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ABSTRACT
Diagonal Entry Restrictions in Minimum Rank Matrices, and the Inverse Inertia and

Eigenvalue Problems for Graphs

Curtis G Nelson
Department of Mathematics, BYU

Master of Science

Let F be a field, let G be an undirected graph on n vertices, and let SF (G) be the set of
all F -valued symmetric n × n matrices whose nonzero off-diagonal entries occur in exactly
the positions corresponding to the edges of G. Let MRF (G) be defined as the set of
matrices in SF (G) whose rank achieves the minimum of the ranks of matrices in SF (G).

We develop techniques involving Ẑ, a process termed nil forcing, and induced subgraphs,
that can determine when diagonal entries corresponding to specific vertices of G must be
zero or nonzero for all matrices in MRF (G). We call these vertices nil or nonzero vertices,
respectively. If a vertex is not a nil or nonzero vertex, we call it a neutral vertex. In addition,
we completely classify the vertices of trees in terms of the classifications: nil, nonzero and
neutral. Next we give an example of how nil vertices can help solve the inverse inertia
problem. Lastly we give results about the inverse eigenvalue problem and solve a more
complex variation of the problem (the λ, µ problem) for the path on 4 vertices. We also
obtain a general result for the λ, µ problem concerning the number of λ’s and µ’s that can
be equal.

Keywords: Combinatorial Matrix Theory, Diagonal Entry Restrictions, Graph, Inverse Eigen-
value Problem, Inverse Inertia Problem, Minimum Rank, Neutral, Nil, Nonzero, Symmetric
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Chapter 1. Introduction

The minimum rank problem for graphs asks what is the minimum rank among all symmetric

matrices whose off-diagonal zero/nonzero pattern is given by a simple graph. This question is

equivalent to asking what is the maximum nullity among such matrices. It is also equivalent

to asking what is the largest multiplicity of an eigenvalue of a matrix corresponding to the

graph. The first paper published on the minimum rank of a graph was in 1996 by Nylen

[1]. Since then much work has been done on this problem and it remains an active area of

research.

The minimum rank problem is a weakening of an older and harder problem, the inverse

eigenvalue problem for graphs. The inverse eigenvalue problem asks: Given a graph G on n

vertices and n real numbers, is there a matrix, corresponding to the graph G, with the given

n real numbers as eigenvalues? This problem has been of interest since at least 1960 (see

[2]) and remains unsolved except in special cases.

A problem that is a simplification of the inverse eigenvalue problem and a refinement of

the minimum rank problem is the inverse inertia problem for graphs. The inverse inertia

problem asks: Given a graph G on n vertices and an ordered triple of non-negative numbers

(a, b, c) such that a + b + c = n, is there a matrix corresponding to G with a positive

eigenvalues, b negative eigenvalues, and 0 being an eigenvalue with multiplicity c?

In Chapter 1 we provide some background information and preliminary results. In Chap-

ter 2 we focus on an interesting question related to the minimum rank problem. A natural

question to ask is: Given a graph G, what structure or properties are present in matrices

which achieve the minimum rank of G? Specially, we investigate the zero/nonzero pattern of

the diagonal entries in matrices that achieve the minimum rank. In Chapter 3 we apply the

ideas and results of Chapter 2 to the inverse inertia problem and also prove results about

inertias. Chapter 4 focuses on the inverse eigenvalue problem.
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To keep this thesis as self-contained as possible, we give our own proofs for corollaries of

well know results, but include references when appropriate. For example, Lemma 4.6 follows

from the Parter-Wiener Theorem (see [3]); however, we provide a simple alternate proof.

1.1 Preliminaries

This section consists of standard definitions, previous results, and examples we will find

useful.

First, we recall that real symmetric matrices have real eigenvalues. The rank of such

a matrix is equal to the number of nonzero eigenvalues, and the nullity is equal to the

multiplicity of the eigenvalue 0. Also, if i and j are vertices of a graph G, we use the

convention ij to denote the edge {i, j}.

Definition 1.1. Given a graph G on n vertices and a field F , let SF (G) be the set of all

symmetric n× n matrices A = [aij] such that aij ∈ F and aij 6= 0, i 6= j, if and only if ij is

an edge of G. Then the minimum rank of G over F is

mrF (G) = min{rankA | A ∈ SF (G)}.

The maximum nullity of G over F is

MF (G) = max{nullityA | A ∈ SF (G)}.

Note that mrF (G) + MF (G) = n. Thus the problem of finding the minimum rank of a graph

is equivalent to the problem of finding the maximum nullity of a graph.

Most of the results presented hereafter do not depend on the field F . We use the con-

vention of including the field in the statement of the theorems, but unless a particular field

affects the proof we suppress its use in the proof. Throughout the paper F will always refer

to a field and G will always be a graph on n vertices.
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Definition 1.2. Let S(G) = SR(G). Let S+(G) be the subset of S(G) consisting of all

positive semidefinite matrices in S(G). Then the minimum positive semidefinite rank of G

over F is

mr+(G) = min{rank(A) | A ∈ S+(G)}.

The maximum positive semidefinite nullity of G over F is

M+(G) = max{nullity(A) | A ∈ S+(G)}.

Definition 1.3. Given a graph G and a field F , let

MRF (G) = {A ∈ SF (G) | rankA = mrF (G)}.

Definition 1.4.

• A tree is a graph in which any two vertices are connected by exactly one path.

• A forest is a disjoint union of trees.

• The degree of a vertex is the number of edges incident to the vertex.

• The star on n vertices, Sn, is the tree with one vertex of degree n−1 and n−1 vertices

of degree 1.

• The cycle on n vertices, Cn, is the connected graph in which every vertex has degree 2.

• The complete graph on n vertices, Kn, is the graph in which every vertex is adjacent

to every other vertex.

• A pendant vertex is a vertex of degree 1.

• A dominating vertex in a graph with n vertices is a vertex of degree n− 1.

• A set of vertices in a graph G is an independent set if its vertices are pairwise non-

adjacent.

Example 1.5. Let F be a field. In this example we show that mrF (Kn) = 1, n ≥ 2 and

mrF (Sn) = 2, n ≥ 3.

Consider the graph Kn where n ≥ 2. Note that the all ones matrix, Jn is in SF (Kn) and

has rank 1. Thus mrF (Kn) ≤ 1. Further, every matrix in SF (Kn) has a nonzero entry in the
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first row and second column position. The only matrix with rank 0 is the all zero matrix. It

follows that the rank of every matrix in SF (Kn) is at least one. Thus mrF (Kn) = 1.

Now consider the graph Sn, as shown below, where n ≥ 3.

2
1

3

Every matrix in SF (Sn) has the form



d1 a12 a13 · · · a1n

a21 d2 0 · · · 0

a31 0
. . . . . .

...

...
...

. . . . . . 0

an1 0 · · · 0 dn


(note: aij = aji since

matrices in SF (Sn) are symmetric).

Since a13 is a nonzero entry, the entry directly below it is 0, and row 2 has a nonzero entry,

rows 1 and 2 are linearly independent. Thus the rank of any such matrix is ≥ 2. Furthermore,

letting every diagonal entry be 0 and every nonzero off diagonal entry be 1 (the adjacency

matrix of Sn) results in a matrix in SF (Sn) with rank 2. Therefore mrF (Sn) = 2.

Remark. In the previous example, we chose to label the star by labeling the dominating

vertex 1. This is valid since different labelings of a graph do not affect the minimum rank,

eigenvalues, or properties we are interested in. The reason for this is renumbering the vertices

of a graph G corresponds to applying a permutation similarity to matrices in SF (G) and a

permutation similarity does not change the rank or eigenvalues of a matrix.

Definition 1.6. Let G and H be graphs with at least two vertices, each with a vertex labeled

v. The vertex-sum at v of G and H, denoted G⊕
v
H, is the graph on |G|+ |H| − 1 vertices

obtained by identifying the vertex v in G with the vertex v in H.

Example 1.7. G :
v

H : v G⊕
v
H :

v

4



Definition 1.8. Let G be a graph with a vetex labeled v. The graph G − v is the graph

obtained from G by removing vertex v and all edges incident to v.

Definition 1.9. Let F be a field. The rank-spread of a vertex v of a graph G, denoted

rFv (G), is the difference between the minimum rank of G over F and the minimum rank of

G− v over F . i.e.

rFv (G) = mrF (G)−mrF (G− v).

Remark. It is well know (see [1]) that 0 ≤ rFv (G) ≤ 2 for any vertex v of G.

Definition 1.10. Let A be an n× n matrix and let p ∈ {1, 2, ..., n}. The matrix A(p) is the

matrix obtained by deleting the pth row and column of A.

The following is a well know result in matrix theory (see p. 13 in [4]).

Proposition 1.11. Let A and B be m× n matrices with entries in a field F . Then

rank(A+B) ≤ rankA+ rankB.

Chapter 2. Diagonal Entry Restrictions in Minimum Rank

Matrices

In the definition of SF (G), there are no restrictions placed on the diagonal entries of matrices

in SF (G). It turns out that it is often the case that certain diagonal entries must be zero or

nonzero in order for a matrix in SF (G) to be in MRF (G). Identifying these diagonal entries

is a step in determining the structure of all matrices in MRF (G). Given a vertex v of a

graph G, we call v a nil (nonzero) vertex if every matrix in MRF (G) has a zero (nonzero)

diagonal entry corresponding to v. A vertex that is neither a nil nor nonzero vertex is called

a neutral vertex. In this section, we prove results and develop methods that can be used to

find nil, nonzero, and neutral vertices. We also investigate the relationship between these
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vertices and common graph parameters such as rank-spread. Before doing so we provide

some formal definitions, previous results, and an example.

Definition 2.1. Given a field F and a graph G, a vertex v in G is a

• nil vertex if its corresponding diagonal entry dv is zero in every matrix in MRF (G).

• nonzero vertex if its corresponding diagonal entry dv is nonzero in every matrix in

MRF (G).

• neutral vertex if it is neither a nil vertex nor a nonzero vertex.

Example 2.2. In this example we show that over any field,

• in Sn, n ≥ 4, the pendant vertices are nil and the dominating vertex is neutral.

• in S3, every vertex is neutral.

• in Kn, n ≥ 2, every vertex is nonzero.

Let F be a field. Consider a star on n vertices Sn where n ≥ 4. The graph and the

corresponding matrix are

2

31

4

A =



d1 a12 a13 · · · a1n

a21 d2 0 · · · 0

a31 0
. . . · · · ...

...
...

...
. . . 0

an1 0 · · · 0 dn


where the aij’s are nonzero entries. By Example 1.5, mrF (Sn) = 2. Let M ∈ MRF (Sn).

Suppose at least one of the di, i = 2, ..., n is nonzero. Without loss of generality, suppose

d2 6= 0. Since a13 6= 0 and a23 = 0, rows 1 and 2 are linearly independent and thus form a

basis for the row space. Therefore there exists constants c1 and c2 such that

c1[d1 a12 a13 a14 · · · ]

+ c2[a21 d2 0 0 · · · ]

= [a31 0 d3 0 · · · ].
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Since c1a14 + c20 = 0, c1 = 0. Since c2d2 = 0, c2 = 0, a contradiction. Hence, every pendant

vertex of Sn is a nil vertex.

We also note that since



1 1 · · · 1

1 0 · · · 0

...
...

. . .
...

1 0 · · · 0


and



0 1 · · · 1

1 0 · · · 0

...
...

. . .
...

1 0 · · · 0


are in MRF (Sn), the dom-

inating vertex of the star is a neutral vertex.

Consider a star on 3 vertices, S3 (or equivalently a path on 3 vertices, P3). Since
0 1 0

1 1 1

0 1 0

 and


1 1 0

1 0 −1

0 −1 −1

 are in MRF (S3), every vertex of S3 is a neutral vertex.

Now consider the graph Kn on n ≥ 2 vertices. By Example 1.5, mrF (Kn) = 1. If any

diagonal entry of a matrix A ∈ SF (Kn) were zero, then rankA ≥ 2. Thus every vertex of

Kn is a nonzero vertex.

We now introduce two graph parameters, the zero forcing number Z and the enhanced

zero forcing number Ẑ, which we use to determine nil and nonzero vertices. The parameter Z

first appeared in [5] and was used to put an upper bound on the maximum nullity of a graph.

The zero forcing process, under the name “graph infection,” has also been used by physicists

to study quantum systems ([6]). The parameter Ẑ, which appears in [7] is a modification of

Z and is also used to put an upper bound on the maximum nullity of a graph. The following

definitions from [5] and [7] define Z and Ẑ.

Definition 2.3.

• Color-change rule for a simple graph: If G is a graph with each vertex colored either

white or black, u is a black vertex of G, and exactly one neighbor v of u is white, then change

the color of v to black.

• Given a coloring of G, the derived coloring is the result of applying the color-change

rule for a simple graph until no more changes are possible.
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• A zero forcing set for a graph G is a subset of vertices Z such that if initially the vertices

in Z are colored black and the remaining vertices are colored white, the derived coloring of

G is all black.

• The zero forcing number of a graph G, Z(G) is the minimum of |Z | over all zero forcing

sets Z ⊂ V (G).

The following two results are Proposition 2.4 and Proposition 4.2 in [5].

Theorem 2.4. For any graph G and any field F , MF (G) ≤ Z(G).

Theorem 2.5. For any tree T and any field F , MF (T ) = Z(T ).

Remark. It has been verified that MR(G) = Z(G) for all graphs G on fewer than 7 vertices.

Example 2.6. The graph numbers we use correspond to those given in [8]. Consider the

graph G129.

1

3
2

6 5

4

We show that one zero forcing set consists of vertices 1, 2 and 6. We first color 1, 2 and 6

black (see the illustration below). Since 2 has exactly one white neighbor, 3, it can force 3

black by the color-change rule for a simple graph. Since 6 has exactly one white neighbor,

5, it can force 5 black. Lastly since 5 has exactly one white neighbor, 4, it can force 4 black.

3

5

4

5

4 4

We note that the zero forcing set 1, 2 and 6 is not unique nor is the order in which we

forced vertices black in the above example. Also, there are no two vertices in G129 that if

colored black can force the rest of the graph black. Thus Z(G129) = 3.
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Definition 2.7. A loop graph is a graph that allows single loops at vertices, i.e., Ĝ =

(VĜ, EĜ) where VĜ is the set of vertices of Ĝ and the set of edges EĜ is a set of two-element

multisets. Vertex u is a neighbor of vertex v in Ĝ if {u, v} ∈ EĜ; note that u is a neighbor of

itself if and only if the loop {u, u} is an edge. The underlying simple graph of a loop graph

Ĝ is the graph G obtained from Ĝ by deleting all loops.

Note that if we ever write Ĝ we think of the graph as coming with extra information,

namely that the graph is a loop graph, even if there are no loops. In a loop graph, every

vertex is specified as being looped or unlooped.

Definition 2.8. The set of symmetric matrices with entries in a field F described by a loop

graph Ĝ is

SF (Ĝ) = {A = [aij] | A is symmetric, aij ∈ F, and aij 6= 0 if and only if {i, j} ∈ EĜ}.

and the maximum nullity of Ĝ over F is

MF (Ĝ) = max{nullityA | A ∈ SF (Ĝ)}

Definition 2.9 (Color-change rule for a loop graph). Let Ĝ be a loop graph with each vertex

colored white or black. If exactly one neighbor u of v is white, then change the color of u to

black.

Note that the color-change rule for a loop graph is quite similar to the color-change rule

for a simple graph. The only difference is that when using a loop graph, two additional

coloring forces are valid. First, a looped white vertex that has no other white neighbors may

be colored black. Second if an unlooped white vertex has only one white neighbor u, u may

be colored black. By Z(Ĝ), we mean the same thing as in Definition 2.3, except we use the

color-change rule for a loop graph. (We distinguish the two cases by whether or not the

graph is a loop graph.)

9



The following results are from [7]. We note that the results were stated without reference

to a field but the proofs hold for any field.

Theorem 2.10. For any loop graph Ĝ and any field F , MF (Ĝ) ≤ Z(Ĝ).

Definition 2.11. The enhanced zero forcing number of a graph G denoted by Ẑ(G), is the

maximum of Z(Ĝ) over all loop graphs Ĝ such that the underlying simple graph of Ĝ is G.

Corollary 2.12. For any graph G and any field F , MF (G) ≤ Ẑ(G) ≤ Z(G).

The following example illustrates the coloring rules defined above.

Example 2.13. Consider the loop graphs Ĝ1 and Ĝ2, each of whose underlying simple graph

is G37.

Ĝ1 :

1

3
4

5
2

Ĝ2 :

1

3
4

5
2

First consider Ĝ1. Color vertex 3 black (see illustration below). Since 1 is an unlooped

vertex and only has one white neighbor 2, 2 can be colored black. Then 3 forces 4, 4 forces

5, and 2 forces 1. Thus Z(Ĝ1) ≤ 1. It is straightforward to see that Z(Ĝ1) ≥ 1. Thus

Z(Ĝ1) = 1.

1

4
5

2

1

4
5

1

4
5

1

5

1

Now consider Ĝ2. Color vertices 2 and 4 black (see illustration below). Since 1 is a

looped vertex that has no white neighbors, it may be colored black. Similarly, 3 and 5 may

be colored black. Thus Z(Ĝ2) ≤ 2. It is straightforward to see that Z(Ĝ2) ≥ 2. Thus

Z(Ĝ2) = 2.

10



1

35 35

Since Ẑ(G) is the maximum of Z(Ĝ) over all loop graphs Ĝ, Ẑ(G) ≥ Z(Ĝ2) = 2. It is

straightforward to verify Z(G) = 2. By Corollary 2.12, Ẑ(G) ≤ Z(G) = 2 and thus Ẑ(G) = 2.

2.1 The Ẑ Method

The ideas and results that have been given for the zero forcing number and the enhanced

zero forcing number can be combined in a way that can determine nil and nonzero vertices.

Theorem 2.14 (The Ẑ Method). Let G be a graph. Let
v
G be the graph G where a vertex

v is looped and no other vertices are specified looped or unlooped. Let F be a field. If there

exists a set of less than MF (G) vertices of
v
G such that every vertex in

v
G can be colored black

by following the color-change rule for a simple graph (see Definition 2.3) and the additional

rule that the looped vertex v may be colored black if it has no white neighbors, then v is a nil

vertex of G.

Proof. Let Z be a set of less than M(G) vertices of
v
G such that every vertex in

v
G can

be colored black by following the color-change rule for a simple graph and the additional

rule that the looped vertex v may be colored black if it has no white neighbors. Let Ĝ be

an arbitrary loop graph with underlying simple graph G such that v has a loop. Since by

starting with the vertices in Z colored black, every vertex in
v
G can be colored black by

following the color-change rule for a simple graph and the rule that the looped vertex v may

be colored black if it has no white neighbors, these same forcing moves will color every vertex

of Ĝ black. Thus Z(Ĝ) ≤ |Z| < M(G). By Theorem 2.10, M(Ĝ) ≤ Z(Ĝ) < M(G). Thus no

matrix in S(Ĝ) has nullity equal to M(G). Note that by the definition of S(Ĝ), the condition

that v is looped corresponds to the condition that the diagonal entry corresponding to v in

every matrix in S(Ĝ) is nonzero. Since Ĝ was an arbitrary loop graph with the condition
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that v is looped, no matrix with a nonzero diagonal entry corresponding to v achieves M(G)

(or equivalently mr(G)). Therefore v is a nil vertex.

Theorem 2.15. Let G be a graph. Let
v
G be the graph G where a vertex v is unlooped and

no other vertices are specified looped or unlooped. Let F be a field. If there exists a set of

less than MF (G) vertices of
v
G such that every vertex in

v
G can be colored black by following

the color-change rule for a simple graph and the additional rule that if an v has only one

white neighbor u, u may be colored black, then v is a nonzero vertex of G.

Proof. The proof is similar to the proof of Theorem 2.14.

Example 2.16. We consider the graph G129 used in Example 2.6. We will show that

vertices 1 and 3 are nil and vertices 5 and 6 are nonzero. From Example 2.6, Z(G129) = 3.

By the remark after Theorem 2.5, MR(G129) = 3. We begin by placing a loop on 1 and

coloring 2 and 6 black.

1

3

5

4

Using the color-change rule for a simple graph, 6 can force 5 and then 5 can force 4.

1

3

Now the looped vertex has no white neighbors and thus can be colored black.

3

Lastly, 4 can force 3. We used a set of fewer than M(G129) = 3 vertices to color the entire

graph black. Hence by Theorem 2.14, vertex 1 is a nil vertex. By symmetry, vertex 3 is a

nil vertex.

12



We now mark 5 as an unlooped vertex by labeling it with a U . We also color 1 and 2

black.

3

6 U

4

Using the color-change rule for a simple graph 1 can force 4.

3

6 U

Now the unlooped white vertex has only one white neighbor 6 and thus 6 may be colored

black.

3

U

Now by the color-change rule for a simple graph, 6 can force 5 black and 2 can force 3 black.

We used a set of less than 3 vertices to color the entire graph black. Hence by Theorem 2.15,

vertex 5 is nonzero. By symmetry, vertex 6 is nonzero.

The above method of using the concepts of zero forcing and enhanced zero forcing can

also be used to make conclusions about the rank-spread of certain vertices.

Theorem 2.17. Let F be a field and assume that for a graph G on n vertices, Ẑ(G) =

MF (G). Let
v
G be the graph where a vertex v is looped and no other vertices are specified

looped or unlooped. If there exists a set Z of less than MF (G) vertices of
v
G such that every

vertex in
v
G can be colored black by following the color-change rule for a simple graph and

the additional rule that the looped vertex v may by colored black if it has no white neighbors,

then rFv (G) = 0.

13



Proof. We claim that during the forcing process that started with Z and ended with all

vertices black, the additional rule that v may be colored black if it has no white neighbors

was used. When this additional forcing rule is used to color v black we say v “died alone”.

Thus we claim that v died alone in the forcing process. Suppose by way of contradiction

that in the zero forcing process, the vertex v did not die alone. Thus only the color-change

rule for a simple graph was used and so Z is a zero forcing set for G. Thus by Corollary

2.12, M(G) ≤ Ẑ(G) ≤ Z(G) ≤ |Z| < M(G), a contradiction.

Since v died alone, Z is a zero forcing set for G− v. Thus

Z(G− v) ≤ |Z| < Ẑ(G).

By Theorem 2.4, M(G− v) ≤ Z(G− v) < Ẑ(G) = M(G). This fact along with the facts that

mr(G− v) ≤ mr(G) (by the remark after 1.9), mr(G) + M(G) = n and mr(G− v) + M(G−

v) = n− 1 imply mr(G) = mr(G− v). Thus rv(G) = 0.

Example 2.18. Consider G129 in Example 2.16. As seen in this example, MR(G129) =

Z(G). By Corollary 2.12, MR(G129) = Ẑ(G129). Thus by Theorem 2.17, Example 2.16

shows that vertices 1 and 3 in G129 have rank-spread 0.

Theorem 2.17 shows that if Ẑ(G) = MF (G) and the Ẑ method determines a vertex v of G

is nil, then rFv (G) = 0. Similarly, it will be shown in the next section that if Z(G) = MF (G)

and the nil forcing method determines a vertex v of G is nil, then rFv (G) = 0. However it is

not true that all nil vertices have rank-spread 0. An example of a nil vertex with rank-spread

1 was found by John Sinkovic and appears in [9].

2.2 The Nil Forcing Method

In this section we describe a graph algorithm or game which we call nil forcing that can

determine if a vertex is nil. One of the necessary conditions for nil forcing is that MF (G) =

Z(G). This equality holds for a significant number of graphs. In particular, it is know that

14



this equality hold for all graphs on less than 8 vertices. For this algorithm, we will consider 4

types of vertices which we call row, column, cross, and white vertices. When drawing graphs,

we denote each of these as − , | , + , and respectively. Below are the rules of nil forcing.

Definition 2.19 (Nil forcing rules). Let G be a graph with each vertex being a white,

column, row, or cross vertex.

(i) Let v be a row vertex that has exactly one white or column neighbor w, then a hori-

zontal line may be added to w (thus w becomes a row or cross vertex respectively). If

this force occurs, v becomes a cross vertex.

Examples:

−

−

+

− −

−

+

+ −

−

−
− |

−

−
+ +

(ii) Let v be a column vertex that has exactly one white or row neighbor w, then a vertical

line may be added to w (thus w becomes a column or cross vertex respectively). If this

force occurs, v becomes a cross vertex.

Examples:

| + |

Before stating the theorem that uses nil forcing to determine a vertex is nil, we define a

few more terms.

Definition 2.20. A path is a connected graph with exactly two degree 1 vertices with the

remainder of the vertices having degree 2. A path on n vertices is denoted Pn.
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Definition 2.21. Let G be a graph. A path cover is a set of vertex-disjoint paths such that

every vertex v of G belongs to at least one path.

Definition 2.22. Let G be a graph and let Z be a zero forcing set for G. A sequence of

forces in the zero forcing process induces a path cover of G (see the proof of Proposition 2.10

in [10]). We call this a zero forcing induced path cover.

Theorem 2.23 (The Nil Forcing Method). Let F be a field and let G be a graph such that

Z(G) = MF (G), and let n = |G|. Let v be in a path of length 0 in a zero forcing induced path

cover with a minimal zero forcing set Z. Let W be the set of all vertices forced last in each

zero forced path. Make each vertex of Z−v a column vertex. Make each vertex of W − v a

row vertex. If a vertex is in Z−v and W − v then it becomes a cross vertex. Make all other

vertices white. If by applying nil forcing rules to G, v can remain a white vertex and all

other vertices become cross vertices, then v is a nil vertex in G.

Before presenting the proof, it may be helpful to work through an example.

Example 2.24. For this example we let F = R. For the following graph G, we know

M(G) = Z(G) = 3. We show that vertex 1 is a nil vertex. Consider the following:

1

3

4 2 5 6

|

| − −

|

| − −

|

| − − +

|

| − − +

+

| − + +

+

| − + +

+

+ + + +

We will show directly that d1 = 0, correlating our proof with the nil forcing method

steps. Let G be the graph shown above. Then any matrix A in MR(G) is a symmetric

matrix of the form:
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

d1 0 0 a14 a15 0

0 d2 0 a24 a25 0

0 0 d3 a34 a35 0

a41 a42 a43 d4 0 0

a51 a52 a53 0 d5 a56

0 0 0 0 a65 d6


Delete the columns of A corresponding to each vertex of Z−v (note that these are the

vertices we first made column vertices in the example). Delete the rows of A corresponding

to each vertex of W − v (note that these are the vertices we first made row vertices in the

example). The resulting matrix is of the form:

B1 =



d1 0 a15 0

0 0 a35 0

a41 a42 0 0

a51 a52 d5 a56


Since A ∈MR(G), rankA = mr(G) = 3. The matrix B1 is a 4× 4 submatrix of A and

therefore cannot have rank 4. Thus detB1 = 0. We evaluate detB1 using the method of

cofactor expansion. The order for the nil forcing gives us an algorthim for how to proceed

with the cofactor expansion. The first force is the row vertex 6 forces the white vertex 5.

Here 5 becomes a row vertex and 6 becomes a cross vertex. In B1 we look at the column

corresponding to 6 and see that the only nonzero entry is a56. Expanding along this column

we get detB1 = a56 detB2 where

B2 =


d1 0 a15

0 0 a35

a41 a42 0

.

The second force is the column vertex 3 forces the row vertex 5. Here both 5 and 3

become cross vertices. In B2 we look at the row corresponding to 3 and see that the only
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nonzero entry is a35. Expanding along this row we get detB1 = a56 detB2 = −a56a35 detB3

where

B3 =

 d1 0

a41 a42

.

The third force is the row vertex 2 forces the column vertex 4. Here both 4 and 2 become

cross vertices. In B3 we look at the column corresponding to 2 and see that the only nonzero

entry is a42. Expanding along this column we get detB1 = a56 detB2 = −a56a35 detB3 =

−a56a35a42d1. Thus −a56a35a42d1 = 0⇒ d1 = 0.

The correlation between the nil forcing steps and the method we used to show d1 = 0 is

not a coincidence. The proof for Theorem 2.23 is a generalization of this technique.

Proof. The notation and symbols used here will be the same used in the hypothesis of the

theorem. Let A = [ai,j] ∈ MR(G). We will construct an (mr(G) + 1) × (mr(G) + 1)

submatrix S of A. Since rankA = mr(G), rankS ≤ mr(G). Thus, detS = 0. Evaluating the

determinant by cofactor expansion will show that for detS to be 0, dv must be 0. Create S

by deleting the columns of A corresponding to the vertices of Z−v and deleting the rows of

A corresponding to the vertices of W − v. Since Z(G) = M(G), n− (Z(G)− 1) = mr(G) + 1.

Thus S is a (mr(G) + 1)× (mr(G) + 1) matrix.

Write

S =


dv · · · av,j

· · · · · · · · ·

ak,v · · · ak,j

 .
We evaluate detS with cofactor expansion. The nil forcing rules will dictate what rows or

columns we expand along.

Since nil forcing can force all vertices of G−v to become cross vertices and v stays white,

either forcing rule (i) or (ii) occurs without involving v. If (i) occurs first then there existed

a row vertex, r, adjacent to all row and cross vertices except for one vertex, w. Consider
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the column in S corresponding to this vertex. The only nonzero entry in this column is aw,r.

Let aw,r = a1. We expand along this column and thus detS = ±a1 ·Sw,r, where Sw,r denotes

the matrix obtained from S by deleting the row w and column r. Note: We know dv is in

Sw,r since v remains a white vertex and thus neither w nor r were equal to v. Also following

the graph algorithm, w has become a row vertex and r a crossed vertex.

If (ii) occurs first, a similar argument applies. Now since every vertex except v is even-

tually forced crossed, this same process associated with rules (i) and (ii) repeats itself. De-

pending on the force that occurs, a corresponding row or column will be all zeros except for

one entry. We expand along this row or column. Thus once all vertices have been crossed,

we have that detS = ±a1 · · · amdv = 0. Since ai 6= 0, 1 ≤ i ≤ m, dv = 0.

This nil forcing method also provides information about the rank-spread of the nil vertex.

Theorem 2.25. Let F be a field. Let G be a graph on n vertices with Z(G) = MF (G). Let

v be a vertex in G such that the nil forcing method shows v is a nil vertex. Then rFv (G) = 0.

Proof. Since v can be determined to be a nil vertex by the nil forcing method, v is in a path

of length 0 in a zero forcing induced path cover with a minimal zero forcing set Z. Thus

Z − v is a zero forcing set for G− v of size Z(G)− 1. Thus

M(G− v) ≤ Z(G− v) ≤ Z(G)− 1 = M(G)− 1

implies M(G − v) < M(G). This fact along with the facts that mr(G − v) ≤ mr(G) (by

the remark after 1.9), mr(G) + M(G) = n and mr(G − v) + M(G − v) = n − 1 imply

mr(G) = mr(G− v). Thus rv(G) = 0.

2.3 Induced Subgraph Method

We now develop another method that uses induced subgraphs to determine nil vertices.

The following is due to Nylen and is Proposition 2.2 in [1]. We note that the proposition

was stated without reference to a field but the proof holds for any field.
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Proposition 2.26. For a field F and a graph G, let B ∈ MRF (G). Then for each p ∈

{1, 2, ..., n}, rankB(p) ∈ {rankB, rankB − 2}. In particular, rankB(p) = rankB − 1 is

impossible.

Proof. Without loss of generality, we let p = 1 and rankB = k. By way of contradiction,

suppose rankB(1) = k − 1.

Denote B =

a bT

b B(1)

. Since rankB(1) = k − 1, b must be a linear combination of the

columns of B(1), that is, B(1)x = b has a solution x = c. Form B′ by replacing a with

a′ = bT c. Thus B′ =

 bT c bT

B(1)c B(1)

. Hence B′ ∈ S(G) with rankB′ = rankB(1) = k−1 <

k = mr(G), a contradiction.

Definition 2.27. Let G = (V,E) be a graph. A graph H = (V ′, E ′) is a subgraph of G if

V ′ ⊂ V and E ′ ⊂ E. A subgraph H is called an induced subgraph of G if H is obtained from

G by deleting the vertices in V − V ′ and the edges incident to the vertices in V − V ′. A

subgraph H is called a proper subgraph if G 6= H.

Theorem 2.28. Let F be a field, G be a graph with mrF (G) = r, and H be a proper induced

subgraph of G with mrF (H) = r. Let v /∈ V (H) be a vertex adjacent to exactly one vertex of

each connected component of H. Then v is a nil vertex.

Proof. Let H1, H2, · · · , Hk denote the disjoint components of H. Let ri = mr(Hi), i =

1, · · · , k. A rank r matrix A corresponding to G can be written in the form

A =



B1 0 0 0 y1 ∗

0 B2 0 0 y2 ∗

0 0
. . . 0

... ∗

0 0 0 Bk yk ∗

yT1 yT2 · · · yTk dv ∗

∗ ∗ ∗ ∗ ∗ ∗


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where B1, B2, · · · , Bk correspond to H1, H2, · · · , Hk respectively, the 0 entries are zero ma-

trices of appropriate sizes, and the ∗ entries correspond to vertices of G not in V (H) ∪ {v}.

Further, without loss of generality and since v is adjacent to exactly one vertex of each Hi,

yTi =

[
xi 0 · · · 0

]
, i = 1, · · · , k.

Let B =



B1 0 0 0

0 B2 0 0

0 0
. . . 0

0 0 0 Bk


. We observe that r = mr(H) = mr(H1) + · · · + mr(Hk) ≤

rankB1 + · · · + rankBk = rankB ≤ rankA = r, hence rankB = r. We can also conclude

that rankBi = ri, i = 1, · · · , k.

Construct a matrix as follows. Note that by Proposition 2.26, rankBi(1) = ri or ri − 2.

Without loss of generality assume rankBi(1) = ri for i = 1, · · · , j and rankBi(1) = ri − 2

for i = j + 1, · · · k. It follows that for each i, i = 1, . . . j, there exists an ri × ri principal

submatrix of Bi(1) with a nonzero determinant. Call these submatrices Ci, i = 1, 2, ..., j.

For each i, i = j+1, · · · , k, there exists an ri×ri principal submatrix of Bi with a nonzero

determinant. This submatrix includes the first diagonal entry of Bi because rankBi(1) =

ri− 2. Call these submatrices Ci, i = j + 1, ..., k. Note that since rankCi = ri and Ci(1) is a

submatrix of Bi(1) which has rank ri − 2, it follows that rankCi(1) = ri − 2, i = j + 1, ..., k.

Let E =



C1 0 0 0 0 0 0

0
. . . 0 0 0 0 0

0 0 Cj 0 0 0 0

0 0 0 Cj+1 0 0 y′j+1

0 0 0 0
. . . 0

...

0 0 0 0 0 Ck y′k

0 0 0 y′Tj+1 · · · y′Tk dv


where y′Ti =

[
xi 0 · · · 0

]
, i = j + 1, · · · , k.
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The matrix E is a (r+1)× (r+1) principal submatrix of A. Since rankA = r, detE = 0.

Let D =


C1 0 0

0
. . . 0

0 0 Cj

 , so E =



D 0 0 0 0

0 Cj+1 0 0 y′j+1

0 0
. . . 0

...

0 0 0 Ck y′k

0 y′Tj+1 · · · y′Tk dv


.

Let Cc
i be the matrix Ci with the first column deleted and Cr

i be the matrix Ci with the first

row deleted.

Using cofactor expansion,

0 = detE = dv detC1 detC2... detCk

±xj+1 det



D 0 0 0 0

0 Cc
j+1 0 0 y′j+1

0 0
. . . 0

...

0 0 0 Ck y′k


± · · · ± xk × det



D 0 0 0 0

0 Cj+1 0 0 y′j+1

0 0
. . . 0

...

0 0 0 Cc
k y′k



= dv detC1 · · · detCk +
k∑

m=j+1

k∑
n=j+1

(±xm)(±xn) det C {m,n},

where

C {m,n} =



C1 0 0 0 0 0 0

0
. . . 0 0 0 0 0

0 0 Cr
m 0 0 0 0

0 0 0
. . . 0 0 0

0 0 0 0 Cc
n 0 0

0 0 0 0 0
. . . 0

0 0 0 0 0 0 Ck



.

Recall that each Ci is a ri×ri matrix and rankCi = ri. It follows that for the ri× (ri−1)

matrix Cc
i , rankCc

i = ri − 1. Similarly, rankCr
i = ri − 1.
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Let C {k,j+1} =



C1 0 0 0 0 0

0 · · · 0 0 0 0

0 0 Cj 0 0 0

0 0 0 Cc
j+1 0 0

0 0 0 0 · · · 0

0 0 0 0 0 Cr
k


.

Now rank C {k,j+1} = rankC1 + ...+ rankCj + rankCc
j+1 + ...+ rankCr

k =
∑k

i=1 ri − 2 =

r − 2. The matrix C {k,j+1} is a (r − 1) × (r − 1) matrix. Thus det C {k,j+1} = 0. Similarly,

det C {m,n} = 0 when m,n ∈ {j+1, ..., k} and m 6= n. Further, recall that rankCi(1) = ri−2

for i = j + 1, ...,m. It follows that rank C {i,i} = r − 2 for i = j + 1, ...,m. Therefore

det C {m,n} = 0 when m,n ∈ {j + 1, ..., k}.

We conclude that 0 = detE = dv detC1 detC2 · · · detCk. Since detCi 6= 0, i = 1, · · · , k,

dv = 0.

Corollary 2.29. Let F be a field, G be a graph with mrF (G) = r, and H be a connected

induced subgraph of G with mrF (H) = r. Let v be a vertex adjacent to exactly one vertex of

H. Then v is a nil-vertex.

Corollary 2.30. Let F be a field, G be a graph, and p be a pendant vertex of G with

rFv (G) = 0, then p is a nil vertex.

Proof. Since mr(G) = mr(G−p) and p is adjacent to exactly one vertex of G−p, by Corollary

2.29, p is a nil vertex.

Example 2.31. Let G be the following graph.

7

8

10

11
96

4

5

1

2
3

Using zero forcing and Theorem 2.4, MR(G) ≤ Z(G) = 5 and thus mrR(G) ≥ 6. Also
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A =



1 1 1 0 0 0 0 0 0 0 0

1 1 1 0 0 0 0 0 0 0 0

1 1 1 1 1 1 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 1 1 1 1 1 1

0 0 0 0 0 0 0 0 1 1 1

0 0 0 0 0 0 0 0 1 1 1



∈ SR(G)

and rankA = 6. Thus mrR(G) = 6.

Let v be vertex 6. Using zero forcing, the remark after Theorem 2.5, and the fact that

mrF (G1 ∪ G2) = mrF (G1) + mrF (G2) for any field F and graphs G1 and G2, MR(G − v) =

Z(G− v) = 4. Thus mrR(G− v) = 6. Since vertex v is adjacent to exactly one vertex of each

component of G− v, by Theorem 2.28, v is a nil vertex.

To illustrate Corollary 2.30 consider G80:

w

By Theorem 2.5, MF (G80) = Z(G80) = 2⇒ mrF (G80) = 4. Similarly, since MF (G80−w) =

Z(G80 − w) = 1,mrF (G80 − w) = 4. Hence vertex w has rank-spread 0 and thus by the

corollary, w is a nil vertex.
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2.4 Classification of the Vertices of Trees

A natural and significant step in determining the structure of minimum rank matrices is to

classify the vertices of classes of graphs with respect to nil, nonzero and neutral vertices. The

following theorem appears in [11] and classifies these vertices for all graphs whose minimum

rank is 2.

Theorem 2.32. Let G be a connected graph with mr(G) = 2 and v be a vertex of G. Then

• v is a nonzero vertex if and only if v is either a non-dominating vertex of an induced paw( )
of G or else is the dominating vertex of an induced K3,3,1

( )
.

• v is a nil vertex if and only if v is in an independent set of size three or greater.

• v is a neutral vertex if and only if it does not meet either of the previous two conditions.

In this section we give a classification of all nil, nonzero and neutral vertices of a tree

(see Definition 1.4). Before doing so we provide some needed definitions and results.

Recall the following facts from Examples 1.5 and 2.2, which will be used extensively

throughout this section.

• mrF (Kn) = 1 for n ≥ 2.

• mrF (Sn) = 2 for n ≥ 3.

• Pendant vertices of stars on n ≥ 4 vertices are nil.

• The dominating vertex of a star on n ≥ 3 vertices is neutral.

• All vertices of S3 = P3 are neutral.

Definition 2.33. A vertex v of a graph G is called a cut-vertex if the graph obtained by

deleting v and all edges adjacent to v from G, denoted G − v, contains more components

than G.

Definition 2.34. Given a proper subgraph H of a graph G, let H̃ be the graph with vertex

set V (G) and edge set E(H).
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Definition 2.35. Let G be a graph. Then a cover of G is a set of subgraphs of G such that

the union of the edge sets is equal to E(G).

Definition 2.36. A K2-star cover of G is a cover of G consisting of only K2’s and stars.

Definition 2.37. Given a graph G and a cover C of G, we say a vertex (edge) of G is

covered by an element of the cover H ∈ C if the vertex (edge) is in the vertex (edge) set of

H.

Definition 2.38. The rank sum of a cover C over a field F , denoted rsF (C ) is the sum of

the minimum ranks over F of the graphs in C .

Observation 2.39. For any edge-disjoint cover C of a graph G over a field F , mrF (G) ≤

rsF (C ).

Let C = {H1, · · · , Hm}, let Ãi ∈MRF (H̃i) for i = 1, ...,m and let A = Ã1 + ... + Ãm.

Since C is edge-disjoint, A ∈ SF (G), and by Proposition 1.11,

mrF (G) ≤ rankA ≤
m∑
i=1

rank(Ãi) =
m∑
i=1

mrF (H̃i) =
m∑
i=1

mrF (Hi) = rsF (C ).

Definition 2.40. A minimum rank cover of a graph G over a field F is a cover C of G such

that rsF (C ) = mrF (G).

Example 2.41. Consider the graph G80.

5 6

4

321

As seen in Example 2.31, the minimum rank of G80 over any field F is 4. First consider the

cover of G80 that consists of the five K2’s formed by vertices 1 and 2, 2 and 3, 3 and 4, 3 and 5,

and 5 and 6. This cover is not a minimum rank cover since mrF (K2)+mrF (K2)+mrF (K2)+

mrF (K2) + mrF (K2) = 5. Now consider the cover of G80 consisting of the two K2’s formed

by vertices 1 and 2 and vertices 5 and 6, which we denote as H1 and H2 respectively, and

the star consisting of vertices 2, 3, 4 and 5, which we denote as S. Since rsF ({H1, H2, S} =
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mrF (H1) + mrF (H2) + mrF (S) = 1 + 1 + 2 = mrF (G), {H1, H2, S} is a minimum rank

cover of G80. Furthermore, we can construct a matrix in SF (G80) by taking a matrix from

each of MRF (H̃1),MRF (H̃2), and MRF (S̃) and summing them together. This is seen as

follows: Let A ∈ MRF (H̃1), B ∈ MRF (H̃2) and C ∈ MRF (S̃). Since H̃1, H̃2 and S̃ are

edge-disjoint, A+ B + C ∈ S(G80). By Proposition 1.11, mrF (G80) ≤ rank(A+ B + C) ≤

rankA+ rankB + rankC = mrF (G80). Therefore A+B + C ∈MRF (G80). For example,

we can take the matrices

1 1 0 0 0 0

1 1 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


∈MRF (H̃1),



0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 1 1

0 0 0 0 1 1


∈MRF (H̃2),

and



0 0 0 0 0 0

0 0 1 0 0 0

0 1 1 1 1 0

0 0 1 0 0 0

0 0 1 0 0 0

0 0 0 0 0 0


∈MRF (S̃).

The sum of the three matrices is in MRF (G).

The following result appears as Corollary 3.15 in [12].

Theorem 2.42. If T is a tree and F is any field, then there is a K2-star cover of T whose

rank sum is mrF (T ).

We note that the previous theorem could have stated that there is always an edge-disjoint

minimum rank K2-star cover of T . This is seen as follows. In a minimum rank K2-star cover
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of T that is not edge-disjoint, the fact that the cover is a minimum rank cover implies that

every overlap must occur between two stars that overlap on a single edge. An edge-disjoint

cover can be obtained as follows. Whenever two stars Sj and Sk overlap on a single edge,

replace Sk with a star that covers the same edges as Sk except for the edge it shared with

Sj. This results in an edge-disjoint minimum rank K2-star cover of T .

We use Theorem 2.42 extensively in the proof of the theorem that classifies the vertices

of a tree (Theorem 2.51) and it is helpful to consider the following example.

Example 2.43. Consider the following tree T :

2

3

1

5

4

6 7

The minimum rank of T over any field F is 5. This can be seen as follows. It’s straightforward

that Z(T ) = 2. Thus by Theorem 2.4, MF (T ) ≤ 2⇒ mrF (T ) ≥ 5. Since mrF (Sn) = 2, n > 2

and mrF (K2) = 1, the K2-star cover of T consisting of

2

3

1 4

5

4

6 6 7

has rank sum 5. Thus mrF = 5. (Theorem 2.42 guarantees such a K2-star cover of T whose

rank-spread achieves the minimum rank.)

The following theorem was published by Hsieh in [13], and independently by Barioli,

Fallat, and Hogben (see Theorem 2.3 in [14]). Van der Holst in [15] and Barrett, Grout, and

Loewy in [16] proved field independent versions.

Theorem 2.44. Let F be a field. Let G and H be graphs on at least two vertices, each with

a vertex labeled v. Then

mrF (G⊕
v
H) = min{mrF (G) + mrF (H),mrF (G− v) + mrF (H − v) + 2}.
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Equivalently,

rFv (G⊕
v
H) = min{rFv (G) + rFv (H), 2}.

The next closely related result appears in [17].

Theorem 2.45. Let F be any field, let G be the vertex-sum at v of G1 and G2, and let Sk+1

be the star subgraph of G formed by the degree k vertex v and all of its neighbors.

(i) If rFv (G1) + rFv (G2) < 2, then

MRF (G) = MRF (G̃1) + MRF (G̃2).

(ii) If rFv (G1) + rFv (G2) > 2, then

MRF (G) = MRF (G̃1 − v) + MRF (G̃2 − v) + MRF (S̃k+1).

(iii) If rFv (G1) + rFv (G2) = 2, then

MRF (G) =
(
MRF (G̃1) + MRF (G̃2)

)
∪
(
MRF (G̃1 − v) + MRF (G̃2 − v) + MRF (S̃k+1)

)
.

The next two results appear in [9].

Theorem 2.46. Let p be a pendant vertex of a graph G and F a field. Then rFp (G) = 0 if

and only if p is a nil vertex.

Note: The forward implication of the above theorem is Corollary 2.30.

Lemma 2.47. Let F be a field and v be a vertex of a graph G. If rFv (G) = 2, then v is

neutral in G.

The following lemma appears as Lemma 27 in [18]. We note that the lemma was stated

without reference to a field but the proof holds for any field.
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Lemma 2.48. Let F be a field and G be the vertex-sum at v of graphs G1, ..., Gn where v is

pendant in Gi for every i and rFv (G) = 1. If w ∈ V (Gi), w 6= v, then rFw(Gi) = rFw(G).

Lemma 2.49. Let F be a field and let v be a vertex of a tree T such that rFv (T ) = 2. There

exists a minimum rank K2-star cover where v is the center vertex of a star.

Proof. Since rv(T ) = 2, mr(T − v) = mr(T )− 2. It follows immediately from Theorem 2.42

that given a forest, G, there is a K2-star cover of G whose rank sum is mr(G). Thus there is

a minimum rank K2-star cover for T − v with rank sum mr(T )− 2. Adding a star centered

at v to this cover results in a minimum rank K2-star cover of T .

Lemma 2.50. Let F be a field, T be a tree, and v a vertex of T with rFv (T ) = 0. Then for

any vertex w adjacent to v, rFw(T ) = 2.

Proof. Let w be a vertex adjacent to v. By Theorem 2.42, there exists a K2-star cover C of

T with rank sum mr(T ). In C the edge vw is covered by a K2 or a star. If K2 covers vw,

then deleting v and the K2 results in a cover of T − v with rank sum at most rankT − 1,

contradicting rv(T ) = 0. Thus a star covers vw. This star is not centered at v since if so,

deleting v and the star would result in a cover of T − v with rank sum rankT − 2. Thus w is

the center of the star. Deleting w and the star centered at w gives a cover for T−w with rank

sum rankT − 2. Thus rw(T ) ≥ 2. By the remark following Definition 1.9, rw(T ) = 2.

We now give the result that classifies the vertices of trees.

Theorem 2.51. Let F be a field, and let v be a vertex of a tree T . Then

• v is a nil vertex if and only if rFv (T ) = 0.

• v is a nonzero vertex if and only if v is covered by a K2 in every minimum rank K2-star

cover of T .

• v is a neutral vertex if and only if it does not meet either of the previous two conditions.
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Proof. The third statement follows logically from the first two statements. Thus is suffices

to prove the first two statements.

Statement 1.

We first prove the forward implication. Let v be a nil vertex. If v is a pendant vertex

then by Theorem 2.46, rv(T ) = 0. Now suppose that v is a vertex of degree k > 1. Since

T is a tree, v is a cut-vertex and thus T is the vertex-sum at v of T1, T2, ..., Tk such that v

is pendant in each Ti. Since v is nil, by Lemma 2.47, rv(T ) 6= 2. By way of contradiction,

suppose that rv(T ) = 1. By Theorem 2.44, there is exactly one Ti with rv(Ti) = 1. Without

loss of generality, we let rv(T1) = 1. By Theorem 2.46, v in T1 is not nil. Let A1 ∈MR(T̃1)

where the diagonal entry of corresponding to v is nonzero. Let Ai ∈ MR(T̃i), i = 2, ..., k.

By Theorem 2.45, A1 + A2 + ... + Ak ∈ MR(T ). Furthermore, the diagonal entry of

A1 + A2 + ... + Ak corresponding to v is nonzero. Therefore v is not nil, a contradiction.

Therefore rv(T ) = 0.

We now prove the reverse implication. Let rv(T ) = 0. Thus mr(T − v) = mrT . Since v

is adjacent to exactly one vertex in each component of T − v, by Theorem 2.28, v is a nil

vertex.

Statement 2.

We prove the contrapositive of the forward implication. Assume there exists a minimum

rank K2-star cover in which v is not covered by a K2. Thus v is covered only by stars.

Let T1, T2, ..., Tk, Tk+1, ..., Tl be the elements of the cover where Ti, i = 1, 2, ..., k are the

elements that cover v. Since dominating vertices of stars and pendant vertices of stars are

nil or neutral, there exist matrices A1 ∈MR(T̃1), A2 ∈MR(T̃2), ..., Ak ∈MR(T̃k) where

in each Ai the diagonal entry corresponding to v is 0. Let Ai ∈ MR(T̃i), i = k + 1, ..., l.

Since T1, T2, ..., Tk, Tk+1, ..., Tl are the elements of a minimum rank covering of T , mr(T ) =

mr(T1)+mr(T2)+ ...+mr(Tl). Now A1+A2+ ...+Al ∈ S(T ), so by this fact and Proposition

1.11, mr(T ) ≤ rank(A1+A2+...+Al) ≤ rankA1+rankA2+...+rankAl = mr(T1)+mr(T2)+

...+mr(Tl) = mr(T ). Thus A1+A2+...+Al ∈MR(T ) and the diagonal entry corresponding
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to v is zero. Therefore v is not nonzero.

We now prove the reverse implication. Assume that v is covered by a K2 in every

minimum rank K2-star cover of T . We first show that this implies rv(T ) = 1. Suppose that

rv(T ) = 2. Taking a minimum rank cover for T − v and adding a star with dominating

vertex v gives a minimum rank cover for T where a K2 is not covering v, a contradiction.

Thus rv(G) ≤ 1. We show rv(T ) 6= 0. Taking a minimum rank cover for T and deleting v

results in a cover of T − v with rank sum at most mr(T )− 1 (since a K2 was used to cover

v). Thus rv(T ) = 1.

We next show that v has no neighbors with rank-spread 0 and exactly one neighbor

with rank-spread 1. Since rv(T ) = 1, Lemma 2.50 implies that v has no neighbors with

rank-spread 0. Let x1, x2, ..., xm be the neighbors of v. Suppose each of these vertices has

rank-spread 2. Now T is the vertex-sum at v of T1, T2, ..., Tm where v is a pendant vertex

in each Ti and where without loss of generality, Ti contains xi, i = 1, 2, ...,m. By Theorem

2.44,
∑m

i=1 rv(Ti) = 1 and mr(T ) = mr(T1) + mr(T2) + ... + mr(Tm). By Lemma 2.48,

rxi(Ti) = 2, i = 1, ...,m. By Lemma 2.49, for each Ti there is a minimum rank K2-star cover,

Ci, where xi is the center of a star. Overlapping C1,C2, ...,Cm on v results in a minimum

rank K2-star cover for T where v is not covered by a K2, a contradiction.

Therefore v has a neighbor with rank-spread 1. By a similar argument as given above,

there is a minimum rank cover of T where every rank-spread 2 vertex adjacent to v is the

dominating vertex of a star. Call this covering C . Since a K2 covers v in every minimum

rank cover of T , the K2 must cover one of the edges between v and a rank-spread 1 vertex.

Let w be the vertex adjacent to v such that K2 covers wv. Suppose that there is another

vertex x adjacent to v with rank-spread 1. If a K2 or a star centered at v covered xv in

C then deleting v from C would give a cover of T − v with rank sum at most mr(T ) − 2,

contradicting rv(T ) = 1. Therefore vx is covered by a star centered at x. Deleting x gives a

cover of T − x with rank sum mr(T )− 2, contradicting that rx(T ) = 1.

Therefore v has exactly one neighbor with rank-spread 1 and the rest of the neighbors of
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v have rank-spread 2. Without loss of generality, let x1 be the neighbor of v with rank-spread

1 and let x2, .., xm be the neighbors of v with rank-spread 2. Now T is the vertex-sum at v

of T1, T2, ..., Tm such that v is a pendant vertex in each Ti and, without loss of generality, Ti

contains xi, i = 1, 2, ...,m. By Lemma 2.48, rx1(T1) = 1 and rxi(Ti) = 2, i = 2, ...,m. We now

show that rv(T1) = 1 and rv(Ti) = 0, i = 2, ...,m. Take a minimum rank cover for T1. Since

rx1(T1) = 1, x1 cannot be a dominating vertex of a star in the cover. Thus vx1 is covered by

a K2. Deleting v results in a cover of T1 − v with rank sum mr(T1) − 1. Thus rv(T1) ≥ 1.

Since rv(T ) = 1, Lemma 2.44 implies that rv(T1) = 1 and rv(Ti) = 0, i = 2, ...,m.

Note that T1 is the vertex-sum at x1 of H and T1 − v where H is the K2 with vertex

set {v, x1}. Since rx1(H) = 1, Lemma 2.44 implies that rx1(T1 − v) = 0. Thus by Theorem

2.45, MR(T1) = MR(H̃) + MR(T̃1 − v). Since H is a K2, v is a nonzero vertex in

H. It follows that v is a nonzero vertex in T1. By Theorem 2.46, v is a nil vertex in

Ti, i = 1, ...,m. Since rv(T1) = 1 and rv(Ti) = 0, i = 2, ...,m, by Theorem 2.45, MR(T ) =

MR(T̃1) + MR(T̃2) + ...+ MR(T̃m). This equality along with the facts that v is nonzero

in T1 and nil in Ti, i = 2, ...,m imply that v is nonzero in T .

The second part of Theorem 2.51 relies on knowing every minimum rank K2-star cover

of a tree. This theorem can be restated, without considering covers, in terms that only rely

on the rank-spreads of the vertices of the tree. This is often useful since the rank-spreads of

the vertices of a tree are easily computed. The theorem is as follows:

Theorem 2.52. Let F be a field and let v be a vertex of a tree T . Then

• v is a nil vertex if and only if rFv (T ) = 0.

• v is a nonzero vertex if and only if rFv (T ) = 1 and a vertex adjacent to v has rank-spread

1.

• v is a neutral vertex if and only if rFv (T ) = 2, or rFv (T ) = 1 and no vertex adjacent to

v has rank-spread 1.
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Proof. By Theorem 2.51, it suffices to show that rv(T ) = 1 and a vertex adjacent to v has

rank-spread 1 if and only if v is covered by a K2 in every minimum rank K2-star cover of T .

Assume that rv(T ) = 1 and a vertex w adjacent to v has rank-spread 1. Let C be a

minimum rank K2-star cover of T . The edge vw is either covered by a K2 or a star centered

at v or w. If vw were covered by a star, say centered at v (without loss of generality), then

deleting v would result in a cover of T − v with rank sum mr(T ) − 2, contradicting that

rv(T ) = 1. Therefore vw must be covered by a K2. Since C was an arbitrary minimum rank

cover, v is covered by a K2 in every minimum rank K2-star cover of T .

Assume that v is covered by a K2 in every minimum rank K2-star cover of T . From the

proof of Theorem 2.51, rv(T ) = 1 and v has exactly one neighbor with rank-spread 1.

Remark. The second and third statements in Theorem 2.52 could have been written as

• v is a nonzero vertex if and only if rFv (T ) = 1 and exactly one vertex adjacent to v has

rank-spread 1.

• v is a neutral vertex if and only if rFv (T ) = 2, or rFv (T ) = 1 and every vertex adjacent

to v has rank-spread 2.

The second statement follows from the proof given above and the third follows from

Lemma 2.50 which implies that if rFv (T ) = 1 then no vertex adjacent to v has rank-spread

0.

Example 2.53. Consider the following tree T .

1

2

3

5

4

7

6 8 9 10

Using zero forcing and Theorem 2.5 it is straightforward to find the rank-spreads of each

vertex. They are listed below.
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0

0

2

1

1

0

2 1 2 1

By Theorem 2.52, vertices 1, 2 and 7 are nil vertices, vertices 4 and 5 are nonzero vertices,

and the remaining vertices are are neutral vertices.

Chapter 3. Inverse Inertia Problem

3.1 Background and Definitions

In this chapter we consider the inverse inertia problem. In certain cases, nil, nonzero, and

neutral vertices can help solve this problem. We give an example of how nil vertices help

solve this problem for a particular graph. We also give an application of minimum rank and

inertia to the planarity of graphs.

Definition 3.1. Given an n × n real symmetric matrix A, the inertia of A is the ordered

triple (π(A), ν(A), δ(A)), where π(A) is the number of positive eigenvalues of A, ν(A) is the

number of negative eigenvalues of A, and δ(A) is the multiplicity of 0 as an eigenvalue of A.

Note that π(A)+ν(A)+ δ(A) = n and π(A)+ν(A) = rank(A). Because of the first equality,

if n is known then no information is lost by just considering π(A) and ν(A). This motivates

the following definition:

Definition 3.2. Given a real symmetric matrix A, the partial inertia of A is the ordered

pair (π(A), ν(A)), written pin(A).

Definition 3.3. Given a graph G, the inertia set I(G) is the set of all possible partial

inertias of matrices in S(G). That is,

I(G) = {(r, s)| pin(A) = (r, s) for some A ∈ S(G)}
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Note that since π(A) + ν(A) = rankA, if (r, s) ∈ I(G), then mr(G) ≤ r + s ≤ n. Also

mr+(G) is the smallest integer r such that (r, 0) is in I(G). Lastly note if (r, s) ∈ I(G), then

(s, r) ∈ I(G) since if pin(A) = (r, s), then pin(−A) = (s, r).

Definition 3.4. A clique in a graph is a set of vertices which are pairwise adjacent.

Definition 3.5. A clique cover of a graph G is a cover of G consisting of only cliques. The

clique cover number of G, written cc(G), is the smallest number of cliques in a clique cover

of G.

Definition 3.6. A graph G is chordal if there are no induced cycles, Ck, where k ≥ 4.

The following is Theorem 3.6 from [19].

Theorem 3.7. Let G be a connected chordal graph on n ≥ 2 vertices. Then mr+(G) = cc(G).

The following is a part of Proposition 1.4 from [20].

Proposition 3.8 (Subadditivity). Let A,B, and C be real symmetric n × n matrices with

A+B = C. Then

π(C) ≤ π(A) + π(B) and ν(C) ≤ ν(A) + ν(B).

The following observation and example illustrates how nil vertices can help solve the

inverse inertia problem for minimum rank matrices.

Observation 3.9. If G is a connected graph with a nil vertex, (mr(G), 0) /∈ I(G).

The observation follows from the fact that if a positive semi-definite matrix has a 0 entry

on the diagonal, the entire row and column corresponding to this 0 would have to be zero,

contradicting that G is connected.

Example 3.10. Consider the following tree T .
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2

3

1 4

6

5

7

Using zero forcing and Theorem 2.4, we conclude mr(T ) = 4 and mr(T − k) = 4, k =

2, 3, 4, 6, 7. By Theorem 2.51, vertices 2, 3, 4, 6, and 7 are nil vertices. Thus given A ∈

MR(T ), A has the form

A =



0 0 a 0 0 0 0

0 0 b 0 0 0 0

a b d1 c 0 0 0

0 0 c 0 r 0 0

0 0 0 r d2 s t

0 0 0 0 s 0 0

0 0 0 0 t 0 0



, abcrst 6= 0.

Let

B =



0 0 a 0 0 0 0

0 0 b 0 0 0 0

a b d1 c 0 0 0

0 0 c 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0



and C =



0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 r 0 0

0 0 0 r d2 s t

0 0 0 0 s 0 0

0 0 0 0 t 0 0


so A = B + C. Matrices B and C both have rank 2 and are in S(S4 ∪ 3K1). Since

S4 is a chordal graph with cc(S4) = 3, by Theorem 3.7, mr+(S4) = 3. It follows that

mr+(S4∪3K1) = 3 and thus pin(B) 6= (2, 0). Therefore pin(B) = (1, 1). Similarly, pin(C) =

(1, 1). By Theorem 3.8, π(A) ≤ π(B) + π(C) = 2 and ν(A) ≤ ν(B) + ν(C) = 2. Since

π(A) + ν(A) = mr(T ) = 4, π(A) = 2 and ν(A) = 2; i.e. pin(A) = (2, 2). This proves that
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(4, 0), (3, 1), (1, 3), and (0, 4) are not in I(T ).

3.2 Application to Planarity of Graphs

Minimum rank and inertia have connections to other areas of mathematics. We illustrate

that here by proving the following theorem which shows how minimum rank and inertia

connects with the planarity of a graph. It is often difficult to directly prove a graph is

nonplanar. This theorem gives a way to prove nonplanarity for certain graphs. We first

provide a definition and a previous result we will use to prove the theorem.

Definition 3.11. Let G be a graph on n vertices. A real symmetric n × n matrix Q is

a generalized Laplacian of G if Qij < 0 when ij ∈ E(G) and Qij = 0 when i 6= j and

ij /∈ E(G). No conditions are placed on the diagonal entries of Q.

In the book, Algebraic Graph Theory [21], the following is Corollary 13.10.2.

Lemma 3.12. Let Q be a generalized Laplacian for the graph G. If G is 3-connected and

planar, then the second smallest eigenvalue λ2(G) of Q has multiplicity at most three.

We are now ready to state the theorem

Theorem 3.13. Let G be a 3-connected graph on n vertices and let b ≤ n−5. If there exists

a matrix A ∈ S(G) with pin(A) = (1, b) and all off-diagonal entries of A are positive, or

pin(A) = (b, 1) and all off-diagonal entries of A are negative, then G is nonplanar.

Proof. Let A ∈ S(G) and b ≤ n− 5. If pin(A) = (1, b) and all off-diagonal entries of A are

positive, let B = −A. If pin(A) = (b, 1) and all off-diagonal entries of A are negative, let

B = A. Note that B is a generalized Laplacian matrix of G. Since rankB ≤ n − 4, 0 is

an eigenvalue of B of multiplicity ≥ 4. Also, since pin(B) = (b, 1), 0 is the second smallest

eigenvalue of B. Thus by the contrapositive of Lemma 3.12, G is nonplanar.

The following corollary is a special case of the theorem above.
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Corollary 3.14. Let G be a 3-connected graph on n ≥ 6 vertices. Suppose there exists an

A ∈ S(G) with

• pin(A) = (1, 1).

• all off-diagonal entries of A have the same sign

Then G is nonplanar.

Example 3.15. Consider the following 3-connected graph G.

4

1

2

3

65

Let A =



0 1 0 0 1 1

1 −1 1 1 0 0

0 1 0 0 1 1

0 1 0 0 1 1

1 0 1 1 1 1

1 0 1 1 1 1


∈ S(G).

Clearly, rankA ≥ 2. Also, A only has 3 distinct rows and the last row is the sum of

the first two rows. Therefore rankA = 2. Neither A nor −A is positive semi-definite, so

pin(A) = (1, 1) (the eigenvalues of A are 3.854,−2.854, 0, 0, 0, 0). By Corollary 3.14, G is

nonplanar.

The contrapositive of Theorem 3.13 can also be useful in describing the structure of

matrices in S(G) with certain inertias. This is stated in the following corollary.

Corollary 3.16. Let G be a planar, 3-connected graph, on n vertices. Every matrix A ∈

S(G) with pin(A) = (1, b), b ≤ n − 5 has a negative off-diagonal entry. Similarly, every

matrix A ∈ S(G) with pin(A) = (b, 1), b ≤ n− 5 has a positive off-diagonal entry.

Example 3.17. Consider the following planar, 3-connected graph G.
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From [22], it is know that (1, 1) ∈ I(G). Thus by the above corollary, every matrix in S(G)

with exactly one positive eigenvalue and one negative eigenvalue must have both positive

and negative off-diagonal entries.

Chapter 4. Inverse Eigenvalue Problem

4.1 Background and Definitions

The following question is what is known as the inverse eigenvalue problem for graphs.

Problem 4.1 (The inverse eigenvalue problem). Given a graph G on n vertices and n real

numbers

λ1 ≥ λ2 ≥ ... ≥ λn

is there a matrix in S(G) with eigenvalues λ1, λ2, ..., λn?

We first provide an example, previous results, and lemmas that will be used in this

section.

Example 4.2. Consider the complete graph on 4 vertices K4 and the numbers 6, 2, 2, 2.

Is there a matrix in S(K4) having 6, 2, 2, 2 as eigenvalues? The answer is yes and we can

construct such a matrix as follows. Consider the matrix

A =



1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1


.
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Since the row sums are all 4, 4 is an eigenvalue of A. The rank of A is 1 so the other

eigenvalues are 0, 0, 0. We shift these eigenvalues by adding a multiple of the identity. Thus



3 1 1 1

1 3 1 1

1 1 3 1

1 1 1 3


is in S(K4) and has eigenvalues 6, 2, 2, 2. Similarly, given any real numbers a, b, b, b, there is

a matrix in S(K4) having these numbers as eigenvalues.

Now consider the real numbers a, a, a, a. There is no matrix in S(K4) having these as

eigenvalues. If there was such a matrix A then A − aI4 would be a rank 0 matrix (the 0

matrix) in S(K4), which is impossible.

The next two theorems are known as the interlacing theorem (see exercise 16, p. 200, in

[4]) and the Gershgorin disk theorem ([23]).

Theorem 4.3. Let A be an n× n Hermitian matrix with eigenvalues λ1 ≥ ... ≥ λn. Let B

be an n− 1× n− 1 principal submatrix of A with eigenvalues µ1 ≥ ... ≥ µn−1. Then

λ1 ≥ µ1 ≥ λ2 ≥ µ2 ≥ ... ≥ µn−1 ≥ λn.

Theorem 4.4. If A = [aij] ∈ Cn×n and

ri =
n∑

j=1,j 6=i

|aij|,

then every eigenvalue of A lies in at least one of the disks {z : |z − aii| ≤ ri}, i = 1, 2, ..., n

in the complex plane.

Furthermore, a set of m disks having no point in common with the remaining n−m disks

contains m and only m eigenvalues of A.
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The following lemma is an immediate consequence of Corollary 3.9 in [24]. We note that

mA(b) denotes the multiplicity of b as an eigenvalue of the matrix A.

Lemma 4.5. Let Sn be a star on n ≥ 2 vertices. Let λ1 ≥ λ2 ≥ ... ≥ λn. If A ∈ S(Sn) has

eigenvalues λ1, ..., λn then λ1 > λ2 and λn−1 > λn; i.e mA(λ1) = 1 and mA(λn) = 1.

Lemma 4.6. Let Sn be a star on n ≥ 2 vertices. Let b be an eigenvalue of a matrix

A ∈ S(Sn) with mA(b) = n− 2. Then bIn−1 is a principal submatrix of A where In−1 is the

n− 1× n− 1 identity matrix.

Proof. Let A ∈ S(Sn) have an eigenvalue b with mA(b) = n− 2. Then A− bIn ∈ S(Sn) and

has 0 as an eigenvalue with mA−bIn(0) = n − 2. Thus rankA − bIn = 2. Since mr(Sn) = 2,

A − bIn is a minimum rank matrix. As shown previously every pendant vertex in Sn is a

nil vertex. Thus the zero matrix of size n − 1 × n − 1 is a principal submatrix of A − bIn.

Therefore bIn−1 is a principal submatrix of A.

There have been relatively few results about the inverse eigenvalue problem. In 1986,

Boley and Golub [25] gave a constructive proof from which it follows that given any n

distinct real numbers, there is a matrix A ∈ S(Sn) with those numbers as eigenvalues. In

2002, Duarte, Johnson, and Saiago [26] completely solved the inverse eigenvalue problem for

stars. The result of Boley and Golub came from their study of an important variation of

the inverse eigenvalue problem. This problem, which we will call the λ, µ problem, has also

been of mathematical interest and is stated below.

Problem 4.7 (The λ, µ problem). Let G be a graph on n vertices and let v be a vertex of

G. Given 2n− 1 real numbers

λ1 ≥ µ1 ≥ λ2 ≥ µ2 ≥ ... ≥ λn−1 ≥ µn−1 ≥ λn

is there a matrix M in S(G) with eigenvalues

λ1, λ2, ..., λn
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such that the principal submatrix M(v) has eigenvalues

µ1, µ2, ..., µn−1?

There are physical motivations for both the inverse eigenvalue and the λ, µ problem.

Variations of the inverse eigenvalue problem have been of interest in many applications,

including control design, circuit theory, exploration and remote sensing, particle physics,

and geophysics ([25], [27]). In particular, Hald [28] shows how the λ, µ problem aids in the

study of the vibrations of a composite pendulum.

To see a mathematical motivation for the study of the λ, µ problem, as opposed to

the inverse eigenvalue problem, consider the following argument: If one is concerned about

solving the inverse eigenvalue problem only approximately, then there is a simple solution

for any graph. The theorem below shows that given a graph on n vertices and a set of n

numbers, there is a matrix corresponding to the graph with eigenvalues arbitrarily close to

these numbers. This argument does not solve the λ, µ problem approximately.

Theorem 4.8. Let ε > 0. Given a graph G on n vertices and numbers

a1 ≥ a2 ≥ ... ≥ an

there is a matrix in A ∈ S(G) with eigenvalues λ1, ..., λn such that |λi−ai| < ε, i = 1, 2, ..., n.

Proof. LetG be a graph on n vertices and let a1 ≥ a2 ≥ ... ≥ an be n real numbers. Construct

a matrix A = [aij] in S(G) as follows. Let the diagonal entries of A be a1, a2, ..., an. Choose

the off-diagonal entries so that defining ri =
∑n

i=1,i 6=j |aij|, then A ∈ S(G), (ai− ri, ai + ri)∩

(aj−rj, aj+rj) = ∅ if ai 6= aj, ri = rj if ai = aj, and ri < ε for i, j = 1, ..., n. Let λ1, λ2, ..., λn

be the eigenvalues of A. By the Gershgorin Disk Theorem, λi ∈ (ai− ri, ai + ri), i = 1, ..., n.

Hence |λi − ai| < ri < ε.

Boley and Golub [25] gave a constructive proof that given any real distinct numbers
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λ1 > µ1 > ... > µn−1 > λn, there is a matrix A ∈ S(Sn) with eigenvalues λ1, ..., λn such

that A(1) has eigenvalues µ1, ..., µn−1 (where 1 corresponds to the dominating vertex of Sn).

An interesting note is that in the proof, except for the sign of the off-diagonal entries, A is

completely determined by the distinct eigenvalues.

We now consider the opposite extreme in that we let as many of the λ’s and µ’s be equal

as possible. Given any real numbers λ1 > µ1 = λ2 = ... = λn−1 = µn−1 > λn, we give a

constructive proof that shows there is a matrix A ∈ S(Sn) with eigenvalues λ1, ..., λn such

that A(1) has eigenvalues µ1, ..., µn−1. In contrast to the distinct eigenvalue case, the matrix

is not even close to being completely determined by the eigenvalues.

Consider the matrix

A =

λ1 + λn − λ2 uT

u λ2In−1

 ∈ S(Sn)

where u is choosen so that ||u|| =
√

(λ2 − λn)(λ1 − λ2). Note that A(1) has eigenvalues

µ1, ...., µn−1 since λ2 = µi, i = 1, ..., n − 1. By Theorem 4.3, mA(λ2) ≥ n − 2. We also

know by Lemma 4.5 that the largest and smallest eigenvalues of A have multiplicity 1. Thus

mA(λ2) = n− 2.

Let a and b be the other eigenvalues of A. Since the trace of A is equal to the sum of its

eigenvalues,

a+ b+ (n− 2)λ2 = λ1 + λn − λ2 + (n− 1)λ2

so a+ b = λ1 + λn.

Furthermore, since the sum of the squares of the entries in A is equal to the sum of the

squares of the eigenvalues,

a2 + b2 + (n− 2)λ22 = (λ1 + λn − λ2)2 + 2||u||2 + (n− 1)λ22
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so a2 + b2 + nλ22 − 2λ22 =

λ21 + λ2n + λ22 + 2λ1λn − 2λ2λn − 2λ1λ2 + 2λ1λ2 − 2λ22 − 2λ1λn + 2λ2λn + nλ22 − λ22

and hence a2 + b2 = λ21 + λ2n.

Substituting λ1 + λn − b for a in the above equation, we get b2 + (−λ1 − λn)b + λ1λn = 0.

Thus b = λ1 or λn. This implies a = λn or λ1. Without loss of generality, a = λ1 and b = λn.

Note that Lemma 4.6 shows that any matrix in S(Sn) with mA(λ2) = n− 2, must have

λ2In−1 as a principal submatrix. It follows that the diagonal entries of A had to be the ones

chosen in the proof. The only other condition was the one placed on the length of u. We

conjecture that we have seen the two extremes in the amount of structure that the eigenvalues

imply upon matrices in S(Sn). The first extreme being that given λ1 > µ1 > ... > µn−1 > λn,

the matrix in S(Sn) corresponding to these numbers is determined up to the sign of the off-

diagonal entries. The second extreme being that given λ1 > µ1 = ... = µn−1 > λn, a matrix

in S(Sn) corresponding to these numbers is only determined up to the norm of a vector.

In the 1970’s both Hald [28] and Hoschstadt [29] showed that given any 2n− 1 distinct

numbers λ1 > µ1 > λ2 > µ2 > ... > λn−1 > µn−1 > λn, there is a matrix A ∈ S(Pn) having

the λ’s as eigenvalues with the µ’s being the eigenvalues of M(v) where v is a pendant vertex

of Pn. Other previous results include the following two theorems. The first follows from a

result due to Boley and Golub [25] in 1987 and the second to due to Duarte [30] in 1989.

Theorem 4.9 (Boley-Golub). Given 2n− 1 real numbers

λ1 > µ1 > λ2 > µ2 > ... > λn−1 > µn−1 > λn,

there exists an M ∈ S(Sn) with eigenvalues λ1, ..., λn such that M(1) has eigenvalues µ1, ..., µn−1,

where 1 is the label of the dominating vertex in Sn.

Theorem 4.10 (Duarte). Let T be a tree and let v be a vertex in T . Given 2n − 1 real
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numbers λ1 > µ1 > λ2 > µ2 > ... > λn−1 > µn−1 > λn, there exists an M ∈ S(T ) with

eigenvalues λ1, ..., λn such that M(v) has eigenvalues µ1, ..., µn−1.

Note that since a star is a tree, Theorem 4.9 follows from Theorem 4.10.

4.2 Some results on the λ, µ problem

The previous results we have seen pertain to specific types of graphs. The following result

is nice in that it provides necessary conditions on the relationships between the λ’s and the

µ’s for an arbitrary graph G.

Theorem 4.11. Let G be a graph on n vertices. Let

λ1 ≥ µ1 ≥ λ2 ≥ µ2 ≥ · · · ≥ λn−1 ≥ µn−1 ≥ λn (4.1)

be real numbers such that there exists an A ∈ S(G) with eigenvalues λ1, · · · , λn and such

that a principal submatrix of A has eigenvalues µ1, µ2, · · · , µn−1. Then

• A sequence of more than 2M(G) consecutive equal signs does not occur in (4.1).

• A sequence of exactly 2M(G) consecutive equal signs cannot begin after a λi; i.e. the

sequence cannot start with

λ1 = µ1 or > λi = µi = · · · for some i ∈ {1, ..., n}.

(Here exactly means the sequence of equal signs is not part of a longer sequence of equal

signs).

• A sequence of exactly 2M(G)− 1 consecutive equal signs does not occur in (4.1).

Proof. Part one: By way of contradiction suppose that a sequence of more than 2M(G)

consecutive equal signs occur in (4.1). Then 2M(G) + 2 terms in (4.1) are equal. Exactly

half of these terms are λ’s and so M(G) + 1 of the λ’s are equal. Let α be the common value

of these λ’s. Let A ∈ S(G) have eigenvalues λ1, · · · , λn such that a principal submatrix
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of A has eigenvalues µ1, · · · , µn−1. Then A − αI ∈ S(G) and has 0 as an eigenvalue with

multiplicity M(G) + 1. Thus

M(G) ≥ nullity (A− αI) = M(G) + 1

a contradiction.

Part two: By way of contradiction suppose that a sequence of exactly 2M(G) equal signs

begin after λi. Then 2M(G) + 1 terms in (4.1) are equal. In particular, since the equal signs

begin after λi, M(G) + 1 of the λ’s are equal. The rest of the proof is the same as given for

part one.

Part three: By way of contradiction suppose that a sequence of exactly 2M(G) − 1

consecutive equal signs occur in (4.1). Then 2M(G) terms in (4.1) are equal. In particular

M(G) of the λ’s are equal and M(G) of the µ’s are equal. As seen in part one, shifting the

matrix A by −αI where α is the value of these equivalent λ’s and µ’s produces a matrix

B ∈ S(G) with 0 as an eigenvalue of multiplicity M(G) and where exactly M(G) of the

µ’s are 0. Thus B achieves the maximum nullity (and hence minimum rank) of G. By

Proposition 2.26 any principal n − 1 × n − 1 submatrix of G has rank equal to the rank

of B or the rank of B minus 2. However, since exactly M(G) of the µ’s are 0, B has an

n−1×n−1 principal submatrix of rank (n−1)−M(G) = rank B−1, a contradiction.

4.2.1 The Graph Pn.

Theorem 4.11 is an important tool in reducing the number of strings of equalities and

inequalities relating the λ’s and the µ’s possible in the λ, µ problem. An example of two

different strings for a a graph, G, on 3 vertices is λ1 = µ1 > λ2 > µ2 > λ3 and λ1 = µ1 =

λ2 > µ2 > λ3. Strings that are “symmetric” to each other are considered equivalent. An

example of equivalent strings are λ1 = µ1 > λ2 > µ2 > λ3 and λ1 > µ1 > λ2 > µ2 = λ3.

The reason these are equivalent is if A ∈ S(G) is a matrix corresponding to the first string,

then −A ∈ S(G) is a matrix corresponding to the equivalent string. When the number of
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vertices of the graph in consideration is small, we can count the number of non-equivalent

strings by listing them. For example, for graphs on 3 vertices, the number of non-equivalent

strings is 10. For graphs with more than 3 vertices, Polya counting is an effective way to

count the number of non-equivalent strings. Using Polya counting, we find that for graphs

on 4 vertices the number of non-equivalent strings is 36 (see the proof of Theorem 4.14 for

a list of these strings).

The following proposition solves the λ, µ problem for the graph Pn where the vertex being

deleted is a pendant vertex. As mentioned in the paragraph preceding Theorem 4.9, Hald

and Hoschstadt proved the reverse implication. The forward implication is stated without

proof as Lemma 8 in [26]. It can also be deduced from Proposition 3.1 in [31] or Theorem

1 in [32]. We give a short alternate proof of the proposition using Theorem 4.10, Theorem

4.11, and the well know fact that mr(Pn) = n− 1.

Proposition 4.12. Let v be a pendant vertex of Pn. Let λ1 ≥ µ1 ≥ λ2 ≥ µ2 ≥ ... ≥

λn−1 ≥ µn−1 ≥ λn be real numbers. There is a matrix A ∈ S(Pn) such that the λi’s are the

eigenvalues of A and the µi’s are the eigenvalues of A(v) if and only if λ > µ1 > λ2 > µ2 >

... > λn−1 > µn−1 > λn.

Proof. ⇐ Since Pn is a tree, the reverse implication is given by Theorem 4.10.

⇒ Consider λ1 ≥ µ1 ≥ λ2 ≥ µ2 ≥ ... ≥ λn−1 ≥ µn−1 ≥ λn. Assume that there is a matrix

A ∈ S(Pn) such that the λi are the eigenvalues of A and the µi are the eigenvalues of A(v).

Case 1. Suppose there are two or more equality signs that occur consecutively. We note

that Theorem 4.11 could be used here, but in this case it is simpler to give a direct argument.

Since two or more equality signs occur consecutively, λi = λi+1 or µi = µi+1 for some i. If

λi = λi+1, let t = λi. The matrix A − tI is in S(Pn) and has rank n − 2. This contradicts

the fact that mr(Pn) = n− 1. If µi = µi+1, let t = µi. The matrix A(v)− tI ∈ S(Pn−1) and

has rank n− 3, contradicting that mr(Pn−1) = n− 2.

Case 2. Suppose that there is an equality sign such that the signs on either side of it are

not equalities. Since M(Pn) = 1, this contradicts Theorem 4.11.
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Therefore λ > µ1 > λ2 > µ2 > ... > λn−1 > µn−1 > λn.

We now consider the case where the vertex being deleted from Pn is not pendant. A

general solution appears to depend on n and which non-pendant vertex is being deleted.

The research group, under the direction of Dr. Barrett, consisting of Anne Lazenby, Nicole

Malloy, William Sexton, John Sinkovic, Robert Yang, and myself have solved the complete

λ, µ problem for all n for the graph Kn and the graph Sn where the vertex being deleted

in Sn is the central vertex. Thus all connected graphs with n = 3 have been done. Besides

K4 and S4, there are 4 more connected graphs on 4 vertices. Some progress has been made

by the research group on these graphs. I chose to focus on P4. Because of the symmetry

of P4, deleting either non-pendant vertex is equivalent. As mentioned above, there are 36

non-equivalent strings of equalities and inequalities relating the λ’s and the µ’s to consider

for graphs on 4 vertices. It will be seen below that Theorem 4.11 shows 34 of these strings

cannot occur. Furthermore, Duarte’s theorem applies to one of the two remaining cases. We

consider the last case in the theorem below.

Theorem 4.13. Let v be a non-pendant vertex of P4. Given

λ1 > 0 = µ1 = λ2 = µ2 > λ3 > µ3 > λ4,

there exists A ∈ S(P4) such that the λi’s are the eigenvalues of A and the µi’s are the

eigenvalues of A(v).

Proof. Suppose there exists A ∈ S(P4) such that the λi’s are the eigenvalues of A and the

µi’s are the eigenvalues of A(v). We label P4 as shown.

2 1 3 4
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Thus A is of the form A =



d1 a b 0

a d2 0 0

b 0 d3 c

0 0 c d4


where abc 6= 0. By assumption, the eigenvalues

of A(1) are 0, 0, µ3. The eigenvalues of A(1) are also d2 and the eigenvalues of

d3 c

c d4

.

This 2 × 2 matrix is in S(P2). An immediate consequence of Proposition 4.12 is that all

matrices in S(P2) have distinct eigenvalues. Thus the eigenvalues of

d3 c

c d4

 are 0, µ3 and

d2 = 0.

Furthermore, using the fact that the trace of a matrix is equal to the sum of its eigen-

values, d3 + d4 = µ3 and d1 + d3 + d4 = λ1 +λ3 +λ4. Subtracting the first equation from the

second equation gives d1 = λ1 + λ3 + λ4 − µ3. Thus

A =



λ1 + λ3 + λ4 − µ3 a b 0

a 0 0 0

b 0 d3 c

0 0 c µ3 − d3


.

Using the fact that the determinant of a matrix is equal to the product of its eigenvalues,

det

d3 c

c µ3 − d3

 = 0. Thus c2 = d3(µ3 − d3). Therefore d3(µ3 − d3) > 0; i.e. 0 > d3 > µ3.

Using the fact that the sum of the 2× 2 principal minors of A equals
∑

1≤i<j≤4 λiλj we

have

−a2+d3(λ1+λ3+λ4−µ3)−b2+(µ3−d3)(λ1+λ3+λ4−µ3)+d3(µ3−d3)−c2 = λ1λ3+λ1λ4+λ3λ4

hence a2 + b2 = µ3(λ1 + λ3 + λ4 − µ3)− λ1λ3 − λ1λ4 − λ3λ4

so a2 + b2 = (λ1 − µ3 + λ3)(µ3 − λ4)− λ1λ3. (4.2)
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Since λ1 > 0 > λ3 > µ3 > λ4, we have that (λ1− µ3 + λ3)(µ3− λ4)− λ1λ3 > 0. Thus 4.2

is the equation of a circle of radius
√

(λ1 − µ3 + λ3)(µ3 − λ4)− λ1λ3.

Similarly, the condition that results from the 3× 3 principal minors of A, and using the

fact c2 = d3(µ3 − d3), is

−d3a2−a2(µ3−d3)+d3(λ1+λ3+λ4−µ3)(µ3−d3)−d3(µ3−d3)(λ1+λ3+λ4−µ3)−b2(µ3−d3) =

λ1λ3λ4

thus − µ3a
2 + (d3 − µ3)b

2 = λ1λ3λ4

so − µ3

λ1λ3λ4
a2 +

d3 − µ3

λ1λ3λ4
b2 = 1 (4.3)

Since λ1 > 0 > λ3 > µ3 > λ4 and 0 > d3 > µ3, we have − µ3
λ1λ3λ4

> 0 and d3−µ3
λ1λ2λ4

> 0.

Thus 4.3 is the equation of an ellipse with axes of length 2
√

λ1λ3λ4
d3−µ3 and 2

√
−λ1λ3λ4

µ3
. Since

0 > d3 > µ3 we have that 2
√

λ1λ3λ4
d3−µ3 > 2

√
−λ1λ3λ4

µ3
.

Because a and b satisfy 4.2 and 4.3, there is a solution of these two equations for a and

b if and only the circle and the ellipse intersect; i.e. if and only if

√
λ1λ3λ4
d3 − µ3

≥
√

(λ1 − µ3 + λ3)(µ3 − λ4)− λ1λ3 ≥

√
−λ1λ3λ4

µ3

,

or equivalently, if and only if

λ1λ3λ4
d3 − µ3

≥ (λ1 − µ3 + λ3)(µ3 − λ4)− λ1λ3 ≥
λ1λ3λ4
−µ3

.

Since limd3→µ3
λ1λ3λ4
d3−µ3 = ∞, there exists a number d3 with 0 > d3 > µ3 such that the first

inequality holds. Thus there is a solution for a and b if and only if

(λ1 − µ3 + λ3)(µ3 − λ4)− λ1λ3 ≥
λ1λ3λ4
−µ3

,

51



or equivalently

−µ2
3λ1 + λ1λ4µ3 + µ3

3 − µ2
3λ4 − µ2

3λ3 + µ3λ3λ4 + λ1λ3µ3 − λ1λ3λ4 ≥ 0.

This holds, if and only if

(µ3 − λ4)(λ3 − µ3)(λ1 − µ3) ≥ 0.

Since λ1 > 0 > λ3 > µ3 > λ4, the above equation is always satisfied, and moreover the

inequality is strict.

Therefore there is a solution to 4.2 and 4.3 simultaneously and solving for a and b gives

the expressions up to a sign listed below. Thus given λ1 > 0 = µ1 = λ2 = µ2 > λ3 > µ3 > λ4,

let

d1 = λ1 + λ3 + λ4 − µ3

d2 = 0

d3 = x

d4 = µ3 − x

c =
√
x(µ3 − x)

b =

√
µ3(λ1 − µ3 + λ3)(µ3 − λ4)− λ1λ3µ3 + λ1λ3λ4

x

a =

√
(1− µ3

x
)(λ1 − µ3 + λ3)(µ3 − λ4)− λ1λ3 +

λ1λ3µ3 − λ1λ3λ4
x

.

The matrix



d1 a b 0

a d2 0 0

b 0 d3 c

0 0 c d4


∈ S(P4) has eigenvalues λ1, λ2, λ3, λ4 and A(1) has eigen-

values µ1, µ2, µ3.

The computer program Maple was used to verify that A has eigenvalues λ1, λ2, λ3, λ4 and

A(1) has eigenvalues µ1, µ2, µ3. An alternative way to see this is the sum of the k×k principal
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minors of A equals
∑

1≤i1<..<ik≤k λi1 ...λik , k = 1, 2, 3, 4. Thus A has eigenvalues λ1, λ2, λ3, λ4.

Similary, the sum of the k × k principal minors of A(1) equals
∑

1≤i1<...<ik≤k µi1 ...µik , k =

1, 2, 3. Thus A(1) has eigenvalues µ1, µ2, µ3.

Note that since adding cI (a multiple of the identity matrix) to any matrix shifts its

eigenvalues by c, it follows that the above result holds in the general case, λ1 > µ1 = λ2 =

µ2 > λ3 > µ3 > λ4 as well. Also the result holds for the symmetric case, λ1 > µ1 > λ2 >

µ2 = λ3 = µ3 > λ4 and the proof is similar to that of Theorem 4.13. The general case and

symmetric case are stated as part of Theorem 4.14.

The following theorem gives the complete solution to the λ, µ problem when deleting a

non-pendant vertex of P4.

Theorem 4.14. Let λ1 ≥ µ1 ≥ λ2 ≥ µ2 ≥ λ3 ≥ µ3 ≥ λ4. There exists a matrix A ∈ S(P4)

with eigenvalues λ1, λ2, λ3, λ4 such that A(v) has eigenvalues µ1, µ2, µ3 where v is a non-

pendant vertex of P4 if and only if one of the following sets of equalities/inequalities holds.

• λ1 > µ1 > λ2 > µ2 > λ3 > µ3 > λ4.

• λ1 > µ1 = λ2 = µ2 > λ3 > µ3 > λ4.

• λ1 > µ1 > λ2 > µ2 = λ3 = µ3 > λ4.
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Proof. The 36 different, non-equivalent strings of equalities/inequalities relating the λ’s and

the µ’s are:

1. = = = = = = 19. > = > = > =

2. > = = = = = 20. > = > = = >

3. = > = = = = 21. > = = > > =

4. = = > = = = 22. = > > > = =

5. > > = = = = 23. = > > = > =

6. > = > = = = 24. > > > > = =

7. > = = > = = 25. > > > = > =

8. > = = = > = 26. > > = > > =

9. > = = = = > 27. > = > > > =

10. = > > = = = 28. = > > > > =

11. = > = > = = 29. > > > = = >

12. = > = = > = 30. > > = > = >

13. = = > > = = 31. > = > > = >

14. > > > = = = 32. > > = = > >

15. > > = > = = 33. > > > > > =

16. > > = = > = 34. > > > > = >

17. > > = = = > 35. > > > = > >

18. > = > > = = 36. > > > > > >

Since mr(P4) = 4−1 = 3, M(Pn) = 1. By Theorem 4.11, it is not possible for a matrix in

S(P4) to satisfy the conditions of 1−28, 30−35. By Theorem 4.10, given the condition of 36,

there exists a matrix in S(P4) satisfying these conditions. Lastly, it follows from Theorem

4.13, that given either of the two equivalent cases corresponding to condition 29, there exists

a matrix in S(P4) satisfying this condition.
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