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ABSTRACT 
 

Application of Two-Color Pyrometry to Characterize the Two-Dimensional  
Temperature and Emissivity of Pulverized-Coal Oxy-Flames 

 
 

Teri Snow Draper 
Department of Mechanical Engineering, BYU 

Master of Science 
 

Oxy-combustion is a developing technology that enables carbon dioxide (CO2) capture. 
Flame temperature and emissivity data were taken on a 150 kWth, pulverized-coal, burner flow 
reactor (BFR) that has been modified to run oxy-combustion with pure CO2 as simulated 
recycled flue gas. Data were taken at 78 conditions in which three parameters were varied, 
namely: the swirl angle of the fuel stream, the location of the oxidizer as it exited the burner, and 
the flow rate of diluent (pure CO2) added to the outer, secondary stream. At each condition, 
digital color images were obtained using a calibrated RGB camera. The images were used to 
determine lift-off length, temperature, and emissivity. The mathematical theory of two-color 
pyrometry and the calibration process used to measure the camera sensitivity is presented. The 
two most commonly used emissivity models in two-color pyrometry, the Hottel and Broughton 
and gray models, were investigated to determine which was the most appropriate for use in an 
oxy-coal flame. 

 
 A significant difference of 7% in the temperature and 24% in the emissivity results were 
found when processing an image with the Hottel and Broughton and gray emissivity models. The 
Hottel and Broughton model was selected for processing, because the Hottel and Broughton 
model is more appropriate for soot which appeared to dominate flame emissions. Using the two-
color data, several trends were documented. Flame temperature was seen to decrease with 
increasing CO2 flow rate. Within a given flame along the axial direction, temperature was seen to 
correlate with emissivity. As emissivity increased, flame temperature was seen to decrease. 
Many flames were lifted from the burner exit. Lift-off length was decreased and the flames 
became more attached by: 1) Increasing the amount of swirl given to the fuel stream, 2) Adding 
O2 to the center primary tube or 3) Decreasing the flow of secondary CO2. At higher center 
oxygen flow rates (above 8.5 kg/hr), the O2 jet velocity was large causing increased entrainment 
and mixing which degraded burner performance. 
 
 
 
 
 
 
 
 
 
Keywords:  oxy-combustion, pulverized coal, flame, temperature, two-color pyrometry, 
emissivity, Hottel and Broughton, RGB, camera 
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1 INTRODUCTION 

The following section gives a brief background on the need for oxy-coal combustion 

research in the energy industry, a description of oxy-combustion and a summary of the research 

objectives in this work. 

1.1 Background 

Awareness of the environmental costs associated with energy production is increasing, as 

is the global demand for low-cost energy. The United States Energy Information Administration 

(EIA) reports that coal currently provides 45% of the electric power in the United States [1]. 

While the use of sustainable energy technologies is increasing, the demand for energy is 

increasing as well. The EIA predicts that electricity provided by coal will only drop by 2% by 

2035, which will still constitute a net increase in coal derived power. Therefore, the vital role 

coal plays in energy production in the United States and the world cannot be immediately 

replaced with alternative energy sources. Research must be conducted to find ways to alleviate 

the environmental concerns associated with burning coal. The dangerous pollutants associated 

with coal combustion (NOx, SOx, Hg) are already regulated and the technology exists to keep 

those pollutant emissions below regulation limits. However, greenhouse gas emissions, 

particularly carbon dioxide (CO2), have recently been defined as pollutants and will be regulated 

in the future. Ways to efficiently trap and sequester CO2 are currently being explored. One 



2 

promising method enabling CO2 capture is called oxy-combustion, in which fuel is burned in O2 

and re-circulated exhaust. This produces water (H2O) and CO2 as the two major by-products 

from which the CO2 is easily extracted.   

1.2 Oxy-combustion 

Due to its prominence in energy production, coal-air combustion has been studied 

extensively; however, there is still much to learn about coal oxy-combustion. The substitution of 

CO2 for nitrogen (N2) as a diluent in the combustion environment changes the combustion 

process. When the nitrogen in air is replaced by the same concentration of CO2, the temperature 

of the flame decreases due to the higher heat capacity of CO2. Comparable heat transfer profiles 

occur when the oxygen concentration is around 30-35%, depending on the type of coal used [2]. 

Unlike air combustion, oxy-combustion allows the control of the oxidizer to diluent ratio. This 

ratio is manipulated by changing the amount of flue gas that is recycled in the system. Increasing 

the ratio can increase the speed of reaction and produce higher temperatures than in air 

combustion. The increased ratio could enable boiler size reductions and recycling the flue gas 

can cause a reduction in NOx emissions. Retrofitting current air-combustion coal plants to oxy-

combustion plants is possible [2]. 

Because heat transfer is the driving force behind energy production, the differences in 

heat transfer caused by the substitution of CO2 for N2 is of interest. Heat transfer is driven by 

temperature gradients; thus, one particular area of interest is to quantify the changes in the flame 

temperature when varying the oxidizer to diluent ratios. Quantifying these changes can be 

difficult. Thermocouples, suction pyrometers and laser optics are typical flame temperature 

diagnostics, but each presents challenges in use on oxy-coal flames. These challenges will be 

discussed further in Section 2.1. The technique used in this work to analyze the flame 
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temperature is two-color pyrometry. Two-color pyrometry is a non-intrusive diagnostic that can 

provide a two-dimensional mapping of temperature. Two-color pyrometry utilizes the emission 

from a surface or semi-transparent media at two wavelengths to calculate a temperature and 

emissivity. The quantification of the flame temperature and emissivity as a function of oxygen 

location, secondary CO2 flow rate and swirl angle will be useful in characterizing oxy-

combustion flames for practical applications. 

1.3 Research Objectives 

The objective of this work was to measure the flame temperature and visible band 

emissivity for a matrix of operating conditions. The matrix included combinations of three 

parameters. The parameters varied are summarized below in Table 1-1. The amount of oxygen 

put through the central tube of the burner was changed from 4-50% of the total oxygen supplied 

(42.71 kg/hr), or a mass flow rate of 1.7-21.4 kg/hr. Next, the amount of CO2 added to the 

secondary stream as diluent was changed from 0-40 kg/hr. Finally, the swirl angle in the fuel 

stream was changed between three discrete angles: 0, 15 and 40°.   

Concurrent with this work, other measurements were taken that are not included here [3]. 

The flue gas was analyzed with an FTIR to get NO values at each condition. Ash samples were 

collected to yield burnout data for each condition. All of these data were collected on the 

Brigham Young University (BYU) Burner Flow Reactor (BFR) with pure CO2 used to simulate 

recycled flue gas. 

Table 1-1. Summary of oxy-combustion conditions examined. 

Parameter Variation 
Oxygen in Center Stream (kg/hr) 1.7, 4.3, 8.5, 12.8, 17.1, 21.4 
CO2 in Secondary Stream (kg/hr) 0, 10, 20, 30, 40 
Swirl Angle of Fuel Stream (°) 0 , 15, 40 
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2 LITERATURE REVIEW 

Currently, there is no inexpensive, simple, reliable way of taking temperature 

measurements in a particle-laden flame. Yet accurate temperature measurements are crucial in 

developing knowledge and expertise in combustion. Oxy-combustion produces a different 

composition of gases compared to air-fired combustion, and therefore can change the 

temperature and heat transfer profiles of the flame. The ability to reliably measure the 

temperature in an oxy-combustion flame is instrumental in developing this technology further. 

This section contains a review of potential temperature measurement methods for use in particle 

combustion, while investigating two-color pyrometry in depth, as that is the diagnostic used in 

this work. This section also contains a review of two emissivity models for their use in two-color 

pyrometry for coal combustion.  

2.1 Measurement Methods 

The following sections review temperature measurement options for coal-fired flames 

and the associated advantages and disadvantages of using these methods.    

2.1.1 Thermocouples 

Thermocouples are the most commonly used instruments for finding temperature in 

engineering applications. For particle-laden applications, there are multiple problems associated 
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with their use. Even costly, platinum-rhodium thermocouples have a temperature limit of 1450 

°C, while combustion gas temperatures can be well over 2000 °C. Particle-laden flames can 

corrode and form deposits on thermocouple beads, thus reacting with the metal surfaces and 

producing noise and increasing error. Large thermocouple beads can be used to better enable 

their survival in the harsh combustion conditions, but this causes a slow response time and the 

thermocouple is more affected by radiation from the cooler reactor walls. Radiation corrections 

can be applied to thermocouples, but the uncertainty after correction can still be on the order of 

hundreds of degrees. Finally, thermocouples only provide a point measurement. A coal flame 

sheet constantly oscillates, moving the flame in and out of the thermocouple measurement 

volume; thus, the thermocouple does not read the flame temperature, but an average of the 

reactant and product gases. 

2.1.2 Suction Pyrometers 

Suction pyrometers, or high velocity thermocouples, are probes designed to pull a high 

velocity jet of gas past a shielded thermocouple. Suction pyrometers are the industry standard for 

combustion temperature measurements in spite of their numerous limitations. The probe and 

thermocouple must be must be built of expensive materials in order to withstand the high 

temperatures. Even when using high-cost materials, the temperatures still can exceed their 

melting point, especially during oxy-combustion. Due to the suction of particle-laden gas, the 

pyrometers often clog and cannot be used for long, continuous periods of time. The pyrometers 

require the use of a pump or high pressure gas or steam in order to produce the suction of gas 

past the thermocouple. This can be complex and expensive to implement. Like thermocouples, 

suction pyrometers provide single, point measurements. These measurements are spatially 
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averaged over the region from which the volume of gas is drawn into the pyrometer and 

temporally averaged over the response time of the shielding material. 

2.1.3 Laser Optics 

Complicated optical systems have been implemented to find the temperature in particle-

laden flames. One such example is Coherent Anti-Stokes Raman Spectroscopy, or CARS. This 

method utilizes three lasers beams passing through the flame and being measured by receivers. 

CARS  is expensive, difficult to operate, and potentially hazardous. The expense and 

complications of safety issues due to the use of a laser must be addressed in the system 

implementation. The solid particles in the flame often attenuate or scatter the laser beams, 

resulting in intermittent signals to the receivers [4]. This is especially true in large boilers where 

the laser beam has to travel over a longer length, rendering this method ineffective for large-scale 

measurements. 

2.1.4 Two-Color Pyrometry 

Two-color pyrometry is a non-intrusive diagnostic that can provide a two-dimensional 

mapping of temperature. Two-color pyrometry utilizes the emission from a surface or semi-

transparent media at two wavelengths to calculate a temperature and emissivity. Two-color 

pyrometry has been used extensively in many combustion applications but its application is 

relatively new to coal flames. Reviews and discussions on the uncertainties of the two-color 

method for measuring temperature and KL can be found by Ladommatos and Zhao [5] and 

others ( [6], [7], [8], [9] ). 

 The signal for the two colors can be obtained by several methods. The simplest is to 

obtain emission from a single line of sight (provides a point measurement) which is split and 
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then optically filtered to produce two narrow bands of light. Shaw and Essenhigh [10] used this 

method on a laboratory scale reactor using pulverized coal to yield point temperature 

measurements. Lu and Yan [11] used a single, CCD camera to measure the two-dimensional 

(2D) temperature in a 500 kW pulverized-coal flame. The light from the flame was split and 

filtered into three narrow wavelength beams and captured by the CCD detector on the camera. 

The signals for the three beams were processed continuously to provide online temperature 

readings. The effects on temperature with varied air-fuel ratios, fuel flow rates, and particle sizes 

were examined. Huang et al. [12] used a similar method to yield 2D, continuous temperature 

measurements using a single CCD camera with rotating, narrow (10 nm) bandpass filters. Three 

hundred images were taken over a period of thirty seconds with each bandpass filter. The signals 

for each wavelength were averaged and then used to compute the average, 2D flame temperature.   

Lou and Zhou [13] presented a novel use of RGB, CCD cameras to deduce the 

temperature distribution in a two-dimensional cross-section of a 300 MW, air combustion coal 

boiler. Four CCD cameras were mounted on a horizontal plane at four corners of the boiler and 

provided RGB video signals simultaneously. These signals were combined and transferred to a 

computer where the real-time flame images were displayed as an online, continuous output. The 

RGB data from the four cameras were used in a one-step, non-iterative calculation utilizing a 

modified Tikhonov regulatization method to produce the 2D flame temperature of the horizontal 

cross-section of the boiler. Since the calculation was one-step and non-iterative, the processing 

time was less than 2 seconds per image, which enabled this method to be used as an online 

temperature measurement. 

Huajian et al. [14] implemented a system to deduce three-dimensional (3D) temperature 

distribution in a 660 MW furnace using twenty, RGB, CCD cameras. The system was validated 
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through the use of a portable, 2D pyrometry system using a single CCD camera and an infrared 

pyrometer. The portable system was considered validated by the infrared pyrometer with a 

difference in temperature readings of less than 7%. This difference was assumed to be caused by 

the increased radiation seen by the infrared pyrometer from the radiating combustion gases. 

Since the output of the portable system agreed well with the average temperature measurements 

from the 3D system at three different loads and along the height of the reactor, the 3D system 

was considered validated. 

An innovative method for collecting two-dimensional, two-color images was developed 

by Lu et al. [15],where a single, RGB color, digital camera was used to filter the light and collect 

the image. An RGB camera uses a mask over a CCD array to allow a color band to reach 

adjacent pixies in the detector array. Three color bands are available: red, green, and blue. This 

method eliminates the need for an image splitter, a narrow band filter and multiple CCD arrays. 

The advantage of the RGB, two-color system is that it requires only a single camera and does not 

require additional optics. The disadvantage is that each color band is relatively wide (150-200 

nm) compared to the narrow bands (1-25 nm) that can be selected when the image is split. The 

narrow band allows better separation between wavelengths and increases the sensitivity of the 

measured intensity ratio used to determine temperature. Narrow bands can also be selected to 

avoid interfering gases that may absorb light emission, while broad band measurements must 

assume the narrow bands of interference from radiating gases is negligible. As radiation from 

combustion gases primarily occurs in the infrared spectrum and this system only collects light 

from the visible spectrum, this assumption is considered valid ( [13], [16] ). The RGB, two-color 

method has been used to measure diesel flame temperatures [17], burning black liquor flame 

temperatures [18], burning biomass particle temperatures [11], coal circulating fluidized bed 
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temperatures [19], and pulverized-coal flame temperatures  ( [20], [21], [22] ). References [20]- 

[22] present data taken in the same combustion facility with the same reactor and burner as used 

in this work. Both papers by Xue et al.   ( [20], [21] ) investigate the effect oxygen location and 

secondary CO2 has on NO production, while the second paper [21] also investigates loss on 

ignition data to examine the effect these parameters had on burnout. The results presented by 

Draper et al. [22] primarily investigate the effect two different emissivity models had on the 

temperature output of the RGB, CCD, two-color method and are heavily cited in this work. The 

equipment used by Svensson [23] to find the temperature and KL value of diesel flames was 

used with slight modifications for this work.  

2.2 Emissivity Model 

One of the unique challenges of implementing the two-color method to measure 

temperature in a coal flame is the variety of emitters present and the difficulty in inferring 

temperature from different emission sources. Visible emission from coal flames can originate 

from various particles, including coal, char, ash, and soot. The gas phase can also contribute 

significantly in the infrared spectral region. Soot particles are highly absorbing and emitting and 

relatively small quantities can be expected to dominate emission. However, soot is found in 

much smaller volume fractions (~1x10-7) in coal flames ( [24], [25] ) than in normal diffusion 

flames (~1x10-6). Soot will also burn out before char burnout is complete. Therefore, at some 

locations in a coal flame, soot emission should dominate, while at other locations, emission will 

be dominated by the gas phase. Visible flame emissions are more likely to be dominated by soot. 

Fletcher et al. [26] shows that soot is a significant if not dominant emitter in the near burner 

region of coal flames. Brown and Fletcher [27] conclude that the emission from soot particles 
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can be responsible for a decrease in flame temperature by as much as 300 K, transporting on the 

order of 10-15% of the total fuel energy out of the flame. 

Individual soot particles are too small (20-40 nm) to be imaged, but the resultant cloud of 

soot particles produces a semi-transparent media with an associated equivalent emittance. Soot 

agglomerates may reach 1-2 μm but are still too small to be imaged individually. Coal, char, and 

ash particles are larger (2-500 μm). Some of the larger particles may be imaged individually and 

produce a surface temperature, but most of these particles will also participate as a semi-

transparent media. Kerker [28] shows that in the Rayleigh limit, when particles are small relative 

to the wavelength of light, the absorption of light is inversely proportional to wavelength. For 

larger particles – those greater than the wavelength of light – all visible wavelengths of light will 

be absorbed equally. This means that clouds of small particles (soot) will absorb visible light 

preferentially according to wavelength, while larger particles (coal, char and ash) will absorb 

visible light equally at all wavelengths (gray emissivity). Since emissivity is related to absorption 

by Kirchoff’s law, soot emissivity is spectrally dependent, while coal, char, and ash emissivities 

are spectrally independent or constant.  

Hottel and Broughton [29] created a mathematical model that has been used extensively 

to describe the spectrally dependent emissivity of soot particles. Burning coal, char, and ash 

particles have been shown by Tree and Peart [24] to transmit visible light equally and thus emit 

light as a spectrally independent, or gray, body. The coal flame is therefore expected to produce 

particles that are both spectrally dependent and gray emitters.  

Since it is not possible to determine the quantity of radiant emission that originates from 

soot in comparison to coal, char and ash in a coal flame, an appropriate model for emissivity is 

difficult to identify. Yet, an emissivity model is necessary for the implementation of two-color 
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pyrometry. Two approaches are prominent in the literature. References [10], [12], [13], [14], 

[15], [16], [18], [19], [30], [31], [32] assumed gray radiation in their measurements. One 

research group used the spectrally dependent Hottel and Broughton [29] emissivity model for 

soot ( [11], [33] ). In one case, temperature and KL images of a coal flame were determined 

using a mixture of both emissivity models. Lu et al. [34] used a gray assumption to determine 

temperature and then the Hottel and Broughton model was used to determine emissivity. Shaddix 

and Molina [35] imaged single particles of two different coals at various oxidizer-to-diluent 

ratios using single-color pyrometry which assumes blackbody radiation. No previous work 

regarding two-color measurements in coal flames has compared the difference in resulting 

temperature produced by assuming different emissivity models.     
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3 BACKGROUND 

This section provides a detailed description of the theory behind two-color pyrometry and 

the calibration of camera for use in an oxy-coal flame. Specifically, the calibration section 

discusses the flatfield correction for the camera and calculating the spectral and non-spectral 

calibration arrays. 

3.1 Two-Color Pyrometry Theory 

Two-color pyrometry uses the intensity of two measured wavelengths of light to determine a 

temperature. In this case, a digital Red, Green, Blue (RGB) color camera was used to collect the 

intensity of two color bands that were used to infer temperature. An RGB digital camera works 

by utilizing a color mask that is placed on top of a two-dimensional array of detectors or charge-

coupled device (CCD). The mask limits the light reaching a given detector, or pixie, to a color 

band of red (550-750 nm), green (400-650 nm), or blue (400-550 nm) as seen in Figure 3-1. The 

Bayer Pattern (Figure 3-2) is the most common arrangement of pixies used in color cameras 

consisting of a set of four pixies, 1 red, 2 green and 1 blue, which combine to make a single 

pixel. 
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Figure 3-1. Visualization of the RGB color mask. 

  

Figure 3-2. Left: Individual pixel composed of four pixies arranged in the Bayer Pattern; 
Right: Representation of a CCD array that utilizes the Bayer Pattern. 

In contrast to narrow band pyrometry, which uses wavelength narrow bands of 1-25 nm, 

an RGB camera record color bands with a width of 150-200 nm. The narrow band approach can 

provide greater accuracy when the bands are properly selected to produce a maximum intensity 

ratio without gas interference, but the RGB method allows a two-dimensional image to be 

collected with a single camera and without the complex optical setup needed for narrow band, 

two-dimensional pyrometry. The UNIQ camera software, XCAP, allows the voltage of each 

pixie in the CCD array to be recorded separately to a digital array file without filtering.  
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A calibration must be done which relates the measured voltage of each pixie to a known 

intensity. This is complicated by several issues including: the spectral sensitivity of each pixie, 

the achromatic nature of lenses used to create the image, and the position specific transmittance 

characteristics of the optical path. A calibration technique was completed by Svensson et al. [17] 

and Svensson [23] for use on a diesel flame. The method involved the use of a blackbody, a 

monochrometer and a flat field image. The calibration of the camera has been repeated for this 

work in order to account for any changes in the camera and optics over time. Once calibrated, the 

intensities of each pixel can be used to infer temperature and emissivity. The details of the 

calibration method and a detailed discussion of uncertainty related to CCD arrays can be found 

in Svensson [17]. A review of the calibration method is provided here. 

Figure 3-3 shows a cross section of the reactor with a simplified flame. The reactor walls 

are assumed cold, the flame has an assumed uniform depth of  and the position within the flame 

is measured by , starting at the flame edge on the far side of the open port. The spectral intensity 

of the flame at distance  is the intensity transmitted through the optical train to the CCD 

camera. 

 

Figure 3-3. Cross section of reactor with simplified flame. 
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Assuming the flame is non-scattering [36], its spectral intensity is defined by the 

following version of the radiative transfer equation. 

′ ′ ′ (3-1) 

The term  is the spectral intensity (Wm-2sr-1μm-1) and the term is the blackbody spectral 

intensity as defined by Planck’s distribution (Wm-2μm-1) as shown belong in Equation (3-2). 

 (3-2) 

The term, , in Equation (3-1) is known as the optical depth based on absorption and is defined 

by Equation (3-3), where  is the extinction coefficient (m-1) and  is the distance along the line 

of sight within the flame (m) as shown in Figure 3-3.  

 (3-3) 

The term, , in Equation (3-1) is optical depth based on absorption of a flame of thickness, , 

as defined in Equation (3-4). 

 (3-4) 

The boundary condition required to solve Equation (3-1) is presented in Equation (3-5). The 

spectral intensity along the line of sight on the far side of the open port (at s=0) is assumed to be 

zero. This means that radiation from the reactor walls is assumed to be negligible. In order to 

confirm this assumption, images were taken of the reactor walls after reaching steady-state 

temperature with no flame present. The intensity seen was negligible at the camera settings used 

to take the flame images.  
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 (3-5) 

Using this boundary condition, the solution of the radiative transfer equation is: 

 (3-6) 

Based on Equation (3-6), the spectral, directional emissivity along the line of sight normal to the 

flame may be defined as: 

 (3-7) 

In previous flame measurements where soot was the primary source of absorption, the 

extinction coefficient was approximated by the following Hottel and Broughton model [29], 

which is found in Equation (3-8). This model has been shown to be valid over the visible spectral 

range using the constant α = 1.39 with the wavelength, λ, expressed in nm.   

 (3-8) 

Thus, the spectral intensity of a flame of thickness, , can be described as: 

, (3-9) 

where the product  is independent of wavelength.  

As seen in Figure 3-4, the spectral intensity from the flame first passes through a neutral 

density filter. The neutral density filter was used to keep intense light from saturating the camera 

and its spectral transmittance is the calibration array, . The light then passes through a sapphire 

window, external IR filter, camera lens, internal IR filter and onto the CCD detector array. The 

sapphire window was included because it was a necessary part of the optical path in other 

experiments where the same calibration was used. The two IR filters limited the upper range of 
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wavelengths (750 nm) to the visible region where the Hottel and Broughton emissivity model is 

applicable. The term  accounts for the spectral transmittance for each color of the remaining 

components in the optical array as well as the spectral response of the detector. Thus, the spectral 

intensity incident on the detector can be described by the following equation: 

. (3-10) 

 
Figure 3-4. Optical path of light from flame or blackbody cavity to CCD panel. 

The spectral irradiation incident on the detector is given by:  

. (3-11) 

The spectral intensity incident on the detector is zero unless the solid angle, , is the solid 

angle subtended by the lens as viewed from the detector, . Since the solid angle 

subtended by the lens as viewed by the detector is small and 0 within the solid angle of the 

lens: 

. (3-12) 

 The pixel count, , is the detector response for each color at each pixel. It is proportional 

to the total amount of radiation energy incident on the detector. The amount of energy changes 

not only with differing amounts of irradiation from the flame but also with the length of the 
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exposure time, , and the aperture area, , used. The integration band from  to  represents 

the wavelength endpoints of the visible spectrum, 400-815 nm. 

 (3-13) 

Substituting  for  and Equations (3-2), (3-9), (3-10) and (3-12) into Equation (3-13) 

gives the governing equation that relates the pixel count to the unknown temperature and  

values of the flame: 

. (3-14) 

This model now allows for the solution of temperature and  at each pixel. The two 

values are found using the MATLAB function “fsolve,” which can solve systems of non-linear 

equations. First, an initial guess for  and  is given. Then, Equation (3-14) is integrated 

numerically twice, using the red and blue pixel values, the initial guesses and the calibration 

arrays. The process is iterated until the function converges upon values for  and  that solve 

both the red and blue versions of Equation (3-14). The solution for , which is wavelength 

independent, can then be used to determine the spectral, directional emissivity normal to the 

flame using Equation (3-7). The visible band emissivity (from 400-815 nm) is found using 

Equation (3-15).  

 (3-15) 

3.2 Calibration 

Calibration of the camera for temperature and emissivity measurements requires that the 

voltages from each pixel in the CCD array be related to a known incident amount of energy. The 
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calibration process involves first determining the flat field correction; second, determining the 

transmittance and spectral response of the optical path [ and  in Equation (3-11)]; lastly, 

determining the sensitivity or voltage per unit incident energy produced for each pixel [  in 

Equation (3-11)]. The flat field correction and each of the calibration constants were determined 

during previous experiments where they were used to measure temperature and emissivity in a 

diesel flame [17]. While the details of the calibration and uncertainties involved with CCD 

measurements can be found in Svensson [23] and Svensson et al. [17], the calibration processes 

will be briefly reviewed here with a detailed analysis and presentation of how new  values were 

calculated for this research in coal flames. 

3.2.1 Flat Field Correction 

The use of an aperture and lens to image light produces a non-uniform distribution of that 

light on the CCD array. The distortion increases with increasing aperture size. In order to obtain 

quantitative measurements, the extent of the distortion must be quantified for each aperture.  

The flat field correction obtained by Svensson [23] was determined by exposing the 

camera to a diffuse sheet of glass illuminated by the sun. An example of a flat field image is 

shown in Figure 3-5 with the intensity along the horizontal line shown in Figure 3-6. The dark 

red color shows the largest intensities towards the middle of the array with a sharp drop-off at the 

edges. Multiple images were averaged at each aperture setting and normalized by the highest 

value in the array to produce the flat field image for each aperture.   
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Figure 3-5. Color contour plot of pixel response to a uniform light source. 
 

 

Figure 3-6. Center line of pixel response to a uniform light source as function of CCD 
column number. 

3.2.2 Spectral Response Calibration 

The spectral response of the optical system, , is a combination of the transmittance of 

the lenses and filters and the spectral response of the detectors on the CCD array. The spectral 

response function was obtained by imaging a blackbody of known temperature through a 
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monochromator. The monochromator separated the light from the blackbody into 5 nm bands 

throughout the visible range of the spectrum between 400 and 815 nm. The results shown in 

Figure 3-7 from Svensson et al. [17] show the largest separation in spectral transmittance is 

between the red and the blue wavelength bands while green is in the center and overlaps both of 

the other colors.    

 
Figure 3-7. RGB spectral response as a function of wavelength. 

3.2.3 Spectral Transmittance Calibration 

Various neutral density (ND) filters were used to reduce the amount of light going into 

the camera and allow the imaging of high intensity flames. For the results presented in this 

thesis, only one filter was needed, which attenuated 90% of the light from the flame. However, 

filters that had 0, 50, 70, 99 and 99.9% attenuation were also calibrated to be used if necessary. 

The calibration array of the spectral transmittance of the ND filters, , is plotted as a function of 

wavelength for all the filter options in Figure 3-8. These values were also measured by Svensson 

et al. [17] and agree with the published transmittance data accompanying the filters. The 

attenuation is fairly constant over the visible wavelength region. 
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Figure 3-8. Spectral transmittance of neutral density filters as a function of wavelength. 

3.2.4 Determination of Non-Spectral Terms 

The three non-spectral terms in the governing equation Error! Reference source not found. are: 

, the exposure time, , the aperture area vector, and , the sensitivity constant for each color. 

These values can be found with a blackbody generator, which produces light at a known 

temperature and emissivity. With a source of known emission, the integral over the visible 

wavelength band for each color is known and can be abbreviated as  and is seen in Eq. (3-16). 

This leaves the effects of the exposure time, aperture area and the sensitivity constant as the only 

unknowns. 

 (3-16) 

The sensitivity constant correlates the total incident energy with the resulting pixel 

response for each color. However, changing exposure times and aperture settings changes the 

pixel response even when the total intensity from the light source remains constant. These 

parameters must be allowed to change to allow flexibility in taking data from flames of different 
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intensities. There is a narrow range of pixel response values that provide useful data; if the image 

is too dark, the response for the blue will be too low and, if the image is too bright, the response 

for the red will become saturated and unusable. Therefore, changing the combination of aperture 

settings and exposure times allows the user to get the best signal possible at flames of varying 

intensities. The pixel response is the charge produced on the CCD panel that is digitized into 

discrete integers ranging from 0 to 1023.  

In order to determine the unknowns, ,  and , images were taken of the blackbody at 

six intensities (blackbody temperatures), four aperture settings and up to fourteen exposure times 

as seen in Table 3-1. At each combination of the three parameters, three images were taken. 

Once these images were processed for their pixel response, any that were too dark or saturated 

were discarded. The same 50x50 square of pixels was analyzed at the center of each image 

(Figure 3-9). The pixel responses after flat field correction within this square were extracted and 

averaged. This process was done for each of the three images taken at each setting to reduce 

random error as much as possible. The pixel responses reported are the averages of the three 

values.   

Table 3-1. Matrix of blackbody cavity and camera settings used to obtain blackbody 
calibration images. 

Temperature (°C) Aperture Setting Exposure Time (msec) 

1400, 1450, 1500,  
1550, 1600, 1650 8, 10, 12, 14 

0.016, 0.032, 0.050, 0.067, 
0.083, 0.100, 0.125, 0.167, 
0.200, 0.250, 0.500, 1, 2, 4 

 

Table 3-2 is a matrix of selected blackbody images. Each row displays images taken at a 

particular exposure time and each column displays images taken at particular blackbody 

temperature. All the images were taken at an aperture setting of 14, meaning the lens was fully 
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open. As expected, the visible intensity from the blackbody increases with increasing 

temperature and increasing exposure time.   

 

Figure 3-9. Illustration of pixel area analyzed in blackbody images. 

Table 3-2. Matrix of selected blackbody calibration images. 

 

At a fixed exposure time and aperture setting, the pixel response was compared to the 

incident energy received from the blackbody by changing the blackbody temperature as is shown 

in Figure 3-10. The figure shows that the response of the camera is linear with incident energy 

from the blackbody emission. It should be noted that the following discussion provides results 
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for the red pixels only but the same procedures were taken with the blue and green pixies. These 

results are not shown for the sake of brevity.  

 

Figure 3-10. Red blackbody emission versus red pixel response at exposure time of 500 μs 
and fully open aperture setting (14). 

3.2.4.1 Initial Energy Correction 

Figure 3-11 below shows the pixel response versus exposure time for the four aperture 

settings used in the calibration. These data were taken at single blackbody emission setting at a 

temperature of 1650 °C. Best fit lines were drawn through each aperture data set. This figure 

shows again that the detectors in the camera are linear with incident energy. In this example the 

energy is changed by changing exposure time rather than changing blackbody emission intensity. 

In this case, the pixel response produced R2 values of 0.99+. However, the best fit lines do not 

intersect at the origin as expected. This can be seen more clearly in Figure 3-12, which focuses 

on the short exposure times near the origin. In this figure, the best fit lines are extended past the 

smallest exposure time as dotted lines until the lines hit the x-axis. 
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Figure 3-11. Red pixel response as a function of exposure time at a temperature of 1650 °C. 

 
 

Figure 3-12. Red pixel response for short exposure times at a temperature of 1650 °C. 
Dotted lines extrapolate best fit lines back from shortest exposure time at each aperture 
setting. 

 

As can be seen, the x-intercept is not the same for each line indicating that a single offset 

or error in the exposure time is not the cause for the lines not intersecting the origin. It can be 

seen that the y-intercept is near zero for small apertures areas (low incident intensities) and 

becomes increasingly positive for the large aperture areas (high incident intensities). This offset 

0

200

400

600

800

1000

0 100 200 300 400 500 600

R
ed

 P
ix

el
 R

es
po

ns
e 

Exposure Time (μs) 

8 10 12 14 Aperture Setting

0

50

100

150

200

250

-5 0 5 10 15 20 25 30 35

R
ed

 P
ix

el
 R

es
po

ns
e 

(m
V

) 

Exposure Time (μs) 

8 10 12 14



27 

needed to be characterized and included in the calibration for this applications because oxy-

flames produce high intensities and require images be taken at the shortest exposure times of the 

camera where this offset becomes a significant source of error.     

The observed behavior near the origin suggests the y-offset is a function of incident 

intensity or rate of energy flux, not total incident energy. The digital camera does not employ a 

physical shutter that blocked light to the detectors before an image was taken. Instead, each 

photo-detector in the array continuously collects charge from incident light. The camera 

“shutters” the light by grounding the detectors and thus removing charge until an image is to be 

collected. The charge then builds over the exposure time until it is collected or read from the 

detector array. One possible explanation for the observed results showing a positive y-intercept is 

that there is a small resistance between the detectors and ground such that, at steady state, before 

the camera triggers the collection of charge for an image, the detector contains a small charge 

proportional to the incident flux of energy.  

Whether or not this is the cases, a mathematical description of the observed behavior was 

constructed as shown in Equation (3-17), where  is the pixel response,  is the slope of the 

best fit line, such as the lines in Figure 3-11 (μs-1),  is the exposure time (μs) and  is the y-

intercept. The slope, , is a function of the incident intensity on the CCD panel; as the incident 

intensity increases, the slope also increases. The intercept,  was modeled as being proportional 

to the incident intensity ( ) with an offset of . The values of  and were determined by a 

least squares best fit to the measured data. The results are summarized in Table 3-3.  

 (3-17) 
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Since the y-intercept  was a bias existing on the array before an image was taken, it was 

subtracted from the measured pixel count in order to produce a corrected pixel count 

representing only the energy collected during the exposure time. 

 
 (3-18) 

Table 3-3. Summary of  and . 

Red Green Blue 
 (μs)   (μs)   (μs)  

5.258 -11.065 6.042 -5.097 15.481 -2.475 
 

Once and  were found, the offset for each pixel in a flame image at unknown 

intensity could be found. First, the governing equation, Equation (3-17), was solved for : 

 (3-19) 

These values are all known: and  from the calibration above in Table 3-3,  is the known 

exposure time used to take the image, and  is the output pixel response from the camera. Once 

 is known,  can be solved for using Equation (3-17) and the corrected pixel response can be 

found using Equation (3-18). This correction was done for each color on each pixel within the 

flame boundary in each image.  

With the correction for the pixel response offset, the exposure time correlation is 

complete. The model to predict pixel response, as seen in Equation (3-17), adequately models the 

blackbody data. This can be seen in Figure 3-13, in which the blackbody data is plotted versus 

the predicted data. The data points follow the straight line with a constant slope of 1.00, which 

means the model accurately characterizes the data. Thus, the governing equation for calibrating 

the system becomes: 
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 (3-20) 

where and  still remain unknown. 

 

Figure 3-13. Blackbody pixel response as a function of predicted pixel response. 

3.2.4.2 Aperture Setting Correction 

The effect of aperture area on pixel response must also be characterized. At the aperture 

setting 14, which is the setting in which the lens is fully open, the area of the lens is a circle with 

a diameter of 1.7 cm and thus an area of 2.262x10-4 m2. As the aperture settings decrease, the 

lens closes, and the aperture area gets smaller. However, the shape is not perfectly circular. The 

area is reduced by closing three overlapping fins and cannot be easily measured. Thus, the 

aperture area at each setting must be calculated with the blackbody pixel response data. The pixel 

response is linear with both exposure time and blackbody emission. Figure 3-14 plots every red 

blackbody pixel response versus the blackbody emission multiplied by the exposure time. 

Without aperture settings taken into account in x-axis calculation, the data is linear but remains 

in 4 different lines.  
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Figure 3-14. Red pixel response versus the blackbody emission multiplied by the exposure 
time for four aperture settings. 

An aperture vector can be calculated to correlate the area of the aperture at each setting. 

Once this is found and included in the x-axis calculation, it collapses the four lines into one as 

seen in Figure 3-15.  

 

Figure 3-15. Red pixel response versus the blackbody emission multiplied by the exposure 
time and the aperture area. 
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This calculation was done by taking all the data points at the 14 aperture setting and plotting 

them versus the blackbody emission multiplied by the exposure time and the area of the fully 

open lens (2.262x10-4 m2). This produced the hollow circle data series in Figure 3-15. The data 

for the 8, 10 and 12 aperture settings were multiplied by various constants until they collapsed 

onto the same line as the 14 aperture setting. The constant that caused each series to follow the 

14 aperture series the closest is the area in m2 of the aperture at that setting. These constants are 

summarized in Table 3-4. 

Table 3-4. Summary of aperture vector values. 

Aperture Setting Aperture Area,  (m2) 
8 2.400x10-5 
10 5.983x10-5 
12 1.145x10-4 
14 2.262x10-4 

 

3.2.4.3 Sensitivity Constant 

Once the effects the aperture area and the exposure time have on the pixel response are 

known, the sensitivity constant for each color can be found. It is the slope of the line in Figure 

3-15 and it can be calculated by rearranging Equation (3-20). 

 (3-21) 

The sensitivity constant was calculated at each blackbody data point and averaged for each color. 

The results are summarized in Table 3-5. 

Table 3-5. Summary of sensitivity constant values. 

 (W-1-μs-1)  (W-1-μs-1)  (W-1-μs-1) 
641.9 453.6 327.5 
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4 EXPERIMENTAL METHOD 

This section describes the facilities and equipment used to conduct the experiments for 

this work. First, the reactor system and burner are described. Next, the ultimate and proximate 

analyses of the coal are given. These are followed by a summary of the flow rates for all 

conditions investigated in this work. Finally, a description of the camera used in the two-color 

pyrometry measurements is presented. 

4.1 Reactor System 

The pyrometry measurements were taken in the Burner Flow Reactor (BFR) at Brigham 

Young University (BYU). The BFR, shown in Figure 4-1, is a down-fired, pulverized coal 

reactor that was equipped with an Air Liquide, pipe-in-pipe, oxy-coal burner with a thermal input 

of 150 kW. The burner uses a pure CO2 stream to convey coal and dilute the oxygen. The coal is 

fed by a screw auger, loss-in-weight, coal feeder. The BFR is a cylindrical vessel lined on the 

inside wall with refractory and with an outside wall that contains a water-cooled jacket. The 

reactor stands vertically at a height of 2.4 meters and an inside diameter of 0.75 meters. The 

bottom of the reactor tapers to a water-cooled exhaust pipe. The reactor is divided into six 

sections, each with separate water cooling. Each of the six sections has four access doors, any of 

which can be removed to view into the reactor. After the reactor wall temperatures reached 

steady state, a top door was removed from the reactor in order to take the pyrometry 
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measurements. The equipment setup is also shown in Figure 4-1. The camera (1) and various 

optical filters (2) were aligned on a steel plate and tilted upward to view into the reactor, yielding 

images of the base of the flame against the background of the relatively cool burner block. The 

camera was controlled by XCAP software from a personal computer (3). The view from the port 

is limited to the base of the flame extending approximately 25 cm axially downward. 

 

Figure 4-1. Equipment set-up and cross-section view of the BFR. 

A sample line was connected to the water-cooled exhaust pipe for exhaust gas analysis 

from a Fourier Transform Infrared spectrometer (FTIR) and a gas chromatograph (GC). Also 

located downstream of the water-cooled exhaust pipe is a real-time O2 sensor. The exhaust gas is 

3

1 2

2.4 m

0.75 m
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drawn through the reactor by an induction draft fan. The fan draws a constant volume flow rate 

of gas in excess of the reactor flow rate making the reactor pressure negative, but the pressure 

inside the reactor can be changed by adjusting a bypass valve. This valve allows the fan to draw 

room air as it is opened, making the pressure in the reactor positive. Typically when taking data, 

the reactor is maintained at a slightly positive pressure (0.5 inches H2O) to avoid air entrainment 

in the reactor, which can change the stoichiometry of the flame. However, since the optical 

pyrometry measurement required the removal of a port, a positive reactor pressure would have 

caused dangerous product gases to spew into the room. Therefore, the reactor was kept at a 

slightly negative pressure when the pictures were being taken. The effect of this potential air 

entrainment into the reactor environment is discussed in Section 5.2.2. 

The oxy-combustion burner is supplied with pure O2 and CO2 from large, 265 Liter tanks 

that hold liquid O2 and CO2. Figure 4-2 describes the experimental setup of the reactor. Oxygen 

flows from the tanks and passes through an ambient air vaporizer to warm it up to a gaseous 

state. Next, it is split into primary and secondary lines, each of which flow through a valve train. 

The valve train is described in detail by Zeltner [3]. It consists of a series of ball valves, solenoid 

valves, pressure gauges, check valves and mass flow controls, all of which contribute to control 

the flow and ensure that it is flowing safely. The primary stream is fed directly into the center 

tube in the burner and the secondary stream is fed to the outermost burner tube. The CO2 follows 

a similar process. It flows from the tanks and into an electric heater to warm it to the gas phase. It 

is split into primary and secondary lines and then each line flows through a valve train similar to 

the oxygen valve train. The primary CO2 line runs through the coal feeder to entrain the 

pulverized coal after which it flows into the fuel stream tube in the burner. The secondary CO2 
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line runs into the same outer tube in the burner as the secondary O2 line. A more detailed 

description of the burner is found in the following section (Section 4.2). 

 

Figure 4-2. Experimental set-up of reactor. 

4.2 Burner Description 

The burner, designed and built by Air Liquide, is composed of two stainless steel tubes 

concentrically mounted which rest in a cylindrical block of refractory as shown in Figure 4-3. 

The refractory block contains a 10 cm recess and the two tubes are recessed a further 8.5 cm. The 

burner allows for the study of oxygen placement at high oxygen participation ratios (high O2 to 

total gas concentrations). Figure 4-3 shows a cross-section schematic of the burner in the burner 
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block. Stream 1 is fed only by the pure oxygen and is referred to as the center oxygen stream. 

Stream 2 is fed by the primary CO2 stream, which contains a mixture of pulverized coal and 

CO2, and is referred to as the fuel stream. Stream 3 is fed by both the O2 and CO2 secondary 

streams, and is referred to as the secondary stream. The secondary stream always contains 

oxygen but adding CO2 to this stream is optional. The center oxygen stream (1) and secondary 

stream (3) are not swirled, but the fuel stream (2) is swirled upstream of the exit. The swirl is 

created by attaching a swirl plate within the fuel stream annulus. In this work, different swirl 

plates of 15 and 40° as well as no swirl plate were investigated to see the effect of swirl on the 

flame properties.  

 

Figure 4-3. Cross-section of pipe-in-pipe, Air Liquide, oxy-coal burner; Stream 1 flows 
center oxygen; Stream 2 flows swirled coal and CO2; Stream 3 flows secondary oxygen and 
optional secondary CO2. 

4.3 Fuel, Oxygen and Diluent (CO2) Flow Rates 

For all data presented, the reactor was run at a thermal value of 150 kW, or a constant 

coal feed of 18 kg/hr. The primary CO2 stream, which carried the coal, was also kept constant at 

25 kg/hr. The total amount of oxygen entering the reactor was also kept constant (42.71 kg/hr) to 

give an excess O2 of about 4%. The two flow rate parameters varied were: the amount of oxygen 

split between the center oxygen and secondary streams and the addition of CO2 to the secondary 
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stream. The flow rate of oxygen in the center tube was varied between 1.7-21.4 kg/hr. The lowest 

center oxygen flow rate was set to 1.7 kg/hr instead of 0 kg/hr to prevent any fuel/gas/particles 

from flowing up the tube and contaminating it. The amount of secondary CO2 (CO2-S) varied 

from 0-40 kg/hr. Since some oxygen was always flowing through the secondary stream, the 

secondary CO2 could be set to zero. These sweeps were performed for three different swirl vane 

angles: 0, 15 and 40°. Table 4-1 summarizes flow rates for the various conditions investigated in 

this work. It should be noted that the secondary CO2 sweep using no swirl vane is more limited. 

Since there was no swirl, high flow rates of secondary CO2 caused the flame to detach and blow 

out, making it impossible to take data. Thus, thirty conditions were examined at the 15° and 40° 

swirl vanes and eighteen conditions were examined using no swirl vane. 

Table 4-1. Matrix of flow rate conditions investigated in this work. 

Swirl 
Vane 

Angle (°) 

Coal 
(kg/hr) 

Primary 
CO2 

(kg/hr) 

Total O2 
(kg/hr) 

Center O2 
(kg/hr) 

Secondary 
CO2 

(kg/hr) 

0 18.0 25.0 42.71 
1.7, 4.3, 8.5, 
12.8, 17.1, 

21.4 
0, 10, 20 

15 18.0 25.0 42.71 
1.7, 4.3, 8.5, 
12.8, 17.1, 

21.4 

0, 10, 20, 30, 
40 

40 18.0 25.0 42.71 
1.7, 4.3, 8.5, 
12.8, 17.1, 

21.4 

0, 10, 20, 30, 
40 

 

4.4 Coal Analysis 

The coal used in the oxy-combustion measurement was Flambant de Provence (Flambant) 

coal from France. The proximate and ultimate analyses are described in Table 4-2. 

. 
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Table 4-2. Proximate and ultimate analysis of  
Flambant de Provence (Flambant) coal. 

 

 As Received, wt. % 
C 73.81 
H 4.12 
N 1.15 
S 0.90 

O (by difference) 10.63 
Ash 6.05 

Moisture 3.34 
Volatile Matter 34.64 
Fixed Carbon 55.97 

 Btu/lb 
Heating Value (HHV) 13,353 

4.5 Camera 

A UNIQ, UC-600CL, 10-bit, RGB, CCD camera was used in conjunction with Version 3.7 

of the EPIX computer program, XCAP, to capture the flame images. The program enabled 

camera exposure times ranging from 16-4000 μs. When taking the images, the gain must be 

adjusted to maximize the pixel values as much as possible without causing large numbers of 

pixels to saturate. This is often difficult, because the intensity of the flame can vary widely over 

its area. Often different settings were used to take data at the same condition and then analyzed 

later to see which gave the most useful pixel response. The gain was adjusted by typically 

adjusted by changing the exposure time but could also be adjusted by changing the aperture 

setting and neutral density filter as well. Due to the high intensity of the flames, the images were 

taken at the shortest exposure times, ranging from 16-100 μs. The XCAP program enabled the 

pictures to be saved as binary (.BIN) files, which enabled the RGB pixie values to be extracted 

by MATLAB. At each condition, ten images of the flame were taken. These pictures were taken 

with a uniform time interval between each image (0.1 seconds). Three of the ten images were 

selected to be representative of the flame at each condition. These images were analyzed and the 
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temperature and emissivity results averaged to yield the results presented in this work. More 

details regarding the processing of the images with the MATLAB code are presented in the 

appendix. 

The camera contained a standard 1/3” CCD panel with a resolution of 494 x 658 pixels. 

The camera is small (83x50x39 mm) and lightweight (200 g) and was mounted with a 25 mm 

focal length, c-mount lens. Although the lens has a continuous aperture, it was modified to 

enable 14 discrete aperture settings. To ensure a shallow focus, the aperture was allowed to 

remain completely open for all the data presented.   
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5 RESULTS – APPLICATION OF TWO-COLOR PYROMETRY TO COAL FLAMES 

The following section presents both discussions and final results for various operating 

conditions. First, images and two-color pyrometry results are presented in a discussion regarding 

which emissivity model is more appropriate for this application. Next, an investigation in 

measurement interference from wall radiation and air entrainment is presented.  

 

5.1 Determination of Proper Emissivity Model 
 

An image of an oxy-coal flame with temperature and emissivity maps calculated using the 

Hottel and Broughton and gray emissivity models is shown in Figure 5-1. The image on the left 

is the original image obtained from the RGB camera containing all three colors. The image was 

obtained looking through an open port in the reactor and looking slightly upward (~30 degrees 

from the horizontal) at the root of the flame as it exited the burner. The coal and oxidizer are 

flowing from top to bottom in the image. The dark, uneven edges surrounding the flame are slag 

buildup around the port opening. At the time the image was taken, two pieces of slag were 

hanging from the burner block and are seen as black protrusions at the top of each image.  

Although the flame is attached, light and dark streaks are seen primarily in the vertical 

flow direction. These streaks are caused by the uneven distribution of coal and the resulting 

uneven pockets of burning coal and volatiles. In the bottom, right corner of the RGB image, a 

speckled pattern is seen showing evidence of individual particles. A single pixel images an area 

approximately 500x500 μm, which is too large an area for an individual particle to be resolved. 
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The image provides an average emission from particle clouds which appear to be composed 

primarily of soot particles.   

Original Image Hottel Broughton Gray Hottel Broughton Gray 

     

 
Temp. (K)

 
Temp. (K) 

 
Emissivity 

 
Emissivity 

 
1800 2000 2200 2400 2600 1800 2000 2200 2400 2600 0 0.25 0.50 0.75 1.0 0 0.25 0.50 0.75 1.0 

Figure 5-1. Left to right: original flame image, Hottel and Broughton temperature map, 
gray temperature map, Hottel and Broughton emissivity map, gray emissivity map. 

To the right of the original image are maps of temperature and emissivity obtained using 

the two different emissivity models. Interestingly, the regions of highest luminosity in the 

original image are not the regions of highest temperature. Instead, the regions of highest 

luminosity correlate more closely with regions of higher emissivity. This result points out that 

visual observation and simple images of flames can be misleading with regard to temperature. 

Often the brightest parts of a flame are not at the highest temperature. 

 For the most part, the maps produced by the two different emissivity models produce 

images that have similar locations of high and low temperature and high and low emissivity, but 

the magnitudes are significantly different between using the two different emissivity models. In 

all cases, the Hottel Broughton temperatures are lower and the emissivities are higher than the 

gray model results.  

 Temperature distributions for each pixel in the flame using the two emissivity models are 

shown in Figure 5-2 and the average temperature and emissivity for both models are summarized 
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in Table 5-1. The Hottel and Broughton model produces a narrower temperature range (1940-

2390 K) than the gray emissivity model (2100-2660 K). The average temperature obtained using 

a gray model was 2337 K, which was 154 K, or 7%, higher than the temperature obtained with 

the Hottel and Broughton emissivity model, 2183 K. The emissivity obtained with the gray 

model was 0.45 compared to 0.59 for the Hottel and Broughton model result. Thus, the gray 

model produced an emissivity 24% lower than the Hottel and Broughton model.  

  
A) Hottel and Broughton B) Gray 

Figure 5-2. Temperature distribution of flame pixels calculated using A) the Hottel and 
Broughton emissivity model and B) the gray emissivity model. 

Table 5-1. Measured average temperature, emissivity and the percent difference for the 
Hottel-Broughton and Gray emissivity models. 

 Hottel and 
Broughton Gray Difference (%) 

Temperature (K) 2183 2337 7.1 
Emissivity 0.59 0.45 24.2 

 
 

Because the difference in results produced by the two emissivity models is significant, it 

is important to determine which model is closer to the correct result. To do so, one must consider 

the images obtained and the processes involved in coal combustion. The images show that the 

coal flame is not confined to a single, narrow region separating fuel and oxidizer as occurs in a 

candle diffusion flame. Instead, the coal flame is an accumulation of numerous individual flame 
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structures which are formed by a combination of reacting volatiles within the turbulent flow 

field. Our conceptual model of a coal flame is therefore an accumulation of numerous flamelets 

grouped together to form a larger flame structure. Individual flamelet structures are clearly 

visible in the flame image as shown in Figure 5-1. The question arises as to whether the emission 

captured in the images from these flamelet structures is from soot or from burning char. 

Fletcher et al. [26] discuss how soot is formed in clouds trailing behind individual coal 

particles. Soot produces the visible yellow emission as it burns in the flame surrounding these 

particles. Rather than the individual particles described by Fletcher et al [26], theses images 

show flamelets which surround pockets of coal particles. Soot burns as is passes through the thin 

reaction zone surrounding these pockets. Primary soot particles are very small (30 nm) and will 

follow even the very highest of turbulent flow accelerations. An image of soot should therefore 

appear as a bright thin layer wrinkled to match the turbulent structures of the flow. This appears 

consistent with a large portion of the flame image. 

While soot is being oxidized in a flame zone surrounding coal, char and ash particles, 

emission from these particles must pass through the both the flame boundary and the soot in 

order to be observed by the camera. The time scales for volatile release and combustion 

including soot oxidation are much shorter than for the oxidation of char; therefore, the char 

emission, which is initially blocked by soot, should persist past the time of soot oxidation. 

Highly resolved images of the coal flame should be able to reveal groups of individual burning 

char particles. Evidence of this type of emission is seen in the individual color pixels at the 

bottom, right edge of the flame image and in some locations throughout the flame.  

Evidence of both char and soot emission exists in the flame image. The majority of the 

image appears to contain turbulent reacting flow structures (flamelets) surrounded by thin sheets 
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of burning soot. However, evidence of individual burning particles is also seen. On the lower 

right boundary of the RGB image, numerous individual red, green and blue pixels can be 

identified. These pixels should contain emission for all three colors and yet they appear to be 

dominated by only one of the three. One explanation for these colors is that the camera is 

attempting to image a particle smaller than the resolution of a single pixel. The light is therefore 

focused on a fraction of the pixel, or one of the pixies that make up a single pixel. For example, 

if the light is focused on a green pixie, the image records green. Also, some of these pixels are 

separated from the flamelet structures indicating individual burning particles. These particles are 

probably some of the larger particles which require a longer burnout time. 

Fletcher et al. [26] reports that 10-20% of the mass of a coal particle is converted to soot. 

Using the following assumptions, one can calculate the projected surface area of soot to that of a 

coal particle. Soot is assumed to be a 30 nm sphere with 1.8 g/cm3 density and to be formed from 

10% of the coal mass. The coal is assumed to be a 60 μm sphere with 1.34 g/cm3 density. For 

this example, the projected surface area of soot is 40 times that of coal. Using Mie extinction 

theory [28] for spherical particle clouds, it can be calculated that 60 μm particles are 5 times 

more efficient at absorbing light than the smaller 30 nm particles. The net effect is that when soot 

is present, it can easily produce eight times the absorptivity (emissivity) of burning char. This 

combined with the fact that soot will burn at a higher temperature because it is a smaller particle, 

indicates that, when present, soot is the dominant emitter. It is therefore concluded that for the 

majority of the flame image, an emissivity model which takes into account the spectral nature of 

soot will be more accurate than a gray model. Thus, the Hottel and Broughton model was used to 

calculate all the results presented hereafter in this work. However, this does not mean that one 

emissivity model is correct for all locations in the flame. To be safe, one should consider the 
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uncertainty associated with the use of a single model to be on the order of 7% for temperature 

and 24% for emissivity.     

Using the Hottel and Broughton emissivity model, images of temperature and emissivity 

for two operating conditions were processed and are shown in Figure 5-3. The results in the top 

row repeat the data shown in Figure 5-1. The operating conditions for both cases are summarized 

in Table 5-2; Case 1 has low CO2 dilution and Case 2 has high CO2 dilution produced by an 

increased flow in the secondary stream. The addition of CO2 to the secondary flow, which 

doubles the ratio of secondary flow to total flow, also increases the mixing between fuel and 

oxidizer. This can be seen in the differences between the original images; the luminous regions 

in Case 2 are more distributed throughout the flame, while the dark regions in Case 1 are larger 

and more vertical. The higher mixing produces more uniform luminosity, temperature, and 

emissivity. Although the original images appear to be of similar luminosity, the combination of 

filters and exposure times is different for the two images, such that the gain on the bottom image 

is nine times that of the top image. The magnitude of luminosity is clearly much lower in the 

case with added CO2. This is to be expected, because the CO2 dilutes the mixture and reduces 

temperature. The added CO2 is also expected to increase mixing, reduce fuel rich regions, and 

reduce the formation of soot. 

Table 5-2. Operating conditions for Case 1 and 2. 

Case Coal 
(kg/hr) 

Center 
O2 

(kg/hr) 

Primary 
CO2 

(kg/hr) 

Secondary 
O2 

(kg/hr) 

Secondary 
CO2 

(kg/hr) 

Oxygen 
Participation 

Ratio (% vol.) 
1 18.00 21.4 25.00 21.4 0.00 70.14 
2 18.00 21.4 25.00 21.4 40.00 47.46 
 

The mean and maximum temperatures measured for each flame are compared to the 

adiabatic flame temperature in Table 5-3.  
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Original Image Temperature (K) Emissivity 

   
Gain = 1   

 1800 2000 2200 2400 2600 0.0 0.25 0.5 0.75 1.0 

Original Image Temperature (K) Emissivity 

   
Gain = 9   

 1800 2000 2200 2400 2600 0.0 0.25 0.5 0.75 1.0 

Figure 5-3. Top row from left to right: Case 1 original image, temperature map, emissivity 
map; Bottom row from left to right: Case 2 original image, temperature map, emissivity 
map. 

The measured temperatures decrease with increasing CO2, which follows the decreasing trend in 

the calculated adiabatic flame temperatures. The maximum temperatures measured in the flame 

are below the adiabatic flame temperature by 5.9% for Case 1 and 10.2% for Case 2. The two 

average temperatures are 25.3 and 23.2% below the Case 1 and 2 adiabatic flame temperatures 

respectively. This large difference is produced by the relatively large distribution of temperatures 

within the flame as shown by the distribution function in Figure 5-2. The reasons for this wide 

distribution and the relatively low average may the result of several factors. First, the emission 

from one flamelet may be partially absorbed along a line of sight by colder coal, char, ash, and 



47 

soot between the flamelet and the camera. A second reason is heat transfer from the soot to the 

water-cooled walls. Brown and Fletcher [27] report a decrease in flame temperature of 300 K by 

adding soot to a model of a reacting coal flame. Their conditions were for air-fired coal 

combustion. The high oxygen concentrations used in this work produced much higher flame 

temperatures and therefore the potential for greater heat loss.       

Table 5-3. Summary of the measured mean, maximum and adiabatic flame temperature 
and mean measured emissivity for Case 1 and 2. 

Case Meas. Mean 
Temp. (K) 

Meas. Maximum 
Temp. (K) 

Adiabatic Flame 
Temp. (K) 

Meas. Mean 
Emissivity 

1 2183 2751 2925 0.59 
2 2022 2365 2635 0.13 

 
 

5.2 Uncertainty Analysis of Flame Temperature 
 

Svensson et al. [17] characterized the uncertainty of the two-color method using the same 

equipment as this work to measure the temperature and emissivity of a diesel flame. The 

uncertainties included the inherent noise associated with the digital array. For a given pixel, a 

single emissivity and temperature in the two-dimensional array, the uncertainty of the emissivity 

was determined to be  +/-20%, while the temperature had an uncertainty of +6% and -2%. In 

addition to these uncertainties, the accuracy of the measurement is dependent upon the operating 

conditions of the reactor.  

This section investigates uncertainties involved with the collection method on the two-

color temperature and emissivity results. Two specific operating procedures were examined: the 

effect of an unsteady wall temperature and the effect of the open port. The reactor walls contain a 

considerably large thermal mass that requires hours to reach steady state. Burner flow rates can 

reach steady state in a matter of minutes. The error in the flame temperature associated with a 

wall temperature that was not yet at steady state was quantified. All of the flame temperature 
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measurements were obtained with the reactor port removed to allow direct imaging of the flame. 

Removing the port door allows the entrainment of room air into the reactor and may impact the 

flame temperature. This error was also quantified. The operating conditions for the various cases 

used to investigate these effects are summarized in Table 5-4.  

Table 5-4. Operating conditions for cases used to investigate the effect of transient wall 
temperature and air entrainment on measured flame temperature. 

Case Coal 
(kg/hr) 

Center 
O2 

(kg/hr) 

Primary 
CO2 

(kg/hr) 

Secondary 
O2 

(kg/hr) 

Secondary 
CO2 

(kg/hr) 

Oxygen 
Participation 

Ratio (% vol.) 
1 18.00 4.3 25.00 38.44 0.00 70.14 
2 18.00 4.3 25.00 38.44 40.00 47.46 
3 18.00 21.4 25.00 21.4 0.00 70.14 
4 18.00 21.4 25.00 21.4 40.00 47.46 

5.2.1 Transient Wall Temperature Interference 

Figure 5-4 shows the wall temperature of the reactor, the measured flame temperature 

and the emissivity as a function of time. These data begin after the reactor was preheated with 

natural gas to a wall temperature of approximately 1200 K and end when the reactor walls 

reached a steady state temperature running at the Case 1 conditions in Table 5-4. The wall 

temperature was found by averaging the two thermocouple temperatures in the top two sections 

of the reactor (the sections where the flame is located). 

The figure shows the wall temperature increased 275 K, or 23.8% above the initial 

temperature over a period of 1.7 hrs. During the same time period, the measured flame 

temperature increases by 75 K, or 3.4% of its initial temperature. The emissivity shows more 

scatter than the temperature and decreases from 0.30 to 0.27 (10%) over the same time period. 

These results are consistent with a decrease in heat loss from the flame due to the smaller 

temperature gradient. The temperature change observed in the walls is similar to that of the 
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largest change in steady state wall temperature for all of the operating conditions. Therefore the 

wall temperature does produce a modest impact on the measured flame temperature.   

 
Figure 5-4. Wall temperature, flame temperature and emissivity as a function of time. 

A second experiment was performed by rapidly changing the operating condition from 

Case 1 to Case 2 to reduce the flame temperature at constant wall temperature. The results are 

shown in Figure 5-5. The circled data points were taken operating at Case 2; all other data points 

were taken at Case 1 operating conditions. The flame temperature dropped 240 K from 2260 K 

to 2020 K or 10.6%. This result demonstrates that changes in the flame temperature due to 

changes in operating condition are larger than the change due to wall temperature; however, the 

change in flame temperature due to wall temperature is not insignificant.  

Different flow rates of center oxygen and secondary CO2 change the radiative heat 

transfer properties of the flame and thus change the reactor wall temperature if allowed to reach 

steady state. As achieving steady state takes hours, it was not practical to reach steady state in 

between each condition examined, even though that is probably essential to obtain the correct 

temperatures. Instead, the reactor was allowed to achieve steady state using the operating 
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conditions for Case 1. Thus, all the data were taken while the walls were in the range of this 

steady state temperature (~1400-1500 K). This maintained wall temperature consistency, but 

decreased the difference in flame temperature between other operating conditions. Cooler 

conditions will have temperature data skewed somewhat upward and hotter conditions will have 

temperature data skewed somewhat downward. 

 
Figure 5-5. Wall temperature, measured flame temperature and emissivity as a function of 
time. The circled data were taken operating at Case 2; all other data were taken operating 
at Case 1. 

5.2.2 Air Entrainment 
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creating a maximum negative pressure. This condition entrained more air into the reactor than 

was entrained during any of the experiments. With the gate valve open, room air was drawn into 

the fan instead of exhaust gas, producing a positive pressure in the reactor. This positive pressure 

caused product gas to exit the reactor through the open port into the room. Running the reactor 

with this high positive pressure was hazardous and could only be allowed for a brief period while 

collecting an image. A more neutral reactor pressure between these two extremes was also 

investigated.  

Results for the open reactor port experiments are shown in Figures 5-6 and 5-7. The 

temperature data for the three reactor pressures at each case are close together, with an average 

standard deviation of 14 K (0.7% of the average measured temperature) with a maximum 

standard deviation of 29 K (1.3% of the average measured temperature at that case). As variation 

within this magnitude is expected for the temperature measurement, it is concluded that the 

temperature is not affected by air entrainment into the reactor. The emissivity data are more 

scattered. The data at each case have an average standard deviation of 0.0206 (7.6% of the 

average emissivity) with a maximum standard deviation of 0.0331 (12.2% of the average 

emissivity at that case). It is expected that the emissivity data are more scattered, since emissivity 

is a more prone to be affected by noise in the system. No trend in the temperature or emissivity 

results as a function of the changing pressure can be seen. For example, neither the temperature 

nor emissivity is always higher when the reactor pressure is positive. This proves that the 

temperature and emissivity data are not influenced by changing the reactor pressure and the 

entrainment of air. In fact, the average standard deviation between the three representative 

images taken at each condition was higher (24 K and 0.024) than the average standard deviation 

between the three pressures at each operating condition (14 K and 0.0206). Therefore, all further 
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data presented were taken at a neutral reactor pressure, which had a slight risk of air entrainment, 

rather than the positive reactor pressure, which had no air entrainment but presented safety 

concerns. 

 
Figure 5-6. Temperature taken at four different conditions with negative, neutral and 
positive reactor pressures. 

 
Figure 5-7. Emissivity taken at four different conditions with negative, neutral and positive 
reactor pressures. 
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5.2.3 Summary 

Based on the results presented in this chapter, it was concluded that temperature and 

emissivity data would be taken using the Hottel and Broughton model. The collection of imaged 

flame data could be taken with the reactor port open and a neutral reactor pressure without 

adversely impacting the flame temperature. Reactor wall temperatures were found to alter the 

flame temperature. The maximum impact of wall temperature on flame temperature is on the 

order of 75 K. Because the time required to reach steady state is on the order of hours, the wall 

temperature was heated to ~1400-1500 K before collecting data. Wall temperatures were 

recorded and data were taken rapidly at a constant wall temperature. Thus, the variations in 

measured flame temperature between conditions will be under-predicted at hotter conditions and 

over-predicted at cooler conditions by no more than 75 K. 
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6 RESULTS – FLAME TEMPERATURE AND EMISSIVITY FOR THREE SWIRL 
ANGLES 

After demonstrating the use of two-color, digital pyrometry on a pulverized-coal flame, 

the technique was used to investigate the performance of an oxy-coal burner with three different 

swirl vanes, oxygen split between two burner streams and variations in CO2 flow rate. The 

operating conditions studied are shown in Table 1-1. Representative images of the flames will be 

shown followed by the lift-off length, average temperature, and average band emissivity of each 

flame.  

For each operating condition, a set of images was collected. After visually inspecting 

these images, three images that were representative of the group were selected for detailed 

analysis. This analysis included identifying the flame pixels and then calculating the temperature 

and visible band emissivity at each flame pixel. Once the temperature and emissivity at each 

pixel were known, the results for each pixel were averaged to produce an average temperature 

and emissivity for each image. The average results for the three representative images were 

averaged to provide the average temperature and emissivity data at each condition. If the flame 

was not already formed at the burner exit, the lift-off length between the flame and the burner 

was also calculated. The lift-off length was defined as the distance from the burner exit to the 

first row of pixels where flame data existed for more than half of the image width. Finally, axial 

temperature and emissivity profiles are presented for each swirl vane. The axial profiles were 

obtained by averaging rows of pixels at various axial distances from the burner. 
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6.1 No Swirl Vane Temperature and Emissivity Results 

Table 6-1 is a matrix of representative flame images as a function of center oxygen (O2-

C) and secondary CO2 (CO2-S) flow rates for the burner with no swirl vane. Only images up to 

20 kg/hr CO2-S are shown, because the flame became too unstable above 20 kg/hr CO2-S to 

maintain operation. For the other two swirl vanes, conditions of up to 40 kg/hr CO2-S are 

presented. Each picture is labeled with its associated gain to enable luminosity comparisons 

between the settings. The top row of images contains conditions with no secondary CO2 flow 

rate with increasing center oxygen flow rates from left to right. The first few images were taken 

with the same gain, 2.0, which is twice the baseline gain of the brightest images presented in this 

work. The brightest images were taken when running with the 15° swirl vane. The gain increases 

with center oxygen and secondary CO2 flow rates, meaning that the flames decreased in visible 

intensity as these flow rates increased. On the bottom row, the gain is the lowest for the 8.5 kg/hr 

O2-C image and higher on either side, indicating that at 20 kg/hr CO2-S, the brightest flames 

were produced at this center oxygen flow rate. 

Several observations can be made from these images. The flames are seen to be detached 

on the left columns of images (low O2-C) and are the most detached on the bottom row (high 

CO2-S). Thus, the lift-off length is seen to increase with decreasing center oxygen and increasing 

secondary CO2 flow rates. Generally, the visible intensity seen in the images is highest at 

between 8.5 and 12.8 kg/hr O2-C and decreases at lower and higher center oxygen flow rates. 

The final observation is more subtle. The flames on the bottom and to the right (conditions with 

higher incoming flow rates, thus higher incoming velocities) have finer turbulent structures than 

flames to the left and on the top (conditions with lower incoming gas velocities). These finer 

structures indicate increased turbulent mixing. At low gas velocity conditions, the flames have a 
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defined, sheet-like quality with areas of differing intensities. At high gas velocity conditions, the 

flames look more evenly distributed in intensity, fuzzier and more out of focus. These images 

required a higher gain, which lengthened the exposure times. These longer exposure times 

contribute to the fuzzier, out of focus look of the images. 

In order to better quantify the impact of flow parameters on the lift-off length of the 

flame, the lift-off lengths using no swirl vane are shown in Figure 6-1. To determine the lift-off 

length, the flame boundary was defined using a MATLAB-based, edge-finding algorithm. The 

lift-off length was defined to be the distance from the burner base to the row where half the 

pixels in that row were contained in the flame boundary. 

Table 6-1. Matrix of representative flame images for no swirl vane. Rows contain 
conditions at various secondary CO2 flow rates; columns contain conditions                         
at various center O2 flow rates. Image gains are labeled above each image. 
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Table 6-1 Continued  
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The three representative images for each condition were analyzed to determine lift-off length and 

the results for the three images were averaged. It should be realized that the pixel intensity from 

one image to the next is relative to the exposure time and aperture setting of the camera. 

Therefore, the lift-off lengths presented are not a precise measurement but rather an estimate of 

the onset of chemical reaction. Figure 6-1 quantifies the trends seen in Table 6-1, namely, that 

the lift-off length decreases with increasing center oxygen and secondary CO2 flow rates.  

 
Figure 6-1. Lift-off length as a function of center oxygen flow rate for each secondary CO2 
flow rate using the no swirl vane. 
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Figure 6-1 also shows that at high center oxygen flow rates, the lift-off length increases slightly. 

As can be seen in Table 6-1, this is not true. This slight increase presented in lift-off length is due 

to an inherent flaw in defining where the flame begins. At high center oxygen flow rates, the 

velocity through the center tube was quite large due to its small diameter, which caused the 

flame to thin. Thus, the pixels defined in the flame boundary were not more than half of the row 

at the burner exit. This caused a false lift-off length to be reported for those conditions. 

The energy required to heat and ignite the incoming fuel stream can be provided by 

radiation from the surrounding walls, mixing with product gas (hot recirculated products), or 

thermal diffusion upstream from the flame. Normally, coal flames are stabilized predominantly 

by mixing hot, recirculated, product gas with incoming, ambient temperature coal and oxidizer. 

This mixing of these hot product gases with the incoming streams is caused primarily by swirling 

one or more of the incoming streams, which creates a negative pressure below the center of the 

burner. This negative pressure causes the product gases to flow back up through the center of the 

flame toward its root where the incoming fuel and oxidizer streams are exiting the burner. This is 

illustrated in Figure 6-2, which presents a cross section of a simple burner at the exit. The flow 

through the swirled fuel and primary CO2 stream is depicted by the helical line beginning in the 

burner that widens after it exits. The red line symbolizes the flame boundary. The straight lines 

coming from the annulus on either side of the fuel and primary CO2 stream represent the flow 

lines of the unswirled secondary stream. The rounded vectors within the flame boundary 

represent the recirculation path of hot product gases. If there is a greater amount of swirl given to 

the incoming gases, there is a greater amount of product recirculation. This experimental burner 

has a relatively low swirl number even when using the highest swirl vane (always less than 0.15). 

The only swirled stream is the coal and primary CO2 stream, which has a lower flow rate and 
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smaller radius than the unswirled secondary flow. This lack of recirculation produces the 

potential for lifted flames. The flames presented in this section, which have no swirl added, had 

such a large amount of lift-off that conditions above 20 kg/hr secondary CO2 could not be taken. 

After that point, the lift-off length became too great and the flame became dangerously unstable.  

 

Figure 6-2. Illustration of burner flow patterns with swirl added to the fuel stream. 

Since the introduction of center oxygen cannot be argued to increase heat transfer to the 

incoming fuel by radiation, mixing, or diffusion, it is most likely that increasing center oxygen 

decreases the temperature, or energy, required to produce ignition. That is why a decrease in lift-

off length is seen as center oxygen flow rates increase. On the other hand, increasing the 

secondary CO2 flow rate adds additional, cold, inert gas to the secondary stream. This addition 

results in a higher heat capacity of the secondary stream, which means more energy is required to 

heat the fuel and oxidizer to the ignition temperature. Therefore, the addition of secondary CO2 

delays ignition and increases lift-off length. 

The visible luminosity of the flame is a function of both its temperature and emissivity. A 

flame that is brighter than another may be at a cooler temperature if its emissivity is higher. 



60 

Thus, conclusions about the relative temperature of the flames cannot be made without analyzing 

the images for temperature and emissivity.  

In order to understand the temperature and emissivity trends, it is important to consider a 

physical model of coal combustion and the coal flame. A diagram showing steps in a proposed 

pulverized coal combustion process is shown in Figure 6-3. Coal enters the combustion chamber 

entrained in CO2. The coal and primary CO2 mixture is mixed with oxidizer from the center and 

secondary streams and hot combustion products, which are primarily CO2 and H2O in oxy-

combustion. The coal and primary CO2 receive energy through radiation from the hot reactor 

walls and from mixing with the hot products (Step 1). The increase in temperature of the coal 

releases volatiles from the coal, which form a gaseous mixture surrounding the coal particles 

(Step 2). The volatiles in the mixture ignite and burn rapidly, producing additional hot products. 

This mixture may continue to be fed by additional volatile release from the coal as it continues to 

be heated. This mixture is typically fuel rich with insufficient oxygen to complete combustion, as 

described in Figure 6-3, but the stoichiometric ratio of the mixture is dependent on the amount of 

mixing that occurs prior to ignition (Step 1). If fuel rich, a flame forms around the hot products at 

the location where the fuel rich mixture and surrounding oxidizer are near stoichiometric. This 

fuel rich mixture surrounded by flame is a coal flamelet (Step 3). The flamelet may be large in 

size (similar in scale to the burner) or it may be as small as a single coal particle surrounded by a 

flame. Its size will depend on how soon ignition occurs relative to mixing and how dense the 

coal is distributed in the incoming carrier gas. Coal flamelets can take on various shapes 

depending on the fluid dynamics of the burner, including streaky, cylindrical tubes, thin sheets, 

fat sheets, and irregular spheres.       
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Figure 6-3. Illustration of the pulverized coal combustion process. 

Soot particles are formed as heavy hydrocarbons in the volatiles agglomerate. These 

particles burn as they pass through the flamelet. Since the particles are small (20-40 nm), they 

reach within 1 K of the flame temperature [8] as they pass through it. Thus, imaging the radiation 

from these solid particles provides the temperature of the flame. The temperature at the flamelet 

boundary is produced by the reaction of fuel and oxidizer as illustrated by Equation (6-1). The 

fuel and oxidizer streams enter the reactor at a cold temperature (TC) and the recirculated 

products are at a hot temperature (TH). If there is no heat loss to the surroundings, then the 

reaction of the coal will form products at the adiabatic flame temperature (TAd). The adiabatic 

flame temperature can be reduced in two ways. First, diluents such as the CO2 in the secondary 

stream introduce mass that must be heated from ambient (TC) to product temperatures (TAd) but 

that does not participate in the reaction. Therefore, additional CO2 absorbs more of the fuel 

energy released and lowers the adiabatic flame temperature. This is consistent with all the 

temperature data presented in this work. Second, additional diluents are introduced by the 
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product gas which is primarily CO2 and H2O. These products have lost heat before they 

participate in the flame reaction in Equation (6-1), so even though they are still hot (TH), they are 

not as hot as the adiabatic flame temperature and will decrease it. The flame temperature is not 

actually at the adiabatic flame temperature, because there is heat loss to the surroundings. Thus, 

an addition way to lower the flame temperature is to increase the heat transfer from the flame. 

The bulk of the heat loss is radiation from either the reactants or products of the flame, but 

primarily from the soot. In summary, the measured flame temperature will be lower if the 

adiabatic flame temperature is lowered by adding additional diluent or increasing recirculation 

mixing, or by increasing the heat loss from the flame. 

Fuel(TC) + [O2 + CO2](TC) + [CO2 + H2O](TH) => [CO2 + H2O](TAd) (6-1) 

Figure 6-4 presents the spatially-averaged temperature results as a function of center 

oxygen flow rate for each secondary CO2 flow rate using no swirl vane. The data show a clear 

trend of decreasing temperature with increasing secondary CO2. The temperature reaches a 

maximum between 8.5 and 12.8 kg/hr center oxygen. The temperature decreases more 

significantly at higher center oxygen flow rates than it increases at lower center oxygen flow 

rates. The temperature decreases at high secondary CO2 flow rates; however, the effect of 

secondary CO2 on the flame temperature is smaller than the impact of changing the oxygen 

location.   

The data show the expected decrease in measured flame temperature when CO2 is added 

to the secondary stream and when parameters are changed which increase the mixing of products 

into the flame. Initial increases in center oxygen provide O2 directly into the primary coal flow, 

which decreases the ignition temperature and shortens the flame lift-off length. The smaller lift-

off length means that less diluent (CO2 and H2O) is mixed into the fuel jet, which causes the 
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temperature to increase. As center oxygen flow rates increase, the flame becomes fully attached 

and diluent entrainment due to lift-off is minimized. Further increases in center oxygen create a 

high velocity, low pressure jet, which lowers the temperature. This jet entrains diluent from the 

surrounding area, which decreases the temperature. Another possibility is that the jet also thins 

and lengthens the flame, giving it a greater surface area. This larger surface area could increase 

the heat loss from the flame and decrease the temperature.  

 
 

Figure 6-4. Temperature as a function of center oxygen flow rate for each secondary CO2 
flow rate using no swirl vane. 

 

The temperature series at 0 kg/hr CO2-S decreases from 2252 K to 2098 K (154 K) when 

moving from 8.5 to 21.4 kg/hr O2-C, while the series at 20 kg/hr CO2-S decreases from 2182 K 

to 1944 K (238 K) when moving between the same two conditions (from 8.5 to 21.4 kg/hr O2-C). 

Thus, the series at 20 kg/hr CO2-S has a much larger decrease in temperature than the series at 0 

kg/hr CO2-S when moving between the same two conditions. The smaller change for the 0 kg/hr 

CO2-S series occurs because there is no cold, incoming diluent (CO2-S) to entrain into the flame 

as the center oxygen jet forms. Thus, it seems that this decrease is mainly caused by entraining 

hot product gases and potentially from the increased heat transfer from the lengthened flame. It 
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appears the larger decrease at 20 kg/hr CO2-S occurs not only because of the entrainment of hot 

product gas and the possible increased heat transfer from a lengthened flame, but also because a 

significant amount of the gas entrained into the flame is the cold CO2 from the secondary stream. 

 Figure 6-5 presents the spatially-averaged emissivity results as a function of center 

oxygen flow rate for each secondary CO2 flow rate using no swirl vane. The emissivity is 

thought to be dominated by soot particle radiation but may also be influenced by radiating coal 

particles. Typically, a higher emissivity is assumed to mean a greater concentration of soot 

particles. The emissivity does not vary widely with center oxygen flow rate. Emissivity increases 

from an average of 0.23 over all CO2-S flow rates at 1.7 kg/hr O2-C to a maximum average of 

0.27 at 4.3 kg/hr O2-C. The emissivity then decreases to an average of 0.12 at 21.4 kg/hr O2-C. 

The emissivity data have a similar profile as a function of center oxygen as the temperature data, 

except that the maximum is shifted to a lower center oxygen flow rate and the emissivity at high 

center oxygen conditions approaches a constant value of 0.12. Emissivity tends to be highest for 

low secondary CO2 flow rates and generally decreases with increasing secondary CO2.  

The differences in emissivity can be explained by changes in soot formation. Since soot 

is formed in the fuel rich regions within a flamelet and lifted flames have increased oxidizer 

entrainment, lifted flames should produce less soot and emissivity. This appears to be the case 

for flames with low center oxygen flow rates, which can be seen in the left column of Table 6-1 

and are to the left in Figure 6-5. As more center oxygen is added, the lift-off decreases and the 

flame attaches (see Table 6-1) and soot concentration and emissivity increase. Soot and 

emissivity reach a maximum where the flame begins to attach (4.3 kg/hr O2-C). A further 

increase of center oxygen provides even more oxygen to the fuel stream than entraining oxygen 

from the flame lift-off, inhibiting soot formation. Thus, adding center oxygen beyond 4.3 kg/hr 
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decreases soot formation and the emissivity. The decrease in emissivity at center oxygen flow 

rates below 12.8 kg/hr when secondary CO2 is increased can be explained by the increased 

dilution and mixing that occur due to the higher velocity of the secondary stream, both of which 

inhibit soot formation.  

The effect of oxidizer entrainment on soot formation is more significant when there is no 

CO2, or 100% O2, in the secondary stream than at the maximum secondary CO2 setting, 20 kg/hr. 

This is illustrated when comparing the 0 and 20 kg/hr CO2-S flow rates at low center oxygen 

flow rates. The emissivity at 20 kg/hr CO2-S barely increases, while the series at 0 kg/hr CO2-S 

has a significant jump, even though the initial addition of center oxygen decreases the lift-off 

length of the flame for both CO2-S series. At the high secondary CO2-S series, the flame was not 

entraining as much oxygen as at low CO2-S, since the bulk of the secondary stream was CO2. 

Thus, decreasing the lift-off length of the flame and reducing the amount of entrainment did not 

increase the soot formation much. 

 

Figure 6-5. Emissivity as a function of center oxygen flow rate for each secondary CO2 flow 
rate using the no swirl vane. 
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The adiabatic flame temperature as a function of the secondary CO2 flow rates is shown 

in Figure 6-6. The adiabatic flame temperature does not change as a function of center oxygen 

flow rate, since the total amount of oxygen exiting the burner remains the same. The temperature 

is seen to drop 130 K as it goes from 2925 K at 0 kg/hr CO2-S to 2765 K at 20 kg/hr CO2-S. A 

fairly similar decrease in the measured temperature is expected, but the magnitude of the 

decrease may not follow the change in the adiabatic flame temperatures exactly, since the effects 

of adding CO2 to the flame are complex. The measured temperatures averaged over all the center 

oxygen conditions dropped about 100 K when changing from 0 to 20 kg/hr CO2-S. The 

temperature drop due to CO2 addition is fairly close to the adiabatic flame temperature drop 

caused by adding CO2, although the adiabatic flame temperatures are considerably higher than 

those measured.  

 
Figure 6-6. Adiabatic flame temperature as a function of secondary CO2 flow rate. 
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loss to the walls is estimated to be on the order of 25-30%. This is on the order of the heat loss 

needed to drop the adiabatic flame temperatures to their corresponding measured average 

temperatures. 

 

6.2 15° Swirl Vane Temperature and Emissivity Results 

Table 6-2 is a matrix of representative flame images as a function of center oxygen and 

secondary CO2 flow rates for the 15° swirl vane. It should be noted that due to the increased 

stability of the flame added by the swirl vane, images with conditions up to 40 kg/hr CO2-S are 

presented. The first row of images, those at 0 kg/hr secondary CO2, are the brightest presented in 

this work. They were all taken at the same gain, which is the baseline gain of 1.0. Similar to the 

images presented when using no swirl vane (Table 6-1), the flames on the bottom and to the right 

(high incoming velocities) have finer turbulent structures than flames to the left and on the top 

(low incoming gas velocities). These finer structures indicate increased turbulent mixing. 

Table 6-2. Matrix of representative flame images for 15° swirl vane. Rows contain 
conditions at various secondary CO2 flow rates; columns contain conditions                        
at various center O2 flow rates. Image gains are labeled above each image. 

 1.7 kg/hr  
O2-C 

4.3 kg/hr  
O2-C 

8.5 kg/hr  
O2-C 

12.8 kg/hr 
O2-C 

17.1 kg/hr 
O2-C 

21.4 kg/hr 
O2-C 

0 
kg

/h
r C

O
2-

S 

GAIN=1.0 

 

GAIN=1.0

 

GAIN=1.0 

 

GAIN=1.0 

 

GAIN=1.0 

 

GAIN=1.0 

 
 

 



68 

Table 6-2 Continued 
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Figure 6-7 presents the lift-off length as a function of center oxygen for the images in 

Table 6-2. Similar to the results when using no swirl vane in Figure 6-1, the lift-off length 

generally increases with increasing secondary CO2 and decreasing center oxygen flow rates. 

These trends are explained by the same reasons as discussed when using no swirl vane. The lift-

off length at 21.4 kg/hr O2-C and 40 kg/hr CO2-S does not agree with the trends seen in all the 

other data. The corresponding image in Table 6-2 shows this flame is actually attached but a dark 

streak runs through the top, middle portion of the flame causing the algorithm to define the flame 

as lifted. This streak is thought to be caused by cold coal particles entering the reactor and 

getting swept directly into the high velocity oxygen jet without igniting. The flame does not fill 

over half of the total width of the open port until 3 cm from the burner exit. The magnitude of 
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lift-off length using the 15° swirl vane is smaller than that when using no swirl vane, even when 

the secondary CO2 flow rate is doubled at the 15° swirl setting. This reduction in lift-off length is 

caused by adding swirl to the fuel stream. As explained previously, the addition of swirl causes a 

recirculation zone where hot product gases mix with incoming reactants and stabilize the flame, 

preventing lift-off. 

 

Figure 6-7. Lift-off length as a function of center oxygen flow rate for selected secondary 
CO2 flow rates using the 15° swirl vane. 

 

Figure 6-8 presents the spatially-averaged temperature results as a function of center 

oxygen flow rate for each secondary CO2 flow rate using the 15° swirl vane. The data show a 

clear trend of decreasing temperature with increasing secondary CO2. This is consistent with the 

cold CO2 acting as a diluent to decrease flame temperature.  

The data show a more complex relationship between center oxygen flow rate and the 

corresponding temperature. Interestingly, each series of constant CO2-S fit very well with a 

fourth-order polynomial as seen in the Figure 6-8, which reveals a repeatable pattern in the data. 

Each CO2-S series of data exhibit a minimum at low center oxygen flow rates and a maximum at 
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increasing secondary CO2 flow rates. The repeatability of the trend seen for each CO2-S flow rate 

suggests the data are correct and the trends are real.  

 
Figure 6-8. Temperature as a function of center oxygen flow rate for each secondary CO2 
flow rate using the 15° swirl vane. 

 

While it is not possible to positively explain these complex temperature results, the 

location of the maxima shifting to higher center oxygen flow rates at lower CO2-S flow rates is 

consistent with the lift-off length, which follows the same trend (Figure 6-7). It takes more center 

oxygen to attach a flame at high secondary CO2 flow rates. This suggests that the increase in 

temperature producing the maxima is caused by reduced entrainment and shorter lift-off lengths. 

With less entrainment, there is less dilution from added CO2 and recirculated product gas. Thus, 

the temperature is maximized when the center oxygen jet has minimized diluent entrainment. 

The drop in temperature at high center oxygen flow rates suggest that the high velocity jet of the 

center oxygen is causing increased mixing with the secondary stream and increased dilution. 

This increased dilution makes less difference when the secondary stream is pure oxygen and 

therefore, the 0 kg/hr CO2-S stream does not decrease in temperature at high center oxygen flow 

rates. This change in maxima for the different CO2-S settings was not seen at the 0° swirl vane. 
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This is most likely because the lack of swirl decreased the amount of entrainment from the 

diluted secondary stream. 

Figure 6-9 presents the spatially-averaged emissivity results as a function of center 

oxygen flow rate for each secondary CO2 flow rate using the 15° swirl vane. Like the data when 

using no swirl vane, the emissivity does not vary widely with center oxygen flow rate. It 

increases from an average of 0.25 over all CO2-S flow rates at 1.7 kg/hr O2-C to a maximum of 

0.28 at 4.3 kg/hr O2-C. The emissivity then decreases to an average of 0.17 at 21.4 kg/hr O2-C. It 

again tends to be highest for low secondary CO2 flow rates and generally decreases with 

increasing secondary CO2. The emissivity for a fixed CO2-S flow rate generally produces a 

maximum at intermediate center O2 flow rates. This trend is similar to the 0° swirl results, except 

the emissivities continue to decrease at higher center oxygen flow rates and do not asymptote to 

a fixed value with increasing center O2.  

Adding center oxygen initially decreases entrainment by reducing ignition delay and 

attaching the flame but, once attached, the addition of center oxygen increases entrainment 

because of the high velocity jet produced by the center oxygen. The emissivities with the 15° 

swirl are higher at low center oxygen flow rate than the emissivities produced when using no 

swirl vane. This is thought to be caused by the swirl vane, which produced a fuel rich, 

recirculation zone, which creates more soot. Increasing center oxygen burns out the soot more 

effectively at low secondary CO2 flow rates. At 0 kg/hr CO2-S, the emissivity falls from 0.33 to 

0.22 when moving from 12.8 to 21.4 kg/hr O2-C. At 40 kg/hr CO2-S, the emissivity falls from 

0.20 to 0.18 when moving from 12.8 to 21.4 kg/hr O2-C, a much smaller drop. At 0 kg/hr CO2-S, 

the secondary stream only contains oxygen. Thus, increasing the center jet, which increases the 

entrainment of the pure oxygen secondary stream, will decrease the amount of soot in the flame. 
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At 40 kg/hr CO2-S, the soot formation is already limited by the high concentration of CO2 and 

increasing the center oxygen flow rate does not have as great an effect on soot formation.  

 

 
Figure 6-9. Emissivity as a function of center oxygen flow rate for each secondary CO2 flow 
rate using the 15° swirl vane. 

 
6.3 40° Swirl Vane Temperature and Emissivity Results 

Table 6-3 is a matrix of representative flame images as a function of center oxygen and 

secondary CO2 flow rates for the 40° swirl vane. For all conditions, the flame is attached as it 

exits the burner. Thus, the plot of lift-off length is not provided for this swirl setting. The flame 

luminosity, the inverse of the gain, is highest at 0 kg/hr CO2-S and decreases with increasing 

CO2-S. There does not appear to be a trend in flame luminosity with center oxygen flow rate. 

The flame appears to be narrower at high center oxygen flow rates (right column), favoring the 

right side of the viewing window at 0 and 20 kg/hr CO2-S. Many of the flames show dark 

regions or clouds between the flame and the camera. These dark clouds were visible with the 

naked eye during operation and are thought to be composed of unburned, pulverized coal 

particles. These regions of unburned coal were periodic but steady at a given condition.  
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Table 6-3. Matrix of representative flame images for 40° swirl vane. Rows contain 
conditions at various secondary CO2 flow rates; columns contain conditions                           
at various center O2 flow rates. Image gains are labeled above each image. 
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For example, the flame at 0 CO2-S and 21.4 kg/hr O2-C is seen to be bright on the right side and 

dark on the left side of the window. The dark side contains unburned coal, presumably from an 

uneven distribution of coal in the primary annulus at the burner exit. This dark, left side was seen 
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in all ten representative images taken at this condition. A final observation about these flames is 

that they form a wrinkled, continuous flame sheet, particularly at low center oxygen and 

secondary CO2 flow rates. 

A possible explanation for the observed behavior of these flames is that the swirl 

produced by the 40° swirl vane in the primary fuel annulus created a condition where the coal 

particles were transported radially outward when they exited. The fuel tube was recessed 8.5 cm 

within the secondary tube. Due to the radial momentum of the coal, it was transported to the 

outer edges of the tube. Therefore, at the exit of the secondary tube, the coal and its volatiles 

were predominantly located on the outside of the oxidizer stream. Due to the coal location, the 

portion of the flame visible to the camera was more fuel rich. The sheet-like flames imaged for 

these conditions suggest that the turbulence is lower for this burner configuration. Perhaps, the 

more turbulent transport of oxidizer was on the inside of the fuel stream and not visible to the 

camera. 

Figure 6-10 presents the spatially-averaged temperature results as a function of center 

oxygen flow rate for each secondary CO2 flow rate using the 40° swirl vane. Generally, flames 

with higher secondary CO2 flow rates are seen to have lower temperature. There are no strong 

trends with temperature produced by changes in center O2 flow rates. The lack of a clear trend 

may be the result of partial or full flame blockage by unburned coal. Partial obscuration of the 

flame by coal will reduce the calculated flame temperature. Near total obscuration produces 

pixels with intensities low enough that they are excluded from the flame calculation and, thus, 

have no impact on the average temperature. The operating conditions produced repeatable 

locations where the flame was obscured. Therefore, a shift to a similar operating condition that 
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would normally cause a small change in flame temperature might cause a large shift in the 

location of unburned coal, and thus, a large difference in the inferred flame temperature. 

 
Figure 6-10. Temperature as a function of center oxygen flow rate for each secondary CO2 
flow rate using the 40° swirl vane. 

Figure 6-11 presents the spatially-averaged emissivity results as a function of center 

oxygen flow rate for each secondary CO2 flow rate using the 40° swirl vane. As with the 

temperatures, the emissivities obtained with the 40° swirl vane were scattered and did not 

produce strong trends with changes in secondary CO2 or center oxygen flow rates. The average 

emissivities are higher for the 40° swirl vane than for the 0° and 15° swirl configurations. The 

observed obscuration of the flame by the pulverized coal may be partially responsible for the 

higher emissivities seen. Also, there is less mixing between the coal and oxidizer as can be seen 

in the images of the flame sheets. This results in increased soot formation, which also causes 

higher emissivities.  
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Figure 6-11. Emissivity as a function of center oxygen flow rate for each secondary CO2 
flow rate using the 40° swirl vane. 

6.4 Axial Temperature and Emissivity Profile Results 

Using the 2-D temperature and emissivity maps, the axial (distance from the burner in the 

axial direction) temperature and emissivity were calculated. A single axial temperature and 

emissivity were determined by averaging the temperature or emissivity within horizontal strips 

of 2.5 cm length. For example, a temperature marker at a distance of 5 cm gives the average 

temperature of all the pixels within the flame between 5 cm and 7.5 cm from the burner exit. A 

complete set of axial temperature plots are provided in the appendix. A selected set of data are 

shown here to provide a description of the temperature profiles. Table 6-4 shows the temperature 

and emissivity maps for two different flame conditions divided into the horizontal strips that are 

averaged to produce the profile graphs. The two conditions are provided to illustrate the 

difference in the demarcation between a flame with and without liftoff. The flame was defined to 

exist once 50% of the pixels in a row were contained within the flame boundary. Thus, for 
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the burner exit was found using the ratio of the known width of the window to the number of 

pixels in the imaged window width.  

Table 6-4. Two conditions at different lift-off lengths presented with both           
temperature and emissivity maps to illustrate the subdivisions  

used to create the axial profile graphs. 
 

No Lift-off Lift-off 
Temperature Emissivity Temperature Emissivity 

    
 

Matrices of graphs for temperature and emissivity axial profiles using no swirl vane and 

the 15 and 40° swirl vanes are shown in Table 6-5 through Table 6-10. Each row in the matrix 

contains conditions at a particular secondary CO2 flow rate and each column contains conditions 

at a particular center oxygen flow rate. The profiles for three representative images are plotted in 

each profile graph to show the repeatability of that condition.  

A general observation in almost all cases is that there are opposite trends in the axial 

temperature and emissivity profiles. When emissivity decreased, the temperature increased and 

vice versa. Interestingly, this trend is not observed in the magnitude of temperature and 

emissivity between different operating conditions. For example, consider the left column of 

Table 6-5. As CO2-S increases, the magnitude of both the emissivity and temperature decrease. 
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One possible explanation for this observation is that the amount of diluent and the temperature of 

the mixture components prior to combustion in the flame determines the maximum adiabatic 

flame temperature. Thus, increasing the amount of cold CO2 or recycled product gases that have 

lost heat to the walls decreases the adiabatic flame temperature. Thus, the decrease in 

temperature due to diluents is independent of flame emissivity. The inverse correlation between 

emissivity and temperature within a condition has at least two possible explanations. First, higher 

emissivity may be an indication of higher soot concentrations. Higher soot concentrations may 

cause higher rates of heat transfer and colder flames. A second possibility is that higher 

emissivity is indicated due to increased interference with cold coal particles. This interference 

also makes the temperature appear to be colder because of the absorption of light changing the 

ratio between the two colors in the measurement. As will be seen, the data are more consistent 

with the former argument suggesting that the emissivity is a measure of the amount of soot and 

that increased soot causes increased heat loss and lower flame temperatures. The key to 

understanding the temperature trends is therefore to understand the trends in soot concentration. 

Soot is formed in fuel rich regions and is oxidized rapidly when passing through a flame. 

The radiation measured by the two-color method will be dominated by the soot in the flame front 

as it is being oxidized. This measured soot provides an indication of how much soot forms in the 

fuel rich boundary of the flame. Soot concentration will decrease when this mixture is leaner 

prior to ignition. Soot concentration will increase when the mixture is more fuel rich, or remains 

fuel rich without oxidizing, thereby allowing the soot concentration to increase prior to 

oxidation. Conditions described previously that produce lifted flames or enhance the mixing of 

oxidizer into the fuel stream will reduce soot. This decrease is seen by the decreased emissivity 

with increasing secondary CO2 and center oxygen flow rates. 



79 

 Using no swirl vane, the soot as a function of axial position tends to increase to a 

maximum and then decrease. The flame in most cases is lifted. This indicates that there is 

entrainment prior to ignition. It also indicates that the coal volatiles have not yet been heated and 

so have not yet released volatiles. Thus, the mixture is leaner near the burner and soot formation 

is low. As the volatile release increases relative to entrainment, the mixture becomes richer and 

soot formation increases. As the volatile release slows and entrainment continues, the mixture 

becomes leaner again and soot formation decreases. Most, if not all, of the data can be explained 

by the competing effects of the rate of oxidizer entrainment and the rate of volatile release at a 

given location. Since volatile release and entrainment rates were not measured, there is no 

definitive proof these rates correlate with the measured emissivity and therefore alternative 

explanations are possible. 

 

Table 6-5. Axial (cm) temperature (K) profiles for no swirl vane. Rows contain     
conditions at various secondary CO2 flow rates; columns contain                                    

conditions at various center O2 flow rates. 
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Table 6-6. Axial (cm) emissivity profiles for no swirl vane. Rows contain                         
conditions at various secondary CO2 flow rates; columns contain                             

conditions at various center O2 flow rates. 
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Table 6-7. Axial (cm) temperature (K) profiles for 15° swirl vane. Rows contain  
conditions at various secondary CO2 flow rates; columns contain                                               

conditions at various center O2 flow rates. 
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Table 6-8. Axial (cm) emissivity profiles for 15° swirl vane. Rows contain                     
conditions at various secondary CO2 flow rates; columns contain                                       

conditions at various center O2 flow rates. 
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Table 6-9. Axial (cm) temperature (K) profiles for 40° swirl vane. Rows contain    
conditions at various secondary CO2 flow rates; columns contain                                     

conditions at various center O2 flow rates. 
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Table 6-10. Axial (cm) emissivity profiles for 40° swirl vane. Rows contain                       
conditions at various secondary CO2 flow rates; columns contain                                     

conditions at various center O2 flow rates. 
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Once the emissivity is understood, the temperatures within an axial trend are seen to 

follow emissivity relatively well. Heat loss from soot is not the only variable impacting these 

temperatures and therefore, changes in the mixture fraction of the diluents and the flame 

temperature may also have an influence.    
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7 CONCLUSIONS AND FUTURE WORK 

A digital color camera was calibrated and used to obtain images on a 150 kWth, oxy-coal 

flame under a matrix of operating conditions which investigated the effects of oxygen addition 

location, the flow rate of CO2 in the secondary, and the amount of swirl in the fuel stream. Two 

emissivity models, the Hottel and Broughton and the gray model, were investigated to determine 

which is most appropriate for use with two-color pyrometry in coal flames. The two models 

produced significantly different temperature (7%) and emissivity (24%) for the test case 

explored. It was concluded that the Hottel and Broughton emissivity model was the most 

appropriate in the near-burner region where the flame radiation is dominated by soot, but the 

gray assumption is more valid in regions dominated by char burnout. The Hottel and Broughton 

model was used for the remainder of the reported results. The use of a single, digital camera for 

two-color pyrometry is a useful tool that provides qualitative data regarding: flame symmetry, 

luminosity and turbulent mixing. Image processes provided a semi-quantitative lift-off length. 

Calibrated imaging also provides quantitative data, such as: average temperature and emissivity, 

two-dimensional temperature and emissivity maps, and profiles of temperature and emissivity as 

a function of axial distance in the flame. The two-color method has the advantage of being 

inexpensive, non-intrusive and appropriate for particle-laden flames. The system can image 

flames over a wide range of temperatures and has a relatively simple setup. 
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Using the images, the characteristics of an oxy-coal flame were analyzed. The flame 

temperature was found to decrease by: 1) The addition of CO2 in the incoming oxidizer stream, 

2) Increased entrainment of recirculated products (mainly CO2 and H2O) that had lost some heat 

to the walls and 3) High emissivity, or soot concentration, increasing radiative heat transfer from 

the flame. Entrainment of oxidizer and recirculated products decreased the local stoichiometry of 

the flame, which caused decreased emissivity (lower soot formation). The lift-off length could be 

decreased by: 1) Increasing the swirl angle, 2) Moving oxygen to the center primary tube and 3) 

Decreasing the secondary CO2 flow rate. A combination of the flame images, temperature and 

emissivity were useful in interpreting flame behavior. 

 These results are anticipated to be of value to the energy industry for several reasons. A 

relatively simple and inexpensive diagnostic tool is presented that can measure two-dimensional 

temperature and emissivity in particle-laden flames. This diagnostic is particularly useful in oxy-

combustion flames, which have the potential for temperatures greater than the capabilities of 

existing physical probes. The results presented here are the first to compare the Hottel and 

Broughton and gray emissivity models for use with two-color pyrometry in coal flames. These 

data have brought a new awareness to the importance of modeling the emissivity correctly. The 

results presented contribute to characterizing the effects of swirl angle, oxygen location and CO2 

dilution on the temperature, emissivity and lift-off length of an oxy-coal flame. These data have 

been combined with measured NO emissions and burnout for this burner in order to explain the 

burner performance in a concurrent study presented by Zeltner [3]. 

For future work, it is recommended that additional effort be devoted to finding the most 

appropriate emissivity model for use in pulverized-coal flames. While Hottel and Broughton is 

the most widely used emissivity model for soot, additional work should be done to confirm that 
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the Hottel and Broughton model is accurate for the soot produced by coal flames. Also, at some 

point in the flame, where the soot has burned out and the radiation is dominated by char and ash 

particles a different model must be used. Further work must be done to account for the varied 

emissivity at different locations in a coal flame.  

To address both of these issues, it is suggested that a fiber optic cable and a spectrometer 

be used to examine the emissions from the flame over the entirety of the wavelength spectrum, 

not just in the visible band. This measurement would also provide a total emission measurement, 

or the heat flux from the flame, since the emissivity would be known at all wavelengths, not just 

in the visible region. Additionally, the pixel response from all three color bands produced by the 

RGB camera could be used to more accurately model the emissivity and analyze the temperature. 
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APPENDIX A.     AXIAL PROFILE RESULTS 

This section presents the full set of axial profile temperature and emissivity results for the 

0, 15 and 40° swirl vanes. The temperature and emissivity results for all the conditions taken at a 

particular swirl vane are presented as a matrix of graphs. The abscissas axis for each plot is the 

distance in centimeters from the burner exit and the ordinate axis is either the temperature in 

degrees Kelvin or the emissivity. Each row in the matrix contains conditions at a particular 

secondary CO2 flow rate and each column contains conditions at a particular center oxygen flow 

rate.  
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A.1   No Swirl Vane Axial Profile Temperature and Emissivity Results 
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A.2   15° Swirl Vane Axial Profile Temperature and Emissivity Results 
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A.3   40° Swirl Vane Axial Profile Temperature and Emissivity Results 
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APPENDIX B.     IMAGE PROCESSING DESCRIPTION 

This section presents a description of the method used to process the images for the 

temperature and emissivity results. First, the pixel values from the image are pre-processed 

according to the calibration as found in Section 3.2. The flame boundary is found primarily 

through the use of a MATLAB-based edge finding algorithm. Finally, the MATLAB function 

“fsolve” is used to solve the non-linear governing equation for the temperature and KL values. 

The KL values are then used to find the visible band emissivity values. 

B.1   Pre-processing Pixel Values 

Each image is named in a standard format that contained the camera settings used to take 

the image. The code draws this information from the image name in order to process the data 

correctly. The name contains the neutral density filter used, the exposure time, the aperture 

setting, the date the image was taken and the image number. When the code is run, the user 

selects the image file to process and the MATLAB code imports the red, green and blue (RGB) 

pixie values for the image. The image is displayed and the user selects the area around the flame 

(Figure B-1), which crops the selected area from larger image. This prevents any reflection from 

the filters and windows in the optical setup from interfering with the edge finding algorithm. 
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Figure B-1. User selects area around the flame from the original image to avoid 
interference from optical system reflections. 

An error map is created to track pixels that are too dark or that are saturated. Pixels were 

defined to be too dark when they were below 30 and saturated when they were at the maximum 

value, 1023. The user is asked to select the desired binning and filtering sizes. Binning averages 

a square of pixel values to a single pixel. This reduces the resolution of the image but greatly 

increases the processing speed of the image. All data presented in this work did not use binning 

in order to have as high a resolution as possible; however, binning is quite useful for quickly 

examining results. Typical binning is over a 2x2 square of pixels. Median filtering utilizes the 

MATLAB function “medfilt2” and smoothes noise over a square of pixels while preserving the 

edges of the image. Typical filtering is over a 3x3 square of pixels. The pixels are adjusted for 

the initial energy correction, according to the calibration in Section 3.2. The pixels are also flat 

field corrected by dividing the pixel values by the flatfield correction matrix that correlates to the 

aperture setting used.  
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B.2   Flame Boundary Detection 

The edge finding algorithm uses the MATLAB function “edge” and the Sobel method to 

find the flame boundary. The Sobel method finds the derivative between two neighboring pixels 

and marks an edge at points where the derivative is maximized. This method does well at finding 

the flame boundary, but sometimes requires user input to eliminate radiating surfaces that are not 

part of the flame, such as the burner block. Figure B-2 shows on the left a flame image with the 

edge found automatically by MATLAB, as marked by the red lines. It includes a section of the 

burner block at the top. The user must increase the threshold values for the edge algorithm until 

the red edging does not trace around any non-flame surfaces. This has been done in the right 

image in Figure B-2. 

 

  

Figure B-2. Example of edge detection. Left: MATLAB output; Right: User adjusted 
MATLAB output. 
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B.3   Solving for Temperature and Emissivity Values 

Once the flame boundary is defined, the MATLAB function “fsolve” is used to solve the 

governing equation (3-14) for the temperature and KL values. The “fsolve” function is used to 

solve systems of nonlinear equations with multiple variables of the form: 

. (B-1) 

Thus, the governing equation is rearranged to Equation (B-2) and the blue and red pixel values 

were used to solve for T and KL. 

(B-2) 

 Pixels too dark or saturated are not used in the solver. If valid pixel values occur next to 

these invalid pixels, they are given the average temperature and KL of the valid neighbors. If the 

invalid pixels have no valid neighbors surrounding them, they are given a value of zero and the 

pixel location is marked on a solver map as not having solved. These pixels are not included 

when finding the average temperature and emissivity values. After the post-processing, the 

visible band emissivity was estimated from the KL values according to Equation (3-15) in 

Section 3.2. 

 The temperature and emissivity results are then analyzed. The temperature and emissivity 

maps are plotted, the average and maximum values are found, the lift-off length is calculated and 

the solver maps that mark which pixels did or did not solve are created. The temperature, 

emissivity and solver maps corresponding to the image in Figure B-1 and Figure B-2 are shown 

in Figure B-3. A small amount of pixels were saturated and did not solve. They are denoted by 

the dark red (Color 4 on the legend to the right) dots seen on the solver map. Other pixels were 

saturated but were near valid neighbors. These pixels are presented as the average of those 
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neighbors and are denoted by the orange dots (Color 3). All other pixels solved normally and are 

denoted by the yellow color (Color 1). 

Temperature Map (K) 

 

Emissivity Map 

 

Solver Map 

 

Figure B-3. Example of temperature, emissivity and solver maps. 
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