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ABSTRACT

Automatic Discovery and Exposition of Parallelism in Serial
Applications for Compiler-Inserted Runtime Adaptation

David Greenland
Department of Electrical and Computer Engineering

Master of Science

Compiler-Inserted Runtime Adaptation (CIRA) is a compilation and runtime adaptation
strategy which has great potential for increasing performance in multicore systems. In this strategy,
the compiler inserts directives into the application which will adapt the application at runtime. Its
ability to overcome the obstacles of architectural and environmental diversity coupled with its
flexibility to work with many programming languages and styles of applications make it a very
powerful tool. However, it is not complete. In fact, there are many pieces still needed to accomplish
these lofty goals.

This work describes the automatic discovery of parallelism inherent in an application and
the generation of an intermediate representation to expose that parallelism. This work shows on six
benchmark applications that a significant amount of parallelism which was not initially apparent
can be automatically discovered. This work also shows that the parallelism can then be exposed in
a representation which is also automatically generated. This is accomplished by a series of analysis
and transformation passes with only minimal programmer-inserted directives. This series of passes
forms a necessary part of the CIRA toolchain called the concurrency compiler. This concurrency
compiler proves that a representation with exposed parallelism and locality can be generated by a
compiler. It also lays the groundwork for future, more powerful concurrency compilers.

This work also describes the extension of the intermediate representation to support hierar-
chy, a prerequisite characteristic to the creation of the concurrency compiler. This extension makes
it capable of representing many more applications in a much more effective way. This extension
to support hierarchy allows much more of the parallelism discovered by the concurrency compiler
to be stored in the representation.

Keywords: Compiler-Inserted Runtime Adaptation, CIRA, concurrency compiler, hierarchy, task
descriptor, relationship descriptor
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Chapter 1

Introduction

For many years, computer performance has risen steadily. These performance improve-

ments have become so commonplace that consumers, as well as developers, have come to expect

newer computers to significantly outperform older ones. This performance increase has mostly

been due to the steady increase in processor clock frequency. Unfortunately, this steady increase

in clock frequency has slowed considerably causing developers to search for other methods to

increase performance.

One popular method to increase performance without increasing clock frequency is to put

multiple processing cores on a single chip. Unfortunately, as more and more cores are placed on

a single chip, performance has not risen as expected. Some of the challenges to achieving better

performance from multicore processors are the factors in play that are unknown during application

development [1]. These factors include architectural details of the system, operating environment

of the system, and parallelism which may not be apparent due to irregular data access patterns [2].

Perhaps the most evident solution to these challenges would be to change the style of pro-

gramming. This would include changing programming languages. Many new parallel languages

and models as well as extensions to existing languages have been developed [3, 4, 5, 6, 7, 8]. Be-

cause few programmers know how to use these new languages, a second piece to this solution is to

teach programmers how to use them. To be proficient in these new languages, programmers would

not only have to learn the new constructs and syntax of a new language but also learn to think in

a parallel way. They would have to think about data dependences and determine which pieces of

their program can be run in parallel. This is an enormous task.

Instead, perhaps a better solution would be to take a sequential program, or perhaps a

mostly sequential program that only has a few extra directives inserted into it, and then parallelize

it. This solution would remove the burden of determining parallelism from the programmers and
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places it on the parallelization tools. The problem now becomes developing tools that can effec-

tively parallelize sequential programs.

1.1 Compiler-Inserted Runtime Adaptation (CIRA)

Effective parallelization tools need to handle the issues with diversity that plague the mul-

ticore world. There are two classes of diversity that must be addressed:

Architectural diversity Multicore processors increase the dimensions along which processor and

system architectures can vary. The obvious dimensions will include the number of cores,

the complexity of cores, memory hierarchies, and presence of specialized cores. Additional

dimensions include the presence or absence of specialized architecture features such as trans-

actional memory or inter-core communication queues. Heterogeneity of cores will also be

very likely [9]. Heterogeneity will be further caused by increasing transistor variability as

feature sizes shrink; different cores with the same design will attain to different frequencies

on the same die.

Environmental diversity In the past, significantly parallel applications have typically run in an

environment in which the resources available, such as the number of cores, were fixed at

compile time or at program initialization. As a result, programmers have generally worried

about variation in resources only at a very coarse-grained level and only for some appli-

cations. However, more widespread use of parallelism in multicore systems will result in

multiple parallel applications running simultaneously; the operating system will wish to al-

locate resources dynamically between applications as system load changes. Thus there will

be much run-to-run diversity in the environment as well as within-run diversity.

The key to solving the diversity problem is adaptation. The application must adapt to the

architecture and environment in order to run most efficiently. Unfortunately, this adaptation cannot

be carried out at development or compile time because neither the architecture nor the environment

are known at those times. Applications will be run on more than just one architecture. Even if

the application could be adapted to the system it is running on, different runs at different times

will have different resources available because of the environmental diversity. The application

not only has to be adapted to the architecture it will run on, it must also be adapted at runtime
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to the resources available. Developing an adaptive application greatly increases the difficulty of

writing a parallel application by forcing the programmer to deal with deep performance issues of

cache hierarchy, locality, load balancing, and concurrency. Compiler-Inserted Runtime Adaptation

(CIRA) seeks to free programmers from the need to concern themselves with these performance

issues.

CIRA is a philosophy that addresses both types of diversity. How the application needs to

be adapted is not known at compile time, but the steps needed at runtime to determine how to adapt

the application can be known at compile time. The CIRA philosophy uses adaptation directives

specifying what decisions need to be made at runtime and how to make those decisions in order to

adapt most effectively. At runtime these directives are able to adapt the program according to the

architecture and the environment. Hence the name Compiler-Inserted Runtime Adaptation. This

philosophy will free the programmers from worrying about diversity and allow them to focus on

creating correct and efficient programs. It also allows a wide range of programs to use multicore

processors to achieve performance improvement.

CIRA works by converting the existing program into a representation that exposes the par-

allelism inherent in the program. This is called an exposed parallelism and locality (EPL) repre-

sentation [10, 11]. This step is accomplished by a concurrency compiler. This EPL representation

of the program is then adapted to the system it is running on to further take advantage of avail-

able parallelism. This step is accomplished by an adaptation compiler. CIRA, including the EPL

representation, will be described in detail in chapter 3.

1.2 Contributions

1.2.1 Concurrency Compiler

The very first step in the CIRA toolchain is the conversion of the application into the EPL

representation. Every other step in the toolchain relies on a correct EPL representation of the

application, so this step must happen first. This conversion must be accomplished with minimal

help from the programmer. As concurrency compilers are developed to support more styles of

programs, CIRA becomes a more powerful tool. Concurrency compilers can also be optimized

to make a more efficient EPL representation. Before any of these optimizations, extensions, and
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additions can be developed, we must show that the EPL representation can be generated automati-

cally.

The main contribution of this work is demonstrating the automatic discovery of the paral-

lelism in an application and the generation of the EPL representation to expose that parallelism.

This is demonstrated by the creation of the first concurrency compiler. This first concurrency com-

piler includes analyses that discover the parallelism inherent in an application and transforms that

convert it into the EPL representation. Though this is a rather simple concurrency compiler and will

eventually need optimizations, extensions, and additions as mentioned previously, it shows that the

concept works. It shows that parallelism in a serial application can be automatically discovered

and exposed with only minimal help from the programmer. Many of these analyses and transforms

developed for this first concurrency compiler will be necessary for all future concurrency compil-

ers. Therefore, this work is not only a proof of concept, but it also lays the groundwork for all

future concurrency compilers.

1.2.2 Hierarchy

A secondary contribution of this work is the extension of the EPL representation to support

hierarchy. The inability to support hierarchy severely restricted the set of applications the EPL

representation could represent effectively. With hierarchy support, the EPL representation is very

powerful and can support most applications in a much more effective way. Hierarchy allows much

more parallelism and locality to be expressed. It also allows more of the parallelism discovered

by the concurrency compiler to be effectively stored. Extending the EPL representation to support

hierarchy was a needed prerequisite to developing a concurrency compiler.

1.3 Outline

The remainder of this thesis is organized as follows. Chapter 2 presents work done on dis-

covering parallelism in sequential applications. It covers many parallel programming languages

and models. Chapter 3 describes background information needed to understand this work. This

includes more details on each step in the CIRA toolchain as well as a detailed description of the

EPL representation. Chapter 4 describes the prerequisite contribution of extending the EPL repre-

sentation to support hierarchy. Chapter 5 contains the details of developing the first concurrency

4



compiler proving that parallelism inherent in an application can be automatically discovered and

exposed. This includes a description of analyses and transforms used in this concurrency com-

piler which lay a foundation for the development of additional concurrency compiler in the future.

Chapter 6 presents experimental data for six benchmark programs. In addition to showing that the

programs run successfully through the CIRA toolchain, the data also shows code size of the gener-

ated EPL representation, concurrency compilation time, and other metrics that can all be improved

through optimization of future concurrency compilers. Chapter 7 summarizes the accomplishments

of this thesis.
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Chapter 2

Related Work

The increasing need to parallelize sequential applications has prompted research in auto-

matic discovery of parallelism. This chapter briefly describes some of the more prevalent methods.

Understanding other methods of automatic discovery of parallelism will aid in understanding the

unique strengths of this work.

2.1 Compile Time Techniques

Many parallel programming languages have demonstrated how useful programmer-inserted

high-level language constructs can be during discovery. For example, a DOALL construct typi-

cally implies that the programmer has guaranteed that the loop iterations can run in parallel on

all possible executions of the program. Parallel programming languages can further simplify dis-

covery by using constructs which explicitly state concurrency and locality information. Some of

the more common parallel programming languages and models include [3, 4, 5, 6, 7, 8]. Due to

the large amount of information available in high-level constructs most of the previous work on

automatic discovery of parallelism uses these type of constructs and focuses on either loops and

arrays [12, 13] or control-flow structures [14].

Other methods used in discovery of parallelism include using a message-driven program-

ming model. The CHARM++ [8] programming language uses this programming model and in-

cludes a notion of actors as well as task priorities and dynamic scheduling. CHARM++ attempts to

load balance without considering locality. Another approach is to use a library to aid in discovery

of parallelism.

Another method is to develop an extension to a sequential programming language. pC++ [6,

7] is an object-parallel extension to C++ which provides the user with data structures that are dis-

tributed across multiple processors. These data structures are called distributed aggregates.
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Many compiler tools have also been developed to work on specific parallel programming

languages, programming models, or extensions to sequential programming languages. These com-

piler tools generally use analysis of data accesses. The often focus on parallelizing loops or con-

structing a task-based representation of the application.

The ParaScope compiler tool suite has a special representation for inter-procedural side-

effect analysis using Regular Section Descriptors (RSDs) [15]. Coarse-granularity parallelism can

be found by determining that code sections are independent of others, especially code that operates

on an array. The compiler separates code sections for execution when it can prove that different

code blocks or iterations of a loop operate on independent sections of an array. ParaScope works

on FORTRAN input and creates parallelism by transforming sequential DO loops into parallel DO

loops.

ParaScope approaches proving independence through regular sections: an analysis of the

access patterns across an array. A regular section is a commonly used access pattern over a portion

(section) of an array, such as a column or row. A regular section defines a set of actual data ac-

cesses. Two refinements of the RSD are the Data Access Descriptor (DAD) [16] and the Processor

Tagged Descriptor (PTD) [17]. The main contribution of the DAD is the simple section which is

a simple boundary around the accessed portion of an array. The PTD more precisely defines that

bounded area of the array which allows for more complex shapes for describing irregular accesses.

A different approach is used in Pilar’s internal representation, Communication Pattern In-

ternal Representation (CPIR) [18, 19]. The Pilar compiler uses three basic constructs to represent

data access patterns: intervals, enumerations and cyclics. Intervals, like the descriptors previously

described, are a set of bounds on the index ranges for data access. Enumerations allow for com-

pletely irregular access patterns and are simply a list of all individual accesses. Cyclics provide a

specific access pattern and allow for a smaller memory footprint and faster set operations.

An access schedule, which is the ordering of element access within the construct, is also

created in addition to the data pattern. This schedule is then used to better analyze the relationships

between different patterns. Since CPIR is a message-passing system, the schedule consists of the

sequence of messages to communicate CPIR primitives, which are then translated to the actual

local addresses. Pilar has the ability to describe very regular and irregular systems and some
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capability to describe simple patterns when necessary. The pattern is limited to simple, strided

array accesses, which results in lower overhead for those applications that it describes well.

The Polaris compiler’s Internal Representation (IR) [20] has a 1-1 relationship with basic

FORTRAN constructs using a high-level format. Expressions, statements, and symbol tables are

basic classes. Parallel loops, after appropriate analysis, become doall loops, where each iteration

may be executed in parallel. Variables may be declared as private to the loop.

Polaris is similar to the OpenMP [21] standard. OpenMP is a set of compiler directives

for C and FORTRAN programs, including automatic partitioning of loops and parallel sections

to processors, synchronization through barriers, etc. The parallelism described by OpenMP is

explicit, specifying which variables are private and which loops may be executed in parallel.

The Stanford University Intermediate Format (SUIF) compiler [22, 23] is an extensive

project to increase the ability of compilers to automatically extract parallelism from existing bench-

marks. Internally, programs are represented on a relatively high level using loops, conditional state-

ments, and array accesses, as well as the more common low-level information used by a compiler.

High-level information is in a canonical form for the compiler passes to use. After the high-level

passes have completed, the high-level information is transformed into lower-level instructions.

2.2 Runtime Techniques

A major limitation of many of the current approaches is that they require all discovery to

take place at compile time. If the compiler cannot prove that all possible runs of the application

will exhibit concurrency, it must conclude that the work cannot be performed in parallel. This

limitation could cause much of the parallelism to be lost. Even runtime loop-level parallelization

techniques such as [24, 25] have this limitation.

One exception to this limitation is the inspector-executor model of parallel execution [26].

This model uses a two-stage method to discover parallelism and run the application using the

parallelism discovered. The first stage, the inspector, examines the application’s data dependences

between loop iterations at runtime. The second stage, the executor, then schedules loop iterations

based upon those data dependences. The use of a runtime inspector relieves the compiler from

having to prove everything about concurrency at compile time.
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Other methods useful in discovering some parallelism at runtime are called speculative par-

allelization techniques [27]. These techniques discover parallelism at runtime for the sole purpose

of detecting mis-speculation. One such technique is called speculative thread-level parallelism. In

instances where parallelism cannot be proved at compile time, it speculatively assumes the work

can be performed in parallel. A correct state must be stored for recovery when the assumption is in-

correct. It then discovers at runtime if the assumed parallelism actually exists and either continues

or recovers to the correct state.

KELP [4, 5] is a C++ library designed to simplify the specification of data-parallel oper-

ations on irregular block-wise data layouts for message-passing architectures. KELP succeeds in

representing regular applications and some irregular applications, although irregularity must be

described in blocks. Some very irregular programs see a high overhead from the block-wise de-

composition. In addition, KELP is a strictly runtime-only environment, eliminating compile-time

analysis of the representation.

Another runtime-only method for discovering and exposing parallelism was proposed by

Johnson in [28] and uses a task graph representation. The tasks are assigned states which specify

whether or not they are ready to run, currently running, or finished. As tasks become available

they are processed by threads. A task structure handles dynamic creation and execution of tasks.

Use of this task graph requires good heuristics appropriate to the problem in order to properly and

efficiently execute tasks. The nature of this task graph makes both regular and irregular applications

easy to represent. Communication costs and dependencies are represented as part of the task graph.

Because the tasks are dynamically assigned at runtime, the execution overhead can be very large,

especially for fine-grained applications.

The Hierarchical Task Graph (HTG) [29] was made as part of the autoscheduling project

headed by Polychronopoulos. The HTG describes a task graph in a hierarchical manner by com-

bining loops into a single node. These nodes may be further collapsed to change the granularity

of the task graph. The edges in the graph represent the communication cost and dependencies

between tasks. The overall preconditions necessary to execute a task are represented by a set of

execution tags. Redundant tags may be optimized for run-time efficiency. While the HTG allows

for some static analysis at compile time, its focus is on the dynamic runtime scheduling of tasks.
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2.3 Summary

Many languages and tools have been developed to discover and expose parallelism in ap-

plications. The majority of these focus only on compile time analysis. Much of the parallelism

in many applications cannot be proven at compile time, so these methods cannot discover a large

amount of possible parallelism. Other methods focus only on runtime discovery which introduces

a large amount of overhead during execution. Only a handful of tools use both static compile

time analysis and dynamic runtime analysis to both discover more parallelism and keep execution

overhead low. This work expands on these methods.
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Chapter 3

Background

This chapter presents the background information necessary to understand the contributions

of this work. This information includes the CIRA philosophy and the LLVM compiler framework

which is used extensively in this work.

3.1 Compiler-Inserted Runtime Adaptation (CIRA)

The basic concepts that make up CIRA were originally introduced by Penry in [10], and

the entire CIRA philosophy was later presented in his CAREER proposal to the National Science

Foundation. The goal of CIRA is to free programmers from having to deal with architectural and

environmental diversity. This goal is accomplished through pioneering new compilation and run-

time adaptation strategies in which the compiler adds adaptation to an application. This approach

enables software developers to ship parallel applications which provide excellent performance to

the end user, despite the presence of diversity. As a result, multicore processor systems will be

able to meet users’ increased performance expectations and will justify continued development of

further generations of microprocessors.

Figure 3.1 provides a block diagram of a CIRA-based application development and deploy-

ment flow. The flow begins with the developer creating an application in a programming language

and model of his or her choice. It is unlikely that a single programming model or language will

prove to be compellingly superior to all others; therefore, CIRA will include support for a wide

variety of languages supporting a wide variety of programming models, from general-purpose lan-

guages to data-parallel languages to domain-specific languages.

Next, a concurrency compiler translates from the high-level language to a common inter-

mediate representation of the application called an exposed parallelism and locality (abbreviated

11
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Figure 3.1: Compiler-Inserted Runtime Adaptation (CIRA)

as EPL) representation. The roles and challenges for the concurrency compiler are described in

section 3.1.1. The EPL representation will be described in detail in section 3.1.2.

Next, an adaptation compiler analyzes the EPL representation, chooses an adaptation strat-

egy to use, and inserts code to perform runtime adaptation into the application. The roles and

challenges for the adaptation compiler are described in section 3.1.3.

Finally, at execution time the application adapts to the architecture and environment. This

adaptation takes into account the number of available cores, the mix of cores, cache hierarchy, and

on-chip communication networks.

3.1.1 Concurrency Compiler

The concurrency compiler translates from the high-level language to the EPL representa-

tion. One of the main difficulties in exploiting parallelism in applications is that the parallelism

is not evident. Some programming languages make it easier by using annotations or special types

describing the parallelism [6,8,21,30,31], but most do not. The parallelism needs to be discovered.

A concurrency compiler discovers the parallelism in an application and makes that parallelism ev-

ident by transforming the application into an intermediate representation which explicitly shows

the parallelism.

Discovery of parallelism and locality involves determining the units of work (tasks) in an

application that could potentially be executed in parallel, the runtime conditions under which they

actually can be executed in parallel, additional ordering relationships between tasks that cannot

be executed in parallel, and what data is shared between the tasks. Tasks can have various granu-

larities; function invocations, loop iterations, or even finer-granularity elements could be potential

tasks. Because the EPL representation is a form of task graph consisting of task descriptors and re-

12



lationship descriptors, which can be instantiated into tasks and relationships, the basic function of

the concurrency compiler’s analyses is determining how to break the code up into task descriptors

and relationship descriptors.

Eventually there could be a concurrency compiler for each supported programming lan-

guage. Each concurrency compiler will be able to find any user annotations describing parallelism

as well as perform analyses on the application to discover more parallelism. User annotation will be

different or even non-existent depending on which programming language the application is writ-

ten in. The analyses may need to be different depending on the programming language. Though the

concepts employed by the analyses may be very similar, the differences in the language semantics

and structure may necessitate separate concurrency compilers.

The main contribution of this work is the development of the first concurrency compiler.

This concurrency compiler is for the C and C++ programming languages. The only user annota-

tions required are to state which sections of code should be parallelized. This concurrency compiler

is designed to be very flexible with these annotations so that an application could even just have an-

notations specifying that the whole application needs to be parallelized. Since there is a significant

amount of overhead to the parallelization, a more practical method for annotating an application

would be to determine which parts of the code would improve performance most by parallelization

and just place the annotations around those parts. Many analyses in determining task descriptors,

task instantiation functions, relationship descriptors, and relationship instantiation functions have

been developed. These analyses lay the foundation for creating more effective, efficient, and com-

plete analyses in the future. They also lay the foundation for creating similar analyses for other

programming languages. This contribution is described in detail in chapter 5.

3.1.2 Exposed Parallelism and Locality (EPL) Representation

The parallelism that the concurrency compiler discovers must be available for the adapta-

tion compiler to use. This necessitates an intermediate representation for that parallelism. It is

important that this representation includes all parallelism and locality information discovered by

the concurrency compiler and that this information is exposed for the adaptation compiler to use it.

This representation should be easily generated from common programming models. It should also

be capable of representing not just parallelism and locality which can be proven at compile time,
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f o r ( i n t i = 2 ; i < 8 ; ++ i ) {
A[ i ] = A[ i −2] + 1 ;
}

Figure 3.2: A simple loop.

but also the runtime conditions under which parallelism or locality might exist. We call this repre-

sentation an exposed parallelism and locality (EPL) representation which was originally presented

in [11] and [10].

The EPL representation is a connecting piece in the CIRA flow. Many concurrency com-

pilers could be developed for many different programming languages. There will also be many

adaptation strategies developed for the adaptation compiler. The EPL representation is generic

to programming language and adaptation strategy. It can represent any programming language a

concurrency compiler is developed for. This trait means the adaptation compiler never needs to

change based on which concurrency compiler was used.

Both of the contributions of this work are very closely linked with this representation. The

main contribution, the development of the first concurrency compiler, transforms an application

into the EPL representation. The secondary contribution, the extension of the EPL representation

to support hierarchy, is a direct extension of this representation. To understand the details of each

of these contributions, the EPL representation must be described in detail.

The EPL representation is a form of task graph but is more powerful. A task graph is a way

to represent an application as a collection of tasks and relationships. In a task graph the nodes in the

graph represent the tasks. Tasks can be large pieces of the application including entire functions

or even more, or they can be much smaller, perhaps only a few instructions. The edges in the

graph represent the relationships between the tasks. An edge between two tasks would mean that

there exists a relationship between the tasks. Often this could be a dependence relationship stating

that one task must be executed before the other task. Ordering, exclusive, sharing, and nearness

relationships further specify task ordering to improve performance. Tasks can be scheduled to

be executed in a correct and efficient order by observing the relationships in the graph. To aid in

understanding the EPL representation we will use a simple loop, shown in figure 3.2 as an example.

Figure 3.3 shows the task graph for the loop.
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Figure 3.3: The task graph for the simple loop.

TB:taskBody

IF:taskInst

IF:relInst

Figure 3.4: The task descriptor graph for the simple loop.

The EPL representation can more efficiently depict the application structure than a task

graph because of its use of task and relationship descriptors to form a task descriptor graph. Task

descriptors describe a similar group of tasks. Similarly, relationship descriptors describe a similar

group of relationships. Using descriptors makes the representation much more concise. When

needed, the task and relationship descriptors can still be expanded into individual tasks and re-

lationships called instances. This expansion is called instantiation. We anticipate that for many

adaptation strategies, the tasks will not need to be instantiated. The descriptors themselves will

hold sufficient information, so instantiating the individual instances would only add overhead. A

task descriptor graph is a graph with task descriptors as nodes and relationship descriptors as edges.

Figure 3.4 shows the task descriptor graph for the loop example.

Functional Representation Another powerful characteristic of the EPL representation is that it

is a functional representation. A functional representation is powerful for many reasons.

• It can describe any possible pattern of relationships. Functions are completely general, and

therefore, have no restrictions on what they can describe.

• A functional representation is not static. It changes with parameters that are passed to the

functions. This trait is necessary for runtime adaptation.
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t a skBody ( i n t ∗&A, i n t i ) {
A[ i ] = A[ i −2] + 1 ;

}

Figure 3.5: The task body function.

t a s k I n s t ( i n t ∗&A) {
f o r ( i n t i = 2 ; i < 8 ; ++ i ){

i n t name [ 1 ] = { i } ;
c r e a t e t a s k ( name , COST, i ) ;

}
}

Figure 3.6: The task instantiation function.

• Functions are easily generated from a program which is already made of functions. Code

from the program can easily be pulled into functions that make up the representation.

• Functions give exact results. Decisions regarding adaptation are much easier when based on

exact results.

• Functions can be optimized. Compilers have many optimization strategies that are made to

run on functions.

All pieces of the representation are either functions or calls to functions. For example, task

descriptors are represented as calls to the TASKDESC function. Each task descriptor points to a task

body function which is the code the task must run. The task body function for the previous example

is shown in figure 3.5. The task descriptors also each point to a task instantiation function, shown

in figure 3.6, which is the code for instantiating the individual task instances. Similarly relationship

descriptors are represented as a call to the RELDESC function. Each relationship descriptor points

to a relationship instantiation function, shown in figure 3.7, which is the code for instantiating the

individual relationship instances. Each of these calls and functions will be described in more detail

later.

Using functions to describe the task descriptors allows us to pass information via arguments

to the function. Information passed to the functions varies in scope. Varying levels of scope helps
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r e l I n s t ( i n t ∗&A, i n t i1 , i n t i 2 ) {
i f (&A[ i 1 ] == &A[ i2 −2]){

i n t name1 [ 1 ] = { i 1 } ;
i n t name2 [ 1 ] = { i 2 } ;
c r e a t e r e l ( name1 , 0 , name2 , 0 , RAW, oneToTwo , NULL, COST ) ;

}
}

Figure 3.7: The relationship instantiation function.

organize the information and also increases performance by keeping information closer to where

it will be needed. The variables holding information can be categorized into four types based on

scope.

• Descriptor time variables hold information that is defined at the time the task descriptor is

created. These variables exist in the context of the task descriptor. All task instances within

the task descriptor have access to these variables. Descriptor time variables are passed into

the task instantiation and task body functions. Of the four types of variables defined in the

EPL representation, descriptor time variables have the widest scope.

• Parent variables hold information that is defined when a parent task instance is instantiated.

These variables are passed down to all subtask instances but no other task instances have

access to these variables. Parent variables have a more narrow scope. They are a part of the

extension for hierarchy and will be described in detail in chapter 4.

• Instantiation time variables hold information that is defined when a task instance is instan-

tiated. They are passed into the body function. These variables are not passed down to any

subtask instances. They only exist within the context of the task instance. Instantiation time

variables have an even more narrow scope.

• In and out variables are also defined within the context of a task instance. They are used to

specify information that is passed along relationships. These variables are the most narrow

in scope. Though the EPL representation works without these variables, they can drastically

improve performance by localizing information. By passing information along a relationship
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via in and out variables, the representation can avoid continually accessing descriptor time

variables which may no longer be stored in the cache. This can avoid costly cache misses.

A functional representation is very powerful because it can represent any pattern of task

or relationship instantiation. It can represent potential relationships with the exact code that will

resolve to form them at runtime. This ability is very important because not all tasks or relation-

ships can always be known at compile time. For example, a loop may have a variable number of

iterations. If each iteration is a task, we cannot know how many there will be until we know the

value of that variable at runtime. We also cannot know which iterations, or tasks, have relation-

ships between them until we know the details of each iteration at runtime. The task instantiation

function contains the code to determine the correct number of tasks at runtime. Similarly, the re-

lationship instantiation function contains the code that, when executed at runtime, determines the

relationships.

A final advantage of the functional representation is the ease of optimizing as well as an-

alyzing the tasks and relationships contained in the representation. In a world driven by perfor-

mance, optimization is of utmost importance. The ability to analyze is perhaps more important in

CIRA. The adaptation compiler needs to determine which adaptation strategy to use. The correct

adaptation strategy can only be determined by analyzing the representation.

Multi-relational Representation The EPL representation is also multi-relational, meaning it

supports many different kinds of relationships. The most evident kind of relationship is a data

dependence relationship. All forms of data dependences are supported including true data depen-

dences, anti-dependences, and output dependences. The EPL representation also supports exclu-

sive relationships which specify that the tasks cannot be run concurrently but can be run in any

order. Specific ordering relationships are also part of the EPL representation.

Another very important relationship the EPL representation supports is the locality, or data-

nearness, relationship. With the emergence of multicore processors, reducing cache misses has

become a major concern. Relationships describing which tasks access nearby memory locations

can help reduce cache misses and improve performance.
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vo id p a r a l l e l s e c t i o n ( i n t ∗ A){
s t a t i c t a s k t o k e n t 1 ;
t a s k d e s c ( t1 , NULL, 0 , LOOP, t a s k I n s t , taskBody , 0 , 1 , 1 , 1 , A ) ;
r e l d e s c ( t1 , t1 , r e l I n s t ) ;

}

Figure 3.8: The parallel section function.

Implementation The EPL representation is implemented as a set of functions for the reasons

mentioned previously. These functions, called parallel section functions, contain calls to the

TASKDESC and RELDESC functions. The TASKDESC and RELDESC functions do not need function

bodies. The function calls contain all the needed information to define the task descriptors and re-

lationship descriptors including pointers to the instantiation and body functions. Figure 3.8 shows

the parallel section function for the example in the previous figures.

The operands to the call to TASKDESC, which contain all needed information for the task

descriptor, are described in table 3.1. The first operand is an id that is unique for each task descrip-

tor. The second operand is the id of the parent task descriptor or null if there is no parent. The

third operand is the hierarchical depth. The parent and depth operands are part of the hierarchy

extension and are described in more detail in chapter 4. The fourth operand is the kind of task

such as loop or block. The fifth operand is a pointer to the task instantiation function. The sixth

operand is a pointer to the task body function. The next four operands are the numbers of parent,

instantiation time, in, and out variables an instance of the task descriptor would have. The final

operands, of which there can be a variable amount, are the descriptor time variables.

The call to RELDESC is much simpler. The operands to this call are described in table 3.2.

The first operand is the id for the first task descriptor. The second operand is the id for the second

task descriptor. This relationship descriptor describes relationships between tasks from those two

task descriptors. The last operand is a pointer to the relationship instantiation function. The rela-

tionship instantiation function has access to the descriptor time variables from each task descriptor,

and therefore, does not need any variables from the relationship descriptor. For this reason, no ad-

ditional variables are passed to the call to RELDESC.

The task body and task instantiation functions must also be defined in the EPL represen-

tation. The task body function for a task descriptor is the code that must be executed for each
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Table 3.1: Operands to the TASKDESC call.

Operand Description
ID Unique identifier for the task descriptor
Parent ID ID of the parent task descriptor
Depth Level of hierarchy
Type Type of task (loop, block, etc.)
Instantiation Function Pointer to the instantiation function
Body Function Pointer to the body function
Parent Variables The number of parent variables, not the actual variables
Instantiation Time Variables The number of instantiation time variables, not the actual variables
In Variables The number of in variables, not the actual variables
Out Variables The number of out variables, not the actual variables
Descriptor Time Variables The actual descriptor time variables

Table 3.2: Operands to the RELDESC call.

Operand Description
ID1 Unique identifier for the first task descriptor
ID2 Unique identifier for the second task descriptor
Instantiation Function Pointer to the instantiation function

task that gets instantiated. The arguments to the task body function, described in table 3.3, are the

descriptor time variables, parent variables, and instantiation time variables. The task instantiation

function describes how the tasks are instantiated. The arguments to the task instantiation function,

described in table 3.4, are the name vector, parent variables and descriptor time variables. The

name vector and parent variables are part of the hierarchy extension and will be described in detail

in chapter 4. Tasks are instantiated by calling CREATETASK. The call to CREATETASK, described

in table 3.5, has as operands the task name, the cost associated with the task, and the list of parent

and instantiation time variables that are passed to the body function.

Table 3.3: Arguments to the task body function.

Argument Description
Descriptor Time Variables The actual descriptor time variables
Parent Variables The actual parent variables
Instantiation Time Variables The actual instantiation time variables

20



Table 3.4: Arguments to the task instantiation function.

Argument Description
Name Vector The name vector received from the parent task
Parent Variables The variables received from the parent task
Descriptor Time Variables The actual descriptor time variables

Table 3.5: Operands to the CREATETASK call.

Operand Description
Name The name vector which was just created for this task instance
Cost The cost associated with this task
Parent Variables The actual parent variables
Instantiation Time Variables The actual instantiation time variables

The last function defined in the EPL representation is the relationship instantiation function.

The arguments to this function, described in table 3.6, are an instance iterator and the descriptor

time variables for each task descriptor. This function describes how the relationships are instanti-

ated. The relationships are instantiated by calling CREATEREL. The call to CREATEREL, described

in table 3.7, has as operands the name and port number for the first instance, the name and port

number for the second instance, the type of relationship, the direction of the relationship, a data

pointer if necessary, and the communication cost.

3.1.3 Adaptation Compiler

The adaptation compiler analyzes the EPL representation, chooses an adaptation strategy

to use, and inserts code to perform runtime adaptation into the application. Adaptation strategies

could include inspector-executor [26], work-stealing [32], iteration space tiling [33] and others.

Table 3.6: Arguments to the relationship instantiation function.

Argument Description
Instance Iterator 1 An iterator to the list of instances of the first task descriptor
Descriptor Time Variables 1 The actual descriptor time variables for the first task descriptor
Instance Iterator 2 An iterator to the list of instances of the second task descriptor
Descriptor Time Variables 2 The actual descriptor time variables for the second task descriptor
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Table 3.7: Operands to the CREATEREL call.

Operand Description
Name 1 The name vector for the first task instance
Port 1 The index of the in or out parameter for the first instance used for pass-

ing data along this relationship
Name 2 The name vector for the second task instance
Port 2 The index of the in or out parameter for the second instance used for

passing data along this relationship
Type The type of relationship such as RAW, Exclusive, Locality, etc.
Direction The direction of the relationship, either 1 to 2 or 2 to 1
Data Pointer A pointer to data needed for this relationship. This is seldom used.
Communication Cost The Communication cost for this relationship

The adaptation code is specialized to the application in order to reduce its runtime overhead. A

common IR and EPL representation allows there to be a single adaptation compiler.

The adaptation compiler must select an adaptation strategy to insert into the application. It

may also choose to insert techniques which improve the amount of exploitable parallelism, such

as thread-level speculation [34, 35, 36, 37] and transactional memory [38]. This choice should be

based upon the application’s characteristics as expressed in the EPL representation.

An adaptation strategy attempts to map the application’s work onto computing resources

in such a way as to maximize performance, minimize power, or optimize some other metric. For

some applications and architectures this adaptation may be relatively simple and require a simple

strategy. For example, DOALL loop nests with regular accesses to arrays on a chip multiprocessor

with homogenous cores can be handled with iteration space tiling methods taking into account

cache hierarchy and core availability [39, 40]. Other applications with more complex structures

may require more sophisticated adaptation techniques.

There is flexibility in the time at which the choice of adaptation strategy is made. The

earlier it is done, the more overhead at runtime can be saved. However, the later it is done, the

more information about the architecture and environment is available to make a good choice. The

best time to choose may very well depend upon the application’s characteristics.

Two additional challenges the adaptation compiler must address are the development of

better adaptation strategies and the task of keeping the runtime adaptation overhead small. Adap-

tation strategies must be able to adapt to the number of available cores, mix of cores, cache hierar-
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chy, and on-chip communication networks. Prior work on runtime adaptation strategies has been

able to adapt to a subset of these features. Adaptation to the number of cores is fairly common,

e.g. [21, 24, 25, 39, 41, 42]. Adaptation to cache hierarchies for DOALL loops has also been stud-

ied [24,25]. Core mix has been addressed in a limited form by libraries which choose which library

implementations to use based upon what hardware is available, e.g. whether a GPU is present. Ex-

cept for adaptation to the number of cores, runtime adaptation strategies have not been applied

to techniques used for enabling more application parallelism such as thread-level speculation or

transactional memory.

The overhead of adapting the application at runtime must be small or the benefits of adap-

tation will be lost. Previously, reduction in runtime overhead has been attempted in two ways:

through granularity adjustment and through specialization of the adaptation code. Loop split-

ting and loop fusion can be seen as a form of granularity adjustment. Auto-scheduling [43] used

both granularity adjustment of a hierarchical task graph as well as specialization of dynamic task

scheduling code. Inspector-executor adaptation code has been automatically generated [44], but

specialization of other adaptation strategies has not previously been attempted.

3.2 Low-Level Virtual Machine (LLVM)

This work uses the Low Level Virtual Machine (LLVM) [45] infrastructure extensively.

LLVM is a compiler framework that includes the ability to create new compiler intrinsics and

optimize and generate machine code for several instruction set architectures at runtime. It provides

a code representation with type information, explicit control flow graphs, and dataflow. The LLVM

framework has a modular structure with extensive support for adding new transformations and

analyses as module or function passes. It includes a powerful pass management system used for

scheduling passes and, when possible, pipelining them for efficiency. LLVM passes run on LLVM

bitcode, which is an instruction-level code representation,

The concurrency compiler presented in this work is constructed as a set of LLVM passes.

These passes include analysis passes as well as transform passes. The LLVM code representation

allows for powerful analyses which gather information needed to transform the existing code into

the EPL representation. That transformation is also done using passes written in LLVM.
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Table 3.8: LLVM passes used in this work.

Pass Description
Promote Memory to Register Promotes memory references to be register references whenever

possible
Scalar Replacement of Ag-
gregates

Breaks up allocation of aggregate types into individual allocations
for each member

Combine Redundant Instruc-
tions

Combines instructions to form fewer, simple instructions.

Rotate Loops A simple loop rotation transformation
Sparse Conditional Constant
Propagation

Propagates constants

Simplify the CFG (Control
Flow Graph)

Performs dead code elimination and basic block merging

Assign Name to Anonymous
Instructions

Assigns names to instructions that do not have names

Canonicalize Induction Vari-
ables

Transforms each loop to have a single canonical induction vari-
able

Loop Information Finds all loops in a function and stores useful information about
them

Many useful transform and analysis passes are provided by LLVM. This work uses the fol-

lowing passes described in table 3.8: Promote Memory to Register, Scalar Replacement of Aggre-

gates, Combine Redundant Instructions, Rotate Loops, Sparse Conditional Constant Propagation,

Simplify the CFG (Control Flow Graph), Assign Name to Anonymous Instructions, Canonicalize

Induction Variables, and Loop Information.
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Chapter 4

Hierarchy

A major shortcoming of the existing EPL representation is that it did not support hierarchy.

Hierarchy exists when a task is only defined entirely within the context of another task, or keeping

with the EPL representation, a task descriptor is only defined entirely within the context of another

task descriptor. A subtask has no meaning on its own. It must be part of its parent task. In practice,

hierarchy is very common. In fact, few programs are written without some sort of hierarchy. Every

nested loop introduces hierarchy, as does every function call inside another function.

It is important to note that whether or not hierarchical tasks exist depends on how tasks are

defined. For example, if tasks are allowed to contain loops, an inner loop would not need to be

defined as a separate, and therefore sub, task. If function calls are allowed inside of a task, a nested

function call would not need to be its own task. The term for the different options in defining tasks

is task granularity. There is an infinite spectrum of possible task granularity ranging from very

coarse to very fine. Coarse grained tasks include many instructions, possibly including function

calls and loops. Fine grained tasks include fewer instructions, possibly only a few.

Adjusting task granularity is important in CIRA. In order to adapt most effectively, different

granularities are needed for different applications. Much research has already been done in coarse

grained parallelism [23, 39, 46] as well as in fine grained parallelism [31, 47, 48]. However, little

research has been done with granularities in between fine and coarse. We expect CIRA to demon-

strate that many applications work best with some kind of medium granularity. The first step to

demonstrate this is to add functionality to the EPL representation for hierarchical task descriptors,

thus empowering it to handle finer granularities.
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4.1 Hierarchical Task Descriptors

Task descriptors need to contain some extra pieces of information to support hierarchy.

First, a subtask descriptor needs to keep track of its parent task descriptor. Often relationships will

exist between subtask descriptors of different parents. As stated earlier, however, subtasks are only

defined within the context of the parent task descriptor. In order to create a relationship between

subtask descriptors of different task descriptors, the context of the parent descriptor is needed

to completely define the subtask descriptor. For this reason, knowing which task descriptor is a

subtask descriptor’s parent is essential. The parent id parameter in the call to TASKDESC provides

this information.

It is also important to know which task descriptors are top level descriptors, meaning they

have no parent and, therefore, are not subtask descriptors. This information is essential since

subtask descriptors need to be handled differently. Also, task descriptors need to keep track of

what depth of hierarchy they are at. Top level descriptors are at level 0, their subtask descriptors

are at level 1, and so forth. This is necessary for naming task instances which will be described in

detail later. The depth parameter in the call to TASKDESC provides this information.

Since parent task descriptors have subtask descriptors, they need to be handled differently

than other task descriptors. Though there are additional reasons, the simplest reason we cannot

treat all task descriptors in the same way is illustrated by the following example. Consider the

pseudocode in figure 4.1. The outer loop becomes the parent task descriptor and the inner loop

becomes the subtask descriptor. The parent task descriptor has code before and after the subtask

descriptor. The subtask descriptor has a data dependence on the line of code just before it which

would become a relationship descriptor. However, the line of code just after the subtask descriptor

has a data dependence on the subtask descriptor which would also form a relationship descriptor.

If not treated differently, this would result in the parent task descriptor depending on the subtask

descriptor as well as the subtask descriptor depending on the parent descriptor which would form

a circular dependence.

In order to handle parent task descriptors correctly, we restrict them to have an empty body.

Instead the parent task descriptor has sub task descriptors for each part of what would be its body.

This results in relationship descriptors between the different subtask descriptors but no circular

dependences. This method also keeps the parent task descriptor’s instantiation function as simple
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f o r ( i n t i =0 ; i<s i z e 1 ; i ++)
{

i n t s i z e 2 = s i z e 1 ∗ s i z e 1 ;
f o r ( i n t j =0 ; j<s i z e 2 ; j ++)
{

a r r 1 [ i ] += a r r 2 [ j ] ;
}
a r r 2 [ i ∗ s i z e 1 ] = a r r 1 [ i ] ;

}

Figure 4.1: An example of a piece of hierarchical code that needs to be split up into subtask descriptors.

as possible. Keeping task instantiation functions simple is desirable since it reduces the overhead

of task instantiation and also simplifies the adaptation compiler’s analysis to choose an adaptation

strategy.

As an example of how this works, we once again consider figure 4.1. The outer loop

becomes the parent task descriptor. Inside the loop are three sections of code that will each become

its own task descriptor. The inner loop is the obvious subtask descriptor. In order to eliminate

the code from the body of the parent task descriptor, the rest of the code inside the outer loop

needs to be moved to subtask descriptors. The code before the inner loop becomes one subtask

descriptor and the code after the inner loop becomes another subtask descriptor. Now the parent

task descriptor has no code in its body function and the subtask descriptors contain all the code as

shown in figure 4.2. The loop headers are pulled into the instantiation functions.

To keep task descriptors in a standardized form, parent task descriptors still have a body

function even though it is empty. Their instantiation functions still have a call to CREATETASK

to form task instances of the parent task. This is helpful when forming relationships. The tasks

created have the empty body function, so when executed they just return. This method keeps

everything in a standardized form which allows for optimizations without introducing too much

unnecessary overhead. Having a standardized form also keeps information pertinent to choosing

an adaptation strategy in logical places. This should aid the adaptation compiler in its analyses for

choosing an adaptation strategy.
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vo id o r i g i n a l b o d y ( i n t ∗ a r r 1 , i n t ∗ a r r 2 , i n t s i z e 1 )
{
}

vo id sub1 body ( i n t ∗ a r r 1 , i n t ∗ a r r 2 , i n t s i z e 1 , i n t i )
{

i n t s i z e 2 = s i z e 1 ∗ s i z e 1 ;
}

vo id sub2 body ( i n t ∗ a r r 1 , i n t ∗ a r r 2 , i n t s i z e 1 , i n t i , i n t j )
{

a r r 1 [ i ] += a r r 2 [ j ] ;
}

vo id sub3 body ( i n t ∗ a r r 1 , i n t ∗ a r r 2 , i n t s i z e 1 , i n t i )
{

a r r 2 [ i ∗ s i z e 1 ] = a r r 1 [ i ] ;
}

Figure 4.2: Body functions of the original task descriptor and each of the subtask descriptors.

4.2 Hierarchical Task Instantiation

For top level task descriptors, it is simple to instantiate their task instances. The task in-

stantiation function is run. Sub task descriptors are more complicated because their task instances

must be instantiated for each task instance of the parent task descriptor. Consider again figure 4.1.

For each iteration of the outer loop, an instance of the parent task descriptor is instantiated. Each

subtask descriptor needs to run its instantiation function once for each iteration of the outer loop,

or in other words, for each task instance of the parent descriptor.

Subtask descriptors need information particular to the parent task instance. The variables

holding this information are called parent variables and differ from descriptor time variables and

instantiation time variables. The most common parent variables are loop variables such as the i

variable in figure 4.1 which will have a different value for each instance of the parent task de-

scriptor. Each subtask descriptor will need to have the correct value for i depending on which task

instance is its parent.

The method we use to call the subtask instantiation functions the correct number of times

and to supply the needed parent variables to the instantiated tasks is to call the subtask instantiation
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vo id o r i g i n a l i n s t ( i n t ∗ a r r 1 , i n t ∗ a r r 2 , i n t s i z e 1 )
{

f o r ( i n t i =0 ; i<s i z e 1 ; i ++)
{

c r e a t e t a s k ( i , COST, i ) ;
s u b 1 i n s t ( a r r 1 , a r r 2 , s i z e 1 , i ) ;
s u b 2 i n s t ( a r r 1 , a r r 2 , s i z e 1 , i ) ;
s u b 3 i n s t ( a r r 1 , a r r 2 , s i z e 1 , i ) ;

}
}

vo id s u b 1 i n s t ( i n t ∗ a r r 1 , i n t ∗ a r r 2 , i n t s i z e 1 , i n t i )
{

c r e a t e t a s k ( 0 , COST, i ) ;
}

vo id s u b 2 i n s t ( i n t ∗ a r r 1 , i n t ∗ a r r 2 , i n t s i z e 1 , i n t i )
{

f o r ( i n t j =0 ; j<s i z e 2 ; j ++)
{

c r e a t e t a s k ( j , COST, i , j ) ;
}

}

vo id s u b 3 i n s t ( i n t ∗ a r r 1 , i n t ∗ a r r 2 , i n t s i z e 1 , i n t i )
{

c r e a t e t a s k ( 0 , COST, i ) ;
}

Figure 4.3: Instantiation functions of the original task descriptor and each of the subtask descriptors.

functions inside the instantiation function of the parent task descriptor. The parent instantiation

function includes the outer loop so that it can call CREATETASK for each instance. The calls to the

sub task instantiation functions are placed inside the loop right after the call to CREATETASK, so

they are each called once for each parent task instance. All of the parent variables are available

and can be passed right into the subtask instantiation functions. The instantiation functions for the

above example are shown in figure 4.3. These functions are missing name vector information. This

vital information will be added in the next section.
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4.3 Task Instance Name Vectors

Task instances need unique identifiers to distinguish them from other instances of the same

descriptor. We call these identifiers task instance names. Names for task instances are created

inside the instantiation function and passed into the call to CREATETASK. Since there is one call to

CREATETASK for each instance, this guarantees that each instance will have a unique name. With

the introduction of hierarchy, there is now another use for these names. They can be used to keep

track of the context of the task descriptor.

In order to keep track of the descriptor’s context, task instance names are stored as vectors

of integers. Each element in the vector corresponds to a level of the hierarchy. The number of

elements in the vector corresponds to the depth of the task. For example, if a task descriptor has

a depth of one, meaning it is one level down from the top, it will have a name vector with two

elements. The first element will correspond to the parent task instance and the second element will

correspond to its task instance. If it has subtask descriptors, the subtasks’ names will be the same

as its name except they will have an extra element at the end of the vector for the subtask instance.

In figure 4.1 the subtask instance corresponding to iteration 3 of the outer loop and iteration 2 of

the inner loop would have the vector name [3,2].

Name vectors are constructed in the task instantiation functions. To construct the name

vectors, we create a new name vector with the correct size for the depth. We then load all of the

values from the parent name vector and store them into the new name vector. The parent name

vector must be passed as a parameter into the subtask instantiation functions. Lastly, the new

integer for the subtask instance is stored in the last element.

Vector names have many advantages. As was already described, it is a good way to differ-

entiate between task instances that are subtasks of different parent task instances. In the previous

example, the name vectors [2,2] and [3,2] both correspond to the same iteration of the inner loop,

but are sub tasks of different parent task instances, and that is made obvious by the name vectors.

Name vectors also provide a simple way to keep track of the parent instance, as well as all ancestor

instances up to the top level. Even with a deep hierarchy we get task names such as [3,5,2,6,1,3]

and it is very easy to see exactly which branch of the hierarchy this task instance is on. Having

all of the ancestor instances as part of the name vector is also useful for keeping track of parent

variables.
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Vector names are also helpful with relationships. When relationship descriptors are instan-

tiated, the full context of each task instance is needed to determine which relationship instances

must be created. The full context of a subtask instance includes the context of its parent task in-

stance. Vector names specify which instance of a parent task descriptor is the subtask descriptor’s

parent. This completes the subtask descriptor’s context. For example, when determining if there

should be a relationship between task descriptor t1 instance [2,4] and task descriptor t2 instance

[3,1], the relationship knows to use the context of instance [2] of t1’s parent descriptor and instance

[3] of t2’s parent descriptor.

Another advantage for relationships is that the construction of the name vector puts in an

inherent relationship between parents and subtasks. Although the parent task has no body, and

therefore no data dependence or locality relationships, it could still be useful to have that hierar-

chical relationship to aid the adaptation compiler in its analysis to choose an adaptation strategy.

Figure 4.4 shows the instantiation functions for the previous example with the construction of the

name vectors added. When the subtask instantiation function loads the name vector of its parent

and then stores the values into its own name vector, the load and store instructions are left in an

order that will show a data dependence between them. This dependence can be processed similarly

to other dependences when determining relationships.
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vo id o r i g i n a l i n s t ( i n t ∗ a r r 1 , i n t ∗ a r r 2 , i n t s i z e 1 )
{

f o r ( i n t i =0 ; i<s i z e 1 ; i ++)
{

i n t new name [ 1 ] = { i } ;
c r e a t e t a s k ( new name , COST ) ;
s u b 1 i n s t ( new name , a r r 1 , a r r 2 , s i z e 1 , i ) ;
s u b 2 i n s t ( new name , a r r 1 , a r r 2 , s i z e 1 , i ) ;
s u b 3 i n s t ( new name , a r r 1 , a r r 2 , s i z e 1 , i ) ;

}
}

vo id s u b 1 i n s t ( i n t ∗ name , i n t ∗ a r r 1 , i n t ∗ a r r 2 , i n t s i z e 1 , i n t i )
{

i n t new name [ 2 ] = {name [ 0 ] , 0} ;
c r e a t e t a s k ( new name , COST, i ) ;

}

vo id s u b 2 i n s t ( i n t ∗ name , i n t ∗ a r r 1 , i n t ∗ a r r 2 , i n t s i z e 1 , i n t i )
{

f o r ( i n t j =0 ; j<s i z e 2 ; j ++)
{

i n t new name [ 2 ] = {name [ 0 ] , j } ;
c r e a t e t a s k ( new name , COST, i , j ) ;

}
}

vo id s u b 3 i n s t ( i n t ∗ name , i n t ∗ a r r 1 , i n t ∗ a r r 2 , i n t s i z e 1 , i n t i )
{

i n t new name [ 2 ] = {name [ 0 ] , 0} ;
c r e a t e t a s k ( new name , COST, i ) ;

}

Figure 4.4: An example showing how vector names are assigned.
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Chapter 5

Concurrency Compiler

The concurrency compiler transforms the application into the EPL representation. It needs

to both recognize and use annotation provided by the programmer as well as perform analyses

to discover the parallelism in the application. It then needs to construct the task descriptors and

relationship descriptors that make up the EPL representation. This includes constructing the task

instantiation and body functions and the relationship instantiation functions.

5.1 Building Task Descriptors

For a concurrency compiler to be most useful, it needs to build task descriptors from the

existing code with minimal help from the programmer. The programmer should not have to dictate

which block of code needs to be turned into a task descriptor or how to instantiate the task in-

stances. Though we do want to allow the programmer the freedom to insert some directives when

he chooses to, we should never rely on having directives specifying how to create task descriptors.

We have created an LLVM pass which transforms the code to include task descriptors, task

instantiation functions, and task bodies. The only directives that need to be inserted are PARBEGIN,

which specifies the beginning of a section to be parallelized, and PAREND, which specifies the end

of the section. A programmer could even just insert PARBEGIN at the beginning of the main

function and insert PAREND at the end of it, and the whole program would be one parallel section.

5.1.1 Extracting Parallel Sections

The first step to building task descriptors is to extract the parallel sections into their own

functions so that we can work with those functions independent of everything else. Since most

LLVM passes run on functions, having the parallel sections in their own functions makes it very

easy to run LLVM passes on them. This applies to LLVM passes we have written as well as passes
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EXTRACTPARALLELSECTION()

1 for each function
2 Find the call to parbegin
3 Split the basic block
4 parbegin is the last instruction in the original basic block
5 Create a new basic block with all instructions after parbegin
6 Find the call to parend
7 Split the basic block
8 parend is the first instruction in the original basic block
9 Create a new basic block with all instructions before parend

10 Find all blocks between the parbegin and parend calls
11 This is a simple procedure based on dominator analysis
12 Extract the list of basic blocks into a new function

Figure 5.1: Algorithm for parallel section extraction.

that are part of the LLVM source code. This concurrency compiler can only handle parallel sections

that only have one entry, the call to PARBEGIN, and one exit, the call to PAREND. Only one parallel

section per function is allowed. Future extensions could be to support multiple parallel sections per

function as well as branches out of and into parallel sections. The algorithm in figure 5.1 describes

the process of extracting parallel sections.

The PARBEGIN and PAREND directives specify the beginning and end of each parallel sec-

tion. All of the code in between these directives needs to be extracted into its own function.

Because it is easier to extract entire basic blocks instead of individual instructions, we first split

the basic blocks containing the PARBEGIN and PAREND directives. We split them so that the call

to PARBEGIN becomes the last instruction of its basic block and all instructions following it are

moved into their own new basic block. Similarly we split the PAREND basic block so that the call

to PAREND becomes the first instruction in its basic block and all previous instructions are moved

into their own basic block.

Using a simple procedure based on dominator analysis, we determine the set of basic blocks

that are between the calls to PARBEGIN and PAREND. We then extract that set of basic blocks into

its own function. LLVM provides a function for extracting code sections into functions. We pass

it the list of basic blocks and it determines which variables need to be passed into the function. It
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EXTRACTLOOPSANDBLOCKS()

1 Run LoopInfo pass
2 for each loop o
3 Extract o into its own function f
4 Split the basic block containing f
5 All instructions before f in one basic block
6 All instructions after f in another basic block
7 f in its own basic block
8 Order the loop basic blocks using dominator analysis
9 Find all basic blocks before the first loop basic block

10 Extract the list of basic blocks into a new function
11 Find all basic blocks after the last loop basic block
12 Extract the list of basic blocks into a new function
13 for each pair of consecutive loop basic blocks
14 Find all basic blocks between the two loop basic blocks
15 Extract the list of basic blocks into a new function

Figure 5.2: Algorithm for loop and block extraction.

also takes care of any other details for building the function including replacing the extracted code

with a call to the function.

5.1.2 Loop and Block Extraction

The EPL representation supports many types of task descriptors, but only two of them are

currently supported by our simple adaptation compiler. These two types are loops and blocks.

For this reason we have focused on extracting only loops and blocks into task descriptors. In the

future we will need to update both this concurrency compiler as well as our adaptation compiler to

support all types of task descriptors.

The basic form for extracting loop and block task descriptors is to first extract all loops and

then extract the region of code between the loops into blocks. This concurrency compiler requires

that the region of code between loops has a single entry, the previous loop, and a single exit, the

subsequent loop. Future concurrency compilers could be extended to allow for branches around

loops. The algorithm for extracting loops and blocks is shown in figure 5.2. The obvious first

step is finding all the loops. We use LLVM’s LoopInfo pass to accomplish this. After running
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this pass on our parallel section function, we have a list of all the loops in the function. We can

then iterate over the list and handle each loop individually. The loop information provided by this

pass includes the list of basic blocks contained in the loop, the header block which contains the

loop variable, and the block containing the loop variable update and the condition check. It also

provides the loop variable as long as there is a canonical induction variable for the loop. We can

ensure that there is one by running another LLVM pass beforehand which transforms all loops to

have canonical induction variables.

Once we have the list of loops, we can iterate over them and pull each one into its own

function. Another LLVM function, much like the code extraction function, accomplishes this.

The extracted function includes information for both the task instantiation function and the body

function, which are the two functions needed for each task descriptor. Once we have the loops

extracted into their own functions, we split the basic blocks containing the calls to those functions

so that all loop function calls are in their own basic blocks. Using dominator analysis we can

order the loops. Once we have the order of the loops, we can use the same procedure used in

parallel section extraction to extract the regions of code before the first loop, after the last loop,

and between any two consecutive loops into their own block task descriptors.

Another important piece of information we get from the LoopInfo pass is the number of

subloops each loop has. We use that information to determine if we need to turn the loop body into

a body function or if we need to turn it into subtask descriptors. When a loop has subloops, we

treat it similarly to the parallel section function. We need to find the loops and turn them into loop

subtask descriptors and then turn the blocks of code before, after, and between loops into block

subtask descriptors. While this is a slightly different process for subtask descriptors because they

are inside of a loop, the same basic algorithm is used.

5.1.3 Creating Instantiation and Body Functions

For each extracted loop function which has no subloops we need to extract the body func-

tion and leave the extracted function as the instantiation function. If the loop header, including the

loop variable creation, the loop variable update, and the loop condition check, was in a separate

basic block from the rest of the loop body, it would be easy to extract the body and leave the loop

header in the instantiation function. Unfortunately those parts of the loop header often depend

36



on instructions in the loop body and are all bundled into the same basic block. In fact, it is quite

common for variables inside the loop header to be used for other instructions in the body as well

as for the loop header. In order to have a fully functional body as well as a fully functional loop

header, instructions often have to be copied so they can exist in both functions.

We must perform a careful analysis to determine which instructions inside the loop are

needed only in the instantiation function, which are needed only in the body function, and which

are needed in both. All instructions that are part of the loop header, including the loop variable

creation, loop variable update, and the loop condition, are needed in the instantiation function.

Also, any branch instructions that use the loop condition are needed in the instantiation function.

All store instructions should be in the body function. One exception is that store instructions that

affect the structure of the loop would need to stay in the instantiation function. For example,

when the loop variable is stored in memory and updated with store instructions, these store in-

structions affect the structure of the loop. This concurrency compiler cannot handle these types

of store instructions, however, in many cases running the MEM2REG LLVM pass eliminates these

store instructions by promoting memory references to be register references. Future concurrency

compilers could add support for these types of store instructions.

The algorithm for this transformation is shown in figure 5.3. We start by copying the

extracted loop function so that the original can become the instantiation function and the copy can

become the body function. For the body function, we need to remove all instructions that are part

of the loop header and change branch instructions that branch back to the beginning of the loop to

branch to the next basic block after the loop. In this way, the loop is removed. For the instantiation

function, we remove all store instructions. We then recursively remove all instructions in both

functions that no longer have any uses.

To illustrate this analysis we will consider figure 5.4. The loop is basic block bb. The in-

structions indvar, indvar.next, and exitcond make up the loop header and are deleted from the body

function. In the body function the branch instruction is changed to be an unconditional branch to

the return basic block. The store instruction is deleted from the instantiation function. Instruc-

tions 1 and 3 are only used by the store instruction, so they are also deleted from the instantiation

function. Instruction 2 is only used by instruction 3, so it is also deleted from the instantiation

function. The values A and indvar are also needed by the body function, but we cannot copy the
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SEPARATEINSTANDBODY()

1 Copy the extracted loop function
2 The original becomes the instantiation function
3 The copy becomes the body function
4 For the body function
5 Remove instructions that are part of the loop header
6 Change the branch instruction to branch out of the loop
7 Recursively remove instructions that no longer have any uses
8 For the instantiation function
9 Remove all store instructions

10 Recursively remove instructions that no longer have any uses
11 Determine descriptor time, parent, and instantiation time variables
12 for each instruction in the body function
13 for each operand to the instruction
14 if it originates from an instruction in the instantiation function
15 Save it as an instantiation time variable
16 else it must originate from an argument to the instantiation function
17 if this is a top-level task descriptor
18 Save it as a descriptor time variable
19 else this is a subtask descriptor
20 if the corresponding variable in the parent function is an instruction
21 Save it as a parent variable
22 else the corresponding variable in the parent function is an argument
23 Save it as a descriptor time variable
24 Create the name vector in the instantiation function
25 Create the call to createtask in the instantiation function

Figure 5.3: Algorithm for separating the instantiation and body functions.

loop variable to the body function, and A is a function argument. In this case we add these two

values to the body function’s argument list. Figure 5.5 shows the resulting task instantiation and

body functions.

After we have extracted the body function from the instantiation function we will be left

with some arguments to the body function that originate in the instantiation function. Normally we

would just pass in those variables to the call to the body function, but there is no call to the body

function. Instead we need to determine which ones are descriptor time variables, which are parent

variables, and which are instantiation time variables. If we are working with a top level descriptor,

then if the variable in question originates from an argument to the instantiation function, it must be
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vo id loop ( [ 8 x i 3 2 ]∗ %A)
{
e n t r y :

b r l a b e l %bb

bb :
%i n d v a r = p h i i 3 2 [ 0 , %e n t r y ] , [ %i n d v a r . nex t , %bb ]
%1 = g e t e l e m e n t p t r [8 x i 3 2 ]∗ %A, i 3 2 0 , i 3 2 0
%2 = l o a d i 3 2 ∗ %1
%3 = add nsw i 3 2 %2, i 3 2 %i n d v a r
s t o r e i 3 2 %3, i 3 2 ∗ %1

%i n d v a r . n e x t = add i 3 2 %i n d v a r , 1
%e x i t c o n d = icmp ne i 3 2 %i n d v a r . nex t , 3
b r i 1 %e x i t c o n d , l a b e l %bb , l a b e l %r e t u r n

r e t u r n :
r e t vo id

}

Figure 5.4: An example loop that needs to be separated into a task instantiation function and a task
body function.

a descriptor time variable. If it originates from an instruction in the instantiation function, it must

be an instantiation time variable. If we are working with a subtask descriptor, however, we need

to differentiate between descriptor time variables and parent variables which both originate from

the instantiation function arguments. This is accomplished by checking the parent instantiation

function and see if the corresponding variable is an argument to that function or an instruction in

the function. If it is created in the parent instantiation function, then it is a parent variable. If not,

it is a descriptor time variable.

With the information on descriptor time variables, parent variables, and instantiation time

variables, we can create the call to CREATETASK inside the instantiation function. The first ar-

gument to CREATETASK is the name vector. The name vector is created here in the instantiation

function as described earlier. The last arguments to CREATETASK are the parent variables followed

by the instantiation time variables. The call to CREATETASK is inserted into the loop in the instan-

tiation function immediately after instructions specifying instantiation variables. In the previous
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vo id t a s k i n s t a n t i a t i o n ( [ 8 x i 3 2 ]∗ %A)
{
e n t r y :

b r l a b e l %bb

bb :
%i n d v a r = p h i i 3 2 [ 0 , %e n t r y ] , [ %i n d v a r . nex t , %bb ]
c a l l c r e a t e t a s k (% i n d v a r )

%i n d v a r . n e x t = add i 3 2 %i n d v a r , 1
%e x i t c o n d = icmp ne i 3 2 %i n d v a r . nex t , 3
b r i 1 %e x i t c o n d , l a b e l %bb , l a b e l %r e t u r n

r e t u r n :
r e t vo id

}

vo id t a s k b o d y ( [ 8 x i 3 2 ]∗ %A, i 3 2 %i n d v a r )
{
e n t r y :

b r l a b e l %bb

bb :
%1 = g e t e l e m e n t p t r [8 x i 3 2 ]∗ %A, i 3 2 0 , i 3 2 0
%2 = l o a d i 3 2 ∗ %1
%3 = add nsw i 3 2 %2, i 3 2 %i n d v a r
s t o r e i 3 2 %3, i 3 2 ∗ %1
br l a b e l %r e t u r n

r e t u r n :
r e t vo id

}

Figure 5.5: The resulting task instantiation and body functions.

example we omitted the construction of the name vector as well as passing the name vector and

the cost into CREATETASK in order to keep the example simple and uncluttered.

In this work we do not handle in and out variables. As stated in chapter 3, they are not nec-

essary for a functional representation. However, they are very useful for increasing performance.

In the future, an extra analysis will have to be added to determine in which situations descriptor

time or parent variables could be localized and replaced by in and out variables to increase perfor-
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mance. We anticipate that the overhead of passing values along relationships will be less than the

overhead of accessing a memory location that often will no longer be stored in the cache.

Extracting the body function for block tasks is much easier. There is no loop to worry about,

so the whole block of code becomes the body function. The instantiation function just needs to

create the name vector and call CREATETASK. There are not any instantiation time variables, so

the only other parameters are descriptor time variables and possibly parent variables which are

determined in the same way as for loop task descriptors.

5.1.4 Creating Calls to TASKDESC

After extracting loops and blocks, the calls to TASKDESC need to be constructed. Most

of the information needed for these calls is gathered while making the instantiation and body

functions. The only other information needed is the unique identifier which we can create. The

difficult part of this is getting the call for each task descriptor in the right place. They all need to

be in order according to the original code order, and TASKDESC calls for parent descriptors must

come before TASKDESC calls for subtask descriptors. This is necessary for ordering relationships.

For top level task descriptors we can replace the call to the instantiation function, which was

left over when we extracted the loop or block, with the call to TASKDESC. For subtask descriptors,

we need to find the call to the top level ancestor task descriptor and insert its call to TASKDESC

at the end of that basic block. We use the parent id, which is part of the call to TASKDESC, to

determine the top level ancestor task descriptor.

5.2 Determining Relationships

The second piece needed to form a task graph is to determine the relationships between

tasks. The relationships allow the scheduler to create a valid ordering of task execution. They

are necessary for determining which tasks can be run in parallel and therefore achieve greater

performance gains. Relationships are an essential part of the EPL representation.

In the future CIRA will need to handle many different types of relationships. Because

data dependence relationships are the most important, and because our adaptation compiler cur-

rently only handles data dependence relationships, we have focused primarily on these types of

relationships. Our work in automatically generating relationship descriptors only generates data
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dependence relationships. This concurrency compiler, as well as our adaptation compiler, will

need to be expanded to support other types of relationships in the future.

Once the task descriptors have been formed, we have all the necessary information to create

relationship descriptors. Any pair of task descriptors whose task instances could have relationships

between them need to have a relationship descriptor relating them. Task instances of the same task

descriptor could even have relationships between them. In this case the relationship descriptor

would describe what would cause a data dependence between instances of the descriptor. Task

instances of different task descriptors could also have relationships between them. In this case the

relationship descriptor would describe for each task descriptor what would cause a data dependence

with an instance of the other task descriptor. The process of determining which pairs of task

descriptors need relationship descriptors will be described in section 5.2.1.

The next step in generating relationship descriptors is creating the relationship instantiation

function for each relationship descriptor. This function contains the code that will determine and

generate individual relationship instances at runtime. This function needs to be simple enough to

avoid adding too much overhead but also complete so that no relationships are ever missed. The

process of generating relationship instantiation functions is described in section 5.2.2.

The final step is to create the calls to RELDESC. This is similar to creating the calls to

TASKDESC except calls to RELDESC require less information making it a bit more simple. Gener-

ating these calls is described in section 5.2.3.

5.2.1 Cross-product of Tasks

Determining which task descriptors could have relationships between them in the EPL

representation has significant challenges. The code has been split up into task descriptors and each

task descriptor could have multiple task instances. This representation places the code for each

task descriptor in its own context. To complicate matters further, each task instance has elements

unique to itself. In particular, the instantiation time variables have unique values depending on the

task instance. This means that even task instances are in their own contexts. Determining data

dependences between two different contexts is impossible without first merging the contexts.

For instructions inside the same task instance, determining data dependences is easier since

the instructions are in the same context and all operands to each instruction can be related to one
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vo id t a s k b o d y ( [ 8 x i 3 2 ]∗ %A, i 3 2 %i )
{
e n t r y :

%0 = add nsw i 3 2 %i , i 3 2 1
%1 = g e t e l e m e n t p t r [8 x i 3 2 ]∗ %A, i 3 2 0 , i 3 2 %0
%2 = l o a d i 3 2 ∗ %1
%3 = add nsw i 3 2 %i , i 3 2 2
%4 = g e t e l e m e n t p t r [8 x i 3 2 ]∗ %A, i 3 2 0 , i 3 2 %3
s t o r e i 3 2 %2, i 3 2 ∗ %4
r e t vo id

}

Figure 5.6: It is impossible to tell which instances have data dependences between them without know-
ing the variable i.

another. Unfortunately data dependences within a single task instance are useless since the whole

task is executed without interruption. All useful data dependences are between instructions of

different task instances. As stated earlier, even different task instances of the same task descriptor,

which use the same body function, are not really in the same context because the instantiation

variables will have different values for each instance. Figure 5.6 demonstrates this problem. The

descriptor time variable A is an integer array. The instantiation time variable i is used for indexing

into A. The body function has a load and a store to different elements in A depending on i. Without

knowing the value for i it is impossible to tell which loads and stores from different instances create

data dependences.

This problem gets even more difficult for task instances from different task descriptors.

Figure 5.7 demonstrates this case. Task descriptor t1 has a descriptor time variable A, and task

descriptor t2 has a descriptor time variable B. Both are integer arrays. Both body functions have

memory accesses to the first element in the array, which just increments that element. It would

appear that there is no data dependence, except we cannot tell if A and B point to the same memory

location. If they do, then there is a data dependence.

The previous examples show why having instructions in the same context helps immensely

in determining data dependences. Because relationship descriptors relate two task descriptors, we

attempt to place task instances of two task descriptors in the same context. We do this for every

pair of task descriptors. In order to place all instances of each task descriptor in the same context
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vo id t d 1 t a s k b o d y ( [ 8 x i 3 2 ]∗ %A)
{
e n t r y :

%0 = g e t e l e m e n t p t r [8 x i 3 2 ]∗ %A, i 3 2 0 , i 3 2 0
%1 = l o a d i 3 2 ∗ %0
%2 = add nsw i 3 2 %1, i 3 2 1
s t o r e i 3 2 %2, i 3 2 ∗ %0
r e t vo id

}

vo id t d 2 t a s k b o d y ( [ 8 x i 3 2 ]∗ %B)
{
e n t r y :

%0 = g e t e l e m e n t p t r [8 x i 3 2 ]∗ %B , i 3 2 0 , i 3 2 0
%1 = l o a d i 3 2 ∗ %0
%2 = add nsw i 3 2 %1, i 3 2 1
s t o r e i 3 2 %2, i 3 2 ∗ %0
r e t vo id

}

Figure 5.7: Since we cannot tell if A and B point to the same memory location, we cannot tell if there
is a data dependence here.

we form a kind of cross-product of the pair of task descriptors. We accomplish this by placing the

task instantiation function of one task descriptor inside the task instantiation function of the other

task descriptor. We call this new function the cross-product function. For instantiation functions

that contain loops, each iteration will contain a pair of task instances in the same context. As a

simple example to demonstrate how an instantiation function is placed inside another instantiation

function to form a cross-product function, consider figure 5.8, which has the two separate instanti-

ation functions, and figure 5.9, which has the cross function. The second instantiation function is

placed inside the loop of the first instantiation function so that each task instance created by one

instantiation function can be related to each task instance of the other instantiation function.

To merge contexts of the task descriptors in the cross-product function, we need to de-

termine which descriptor time variables are equivalent. For subtask descriptors we also need to

determine which parent variables are equivalent. The task instantiation functions contain all of

these variables as arguments. The cross-product function has as arguments all of the arguments of
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vo id i n s t 1 ( i n t ∗ A){
f o r ( i n t i = 0 ; i < 2 ; i ++){

c r e a t e t a s k ( i ) ;
}

}

vo id i n s t 2 ( i n t ∗ B){
f o r ( i n t j = 0 ; j < 2 ; j ++){

c r e a t e t a s k ( j ) ;
}

}

Figure 5.8: Two simple instantiation functions which may or may not be equal.

vo id c r o s s ( i n t ∗ A, i n t ∗ B){
f o r ( i n t i = 0 ; i < 2 ; i ++){

c r e a t e t a s k ( i ) ;
f o r ( i n t j = 0 ; j < 2 ; j ++){

c r e a t e t a s k ( j ) ;
}

}
}

Figure 5.9: Cross function for previous instantiation functions.

each task instantiation function, so it, too, has all of the descriptor time and parent variables. Some

of these variables may be equivalent.

To determine which descriptor time variables are equivalent we must examine the descrip-

tor time variables passed into each call to TASKDESC in the parallel section function. If the same

value was passed to the calls to TASKDESC, then those descriptor time variables must be equivalent.

To determine which parent variables are equivalent, we must examine the parent task instantiation

functions. Because parent variables are created in the parent task instantiation function, a prereq-

uisite is that the two task descriptors must have a common parent. In cases with multiple levels

of hierarchy, the ancestor task where the parent variable was created must be common to both

task descriptors. If a common ancestor is found, we must check if the values passed in as parent

variables to the calls to the subtask instantiation functions are the same. Once we have determined
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vo id c r o s s ( i n t ∗ A, i n t ∗ B){
f o r ( i n t i = 0 ; i < 2 ; i ++){

A[ i ] = A[ i + 1 ] ;
f o r ( i n t j = 0 ; j < 2 ; j ++){

B[ j ] = B[ j + 1 ] ;
}

}
}

Figure 5.10: Cross function with bodies inlined.

which variables in the instantiation functions are equivalent, we can determine if there are possible

data dependences between the task descriptors.

Task instantiation functions don’t contain the code that could have data dependences. That

code is in the body functions. In order to bring that code into the cross-product function, we

replace the calls to CREATETASK with the code from the body function, thereby bringing all of the

important code from both task descriptors into the cross-product function. Figure 5.10 shows our

previous example with the bodies inlined.

Now that all of the necessary code is in the cross-product function we do an intraprocedural

backward slice on all pointers used in memory accesses in order to determine any possible data

dependences. The way a backward slice works is to take a given value and trace backward through

the code to find all other values that this value is dependent on. The values that a given value

is dependent on are known as sources for the given value. The backward slice returns a list of

sources for each value we run it on. Running a backward slice on the pointers used in memory

accesses tells us which memory accesses could be dependent on congruent values – values which

refer to the same register or location in memory. This is the information needed by the relationship

instantiation function to determine which task instances require relationships between them.

While the list of sources for each memory access pointer would be enough to determine

the relationships, it would leave a large amount of work for the relationship instantiation function

to do at runtime. It would have to evaluate each of the sources and compare it to each of sources

of the other memory accesses. That evaluation could require accessing memory or other things

that could drastically reduce performance. This concurrency compiler includes one optimization

to reduce that workload. When the backward slice returns descriptor time variables as sources
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for two memory access pointers, it can determine if both variables are congruent. It does this by

checking the calls to TASKDESC in the parallel section function to see if both values passed in as

descriptor time variables are equivalent. While this procedure proves that two memory accesses

depend upon the same variable, it does not quite prove that they actually access the same memory

location. Many memory accesses also use indices, for example, to specify which element in an

array is being accessed. It can be proven that two memory accesses both depend on the same array,

but they only need a relationship if they depend on the same element of the array. Since the indices

are often based on the instantiation time variables, whose values cannot be known until runtime,

the definitive check on which memory accesses are dependent on equivalent values must also wait

until runtime. The relationship instantiation functions, described in the next section, contain code

to check the indices.

The only index comparisons for determining relationships are in the relationship instanti-

ation function. However, because some indices are not based on instantiation time variables and

can be known at compile time, a possible future optimization could be to also examine indices.

The goal of this optimization would be to eliminate some relationship descriptors and to simplify

the relationship instantiation functions by proving that the indices either cannot be equivalent or

must be equivalent. We anticipate that having fewer unnecessary relationship descriptors and more

simple relationship instantiation functions will cut down time used in instantiating relationships.

5.2.2 Relationship Instantiation Functions

For each relationship descriptor which we have determined must be created, we need to

create a relationship instantiation function. This function will be executed at runtime to instanti-

ate relationship instances. It needs to contain the code which will determine which relationship

instances actually exist. As with the cross-product function, the relationship instantiation function

will also need the merged context in order to determine which relationship instances should be

created. The relationship instantiation function does not need the full task bodies, however. It

only needs the values necessary for determining which task instances have data dependences and,

therefore, need a relationship instance.

During the optimization described in the previous section, any indices associated with the

sources in the trace back to the descriptor time variable were saved along with the sources. These
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lists define exactly which indices and sources need to be equivalent for two memory accesses to

need a relationship between them.

As an example, consider figure 5.12 which is the LLVM bitcode representation of the cross-

product function and figure 5.13 which is the same function in the C programming language. Basic

block bb contains the code for one task descriptor and basic block bb2 contains the code for the

other. Though there are many memory accesses in this example, we will focus only on the store

instructions. After computing the backward slice for each store instruction’s pointer operand, we

find that each pointer operand has as sources two GETELEMENTPTR instructions, a load instruction,

a BITCAST instruction, a loop variable, and a function argument. Assuming the two function

arguments, A and B, are proven to be congruent, these two store instructions could be accessing

the same location in memory. All memory accesses in the traces from the store instructions to

the function arguments are kept in a list. In this example, the lists would each include the pointer

from the store instructions, which is a GETELEMENTPTR instruction, and the pointer from the first

load instruction, another GETELEMENTPTR instruction, since it is in the trace back to the function

argument. The indices for the sources in the trace are also kept in a list. In this example, the index

lists would contain the loop variables and the constant 1.

The steps required to create the instantiation function are listed in figure 5.11. The first

step in constructing the relationship instantiation function is similar to the first step in constructing

the cross-product function. We place the task instantiation function for one of the task descriptors

inside the task instantiation function of the other task descriptor. However, we do not inline the

body functions because the memory alias analysis has already been done.

Next, we use the lists described earlier to build conditional statements which will deter-

mine at runtime whether or not to create a relationship instance. The optimization returned which

pairs of memory accesses possibly had equivalent pointers. To determine if the pointers are truly

equivalent, the list of indices for the first pointer must be equal to the list of indices for the sec-

ond pointer. If any index from one pointer’s list is not equal to the corresponding index from the

other pointer’s list, the pointers are not equivalent. Conditional statements which will perform this

analysis at runtime are inserted into the relationship instantiation function for each pair of possibly

equivalent pointers. An additional conditional statement is added to determine if any pair of possi-
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CREATERELINST()

1 Insert second task instantiation function into the first task instantiation function
2 for each pair of possibly equivalent pointers
3 Create a conditional statement to check if all corresponding indices from the lists are equal
4 Create a conditional statement to check if any of those conditional statements are true
5 Create a branch conditional on this statement to the createrel block
6 for each index used in any of the conditional statements
7 Run the backward slice memory alias analysis on the index
8 Copy over all of the sources that are not already in the relationship instantiation function
9 Create the call to createrel

Figure 5.11: Algorithm for creating the relationship instantiation functions.

bly equivalent pointers is indeed equivalent. If even just one of these pairs is truly equivalent, the

relationship must exist.

Since the instructions from the body functions are not in the relationship instantiation func-

tion, it is possible that some of the indices depend on values that are not in the instantiation func-

tion. To resolve this issue we must copy over all needed values from the cross-product function.

We once again run the backward slice, but this time on the indices. We copy all of the sources of

each index to the relationship instantiation function. This ensures that the conditional statements

which were just created are valid. Figure 5.14 shows the relationship instantiation function for

the previous example after creating the conditional statement and copying over all needed values.

Another optimization which could be considered would be to remove any conditions on constant

values. This could result in either a more simple overall condition or completely prove the condi-

tion false without needing to check the other index condition statements.

The final step in creating the relationship instantiation function is creating the call to CRE-

ATEREL. Most of the parameters are fairly simple because we are only creating data dependence

relationships and we are not passing information along the relationships yet. The names are a little

more difficult to determine, however, the backward slice helps us once again. The name is passed

into the call to CREATETASK in the task instantiation function. We copy that value over to the re-

lationship instantiation function. We run the backward slice on that value for each task descriptor
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vo id c r o s s ( i 8 ∗ %A, i 8 ∗ %B)
{
e n t r y :

b r l a b e l %bb

bb :
%i n d v a r = p h i i 3 2 [ 0 , %e n t r y ] , [ %i n d v a r . nex t , %b b e x i t ]
%1 = g e t e l e m e n t p t r i 8 ∗ %A, i 3 2 1
%2 = b i t c a s t i 8 ∗ %1 t o i 3 2 ∗∗
%3 = l o a d i 3 2 ∗∗ %2
%4 = g e t e l e m e n t p t r i 3 2 ∗ %3, i 3 2 %i n d v a r
%5 = l o a d i 3 2 %4
%6 = add i 3 2 %5, 1
s t o r e i 3 2 %6, i 3 2 ∗ %4
br l a b e l %bb2

bb2 :
%i n d v a r 2 = p h i i 3 2 [ 0 , %bb ] , [ %i n d v a r 2 . nex t , %bb2 ]
%7 = g e t e l e m e n t p t r i 8 ∗ %B , i 3 2 1
%8 = b i t c a s t i 8 ∗ %7 t o i 3 2 ∗∗
%9 = l o a d i 3 2 ∗∗ %8
%10 = g e t e l e m e n t p t r i 3 2 ∗ %9, i 3 2 %i n d v a r 2
%11 = l o a d i 3 2 %10
%12 = add i 3 2 %11, 1
s t o r e i 3 2 %12, i 3 2 ∗ %10

%i n d v a r 2 . n e x t = add i 3 2 %i n d v a r 2 , 1
%e x i t c o n d 2 = icmp ne i 3 2 %i n d v a r 2 . nex t , 3
b r i 1 %e x i t c o n d 2 , l a b e l %bb2 , l a b e l %b b e x i t

b b e x i t :
%i n d v a r . n e x t = add i 3 2 %i n d v a r , 1
%e x i t c o n d = icmp ne i 3 2 %i n d v a r . nex t , 3
b r i 1 %e x i t c o n d , l a b e l %bb , l a b e l %r e t u r n

r e t u r n :
r e t vo id

}

Figure 5.12: A cross-product function with multiple memory accesses in its trace to an equivalent
function.
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vo id c r o s s ( i n t ∗ A, i n t ∗ B)
{

f o r ( i n t i =0 ; i <3; i ++){
A[ i ] + + ;
f o r ( i n t j =0 ; j <3; j ++){

B[ j ] + + ;
}

}
}

Figure 5.13: The same cross-product function in the C programming language.

and copy all of the sources to the relationship instantiation function. We now have the names as

well as all values needed by the names and can pass the names into the call to CREATEREL.

5.2.3 Generating Calls to RELDESC

The calls to RELDESC only have three parameters. The first two are the ids for the task

descriptors. Since we know which task descriptors the relationship descriptor is for, we have those

ids. The last parameter is the relationship instantiation function which we just created. The final

step is placing the calls to RELDESC in the correct place in the parallel section function. The only

requirement is that they are placed after the calls to TASKDESC for their task descriptors, so we

place them immediately after the later of the two calls to TASKDESC.
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vo id r e l I n s t ( i 8 ∗ %A, i 8 ∗ %B)
{
e n t r y :

b r l a b e l %bb

bb :
%i n d v a r = p h i i 3 2 [ 0 , %e n t r y ] , [ %i n d v a r . nex t , %b b e x i t ]
%4 = g e t e l e m e n t p t r i 3 2 ∗ %3, i 3 2 %i n d v a r
b r l a b e l %bb2

bb2 :
%i n d v a r 2 = p h i i 3 2 [ 0 , %bb ] , [ %i n d v a r 2 . nex t , %b b 2 e x i t ]
%cond = icmp eq i 3 2 %i n d v a r , i 3 2 %i n d v a r 2
%cond2 = icmp eq i 3 2 1 , i 3 2 1
%cond3 = and %cond , %cond2
br i l %cond3 , l a b e l %yesBB , l a b e l %b b 2 e x i t

yesBB :
/ / The c a l l t o c r e a t e r e l w i l l go h e r e
b r %b b 2 e x i t

b b 2 e x i t :
%i n d v a r 2 . n e x t = add i 3 2 %i n d v a r 2 , 1
%e x i t c o n d 2 = icmp ne i 3 2 %i n d v a r 2 . nex t , 3
b r i 1 %e x i t c o n d 2 , l a b e l %bb2 , l a b e l %b b e x i t

b b e x i t :
%i n d v a r . n e x t = add i 3 2 %i n d v a r , 1
%e x i t c o n d = icmp ne i 3 2 %i n d v a r . nex t , 3
b r i 1 %e x i t c o n d , l a b e l %bb , l a b e l %r e t u r n

r e t u r n :
r e t vo id

}

Figure 5.14: The relationship instantiation function after creating the condition and moving over
needed values.
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Chapter 6

Evaluation

The true measure of success for this work is its ability to transform several different ap-

plications into the EPL representation. It is not necessary that this first concurrency compiler can

successfully transform any type of benchmark into the EPL representation. This work is meant to

prove that the parallelism inherent in a serial application can be discovered and exposed automati-

cally with only a few extra directives inserted by the programmer. The most effective construction

of this proof is in the form of a working concurrency compiler. This proof is realized with a concur-

rency compiler that can successfully transform even just a handful of diverse applications. Future

concurrency compilers will be charged with the task of expanding this set of applications.

This chapter focuses on the evaluation of the concurrency compiler, which, as previously

stated, accomplishes the goals of this work. In addition to successfully transforming applications

into the EPL representation, the concurrency compiler can be evaluated with other metrics such

as compilation time and generated code size. Future concurrency compilers will necessarily be

optimized according to these metrics.

6.1 Methodology

The incomplete nature of the CIRA project introduces difficulties in the evaluation of only

a single piece of it. Ideally the evaluation of a concurrency compiler would be done in a complete

toolchain. In particular, the adaptation compiler, which is the next step in the toolchain, is still

under development. Only one adaptation compiler exists, and it only has one adaptation strategy

which is based on the inspector-executor strategy. It doesn’t do any sort of analysis to determine

the best adaptation strategy. Because of these limitations, the performance of many benchmarks

cannot be improved. If the correct adaptation strategy does not yet exist, the adaptation compiler

could significantly reduce performance. Despite these limitations, we have been able to complete
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an evaluation of the concurrency compiler on several benchmarks of various types. This evaluation

includes several metrics which will be described shortly.

6.1.1 Benchmarks

Matrix Multiply The first benchmark is a naive matrix multiply. This benchmark was very

useful during development because of its simplicity and directness. It does, however, have one

complex element: hierarchy. It contains a triple-nested loop resulting in many levels of hierar-

chy. The concurrency compiler’s ability to transform this benchmark into the EPL representation

demonstrates its secure handle on hierarchy.

Jacobi Sparse Iterative Solver When the EPL representation was initially developed in [11]

and [10] the benchmark used to evaluate its correctness was the Jacobi sparse iterative solver. The

Jacobi solver multiplies a sparse matrix by a dense vector to produce a new dense vector. This

new vector is used as the input to the next iteration. The solver continues to iterate until the vector

converges. The Jacobi solver was originally chosen because of its simplicity, high potential for

parallelism, and presence in many important applications.

For the development of the EPL representation, the transformation from the Jacobi solver

application to the EPL representation was done by hand and was not a simple task. The con-

currency compiler’s ability to automatically generate the EPL representation for the Jacobi solver

provides a direct example of automatically discovering and exposing the parallelism in a program

to get the same results as if a programmer had done it herself.

Gauss-Seidel Sparse Iterative Solver The Gauss-Seidel sparse iterative solver is very similar to

the Jacobi sparse iterative solver. The main difference is in the recurrence equation. More specific

differences are described in [11]. The Gauss-Seidel solver has many of the same properties as

the Jacobi solver and was also transformed into the EPL representation by hand. Once again this

solver provides an opportunity to compare a transformation done by hand and one done by the

concurrency compiler.

183.equake, 175.vpr, and jpegdec The first three benchmarks were similar in that they all were

used in the development of different pieces of the CIRA project. Even the adaptation compiler was
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developed with an adaptation strategy designed for these benchmarks. They are also similar in that

they are all quite simple. There was no need for the concurrency compiler to find specific parts

of the program that would be most beneficial to parallelize because the whole program was that

one main piece. None of these programs are complex enough to merit the parallelization of only

specific parts.

An important part of the evaluation of the concurrency compiler is to show that it can

parallelize only specific parts of a large and complex program. It is also important that it works

on benchmark programs found in well-known and often used benchmark suites. The last three

benchmarks used in this evaluation satisfy this requirement.

The first of these benchmarks is 183.equake and is part of the SPEC CFP2000 benchmark

suite. It calculates seismic wave propagation. The next benchmark is 175.vpr. It is part of the SPEC

CINT2000 benchmark suite and performs FPGA circuit placement and routing. It is important

to show that the concurrency compiler can work on both integer and floating point benchmark

programs. The last benchmark is jpegdec and is part of the MediaBench benchmark suite. It

performs JPEG image compression decoding. All of these benchmark programs were first profiled

to determine which sections would be most beneficial to parallelize. Only these sections were

transformed into the EPL representation.

6.1.2 Metrics

In addition to the limitations the incomplete CIRA toolchain places on the benchmarks,

certain metrics that could be used to evaluate the concurrency compiler are severely limited. These

limitations on the metrics are a result of how closely the concurrency and adaptation compilers

work together to influence the metrics. For example, the amount of time it takes to instantiate the

task descriptor graph is mostly a metric for the adaptation compiler since it defines how, or even

if, instantiation will occur at runtime. However, the task descriptor graph is formed by the concur-

rency compiler. Therefore, a more effective concurrency compiler could lead to better instantiation

times. We could also consider the adaptation compiler’s job of analyzing the EPL representation

in order to choose the best adaptation strategy. With a more effective concurrency compiler, this

analysis could be improved and sped up. However, with an adaptation compiler that does not do

any analysis to choose an adaptation strategy, this metric becomes impossible to measure. The
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following metrics are the most pertinent to the concurrency compiler and the results are the least

influenced by the adaptation compiler.

Bitcode File Size This metric evaluates the code size overhead introduced in the generation of

the EPL representation. Although code size is not a limiting factor on most systems, it is important

that the concurrency compiler does not introduce an inordinate amount of storage overhead. The

comparison is done between the bitcode files at different steps of the CIRA flow. A bitcode file is

first generated by LLVM. Because the concurrency and adaptation compilers are implemented as

series of LLVM passes, they also generate bitcode files. This makes for direct comparison between

the original LLVM bitcode, the bitcode after having run the concurrency compiler, and the bitcode

after having run the adaptation compiler.

Compilation Time A far more important metric is the time it takes the concurrency compiler to

run. This is especially important in research and development environments where an application

may need to be changed and recompiled many times during development. There are many im-

portant comparisons on compilation time. First is the comparison to the LLVM compilation time.

This is the time it takes to compile the original code into LLVM bitcode. We can also compare

concurrency compilation time to adaptation compilation time as well as linking time.

6.2 Measurements

The most important measurement is the verification that the application runs successfully

after being converted into the EPL representation by the concurrency compiler. All six benchmarks

ran successfully and generated the exact same output as the serial versions.

6.2.1 Bitcode Size

To break down how much each piece of the CIRA flow contributes to the increase in code

size, the bitcode files have been compared. Figure 6.1 shows the portions of the code size increase

that each piece is responsible for. Table 6.1 shows the increase in overall bitcode size caused

directly by the concurrency compiler and the increase in overall bitcode size caused directly by

the adaptation compiler. This table shows that although the concurrency compiler introduces more
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Figure 6.1: Code Size Overhead.

overhead than the adaptation compiler, the overall increase is not very high. In every case the

overhead introduced by the concurrency compiler is less than the LLVM base code size, and with

larger benchmarks the percentage increase is even lower.

6.2.2 Compilation Time

Perhaps the most important metric for a compiler is the compilation time. To give a good

perspective on the overall effect the concurrency compiler has on compilation time we have com-
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Table 6.1: Bitcode size increase due to the concurrency compiler and adaptation compiler.

Benchmark Concurrency Increase Adaptation Increase
dense-mm 22.941% 14.673%

jacobi 66.619% 30.622%
gauss-seidel 70.524% 33.243%
183.equake 79.690% 15.738%

175.vpr 16.379% 0.201%
jpegdec 19.435% 0.172%

Table 6.2: Increase in compile time due to concurrency compiler, adaptation compiler, and linker.

Benchmark Concurrency Increase Adaptation Increase Linker Increase
dense-mm 18.401% 9.550% 18.622%

jacobi 28.033% 6.859% 11.246%
gauss-seidel 27.791% 7.378% 11.483%
183.equake 126.999% 28.673% 36.916%

175.vpr 69.196% 28.222% 9.033%
jpegdec 67.599% 26.517% 5.558%

pared it to the LLVM compilation time, adaptation compilation time, and linking time. Figure 6.2

gives a good overview of which compilers take the most time. Table 6.2 shows the overall compi-

lation time added by each piece.

For most benchmarks the concurrency compilation time is much shorter than the LLVM

compilation time, though longer than the adaptation compile time and the linking time. Because

the adaptation compiler does not do any analysis to choose an adaptation strategy, shorter compile

times are expected. Although in some cases the concurrency compiler adds a significant amount

of compilation time, we expect that with optimizations added to future concurrency compilers to

increase efficiency, the compilation time will be reduced sufficiently.

6.2.3 Comparison to Hand-written EPL Representation

The final comparisons used to determine the effectiveness of this concurrency compiler are

comparisons to the hand-written EPL representation presented in [11]. The only benchmark with a

hand-written EPL representation with reported metrics in [11] is the Jacobi Sparse Iterative Solver.

The first comparison is in compilation time shown in table 6.3. As expected, the hand-written EPL
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representation outperforms the generated EPL representation, and although the difference is more

than double, we expect that number to drop as the concurrency compiler is optimized to run more

efficiently.

Another interesting comparison is of the actual pieces of the EPL representation. In both

cases the task body functions are taken straight out of the application code, so they are not of

interest. The task and relationship instantiation functions, however, include more than just the

application code. Because of the complexity of the construction of relationship instantiation func-

59



Table 6.3: Generated compile time compared to hand-written compile time.

Version Percent Increase Over Serial Version
Hand-Written 3.506%

Generated 11.377%

Table 6.4: Task instantiation function comparison between hand-written and generated versions of the
jacobi benchmark.

Metric Hand-Written Generated
Average Number of Lines 31.25 30.00

Average Number of Basic Blocks 3.75 2.20
Average Lines per Basic Block 8.33 13.64

tions, a comparison between generated and hand-written relationship instantiation functions can

be very telling of the overhead introduced by the concurrency compiler. The comparison is done

on the LLVM bitcode. Table 6.4 compares the average number of instructions, number of basic

blocks, and instructions per basic block for task instantiation functions of the hand-written and

generated version of the jacobi benchmark. Table 6.5 compares the same metrics for relationship

instantiation functions of the hand-written and generated version of the jacobi benchmark. The

task instantiation functions are actually very similar for all metrics. The generated version appears

to have slightly fewer, but larger, basic blocks. As expected the relationship instantiation functions

are quite a bit bigger for the generated version. Although the basic blocks are of similar sizes, the

generated version has about twice as many.

A final comparison between the hand-written and generated versions of the jacobi bench-

mark is a comparison of the actual functions. Because of the size difference in relationship instan-

tiation functions, a comparison of these functions could be useful to ensure the generated functions

Table 6.5: Relationship instantiation function comparison between hand-written and generated
versions of the jacobi benchmark.

Metric Hand-Written Generated
Average Number of Lines 69.33 123.82

Average Number of Basic Blocks 7.00 14.91
Average Lines per Basic Block 9.90 8.30
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vo id i n i t 0 T o S u b ( i n s t i t i n i t 0 , r o w s t r u c t ∗ r o w r e s u l t s 1 ,
s t r u c t j a c o b i & param1 , do ub l e t o l 1 , i n s t i t sub ,
r o w s t r u c t ∗ r o w r e s u l t s 2 , s t r u c t j a c o b i & param2 , d ou b l e t o l 2 )

{
f o r ( i n t i = 0 ; i < param1 . ma t r i x−>m; i ++)
{

i n t name1 [ 2 ] = { i , 0 } ;
f o r ( s i z e t j = param2 . ma t r i x−>rows [ i ] ;

j < param2 . ma t r i x−>rows [ i + 1 ] ; j ++){
i n t name2 [ 2 ] = { i , j } ;
c r e a t e r e l ( name1 , 0 , name2 , 0 ,RAW NODATA, OneToTwo , 0 ) ;

}
}

}

Figure 6.3: Hand-written C code for a relationship instantiation function.

are creating the same relationships and are simple enough to make the adaptation compiler’s anal-

ysis possible. Figure 6.3 shows the hand-written C code for one of the relationship instantiation

functions. Since, only LLVM bitcode is generated, the bitcode must be translated by hand into

C-like pseudocode for the comparison. The pseudocode for the equivalent generated function is

shown in figure 6.4.

The two functions are very similar, but there are some differences.

• The two versions have different descriptor time variables which leads to different argument

lists.

• Despite standard optimizations, the generated function is still not as simple as the hand-

written version. For example, the PARENTNAME variables could be optimized out.

• The generated function creates some extra, unnecessary relationships. Showing other re-

lationship instantiation functions would verify that the extra relationships do not affect the

ordering of the tasks. An example of the difference is that the hand-written version creates

relationships stating that task A needs to precede task B, and task B needs to precede task C.

The generated version also creates a relationship stating that task A needs to precede task C,

which is already implied by the previous relationships.
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vo id i n i t 0 T o S u b ( i n s t i t i n i t 0 , S p a r s e M a t r i x ∗ newResul t1 ,
S p a r s e M a t r i x ∗ v e c t o r 1 , S p a r s e M a t r i x ∗ mat r ix1 ,
S p a r s e M a t r i x ∗ o l d R e s u l t 1 , d oub l e t o l 1 , i n t tmp1 ,
i n t m i n I t e r a t i o n s 1 , boo l ∗ done1 ,
i n s t i t sub , S p a r s e M a t r i x ∗ newResul t2 ,
S p a r s e M a t r i x ∗ v e c t o r 2 , S p a r s e M a t r i x ∗ mat r ix2 ,
S p a r s e M a t r i x ∗ o l d R e s u l t 2 , d oub l e t o l 2 , i n t tmp2 ,
i n t m i n I t e r a t i o n s 2 , boo l ∗ done2 )

{
f o r ( i n t i 1 = 0 ; i 1 < mat r ix1−>m; i 1 ++){

i n t parentName1 [ 1 ] = { i 1 } ;
i n t name1 [ 2 ] = { parentName1 [ 0 ] , 0} ;
f o r ( i n t i 2 = 0 ; i 2 < mat r ix2−>m ; i 2 ++){

i n t k =0;
f o r ( s i z e t j = ma t r ix2−>rows [ i 2 ] ;

j < mat r ix2−>rows [ i 2 + 1 ] ; j ++ , k ++){
i n t name2 [ 2 ] = { parentName2 [ 0 ] , k } ;
i f ( parentName1 [ 0 ] <= parentName2 [ 0 ] ) {

c r e a t e r e l ( name1 , 0 , name2 , 0 , RAW NODATA, OneToTwo , 0 ) ;
}

}
}

}
}

Figure 6.4: Pseudo-code for the equivalent generated relationship instantiation function.

6.3 Summary

The concurrency compiler successfully transforms several benchmark programs into the

EPL representation. As with all compilers, it adds overhead to both the overall code size and

the compilation time. However, the overhead in either case is not excessive and can be reduced

with future optimizations. The difference in code size with the hand-written version is also not

excessive. In six different benchmark programs, we have shown that a compiler can automatically

discover and expose the parallelism in a serial program. Although the metrics on the concurrency

compiler gave favorable results, the most important finding in this evaluation is that the goal of this

work has been realized.
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Chapter 7

Conclusion

This work has shown that parallelism inherent in serial applications can be automatically

discovered and exposed. It has demonstrated this proof of concept in the form of the first con-

currency compiler for the CIRA project. Additionally, many analyses were developed for this

concurrency compiler that will become the basis for many future concurrency compilers. The con-

currency compiler has been shown to successfully transform six different benchmark programs

into the EPL representation. These benchmarks include a wide variety of application styles. A

great deal of hierarchy was present in the benchmark programs, and not only is the concurrency

compiler able to recognize the hierarchy, the EPL representation has also been extended to support

it.

7.1 Future Work

As with any successful project, the end is simply another beginning. The goals of this

work have been accomplished, but there are many other projects that build on this work. There are

also numerous ways to expand and improve upon this work. The following is certainly not an all

inclusive list, but it does contain the most important and pertinent items.

Support for all types of task descriptors The EPL representation has support for many types

of task descriptors which are still not included in the concurrency or adaptation compiler. While

loops and blocks cover the basics, the generate EPL representation could be more powerful with

the inclusion of other types of task descriptors.

Ability to handle many types of relationships The EPL representation was designed for more

than just data dependences. Data dependences are all that’s necessary for correct execution, but
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for the CIRA project to be successful, it needs to produce significant performance improvement.

Additional relationships such as locality relationships could produce that performance increase.

Ability to pass values along relationships Passing values through descriptor time and parent

variables is effective, but can become very slow if it results in many cache misses. To reduce

that performance penalty the EPL representation has a method to pass values along relationships.

This would eliminate many memory accesses that often result in cache misses. We anticipate

that extending the concurrency compiler to generate this type of value passing would significantly

improve performance.

More robust task descriptor generation Many of the algorithms used to generate the task de-

scriptors had limitations on the code structure they work on. By using better control-flow algor-

thims making use of dominator trees, post dominator trees, and other analyses, future concurrency

compilers could handle many more types of code structures.

Optimize relationship instantiation function The creation of the relationship instantiation func-

tion is not currently streamlined. The relationship instantiation function is built to ensure it does

not miss any relationships or create an incorrect relationship. Much of the process for creating this

function could be optimized. For example, constants can reduce or even eliminate long conditional

statements. An optimization based on this concept would simply the relationship instantiation

function.

Create better EPL representation Aside from what has already been mentioned, there are al-

ways new ideas and new goals to work towards. Many of these could necessitate a more effective

construction of the EPL representation. While this work focused on generating a correct EPL rep-

resentation. Future concurrency compilers will need to ensure they are creating a very effective

and efficient EPL representation.

Reduce compilation time and code size overhead Improving the metrics used to evaluate a

concurrency compiler will always improve the concurrency compiler. Certainly as concurrency
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compilers become more effective they will also require more size and compilation time. Finding

ways to reduce those metrics will improve the concurrency compiler.

Increase the number and styles of applications it works on This first concurrency compiler

works on six different benchmark programs of varying application styles. However, there are

thousands of application styles in the world that concurrency compilers could potentially work on.

One of the great strengths of CIRA is that it should be able to work on just about any program.

Future concurrency compilers will need to achieve that lofty goal before the entire CIRA project

can.

7.2 Summary

The many-core era is on the horizon and programmers are struggling to write parallel pro-

grams. The good news is that they should not have to write a completely parallel program. The

task for them is being simplified greatly. An understanding aided by a profiler of the parts of the

code that would benefit most by being parallelized is all they will need to create parallel programs

that will even adapt to the environment and resources available. This is the future that CIRA could

create. One of the very first milestones has been achieved. This work has shown that parallelism

inherent in serial applications can be automatically discovered and exposed by a compiler.
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