubitUndoManager::number_undo_groups(); 
   CIUserInterface *ui = CIUserInterface::instance(); 
   for (int i=0; i<update_input_string_in.size(); i++) 
   { 
    if(ui && ui->get_playback_handler()) 
    { 
     ui-
>parse_input_line(update_input_string_in[i].c_str()); 
    }  
    else 
    { 
     UserInterface::instance()-
>parse_input_line_and_files(update_input_string_in[i].c_str()); 
 



 

   78 

    } 
    was_undoable = CubitUndo::get_undo_enabled() && 
(CubitUndoManager::number_undo_groups() > ss); 
    if(!gsObserver) return; 
    std::list<CubitInterface::CIObserve*>::iterator iter 
= gsObserver->mGUIObserver.begin(); 
    for (; iter != gsObserver->mGUIObserver.end(); 
iter++) 
    { 
     (*iter)->notify_command_complete(); 
    } 
   } 
  }else{ 
   PRINT_INFO("Nothing in the client queue \n"); 
  } 
 }else{ 
 
  Sleep(1000); 
  //vector for regular execution 
  vector <string> input_string_in; 
  while(serverlet->returnQueueObject().size() > 0) 
  { 
   input_string_in.push_back(serverlet->GetCmdQueue()); 
  } 
 
  if(!input_string_in.empty()) 
  { 
   was_undoable = false; 
   int ss = CubitUndoManager::number_undo_groups(); 
   CIUserInterface *ui = CIUserInterface::instance(); 
   for (int i=0; i<input_string_in.size(); i++) 
   { 
    if(ui && ui->get_playback_handler()) 
    { 
     ui-
>parse_input_line(input_string_in[i].c_str()); 
    }  
    else 
    { 
     UserInterface::instance()-
>parse_input_line_and_files(input_string_in[i].c_str()); 
 
    } 
    was_undoable = CubitUndo::get_undo_enabled() && 
(CubitUndoManager::number_undo_groups() > ss); 
    if(!gsObserver) return; 
 
    std::list<CubitInterface::CIObserve*>::iterator iter 
= gsObserver->mGUIObserver.begin(); 
    for (; iter != gsObserver->mGUIObserver.end(); 
iter++) 
    { 
     (*iter)->notify_command_complete(); 
    } 
   } 
  }else{ 



 

   79 

   PRINT_INFO("Command not yet executed, please click update 
\n"); 
  } 
 } 
} 
else 
{ 
  CIUserInterface *ui = CIUserInterface::instance(); 
  if(ui && ui->get_playback_handler()) 
    ui->parse_input_line(input_string); 
  else 
    UserInterface::instance()->parse_input_line_and_files(input_string); 
  was_undoable = CubitUndo::get_undo_enabled() && 
(CubitUndoManager::number_undo_groups() > ss); 
  if(!gsObserver) return; 
 
  std::list<CubitInterface::CIObserve*>::iterator iter = gsObserver-
>mGUIObserver.begin(); 
  for (; iter != gsObserver->mGUIObserver.end(); iter++) 
  { 
    (*iter)->notify_command_complete(); 
  } 
} 
   
  //This section is where it gets the total number of volumes and write that 
to a file 
  string check_open="open"; 
  string in_str_check(input_string); 
 
  if (in_str_check.find(check_open) != string::npos) 
  { 
  std::ofstream VolumeFile("C:\\CubitConnect\\ConfigFiles\\Volume.txt"); 
     VolumeFile.clear(); 
  int number_of_volumes= get_volume_count(); 
  VolumeFile<< number_of_volumes << endl; 
  VolumeFile.close(); 
  } 
} 

 

 

 

 

 

 

 



 

   80 

A.3 CUBIT GGeomPicker.cpp Workspace Handling Implementation 

#ifdef WIN32 
#pragma warning(disable : 4786) 
#endif 
 
#include "GGeomPicker.hpp" 
#include "GCGMInterface.hpp" 
 
#include <map> 
 
#include "vtkPoints.h" 
#include "vtkRenderer.h" 
#include "vtkCell.h" 
#include "vtkCellData.h" 
#include "vtkVariantArray.h" 
#include "vtkFieldData.h" 
#include "vtkDataSet.h" 
#include "vtkPainterPolyDataMapper.h" 
#include "CubitString.hpp" 
#include "GTopEntity.hpp" 
 
#include "MultiCellPicker.hpp" 
 
// CGM includes 
 
#include "GEntity.hpp" 
#include "GVertex.hpp" 
#include "GEntityGroup.hpp" 
#include "GSurface.hpp" 
#include "GCurve.hpp" 
#include "GSurfaceData.hpp" 
#include "SVUtil.hpp" 
#include "GRepresentationPainter.hpp" 
#include "GGeomModel.hpp" 
 
//Multi-User Includes 
#include <fstream> 
#include <vector> 
#include <algorithm> 
 
bool MultiUserWorkSpaces(int PickedVolumeID); 
 
static const float gVertexOffset = 0.0; 
static const float gCurveOffset = 0.1; 
static const float gSurfaceOffset = 0.2; 
static const float gVolumeOffset = 0.3; 
static const float gBodyOffset = 0.4; 
 
 
const char* GGeomPicker::gGroupType = "Group"; 
const char* GGeomPicker::gBodyType = "Body"; 
const char* GGeomPicker::gVolumeType = "Volume"; 
const char* GGeomPicker::gSurfaceType = "Surface"; 
const char* GGeomPicker::gCurveType = "Curve"; 
const char* GGeomPicker::gVertexType = "Vertex"; 



 

   81 

 
const char* PickedGeomEntity::type() const 
{ 
 return mIface->class_name(mRefEntity); 
} 
 
int PickedGeomEntity::id() const 
{ 
  return mIface->id(mRefEntity); 
} 
 
const char* PickedGeomEntity::name() const 
{ 
  static CubitString thename; 
  thename = mIface->entity_name(mRefEntity); 
  return thename.c_str(); 
} 
 
size_t PickedGeomEntity::handle() const 
{ 
  return reinterpret_cast<size_t>(mRefEntity); 
} 
 
GGeomPicker::GGeomPicker() 
{ 
  register_picker(gGroupType, this); 
  register_picker(gBodyType, this); 
  register_picker(gVolumeType, this); 
  register_picker(gSurfaceType, this); 
  register_picker(gCurveType, this); 
  register_picker(gVertexType, this); 
} 
 
GGeomPicker::~GGeomPicker() 
{ 
  unregister_picker(gGroupType, this); 
  unregister_picker(gBodyType, this); 
  unregister_picker(gVolumeType, this); 
  unregister_picker(gSurfaceType, this); 
  unregister_picker(gCurveType, this); 
  unregister_picker(gVertexType, this); 
} 
 
void GGeomPicker::ready_to_pick(vtkRenderer* ren, MultiCellPicker*) 
{ 
} 
 
void GGeomPicker::done_picking(vtkRenderer* ren, MultiCellPicker*) 
{ 
} 
   
void GGeomPicker::compute_pre_select(vtkRenderer* ren, float x, float y) 
{ 
  MultiCellPicker* VTKPicker = MultiCellPicker::New(); 
 
  // get geometry ready to pick 
  ready_to_pick(ren, VTKPicker); 



 

   82 

 
  // now do picking 
  VTKPicker->Pick(x,y, 0.0, ren); 
 
  // cleanup what we got ready to pick 
  done_picking(ren, VTKPicker); 
 
  // find the geometry from our pick list 
  process_picks(ren, VTKPicker, false); 
 
  VTKPicker->Delete(); 
} 
 
void GGeomPicker::compute_pick(vtkRenderer* ren, float x, float y) 
{ 
  MultiCellPicker* VTKPicker = MultiCellPicker::New(); 
 
  // get geometry ready to pick 
  ready_to_pick(ren, VTKPicker); 
 
  // now do picking 
  VTKPicker->Pick(x,y, 0.0, ren); 
 
  // cleanup what we got ready to pick 
  done_picking(ren, VTKPicker); 
 
  // find the geometry from our pick list 
  process_picks(ren, VTKPicker, false); 
 
  // get groups out of our selection buffer if we are picking groups 
  if(is_filtered(gGroupType)) 
  { 
    process_groups(); 
  } 
 
  VTKPicker->Delete(); 
   
} 
 
void GGeomPicker::compute_pick_by_bounds(vtkRenderer* ren, PickBounds* 
bounds) 
{ 
  // TODO:  when processing picks, make sure entire datasets of curves or 
  // surfaces were selected 
 
  MultiCellPicker* VTKPicker = MultiCellPicker::New(); 
 
  // get geometry ready to pick 
  ready_to_pick(ren, VTKPicker); 
 
  // now do picking 
  VTKPicker->PickByBounds(bounds, ren); 
 
  // cleanup what we got ready to pick 
  done_picking(ren, VTKPicker); 
 
  // find the geometry from our pick list 



 

   83 

  process_picks(ren, VTKPicker, true); 
 
  // get groups out of our selection buffer if we are picking groups 
  if(is_filtered(gGroupType)) 
  { 
    process_groups(); 
  } 
 
  VTKPicker->Delete(); 
} 
 
// have a map to process surfaces at the end, 
// this is in case we are selecting by box and we only want fully enclosed 
volumes and bodies 
// not just fully enclosed surfaces 
struct DeferredSurfaceData 
{ 
  DeferredSurfaceData(PickedGeomEntity* pick, const float* pt, float z, bool 
tol) 
   : mPickedGeom(pick), mPoint(pt), mZ(z), mTol(tol) 
  {} 
  PickedGeomEntity* mPickedGeom; 
  const float* mPoint; 
  float mZ; 
  bool mTol; 
}; 
 
 
void GGeomPicker::process_picks(vtkRenderer* ren, MultiCellPicker* 
vtk_picker, bool box_pick) 
{ 
  const MultiCellPicker::CellPickList* picks = 
    vtk_picker->get_picked_cells(); 
 
  MultiCellPicker::CellPickList::const_iterator iter; 
  MultiCellPicker::SubCellPickList::const_iterator jter; 
 
  bool filter_types[6] = { false,false,false,false,false,false }; 
  if(is_filtered(gGroupType)) 
    filter_types[0] = true; 
  if(is_filtered(gBodyType)) 
    filter_types[1] = true; 
  if(is_filtered(gVolumeType)) 
    filter_types[2] = true; 
  if(is_filtered(gSurfaceType)) 
    filter_types[3] = true; 
  if(is_filtered(gCurveType)) 
    filter_types[4] = true; 
  if(is_filtered(gVertexType)) 
    filter_types[5] = true; 
 
  // TODO -- speed this up esp. for rubber band picking 
  // We'd save lots of time if we didn't call add_to_selection_buffer so many 
times 
  // we can keep track of our current surface or curve (entities with 
multiple facets) 



 

   84 

  // and only add_to_selection_buffer when we've determined our best 
intersection  
  // with that entity 
  // another alternative is to just check the box_pick flag and when it is 
true, 
  // only call add_to_selection_buffer once per entity (we never have 
intersection data for that anyway) 
 
   
  
 
  typedef vtkstd::multimap<RefEntity*, DeferredSurfaceData> DeferredSurfaces; 
  DeferredSurfaces deferred_surfaces; 
   
  // loop over the picks that we got from our VTK picker 
  for(iter = picks->begin(); iter != picks->end(); ++iter) 
  { 
 
 bool MultiUserWorkSpaceCheck(false); 
     
 
    // get the geometry group for this entity 
    vtkDataSet* ds = (*iter)->mData; 
    GSurface* g_surface = NULL; 
    GCurve* g_curve = NULL; 
    SVPointerContainer::ArrayType* g_vertex_ptrs = NULL; 
     
    vtkObject* backPtr = SVUtil::get_back_pointer(ds); 
    g_surface = GSurface::SafeDownCast(backPtr); 
    g_curve = GCurve::SafeDownCast(backPtr); 
    g_vertex_ptrs = 
      SVPointerContainer::ArrayType::SafeDownCast(ds->GetCellData()-
>GetArray("Pointers")); 
 
    // if we don't have a geometry group, go to the next pick 
    if(!g_surface && !g_curve && !g_vertex_ptrs) 
      continue; 
     
    // for each intersection with this geometry group 
    for(jter = (*iter)->mPickedCells.begin(); jter != (*iter)-
>mPickedCells.end(); ++jter) 
 { 
      // get the point 
      double point[4] = { (jter)->mPoint[0],  
                         (jter)->mPoint[1],  
                         (jter)->mPoint[2],  
                         1.0}; 
 
      // transform to viewpoint to get depth 
      ren->SetWorldPoint(point); 
      ren->WorldToView(); 
      ren->GetViewPoint(point); 
           
      // if we handle our pick from a surface 
      if( g_surface && (filter_types[0] || filter_types[1] || filter_types[2] 
|| filter_types[3])) 
      { 



 

   85 

        RefEntity* ref_face = g_surface->ref_entity(); 
        assert(ref_face != NULL); 
        if(!ref_face) 
          continue; 
   
  //int PickedVolumeID(0); 
 
  /*RefEntity* APickedVolumeID = g_surface->sample_parent()-
>ref_entity(); 
  if (APickedVolumeID) 
  { 
   PickedVolumeID= APickedVolumeID; 
  }*/ 
 
   
  //int PickedVolumeID = g_surface-> 
   
 
  //Multi-User Picked Volume ID 
  //int PickedVolumeID=g_surface->top_entity()->get_source_model()-
>get_cgm()->id(ref_face); 
   
   
               // if we are picking volumes 
         if( filter_types[0] || filter_types[2] ) 
     { 
       // find the volume that was picked 
       GEntity* volume = g_surface->sample_parent(); 
       if(volume) 
       { 
      PickedGeomEntity* pick = 
PickedGeomEntity::New(volume->ref_entity(), g_surface->top_entity()-
>get_source_model()->get_cgm()); 
      if(box_pick && 
!MultiCellPicker::GetBoxAcceptPartialCells()) 
      { 
        deferred_surfaces.insert( 
DeferredSurfaces::value_type(ref_face, DeferredSurfaceData(pick, (jter)-
>mPoint, point[2], (jter)->mZeroTol)) ); 
      } 
      else 
      { 
        //Put Multi-User Code Here 
        RefEntity* MUpicked_entity = pick-
>ref_entity(); 
                          RefEntity* MUvolume = MUpicked_entity; 
        int MUPickedVolumeID = pick-
>get_interface()->id(MUvolume); 
 
        MultiUserWorkSpaceCheck = 
MultiUserWorkSpaces(MUPickedVolumeID); 
        if (MultiUserWorkSpaceCheck==true) 
        {         
          add_to_selection_buffer(pick, (jter)-
>mPoint, point[2] + gVolumeOffset, (jter)->mZeroTol); 
          pick->Delete(); 
 



 

   86 

        } 
      } 
        } 
      } 
          
     // if we are picking surface 
     if( filter_types[0] || filter_types[3] ) 
     { 
       PickedGeomEntity* pick = 
PickedGeomEntity::New(ref_face, g_surface->top_entity()->get_source_model()-
>get_cgm()); 
        
        
       //Put Multi-User Code Here 
       RefEntity* MUSpicked_entity = g_surface-
>sample_parent()->ref_entity(); 
                      RefEntity* MUSvolume = MUSpicked_entity; 
       int MUSPickedVolumeID = pick-
>get_interface()->id(MUSvolume); 
       
       MultiUserWorkSpaceCheck = 
MultiUserWorkSpaces(MUSPickedVolumeID); 
 
                      if (MultiUserWorkSpaceCheck==true) 
       { 
        add_to_selection_buffer(pick, (jter)-
>mPoint, point[2] + gSurfaceOffset, (jter)->mZeroTol); 
           pick->Delete(); 
       } 
     } 
            
      
            
            
     // if we are picking bodies 
     if( filter_types[0] || filter_types[1] ) 
     { 
       // find the body that was picked 
       // get the volume 
       GEntity* volume = g_surface->sample_parent(); 
       RefEntity* body = NULL; 
       // then get the body from the volume 
       if(volume) 
       { 
      body = volume->sample_parent() ? volume-
>sample_parent()->ref_entity() : NULL; 
       } 
 
       if(body) 
       { 
      PickedGeomEntity* pick = 
PickedGeomEntity::New(body, g_surface->top_entity()->get_source_model()-
>get_cgm()); 
      if(box_pick && 
!MultiCellPicker::GetBoxAcceptPartialCells()) 
      { 



 

   87 

        deferred_surfaces.insert( 
DeferredSurfaces::value_type 
       (ref_face, 
DeferredSurfaceData(pick, (jter)->mPoint, point[2], (jter)->mZeroTol)) ); 
      } 
      else 
      { 
        //Put Multi-User Code Here 
        add_to_selection_buffer(pick, (jter)-
>mPoint, point[2] + gBodyOffset, (jter)->mZeroTol); 
        pick->Delete(); 
      } 
       } 
     } 
     
   
      } 
 
      // if we handle our pick from a curve 
      if( g_curve && (filter_types[0] || filter_types[4]) ) 
      { 
        RefEntity* ref_edge = g_curve->ref_entity(); 
        assert(ref_edge != NULL); 
        if(!ref_edge) 
          continue; 
 
        // add this curve to our selection buffer 
        PickedGeomEntity* pick = PickedGeomEntity::New(ref_edge, g_curve-
>top_entity()->get_source_model()->get_cgm()); 
   
  //Put Multi-User Code Here 
        add_to_selection_buffer(pick, (jter)->mPoint, point[2] + 
gCurveOffset, (jter)->mZeroTol); 
        pick->Delete(); 
 
      } 
 
      // if we handle our pick from a vertex 
      if( g_vertex_ptrs && (filter_types[0] || filter_types[5]) ) 
      { 
        // ask the vertex group what RefVertex this vtk point is 
        GVertex* g_vertex = 
SVPointerContainer::get_ptr<GVertex>(g_vertex_ptrs, jter->mId); 
        RefEntity* ref_vertex = g_vertex->ref_entity(); 
        assert(ref_vertex != NULL); 
        if(!ref_vertex) 
          continue; 
         
        // add it to our selection buffer 
        PickedGeomEntity* pick = PickedGeomEntity::New(ref_vertex, g_vertex-
>top_entity()->get_source_model()->get_cgm()); 
 
  //Put Multi-User Code Here 
        add_to_selection_buffer(pick, (jter)->mPoint, point[2] + 
gVertexOffset, (jter)->mZeroTol); 
        pick->Delete(); 
 



 

   88 

      } 
 
    } // end for jter 
  }   // end for iter 
 
  // process deferred surfaces 
  // these surfaces are deferred because we want entire volumes or entire 
bodies to be 
  // enclosed by a box pick 
  DeferredSurfaces::iterator kter; 
  for(kter = deferred_surfaces.begin(); kter != deferred_surfaces.end(); 
++kter) 
  { 
    PickedGeomEntity* pick = kter->second.mPickedGeom; 
    DeferredSurfaceData* extra_data = &kter->second; 
    RefEntity* picked_entity = pick->ref_entity(); 
    RefEntity* volume = picked_entity; 
    if(volume) 
    { 
      DLIList<RefEntity*> child_surfaces; 
      pick->get_interface()->get_child_ref_entities(volume, child_surfaces); 
    
   //Multi-User 
   int MUPickedVolumeID = pick->get_interface()->id(volume); 
   
       
   int i; 
      bool any_not_in_list = false; 
      for(i=0; i<child_surfaces.size() && any_not_in_list != true; i++) 
      { 
        RefEntity* surface = child_surfaces.next(i);                 
        DeferredSurfaces::iterator zter = deferred_surfaces.find(surface); 
        if(zter == deferred_surfaces.end()) 
        { 
          any_not_in_list = true; 
        } 
  //add volume numbers 
      } 
      if(any_not_in_list == false) 
      { 
  //Add Multi-User Code Here 
        add_to_selection_buffer(pick, extra_data->mPoint, extra_data->mZ + 
gVolumeOffset, extra_data->mTol); 
      } 
      continue; 
    } 
    RefEntity* body = picked_entity; 
    if(body) 
    { 
      DLIList<RefEntity*> child_volumes; 
      DLIList<RefEntity*> child_surfaces; 
   pick->get_interface()->get_child_ref_entities(body, child_volumes); 
      //body->get_child_ref_entities(child_volumes); 
      int i; 
      for(i=0; i<child_volumes.size(); i++) 
      { 
        DLIList<RefEntity*> children; 



 

   89 

        pick->get_interface()->get_child_ref_entities(child_volumes.next(i), 
children); 
        child_surfaces += children; 
      } 
      child_surfaces.uniquify_unordered(); 
       
      bool any_not_in_list = false; 
      for(i=0; i<child_surfaces.size() && any_not_in_list != true; i++) 
      { 
        RefEntity* surface = child_surfaces.next(i);                 
        DeferredSurfaces::iterator zter = deferred_surfaces.find(surface); 
        if(zter == deferred_surfaces.end()) 
        { 
          any_not_in_list = true; 
        } 
      } 
      if(any_not_in_list == false) 
      { 
  //Put Multi-User Code Here 
        add_to_selection_buffer(pick, extra_data->mPoint, extra_data->mZ + 
gBodyOffset, extra_data->mTol); 
      } 
 
    } 
  } 
   
  // cleanup our references to the picked entities 
  for(kter = deferred_surfaces.begin(); kter != deferred_surfaces.end(); 
++kter) 
  { 
    kter->second.mPickedGeom->Delete(); 
  } 
 
} 
 
void GGeomPicker::process_groups() 
{ 
  // get the selection buffer 
  const EntitySelection* p_old_selections; 
  int num_old_selections; 
  get_selection_buffer(p_old_selections, num_old_selections); 
 
  // if there is nothing, just return 
  if(num_old_selections == 0) 
    return; 
  
  // copy selections  
  vtkstd::vector<EntitySelection> old_selections; 
  old_selections.insert(old_selections.end(), p_old_selections, 
p_old_selections+num_old_selections); 
 
  // clean out selection buffer 
  clear_selection_buffer(); 
 
  vtkstd::vector<EntitySelection>::iterator iter; 
  for(iter = old_selections.begin(); iter != old_selections.end(); ++iter) 
  { 



 

   90 

    PickedGeomEntity* geom_entity = dynamic_cast<PickedGeomEntity*>(iter-
>mEntity); 
    if(!geom_entity) 
      continue; 
    RefEntity* entity = geom_entity->ref_entity(); 
    if(!entity) 
      continue; 
    DLIList<RefEntity*> groups; 
    geom_entity->get_interface()->get_owning_groups(entity, groups); 
 
    for(int i=0; i<groups.size(); i++) 
    { 
  PickedGeomEntity* pick = 
PickedGeomEntity::New(groups.get_and_step(), geom_entity->get_interface()); 
 
   //Put Multi-User Code Here 
      add_to_selection_buffer(pick, iter->mPickIntersection, iter->mZValue, 
false); 
      pick->Delete(); 
    } 
  } 
} 
 
//Multi-User Workspace Function 
bool MultiUserWorkSpaces(int PickedVolumeID) 
{   
 //Open Config File 
  std::ifstream WorkSpaceFile; 
  WorkSpaceFile.open("C:\\CubitConnect\\ConfigFiles\\Workspace.txt"); 
   
     
  std::vector<int> WorkSpaceNumbers; 
  string dummy_string; 
  
  while (WorkSpaceFile.eof()!=true) 
  { 
   std::getline(WorkSpaceFile, dummy_string); 
   if(dummy_string.find("all")!=std::string::npos || 
dummy_string.find("ALL")!=std::string::npos) 
   { 
    return true; 
   } 
   int dummy_int= atoi(dummy_string.c_str()); 
   WorkSpaceNumbers.push_back(dummy_int); 
  } 
    //Check if PickedVolumeID is contained in the config file 
  for (int i=0; i<WorkSpaceNumbers.size(); i++) 
  { 
   if (WorkSpaceNumbers[i]==PickedVolumeID) 
   { 
    return true; 
   } 
  } 
return false; 
 
 
} 



 

   91 

APPENDIX B. CUBIT PEER TO PEER IMPLEMENTATION DOCUMENTATION  

B.1 Introduction 

Cubit is a mesh generation tool developed primarily by Sandia National Laboratories. Constant 
research is being done to upgrade the capabilities of Cubit at both BYU and Carnegie Mellon 
University.  

Cubit comprises of two distinct portions: 

1) Cubit Core (executes the FEA method) 
2) Claro  (Graphical User Interface) 

 

 

Figure B-0-1: CUBIT Process Hierarchy 

The user interacts with Claro and whenever the user creates geometry, mesh, etc. a command 
string is automatically generated and passed through to the Cubit Core through the Cubit 
Interface. That command is then executed and the results are passed back to the GUI for 
displaying through the same interface.  

Most of the programming was done in C++ while python was used to create some aspects of 
the GUI. Qt creator was the main graphics generation software used. The programming for the 
project was done using Visual Studio 2008. Setting up Cubit is explained in depth in a later 
section.  



 

   92 

B.2 Problem Statement: Cubit Connect 

Introduction:  
Cubit is a finite element mesh generation software developed by Sandia National Laboratories. Cubit has a user 
friendly GUI than most of the meshing programs available. However, Cubit does not have solving capabilities. 
Cubit’s source code is available for academic purposes and each student in the project will be required to get 
access to this through Sandia. Further information on this will be provided later on.  
 
Objective: 
Modify Cubit to be a multi-user program with the following capabilities by the end 
of this semester:  

1) Three users can get on to the same preprocessed model. 
2) The program places each cursor at a random location on the mesh. 
3) Each user should be able to: 

a) Skew elements 
b) Apply loads 
c) Apply constraints around their locality.                                                                                                             

                                                                                                                               Figure B-0-2: CS 
Architecture 

Project Distribution:                                                                                                                
The group as a whole should develop a method to get 3 users on to the same model.  
 This will involve figuring out client server architecture and how to use that to enable the communication 
between three computers running Cubit.  
 
 Each member of the Cubit team: 

1) Would be assigned one of the following tasks to figure out a way to : 
a) Enable users to skew elements 
b) Enable user to apply loads 
c) Enable users to apply constraints in the proposed multi-user 

environment 
 

2) Should create relevant dialog boxes and programs that enable the 
assigned task. 

                                                                                                                           Figure B-0-3: CUBIT Connect 
Modules 

After completing of the above tasks, the team should combine everything into one package and then demonstrate 
the combined capabilities of the new multi-user Cubit to the class by the end of winter semester 2011.  
Deliverable: 
 
A working software package that demonstrates multi-user capabilities of Cubit by the end of the semester.  
 
Resources: 
 
A similar program for Siemens NX called NX-Connect was developed by BYU students and the documentation is available for 
review.  
A document for a Cubit multi-user architecture is being prepared and should be available soon.         



 

   93 

B.3 Building Cubit on a Local Machine 

Download the following software: 

1) Swig-1.3.40 URL: http://sourceforge.net/projects/swig/files/swigwin/swigwin-1.3.40/ 
2) Qt for Open Source C++ development on Windows (VS2008) 

URL: http://qt.nokia.com/downloads/windows-cpp-vs2008 
3) Cmake  version 2.8 .4 Windows (Win32 Installer) 

 URL: http://www.cmake.org/cmake/resources/software.html 
4) Tortoise SVN  version 1.6.9  URL: http://sourceforge.net/projects/tortoisesvn/files/Application/1.6.9/ 
5) Python 2.7 x86 msi installer URL: http://python.org/download/releases/2.7/ 
6) Microsoft Visual Studio 2008 (Express is alright) 

Make sure to download the 32bit versions of each of the above software. This was built on a machine running MS 
Windows 7 Enterprise Edition with a Quad Core Xenon W3520 processor and 12GB  of memory.  

Download and install the software packages one at a time. If you are asked to restart the computer after an 
installation, please do so then continue with the next installation.  

Make the following folders in your C: drive 

1) Cubit   
2) Cubit\Build 
3) Cubit\Source 
4)  windows_libs 

 
Downloading Cubit Source: 
Make sure you get individual access to the Cubit source code repository from Sandia. Specifically ask them to grant 
you access to the ACIS group and AcisTweakToolCAT file.  

After getting access to the source code follow these steps: 

1) After installing Tortoise SVN right click on the folder C:\Cubit\Source and select “SVN Checkout”. Use the 
following settings:  
   

 

 

 

 

 

 

 

Figure B-0-4: Tortoise SVN Checkout 

http://sourceforge.net/projects/swig/files/swigwin/swigwin-1.3.40/
http://qt.nokia.com/downloads/windows-cpp-vs2008
http://www.cmake.org/cmake/resources/software.html
http://sourceforge.net/projects/tortoisesvn/files/Application/1.6.9/
http://python.org/download/releases/2.7/


 

   94 

URL of repository:   http://malla.sandia.gov/svn/CUBIT_SOURCE/trunk 

Checkout directory:  C:\Cubit\Source  
 

2) Leave everthing else in their default values and click OK.  Enter the username and password provided to 
you by Sandia Labs.  

3) Download should start immediately and will take about 1 hr, depending on your network speed, for the 
process to complete.  
 

Downloading Windows Libraries for Cubit:  
Right click on the folder named windows_libs (created earlier) and select “SVN Checkout”. Use the following 
settings:  

URL of repository:  http://malla.sandia.gov/svn/LIBRARIES/windows_libs_2008/trunk/ 

Checkout directory: C:\windows_libs\ 

Leave everthing else in their default values and click OK. Enter the username and password provided to you by 
Sandia Labs.  

Download should start immediately and will take about 1 hr, depending on your network speed, for the process to 
complete.  

Changing Environment Variables:  
1) Right click on Computer   Properties   Advanced  system settings  Environment Variables 
2) Under Sytem variables click on New 
3) Add the following: 

i. Variable Name:  CUBITROOT 
Variable Value:  c:\window_libs 

ii. Variable Name:  CUBITPATH 
Variable Value:   
%CUBITROOT%\bin;%CUBITROOT%\VTK\VTK-
5.2.0\bin;%CUBITROOT%\acis\acis21.1\bin\NT_VC9_DLL;%CUBITROOT%\acis\acis21.1\
bin\NT_VC9_DLLD;%CUBITROOT%\camal\camal5.3.1\lib\Windows 

4) Edit the system “PATH” Variable to have the following value at the end:  
                            Variable Name: PATH 
             Variable Value:  C:\Program Files\TortoiseSVN\bin;%CUBITPATH%;C:\swigwin-
1.3.40\Lib;C:\Python27\libs;C:\QtSC\bin;C:\Program Files (x86)\CMake 2.8\bin 
 
You should also make sure the paths for the following are included in the variable:  
i. Tortoise (bin directory) 
ii. Qt (bin directory) 
iii. CMake (bin directory) 
iv. Python (libs directory) 

      NOTE: Above variable values are example paths, therefore, make sure you enter the variable values as per the 
installation paths on your particular system.  

http://malla.sandia.gov/svn/CUBIT_SOURCE/trunk
http://malla.sandia.gov/svn/LIBRARIES/windows_libs_2008/trunk/


 

   95 

Running CMake: 
 

1) Open CMake(CMake-gui) under Start->All Programs->CMake 
2) Select File -> Delete Cache to make sure that you start fresh and use the following values 
3) Where is the source code: C:/Cubit/Source/trunk/cubitclaro 
4) Where to build the binaries: C:/Cubit/Build 
5) Make sure Advanced is checked on the top panel 
6) Click once on Configure  
7) A diaglog box will pop up asking the user to specify the generator for the project 
8) Scroll down and select Visual Studio 9 2008 (Use default native compilers) 
9) It is normal for CMake to give a warning about missing SVN file in the output window. Ignore it.  
10) CMake will give you and error and ask for the python executable (these will be highlighted in Red).  
11) In the middle window, under “name” scroll down to python execulatble and click on Value 
12) Scroll to the directory of Python and select python.exe 
13) Hit Configure again 
14) CMake will give an error again and it will ask for the swig executable.  
15) Click on the value of SWIG_EXECUTABLE and browse to the directory of and select swig.exe 
16) Hit Configure again 
17) CMake will now show some values in Red again.  
18) Disregard those and hit Configure (If there is an error at this point. Delete Cubit\build folder, Open CMake 

and follow steps 1 therough 18 again.) 
19) Once the configuration complete message comes up hit generate.  
20) When the generation complete message comes up, close CMake 

  



 

   96 

Building Cubit using Visual Studio 2008: 
 

1) Open Visual Studio 2008 
2) Click on file -> Open -> Project/Solution 
3) Navigate to C:\Cubit\Build folder 
4) Select the solution file “cubitclaro.sln” 
5) This should populate the Solution Explorer window on the left with numerious projects related to Cubit 
6)  

 

Figure B-0-5: Snapshot of Cubit project in Visual Studio 2008 

7) After everything is loaded click on Build on the top toolbar and click on Build Solution (or press F7) 
8) This process would take a couple of hours to complete 
9) Once the solution is built it should show 0 errors.  
10) If  a “microsoft incremental linker stopped working” error window pops up in Windows, just hit ignore 

and close the error window. Wait till the building is done in Visual Studio. The output window should 
show you about 4 errors should the above error window pops up. Simply click on Build Solution again and 
the errors will go away. 

  



 

   97 

Running Cubit: 
 

1. In the Solution Explorer find a project called “clarox” 
2. Right click on the project and select Debug -> Start new instance 
3. If a warning/information window pops up, just ignore it 
4. Cubit should open up (disregard the missing documentation error popups inside Cubit) 

 
 

 

 

Figure B-0-6: Running Cubit (GUI) 

 

 



 

   98 

Cubit GUI should look something like this: 

 
Figure B-0-7: Snapshot of the Cubit GUI Version 13.1b 32bit Version 

 

 

 

 

Prepared by: Prasad Weerakoon  prasadwee@yahoo.com  

Contact Prasad if you have questions on setting up Cubit 

For Cubit Support: 

Email cubit-dev@sandia.gov or contact Dr. Karl Merkley or Mark Dewey at  Computational Simulation Software, 
LLC on 801-717-2296 for  

mailto:prasadwee@yahoo.com
mailto:cubit-dev@sandia.gov


 

   99 

B.4 Documentation from Sandia (Reference) 

 

Building CUBIT with Claro on Windows 
  
Claro is CUBIT's graphical user interface environment developed by elemental technologies. This page contains 
instructions for setting up your machine for developing with Claro. 
As a prerequisite, your machine should already be set up to build the command line version of Cubit. 
0. Install Qt. 
Qt is the C++ library that Claro uses to build its graphical user interface. It is a cross-platform library that allows us 
to use the same source code for any of our supported platforms. We use Qt 4.5 and greater.  Follow the 
instructions for building and installing Qt for Visual Studio.  Copying from another machine is not recommended, 
unless it is put in the same directory.  The default pre-built Qt versions you can download from www.trolltech.com 
are built with mingw and are not compatible with Visual Studio. 
1. Install Python 
Claro is integrates with and uses a scripting language called python. Python is an object-oriented programming 
language, comparable to Perl, Tcl, Scheme, or Java. To compile Claro with Cubit will need to install python. Go to 
the following URL to download Python: 
http://www.python.org/download/ 
The latest version of python is usually ok.  As of this writing 2.6 works.  Install it on your machine.  For example: 
c:\python26 
2. Install SWIG 
SWIG is an interface compiler that generates wrappers to make C++ code available for use Python.  Download swig 
from the following website: 
http://www.swig.org/download.html 
Swig downloads are maintained by Sourceforge. Unless you want to build your own executable from the source 
make sure you download the version that includes the executable. Here is the direct link to the download: 
http://prdownloads.sourceforge.net/swig/swigwin-1.3.21.zip 
Unzip and extract this file to a convenient location. For example: C:\libs\swig 
3. Add the Python, SWIG and Qt to your PATH environment variable 
The windows Path environment variable defines the default locations of executables on your computer. Add the 
directory you just installed python to, to your Path. Go to start->settings->control panel->system. Select the 
Advanced TAB and click on the Environment Variables... button. In the System Variables window scroll down to 

http://www.trolltech.com/
http://www.python.org/download/
http://www.swig.org/exec.html
http://www.swig.org/download.html
http://prdownloads.sourceforge.net/swig/swigwin-1.3.21.zip


 

   100 

the Path variable. Select the Edit... button. Add the paths in there for your Qt installation, SWIG installation and 
Python installation.  For example if Qt was installed in c:\Qt\4.5.3 and Python in c:\python26 and SWIG in 
c:\swig\swig-1.3.21, one would add “c:\Qt\4.5.3\bin;c:\python26;c:\swig\swig-1.3.21” in the dialog.  Remember to 
use ; as the separator between each path.  These paths help your programs find .dll files when they run, and also 
cmake looks at those paths to find .exe files for building Cubit. 
4. Add PATH to Visual C++ 
Visual C++ will need to know the location of these .dll and .exe files.  Open your copy of Visual Studio and go to the 
Tools->Options menu. Click on the Directories Tab. In this dialog, select the executables option and add at the end 
of the list $(PATH), if it is not already there.  This means Visual Studio will pick up anything you set in your PATH for 
the system. 
5. Download CubitClaro 
Claro is Cubit's graphical user interface. It contains all the dialogs, widgets and their controllers to make the GUI 
go. Typical installation location is parallel to your Cubit main source directory. To checkout Claro from the Cubit 
source repository use Subversion. TotoiseSVN is an easy client to use and can be downloaded here. The path is: 
https://malla.sandia.gov/svn/CUBIT_SOURCE/trunk/cubitclaro 
6. Open CMake 
Set CMake to get the source code from the cubitclaro folder downloaded from SVN. Choose a folder to build the 
binaries in and then press Configure. If any values show up in red after pressing Configure, try pressing it a few 
more times. Values can be set manually if CMake cannot assign them. Once all variable have turned gray, press ok 
to generate the build files. 
7. Open the cubitclaro solution file 
The previous step generates a Visual Studio solution file called cubitclaro.sln in the file where the binaries were 
built. Double click this to open it in Visual Studio. 
8. Build the project 
Use the F7 key or select Build->Build Solution from the menu. After it has built, run the executable. If it displays an 
error about a missing .dll file, locate it and add the path to the Path environment variable. One file called 
msvcrtd.dll may need to be added to C:\WINDOWS\System32. If all else goes well, Cubit should be ready to use. 
For further help with building Cubit, e-mail the Cubit-Dev mailing list with a description of the problem. 
  

http://tortoisesvn.net/downloads
https://malla.sandia.gov/svn/CUBIT_SOURCE/trunk/cubitclaro


 

   101 

B.5 Transforming Cubit into a Multi-User Program 

As discussed earlier, Cubit has two distinct components; the GUI and the Core. The first step in 
making Cubit multi-user is to capture the command strings that are passed to the Core from the 
GUI before they get sent to the Core. Then a networking program can be used to distribute 
these changes to the peer computers.  

Preliminary Plan:  

• Study Cubit source code (relevant areas) in depth.  

• Develop a method to intercept the command strings before they are processed. 

• List all the commands that are not model relevant (Change of view, rotate, etc.). 

• Develop a networking program that sends command strings within the network. 

• Integrate network program with Cubit to send/receive command strings 

 

Figure B-0-8: Preliminary Cubit-Connect Architecture 

 

 

 

 



 

   102 

Due to time constraints, it was decided to use a peer-to-peer(P2P) networking program rather 
than a Client-Server architecture to continue on with the project. A P2P networking client that 
was built with Qt Creator was modified for this purpose. Since the team ran in to difficulties 
integrating the networking program code inside of Visual Studio, an external networking 
program was used which ran parallel with Cubit.   

Implemented Method: 

1. Install Cubit along with the required software 

2. Intercept all command strings passed on by the GUI before it is sent to the processor 
(Cubit core) -tweak Cubit Code 

3. Filter out the command strings that do not have any bearing to the overall model (Eg: 
Change of view, zoom, etc.) and only pass the commands that are integral to the model 
to all users(peer-relevant commands) –Tweak Cubit Code 

4. Write the peer relevant commands to a file that is being read by the Network Client 

5. Pass the contents on the file to other users in the network 

6. Write commands coming from peer computers to a file 

7. Once user types the command for accepting updates from other users, read the file and 
send the commands to Cubit Core for execution 

8. GUI updates the model  

  



 

   103 

CUBIT-CONNECT ARCHITECTURE 
 
      

 Local User Commands 

 

 

                   

                    To Peer Users 

 

 

 

 

 

 

  
                   Write commands to file         

 

 

  

 

 

 

 

 

 

 

Intercept Commands 

CUBIT 
CORE 

              Filter  

Output file 

  Network Client 

Pass commands to 
the entire network 
(to peers) 

Read output file 

Read incoming 
command strings 
from network (from 
peers) 

Write incoming 
commands to input 
file 

Input file 

“Updatechat”  
Read the file & pass 
the commands to 
Core for processing 
 

To Cubit 
GUI 

Figure 9: Implemented 
Cubit Connect Architecture 
 



 

   104 

Modifying Cubit Source Code 
 
For the proposed multi-user method to work, it was vital to figure out the place in the source 
code where the GUI sends commands to be executed to the core. Dr. Karl Merkley, who is a 
developer of Cubit, pointed out that CubitInterface.cpp file is where this occurred. In the 
function CubitInterface::cmd(const char *input_string) the command string is passed 
on to the Core for execution and the following is the original code from Sandia:  

// Sends a command directly to cubit 
 
void CubitInterface::cmd(const char *input_string) 
{ 
  CIUserInterface *ui = CIUserInterface::instance(); 
 
  if(ui && ui->get_playback_handler()) 
    ui->parse_input_line(input_string); 
 
  else 
    UserInterface::instance()->parse_input_line_and_files(input_string); 
 
  if(!gsObserver) return; 
 
   
std::list<CubitInterface::CIObserve*>::iterator iter = gsObserver-
>mGUIObserver.begin(); 
 
  for (; iter != gsObserver->mGUIObserver.end(); iter++) 
  { 
    (*iter)->notify_command_complete(); 
  } 
 
} 

This file is located in: 

Source……./cubitclaro/cubitcomp/cubit/app/CubitInterface.cpp 

The modified code can be found on the next page. Note that it only reads and writes files to 
receive and send commands from peer computers. The network chat client runs parallel to 
Cubit and captures the commands written to the MultiuserTo.txt and propagates them through 
the network. Likewise, the network client writes the commands that were received from peer 
computer to the text file MultiuserFrom.txt. This file in then read by Cubit upon typing in the 
command “updatechat” and all the commands are then executed on the local computer.  

 

 

 



 

   105 

 
//Reading from the file 
static int last_pos=0; 
static fstream fout("C:\\myChat\\myChat\\MultiuserTo.txt", std::ios::in | 
std::ios::out | std::ios::ate); 
 
// Sends a command directy to cubit 
void CubitInterface::cmd(const char *input_string) 
{ 
  
    //Check to see if the command is user-specific  
 string no_cmd[] = 
{"graphics","draw","list","display","quality","preview","visibility", "null", 
"color", "updatechat", "undo", "reset","open","import"}; //list of user 
specific commands 
 int NO_CMD_LEN = sizeof(no_cmd)/sizeof(string);  //# of user-specific 
commands so far 
 
 //See if the input_string contains a user-specific command 
 bool toSend = true; 
 string in_str(input_string); 
 for(int i=0;i<NO_CMD_LEN;i++) 
 { 
  if(in_str.find(no_cmd[i]) != string::npos) 
  { 
    toSend = false; 
  } 
   
 } 
   
 try 
 { 
    
  if (toSend) 
  { 
   PRINT_INFO("Multi User Command Sent  \n "); 
    
   //Write to the output file (cubitin.cmds) 
   fout<<input_string<<std::endl;  
    
  } 
  if (!toSend) PRINT_INFO("User-Specific Command Sent \n"); 
  //if it is not user specific, send to other people on "chat" 
   
 } 
 catch (std::exception& e) 
 { 
  const char* name1; 
  name1= e.what(); 
  PRINT_INFO (name1); 
  PRINT_INFO ("Exception \n"); 
 } 
 
 
 //to receive updates from other users 
 ifstream fin; 
 if(in_str.find("updatechat") != string::npos) 



 

   106 

 { 
  PRINT_INFO("Updating commands from other users \n"); 
 
  vector <string> input_string_in ; 
  fin.open("C:\\myChat\\myChat\\MultiuserFrom.txt"); 
  if(!fin.is_open()) 
  { 
   PRINT_INFO("Unable to open file \n"); 
  }else{ 
   PRINT_INFO("The file is open for reading"); 
  } 
 
  //Keeps track of the position of the input file 
  string dummy_string; 
  int curr_pos=0; 
  while (fin.eof()!=true) 
  { 
   getline(fin,dummy_string); 
   if(!dummy_string.empty() && dummy_string.compare("")!=0) 
curr_pos++; 
   if(curr_pos>last_pos) 
   { 
    input_string_in.push_back(dummy_string); 
   } 
  } 
  last_pos=curr_pos; 
 
  //If inputfile in not empty, send the command string to Cubit 
Core for execution 
  if(!input_string_in.empty()) 
  { 
   CIUserInterface *ui = CIUserInterface::instance(); 
   for (int i=0; i<input_string_in.size(); i++) 
   { 
    if(ui && ui->get_playback_handler()) 
    { 
     ui-
>parse_input_line(input_string_in[i].c_str()); 
    }  
    else 
    { 
     UserInterface::instance()-
>parse_input_line_and_files(input_string_in[i].c_str()); 
 
    } 
    if(!gsObserver) return; 
 
    std::list<CubitInterface::CIObserve*>::iterator iter 
= gsObserver->mGUIObserver.begin(); 
    for (; iter != gsObserver->mGUIObserver.end(); 
iter++) 
    { 
     (*iter)->notify_command_complete(); 
    } 
   } 
  }else{ 
   PRINT_INFO("Nothing in the file \n"); 



 

   107 

  } 
   
  fin.close(); 
 
 }else{ 
 
  CIUserInterface *ui = CIUserInterface::instance(); 
  if(ui && ui->get_playback_handler()) 
  { 
   ui->parse_input_line(input_string); 
  }  
  else 
  { 
   UserInterface::instance()-
>parse_input_line_and_files(input_string); 
 
  } 
  if(!gsObserver) return; 
 
  std::list<CubitInterface::CIObserve*>::iterator iter = 
gsObserver->mGUIObserver.begin(); 
  for (; iter != gsObserver->mGUIObserver.end(); iter++) 
  { 
   (*iter)->notify_command_complete(); 
  } 
 } 
} 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

   108 

 

B.6 Cubit Sample Tutorial 

1. Start up the network program on all machines. They will automatically connect to each other on 
the LAN. 

 
2. Start CUBIT on each machine. 

 
  



 

   109 

3. In CUBIT, on one of the machines, create a brick (brick 10x 10y 10). 

 
4. A message will shortly be sent to the network program. 

 
  



 

   110 

5. Once the network program has received the message, the other users can type ‘updatechat’ 
into CUBIT’s command prompt to get the changes made from other users. 

 

 
  



 

   111 

B. 7 Conclusions:  

 
• Cubit Connect produces the results as expected  

• Having access to the source code was easier to program as opposed to using API calls. 

• For an FEA multi-user program which is hardware intensive, having an update command 
will be beneficial because if peer commands get automatically updated while the local 
user is working, it might freeze the program for a substantial amount of time while the 
commands get executed.  

• A multi-user environment will revolutionize traditional collaborative engineering 

 

B.8 Recommendations: 

 
• Compile a comprehensive list of commands to be filtered  

• Client-Server architecture rather than a peer-to-peer (P2P) architecture 

• Embed the networking program inside Cubit code  

• Use a database/lists rather than text files to propagate commands 

• Think about how undo commands would work 

• Importance of the update command 

• Conflict resolution/decomposition of a model  

 

 

 

 

 

 



 

   113 

APPENDIX C. CUBIT CLIENT-SERVER AND GUI DRIVEN IMPLEMENTATION 

V3.0 

C.1 Introduction 

 
CUBIT Connect is multi-user FEA pre-processing software developed collaborative by BYU and Sandia 
National Laboratory.  After extensive research effort, unique and robust network architecture was 
developed for the CUBIT Connect environment.  The current implementation utilizes both named pipes 
clients and TCP/IP.  On the local level (in this case, on a local computer), CUBIT program is connected to 
a C# client using named pipes.  This separation is due to the previous difficulty integrating C# programs, 
which is written in a managed environment, into the C++ CUBIT source code, which is written in an 
unmanaged environment.  Once inter-process communication on the local level is established, the WAN 
communication can be easily established using TCP/IP sockets.  The basic architecture is displayed in 
Figure 3.   

 
Figure C-0-1: CUBIT Connect v2.0 Architecture Utilizing Both Named Pipes and TCP/IP Clients. 

Another research area that is going on parallel with the network architecture is model decomposition.  
In a multi-user environment, it is necessary to assign different areas (workspaces) for different users to 
work. Causally assigning a workspace to a user may not be effective, because it is likely for a user to 
accidently cross into another user’s workspace. The result may end up creating chaos and would make 
the multi-user environment less productive. Therefore, users should be restricted to their own 
workspaces and, while viewing changes to the entire model, they are not allowed to make changes to 
others’ workspaces.  



 

   114 

From the solid foundation developed by previous researches, the next step for CUBIT Connect is to 
develop an efficient user Interface to combine these separate ideas into one.  This task is consolidated 
into a ME 578 project, and the detail implementations are explained below. 

C.2 Problem Statement: Cubit Connect V3.0 

Introduction:  
Cubit is finite element mesh generation software developed by Sandia National Laboratories. Cubit has a 
user friendly GUI than most of the meshing programs available. However, Cubit does not have solving 
capabilities. Cubit’s source code is available for academic purposes and each student in the project will 
be required to get access to this through Sandia. Further information on this will be provided later on.  

Project Description 
Modify Cubit Connect prototype allow area/region and feature decomposition with the following 
capabilities by the end of this semester:  

Modify/enhance current CUBIT code that assigns 
workspaces by restricting users to certain pre-
assigned volume IDs. 

Add a GUI for users to log on to the server where the 
server sends the pre-assigned user workspace data to 
the client computer automatically. This should be so 
that there is no hardcoding on the client computers. 

Link this GUI to a database on the server that contains 
all the user data (user name, password, areas 
assigned, current work part, etc.)                                                                                                                                                             

Within the existing Cubit Connect architecture 
develop a method for partitioning the model with 
planes, bounding blocks and/cylinders, features, 
entity IDs, etc. so that multiple people can work 
without affecting or being affected by the work of 
others in the model. Provide a management control 
interface for setting up, transfer, and release of the 
partitioning features. 

In the context of an assembly analysis provide locking 
capabilities with respect to components and 
partitioning within these features.    

Deliverable  
Cubit Connect with decomposition with an 
accompanying log on GUI and database.  

Resources 
Felicia Marshall’s Thesis and work underway by Rob 
Moncur and Prasad Weerakoon. 

Figure C-0-2: Part Decomposition in NX 

Figure C-0-3: CUBIT Connect Architecture  



 

   115 

C.3 GUI Implementation 

A series of GUIs were added to CUBIT Connect to handle and streamline workspace assignment. Figure 
4-12 shows the User Login GUI (ULGUI) that checks user credentials and allows the user to proceed to 
select a model or part to work on. This also, checks what level of user (administrator, normal user, etc.) 
the current user is with the information stored in the server database. Furthermore, new users have the 
ability to add their information to the database using this GUI.  

 
Figure C-0-4: User Login GUI 

After the user successfully logs in, Model Management GUI (MMGUI) pops up (Figure 4-13). The MMGUI 
then queries the server for a list of models/parts currently stored on the server and displays them. The 
user can then locate the file, they would like to work on, on their local computer and open it. If the user 
is an administrator, the Admin Workspace Manager (AWM) GUI comes up; This GUI lets the 
administrator to assign workspaces to different users (Figure 4-14). The admin has to input the 
username of the user there are assigning the workspaces to and also, the volume ID numbers which that 
user has access to. The admin has the option to check the workspaces they just assigned by highlighting 
those in the model using “Check Workspace” button. The “Set Workspace” button sends the user and 
workspace information to the server. 

 

Figure C-0-5: Multiple Project/Model Management GUI 



 

   116 

 

Figure C-0-6: Workspace GUI for Administrator 

Software/Hardware Requirements 
 
CUBIT Connect v3.0 is currently available on the following platforms: 
 
 Windows 2000/XP/Vista/ 7, 32 and 64 bit 
 
The Graphical User Interface version is available on all platforms. 
For best results, local displays supporting OpenGL 1.5 is recommended. 
 

C.4 Installation Instructions 

 
Setting up Client Computers 
Since the new network scheme is built directly inside of CUBIT Connect, the Client application is very easy to set 
up.  The entire program is packaged into the CUBIT executable, and the installation process is almost identical to a 
regular CUBIT installation process.  The detail steps are illustrated below: 

1. Run Cubit-13.2-Win32.exe from CUBIT Connect V3.0 CD and a setup wizard should show up as displayed 
below: 



 

   117 

 
2. Click “Next >” 

 
3. Click “I Agree” 



 

   118 

 

4. Select “Add Cubit to the system PATH for all  users” and click “Next >” 

 

5. Click “Next >” 



 

   119 

 

6. Click “Install” 

 

7. Click “Finish” 
8. Create a folder in C drive called “CubitConnect”, and then create a folder called “ConfigFiles” inside that.  

The Folder path should be “C:\CubitConnect\ConfigFiles” 
9. Copy the Client.exe, Filename.txt, Volume.txt, and Workspace.txt from the CD and place it inside of the 

“ConfigFiles” folder as shown below: 
 



 

   120 

 

 

Setting up the Server 
 
The server is a C# application and can be executed directly using the .exe file.  In situations where specific ip 
address or port number need to be assigned, one must go through the steps below to get the application 
recompiled.   

1. Open the project file, CbitConnectServer.sln, in Visual Studio 2010  
 

 

2. Relink to the database by recreating the .dbml file 
a. Delete the current dbml file 



 

   121 

 

b. Right click on the project header select Add->New Item… 
 

 

c. Select LINQ to SQL Classes and type “CUBITDBConnection” for the Class Name. 



 

   122 

 

d. Double Click on the new dbml file created 

 

e. Drag and drop Commands2, Model Permissions, Models, Users, and Volumes tables into the 
white space 



 

   123 

 

f. The Tables should be automatically linked like the picture shown below. 

 

3. If the tables are linked, click “Build Solution” from Build menu. 

4. If build succeeded, click    to run. 
 

  



 

   124 

C.5 Test Tutorial  

1. To run CUBIT Connect V3.0, double click on “Cubit” from  -> All Program -> CUBIT Version 
x.x CUBIT   -> Cubit, and the CUBIT GUI should look like this: 

 

2. To start multi-user mode, go to “Tools” -> “Multi-User on” 

 

3. A login & a console window would pop up as shown below: 



 

   125 

 

4. Trouble Shoot 
I. If only the console window shows up, just close the multi-user mode and try again.  To 

turn off the multi-user mode, go to “Tools” -> “Multi-user off ”. 
II. If neither window shows up, then check the file directory where your Client.exe is 

located.  Make sure everything is spelled correctly. 
Contact Prasad or James if you have questions on setting up Cubit 

For Cubit Support: 

Email cubit-dev@sandia.gov or contact Dr. Karl Merkley or Mark Dewey at  Computational Simulation Software, 
LLC on 801-717-2296 

  

mailto:cubit-dev@sandia.gov


 

   126 

C.6 Demo Tutorial 

6. Start up the server, the console application will link to the database and wait for client 
connection. 

 

7. Start CUBIT on three different machine. 

 
  



 

   127 

8. Each User Login into there respective account 

 

 
9. Instruction for Administrator 

a. If “satellite.cub” is already in the file database list, One person click “Delete File”. 

 



 

   128 

b. Click on “Refresh” if the file is still in the list 

 

c. Open the satellite model in CUBIT use File->Open 

 

d. Click “Upload To Database” to upload the model 



 

   129 

 

e. Locate the “satellite.cub” on your computer use “Locate File” 

 

f. Double click the “satellite.cub” to open the workspace window 
g. Type the username for user 1 and the type “1-3,4” for the workspace 

 

h. Click “Check Workspace” and then hit   in CUBIT to see the workspace highlighted.  
If you are satisfied with the workspace, then click “Set Workspace” to send the 
information to the database  



 

   130 

 

i. Change the username and workspace range and Repeate steps g. and h. for user 2.  The 
workspace range is “5,6” 

j. To highlight admin’s workspace, click “Highlight My Workspace”.  For admin, the entire 
model should be highlighted. 

 

10. Instruction for user 
a. After Admin finished the setup, user1 and user2 can locate “satellite.cub” on their own 

computer and double click the filename to open the part. 

 

b. Click   in CUBIT to load the file 



 

   131 

 

c. To highlight the workspace pertaining to the user, click “Highlight my workspace”.  

 

 

d. The users are restricted to the highlighted areas.  If workspaces is not highlight it, click 
refresh to re-sync with database 

e. Mesh in the highlighted region. 
 

 



 

   132 

C.7 Conclusions:  

 
Multi-user CAx is a revolutionary approach to minimizing product development times and also, to 
creating better products. This paper has demonstrated a robust design to decompose a model by 
features.  By restricting users to their respective workspaces at the beginning of each project design, one 
can eliminate many of the unintentional interference among the users.  Although setting up the 
workspace can take up a certain amount of time, the time and confusion avoided when verbal assigning 
work tasks clearly outweighs extra time project managers spent putting together the decomposed multi-
user environment.   

C.8 Future Recommendations: 

 
• Develop a algorithm so the workspace can be automatically and strategically generated based 

on geometry features 
• Build the Forms inside of CUBIT using QTGUI because CUBIT main thread should be locked 

during the login process 
• Develop another pipe connection using Qsocket, so the CUBIT function can be directly called 

instead of going through a static queue. (CubitGUI.cpp is an ideal location to implement this 
change) 

• Change to Workspace Admin GUI so usernames can be a pull-down menu of all the users 
registered in the database 

• Think about how undo commands would work 

 

 


	Multi-User Methods for FEA Pre-Processing
	BYU ScholarsArchive Citation

	Title Page 
	Abstract
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	1 Introduction
	1.1 Motivation
	1.2 Research Objectives

	2 Background
	2.1 Current State of Multi-User FEA Applications
	2.2 Motivation

	3 Method
	3.1 Multi-User FEA Pre-Processor
	3.1.1  Capturing User Interaction with the CAx Application
	3.1.2 Filtering Relevant User Actions
	3.1.3 Proposed Criteria for a Multi-User FEA Pre-Processor
	3.1.4 Synchronous Versus Asynchronous Architectures
	3.1.5 Keeping Models Consistent Across Users

	3.2 Networking Model for Multi-User FEA Pre-Processor
	3.2.1 Centralized Server
	3.2.2 Data Capture Module on a Client Computer
	3.2.3 Multi-User Tagging

	3.3 Model Decomposition/ Workspace Allotment
	3.3.1 Assigning Workspaces Using Geometry IDs
	3.3.2 Access Rights Using Geometry ID Tags

	3.4 Time-Consuming Task Handling
	3.4.1 Using a Timer

	3.5  Multi-User FEA Undo Handling

	4 Implementation
	4.1 CUBIT
	4.1.1 CUBIT Architecture
	4.1.2 Why CUBIT?

	4.2 Multi-User FEA Pre-Processor: CUBIT Connect
	4.2.1 Cubit Connect Prototypes – Client’s Side

	4.3 Networking Architecture
	4.3.1 Client
	4.3.2 Server
	4.3.3 Current Capabilities of the Networking Architecture

	4.4 Multi-User Workspace Decomposition
	4.4.1 Workspace Implementation in CUBIT Connect
	4.4.2 Workspace Handling GUI

	4.5 Time-Consuming Task Handling
	4.6 Multi-User Undo Handling
	4.7 Time Comparison between Single-User and Multi-User CUBIT

	5 Conclusions and Recommendations
	5.1 Conclusions
	5.1.1 Architectural Challenges
	5.1.2 Workspace Decomposition
	5.1.3 Handling of Time-Consuming Tasks
	5.1.4 Undo Handling

	5.2 Future Work
	5.2.1 Cloud Computing FEA Pre-Processor
	5.2.2 HP Remote Graphics Software (RGS) Architecture
	5.2.3 Integration with MMORPG Server


	References
	Appendix A. Programming CODE
	A.1   Unaltered cmd( ) Function in CubitInterface.cpp
	A.2   Modified cmd( ) Function for Multi-User Handling
	A.3 CUBIT GGeomPicker.cpp Workspace Handling Implementation

	Appendix B. CUBIT Peer to Peer Implementation Documentation
	B.1 Introduction
	B.2 Problem Statement: Cubit Connect
	B.3 Building Cubit on a Local Machine
	B.4 Documentation from Sandia (Reference)
	B.5 Transforming Cubit into a Multi-User Program
	B.6 Cubit Sample Tutorial
	B. 7 Conclusions:
	B.8 Recommendations:

	Appendix C. CUBIT Client-Server and GUI driven implementation v3.0
	C.1 Introduction
	C.2 Problem Statement: Cubit Connect V3.0
	C.3 GUI Implementation
	C.4 Installation Instructions
	C.5 Test Tutorial
	C.6 Demo Tutorial
	C.7 Conclusions:
	C.8 Future Recommendations:


