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ABSTRACT

Chemical Potential Perturbation: A Method to
Predict Chemical Potential Using

Molecular Simulations

Stan G. Moore
Department of Chemical Engineering, BYU

Doctor of Philosophy

A new method, called chemical potential perturbation (CPP), has been developed to pre-
dict the chemical potential as a function of composition in molecular simulations. The CPP
method applies a spatially varying external potential to the simulation, causing the composi-
tion to depend upon position in the simulation cell. Following equilibration, the homogeneous
chemical potential as a function of composition can be determined relative to some reference
state after correcting for the effects of the inhomogeneity of the system. The CPP method
allows one to predict chemical potential for a wide range of composition points using a single
simulation and works for dense fluids where other prediction methods become inefficient.

For pure-component systems, three different methods of approximating the inhomogeneous
correction are compared. The first method uses the van der Waals density gradient theory,
the second method uses the local pressure tensor, and the third method uses the Triezenberg-
Zwanzig definition of surface tension. If desired, the binodal and spinodal densities of a
two-phase fluid region can also be predicted by the new method. The CPP method is tested
for pure-component systems using a Lennard-Jones (LJ) fluid at supercritical and subcritical
conditions. The CPP method is also compared to Widom’s method. In particular, the new
method works well for dense fluids where Widom’s method starts to fail.

The CPP method is also extended to an Ewald lattice sum treatment of intermolecular
potentials. When computing the inhomogeneous correction term, one can use the Irving-
Kirkwood (IK) or Harasima (H) contours of distributing the pressure. We show that the
chemical potential can be approximated with the CPP method using either contour, though
with the lattice sum method the H contour has much greater computational efficiency. Re-
sults are shown for the LJ fluid and extended simple point-charge (SPC/E) water. We also
show preliminary results for solid systems and for a new LJ lattice sum method, which is
more efficient than a full lattice sum when the average density varies only in one direction.

The CPP method is also extended to activity coefficient prediction of multi-component fluids.
For multi-component systems, a separate external potential is applied to each species, and
constant normal component pressure is maintained by adjusting the external field of one of
the species. Preliminary results are presented for five different binary LJ mixtures. Results
from the CPP method show the correct trend but some CPP results show a systematic bias,
and we discuss a few possible ways to improve the method.

Keywords: surface tension, molecular dynamics, pressure tensor, inhomogeneous fluid
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Chapter 1

Introduction

1.1 Motivation

The chemical potential is a very useful and important property. The chemical potential

can be defined as a rigorous driving force toward equilibrium and is the basis of chemical

fugacity and activity. It can be related to many different phenomena such as phase equilibria,

transport processes such as diffusion, and chemical reaction rates [1, 2]. These phenomena

are important in the design of many industrial applications, such as separation systems.

Theoretical methods to predict chemical potentials are particularly useful as performing

experiments involving these phenomena are often difficult, dangerous, or expensive.

The chemical potential can be related to the change in Helmholtz energy due to a change

in amount of a substance while holding the system temperature T and volume V constant.

This can be expressed mathematically as

µi =

(
∂A

∂ni

)
T,V,nj 6=i

, (1.1)

where A is the total Helmholtz energy of the system, µi is the chemical potential, and ni is

the amount of species i. Chemical potential can also be related to Gibbs energy for systems

of constant pressure and temperature, but using Helmholtz energy is usually more convenient

for molecular simulations as they frequently use constant volume.

Atomic-level computer simulations can be used to predict chemical potentials; however,

existing methods are inefficient and may even fail for dense liquids. Several methods for

1



predicting chemical potentials rely on inserting particles into or removing particles from a

simulation, in effect performing the derivative in Eq. 1.1 one molecule at a time. Inserted

particles should not overlap with neighboring particles. However, as the density of the

fluid is increased, “holes” in the fluid structure become rare, and the efficiency of insertion

methods decreases. The purpose of this work is to create a better method to predict chemical

potentials that doesn’t require particle insertions.

1.2 Scope of work

A new method, called the chemical potential perturbation (CPP) method, has been devel-

oped to help overcome the limitations of existing chemical potential prediction methods.

The CPP method doesn’t require difficult particle insertions. Instead, a spatially varying

external potential is applied to the simulation, causing the density or composition to de-

pend upon position in the simulation cell. Because the system is allowed to equilibrate, the

chemical potential (relative to some reference state) as a function of composition can then

be determined from the applied field, after accounting for effects due to inhomogeneity.

Normally, homogeneous (uniform average density) simulations are used to obtain chem-

ical potentials. However, in the CPP method, instead of performing several simulations at

different densities, the CPP method allows one to predict chemical potential for a wide range

of composition points using a single simulation, effectively combining many simulations into

one. The CPP method also works for dense fluids and structured molecules where other

prediction methods become inefficient.

In this work, the CPP method is developed for both pure-component and multi-component

fluids. For pure-component fluids, the CPP method is developed for supercritical, single-

phase, and two-phase (liquid-vapor) simulations. The CPP method even allows one to pre-

dict spinodal densities and properties for metastable and unstable fluid regions not easily

accessible by experiment. This also provides a unique way to approach and detect the critical

2



point of a fluid. Preliminary results are also shown for calculating the chemical potential of

solid systems.

The CPP method is further extended to long-range interactions using the lattice sum

method, and the proposed methods are validated by calculating the chemical potentials of

the Lennard-Jones (LJ) fluid and extended simple point-charge (SPC/E) water. A more

efficient lattice sum is also developed for the LJ fluid, which has application to commonly

performed simulations of vapor-liquid interfaces, surface tension, and inhomogeneous systems

in general.

For multi-component systems, methods for inhomogeneous correction, fast equilibration,

and correction for pressure variations are given, along with preliminary results for binary LJ

mixtures. However, a full exploration of the CPP method for multi-component fluids was

beyond the scope of this project.

This work focuses on the development of a new, general simulation method to predict

chemical potential. This work does not focus on the development of new intermolecular

potentials or the modeling of new chemical systems, but rather uses the well-characterized

chemical models of the LJ fluid and water using the extended simple point-charge (SPC/E)

model (for which accurate equations of state already exist) to test and validate the new

method.

1.3 Outline

The remainder of this document is organized as follows.

Background. Chapter 2 is a brief description of the existing methods used to obtain

chemical potentials and some inherent problems that arise when these methods are applied

to dense systems.

Pure-component systems. Chapter 3 describes the development of the CPP method for

pure-component systems. In order to obtain homogeneous properties from an inhomogeneous

3



system, it is necessary to account for the effects due to the inhomogeneity of the system,

which we refer to as applying an inhomogeneous correction term. Three different methods

of approximating this term are given, and results for the LJ fluid are presented and are

compared to an equation of state for the LJ fluid. Parts of this chapter have been published

previously in 2011 in the Journal of Chemical Physics [3].

Extension to lattice sum treatment of intermolecular potentials. Chapter 4 explains how

to extend the CPP method to the lattice sum treatment of intermolecular potentials. When

computing the inhomogeneous correction term, one can use two different contour functions of

distributing the pressure. It is shown that both of these contours can be used with the CPP

method, which allows one to obtain homogeneous properties using the lattice sum method.

Results are given for the LJ fluid and SPC/E water. Preliminary results are also given for

LJ solids. Parts of this chapter have been published previously in 2012 in the Journal of

Chemical Physics [4].

Multi-component systems. Chapter 5 describes how to extend the CPP method to multi-

component systems. Methods for inhomogeneous correction, fast equilibration, and correc-

tion for pressure variations are presented and preliminary results are given for several binary

LJ mixtures.

A New Lattice Sum Method for the LJ Fluid. Chapter 6 presents a new lattice sum

method for the LJ fluid which is more efficient when the average density varies only in one

direction. Preliminary results are given for the LJ fluid.

Critical point prediction. Chapter 7 reviews existing methods to predict critical param-

eters using molecular simulations and includes some suggestions on how the CPP method

could be used to predict fluid critical parameters. Preliminary results are given for the LJ

fluid.

Conclusions. Chapter 8 presents the conclusions drawn from this work as well as some

possible future extensions and applications of the CPP method.
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Chapter 2

Background

2.1 Molecular simulations

Two types of computer simulations are commonly used to predict chemical potentials. Molec-

ular dynamics (MD) simulations work by using intermolecular potentials to calculate pair-

wise forces between particles. Intermolecular potentials commonly have both attractive and

repulsive portions. At long distances, molecules are frequently attracted to each other, while

at short distances, molecules commonly repel each other, such as when two molecules col-

lide. Using the calculated forces, the resulting accelerations and velocities are numerically

integrated with respect to time (following Newton’s first law) to obtain positions. Thus the

individual motions of an ensemble of molecules can be predicted over time. Many proper-

ties can be predicted from MD simulations, including pressures, temperatures, diffusivities,

viscosities, and chemical potentials [5, 6].

Monte-Carlo (MC) simulations work by generating likely configurations of molecules.

Random configurations of molecules are generated and are accepted or rejected following the

Boltzmann probability distribution based on the change in potential energy of the system.

For example, if a trial move causes two molecules to significantly overlap, the move will likely

be rejected due to the high increase in potential energy of the system. MC simulations can

be more efficient than MD simulations in predicting equilibrium properties such as pressures,

temperatures, and chemical potentials, but cannot predict time-related transport properties

such as viscosities or diffusivities [5, 6]. MC simulations become less efficient as the density
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of the system increases because the probability of a favorable trial move decreases. Special

methods are needed to simulate large, structured molecules such as polymers using the MC

method [5].

2.2 Predicting chemical potential using particle inser-

tions

2.2.1 Free energy perturbation methods

Free energy perturbation (FEP) methods sample in one system while perturbing the system

into another in order to measure a Helmholtz energy difference. For example, Widom’s

method is a simple and elegant FEP method that uses random particle insertions to calculate

the chemical potential [5, 7–9]. For constant T and V and as N →∞, Eq. 1.1 is equivalent

to

µi = Ai,N+1 − Ai,N , (2.1)

where Ai,N is the Helmholtz energy of species i for the N particle system and Ai,N+1 is the

Helmholtz energy of the N + 1 system.

The chemical potential can also be partitioned into ideal gas and excess parts as

µ = µig + µr , (2.2)

where µig is the ideal gas chemical potential (which is calculated analytically or determined

from experimental data) and µr is the residual chemical potential in excess of an ideal gas.

In essence, Widom’s method calculates the chemical potential of a system in excess of an

ideal gas by measuring the Helmholtz energy required to turn an ideal gas particle into a real

particle. Particles are not actually inserted into the system, but the hypothetical energy of

interaction if the particles were inserted is calculated. This information is used to generate
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a probability distribution function for the full range of possible insertion energies, which can

be used to calculate the chemical potential.

For homogeneous, pure-component NVT systems, Widom showed that

e−βµ
r

=
ZN+1

V ZN
,

=

´
drN+1e−βUN+1´
dr
´
drNe−βUN

=

´
drNe−βUN e−β∆U´

drNe−βUN

=
〈
e−β∆U

〉
N

(2.3)

where r is position, where β = 1/ (kB T ), T is the system temperature, kB is Boltzmann’s

constant, Z is the canonical partition function, 4U is the hypothetical energy of insertion

of a test-particle (4U = UN+1 − UN), and 〈. . .〉 denotes the canonical average.

Because the test particles do not interact with the real particles or with each other,

multiple test particles can be inserted simultaneously, and the simulation is unaffected by

the insertions, so other equilibrium properties can be determined from the same simulation.

A similar but more robust FEP method is Bennett’s method, also called the overlap-

ping distribution method. This method uses random particle insertions (similar to Widom’s

method), as well as particle deletions [5, 10]. We note that particle deletions cannot be used

alone as this leads to biased results due to inefficient sampling of the high-energy configu-

rations [11], which in this case contribute most to the chemical potential calculation, unless

special techniques [12] are used. Both Widom’s and Bennett’s methods become less efficient

for high densities because the probability of favorable insertions (little or no overlap with

neighboring particles) is low. Favorable insertions contribute most to the calculation of the

chemical potential, so Widom’s and Bennett’s methods will not converge to an accurate

result without a significant number of favorable insertions.
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2.2.2 Increasing the efficiency of Widom’s and Bennett’s methods

Several methods have been proposed to increase the efficiency of Widom’s and Bennett’s

methods. Particle insertions are computationally expensive because the energy of interaction

between the inserted particle and all other particles in the system must be calculated. If the

sampling is limited to areas where the chances of favorable insertions are high, the efficiency

of the method may be increased. In essence, it may be less expensive to search for areas

of favorable insertions and sample only in these locations than to randomly insert particles

everywhere in the simulation.

The cavity insertion Widom method seeks to find holes greater than a certain radius,

and then randomly inserts test particles only in those locations. As shown in Figure 2.1, to

find holes and correct for the bias introduced by only sampling in the holes, the simulation

cell is divided into a grid. A search for a hole is made at each grid point, and the probability

of finding a hole from this search is used to correct for the bias [13, 14].

Figure 2.1: Illustration of the cavity insertion Widom method. The simulation cell is divided
into a grid, and a search for a hole is made at each grid point. In this figure, a hole is found
only at the center grid point.

The excluded volume-map sampling method excludes a certain portion of space beyond

each molecule, and then samples only in the non-excluded volume region. This is also
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accomplished using a grid [15, 16]. The energy-biased method calculates areas where the

energy of insertion is below some limit, and then randomly samples only in these areas [17].

Other methods also seek to overcome the limitations of Widom’s method, including

staged-insertion [18], umbrella sampling [19, 20], expanded ensembles [21, 22], and histogram-

distribution methods [11]. These methods can be much more efficient and accurate than

Widom’s method, but may likewise become less computationally efficient with structured

molecules or as the density of the system is increased. Many of these methods are reviewed

in Ref. [23].

2.2.3 Flotsam insertion method

Before developing the CPP method, we attempted to develop a new insertion method called

the flotsam method. As described above, randomly inserting test particles into the simu-

lation may be inefficient. Instead, flotsam test particles are allowed to move around in the

simulation, similar to real particles. Flotsam test particles are “ghost-like” in that flotsam

particles can “feel” real particles, but the real particles cannot “feel” flotsam particles. Flot-

sam particles also do not “feel” other flotsam particles. In this manner, the simulation is

not affected by the presence of the flotsam particles and multiple flotsam particles can be

inserted at the same time. This allows flotsam particles to move out of the way of real

particles in order to find areas of lower potential energy (i.e., holes in the simulation). For

an equilibrium system, one can obtain µex using the flotsam particles as

e−βµ
ex

=

´
drN+1e−β UN−βf Ufeβ Uf−βf ∆U´
drN+1e−β UN−βf Ufeβf Uf

=

〈
eβf Uf−β∆U

〉
N+1

〈eβf Uf 〉N+1

, (2.4)

where βf = 1/ (kB Tf) and Tf is the temperature of the flotsam particles. Separate thermostats

were used to control the temperatures of the real and flotsam particles.
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However, some challenges were encountered with this method. First, to the flotsam

particles the real particles appear to have infinite mass. Because of this, the flotsam particles

experience rough dynamics when they collide with real particles, and energy and momentum

are not conserved for the flotsam particles. An aggressive thermostat was necessary to

remove the constantly accumulating energy of the flotsam particles. We also tried using a

softer potential than the LJ potential for the flotsam interactions, which helped improve

the dynamics. Another problem was that the flotsam particles tended to bunch together.

We lightly tethered the flotsam particles to specific locations using a harmonic (spring-like)

potential, which helped. Flotsam particles were successful in finding areas of lower energy—

i.e., the holes in the system. However, the main issue with the flotsam method was how to

correct for the bias in the results due to non-random sampling. Eq. 2.4 didn’t seem to work

properly, probably because momentum wasn’t conserved and constant perturbation of the

flotsam particles from equilibrium makes the Boltzmann distribution inaccurate. In the end,

we were unable to remove the bias in the results and the flotsam method was abandoned.

2.2.4 Thermodynamic integration method

In the thermodynamic integration method, a real molecule is gradually inserted into the

system. This gradual insertion allows the inserted particle to push away other overlapping

particles as the system is allowed to equilibrate at each step [5]. Thermodynamic integration

can be used to predict chemical potentials at very high densities. However, unlike Widom’s

and Bennett’s method, several simulations for each state point are necessary because the par-

ticle is inserted gradually, and only one particle can be inserted at a time because the inserted

particle interacts with the real particles, which may cause the thermodynamic integration

method to be less efficient than Widom’s method.
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2.2.5 Monte-Carlo methods

Two Monte-Carlo (MC) methods are directly related to this work. Grand Canonical Monte-

Carlo (GCMC) imposes constant chemical potential, temperature, and volume on the system

and measures the resulting composition [5]. The chemical potential of an ideal gas reservoir,

which can be calculated analytically, is set, and the simulation cell is equilibrated with the

reservoir by changing the number of molecules in the simulation cell. After equilibration,

the chemical potential of the simulation cell is equal to the known chemical potential of

the reservoir. In this manner, one can determine the chemical potential of the equilibrated

system.

Gibbs Ensemble Monte-Carlo (GEMC) allows one to simulate phase equilibria without

the formation of an interface between the two phases [5, 24, 25]. The temperature, volume,

and total number of molecules of the system remain fixed, but molecules and volume are

exchanged between two simulation cells. After equilibration, the chemical potentials of the

two cells are equal (but the absolute value of the chemical potentials is not given by this

method). For pure-component fluids, each cell contains either the liquid or vapor phase, and

the coexisting densities of the fluid can be determined. Like all MC methods, GCMC and

GEMC rely on particle insertions and deletions and become increasingly inefficient as the

density of the system increases.

2.3 Molecular dynamics methods

An alternative to insertion-based methods is osmotic molecular dynamics (OMD), devel-

oped by Rowley and coworkers [26–30]. OMD uses a semi-permeable membrane to achieve

chemical equilibrium between two compartments on either side of the membrane, similar

to GEMC. OMD is also quite similar to the chemical potential perturbation (CPP) method

(the topic of this dissertation), so the OMD method will be described in more detail than

previous methods.
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(a)

(b)

Figure 2.2: Set-up of OMD simulations for (a) pure-component and (b) multi-component
systems. Type 1 molecules are allowed to pass freely through the membrane while type 2
are restricted. In (a), type 1 particles are chemically identical to type 2, while in (b) they
are chemically different (from Refs. [26] and [30] with permission).

For pure-component systems, the respective compartments contain the fluid at the desired

density and the same fluid at a very low density to serve as an ideal gas reference [26, 27].

As shown in Fig. 2.2a, a certain number of the particles are designated as type 1 and are

allowed to freely pass through the membrane, while the other particles are designated as

type 2. Type 2 particles are restricted from passing through the membrane by a Lennard-

Jones potential truncated and shifted upward to include only soft, repulsive interactions.

This membrane is similar to that proposed by Weeks et al. [31]. Side B, which includes only

type 1 particles, is designated as the ideal gas side, while side A includes both type 1 and 2

particles. In this example, all the particles are chemically identical, so the residual chemical

potential of the state of interest µr
1 can be found from

µr
1 = −kB T lnx1,A + kB T ln

(
ρB

ρA

)
, (2.5)

where x1,A is the mole fraction of type 1 particles on side A, ρA is the density of side A, and

ρB is the density of side B.
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For liquid mixtures, the respective compartments contain the mixture at the desired

composition and the pure liquid as a reference [29, 30]. As shown in Figure 2.2b, to predict

chemical potentials from binary LJ mixtures using OMD, type 1 particles are allowed to

pass freely through the membrane, while type 2 particles (chemically different from type 1

particles) are restricted. The chemical potential (in excess of an ideal mixture) of type 1

particles on side A µex
1 is determined using the equilibrium mole fraction of type 1 particles

on side A, as well as the osmotic pressure difference across the membrane. This is determined

by integrating the pure-component molar volume of type 1 particles from the pressure on

side A to that on side B. Mathematically, this can be expressed as

µex
1 = −kB T lnx1,A +

ˆ PA

PB

dP

ρ1

, (2.6)

where x1,A is the mole fraction of type 1 particles on side A, and P is the pressure. We note

that for mixtures, OMD gives differences in chemical potentials in excess of an ideal mixture

and not absolute values.

Close to the membrane, the structure of the fluid is affected by the membrane, so to get

properties of the bulk fluid on side A, a slab that excludes the volume next to the membrane

is used for density sampling. In addition, to minimize the effects of the membrane on the

structure of the fluid, the simulation cell is elongated in the direction orthogonal to the

membrane.

One of the main problems with the OMD method is that it is necessary to achieve

equilibrium by particle diffusion, which can be very slow. However, a fast equilibrium method

has been developed, which constantly applies the correct osmotic pressure by changing the

volume of the cell instead of letting the system equilibrate by particle diffusion [29]. This

greatly reduces the equilibration time because mechanical equilibrium is established much

more quickly than diffusional chemical equilibrium.

Because no particle insertions or deletions are necessary, OMD can be used to predict

chemical potentials at any reasonable density, and is also convenient for large and structured
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molecules [27]. However, OMD requires a unique geometry with a membrane to predict

chemical potentials (as shown in Figure 2.2), making the determination of other equilibrium

properties from the same simulation more difficult because the composition of the system is

not uniform and properties are position dependent and cannot simply be averaged over the

entire system volume.

Similar to OMD, Powles et al. also used a MD simulation with a step-like external po-

tential to create a low-density fluid pocket surrounded by a high-density fluid region [32].

The chemical potential was then measured in the low-density region using Widom’s method,

allowing for the prediction of the chemical potential of the high-density region after removing

the effects of the external field [9].

2.4 CPP method

The chemical potential perturbation (CPP) method proposed here can be thought of as a

generalization of OMD and the method of Powles et al., which both use a step-like external

potential. In contrast, the CPP method uses a finite external potential which varies peri-

odically in one direction, matching the periodic boundary conditions of the simulation cell.

Under the action of this field, the density similarly varies throughout the cell in a periodic

fashion. For example, Figure 2.3a shows a snapshot of a CPP simulation produced using the

VMD software program [33]. Figure 2.3b shows the external potential U ext(z) and resulting

density profile ρ(z) of this simulation vs position z.

In OMD, homogeneous (uniform or bulk) properties are obtained by excluding inhomo-

geneous portions of the simulation close to the membrane region. For the method of Powles

et al., no correction due to the inhomogeneity of the system was necessary because the high-

density region was virtually homogeneous. However, in the CPP method, it is necessary to

account for effects due to the inhomogeneity of the system to obtain homogeneous properties

as described in Chapter 3.
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(a)

(b)

Figure 2.3: (a) Snapshot of a CPP simulation. (b) The applied external field U ext(z) and
the resulting density profile ρ(z) vs position z.

The CPP method is also related to GCMC and GEMC. In the CPP method, the external

field and resulting density profile vary only in the z direction. Molecules in each differen-

tial slice (at some fixed z value) of the CPP simulation are naturally exchanged between

neighboring slices to equilibrate the system, much like a GEMC simulation. In GCMC, the

chemical potential of the system is fixed and the density of the simulation cell is measured

after equilibration. In CPP, the external potential is fixed and the density at each location

z is then measured after equilibration.

2.5 Conclusion

This chapter reviews current simulation methods used to predict chemical potential. Several

of these methods rely on particle insertions and become increasingly inefficient for dense fluids

and structured molecules. A new method called chemical potential perturbation (CPP) has

been introduced. Some advantages of the CPP method are it predicts chemical potential

differences without relying on the use of insertions and deletions, allowing the method to

work at high densities where other methods fail. The CPP method also gives a whole curve
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of chemical potentials corresponding to all the densities contained in the CPP simulation,

in contrast to other methods that require one or more separate simulations for each state

point. The following chapter describes the use of the CPP method for pure-component fluids

in more detail.
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Chapter 3

Pure-component systems

3.1 Introduction

In this chapter, we develop the CPP method for pure-component systems and present results

for the Lennard-Jones fluid at vapor, liquid, two-phase, and supercritical conditions.

When one performs an inhomogeneous molecular simulation, it is normally with the

intention to obtain phase equilibria properties such as coexisting liquid-vapor densities or

interfacial properties such as surface tension. In contrast, with CPP a single inhomogeneous

simulation is used to obtain homogeneous (uniform or bulk) properties for the whole range

of densities found in the inhomogeneous simulation. Homogeneous properties (denoted with

a superscript 0) mean properties that would be given in an uniform density equilibrium

simulation or by an equation of state. A simulated fluid may be inhomogeneous due to

spontaneous phase splitting, or may be inhomogeneous due to the effects of an external

potential acting on the system, or both. In any case, it is necessary to correct for the effects

resulting from the inhomogeneity of the system to obtain homogeneous properties.

According to concepts found in density functional theory [34], one can divide the prop-

erties of inhomogeneous fluids into both local and nonlocal terms. Local, or homogeneous,

terms depend only on the condition of the fluid at position r in the simulation cell. Because

molecules interact over a finite distance, however, the condition at one location affects that

of other locations. Nonlocal, or inhomogeneous, terms capture this effect and depend upon

the condition of the fluid in the vicinity of position r. For example, surface tension is a
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manifestation of nonlocal effects. We describe below how to obtain homogeneous properties

using three different methods.

3.2 Van der Waals density gradient theory

Van der Waals (VdW) developed a density gradient theory that can be used to predict the

surface tension and density profile of an inhomogeneous fluid if the density profile is suf-

ficiently slowly varying [35–37]. Van der Waals proposed that the local Helmholtz energy

density consists of two terms: the homogeneous Helmholtz energy density and the inhomo-

geneous Helmholtz energy density, which depends on the density gradient squared. This

theory was later rediscovered by Cahn and Hilliard [38], and Yang et al. obtained a similar

result from a rigorous expansion in powers of density derivatives [39].

Using density gradient theory, an analytical equation of state can be used to predict

the surface tension and density profile of an inhomogeneous fluid [36, 40]. In other words,

information about a homogeneous system is used to predict inhomogeneous or interfacial

properties. In the CPP method, the reverse is used: the density profile and other information

pertaining to a simulated inhomogeneous system is used to obtain homogeneous properties.

We follow the work of Yang et al. and define the total Helmholtz energy F tot of the system

as the volume integral of the Helmholtz energy density ψtot(r), or

F tot =

ˆ
ψtot(r) dr . (3.1)

For an inhomogeneous system with an external potential U ext(r), the Helmholtz energy

density can be partitioned into multiple contributions:

ψtot(r) = U ext(r) ρ(r) + ψ0(r) + ψIH(r) , (3.2)
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where ρ is the molecular number density. ψ0 is the Helmholtz energy density of a homoge-

neous fluid with temperature and density the same as the inhomogeneous fluid at position r

and is a local term. ψIH is the excess Helmholtz energy density due to the inhomogeneity of

the system and is a nonlocal term. Throughout this work we assume the density varies only

in the z direction. Eq. 3.2 then becomes

ψtot(z) = U ext(z) ρ(z) + ψ0(z) + ψIH(z) . (3.3)

Yang et al. rigorously showed that a density gradient term can be used to approximate

ψIH(r) as

ψIH(z) =
1

2
c(ρ) ρ′(z)2 +O

(
∇4ρ

)
, (3.4)

where ρ′(z) = dρ/dz and c(ρ) is called the influence parameter and is given as

c (ρ) =
2

3
π kB T

ˆ
dr12 r

4
12C

0(r12, ρ) , (3.5)

where r12 is the molecular pair-wise distance and C0(r12, ρ) is the direct correlation function

of a homogeneous fluid. The influence parameter c may be also taken to be an empirical

constant (independent of temperature and density) [40], as is the case in this chapter unless

otherwise noted. In Eq. 3.4, the notation O (∇4ρ) refers to the order of the truncation error,

meaning that the neglected terms are proportional to products of density derivatives whose

orders sum to 4 or greater. We include this term as a reminder that higher order terms have

been neglected in gradient theory.

Eqs. 3.2 and 3.3 do not necessarily describe a system at equilibrium. If we assume

equilibrium, then F tot will be minimized subject to the constraints of constant volume V

and a fixed number of molecules N . One can use the solution to the Euler-Lagrange equation

to minimize F tot with these constraints [39]. This leads to
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µtot = U ext(z) + µ0(z) + µIH(z) , (3.6)

where µtot is the total chemical potential, which is constant at all locations inside the simu-

lation cell. µ0 is the desired homogeneous chemical potential, and µIH is the inhomogeneous

chemical potential. The intrinsic chemical potential µint is defined as µint(z) = µ0(z)+µIH(z).

We note that Widom’s method when applied to an inhomogeneous system gives µint, not µ0

[9, 37].

Using the Euler-Lagrange equation and the approximation for ψIH given in Eqs. 3.4 and

3.5 gives [39]

µIH(z) = −1

2

∂c(ρ)

∂ρ
ρ′(z)2 − c(ρ) ρ′′(z) +O

(
∇4ρ

)
, (3.7)

where ρ′′(z) = d2ρ/dz2.

Rearranging Eq. 3.6 yields

µ0(z) = −U ext(z)− µIH(z) + µtot . (3.8)

In the CPP method, U ext is fixed. Given µIH(z) and µtot, the desired µ0(z) curve can

be obtained for the entire range of densities found in the simulation. In this work, the

combination of Eqs. 3.7 and 3.8 with c taken to be an empirical constant constitute the

VdW method. Methods of obtaining µtot and µIH(z) are given below.

For pure-component systems at constant temperature [37], the homogeneous Helmholtz

energy density is

ψ0(ρ) =

ˆ
µ0(ρ) dρ− P ∗ , (3.9)

where P ∗ is a constant of integration. In the absence of an external field, P ∗ is equal to

the hydrostatic pressure of the system. If desired, the Helmholtz energy density ψ0 can be
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obtained from the VdW method by multiplying Eq. 3.8 by dρ/dz according to Eq. 3.9 and

integrating with respect to z:

ψ0(z) = −
ˆ
U ext(z)

dρ(z)

dz
dz + ψIH(z) + µtot ρ(z) (3.10)

−P ∗ +O
(
∇4ρ

)
,

where we have used Eqs. 3.4 and 3.7 as well. From the relationship between Gibbs and

Helmholtz energies, the homogeneous pressure P 0 of a pure-component fluid can be defined

as

P 0(z) = µ0(z) ρ(z)− ψ0(z) . (3.11)

The system constants µtot and P ∗ can be determined in two ways. First, if the density

is low enough at some position in the CPP simulation, they can be determined from the

ideal gas chemical potential and pressure. Otherwise, an additional homogeneous simulation

using Widom’s method or an equation of state (EOS) can be used to determine the chemical

potential and pressure at one density found in the CPP simulation. Alternatively, one

could determine µtot by performing Widom insertions at one location in the CPP simulation

(generally the planar slice with the lowest density).

In summary, µ0(ρ) is obtained using the VdW method as follows:

1. Run an NVT simulation with U ext(z) to measure the resulting ρ(z)

2. Approximate µIH(z) using Eq. 3.7 with c taken to be an empirical constant

3. Determine µtot as described above

4. Obtain µ0(z) using Eq. 3.8

5. Plot µ0(z) vs ρ(z) to obtain the desired µ0(ρ)
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3.3 Pressure tensor method

In this section, we describe how to calculate the inhomogeneous pressure tensor P(z) using

the virial equation and show how to approximate corresponding homogeneous properties.

3.3.1 Calculation of the pressure tensor

In this work, we assume an inhomogeneous system confined to a rectangular box in which

average fluid properties vary only in the z direction. Assuming thermal equilibrium, the

local pressure tensor P(z) can be expressed as [41]

P(z) = kB T ρ(z) I +
1

V

∑
i

∑
j<i

fijn rT
ijnτijn(z) , (3.12)

where kB is Boltzmann’s constant, T is the system temperature, ρ(z) is the density at

position z, I is the identity matrix, V is the system volume, the notation ijn means that the

nearest-image convention is used in conjunction with periodic boundary conditions between

molecules i and j, rijn is the molecular pair-wise distance, and fijn is the intermolecular force.

The superscript T refers to the matrix transpose, in this case turning a column vector into

a row vector (i.e. Eq. 3.12 contains the outer product of two vectors). The double sum is

over all unique molecular pairs in the system subject to a spherical cutoff based on distance

rijn. For our equilibrium system, there are two independent components of the pressure

tensor: one normal to the interface, PN(z) = Pzz(z), and one tangential to the interface,

PT(z) = Pxx(z) = Pyy(z).

τijn(z) is the contour function that controls how the pressure is distributed spatially with

respect to each interacting pair of molecules. The pressure tensor has a well known ambiguity

on this issue. As stated by Schofield and Henderson, for a planar interface, the tangential

component of the pressure is not uniquely defined, so one can express the non-unique nature

of the tangential component of the pressure tensor in terms of a contour connecting the

two interacting molecules [42]. In essence one must decide how to spatially distribute the
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z direction

(a)

(b)

Figure 3.1: Conceptual representation of (a) the IK contour and (b) the H contour showing
how pairwise contributions to pressure are spatially distributed.

contribution to the pressure, energy, etc. due to a pair of interacting molecules. The contours

given by Irving and Kirkwood (IK) [41] and Harasima (H) [43] (see also Ref. [44]), are most

commonly used. The IK contour distributes the pair-wise contribution uniformly along a

straight line connecting the interacting pair of molecules (in the nearest-image sense), while

the H contour distributes the pair-wise contribution equally between the two point locations

of the molecules of the interacting pair. In practice, the pressure is calculated with the IK

or H contour using a finite number of slabs normal to the z direction as shown in Figure

3.1. Some properties depend on choice of contour and others do not. For example, the total

amount of surface tension is independent of contour, but how the predicted surface tension is

distributed locally throughout the interface is affected by which contour is used. In contrast,

the normal component of the pressure tensor is well-defined (to within a constant) as given

by mechanical equilibrium [42] as described below.

In this chapter, we use the IK contour which, as stated above, distributes the pair-

wise pressure uniformly along a straight line connecting the interacting pair of molecules.

There are multiple ways to express this mathematically [45, 46], and in many works periodic
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boundary conditions are neglected. In order to account for the periodic boundary conditions

of the system, we use

τ IK
ijn(z) =

Lz
zijn

[Θ (z − zi)−Θ (z − zj)] +
∆ij

zijn
, (3.13)

where Θ is the Heaviside step function, Lz is the length in the z direction,

∆ij = −Lz trunc [2 (zj − zi) /Lz] , (3.14)

where trunc(x) is the truncation function that removes the fractional part of x, and

zijn = zj − zi + ∆ij . (3.15)

In practice, P(z) is calculated with the IK contour using a finite number of slabs normal

to the z direction. The Ns slabs that contain any part of the line connecting the two

molecular centers of mass are determined, and each of these slabs is assigned 1/Ns of the

total contribution of pressure from a given pair interaction. (For example, see Ref. [47]. )

3.3.2 Restrictions on the normal pressure

For a fluid at equilibrium, mechanical stability introduces a restriction on the normal pres-

sure. In the case of our system,

dPN(z)

dz
= ρ(z) f ext(z) , (3.16)

where f ext(z) = −dU ext(z)/dz is the external force acting on the particles in the system [37].

Eq. 3.16 can be integrated to obtain

PN(z) =

ˆ
ρ(z) f ext(z) dz + P ∗ . (3.17)
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For a system at equilibrium, ψ0 is given by Eq. 3.10. We can eliminate the integral in

Eq. 3.10 using integration by parts with the help of Eq. 3.17, giving

ψ0(z) = −U ext(z) ρ(z)− PN(z) + ψIH(z) (3.18)

+µtot ρ(z) +O
(
∇4ρ

)
.

Combining Eqs. 3.8, 3.11, and 3.18 and rearranging yields

PN(z) = P 0(z) + ψIH(z) + µIH(z) ρ(z) +O
(
∇4ρ

)
. (3.19)

Like Eq. 3.16, Eq. 3.19 can also be used to verify that the system is at mechanical equilibrium.

3.3.3 Obtaining homogeneous properties

One can expand the local pressure tensor (Eq. 3.12) using a Taylor series in density gradient

to obtain a combination of homogeneous and inhomogeneous terms. This allows one to

obtain an expression for the homogeneous pressure using a linear combination of PN and PT.

Such an expansion using the IK contour predicts that [34, 48, 49]

P IK
N (z) = P 0(z) + k

[
1
2
ρ′(z)2 − ρ′′(z) ρ(z)

]
+O

(
∇4ρ

)
, (3.20)

and

P IK
T (z) = P 0(z) + 1

3
k
[

1
2
ρ′(z)2 − ρ′′(z) ρ(z)

]
+O

(
∇4ρ

)
, (3.21)

where k is the influence parameter and is a system constant equal to

k = 1
30

ˆ
s3u′(s) g(2) (s, ρavg) ds , (3.22)
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where s is the molecular pair-wise distance, −u′(s) is the intermolecular force, and g(2)(s, ρavg)

is the radial distribution function of the homogeneous fluid at the average density ρavg of the

system. k can be calculated from c (Eq. 3.5) used in VdW gradient theory with the use of

certain approximations [34].

In gradient theory, other approximations can also used for k. Some assume that k depends

only on the intermolecular potential and not on the structure of the fluid, while others use the

direct correlation function of the homogeneous fluid at the local density [34, 37]. Some even

assume that k is independent of density and temperature [40]. Furthermore, the calculation

of k in Eq. 3.22 assumes a spherically symmetric force, which is usually not the case for

structured molecules. (For non-spherical molecules, one can average over all orientations

of the molecule.) However, in the CPP method, this point is less important because the

constant k is never actually calculated. One can eliminate k by combining Eqs. 3.20 and

3.21 and solving for P 0(z):

P 0(z) = 3
2
PT(z)− 1

2
PN(z) +O

(
∇4ρ

)
. (3.23)

Eq. 3.23 allows one to relate an inhomogeneous system to a homogeneous one and even allows

one to predict spinodal densities of a fluid [50, 51].

If U ext(z) = 0, then PN is constant at all locations in the system, even if there are two

phases and an interface present, as shown by Eq. 3.16. The chemical potential µint given by

Widom’s method is also constant in the absence of an external field as shown by Eq. 3.6.

However, if two phases are present, PT, P 0, and µ0 may vary throughout the interface, and

P 0 and µ0 will furthermore exhibit a van der Waals loop.

Once we have determined P 0, we can obtain the homogeneous chemical potential µ0 using

the definition of Gibbs energy (at constant temperature):

µ0(z) =

ˆ
dP 0(z)

dz

1

ρ(z)
dz + µtot , (3.24)
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where the constant µtot is the total chemical potential. We refer to the use of Eqs. 3.23 and

3.24 as the pressure tensor method of obtaining µ0. If desired, the Helmholtz energy density

can be obtained from the pressure tensor method by rearranging Eq. 3.11.

In summary, µ0(ρ) is obtained using the pressure tensor method as follows:

1. Run an NVT simulation with U ext(z) to measure the resulting ρ(z), PN(z), and PT(z)

2. Obtain P 0(z) using Eq. 3.23

3. Determine µtot as described above

4. Obtain µ0(z) using Eq. 3.24

5. Plot µ0(z) vs ρ(z) to obtain the desired µ0(ρ)

3.4 TZ method

Here we show a third method to obtain homogeneous properties using a relation between the

surface tension γ and ψIH. Working equations for surface tension often include a factor of

1/2 to account for the fact that two interfaces are formed in periodic molecular simulations.

However, for simplicity, the equations in this section assume a single interface. For a non-

periodic system, the integrals over system length range between ±∞, and for a periodic

system, they range between 0 and Lz.

3.4.1 Surface tension

The surface tension is related to the pressure tensor according to [41]

γ =

ˆ
[PN(z)− PT(z)] dz . (3.25)

The total grand potential Ωtot can be defined as
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Ωtot = A

ˆ [
ψtot(z)− µtot ρ(z)

]
dz . (3.26)

Ωtot is also related to PT as [52, 53]

Ωtot = −A
ˆ
PT(z)dz . (3.27)

Combining Eqs. 3.25-3.27 gives

γ =

ˆ [
PN(z)− ψtot(z)− µtot ρ(z)

]
dz . (3.28)

Combining Eqs. 3.3, 3.18, and 3.28 gives

γ = 2

ˆ
ψIH(z) dz +O

(
∇4ρ

)
. (3.29)

Eq. 3.29 can also be derived in a more familiar manner for a system without an external

potential [34, 39]. Combining Eqs. 3.1, 3.3, and 3.18 gives

F tot = 2A

ˆ
ψIH(z) dz − PV + µtotN +O

(
∇4ρ

)
. (3.30)

A definition of surface tension in the absence of an external potential is

γ =

(
∂F tot

∂A

)
T,N,V

. (3.31)

Combining Eqs. 3.30 and 3.31 gives Eq. 3.29.

3.4.2 Obtaining homogeneous properties

It is tempting to assume that the integrands in Eqs. 3.28 and 3.29 are equal locally, allowing

one to obtain 2ψIH(z) from PN(z)−PT(z). This is true of the form of the pressure tensor first

proposed by Lovett [39, 54, 55]. Lovett’s form furthermore satisfies the mechanical stability
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restriction placed on PN given in Eq. 3.19. However, no contour (such as the IK contour

given in Eq. 3.13) or virial-type expression was given to calculate this form of P(r) in a

discrete-particle system. Simulations show that the integrands in Eqs. 3.28 and 3.29 are not

equal locally for the IK pressure tensor (see Fig. 3.5 below). This is because PN(z)− PT(z)

calculated using the IK contour and 2ψIH(z) differ by some function that integrates to zero

over the length of the system in the z direction.

Another expression for γ was obtained by Triezenberg and Zwanzig [56] (TZ). (See also

Ref. [57] for an independent derivation.) For our system,

γ =
1

2
π kB T

ˆ
dz ρ′(z)

ˆ
dz2 ρ

′ (z2)

ˆ
ds s3C(z, z2, s) , (3.32)

where s =
√
x2

12 + y2
12 and C(z, z2, s) is the inhomogeneous direct correlation function.

Combining Eqs. 3.29 and 3.32 without integrating over dz yields

ψIH(z) =
1

4
π kB T ρ

′(z)

ˆ
dz2 ρ

′ (z2)

ˆ
ds s3C(z, z2, s) (3.33)

+ ∆TZ(z) +O
(
∇4ρ

)
,

where
´

∆TZ (z) dz = 0.

The expressions for ψIH given by Eq. 3.33 and the VdW method are closely related: If

we approximate C(z, z2, s) as the homogeneous direct correlation function C0(r12, ρ(z)) and

expand ρ′ (z2) around ρ′ (z) using a Taylor series, then the resulting first term of the series is

equal to Eq. 3.4 with c (ρ) given by Eq. 3.5 [37, 58]. Furthermore, with these approximations,

∆TZ(z) = O (∇4ρ). As a practical matter, we assume ∆TZ(z) = 0 in Eq. 3.33. Simulation

results (below) confirm this as reasonable.

The use of Eq. 3.33 requires the inhomogeneous direct correlation function. Obtaining

inhomogeneous direct correlation functions directly from simulations [59–61] and integral
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equation theory [62, 63] has been discussed previously, but this was beyond the scope of this

project.

Instead, we used the homogeneous direct correlation function at an average density to

approximate the inhomogeneous direct correlation function as

C(z1, z2, s) = C0(r12, ρ̄) , (3.34)

where ρ̄ = [ρ (z1) + ρ (z2)] /2. This approximation has been used previously for the LJ fluid

[64].

We furthermore estimated the homogeneous direct correlation function using the homo-

geneous Ornstein-Zernicke (OZ) equation [65] with the Percus-Yevick (PY) closure relation

[66]. A solution was effected by the method of Gillian [67] and a computer code adapted from

Lee [68] with a grid spacing of 4ρ∗ = 0.01 and 4r∗ = 0.05 (quantities defined below). The

double integral in Eq. 3.33 was evaluated numerically for 250 points in the z direction. The

ψIH values at these points were then fit vs density using a polynomial with 15 coefficients.

Given ψIH from Eq. 3.33 and the approximation in Eq. 3.34, one can calculate ψ0 using

Eq. 3.18 and µ0 using Eq. 3.9. We refer to this as the TZ method of obtaining µ0. If desired,

one can use the TZ method to calculate P 0 using Eq. 3.11.

In summary, µ0(ρ) is obtained using the TZ method as follows:

1. Run an NVT simulation with U ext(z) to measure the resulting ρ(z) and PN(z)

2. Approximate ψIH(z) using Eqs. 3.33 and 3.34

3. Determine µtot as described above

4. Calculate ψ0 using Eq. 3.18

5. Obtain µ0(z) using Eq. 3.9

6. Plot µ0(z) vs ρ(z) to obtain the desired µ0(ρ)
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3.5 Long-range corrections

When simulating homogeneous systems of Lennard Jones (LJ) particles using MD simula-

tions, the intermolecular force is usually truncated at some radial distance rcut, and standard

long-range corrections (LRCs), which assume the radial distribution function is unity for

r ≥ rcut, are applied to the energy and pressure terms at the end of the simulation [69].

For a homogeneous or isotropic system, long-range forces cancel by symmetry, so there is no

LRC applied to the forces in this case.

However, for an inhomogeneous simulation, the corrections of energy, force, and pressure

tensor are nonlocal terms which depend on the condition of the surrounding fluid. Long-

range forces no longer cancel, and a correction to the forces may need be applied at every

timestep to obtain the correct density profile. For homogeneous LJ simulations, rcut = 2.5σ

is considered reasonable, where σ is the LJ distance parameter. However, the phase behavior,

including the critical point, of an inhomogeneous LJ fluid depends highly upon the cutoff

distance (at least for rcut < 5.5σ) if proper long-range corrections are neglected [70].

In this work, we use rcut = 5.5σ to account for the inhomogeneity of the system. To

account for interactions beyond this cutoff, a local standard homogeneous LRC to pressure

[71], evaluated at ρ(z), is also applied to P 0(z). More accurate alternatives exist and are

described in Chapters 4 and 5.

3.6 Simulation details

In order to test the results of the proposed methods, we selected and simulated supercritical,

two-phase, vapor, and liquid conditions for a pure-component Lennard-Jones (LJ) fluid. We

use the LJ fluid because accurate equations of state exist for this fluid [72, 73] which can be

used to validate results from the CPP method. Additionally, the LJ fluid is computationally

efficient and simple to implement, yet contains essential physics for a nonpolar spherical

molecule and is well-accepted as a benchmark system. The LJ potential uLJ(r) is given as
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uLJ(r) = 4 ε

[(σ
r

)12

−
(σ
r

)6
]
, (3.35)

where ε and σ are the respective LJ energy and distance parameters. Results in this chapter

are given in reduced LJ units as z∗ = z/σ, T ∗ = kB T/ε, ρ
∗ = ρ σ3, ψ∗ = ψ σ3/ε, γ∗ = γ σ2/ε,

µ∗ = µ/ε, c∗ = c/ (ε σ5) and t∗ = t/
√
σ2m/ε, where m is the particle mass.

The molecular dynamics method was used. The equations of motion included an integral-

control (Nosé-Hoover) thermostat and were integrated using a 4th-order Gear predictor-

corrector scheme [69]. The size of the time step was selected for each simulation to generate

a root-mean-square displacement of molecules of 0.003σ per timestep. A Verlet neighbor list

was used to speed up computations [69].

The external potential was of the following form consistent with periodic boundary con-

ditions:

U ext(z) =
4Umax

2
cos

(
2π z

Lz

)
, (3.36)

where 4Umax is an adjustable parameter corresponding to the maximum difference in exter-

nal potential. 4Umax also corresponds to maximum difference in µint as shown by Eq. 3.6.

Changing 4Umax and the average density of the system ρavg allows one to control the range

of densities obtained in a CPP simulation. In this work, we used an iterative process or

an equation of state to determine 4Umax and ρavg which give a desired range of densities.

Though not done here, one could use an NPT ensemble to control the average density of

the system and a feedback control system for the external field to achieve a desired density

profile.

The CPP method applies a continuous, spatially varying external field to the system.

This causes a continuous change in the density profile. Therefore, the CPP method essen-

tially gives the density profile and resulting chemical potential as continuous curves. Any

discretization used is for convenience in post-processing the results. Samples for density and
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Figure 3.2: An example of a Fourier fit used to smooth the density profile.

pressure profiles were taken every 8 timesteps and were collected using 401 equally spaced

slabs normal to the z direction.

Resulting pressure and density profiles were each fit using a Fourier cosine series, as this

automatically satisfies the periodicity and symmetry of the system. Additionally, limiting the

number of terms in the Fourier cosine series worked well to screen out noise and smooth the

data. Figure 3.2 shows an example of a Fourier cosine series used to fit the data. Using too

few Fourier coefficients results in a poor fit of the data or oscillations near sharp changes in

the profiles (such as the change in density at an interface between two phases), which biases

the results. Using too many Fourier coefficients increases the random noise in the results.

Using both a slab-based histogram and a Fourier fit allowed us to check the reasonableness of

the fit while smoothing out random error. In order to check that our results were independent

of the number of slabs used, we increased the number of slabs from 401 to 701 for the CPP

2 and 3L simulations (described below). These simulations contain relatively sharp changes

in density profile, and yet increasing the number of slabs did not significantly alter the µ0(z)

curves.

When assessing the results of a method, it is important to consider both random errors

and systematic bias. Sources of random errors in the CPP method include noise in the

measured density and pressure tensor profiles. Sources of biases in the CPP method include
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truncation errors in the Fourier series used to fit the profiles and truncation errors in the

Taylor series expansions used to approximate µIH.

Random errors were estimated using the block method. Each simulation was divided

into 10 blocks, which were used to calculate 95% confidence intervals of the data using

the Student’s t-distribution. In the CPP method, both the measured density and chemical

potential vary at a given position. The variation in chemical potential is due to the correction

for the inhomogeneity of the system. Thus a plot of µ vs ρ requires error bars in both

directions. We plotted these error bars for several points along the curves in order to give

the reader a sense of the random errors in the simulations.

In order to estimate the bias in the CPP method, we used an equation of state (EOS) for

the LJ fluid proposed by Kolafa and Nezbeda [72], as well as Widom’s method (see Eq. 2.3).

This LJ EOS and Widom’s method both give the chemical potential in excess of an ideal

gas. In order to obtain the full chemical potential, it is necessary to include the ideal gas

chemical potential µig given in reduced LJ units as

µig ∗(z) = T ∗ ln

[(
h∗ 2

2π T ∗

)3/2

ρ∗(z)

]
, (3.37)

where h∗ = h/
√
σ2εm and h is Planck’s constant. For purposes of presentation we used h∗ =

0.183, obtained by using typical LJ parameters for argon: ε/kB = 121.85 K, σ = 0.3429 nm,

and mNA = 39.948 g/mol, where NA is Avogadro’s number.

The CPP method gives differences in chemical potentials as a function of density. Another

method such as Widom’s or an EOS is needed to determine the unknown constant (or

reference) µtot. In this work, µtot was determined by shifting the µ0(z) curve vertically until

it matched the LJ EOS at ρavg (unless otherwise noted). Because µ0 is fixed at this point,

the apparent error at this point will be zero. Alternatively, we could have determined µtot by

performing Widom insertions in one slice of the CPP simulation or in a separate homogeneous

simulation at one density contained in the CPP simulation. It was not necessary to determine

P ∗ because the IK method was used to calculate the pressure tensor.
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Table 3.1: Parameters for the pure-component CPP fluid simulations shown in this
chapter. Type SC refers to supercritical, 2φ refers to two-phase,

Vap refers to vapor, and Liq refers to liquid.

Name Type N Lz

Lx=Ly
T ∗ ρ∗min ρ∗avg ρ∗max 4U∗max timesteps

1 SC 2× 103 2 1.5 0.043 0.437 0.749 5.0 5× 106

1L SC 104 10 1.5 0.044 0.437 0.751 5.0 106

2 SC 4× 103 4 2.0 0.011 0.632 1.05 28.5 106

3 2φ 103 1 0.8 0.00168 0.403 0.847 2.0 2× 106

3L 2φ 4× 103 4 0.8 0.00149 0.403 0.848 2.0 2× 106

4 Vap 103 1 0.8 0.000835 0.00244 0.00498 1.39 5× 106

5 Liq 4× 103 2 0.8 8.02 8.54 8.99 2.15 2× 106

3.7 Simulation results and discussion

Table 3.1 shows the parameters for the CPP simulations of the LJ fluid presented in this

chapter. For reference, the critical temperature of the LJ fluid is around T ∗ = 1.326 [74].

In order to illustrate the range of densities in the CPP 1, 2, and 3 simulations, Figure 3.3

shows the range of densities superimposed on LJ phase boundaries [73, 75].

3.7.1 Supercritical simulations

In the absence of an external field, a pure-component fluid at temperatures above its critical

temperature will not spontaneously split into different phases. However, the addition of a

spatially varying external potential produces equilibrium density gradients (and therefore

surface tension as predicted by density gradient theory).

A snapshot, as well as the external potential and density profile vs position z, of CPP

simulation 1 are shown above in Figure 2.3. If no external field were present, this simulation

would have the uniform density ρ∗avg shown in Table 3.1. We used Eq. 3.16 to verify the
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Figure 3.3: Density range in the CPP 1, 2, and 3 simulations (solid lines) along with LJ
phase boundaries (dotted lines). The CPP method allows one to predict chemical potentials
for a wide range of densities simultaneously using a single simulation.

system was at mechanical equilibrium and that PN was calculated accurately using Eqs. 3.12

and 3.13. Agreement between left-hand and right-hand sides of Eq. 3.16 was essentially

exact.

Figure 3.4 shows the resulting homogeneous chemical potential using the three different

approximations of µIH, as well as the µIH curves themselves. Results are validated by com-

paring to those for the LJ EOS. The curve labeled as LJ EOS in Figure 3.4b is estimated

using Eq. 3.8 with µ0 given by the LJ EOS. For this system, the most accurate method

of approximating µIH is the pressure tensor method. For the pressure tensor method, the

magnitude of maximum deviation in µIH from the LJ EOS was 0.023 (reduced units), while

for the TZ method it was 0.055 (2.4 times as high as the pressure tensor method), and for

the VdW method it was 0.11 (4.9 times as high as the pressure tensor method).

Figure 3.5 shows profiles of inhomogeneous Helmholtz energy density vs position for

CPP simulation 1 predicted using the VdW and TZ methods. For the VdW method, we

used a value of c∗ = 4.4 (constant with respect to density) [40]. Figure 3.5 also shows

[PN(z)− PT(z)]/2 calculated using the IK contour is not equivalent to the predicted ψIH(z).
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Figure 3.4: (a) Homogeneous chemical potential vs density for CPP simulation 1 using three
different approximations of µIH(z). (b) Comparison of the different approximations of µIH(z)
vs density. Density error bars are not shown for the VdW and TZ curves, but are identical
to those shown for the pressure tensor curve.

Even though there isn’t a well-defined surface in simulation 1, one can still calculate the

apparent (induced) surface tension using the TZ equation (Eqs. 3.32 and the approximation

given in Eq. 3.34), which gave γ∗TZ = 0.357 ± 0.001. One can also use the pressure tensor

(Eq. 3.28) to calculate the surface tension, which gave γ∗IK = 0.311±0.015. When an inhomo-

geneous long-range correction [76] was included with the pressure tensor, γ∗IK = 0.362±0.015,

producing better agreement between the two methods and further validating the approxima-

tion given in Eq. 3.34. The VdW method predicted a surface tension of γ∗VdW = 0.319±0.001.

In order to test the influence of simulation cell length, we repeated CPP simulation 1

with length in the z direction increased by a factor of 5 (see Table 3.1). We refer to this

simulation as 1L (where L stands for long). Figure 3.6 shows that increasing Lz decreases

µIH as expected from gradient theory. The maximum deviation in µ0 from the LJ EOS of
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Figure 3.5: Plot of inhomogeneous Helmholtz energy density vs position for CPP simulation
1 predicted using the VdW and TZ methods. The quantity [PN (z)− PT (z)] /2 (calculated
using the IK contour) is also shown, which does not match the predicted ψIH(z).

the CPP 1 simulation with pressure tensor method correction was 0.023, while for the CPP

1 simulation without a correction method it was 0.483 (21 times as high as CPP simulation 1

with the correction), and for the CPP 1L simulation without a correction method it was 0.18

(7.8 times as high as CPP simulation 1 with the correction). In theory, one could increase

the length of the simulation cell until µIH becomes negligible. However, Figure 3.6 also shows

that if an appropriate gradient correction for µIH is used, one can obtain less error using a

much shorter simulation cell. Obviously, if the simulation cell is too short, the correction

becomes less reliable due to large density gradients. Furthermore, the use of large external

field gradients can produce anomalous layering structures in the fluid.

The TZ and VdW methods take the derivative of ψ0 to get µ0, which tends to magnify

noise in the data. The pressure tensor method integrates P 0 to get µ0, which tends to smooth

out noise in the data. Also, the pressure tensor is relatively easy to calculate. Therefore,

the pressure tensor method to obtain µ0 is the preferred method in this work and is used

exclusively in the following results.

Figure 3.7 shows the results of supercritical CPP simulation 2 using a higher temperature

and field strength than simulation 1. The highest density in this simulation was essentially at
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Figure 3.6: Comparison of homogeneous chemical potential vs density for CPP simulations
1 and 1L. Simulation 1L is 5 times longer in the z direction than simulation 1. Density error
bars for the CPP1 curve with the pressure tensor correction are not shown but are identical
to those shown for the CPP1 curve without a correction.

the liquid-solid coexistence point of liquid ρ∗ = 1.06 [75]. Figure 3.7 also shows the results of

homogeneous simulations using Widom’s method (Eq. 2.3) for 12 discrete densities. These

simulations included 103 particles and were run for 106 timesteps after equilibration. 103

insertions at random locations were performed every 8 timesteps. Each simulation was broken

into 10 blocks, which were used to calculate 95% confidence intervals (using the Student’s

t-distribution) shown as error bars in Figure 3.7. The simulations used rc = 2.5σ, and the

standard LRC for chemical potential [5] was included. Relative error ε = (µ0 − µ0
LJ EOS) /4

U∗max is also shown for the CPP and Widom’s methods in Figure 3.7b.

The CPP method and Widom’s method have different convergence properties. Widom’s

method converges rapidly for lower densities but converges more slowly as the density of the

system is increased. For this system, Widom’s method starts to become inefficient around

ρ∗ = 0.9, where the probability of a favorable insertion is comparatively low. For Widom’s

method, the deviation from the EOS exceeds the uncertainty of the method at the highest

density, showing a bias in the results. For the CPP method, the magnitude of the maximum

relative error over the entire density range was 0.17 %, while for Widom’s method it was

9.3 % (56 times as high as CPP). The total CPU time (after equilibration) used in the 12
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Figure 3.7: (a) Homogeneous chemical potential vs density for CPP simulation 2. Results
from Widom’s method are also shown. (b) Relative error as compared to the LJ EOS. The
error bar visible at the lowest density is for the CPP method. Density error bars for the
CPP method are not shown in (a) but are identical to those shown in (b).

Widom simulations was close to that of CPP simulation 2. One could further optimize

the efficiency of Widom’s method by sampling less at lower densities and more at higher

densities. However, the spherical LJ model represents a best-case scenario for Widom’s

method; Widom’s method converges even more slowly for large or structured molecules.

The CPP method seems to converge both for low and high densities. The CPP method also

gives a whole curve in a single simulation, while several simulations at different densities

using Widom’s method are necessary to obtain comparable results. However, because the

CPP method uses one simulation for a wide composition range, it may be necessary to run

the CPP simulation longer than a typical homogeneous simulation in order to obtain error

bars of similar size. Using a Fourier series to smooth the data from the CPP method helps

decrease noise.
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Figure 3.8: Homogeneous chemical potential vs density for two-phase CPP simulations 3
and 3L. The liquid-vapor tie line calculated using the LJ EOS is shown for reference.

3.7.2 Subcritical simulations

3.7.2.1 Two-phase systems

In simulations below the critical temperature, the fluid can spontaneously split into two

phases. The addition of an external field merely increases the inhomogeneity of a two-phase

system.

Figure 3.8 shows results of subcritical CPP simulations 3 and 3L, which included vapor,

liquid, and two-phase regions. The constant µtot was determined by fitting the µ0 curve to

the LJ EOS at one liquid density (ρ∗ = 0.83) at which the EOS is expected to be accurate.

Figure 3.8 also shows that µ0 exhibits a van der Waals loop in the two-phase region. The

liquid-vapor tie line calculated using the LJ EOS is shown for reference in Figure 3.8. The

µ0 curves given by simulations 3 and 3L were fit using a Fourier cosine series. For CPP

simulation 3, the magnitude of the maximum deviation in µ0 from the LJ EOS was 0.32,

while for CPP simulation 3L, it was 0.43.

Normally, two-phase molecular simulations predict coexisting densities by ignoring the

interface and measuring average bulk-phase densities. In this work we determined the coex-

isting densities by equating the homogeneous pressures and the chemical potentials of the
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Table 3.2: Predicted binodal and spinodal densities at T ∗ = 0.8 from
CPP simulations 3 and 3L and the LJ EOS.

Binodal ρ∗ Spinodal ρ∗

vapor liquid vapor liquid

CPP 3 0.00413± 0.00019 0.805± 0.003 0.0512± 0.0027 0.673± 0.005

CPP 3L 0.00356± 0.00053 0.802± 0.001 0.0467± 0.0023 0.660± 0.005

LJ EOS 0.00608 0.800 0.0654 0.654

two phases predicted from simulation (because the external field disrupts bulk regions of

constant density). The vapor-liquid coexisting (binodal) densities determined from CPP

simulations 3 and 3L and the LJ EOS are shown in Table 3.2. Increasing the cutoff radius

or using an inhomogeneous LRC may improve results.

The spinodal densities can be estimated by finding the minimum and maximum of the

van der Waals loop in the homogeneous pressure profile predicted using Eq. 3.23 [50, 51]. We

show the resulting spinodal densities from simulations 3 and 3L compared to the LJ EOS

in Table 3.2. The CPP method allows one to obtain information about the metastable or

unstable regions of the system that is difficult or impossible to determine experimentally.

However, a potential problem with the use of Eq. 3.23 in the two-phase region is that one

cannot eliminate or significantly decrease the inhomogeneity in the two-phase region by

increasing the length of the simulation cell. If density gradients in this region are too large,

the pressure tensor correction for the inhomogeneity of the system could be less reliable. We

also note that it is difficult to validate spinodal densities using the LJ EOS because the EOS

was not fit with data in the metastable or unstable regions. Vapor binodal and spinodal

densities were also somewhat sensitive to the number of Fourier cosine terms used to fit the

profiles.
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Figure 3.9: (a) Homogeneous chemical potential vs density for vapor-phase CPP simulation
4, which shows slight non-ideal gas behavior. (b) Relative error as compared to the LJ EOS.
Density error bars for the CPP method are not shown in (a) but are identical to those shown
in (b).

Figure 3.8 also shows that for this simulation set-up, random errors in the CPP method

become significant at very low densities. This problem is easily overcome by performing a

separate CPP simulation exclusively at vapor conditions as described below.

3.7.2.2 Single-phase systems

If one is interested only in the vapor or liquid regions (a single phase) of a subcritical fluid, a

CPP simulation can be performed only at these conditions. The effect of an external potential

on a single-phase subcritical fluid is similar to that for the supercritical case. Figure 3.9

shows the results of vapor-phase CPP simulation 4. The results show departure from ideal

gas behavior. The maximum magnitude of relative error for this simulation was 0.077 %.

The agreement between CPP and the LJ EOS is better than the size of the error bars would

suggest. For this simulation, there appears to be a cancellation of errors when the pressure
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Figure 3.10: (a) Homogeneous chemical potential vs density for liquid-phase CPP simulation
5. (b) Relative error as compared to the LJ EOS. Density error bars for the CPP method
are not shown in (a) but are identical to those shown in (b).

tensor correction is used. This may be because errors in the fits of the density and pressure

tensor are correlated in this instance.

Figure 3.10 shows the results of liquid-phase CPP simulation 5. At this temperature, the

density at the liquid-solid coexistence point is liquid ρ∗ = 0.881 [75], so part of the results

represent a metastable liquid region. The maximum magnitude of relative error for this

simulation was 0.86 %. There also appears to be a slight systematic disagreement between

the results for this CPP simulation and the Kolafa and Nezbeda EOS.

3.8 Conclusion

A new method, called chemical potential perturbation (CPP), has been developed to predict

the chemical potential in periodic molecular simulations. The CPP method applies a spatially

varying external potential to the simulation, causing the density to depend upon position
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in the simulation cell. Following equilibration the homogeneous (uniform or bulk) chemical

potential as a function of density can be determined relative to some reference state after

correcting for the effects of the inhomogeneity of the system. If desired, the homogeneous

pressure and Helmholtz energy can also be predicted by the new method, as well as binodal

and spinodal densities of a two-phase fluid.

Three different methods of approximating the inhomogeneous correction were compared.

The VdW method uses the van der Waals density gradient theory to approximate the inho-

mogeneous Helmholtz energy density. The pressure tensor method uses the local pressure

tensor to approximate the homogeneous pressure. The TZ method uses the Triezenberg-

Zwanzig definition of surface tension to approximate the inhomogeneous Helmholtz energy

density. The pressure tensor method is the most accurate, followed by the TZ method. The

VdW method is not as accurate but results show the correct trend. Increasing the simulation

cell length may decrease the inhomogeneity of the system, but the use of a correction allows

one to obtain satisfactory results using a much shorter simulation cell or work with natural

two-phase systems. Due to the ease of calculation and accuracy, the pressure tensor method

is the preferred method for obtaining homogeneous properties in this work.

The CPP method was tested using a pure-component Lennard-Jones (LJ) fluid at vapor,

liquid, two-phase, and supercritical conditions and results were compared to an LJ equation

of state. The efficiency of the CPP method was also compared to that for Widom’s method

under the tested conditions. Both Widom’s method and the CPP method work for low

densities, and the CPP method also works for high densities where Widom’s method starts

to fail.
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Chapter 4

Extension to lattice sum treatment of
intermolecular potentials

4.1 Introduction

In order to increase the efficiency of molecular simulations, the intermolecular potential is

usually truncated at some radial distance, and interactions beyond the cutoff are handled

using a long-range correction (LRC) method. As described in Chapter 3, for a homogeneous

(uniform) Lennard-Jones (LJ) fluid, standard tail corrections [69], which assume the radial

distribution function is unity for r ≥ rcut, are applied to the energy and pressure terms at the

end of the simulation. These standard LRCs to energy and pressure depend on the average

density of the system. Because the fluid is uniform, long-range forces cancel by symmetry,

so no LRC force is applied to particles during the simulation.

For the inhomogeneous (non-uniform) fluid, however, the LRCs of energy, pressure tensor,

and force depend on the density profile of the fluid, and corrections may need to be applied at

every timestep. In Chapter 3, we observed satisfactory results for the LJ fluid by increasing

the cutoff radius to rcut = 5.5σ and neglecting the long-range force, instead applying a local

tail correction for chemical potential [71] at the end of the simulation.

When simulating systems of one-dimensional density variations, an alternative LRC ap-

proach for the LJ fluid is to use slab-based methods, which account for inhomogeneity in one

direction but still assume that the radial distribution function is unity for r ≥ rcut. Chapela

et al. and Blokhuis et al. approximated the long-range correction to surface tension by fitting
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the average density profile (at the end of the simulation) using a hyperbolic tangent profile

[77, 78]. However, their approach neglects the long-range energies or forces needed to obtain

the proper density profile of the untruncated potential. Guo and Lu developed a slab-based

method to predict long-range corrections for local thermodynamic properties such as energy,

pressure, and surface tension [71]. Their approach partitions the long-range corrections into

local and nonlocal terms. The local terms were applied during the course of the simulation

using the local density (computed using slabs) and the nonlocal terms were often neglected.

In this manner, their final density profile was closer to that of the untruncated potential.

Lofti et al. developed a similar method using cylindrical instead of spherical coordinates

[79, 80]. However, their approach neglected part of the long-range correction, which was

later added by Janeček [76, 81]. Janeček’s slab-based method allows one to obtain surface

tension independent of cutoff radius for rcut ≥ 2.5σ. However, Janeček’s method fails to

properly account for periodic boundary conditions. This difficulty can be observed for ho-

mogeneous (uniform) simulations in which Janeček’s method does not reduce to standard

LRCs [82].

The Coulombic r−1 potential does not decay with distance as rapidly as the LJ potential

and requires a more sophisticated treatment of the intermolecular potential; simply truncat-

ing the Coulombic potential can lead to artifacts [83–85]. This also means that slab-based

methods should not be used for the Coulombic potential. A commonly used approach for

Coulombic interactions is the lattice (Ewald) sum method, which has also been used for LJ

dispersion interactions [86–89]. In this work, we extend the CPP method to a lattice sum

treatment of intermolecular potentials for both Coulombic and LJ interactions. Conventional

lattice sums naturally account for inhomogeneous densities in determining system energy and

particle forces, but local values of the pressure tensor are not normally determined. Obtain-

ing local properties from the lattice sum method is not as common as obtaining properties

averaged over the entire volume of the system, but has been accomplished previously [90–94].
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Choice of contour is also an important consideration in the CPP method. The IK contour

was used in Chapter 3 to validate the CPP method for pure-component fluids. However, as

described below, one must use the Harasima (H) [43] contour with the lattice sum method

for reasons of computational efficiency. Some caution must be exercised when using the H

contour though. The normal component of the pressure tensor is well-defined (to within

a constant) as given by mechanical equilibrium [42]. For a planar interface, simulations

show that the H contour violates this condition when used for the normal pressure [95, 96].

However, both gradient theory (Appendix A) and simulation results (below) show that the

homogeneous pressure given by Eq. 3.23 is independent of the choice of contour (at least to

within the order of truncation error) as long as the same contour (IK or H) is used for both

components of the pressure tensor (normal and tangential).

In this chapter we show how to obtain the chemical potential using the CPP method with

an Ewald lattice sum and the H contour. We validate the proposed methods by predicting the

chemical potentials for both the LJ fluid and extended simple point-charge (SPC/E) water

[97] and compare the results to respective equations of state. We also show preliminary

results for LJ solids.

4.2 The H contour function

The H contour distributes the pair-wise pressure equally between the two point locations of

the molecules of the interacting pair. This can be expressed as

τH
ijn(z) =

Lz
2

[δ (z − zi) + δ (z − zj)] , (4.1)

where δ is the Dirac delta function. In practice, P(z) is calculated with the H contour using

a finite number of slabs, and each slab that contains one of the interacting molecules is given

half the pressure from a given pair interaction. In Harasima’s original formulation [43], he

used a hybrid approach: the equivalent of Eq. 4.1 for PT and the IK contour (Eq. 3.13) for
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PN. In this chapter, however, we use Eq. 4.1 contour for both PN and PT, and term this the

H contour, which is also known as the IK1 convention in other works [95, 96, 98].

4.2.1 Obtaining homogeneous properties

A gradient expansion procedure can be used for the H contour pressure terms similar to

that given for the IK contour in Chapter 3. As far as we know, this has not been published

previously in the literature. As shown in Appendix A, a gradient expansion of P(z) using

the H contour predicts that

PH
N (z) = P 0(z) + k

[
−3

2
ρ′′(z) ρ(z)

]
+O

(
∇4ρ

)
, (4.2)

and

PH
T (z) = P 0(z) + 1

3
k
[
−3

2
ρ′′(z) ρ(z)

]
+O

(
∇4ρ

)
. (4.3)

Combining Eqs. 4.2 and 4.3 shows that Eq. 3.23 is also valid when the H contour is used for

both PN and PT. This means that either the IK or the H contour can be used in the CPP

method to obtain homogeneous properties. This is important because as we explain below,

the lattice sum method normally requires that the H contour be used. We note that Eq. 3.23

does not hold for Harasima’s original hybrid formulation [43] of using Eq. 3.13 for PN and

Eq. 4.1 for PT.

4.2.2 Local mechanical stability

Even though Eq. 3.23 holds for both the IK and H contours, some caution must be exercised

when using the H contour (Eq. 4.1) to calculate PN alone. For our system, mechanical

stability is given by Eqs. 3.16 and 3.19. As shown by simulations, using the H contour for

PN violates this restriction [95, 96].
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Violation of mechanical stability when using the H contour for PN is also predicted by

gradient theory. For large particle separation, the asymptotic value of the direct correlation

function is −u(s)/kB T . If we assume that C0 (s, ρ) = −g(2)(s, ρavg)u(s)/kBT and that

g(2)(s, ρavg) = 0 when s < σ and g(2)(s, ρavg) = 1 when s > σ, then integration by parts of

Eq. 3.22 yields Eq. 3.5, or k = c(ρ) [34]. Assuming k = c(ρ), substituting Eqs. 3.4 and 3.7

into Eq. 3.20 gives Eq. 3.19. This means that with these approximations, PN(z) calculated

using the IK contour satisfies the condition for mechanical stability given in Eq. 3.19. For

the H contour however, substituting Eqs. 3.4 and 3.7 into Eq. 4.2 does not give Eq. 3.19.

However, both gradient theory (Appendix A) and simulation results (below) support our

conclusion that the homogeneous pressure given by Eq. 3.23 is independent of the choice of

contour (at least to within the order of truncation error) as long as the same contour (IK or

H) is used for both components of the pressure tensor (normal and tangential). Informally,

one can think of this as a difference in pressure tensor components in which cancellation of

error occurs. This is important because the H contour is more computationally efficient than

the IK contour, especially when used with the lattice sum method. However, as shown below

we also noticed that the IK contour has slightly less error than the H contour for a given

simulation cell length. With this in mind, we used a hybrid approach: the IK contour for

the short-range portion of the pressure tensor and the H contour for the long-range portion.

The approach is described in detail below.

4.3 Obtaining local properties from a lattice sum

Here we briefly review the lattice sum method, which has been developed for both Coulombic

and LJ dispersion interactions [86–89]. We focus on the local Coulombic pressure tensor,

but a similar method can be used to obtain the local Coulombic internal energy (including

self-interaction terms), as well as these quantities for the LJ potential.
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Figure 4.1: Conceptual division of the intermolecular potential in the lattice sum method.

As illustrated in Figure 4.1, the lattice sum method divides the intermolecular potential

(r−1 in this case) into different regions. The real-space portion of a lattice sum calculates

region 1 using a damped version of the full intermolecular potential. The reciprocal-space

portion of a lattice sum includes regions 2 and 3, as well as self-interactions which must

be removed. The division of calculation effort between the real and reciprocal parts can be

tuned using a constant called α (see below).

Furthermore, we use a multi-timestep (MTS) algorithm [5, 87] in which the molecular

interactions are divided into short- and long-range parts, and short-range interactions are

updated more often than long-range ones. The short-range part of the potential is the full

interaction out to r = rcut, naturally includes regions 1 and 2, and is not affected by the

presence and use of a lattice sum. The long-range part is equal to the reciprocal-space portion

of a lattice sum minus region 2. This correction to the reciprocal sum is calculated in real

space, but is carried out less frequently than the full short-range interaction just mentioned.

Because the short-range portion of the pressure tensor is calculated using the full potential

and the virial equation (Eq. 3.12), either the IK or H contour is available to obtain local

values needed for the CPP method. In this work, we used the IK contour for the short-range
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portion of the pressure tensor (regions 1 and 2) and the H contour for the long-range portion.

To compute the long-range part, we calculated the region 2 correction using the H contour

and subtracted it from the reciprocal-space part (which also uses the H contour). This means

that the H contour is used only for interactions r ≥ rcut. One could alternatively use the H

contour for all regions.

For the reciprocal portion of the pressure tensor, local values are not traditionally calcu-

lated and one obtains the volume-averaged pressure tensor (for Coulombic interactions) as

[94]

Precip =
1

2V 2 ε0

∑
h6=0

Γ(h)χ(h)

[
I− 2

(
1

4α2
+

1

h2

)
h hT

]
, (4.4)

where h are the reciprocal lattice vectors, h = |h|, ε0 is the vacuum permittivity, and α is

the constant that controls how the potential is divided between real and reciprocal space.

Γ(h) are Fourier coefficients given as

Γ(h) = h−2 e−h
2/4α2

. (4.5)

For the volume-averaged pressure tensor, the quantity χ(h) can be defined as

χ(h) =
∑
i, j

qi qj e
ih·rijn

= S(h)S(−h) , (4.6)

where ri is the position of the ith charge site qi, i is the imaginary number, and S(h) is the

structure factor:

S(h) =
∑
i

qi e
ih·ri . (4.7)
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In this manner, one can reduce the expensive double sum in Eq. 4.6 to the single sum in

Eq. 4.7.

In order to obtain the local pressure tensor Precip(z), one can replace χ(h) in Eq. 4.6 with

a localized version. In the case of the H contour, this is [90, 92–94]

χ(h, z) =
∑
i, j

qi qje
ih·rijnτH

ijn(z) (4.8)

=
∑
i, j

qi qje
ih·rijnLz

2
[δ (z − zi) + δ (z − zj)]

= 1
2
S(−h)SH(h, z) + 1

2
S(h)SH(−h, z)

= Re
[
S(−h)SH(h, z)

]
,

where function Re(x) extracts the real part of x. SH(h, z) is defined as

SH(h, z) = Lz
∑
i

qi e
ih·riδ (z − zi) . (4.9)

Using the H contour, one can reduce the double sum in Eq. 4.8 to the single sums in Eqs. 4.7

and 4.9, consistent with a traditional lattice sum. Thus this method of obtaining local

properties requires little additional computational effort or storage over a traditional lattice

(Ewald) sum.

If one wishes to use the IK contour to obtain local properties, the modification to χ(h) is

χ(h, z) =
∑
i, j

qi qje
ih·rijnτ IK

ijn(z) . (4.10)

Unfortunately, Eq. 4.10 cannot be separated in the same way as Eq. 4.8 and therefore requires

a double loop over molecules instead of the single loop that is used in standard lattice sum

routines. This double loop is prohibitively expensive, so the IK contour is normally not used
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with a lattice sum. We note however that the method of planes can use single-site forces to

obtain the IK version of PN in an efficient manner with a lattice sum [98]. It is also trivial to

calculate the IK version of PN (to within a constant) using Eq. 6.16. Unfortunately neither

of these solutions are available for PT.

4.4 Optimizing the CPP method

The CPP method uses Eq. 3.23 to approximate the homogeneous pressure, with the trun-

cation error of this approximation given as O (∇4ρ). This means that lowering the density

gradients of the system will increase the accuracy of this approximation. We describe two

ways to accomplish this.

First, for supercritical and single-phase conditions, one can simply increase the length of

the simulation cell, recognizing that this also increases computational cost (unless the width

and height are decreased at the same time).

Second, one can change the form of the external potential to reduce density gradients.

The CPP method as originally proposed in Chapter 3 uses an external potential of the form

given in Eq. 3.35. For some simulations, using this form of U ext may produce sharp changes

in density, which in turn decreases the accuracy of the inhomogeneous correction term. One

can generalize Eq. 3.35 to a Fourier cosine series as

U ext(z) =
nmax∑
n=1

An cos

(
2π n z

Lz

)
, (4.11)

where nmax is the number of terms in the Fourier series and An are the Fourier coefficients.

For supercritical or single-phase simulations, one can use Eq. 4.11 to adjust the form of

U ext(z) and obtain any desired density profile, including a sinusoidal density profile. This can

be accomplished iteratively by using Eq. 3.35 and a CPP simulation to obtain a preliminary

curve of ρ(z) vs U ext(z), and then using this information to predict the form of the external

potential that gives the desired sinusoidal density profile, and then running another CPP

54



-4

-2

0

2

4

U
e

x
t*

1.00.80.60.40.20.0

0.8

0.6

0.4

0.2

r
 
*

1.00.80.60.40.20.0

z/Lz

 CPP 2
 CPP 2S

(a)

(b)

Figure 4.2: (a) Different forms of external potential and (b) resulting density profiles.

simulation with the updated external potential. This process can be repeated until one

obtains the desired density profile. We found that one or two iterations were sufficient to

significantly reduce density gradients. For example, Figure 4.2 compares the CPP 2 and 2S

simulations (described below). The CPP 2 simulation used Eq. 3.35, while the 2S simulation

used Eq. 4.11, reducing density gradients by about 40 % after one iteration as compared to

the CPP 2 simulation.

4.5 Internal energy, enthalpy, and entropy

We note that the CPP method allows one to predict the full set of thermodynamic functions.

For instance, the internal energy density φ0(ρ, T ) is related to the Helmholtz energy density

ψ0(ρ, T ) as

φ0(ρ, T ) = −T 2

[
∂ (ψ0(ρ, T )/T )

∂T

]
ρ

. (4.12)
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However, Eq. 4.12 requires temperature derivatives of ψ0, but CPP simulations are run at

constant temperature. Several CPP simulations could be run at different temperatures to

obtain this formation. Here, we show an alternative route to φ0 that avoids derivatives with

respect to temperature.

One can calculate the total internal energy density φtot(z) using an expression similar to

the one given for the pressure tensor (Eq. 3.12) as

φtot(z) = φig(z) +
1

V

∑
i

∑
j<i

uijn τijn(z) , (4.13)

where φig(z) is the local ideal gas internal energy density.

As was done for P and µ, we partition the total internal energy density φtot(z) into

homogeneous and inhomogeneous parts:

φtot(z) = φ0(z) + φIH(z) . (4.14)

As before, one must approximate the inhomogeneous term φIH to obtain the desired homo-

geneous term φ0. As shown in Appendix B, a Taylor series expansion of Eq. 4.13 in density

gradients predicts

φ0(z) = φtot(z)− 1
2

[PN(z)− PT(z)] +O
(
∇4ρ

)
. (4.15)

With φ0(z) given by Eq. 4.15, the homogeneous enthalpy density η0(z) can be calculated

as

η0(z) = φ0(z) + P 0(z) , (4.16)

and the homogeneous entropy density ζ0(z) can likewise be calculated as

ζ0(z) =
η0(z)− µ0(z)ρ(z)

T
. (4.17)
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Eqs. 4.15-4.17 avoid the need for temperature derivatives and allow these properties to

be obtained for several densities simultaneously using a single CPP simulation; several ho-

mogeneous simulations run at different densities would be required to obtain similar results.

4.6 Simulation details

In order to test the proposed methods, we used pure-component simulations of an LJ fluid

[5] as well as of SPC/E water [97]. The CPP method can be used for two-phase systems as

described in Chapter 3. However, the results for two-phase systems are harder to validate

than for supercritical conditions because a natural two-phase system contains densities in

the metastable and unstable areas where equations of state (EOS) are not validated. We

therefore simulated the fluids at supercritical conditions and applied a large external potential

to more easily validate the results using an EOS.

In order to estimate the bias in the CPP method for the LJ simulations, we used the

Kolafa and Nezbeda EOS [72] with the same LJ ideal gas expression given in Chapter 3.

Simulated water results are compared to an equation of state for SPC/E water [99]. This

EOS gives chemical potential in excess of an ideal gas. For simplicity, the density-dependent

part of the SPC/E ideal gas chemical potential was included and all chemical potentials for

SPC/E are given relative to that of the average system density ρavg.

The molecular dynamics (MD) method was used to generate equilibrium averages. The

equations of motion included an integral-control (Nosé-Hoover) thermostat and were inte-

grated using a 4th-order Gear predictor-corrector scheme [69]. The size of the timestep was

selected for each simulation to generate a root-mean-square displacement of molecules of

0.003σ per timestep for the LJ fluid. The timestep for SPC/E water was 0.610 fs. A Verlet

neighbor list was used to speed up computations [69]. Samples for density and pressure pro-

files were taken every 8 timesteps and were collected using 401 equally spaced slabs normal

to the z direction. This setup is similar to that used in Chapter 3.

57



Resulting pressure and density profiles were each fit using a Fourier cosine series, as this

automatically satisfies the periodicity and symmetry of the system. Additionally, limiting

the number of terms in the Fourier cosine series worked well to screen out noise and smooth

the data.

Random errors were estimated using the block method. Each simulation was divided

into 10 blocks, which were used to calculate 95% confidence intervals of the data using the

Student’s t-distribution. Simulation results are generally plotted as continuous curves, while

error bars are plotted for several points along the curves in order to give the reader a sense

of the random errors in the simulations. In the CPP method, both the measured density and

the pressure, chemical potential, etc. vary at a given cell position. Thus a plot of µ, P , or φ

vs ρ requires error bars in both directions. For simplicity the error bars in density are not

shown in the figures below. The average 95% confidence intervals in density were ±5× 10−4

(reduced units) for the LJ fluid simulations (5% of the lowest density in the LJ simulations

in this chapter). For the SPC/E water simulation, the average 95% confidence intervals in

density were ±3 kg/m3 (14% of the lowest density in this simulation).

The CPP method gives differences in chemical potentials as a function of density. Another

method such as Widom’s or an EOS is needed to determine the unknown constant (or

reference) µtot. In this work, µtot was determined by shifting the µ0(z) curve vertically until

it matched the equation of state at ρavg. Because µ0 is fixed at this point, the apparent error

at this point will be zero. Alternatively, we could have determined µtot by performing Widom

insertions in one slice of the CPP simulation or in a separate homogeneous simulation at one

density contained in the CPP simulation.
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Table 4.1: Parameters for the pure-component LJ simulations shown in Chapter 4.

Name N Lz

Lx=Ly
T ∗ ρ∗min ρ∗avg ρ∗max 4U∗max timesteps

1IK 8× 103 1 2.0 0.010 0.400 0.809 14.0 5× 105

1H 8× 103 1 2.0 0.010 0.400 0.809 14.0 5× 105

2 2× 103 2 1.5 0.053 0.598 0.898 9.67 5× 106

2S 2× 103 2 1.5 0.048 0.475 0.898 9.67 5× 106

4.7 Simulation results and discussion

4.7.1 Lennard-Jones fluid simulations

Table 4.1 shows the parameters for the LJ simulations presented in this chapter. The 1IK and

1H simulations respectively used the IK and H contours with a very large cutoff (rcut = 13.6σ)

and no additional LRCs. The CPP 2 and 2S simulations used the hybrid pressure tensor

approach (the IK contour for short-range and the H contour for long-range) and the lattice
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Figure 4.3: Density range in the CPP 1IK and 2 simulations (solid lines) along with LJ phase
boundaries (dotted lines). The CPP method allows one to predict chemical potentials for a
wide range of densities simultaneously using a single simulation.
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Figure 4.4: Plot of the local surface tension PN(z)− PT(z) using the IK and H contours.

sum method for both Coulombic and LJ interactions. The 2S simulation (where S stands

for smooth) differs from the CPP 2 simulation in its use of a more complex form of external

potential (Eq. 4.11) to reduce density gradients in the simulation (see Figure 4.2). Because

parts of this work are published in separate papers, the names of simulations for each chapter

are independent. For example, the CPP 2 simulation in this chapter is not the same as that

of Chapter 3. In order to illustrate the range of densities in the 1IK and 2 simulations, Figure

4.3 shows the range of densities superimposed on LJ phase boundaries [73, 75].

For periodic simulations with planar symmetry, the overall surface tension γ is related to

the pressure tensor according to Eq. 3.28. In a similar manner, one can define a local surface

tension as PN(z)− PT(z). Figure 4.4 compares the local surface tension in the 1IK and 1H

simulations. For this system, there is a noticeable difference in how the surface tension is

distributed locally. We note that because different simulations were used for each contour,

the overall (or average) surface tension is not exactly the same for both simulations.

One can use Eq. 3.16 to check if the normal pressure calculated using different contours

satisfies the condition for local mechanical stability. Figure 4.5 shows the left-hand side (LHS)

dPN(z)/dz of Eq. 3.16 minus the right-hand side (RHS) ρ(z) f ext(z) for both contours. As

shown in Figure 4.5, the magnitude of the maximum error in dPN/dz for the IK contour

was 5.0 × 10−3 (reduced units), while for the H contour it was 0.063 (13 times as high as
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Figure 4.5: Plot of the LHS of Eq. 3.16 minus the RHS for both the IK and H contours. The
IK contour produces less error than the H contour.

the IK contour). This suggests that the IK contour satisfies and the H contour violates the

restriction given in Eq. 3.16 as expected [95, 96].

In contrast, as shown in Figure 4.6, the homogeneous pressure can be obtained using

either the IK or the H contour and the pressure tensor difference method (Eq. 3.23). For the

IK contour, the magnitude of the maximum deviation in P 0 from the LJ EOS was 0.012,

while for the H contour it was 0.021 (1.8 times as high as the IK contour).

The CPP 2 simulation used the Ewald sum method, with a real-space cutoff of rcut = 4.0σ

and a damping factor of α = 0.7024σ−1. For a simulation cell elongated in the z direction, it

is necessary to increase the number of lattice vectors in this direction accordingly to maintain

a spherical cutoff [91]. A lattice (or wavevector) cutoff of hcut = 4.366σ−1 was used.

With the CPP method, average properties vary only in one direction, so one can use a

slab-based method to validate local properties obtained from the lattice sum method. The

long-range portion of the local surface tension can be approximated using the H contour and

a virial-type expression as [71, 77, 78]

P LR
N (z)− P LR

T (z) =
π

2
ρ(z)

ˆ ∞
rcut

dr
d u(r)

dr

ˆ r

−r
dz′
[
r2 − 3 (z′)

2
]
ρ (z + z′) , (4.18)
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Figure 4.6: Plots of (a) P 0 calculated using Eq. 3.23 comparing the IK and H contours and
(b) associated absolute errors in pressure as compared to the EOS.

where u(r) is the LJ potential. Figure 4.7 shows the local long-range contribution to surface

tension calculated using Eq. 4.18 and the average density profile from the CPP 2 simulation,

as well as the same quantity calculated using the lattice sum method. The magnitude of the

maximum difference between the two methods was 1.5× 10−4.

The CPP 2S simulation is similar to the CPP 2 simulation but used an alternative form

of U ext to reduce the density gradients of the simulation and the resulting truncation error

in Eq. 3.23 (see Figure 4.2). The CPP 2S simulation used the Ewald sum method, with

rcut = 4.0σ, α = 0.7024σ−1, and hcut = 4.386σ−1. The average of the absolute value of the

error in the CPP simulation 2S was 0.013, while for CPP simulation 2 it was 0.023 (1.8 times

as high as simulation 2S) as shown in Figure 4.8.

We noticed with the CPP method, attempting to simulate very low and high densities in

the same simulation gave relatively large error bars for low densities due to poor sampling

statistics (i.e. there are fewer molecules at positions of low densities). This problem is
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easily overcome by performing an additional CPP simulation at a lower average density (see

Chapter 3).

-0.08

-0.06

-0.04

-0.02

0.00

0.02

0.04

E
rr

o
r

0.90.80.70.60.50.40.30.20.1

r*

-16

-14

-12

-10

m
0
*

0.90.80.70.60.50.40.30.20.1

 LJ EOS
 CPP 2
 CPP 2S

(a)

(b)

Figure 4.8: (a) Chemical potentials predicted using different forms of the external field and
(b) associated absolute errors as compared to the EOS.
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Figure 4.9 shows the inhomogeneous internal energy density φIH for the CPP 2 simulation

using the gradient correction given in Eq. 4.15 as compared to the LJ EOS. The LJ EOS

curve for φIH in Figure 4.9 is calculated using Eq. 4.14, with φ0 given by the LJ EOS and

φtot given by Eq. 4.13.

Figure 4.10 shows the predicted homogeneous internal energy density for the 2 and 2S

simulations. For the CPP 2S simulation, the magnitude of the maximum deviation in φ0 from

the LJ EOS was 0.018, while for the CPP 2 simulation with the inhomogeneous correction

it was 0.047 (2.6 times as high as the 2S simulation), and for CPP simulation 2 without the

correction, it was 0.11, (6.3 times as high as the 2S simulation). The simplified gradient

correction for φIH does reduce bias in the method, but is not as satisfactory as that for P 0

given in Eq. 3.23. This is due to the assumption that k (Eq. 3.22) is equal to k′ (Eq. B.9).

See Appendix B for more details. Using both the simplified gradient correction (Eq. 4.15)

and reducing density gradients by changing the external potential (i.e. the 2S simulation)

produce the best results. The CPP 2 and 2S simulations used a relatively small number of

particles and a short simulation cell. Elongating the simulation cell in the z direction would

further eliminate error in these simulations.
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Figure 4.10: (a) Homogeneous internal energy density predicted using the CPP method and
(b) associated absolute errors as compared to the LJ EOS. The CPP 2 results are shown
both with and without an inhomogeneous correction (Eq. 4.15).

Table 4.2: Parameters for the LJ fluid-solid test simulation.

Name N Lz

Lx=Ly
T ∗ ρ∗min ρ∗avg ρ∗max 4U∗max timesteps

3 104 10 1.5 0.015 0.817 1.199 30.0 106

4.7.2 Lennard-Jones solid

In this section we explore the use of the CPP method for solid systems and show preliminary

results for the LJ potential. Table 4.2 shows the parameters for fluid-solid test simulation

3, run at supercritical conditions. This simulation was run at the same temperature as the

2 and 2S simulations (see Table 4.1) shown in the previous subsection), but used a much

stronger external potential and higher average density. The Ewald sum method was used,

with rcut = 4.0σ, α = 0.7024σ−1, and hcut = 4.356σ−1.
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Figure 4.12: Snapshot of fluid-solid simulation 3, showing a wide range of densities.

Figure 4.11 shows the range of densities in CPP simulation 3 superimposed on LJ phase

boundaries [73, 75]. Figure 4.12 shows a snapshot of simulation 3, produced using the VMD

software program [33], with solid phase visible at the center of the simulation cell and fluid

visible near the edges.

Some challenges arise when simulating solid systems with the CPP method. One fre-

quently encounters interfaces and defects in the lattice, and the external potential also pro-

duces lattice strain in one direction, which combines with anisotropy of the solid to introduce

additional complications. It appeared that the pressure tensor correction (Eq. 3.23) is less

accurate for this solid, so no inhomogeneous correction was included in simulation 3. Instead,
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Table 4.3: Parameters for the SPC/E water simulation. Densities are given in kg/m3.

Name N Lz

Lx=Ly
T (K) ρmin ρavg ρmax 4Umax (kJ/mol) timesteps

SPC/E 2000 2 700 22 410 790 10.7 106

the simulation cell was elongated in the z direction, which reduced density gradients and the

need for the inhomogeneous correction term.

Figure 4.13 shows results for simulation 3 compared to LJ equations of state for fluids

[72] and solids [75], which suggest that the CPP method could be used to predict properties

for solids. However, further development of the CPP method for solids was beyond the scope

of this project.

4.7.3 SPC/E water simulation

Table 4.3 shows the parameters for the extended simple point-charge (SPC/E) water [97]

simulation presented in this work. The SPC/E water model contains 3 molecular sites:

one for each hydrogen atom and one for oxygen. The hydrogen sites have a fixed partial

point charge of 0.4238 |e|, where |e| is the magnitude of charge of an electron, while the
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Figure 4.14: Snapshot of the SPC/E simulation.

oxygen site has both a partial point charge of =0.8476 |e| and a Lennard-Jones interaction of

σ = 0.31656nm and ε/kB = 78.197K. The hydrogen sites are separated from the oxygen site

using a rigid bond length of 0.1 nm, and the angle formed between the oxygen and hydrogen

sites is 109.47 degrees. This model is considered a benchmark for water because the model

captures the essential physics of water and yet is relatively computationally efficient and

simple to implement.

The external potential acted on the molecular center of mass and was invariant to the

orientation of the SPC/E molecule. We used a molecular version of the pressure tensor,

with local properties using the IK or H contour also calculated using the molecular center

of mass. The Ewald sum method was used for both Coulombic and LJ interactions, with

rcut = 0.900 nm, α = 0.0343 nm−1, and hcut = 0.265 nm−1. In order to reduce density

gradients and increase the accuracy of this simulation, the form of the external potential was

adjusted to produce a sinusoidal density profile as described above.

Figure 4.14 shows a snapshot of the SPC/E simulation, produced using the VMD software

program [33]. Figure 4.15 shows the homogeneous pressure of SPC/E water predicted using

the CPP method. For this CPP simulation, the magnitude of the maximum deviation in

P 0 from the SPC/E EOS was 1.9 MPa. The surface tension of SPC/E water has previously

been shown to depend somewhat on choice of Ewald parameters [94]. In this work we also
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Figure 4.15: (a) Homogeneous pressure of SPC/E water at 700 K using the CPP method
and (b) corresponding absolute error as compared to the EOS.

noticed that the values of homogeneous pressure for higher densities in the simulation were

somewhat sensitive (by a few percent) to the choice of Ewald parameters.

As shown in Figure 4.16, the magnitude of the maximum deviation in µ0 from the SPC/E

EOS using the CPP method was 0.10 kJ/mol. We note that determining chemical potentials

using particle insertion methods such as Widom’s becomes increasingly troublesome for large,

structured molecules and dense systems. For example, Widom’s method fails to determine

the chemical potential of liquid water (ρ = 1000 kg/m3) and a more sophisticated method

such as Bennett’s overlapping distribution method [10] must be used [100].

4.8 Conclusion

The CPP method has been extended to a lattice (Ewald) sum treatment of intermolecular

potentials. For a planar interface, the homogeneous pressure and resulting chemical potential
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Figure 4.16: (a) Homogeneous chemical potential of SPC/E water at 700 K (relative to the
chemical potential of the average system density) and (b) corresponding absolute error as
compared to the EOS.

can be approximated with the CPP method using either the IK or the H contour, though

the H contour shouldn’t be used to obtain PN alone. We have reviewed how to obtain local

properties using the lattice sum method and have shown the H contour has much greater

computational efficiency than the IK contour with the lattice sum method. The CPP method

has been extended to obtain the internal energy with a simplified gradient correction term

for internal energy. The simplified gradient correction for internal energy does reduce bias

in the method but is not as satisfactory as that for pressure. One can adjust the form of

the external potential to reduce density gradients and increase efficiency of the CPP method

using a Fourier series expansion. The proposed methods are validated by simulating the LJ

fluid and SPC/E water and results are compared to respective equations of state.
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Chapter 5

A new lattice sum method for the LJ
fluid

5.1 Introduction

As described in Chapter 4, the Ewald sum method can be used in conjunction with the LJ

fluid. However, when simulating inhomogeneous LJ systems in which average properties vary

only in one direction, using a full lattice sum is computationally inefficient because one must

compute spatially varying properties for all three dimensions (instead of just one). Slab-based

methods (see Chapter 4) have been developed to account for variations in one direction in

a more efficient manner. However, as described below, certain difficulties arise when using

traditional slab-based methods. In this chapter we give a more detailed description of the

slab-based method and develop an improved method that combines some of the advantages

of the lattice sum with those of the slab-based method.

5.2 Traditional slab-based method

One can express the total potential energy of the system U as a volume integral of the

following form:

U =
1

2

ˆ ˆ
u(r12)ρ(r1)ρ(r2)dr1 dr2. (5.1)

One can also partition U into short and long-range portions as
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U = USR + ULR , (5.2)

where USR is the short-range potential energy given for r ≤ rcut by

USR =
∑
i,j<i

u(rij) , (5.3)

and ULR is the long-range portion of the energy.

Slab-based method approximate the long-range portion of the energy with the assumption

that the average density profile varies only in the z direction. Using this assumption and the

H contour, one can express the long-range portion of the local potential energy uLR(z) (per

atom or molecular site) as

uLR(z) =
1

2

ˆ ∞
rcut

u(r2)ρ(z2) dr2 . (5.4)

For simplicity, for the remainder of this chapter u(r) corresponds to the LJ potential and

all quantities are given in reduced LJ units. Janeček showed that one can explicitly integrate

Eq. 5.4 for two directions using cylindrical coordinates as [76]:

uLR(z) =

ˆ ∞
−∞

w (z − z2) ρ(z2) dz2 (5.5)

where

w(x) =


4π
[

1
5
r−10

cut − 1
2
r−4

cut

]
forx ≤ rcut

4π
[

1
5
x−10 − 1

2
x−4
]

forx > rcut

. (5.6)

Because the density profile of the system is not known a priori, Janeček’s method per-

forms the integral in Eq. 5.5 numerically for each timestep using slabs as

uLR(z) =

nk∑
k=1

w (z − zk) ρ(zk) ∆z , (5.7)
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where ∆z is the slab width, nk is the number of slabs, and zk is the location of the kth slab.

Corresponding expressions for the long-range force and pressure tensor (similar to Eqs. 5.6

and 5.7) are also found in Ref. [76].

A couple of problems arise when Janeček’s method is used. First, because this method

does not account for multiple periodic images, errors are produced in local forces, energy,

and pressure tensor at the ends of the simulation cell. This is illustrated when the method

is applied to a homogeneous system. In this case, Janeček’s method erroneously gives a non-

constant energy correction and a non-zero long-range force [82]. Also, using finite-size slabs

to integrate over the z2 direction can produce additional error unless ∆z is sufficiently small.

On the other hand, summing over several hundred slabs at each timestep can substantially

slow down the simulation.

5.3 An improved formulation of the slab-based method

Here we show a new formulation of the slab-based method for the LJ fluid called the slab-

based (SB) Ewald method that has some advantages over Janeček’s method. The essential

steps in the SB Ewald method are as follows. One uses a Fourier series to fit the density

profile and then integrates in all 3 directions to obtain a closed-form solution for the long-

range energy, force, and pressure tensor. It is then necessary only to sum over constant

Fourier coefficients at each timestep. Unlike Janeček’s method, this new method includes all

periodic images out to infinity using a formally exact integration in the z direction.

5.3.1 Energy

Using spherical coordinates, one can express Eq. 5.4 as

uLR(z) = π

ˆ ∞
rcut

dr u(r) r2

ˆ π

0

dθ ρ [z + r cos(θ)] sin(θ) . (5.8)

Using the following identity [71],
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ˆ π

0

sin(θ) dθ =
1

r

ˆ r

−r
dz′ , (5.9)

one can switch the azimuth angle θ in Eq. 5.8 with z′, resulting in

uLR(z) = π

ˆ ∞
rcut

dr u(r) r

ˆ r

−r
dz′ ρ (z + z′) , (5.10)

where z′ = z2 − z.

One can fit the density profile using a Fourier series as

ρ(z) = A0 + 2
∞∑
n=1

[An cos (hn z) +Bn sin (hn z)] , (5.11)

where An and Bn are the Fourier coefficients (defined below), Lz is the length of the simula-

tion cell in the z direction, and hn = 2π n/Lz. In practice, this sum is truncated after nmax

terms.

Fourier coefficients are given as

An =
1

V

Np∑
j=1

cos (hn zj) , (5.12)

and

Bn =
1

V

Np∑
j=1

sin (hn zj) , (5.13)

where Np is the total number of particles, zj is the position of the jth particle in the z

direction, and V is the system volume. We note that A0 = ρavg, the average density of the

system.

Using this Fourier fit of density, a closed-form solution of Eq. 5.4 can be obtained as

uLR(z) = − 8π ρavg

3 (rcut)
3 +

nmax∑
n=1

Un [An cos (hn z) +Bn sin (hn z)] , (5.14)
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where

Un = −16π h3
n

[ π
48
− Si5 (hn rcut)

]
, (5.15)

and

Sim(x) =

ˆ x

0

sin(x)

xm
dx , (5.16)

where m is an odd integer. We describe how to conveniently evaluate Sim(x) below. Here we

have only included the LJ dispersion term because the long-range correction of LJ repulsion

term is usually negligible, at least for rcut ≥ 2.5σ. One can see that the first term on the

right-hand side of Eq. 5.14 (i.e., for n = 0) is equivalent to the dispersion standard tail

correction for the average system density ρavg.

The coefficients Un depend only on Lz and rcut and can be evaluated just once at the

beginning of the simulation (unless the dimensions of the simulation cell change). In this

manner, one simply needs to calculate the Fourier coefficients for the density profile and sum

over lattice vectors according to Eq. 5.14 at each timestep. Fourier coefficients for density

can also be averaged over multiple timesteps if desired.

5.3.1.1 Per-atom energy

Eq. 5.14 gives the long-range energy at any location in the z direction. However, if one is

only interested in obtaining per-atom quantities, one can save computational time by storing

per-atom Fourier coefficients An,j and Bn,j for the jth atom when computing total Fourier

coefficients (Eqs. 5.12 and 5.13). Per-atom Fourier coefficients are given as

An,j =
1

V
cos (h zj) , (5.17)

and
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Bn,j =
1

V
sin (h zj) . (5.18)

Using Eqs. 5.14, 5.17 and 5.18, one can show that

uLR(zj) = uLR
j = −8π A0A0,jV

3 (rcut)
3 + V

nmax∑
n=1

Un (AnAn,j +BnBn,j) . (5.19)

Storing per-atom Fourier coefficients and using Eq. 5.19 avoids the need to recompute the

sine and cosine terms in Eq. 5.14, which can be more computationally efficient.

5.3.1.2 Total system energy

The total long-range potential energy of the system ULR can be obtained be multiplying

Eq. 5.14 by ρ(z) and integrating over volume according to Eq. 5.1. This gives

ULR = −8π ρavg Np

3 (rcut)
3 + V

nmax∑
n=1

Un
(
A2
n +B2

n

)
. (5.20)

5.3.2 Force

The long-range force fLR in the z direction (per atom or molecular site) is given as

fLR(z) = 2π

ˆ ∞
rcut

dr
d u(r)

dr

ˆ r

−r
dz′ z′ ρ (z + z′) . (5.21)

Similar to the procedure used for energy, integrating Eq. 5.21 using a Fourier fit of density

gives

fLR(z) =
nmax∑
n=1

Fn [−An sin(hn z) +Bn cos(hn z)] , (5.22)

where

Fn = 192π h4
n

[ π

288
− Si7 (hn rcut) + Ci6 (hn rcut)

]
, (5.23)
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and

Cim(x) =

ˆ x

0

cos(x)

xm
dx , (5.24)

where m is an even integer. We describe how to conveniently evaluate Cim(x) below.

Eq. 5.21 gives the long-range force at any location z in the simulation cell. However, in

MD simulations, one is frequently interested only in per-atom forces, which are needed to

run the simulation. These can be expressed as

fLR(zj) = fLR
j = V

nmax∑
n=1

Fn [−AnBn,j +BnAn,j] . (5.25)

5.3.3 Pressure

For the normal component of the pressure tensor using the H contour, the long-range cor-

rection is

P LR
N (z) = −π ρ(z)

ˆ ∞
rcut

dr
d u(r)

dr

ˆ r

−r
dz′ (z′)

2
ρ (z + z′) . (5.26)

Expressing ρ(z) as a Fourier series and performing the integrations in Eq. 5.26 gives

P LR
N (z) = −16π ρavg ρ(z)

3 (rcut)
3 + ρ(z)

nmax∑
n=1

Nn [An cos (hn z) +Bn sin (hn z)] , (5.27)

where

Nn = −96π h3
n

[ π
72
− Si5 (hn rcut) + 2 Si7 (hn rcut)− 2 Ci6 (hn rcut)

]
. (5.28)

For the tangential component of the pressure tensor using the H contour, the long-range

correction is

77



P LR
T (z) = −π

2
ρ(z)

ˆ ∞
rcut

dr
d u(r)

dr

ˆ r

−r
dz′
(
r2 − z′ 2

)
ρ (z + z′) . (5.29)

Integrating Eq. 5.29 gives

P LR
T (z) = −16πρavg ρ(z)

3 (rcut)
3 + ρ(z)

nmax∑
n=1

Tn [An cos (hn z) +Bn sin (hn z)] , (5.30)

where

Tn = −96π h3
n

[ π

288
− Si7 (hn rcut) + Ci6 (hn rcut)

]
. (5.31)

Per-site and volume-averaged quantities for PN and PT can be obtained in a similar manner

to that described above for energy. We note that the total long-range contribution to surface

tension γLR is given by

γLR =
Lz
2

nmax∑
n=1

(Nn − Tn)
(
A2
n +B2

n

)
. (5.32)

5.3.4 Evaluation of trigonometric integrals

Using the power series expansion of sin(x), one can evaluate Sim(x) (for x > 0 and odd

integer m only) as

Sim(x) =
∞∑
k=0

(−1)k x2k+2−m

(2k + 1)! (2k + 2−m)
. (5.33)

Similarly, using the power series expansion of cos(x), one can evaluate Cim(x) (for x > 0 and

even integer m only) as

Cim(x) =
∞∑
k=0

(−1)k x2k+1−m

(2k)! (2k + 1−m)
. (5.34)
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In practice, using 75 terms provided sufficient accuracy for x ≤ 30. To prevent numerical

instabilities, for x > 30 one can use asymptotic expansions instead. These expansions are

Sim(x) =
sin
(
π
2
m
)

(m− 1)!

π

2
− cos(x)

(m− 1)!

kmax∑
k=0

(−1)k (2k − 1 +m)!x−(2k+m) (5.35)

− sin(x)

(m− 1)!

kmax∑
k=0

(−1)k (2k +m)!x−(2k+1+m) ,

and

Cim(x) =
cos
(
π
2
m
)

(m− 1)!

π

2
− sin(x)

(m− 1)!

kmax∑
k=0

(−1)k (2k − 1 +m)!x−(2k+m) (5.36)

− cos(x)

(m− 1)!

kmax∑
k=0

(−1)k (2k +m)!x−(2k+1+m) ,

Eqs. 5.35 and 5.36 can be obtained by a repeated integration by parts procedure. We used

kmax = 10.

5.4 Preliminary results

In order to test the proposed methods, we used the snapshot of an LJ fluid shown in Figure

5.1. The temperature of this system was T ∗ = 2.0 and the average density was ρ∗ = 0.4. An

external potential was applied to the simulation in the z direction.

As shown in Figure 5.2, different long-range correction methods were tested by plotting

the total system energy vs rcut for one configuration (see Figure 5.1). Both the full Ewald

sum and the SB Ewald used hcut = 23.15σ−1, and the full Ewald sum also used α = 3.0σ−1.

If we assume that the true U tot of the system is given by the full Ewald sum and r∗cut = 6.0,

then for r∗cut = 2.5, the magnitude of the error in the full Ewald sum (in reduced units) was

0.41 (0.011 % of the true value), while that of the SB Ewald sum was 3.5 (0.09 % of the true
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Figure 5.1: Snapshot of an LJ fluid used to test the SB-Ewald sum.

value). When using the standard LRC and r∗cut = 2.5, the error was 75 (2.0 % of the true

value), and for no long-range correction and the same cutoff, the error was 289 (7.6 % of the

true value). We also note that using only the standard LRC for energy or no LRC neglects

the long-range force needed to obtain the correct density profile. The SB Ewald sum allows

one to use a much shorter rcut than when using the standard LRC evaluated at the average

system density. For lattice vector cutoff value used in this test, the traditional Ewald sum

required 261652 lattice vectors, while the SB Ewald sum required only 50 lattice vectors.

We note that because the SB Ewald sum uses a sharp damping term and is only long-

ranged, the rate of convergence of the SB Ewald sum vs number of lattice vectors is slower

than that of the traditional Ewald sum, so for a given accuracy the SB Ewald sum will

require a larger hcut than the traditional Ewald sum. However, we still expect the SB Ewald

sum method to be faster than the traditional Ewald sum for reasonable accuracy values.

One could also modify the SB Ewald sum to use smooth damping and therefore increase

the rate of convergence (similar to the traditional Ewald sum). One could also increase the

speed of the SB Ewald sum by using fast Fourier transform (FFTs) methods such as the

particle-particle particle mesh (P3M) method [101].
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Figure 5.2: Total system energy for the configuration shown in Figure 5.1 vs cutoff using
different long-range correction methods.

5.5 Conclusion

In this chapter, a new Ewald sum method called SB Ewald has been developed for LJ

dispersion interactions, which is more efficient than the full lattice sum when the average

density of the system varies only in one direction. The SB Ewald sum computes the long-

range energy, force, and pressure tensor. The SB Ewald sum can readily be extended to

LJ mixtures and multi-site molecules that use dispersion interactions, such as long-chain

alkanes, as well as other intermolecular potentials of the form Ar−n, where n > 3 and A is

a constant.
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Chapter 6

Multi-component mixtures

6.1 Introduction

In this chapter we extend the CPP method to species chemical potential prediction for

multi-component mixtures. For mixtures, chemical potentials are frequently expressed using

activity coefficients with a pure-component reference state for each species. In this manner,

activity coefficients essentially give a dimensionless chemical potential in excess of a reference

state.

Several methods exist to obtain activity coefficients from molecular simulations. For

example, one can use osmotic molecular dynamics (OMD) [28–30], Kirkwood-Buff (KB) so-

lution theory [102, 103], or particle insertion methods such Widom’s [7, 8, 104] described

previously in Chapter 3. For ionic systems however, using Widom’s method to determine

the chemical potential is even more complicated because inserting a single ion violates elec-

troneutrality [105].

The CPP method for multi-component systems is similar to the pure-component case but

can use separate external potentials for each species in the simulation. In this manner, one

can obtain activity coefficients for each species for a wide range of composition points in a

single simulation. For example, Figure 6.1 shows a snapshot of CPP simulation 1L (described

below), a binary Lennard-Jones mixture in which σ2 = 2σ1. As shown in Figure 6.2, the

external field on species 1 forces the type 1 particles towards the center of the simulation

cell, while the field on species 2 forces the type 2 particles away from the center. We note
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Figure 6.1: Snapshot of CPP simulation 1L. Species 1 particles (concentrated near the center
of the cell) are half the size of species 2 particles.

that results for LJ binary mixtures in this chapter are given in reduced LJ units using the

LJ parameters of species 1.

In this chapter, we develop the working equations for the CPP method applied to multi-

component mixtures. The inhomogeneous correction methods given in Chapter 3 are also

extended to mixtures, though a full implementation of these methods was beyond the scope of

this work. Because activity coefficients are normally given at constant pressure, we discuss

methods of reducing and correcting for pressure variation that arises due to the external

potentials applied to the system. We also describe a method to reduce equilibrium time.

We present preliminary results for several different binary LJ mixtures and compare to data

from OMD, KB, and Widom’s methods reported previously in literature.

6.2 Development of the CPP method for multi-component

systems

For a system at equilibrium, the total chemical potential µtot
i (r) for each species i is equal at

all locations inside the simulation cell. For a system in which average properties vary only

in the z direction, this can be expressed as

µtot
i (z) = µtot

i (zref) , (6.1)

where zref refers to a reference location in the simulation (for example, where there is pure

species i).
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Figure 6.2: (a) External potential applied to species and resulting (b) density profiles and
(c) mole fractions.

Similar to the pure-component case, the total chemical potential can be partitioned as

µtot
i (z) = U ext

i (z) + µ0
i (z) + µIH

i (z) , (6.2)

where U ext
i (z) is the periodic external potential acting on species i, µ0

i (z) is the homogeneous

chemical potential, and µIH
i (z) is the excess chemical potential due to the inhomogeneity

of the system [106]. An expression similar to Eq. 6.2 can also be written for zref . Solving

Eq. 6.2 for the desired µ0
i (z) gives

µ0
i (z) = −U ext

i (z)− µIH
i (z) + µtot

i (z) . (6.3)

One can also separate µ0
i (z) into both a standard-state chemical potential (independent

of composition) and a composition-dependent part:
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µ0
i (z) = gi +Rg T ln[xi(z) γi(z)] , (6.4)

where gi is the pure-component Gibbs energy used as a reference state, Rg is the universal

gas constant, T is the system temperature, xi is the mole fraction of species i, and γi is the

activity coefficient. Here we assume that the system temperature and pressure are constant.

We discuss the case of pressure variation below.

Subtracting Eq. 6.3 written for zref from Eq. 6.3 written for z, combining the result with

Eq. 6.4, and solving for ln γi(z) gives

ln γi(z) =
µ0
i (z)− µ0

i (zref)

Rg T
+ ln

[
xi(zref)

xi(z)

]
+ ln γi(zref) . (6.5)

In the CPP method, the mole fractions xi are measured from the simulation. If the compo-

sition at zref is nearly pure species i, then ln γi(zref) is nearly zero and can be neglected, and

one only needs to determine µ0
i (z) to obtain ln γi(z) using Eq. 6.5.

Combining Eqs. 6.3 and 6.5 gives

ln γi(z) =
U ext
i (zref)− U ext

i (z)

Rg T
+ ln

[
xi(zref)

xi(z)

]
(6.6)

+
µIH
i (zref)− µIH

i (z)

Rg T
+ ln γi(zref) .

In the CPP method, U ext
i (z) is fixed, so given µIH

i (z), one can obtain ln γi(z) using Eq. 6.6.

We note that using zref has allowed us to eliminate the standard-state chemical potentials gi

(i.e., we are measuring a difference in activity coefficients).

6.2.1 Obtaining homogeneous properties

Obtaining homogeneous properties from multi-component mixtures is similar to the pure-

component case described in Chapter 3. In fact, all 3 inhomogeneous correction methods
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given in Chapter 3 can be extended to mixtures as described below. However, a full imple-

mentation of the inhomogeneous correction methods for mixtures was beyond the scope of

the project.

For example, the van der Vaals density gradient theory predicts the inhomogeneous chem-

ical potential is equal to

µIH
i = −

∑
j

∇ · (cij∇ρj) + 1
2

∑
j,k

∂cjk
∂ρi
∇ρj · ∇ρk , (6.7)

where cij are the influence parameters and ρi is the local density of species i. The influence

parameters may be approximated using the direct correlation functions of the homogeneous

fluid [34, 106].

Eq. 6.7 shows that decreasing the density gradients will decrease the inhomogeneous term

µIH
i . Therefore, the simplest method to obtain ln γi(z) from Eq. 6.6 is to increase the length

of the simulation cell in the z direction until µIH
i can be neglected. One can alternatively

approximate µIH
i (z) using Eq. 6.7 and ln γi(z) from Eq. 6.6. Similar to the pure-component

case, one can also use the Triezenberg-Zwanzig equation for multi-component mixtures [34].

One can also use the pressure tensor method to approximate the homogeneous pressure

and resulting chemical potential for mixtures. For multi-component systems, one can divide

the total pressure tensor P into contributions from each individual species as

P =
∑
i

Pi . (6.8)

For the IK contour, a gradient expansion in density gradients [34] (see Appendix C)

predicts that

P 0
i (z) =

3

2
PT,i(z)− 1

2
PN,i(z) . (6.9)

This is is similar to the pure-component case given in Eq. 3.23. In addition, mechanical

stability requires that [34, 48]
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∇ ·Pi = −ρi∇U ext
i + Bi , (6.10)

where Bi is termed the asymmetric force and is subject to

∑
i

Bi = 0 . (6.11)

For our 1-D system, mechanical stability becomes

dPN,i(z)

dz
= ρi(z) f ext

i (z) +BN,i(z) , (6.12)

where f ext
i (z) = −dU ext

i (z)/dz is the external force acting on species i and BN,i(z) is the

normal component of asymmetric force.

Gradient theory also predicts that [48]

dP 0
i (z)

dz
−BN,i(z) = ρi(z)

dµ0
i (z)

dz
. (6.13)

Dividing both sides of Eq. 6.14 by ρi(z) and integrating over z from zref to z gives

µ0
i (z) =

ˆ z

zref

1

ρi(z)

dP 0
i (z)

dz
dz −

ˆ z

zref

BN,i(z)

ρi(z)
dz + µ0

i (zref) . (6.14)

We note that summing Eq. 6.14 over all species and using Eqs. 6.8 and 6.11 satisfies the

Gibbs-Duhem equation:

dP 0(z)

dz
=
∑
i

ρi(z)
dµ0

i (z)

dz
, (6.15)

confirming that Eq. 6.14 is thermodynamically valid. One can therefore obtain P 0
i (z) from

the local pressure tensor using Eq. 6.9, µ0
i (z) from Eq. 6.14, and ln γi(z) using Eq. 6.5.
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BN,i(z) can be obtained from a virial-type expression as given by Davis [34] or from

Eq. 6.12, in which case the IK contour should be used for PN,i(z) (as described in Chapter

4) because Eq. 6.12 is based on mechanical stability.

6.2.2 Controlling pressure variation

Activity coefficients are normally given as a function of composition for a constant pressure.

Experimentally, activity coefficients also show a weak dependence on pressure, which is

usually ignored. However, due to the external potential in CPP simulations, very large

variations in pressure are possible, making it necessary to correct for or reduce the variation

in pressure.

Pressure variation across the simulation cell can be reduced by adjusting the external

potential of one species to maintain constant normal pressure. For a system of Nc species,

this can be accomplished by using the first Nc − 1 component’s fields to fix the system

composition and the remaining field to control the system pressure.

For multi-component systems, combining Eqs. 6.11 and 6.12 shows the total normal

pressure is related to the external force according to

dPN(z)

dz
=

Nc∑
i=1

f ext
i (z)ρi(z) . (6.16)

Setting Eq. 6.16 equal to zero and solving for the external force on species N gives

f ext
Nc

(z) = − 1

ρNc(z)

[
Nc−1∑
i=1

f ext
i (z)ρi(z)

]
. (6.17)

As shown in Figure 6.2, species 1 uses a sinusoidal external potential, while the external

potential of species 2 is adjusted to maintain constant normal pressure.

However, the homogeneous pressure depends on both PN and PT as shown by Eq. 3.23.

As shown below, if PT(z) varies due to surface tension, then P 0(z) can also vary even though
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PN(z) is held constant. In this case and assuming no phase-splitting, increasing Lz will

reduce surface tension and the resulting variation in P 0(z) if PN(z) is constant.

One can also use partial molar volumes Vi to correct for pressure variations as

d ln(γi)

dP
=

Vi
RgT

, (6.18)

although pressure variations make obtaining partial molar volumes from a single CPP sim-

ulation difficult. Instead, one can use the pure-component molar volume Vi as a first-order

approximation for Vi. When P and T are constant, one can obtain partial molar volumes

using derivatives of the total molar volume with respect to composition.

6.2.3 Fast equilibration method

As mentioned previously, elongating the simulation cell in the z direction reduces inhomo-

geneity and pressure variations, assuming no phase-splitting and the normal pressure is held

constant. However, equilibration for multi-component CPP simulations is much slower than

the pure-component case because molecules must move by diffusion instead of convection.

For large systems or systems greatly elongated in the z direction, starting from a uniform

composition and allowing particles to diffuse until equilibrium is reached is very computa-

tionally inefficient. Though not done in this work, one could use a fast equilibration method

to help overcomes these difficulties.

The basic idea of the fast equilibration method is to use the density profile obtained from

a small system (one that equilibrates quickly) as the starting point for a larger system. First,

a small system (for example, 1000 particles in a cubic simulation cell) is equilibrated and the

resulting compositions are fit using a Fourier series. The Fourier series is used to adjust the

starting position of molecules in a larger simulation (2000 particles with Lz = 2Lx = 2Ly).

This simulation is equilibrated, and resulting compositions are again fit using a Fourier

series. This method is repeated for intermediate system sizes until the desired system size
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is reached. One could also use a shorter cutoff or a larger timestep during the early stage of

the equilibration.

6.3 Simulation details

In order to test the proposed methods, we used several different binary LJ mixtures. Im-

plementing the inhomogeneous correction methods for mixtures described previously was

beyond the scope of this project. However, the effect of inhomogeneity can be estimated

by increasing the length of the simulation cell in the z direction while holding the field

strength and average density constant, which decreases inhomogeneity. We therefore used

two different simulation geometries, one much longer in the z direction.

For simplicity, long-range corrections were also neglected. In this case it is inconvenient

to use an Ewald sum because LJ binary mixture simulations reported previously in literature

frequently used the Lorentz-Berthelot (LB) combining rule, while the Ewald sum method

as described in Chapter 4 is more compatible with and commonly uses a geometric com-

bining rule. An Ewald sum can be extended to include LB combining rules [89], but this

requires significant extra computation and was beyond the scope of the project. However,

one can estimate the effect of truncation of the potential by changing rcut, so the two different

simulation geometries also used different cutoff radii.

Table 6.1 gives parameters for the LJ binary mixtures shown in this work, where T ∗ =

kB T/ε1 and P ∗ = P σ3
1/ε1. The strength of the external potential for species 1 is given in

Table 6.1, while the external force for species 2 was given by Eq. 6.17, using an average

density profile updated every 1000 timesteps in order to run the simulation, and averaged

over the entire course of the simulation for property prediction.

As described previously, each mixture listed in Table 6.1 was run using two different

geometries, long and big. The long (L) geometry used a simulation cell greatly elongated

in the z direction, with Lz = 8Lx = 8Ly, and was run for 106 timesteps (not including
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Table 6.1: Parameters for the binary LJ mixture simulations.

Name T ∗ P ∗ σ2/σ1 ε2/ε1 4U∗max

1 3 2.5 2 1 13.0

2 2 0.52 2 1 8.0

3 2 1.755 1 2 2.2

4 2 1.2 1.5 2 4.6

5 2 0.5 2 2 10.0

equilibration). The big (B) geometry used Lz = 2Lx = 2Ly, and was run for 5 × 105

timesteps (not including equilibration). All simulations used 8000 particles (half species 1

and half species 2) and rcut = Lx/2. An NPT ensemble was used to obtain the average

system pressure given in Table 6.1 using a standard LRC for pressure based on the average

composition of the system. Resulting density profiles were fit for each species using a Fourier

series and were used to predict activity coefficients for the range of composition in the

simulation. Activity coefficient results for xi < 0.1 were truncated due to noise in the

data and then fit using the Wilson equation to ensure the data satisfied the Gibbs-Duhem

equation. For species 1, zref = Lz/2, while for species 2, zref = 0 (see Figure 6.2c). For

all simulations it is assumed that ln γi(zref) = 0 because xi(zref) was small (i.e. nearly pure

species i), except for mixture 3, in which ln γ1(zref) = 0.04 because x1(zref) was comparatively

large.

6.4 Preliminary simulation results and discussion

Preliminary results for the LJ binary mixtures are compared to results obtained using OMD

and Kirkwood-Buff (KB) methods [30] as well as results using Widom’s method [104]. In

theory, one can also use a pure-component EOS, but it is necessary to use approximate
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Figure 6.3: CPP results for LJ binary mixture 1.

mixing rules such as the VdW one-fluid theory [73]. We attempted to use the VdW one-

fluid mixing rules with the LJ EOS, but results didn’t agree with the OMD and KB results,

perhaps because the binary LJ systems studied here are very non-ideal.

In order to better compare results from the OMD, KB, and Widom methods to those

of the CPP method, we calculate the root-mean-square (RMS) error using all of the results

given previously in literature (OMD, KB, or Widom) vs CPP results for the same composition

points for each mixture.

Figure 6.3 shows the results of mixture 1, in which the LJ size parameter for species 2 is

twice that of species 1 (see Table 6.1 and Figure 6.1). For mixture 1L, the RMS error of the

CPP method compared to the OMD method was 0.039, and for mixture 1B it was 0.032.

Part of this error is due to disagreement between CPP and OMD for γ1 at x1 = 0.671 as

seen in Figure 6.3.

Mixture 2 is similar to mixture 1 but is at lower pressure and temperature. Figure

6.4 compares CPP results with those from the KB and OMD methods. For mixture 2L, the

RMS error was 0.054, and for mixture 2B it was 0.052. Comparing Figures 6.3 and 6.4 shows

that activity coefficients for this mixture aren’t too sensitive to changes in temperature and

pressure.

Figure 6.5 shows the results of mixture 3, in which the LJ energy parameter for species

2 is twice that of species 1. For mixture 3L, the RMS error was 0.0623, while for mixture
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Figure 6.4: CPP results for LJ binary mixture 2.
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Figure 6.5: CPP results for LJ binary mixture 3.

3B it was 0.0393. For this mixture, ln γi(z) is also positive, unlike the previous mixtures.

The 3B simulation produces less error than the 3L simulation, which could suggest that the

shorter cutoff radius in the 3L simulation is not adequate or that the 3L simulation has not

yet fully reached equilibrium.

Figure 6.6 shows the results of mixture 4, in which the both LJ parameters for species 2

are larger than that of species 1. For mixture 4L, the RMS error was 0.062, while for mixture

4B it was 0.0387, which is comparable to mixture 3, but results but also seem to show more

of a systematic bias. Similar to mixture 3, the 4B simulation gives less error than the 4L

simulation.
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Figure 6.6: CPP results for LJ binary mixture 4.

-3.5

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

ln
(g

)

1.00.80.60.40.2

x1

 Kirkwood-Buff

 Smoothed OMD

 CPP 5L
 CPP 5B

Figure 6.7: CPP results for LJ binary mixture 5.

Figure 6.7 shows the results of mixture 5, in which the both LJ parameters for species

2 are double that of species 1. For mixture 5L, the RMS error was 0.27, which for mixture

5B, it was 0.24. The RMS error for this mixture is much higher than the previous mixtures,

and CPP results also seem to show a systematic bias.

Plotting PN, PT, and P 0 for mixture 5 shows that the normal pressure is fairly constant,

but PT and P 0 varies significantly with position z due to surface tension. The maximum

range of variation for PN was 0.0074, while for PT it was 0.059 (7.9 times as high as PN),

and for P 0 it was 0.088 (12 times as high as PN). This means that the activity coefficients

for this simulation are not given at constant pressure, which is a possible source of error in

the CPP results.
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Figure 6.8: Pressure variation for mixture 5B.

As described above, partial molar volumes are needed to correct for pressure variations in

activity coefficients but are difficult to obtain using CPP simulations. However, a first-order

correction for pressure variation can be obtained by using the pure-component molar volume

instead. We used the LJ EOS to obtain the pure-component volume as a function of pressure

and computed the pressure correction. However, this correction turned out be be small.

Another potential sources of error is neglecting the inhomogeneous corrections. However,

comparing the 5L and 5B simulations shows that elongating the system in the z direction has

little effect. Neglecting long-range corrections could also affect results, but the 5B simulation

uses a much larger cutoff radius than the 5L simulation with little effect on the results. We

also used the VdW one-fluid mixing rules to confirm that no state points in mixture 5 were

part of a liquid-vapor two-phase region, so the source of the disagreement between the CPP

method and OMD remains unclear. Including a more sophisticated inhomogeneous or long-

range correction may help. Alternatively, instead of using a single simulation to obtain the

full composition range (pure species 1 to pure species 2), one could use multiple simulations

to greatly reduce inhomogeneity. For all five mixtures, the “big” geometry produced less

error than the “long” geometry. This could mean that the shorter cutoff radius in the “long”

geometry is not adequate or that the simulations using the “long” geometry have not yet

fully reached equilibrium.
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6.5 Conclusion

In this chapter, we extend the CPP method for multi-component systems. A separate ex-

ternal field is applied to each species allowing one to obtain activity coefficients for each

species over a wide range of compositions in a single simulation. Methods for approximating

the inhomogeneous correction term are given. Constant normal pressure is maintained by

adjusting the external potential of one of the species. Preliminary results for five different

LJ binary mixtures show the correct trend when compared to data reported previously in

literature, but some CPP results also have a systematic bias. We tried including a first-

order correction for pressure variation, varying the length of the system, and varying the

cutoff radius, but this did not completely resolve the bias. Including a more sophisticated

inhomogeneous or long-range correction may help.
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Chapter 7

Predicting critical parameters

In this chapter we review existing methods to predict fluid critical properties using molecular

simulations and suggest a few ways in which the CPP method could be used to predict

critical points. We also show preliminary results for the LJ fluid. A full implementation of

the methods presented in this chapter was beyond the scope of the project. However, this

topic is included in order to assist potential future researchers.

7.1 Introduction

The critical point of a fluid gives important thermodynamic information about the fluid.

For example, the law of corresponding states allows one to use a reference fluid to predict

thermodynamic properties for another fluid using the reduced temperature Tr = T/Tc and

reduced pressure Pr = P/Pc, where Tc is the critical temperature and Pc is the critical

pressure. Many equations of state also use reduced temperatures and pressures for property

prediction.

Several methods have been developed to predict critical points using molecular simula-

tions. Most commonly, coexisting (binodal) densities of the fluid are predicted for tempera-

tures close to the critical point and then scaling laws are used to extrapolate to the critical

temperature and density (i.e. where the vapor and liquid binodal densities become equal).

Binodal densities can be determined by several different methods. For example, one

can use the GEMC method, which avoids the formation of an interface between the two
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phases. The NPT-plus-test-particle method [107, 108] and corresponding NVT-plus-test-

particle method [109, 110] use molecular simulations with a particle insertion method such

as Widom’s [7, 8] to determine chemical potential vs pressure curves for both liquid and

vapor phases. The coexisting densities correspond to where these curves intersect.

One can also directly simulate liquid-vapor phase equilibria using two-phase molecular

simulations by simply simulating using an average system density corresponding to the two-

phase region and allowing the system to phase-split and equilibrate [80, 94]. Bulk vapor

and liquid densities are averaged to obtain the binodal densities. Unlike GEMC, two-phase

molecular simulations form an interface between the liquid and vapor phases.

Normally it is difficult to maintain a stable interface as one approaches the critical point,

but a more sophisticated two-phase method has been developed by Fern et al. [111] and Patel

et al. [112]. In this method, it is not necessary to form a well-defined vapor-liquid interface.

Instead, single-phase liquid and vapor simulations are used in conjunction with two-phase

simulations as a self-consistency check, which allows one to estimate binodal densities very

close to the critical point.

The multiple histogram re-weighting (MHR) method [113, 114] can also be used to de-

termine coexisting densities. This method uses the fact that a single simulation can give

information about nearby state points. Histograms from multiple simulations are combined

to enhance statistics [115]. In order to predict phase coexistence properties, histograms for

various liquid and vapor states are combined. It is also necessary to bridge between liquid

and vapor states, which can be accomplished by performing an additional simulation near

the critical point [116].

7.2 Finite-size scaling

Certain difficulties arise when one attempts to simulate fluids very close to the critical point.

As one approaches the critical point, the correlation length diverges, which also means that
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the length scale of the fluctuations of the fluid goes to infinity. Because molecular simulations

are of finite size, all fluctuations greater than the size of the simulation cell are suppressed,

which can bias the results. These fluctuations also make it difficult to form a stable interface

close to the critical point [5]. Similarly, when the GEMC method is used, the two phases

may frequently swap back and forth between the two simulation cells [5].

One method to reduce finite-size effects is to use universal scaling laws and critical ex-

ponents. For temperatures close to the critical point, the difference in coexisting densities is

expected to scale as

ρl − ρv = A (T − Tc)
β , (7.1)

where ρl is the liquid binodal density, ρv is the vapor liquid density, A is an adjustable

parameter determined from the fit of the data, and β is the universal critical exponent [117].

For three-dimensional systems, where β ' 0.32 [112]. In addition, the law of rectilinear

diameters [118] can also be used:

1
2

(ρl + ρv) = ρc +B (T − Tc) , (7.2)

where B is an adjustable parameter determined from the fit of the data, and ρc is the critical

density. In this manner, coexisting densities at different temperatures below the critical

point (where finite-size effects are expected to be small) are determined from simulation and

then fit using Eqs. 7.1 and 7.2. One then extrapolates to the critical point using the fit.

One can also use systems of different sizes to estimate the infinite-size critical point. The

apparent critical temperature Tc(L) is expected to vary with system size as [116, 119–122]

Tc(L)− Tc(∞) ∼ L−(θ+1)/ν , (7.3)

where Tc(L) is the apparent critical temperature of the finite-size system, Tc(∞) is the true

critical point of the infinite-size system, L is system length, and θ = 0.54 and ν = 0.629
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are scaling constants [122]. The critical density of the finite-size system scales in a similar

manner as

ρc(L)− ρc(∞) ∼ L−(d−1/ν) , (7.4)

where d is the number of spatial dimensions of the simulation. In this work, d = 3. The

critical pressure of the finite size system also scales as

Pc(L)− Pc(∞) ∼ L−(d−1/ν) . (7.5)

By measuring the apparent critical parameters for several different system sizes, one can

use the above scaling relationships to extrapolate to the infinite-size critical point. It is

interesting to note that for some works, the finite-size critical temperature was higher than

infinite-size, while for other works it was lower. For example, Potoff and Panagiotopoulos

found Tc(Ls) < Tc(∞) by about 1% [116], where Ls is the size of the smallest system, while

Caillol found Tc(Ls) > Tc(∞) by about 7% [74] (using approximately the same size for the

smallest system studied). This could be due to the use of different simulation techniques or

long-range correction methods.

7.3 Using the CPP method to predict critical param-

eters

The CPP method allows one to obtain accurate pressure and chemical potential curves for

a wide range of densities in a single simulation. In essence, the CPP method can predict

homogeneous pressure and temperature isotherms for both supercritical and subcritical con-

ditions. For the subcritical case, these isotherms show van der Waals loops. Binodal and

spinodal densities can be determined thermodynamically from the isotherms as described in

Chapter 3.
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In the CPP method, an external potential is applied to the system which helps form a

stable density profile for simulations below and at the critical temperature. Even above the

critical temperature, the external field can produce a stable artificial interface (i.e. equilib-

rium density gradients). With this in mind, the CPP method seems ideally suited to predict

critical properties. No insertions are needed (unlike the NPT-plus-test-particle method).

Normally when predicting critical points, the formation of an interface is undesirable and

the GEMC method is preferred, but unlike other methods, the CPP method can use the

interfacial region of a two-phase system.

However, using the CPP method may also have some potential disadvantages that need

to be overcome. For example, it is necessary to use an external potential strong enough to

maintain a stable density profile. If the field is too weak, the interface may move around

in the simulation. However, if the field is too strong, high density gradients make the

inhomogeneous correction term less reliable. Using a strong external potential also creates

a wide range of densities in the simulation away from the desired critical density, so one

may need to use a large simulation cell to obtain accurate pressure and chemical potential

derivatives, which would decrease computational efficiency.

We describe below how the CPP method can be used to predict critical points using

binodal densities, spinodal densities, and pressure isotherms.

7.3.1 Binodal densities

As shown in Chapter 3, binodal densities ρv and ρl can be determined with the CPP method

from the conditions P 0 (ρv) = P 0 (ρl) and µ0 (ρv) = µ0 (ρl). Alternatively, one can deter-

mine binodal densities using the Maxwell equal-area construction method [37]. In the CPP

method, binodal densities cannot be determined by simply averaging bulk liquid and vapor

densities because the external field disrupts these bulk regions. After determining binodal

densities as a function of temperature, one can then use the scaling laws given in Eqs. 7.4
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and 7.2. This is very similar to the NPT-plus-test-particle method, but no particle insertions

are necessary when using the CPP method.

Finite-size effects when using the CPP method are expected to be comparable to those

of other simulation methods and may even be smaller because the applied external field in

the CPP method suppresses fluctuations in at least one direction. One can also use the CPP

method to determine the apparent critical point for different simulation sizes and then use

the finite-size scaling approach given in Eqs. 7.3-7.5.

7.3.2 Spinodal densities

Pressure isotherms of pure-component fluids below the critical temperature exhibit a van

der Waals loop, which can be used to determine stability of the fluid. Regions of the fluid

where
(
∂P
∂V

)
T
< 0 are thermodynamically unstable and can spontaneously phase-split. The

spinodal vapor and liquid densities are found where
(
∂P
∂V

)
T

= 0. The critical point can then

be determined by using scaling laws with the difference in spinodal densities as the order

parameter. The LJ EOS [72] suggests that spinodal densities follow similar scaling laws as

the binodal densities:

ρsl − ρsv = C (T − Tc)
β , (7.6)

where ρs,l is the liquid spinodal density, ρs,v is the vapor spinodal density, and C is a constant

determined from the fit.

Spinodal densities also seem to follow a modified law of rectilinear diameters as

1
2

(ρsl + ρsv) = ρc +D (T − Tc) , (7.7)

where D is a constant determined from the fit of the data.

Previous results show that vapor binodal and spinodal densities are difficult to determine

accurately for temperatures well-below the critical point using the CPP method (see Chapter
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3) because a sharp interface is formed and the truncation error in the approximation of

the homogeneous pressure depends on the density gradient. However, close to the critical

temperature, the inhomogeneity of the system decreases and the gradient correction term

should be more accurate (assuming a reasonable external potential is used).

It is important to realize that the van der Waals loop corresponds to the chemical potential

and pressure of the homogeneous fluid. In other words, the pressure and chemical potential

shown by the van der Waals loop are those of the fluid with uniform average density. However,

it is not usually possible to simulate a fluid in the unstable density region and obtain a system

of uniform density because the fluid will spontaneously split into different phases forming

bubbles, droplets, etc. For this reason, the complete van der Waals loop is not experimentally

observed.

Here we give two exceptions. First, for a planar interface, the density profile transitions

from vapor to liquid, passing through metastable and unstable conditions over a finite dis-

tance. As seen in Chapter 3, the homogeneous pressure and resulting chemical potential at

these conditions can be approximated using Eq. 3.23, and the results give the van der Waals

loop. In this manner spinodal points (maxima and minima of the van der Waals loop) are

accessible inside a finite two-phase interface [50, 51]. Second, it is not thermodynamically

favorable for simulations of very small systems to phase-split. One can therefore obtain a van

der Waals loop by using a small system size and performing several quasi-uniform density

simulations at unstable and metastable conditions. Because the density of the fluid stays

nearly uniform, the full VdW loop can be mapped out [5]. Similarly, density gradient theory

relies on an analytical equation of state (containing a van der Waals loop) to predict the

surface tension and density profile of a liquid-vapor interface. If no van der Waals loop were

present and the pressure is assumed constant throughout the interface, an incorrect step-like

density profile with no surface tension results [37].

It is interesting to note that when developing equations of state, authors frequently

discard data from the metastable and unstable regions [73, 99]. We also note that Binder
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has also suggested that the van der Waals loop is merely a mean-field artifact and that the

spinodal points are ill-defined [123]. However, his simulations included two phases (bubbles

and droplets) [123]. His conclusions are not valid because the fluid in his simulations was

not homogeneous; in order to observe the van der Waals loop, either the system must truly

be homogeneous (uniform average density), or one must use a gradient correction like the

pressure tensor method (Eq. 3.23). Simply measuring the average chemical potential or

pressure of the system is not adequate to obtain homogeneous properties.

7.3.3 Pressure isotherms

As shown in Figure 7.1 (created using the LJ EOS [72]), the critical point of a fluid is

given by the conditions
(
∂P
∂V

)
T

=
(
∂2P
∂V 2

)
T

= 0. Similar conditions also hold for the chemical

potential. The simplest way to predict critical properties using the CPP method is to adjust

the temperature of the simulation until these conditions are met in the predicted pressure

isotherm.

Using binodal or spinodal densities requires that one perform simulations at temperatures

lower than the critical temperature and extrapolate to the critical temperature. However,

pressure isotherms also allow one to interpolate to the critical point using the locus of mini-

mum points in dP/dρ as shown in Figure 7.1b.

Alternatively, one can calculate the bulk modulus KT using pressure isotherms for tem-

peratures both lower and higher than the critical temperature and use universal scaling laws

and critical exponents for KT [117]. The bulk modulus KT can be defined as

KT = ρ

(
∂P

∂ρ

)
T

. (7.8)
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Figure 7.1: (a) Pressure isotherms vs density and (b) derivative of pressure with respect to
density vs density for various temperatures for the LJ fluid.

7.4 Long-range corrections

For the LJ fluid, several LRC methods are available. For example, one can use a large cutoff,

the local standard LRC for pressure [71] (Chapter 3), an Ewald sum (Chapter 4), or an SB

Ewald sum (Chapter 5).

The critical parameters of a fluid are very sensitive to the truncation of the intermolecular

potential, particularly if no LRCs are used [70]. This fact is not surprising, as truncating

the potential makes the particles less attracted to each other and therefore less likely to

separate into different phases. Phase behavior always involves a delicate balance between

intermolecular attraction and repulsion, which is particularly apparent near the critical point.
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MC simulations normally truncate the intermolecular potential, while MD simulations

normally truncate intermolecular forces. This corresponds to the use of the spherically-

truncated (ST) potential for MC simulations and the spherically-truncated and shifted (STS)

potential for MD simulations [70]. When using the same cutoff and no LRCs, the critical tem-

perature of ST potential is significantly closer to the critical temperature of the untruncated

potential than when using the STS potential [115].

The effect of truncation on the critical temperature can be estimated using by using the

standard LRC for pressure. When the long-range force can be neglected (rcut & 5.5σ), the

long-range correction to the homogeneous pressure for the STS potential can be approximated

by a local term as [71]

P LR(ρ) = −16πρ2

9

[
3

(
1

rcut

)3

− 2

(
1

rcut

)9
]
. (7.9)

Using the relationship dµ = dP/ρ, we obtain

µLR(ρ) = −32πρ

9

[
3

(
1

rcut

)3

− 2

(
1

rcut

)9
]
, (7.10)

Taking the derivative of Eq. 7.10 gives

dµLR

dρ
= −32π

9

[
3

(
1

rcut

)3

− 2

(
1

rcut

)9
]
, (7.11)

which gives a constant that depends directly on rcut. One can estimate the apparent critical

temperature T app
c for a given cutoff using an EOS and solving the following equation for

T app
c :

dµEOS(T app
c , ρc)

dρ
− dµLR

dρ
= 0, (7.12)

which shows that T app
c decreases with decreasing rcut if no LRCs are applied [73, 124].
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7.5 Preliminary results and discussion

In order to test the proposed methods, we simulated the LJ fluid using the Large-scale

Atomic/Molecular Massively Parallel Simulator (LAMMPS) [125], a molecular dynamics

code developed by Sandia National Labs. Two different CPP simulations were used, and

sample input files are included in Appendix D. The first simulation was run at T ∗ = 1.312,

while the second simulation was run at T ∗ = 1.320. Both simulations used N = 32000

atoms, Lz = 32Lx = 32Ly, rcut = 6.0σ, 4U∗max = 0.5, and were run on 64 processors for

3× 107 timesteps after equilibration. For simplicity, the H contour was used to calculate the

pressure tensor. The local LRC for homogeneous pressure given in Eq. 7.9 was also applied

at the end of the simulations.

For the first simulation at T ∗ = 1.312, the minimum point in dP/dρ (see Figure 7.1b)

was at ρ∗ = 0.315 and dP ∗/dρ∗ = −0.0134. For the second simulation at T ∗ = 1.32, the

minimum point in dP/dρ was at ρ∗ = 0.307 and dP ∗/dρ∗ = −0.00533. Using a simple linear

extrapolation of this data, the predicted critical temperature and critical density of the LJ

fluid are T ∗c = 1.325 and ρ∗c = 0.301.

Table 7.1 compares critical parameters for the LJ fluid given by different works. In Table

7.1, the last digit in parenthesis refers to the uncertainty in the measurement. For example,

1.316(3) means 1.316 ± 0.003. Figure 7.2 shows a plot of Tc vs ρc for the LJ fluid using

the data in Table 7.1 and also the preliminary results from the CPP method. We note that

Ref. [126] used rcut = 5σ and Ref. [111] used rcut = 6σ without any LRCs, which lowers the

apparent critical temperature as described previously, so we have excluded these points from

Figure 7.2.

The critical temperature predicted using the CPP method is within the uncertainty of

Caillol’s results [74], but the predicted critical density is not. For this preliminary test using

the CPP method, the critical parameters were sensitive to the number of Fourier terms

used to fit the pressure and density profiles. Using longer simulations to reduce noise in

the data and including more data at different temperatures could help. If we assume that
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Table 7.1: Comparison of LJ critical parameters from different works.

Reference Tc ρc Pc Method

[124] 1.316(3) 0.304(6) GEMC

[108] 1.310 0.314 0.126 NPT-plus-test-particle

[126] 1.281(5) 0.32(1) GEMC

[74] 1.326(2) 0.316(2) 0.111(2) GCMC, MHR

[116] 1.3120(7) 0.316(1) 0.12796(6) GCMC, MHR

[127] 1.311(2) 0.316(2) GCMC, MHR

[110] 1.3207(4) 0.316(1) 0.1288(5) NVT-plus-test-particle

[115] 1.3145(2) 0.316(1) GCMC, MHR

[63] 1.309 0.297 integral equation theory

[122] 1.3123(6) 0.3174(6) GCMC, MHR

[122] 1.3120(7) 0.3174(6) GCMC, MHR

[122] 1.313(1) 0.317(1) GCMC, MHR

[111] 1.293 0.313 2-phase MD

the density at the minimum point in dP/dρ is weakly dependent on temperature (over this

temperature range) and use the average of the densities at the minimum point in dP/dρ for

the two CPP simulations to estimate ρc instead of the linear extrapolation, a more reasonable

critical density of ρ∗c = 0.311 is obtained, as shown in Figure 7.2. Adjusting the form of the

external potential to reduce density gradients and using a finite-size scaling technique could

also improve results.
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Figure 7.2: Plot of LJ critical points from the different works listed in Table 7.1 and from
preliminary results using the CPP method.

7.6 Conclusion

In this chapter, we review existing methods to predict critical points using molecular simu-

lations, which normally predict binodal densities for different temperatures and then extrap-

olate to the critical point. We also suggest a few ways of using the CPP method to predict

fluid critical parameters using binodal densities, spinodal densities, and pressure isotherms.

The effects of finite-size systems and truncation on the critical parameters are also discussed

and preliminary results are given for the LJ fluid.
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Chapter 8

Conclusion

8.1 Summary of results

A new method, called chemical potential perturbation (CPP), has been developed to predict

the chemical potential as a function of composition in periodic molecular simulations. The

CPP method applies a spatially varying external force field to the simulation, causing the

density or composition to depend upon position in the simulation cell. Following equilibra-

tion, the homogeneous (uniform or bulk) chemical potential as a function of density can be

determined relative to some reference state after correcting for the effects of the inhomo-

geneity of the system. Some advantages of the CPP method are that it allows one to predict

chemical potential for a wide range of composition points using a single simulation and it

works for dense fluids and structured molecules where other prediction methods become

inefficient.

This work has a broad range of application, including topics beyond chemical potential

such as surface tension, phase-equilibria, solids, binodal densities and van der Waals loops,

local thermodynamic properties, Ewald sums, critical points, and inhomogeneous systems in

general.

The external potential in the CPP method produces an inhomogeneous system and there-

fore surface tension, regardless of temperature. For supercritical conditions, this inhomogene-

ity behaves similar to a liquid-vapor interface. One can correct for this inhomogeneity and

obtain properties for the whole range of densities in the inhomogeneous simulation.
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For pure-component systems, three different methods of approximating the inhomoge-

neous correction are developed. The first method uses the van der Waals density gradient

theory, the second method uses the local pressure tensor, and the third method uses the

Triezenberg–Zwanzig definition of surface tension. These inhomogeneous corrections allow

one to relate a homogeneous system to an inhomogeneous one. For example, at the liquid-

vapor interface, the density transitions smoothly between bulk liquid and vapor and passes

through thermodynamically metastable and unstable fluid conditions. The inhomogeneous

correction term allows one to peer into this region and obtain binodal densities and the full

van der Waals loop as if the system were homogeneous. This information is impossible to

obtain experimentally.

The CPP method is also extended to an Ewald lattice sum treatment of intermolec-

ular potentials. We discuss the problem of ambiguity in some local (position-dependent)

thermodynamic properties. For example, when computing the local pressure tensor for the

inhomogeneous correction term, one can use the Irving-Kirkwood (IK) or Harasima (H)

contours of distributing the pressure. These two contours are compared, and for a planar

interface, it is shown that the homogeneous pressure and resulting chemical potential can be

approximated with the CPP method using either the IK or the H contour, though with the

lattice sum method the H contour has much greater computational efficiency. A new lattice

sum method for the Lennard-Jones fluid called SB Ewald is also presented, which is more

computationally efficient than the traditional LJ lattice sum when the average density of the

system varies only in one direction. The SB Ewald sum method can be used with the CPP

method and also for predicting the surface tension of the LJ fluid.

We note that due to this project, a method of obtaining per-atom energy and pressure

was implemented into LAMMPS [125] for both the Ewald sum and particle-particle particle

mesh (P3M) methods [101]. These modifications are not only useful for the prediction of

chemical potential using the CPP method, but also for the prediction of material properties

such as thermal conductivity.
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Finally, the CPP method is extended to activity coefficient prediction of multi-component

fluids. For multi-component systems, a separate external potential is applied to each species,

and constant normal component pressure is maintained by adjusting the external field of

one of the species. Preliminary results are presented for several different binary Lennard-

Jones (LJ) mixtures. The application of the CPP method to the prediction of fluid critical

parameters is also discussed.

8.2 Future work

The CPP method could be greatly extended beyond the scope of this project. Only prelim-

inary results were given for solids in Chapter 4 and mixtures in Chapter 6. Thus, one could

further develop the CPP method for solids and also for mixtures, including ionic mixtures

and liquid-liquid systems. In Chapter 5, preliminary results were given for the SB Ewald

sum method, which we plan to develop further in a future paper. Chapter 7 describes how

the CPP method could be used to predict critical points.

Another application of the CPP method is in the development of intermolecular potential

models. One could use the CPP method to obtain pressure vs density curves or other

thermodynamic data from the proposed model and then modify the model parameters until

data from the model matches data from experiments. Similarly, given an intermolecular

potential model, one could also obtain an equation of state for this model by using a few

CPP simulations at different temperatures and fitting this data to an analytical equation of

state.

In this work, relatively small and simple models (LJ and SPC/E water) were used to

validate the CPP method. One could extend the CPP method to large, structured molecules

such as long-chain alkanes, perhaps using an atomic pressure tensor instead of the molecular

pressure tensor used for SPC/E water in Chapter 4. For long molecules that may span many

slabs (normal to the z direction), local properties such as density and pressure tensor could
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be obtained by using the position of individual molecular sites (i.e., atoms) instead of the

molecular center of mass, and the position-dependent external potential could also act on

molecular sites instead of molecular center of mass.

The TZ inhomogeneous correction method was presented in Chapter 3. It would be

interesting to apply the TZ method to a two-phase system and compare the resulting VdW

loop with that given by the pressure tensor method. The TZ method as given in Chapter

3 also approximated the inhomogeneous direct correlation function using the homogeneous

direction correlation function. Perhaps using the TZ method with the exact inhomogeneous

direct correlation function would improve results.

In the CPP method, an external potential causes the composition to vary with position.

Alternatively, one could vary temperature instead of composition. This could be accom-

plished by modifying the thermostat to obtain a temperature profile and then applying an

external potential to maintain constant density. The chemical potential of the system would

then be related to the applied field. In a similar manner, one could vary both density and

temperature to obtain an extremely wide range of state points in a single simulation. Vary-

ing both T and ρ could be even more useful than the original CPP method when predicting

fluid critical points.
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Appendix A

Gradient expansion of the pressure
tensor using the H contour

Here we partition the local pressure tensor using the H contour into homogeneous and inho-

mogeneous terms using a Taylor series expansion in density gradient. We follow and adapt

the method used for the IK contour given by Davis in Ref. [34].

For two spherical molecules, one at position r and the other at position r′, we define

s = r′ − r. The pressure tensor using the H contour can be written as [37]

P(r) = ρ(r) kB T I− 1
2

ˆ
ss

s
u′(s) ρ(2)(r, r + s) ds , (A.1)

where −u′(s) is the pairwise force and I is the unit tensor. For this and all subsequent

equations, one can assume that adjacent vectors correspond to an outer product. The pair

distribution function ρ(2) is given as

ρ(2)(r, r + s) = ρ(r) ρ(r + s) g(2)(r, r + s) , (A.2)

where g(2) is the radial distribution function of the inhomogeneous fluid.

Expanding ρ(r + s) around ρ(r) using a Taylor series gives:

ρ(r + s) =
∞∑
i=0

(s · ∇)i

i!
ρ(r) . (A.3)

Combining Eqs. A.1, A.2, and A.3 yields
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P(r) = ρ(r) kB T I− 1
2

ˆ
ss

s
u′(s) ρ(r)

∞∑
i=0

[
(s · ∇)i

i!
ρ(r) g(2)(r, r + s)

]
ds . (A.4)

We assume that the density profile is sufficiently slowly varying to allow truncation after

2nd-order terms in density gradient. In this manner, g(2) is weekly dependent on r and can

be approximated by the radial distribution function of the homogeneous fluid at ρavg. In

this manner, g(2) also depends only on the pair-wise separation distance s. The integrals in

Eq. A.4 are then of the form

Tm =

ˆ
s · · · s f(s) ds , (A.5)

where Tm is an mth rank isotropic tensor, and f(s) is an isotropic function of s [34]. If m

is odd, then the integral given in Eq. A.5 is equal to zero [34].

Expanding the series to second order in density gradients and neglecting odd terms yields

P(r) = ρ(r) kB T I− 1
2

ˆ
ss

s
u′(s) g(2)(s) ρ(r) ρ(r) ds (A.6)

−1
4

ˆ
ss

s
u′(s) g(2)(s) ρ(r) ss : ∇∇ρ(r) ds ,

where g(2)(s) = g(2)(s, ρavg).

The homogeneous pressure can be defined as [6]

P 0(r) = ρ(r) kB T − 1
6

[ρ(r)]2
ˆ
s u′(s) g(2)(s) ds . (A.7)

For m = 2, one can simplify the integral in Eq. A.5 to [34]

T2 = 1
3

[ˆ
s2 f(s) ds

]
I . (A.8)
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Eqs. A.8 and A.7 show that the first two terms in Eq. A.6 are equal to P 0(r) I. Davis also

showed the identity [34]

T4 : ab = 1
15

ˆ
s4 f(s) ds [ab + ba + (a · b)I] , (A.9)

where a and b are arbitrary vectors. Combining Eqs. A.6, A.7, and A.9 yields

P(r) = P 0(r) I + 2k
[
−1

2
ρ(r)∇∇ρ(r)− 1

4
ρ(r)∇2ρ(r) I

]
. (A.10)

For our system, Eq. A.10 reduces to

PN(z) = P 0(z) + k
[
−3

2
ρ′′(z) ρ(z)

]
, (A.11)

and

PT(z) = P 0(z) + 1
3
k
[
−3

2
ρ′′(z) ρ(z)

]
. (A.12)

Combining Eqs. A.11 and A.12 and rearranging gives Eq. 3.23, showing that the H con-

tour can be used in the CPP method to compute the homogeneous pressure and chemical

potential.
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Appendix B

Gradient expansion of the internal
energy density using the IK contour

Here we expand the local internal energy density in terms of density gradient using the IK

contour. We follow and adapt the method used for expanding the pressure tensor given by

Davis in Ref. [34]. One can write an expression for the local internal energy density using

the IK contour as:

φtot(r) = φig(r) + 1
2

ˆ ˆ 1

0

u(s) ρ(2)(r− η s, r−η s + s) dη ds , (B.1)

where φig(r) is the ideal gas internal energy density. For a monatomic fluid, φig(r) =

3
2
ρ(r) kB T .

As shown by Davis, one can expand ρ(2) in Eq. B.1 as [34]

ρ(2)(r− η s, r−η s + s) =
∞∑
i=0

(−ηs · ∇)i

i!
ρ(2)(r, r + s) . (B.2)

Combining Eqs. B.1 and B.2 and integrating over η gives [34]

φtot(r) = φig(r) + 1
2

ˆ
u(s)

∞∑
i=0

(−s · ∇)i

(i+ 1)!
ρ(2)(r, r + s) ds . (B.3)

Combining Eqs. A.2, A.3, and B.3 gives

φtot(r) = φig(r) + 1
2

ˆ
u(s)

∞∑
i=0

(−s · ∇)i

(i+ 1)!

[
g(2)(r, r + s) ρ(r)

∞∑
i=0

(s · ∇)i

i!
ρ(r)

]
ds . (B.4)
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Using a method similar to that given in Appendix A gives to second-order in density gradient:

φtot(r) = φig(r) + 1
2

ˆ
u(s) g(2)(s) ρ(r) ρ(r) ds

+1
4

ˆ
u(s) g(2)(s) ρ(r) ss : ∇∇ρ(r) ds (B.5)

−1
4

ˆ
u(s) g(2)(s) s · ∇ {ρ(r) [s · ∇ρ(r)]} ds

+ 1
12

ˆ
u(s) g(2)(s) ss : ∇∇ [ρ(r)]2 ds ,

where g(2)(s) = g(2)(s, ρavg).

The homogeneous internal energy density can be defined as [6]

φ0(r) = φig(r) + 1
2

[ρ(r)]2
ˆ
u(s) g(2)(s) ds . (B.6)

Eq. A.8 shows that the first two terms in Eq. B.5 are equal to the homogeneous internal

energy density given in Eq. B.6.

Using Eq. A.8, one can also show

T2 : ab = 1
3

ˆ
s2 f(s) ds (a · b) , (B.7)

where a and b are arbitrary vectors.

Using Eqs. B.6 and B.7, one can simplify Eq. B.5 to

φtot(r) = φ0(r) + 1
3
k′
[

1
2

[∇ρ(r)]2 − ρ(r)∇2ρ(r)
]
, (B.8)

where

k′ = −1
6

ˆ
s2 u(s) g(2)(s, ρavg) ds . (B.9)

For our system,
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φtot(z) = φ0(z) + 1
3
k′
[

1
2
ρ′(z)2 − ρ′′(z) ρ(z)

]
. (B.10)

If we approximate g(2)(s) as 0 when s < σ and as 1 when s > σ, then integration by parts

of Eq. 3.22 yields Eq. B.9, or k = k′ [34]. Assuming that k = k′, combining Eqs. 3.21 and

B.10 gives

φ0(z) = φtot(z) + P 0(z)− PT(z) . (B.11)

Using the approximation for P 0 given in Eq. 3.23 gives

φ0(z) = φtot(z)− 1
2

[PN(z)− PT(z)] . (B.12)

The same relationship holds for the H contour.
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Appendix C

Gradient expansion of the species
pressure tensor

Using the IK contour, a gradient expansion in density gradients [34] predicts that

PN,i(z) = P 0
i (z) +

∑
j

cij

[
1

2

dρi
dz

dρj
dz
− 1

2
ρi
d2ρj
dz2
− 1

2
ρj
d2ρi
dz2

]
, (C.1)

and

PT,i(z) = P 0
i (z) +

∑
j

cij

[
1

6

dρi
dz

dρj
dz
− 1

6
ρi
d2ρj
dz2
− 1

6
ρj
d2ρi
dz2

]
. (C.2)

Combining Eqs. C.1 and C.2 and solving for the homogeneous pressure gives an expression

similar to Eq. 3.23:

P 0
i (z) =

3

2
PT,i(z)− 1

2
PN,i(z) . (C.3)
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Appendix D

Sample LAMMPS input scripts

D.1 Initial configuration for the LJ fluid

The following is a sample input script used to generate initial configurations of the LJ fluid

in LAMMPS.

variable NM equal 32000 #Total number of molecules (must be multiple of 1000)

variable SC equal 32 #Aspect ratio of the simulation cell

variable NTS equal 2000 #Total number of timesteps

variable TSET equal 1.312 #System temperature

variable RCUT equal 6.0 #Cut-off radius

variable yy equal (${NM}/${SC})ˆ(1/3)

variable zz equal ${yy}

variable xx equal ${yy}*${SC}

units lj

atom style atomic

lattice sc 0.4

region box block 0 ${xx} 0 ${yy} 0 ${zz}

create box 1 box

create atoms 1 box

mass 1 1.0

velocity all create ${TSET} 87287 rot yes dist gaussian
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pair style lj/cut ${RCUT}

pair coeff 1 1 1.0 1.0 ${RCUT}

neighbor 0.3 bin

neigh modify every 20 delay 0 check no

fix 1 all nvt temp ${TSET} ${TSET} 10.0

restart 1000 file configXYZQ

thermo 1000

run ${NTS}

D.2 CPP method

The following is a sample input script used to implement the CPP method for the LJ fluid

in LAMMPS.

variable NM equal 32000 #Total number of molecules (must be multiple of 1000)

variable SC equal 32 #Aspect ratio of the simulation cell

variable NTS equal 10000000 #Total number of timesteps

variable NBLK equal 1 #Total number of blocks

variable NJNK equal 100000 #Number of timesteps to discard at beginning of simulation

variable Nevery equal 50 #Number of time-steps between property samples

variable Nrepeat equal ${NTS}/${Nevery}/${NBLK} #Number of timesteps between
property samples

variable Nfreq equal ${NTS}/${NBLK} variable TSET equal 1.312 #System temperature

variable RCUT equal 6.0 #Cut-off radius

variable NBIN equal 400 #Number of bins in the x direction

variable EL equal ly #Length of the simulation cell in the y and z directions

variable AF equal 0.25 #Strength of external field

variable dx equal 1/${NBIN} #Bin size
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variable forcex atom 2*PI*${AF}*sin(2*PI*x/lx)/lx

units lj

atom style atomic

read restart configXYZQ

reset timestep 0

pair style lj/cut ${RCUT}

pair coeff 1 1 1.0 1.0 ${RCUT}

neighbor 0.3 bin

neigh modify every 20 delay 0 check no

fix 1 all nvt temp ${TSET} ${TSET} 10.0

fix 4 all addforce v forcex 0.0 0.0 #Apply external potential

fix dim all print 1 ”${EL} ${TSET} ${SC} ${RCUT}” screen no file dim.txt

fix fext all print 1 ”${AF}” screen no file fext.txt

run 1

unfix dim

unfix fext

run ${NJNK} reset timestep 0

compute atomstress all stress/atom

compute atompe all pe/atom

compute atomke all ke/atom

fix 2 all ave/spatial ${Nevery} ${Nrepeat} ${Nfreq} x center ${dx} density/number
units reduced file denhist.txt #Density profile

fix 3 all ave/spatial ${Nevery} ${Nrepeat} ${Nfreq} x center ${dx} c atomstress[1]
c atomstress[2] c atomstress[3] c atomke c atompe units reduced file stnsn.txt
#Pressure tensor profile

restart 1000 file configXYZQ

thermo 1000

run ${NTS}
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