
Brigham Young University Brigham Young University 

BYU ScholarsArchive BYU ScholarsArchive 

Theses and Dissertations 

2011-12-15 

A General Model for Continuous Noninvasive Pulmonary Artery A General Model for Continuous Noninvasive Pulmonary Artery 

Pressure Estimation Pressure Estimation 

Robert Anthony Smith 
Brigham Young University - Provo 

Follow this and additional works at: https://scholarsarchive.byu.edu/etd 

 Part of the Computer Sciences Commons 

BYU ScholarsArchive Citation BYU ScholarsArchive Citation 
Smith, Robert Anthony, "A General Model for Continuous Noninvasive Pulmonary Artery Pressure 
Estimation" (2011). Theses and Dissertations. 3189. 
https://scholarsarchive.byu.edu/etd/3189 

This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion 
in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please 
contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu. 

http://home.byu.edu/home/
http://home.byu.edu/home/
https://scholarsarchive.byu.edu/
https://scholarsarchive.byu.edu/etd
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F3189&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsarchive.byu.edu%2Fetd%2F3189&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/3189?utm_source=scholarsarchive.byu.edu%2Fetd%2F3189&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu,%20ellen_amatangelo@byu.edu


A General Model for Continuous Noninvasive Pulmonary Artery

Pressure Estimation

Robert Smith

A thesis submitted to the faculty of
Brigham Young University

in partial fulfillment of the requirements for the degree of

Master of Science

Dan Ventura, Chair
Christophe Giraud-Carrier

Eric Mercer

Department of Computer Science

Brigham Young University

April 2012

Copyright c© 2012 Robert Smith

All Rights Reserved



ABSTRACT

A General Model for Continuous Noninvasive Pulmonary Artery
Pressure Estimation

Robert Smith
Department of Computer Science, BYU

Master of Science

Elevated pulmonary artery pressure (PAP) is a significant healthcare risk. Continuous
monitoring for patients with elevated PAP is crucial for effective treatment, yet the most
accurate method is invasive and expensive, and cannot be performed repeatedly. Noninvasive
methods exist but are inaccurate, expensive, and cannot be used for continuous monitoring.
We present a machine learning model based on heart sounds that estimates pulmonary
artery pressure with enough accuracy to exclude an invasive diagnostic operation, allowing
for consistent monitoring of heart condition in suspect patients without the cost and risk
of invasive monitoring. We conduct a greedy search through 38 possible features using a
109-patient cross-validation to find the most predictive features. Our best general model
has a standard estimate of error (SEE) of 8.28 mmHg, which outperforms the previous best
performance in the literature on a general set of unseen patient data.

Keywords: Feature Selection, PAP, Medical Diagnostics, SVM Parameter Selection, Neural
Networks, Neural Networks Topology, Dimensionality Reduction
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1 INTRODUCTION

Heart disease is the third leading cause of death. Doctors diagnose some heart diseases

by measuring pulmonary artery pressure (PAP). Most often, they use right heart catheter-

ization to measure PAP [1]. During right heart catheterization, a doctor cuts an incision

into the thigh and feeds a tube up through an artery until it reaches the upper section of

the heart, where a sensor detects the pulmonary artery pressure. Over 200,000 patients per

year in the US subject themselves to this invasive operation because there is no accurate

noninvasive diagnostic for PAP. Right heart catherization’s financial cost and physical risk

discourage patients from seeking potentially life-saving diagnosis and treatment of elevated

PAP. Furthermore, the surgical component of right heart catheterization (placement of a

catheter into the heart), precludes frequent or long term PAP evaluation. Researchers are

searching for an accurate PAP diagnostic to evaluate PAP frequently.

Doppler echocardiography and phonocardiography are two possible solutions to the

PAP estimation problem which do not require surgery.

Doppler echocardiography measures PAP noninvasively by analyzing the speed of

blood flowing through the heart [2, 3, 4, 5]. Doppler requires the presence of certain charac-

teristics in the patients heart in order to use it. These requirements prevent a large percentage

of patients from using Doppler [4], because including these patients would further degrade

the results. With poorly-scoring patients removed from the results, Doppler has an average

error of 30.20% compared to right heart catheterization, the ground truth [5]. Additionally,

Doppler echocardiography requires a highly specialized doctor to analyze the results, which

makes for delayed results and high prices.
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Researchers have suggested Doppler echocardiography as a noninvasive alternative

to right heart catheterization. Doppler measurement is a tricky procedure performed by

specialized physicians who are well-trained in cardiac medicine and Doppler technology,

including the many factors which exclude patients. A patient cannot perform Doppler in

their own home. In fact, even a trained technician cannot operate the Doppler systems.

In addition to the training time, the time it takes for the doctor to actually obtain and

interpret the results is prohibitive. These reasons prevent it from being used frequently or

continuously.

Additionally, Doppler cannot be used on 50% of patients with normal PAP, 10-20%

of patients with increased PAP, and 34-76% of patients with chronic obstructive pulmonary

disease [4]. The Doppler results in the literature that we found start with a random sample

of patients, but cull those patients for whom Doppler would not work well prior to the

experiment. We can assume that the results would be much worse if they included the

unfiltered entire patient set.

Brechot et al. built a Doppler system that classifies if patients have elevated PAP or

normal PAP. Although the medical standard for hypertension is PAP ≤ 25 mmHg, they used

a threshold of 40 mmHg. Reinterpreting their results with the standard 25 mmHg cutoff

for hypertension, 9 of the 15 patients were misclassified as healthy when in fact they were

hypertensive [2].

Stephen et al. collected Doppler and right heart catheter data on a set of patients,

then fit a function of the Doppler features to the true PAP values. To validate they built a

model on training data, then tested the model on the same data, with SEE of 1.9 mmHg.

This sort of validation is not predictive of clinical performance since they do not use a hold

out set or cross-validation to test their model and excluded 31% of their patient base, and

since several model classes, such as neural networks, can fit training data on any problem.

This is the best Doppler result we can find in the literature [3].
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Phonocardiography estimates PAP from noninvasively recorded heart beat sounds.

A technician records patients’ heart beat sounds with an external microphone. The machine

learning practitioner extracts features from these sounds and selects a machine learning

algorithm to generate a predictive model for pulmonary artery pressure. Unlike Doppler

echocardiography, the model used in heart sound analysis provides an estimate of PAP

without a doctor’s input.

Phonocardiography works on more patients than Doppler. Additionally, since the

computer processes the audio signals, there is no doctor in the loop. However, building a

model is a serious challenge. Finding a predictive combination of an algorithm and feature

set necessitates a huge search through the combinatoric space of possible features and al-

gorithms. In past work, researchers avoided this problem by limiting the search to a few

doctor-suggested features. This limitation prevents the discovery of predictive but unex-

pected features. The best result we are aware of in the literature is a standard estimate of

error (SEE) on training data of 5.8 mmHg [4]. Previous cardiophonic systems used small

patient sets, which limit the generality of the solution. The largest patient set was 23 pa-

tients [4]. To our knowledge, all cardiophonic results in the literature omit some subset of

patients in order to improve results.

Phonocardiography does not exclude patients as Doppler does. The only time a

patient is excluded with phonocardiography is when there is a high signal to noise ratio, or

in other words, when the recording was not done properly. Xu et al. excluded 3 patients

out of 25 due to poor signal to noise ratio [4]. Their best predictive accuracy was 5.8 mmHg

with just one feature. Tranulis et al. obtained a SEE of 6 mmHg using a neural network

and three features on a data set of 9 pigs [6]. These results are not statistically significant,

however, since they mixed heartbeats from patients across the training and test sets.

Phonocardiography is a widely applicable approach to predicting PAP which does

not require a doctor in the loop. But finding a predictive set of features and algorithms is a

significant challenge.
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Machine learning has long been used in medical applications to address such chal-

lenges [7, 8]. We use a combination of machine learning techniques in order to find a pre-

dictive feature set and algorithm combination for predicting PAP. We derive features from

heart beat sounds and use machine learning to choose a specific model and features which

most accurately predicts PAP values based on these features.

In our solution, we find the approximate most predictive feature subset and algorithm

combination for PAP prediction. We conduct a greedy search through the possible algorithm

and feature subset combinations. We use a patient set of 109 patients with 38 features to

find a feature subset and algorithm combination which estimates PAP with a SEE of 8.80

mmHg (without patient exclusion). Other studies have routinely omitted patients with noisy

heart beats. We have attempted to make a comparative study by omitting heart beats with

missing features, and patients with less than 10 complete heartbeats, and obtain a SEE of

12.33 mmHg. The results of other models in the literature were obtained by testing and

training on the same data set. This training error is essentially a measure of the fit of their

model to the data they have. In other words, they do not report results on unseen data.

Our training-only error fit the data with SEE of 5.57 mmHg.

As a result of our research, we contribute the following:

• Unlike all existing Doppler and most existing phonocardiographic models, our model

is accurate without patient exclusion.

• Our model has the lowest SEE we could find in the literature for a cardiophonic ap-

proach when tested on new data.

• Our data set—although small in comparison to most machine learning applications—

is the largest used in the literature, suggesting that our results are more general than

those obtained with smaller data sets.

• Our model does not require a doctor, suggesting lower cost.

• Our model can be used as frequently as patients desire.
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In this thesis, we present our model and the experiments that generated it. In this

Chapter, we review previous attempts by others to solve the PAP estimation problem and

show that there is still no noninvasive method which can accurately predict PAP on an

unfiltered general population. In Chapter 2, we explain the model classes and parameter

settings that we demonstrate are most likely to produce an accurate model. In Chapter 3

we explain the thorough search through the space of possible model classes, features, and

parameters that makes us confident about the accuracy of our model on this data set. Finally,

we conclude with a discussion of the experiments, results, and suggestions for future work

in Chapter 4.
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2 METHODS

Our problem is to find the best algorithm f , parameters α, and feature set χ with

the lowest SEE for our data set X, as measured by a leave-one-out cross-validation For a

given patient p, SEE is a measure of fit, defined by

SEE(p) =

√√√√√√
n∑
i=1

(PAP (p)− yi)2

(n− 2)
(2.1)

where n is the number of heartbeats, PAP (p) is the true PAP of patient p, and yi is the

model prediction for heartbeat i. The number 2 is a normalizing term to account for a

sample instead of a population. This formula is widely used in the literature as a measure

of model goodness for PAP prediction.

A solution is defined by the function fα,χ, which defines a model which predicts PAP

given a data instance. Here, f is a model class generated by one of a representative subset

of all machine learning algorithms, α is the vector of parameters unique to that model class

(such as support vectors for an SVM or edge weights for a MLP), and χ ⊆ H, the set of

all heart beat features. When presented an instance xpi of the set of all patient data X,

yi = fα,χ(xpi) returns a prediction of the PAP of patient p for heartbeat i.

Our goal is to find the configuration (choice of f,α, χ) which yields the lowest average

SEE score, computed by a leave-one-out cross-validation. In other words, for each patient

p, the data for all other patients X−p are used to find fα,χ. Then, the SEE for patient p is

computed. This value is averaged across p for the given configuration. The best solution is
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argmin
f,α,χ

1

m

m∑
p=1

|SEE(p)| (2.2)

where m is the number of patients.

The search through possible f,α, χ is non-trivial. We use a greedy approach, detailed

in the next few sections.

2.1 Data Preparation

Our data set X consists of features extracted from 109 patients whose phonocardiogram

was recorded from the V3 position (a specific area of the chest) while undergoing right heart

catheterization (the ground truth measurement) and ECG. The mean PAP value was 26.14,

the range of PAP values was (9,76) and the standard deviation was 12.16. We segment each

patient’s heartbeat recording into individual heart beats, from which we extract a vector of

features.

We adapt the heart beat features from Dennis et al. as our set of features H (see

Table 2.1, [9]). Binary Features hass3 and hass4 indicate whether the s3 or s4 sounds

are detected in the heart beat signal. We calculate the Dominant Frequency features by

taking the argmax over k of the kth frequency of discrete Fourier transform (DFT) of the

respective portion of the heart beat sound (HB, S1, S2, A2, or P2). We calculate the Quality

of Resonance features by dividing the dominant frequency of the particular heart sound by

the difference between the frequencies to the right and left of the dominant frequency at

which the DFT magnitude drops to half of the maximum. We calculate the Power features

by summing the squares of the frequencies in the DFT and normalizing by T , the length

of the signal. We measure the time difference between different heart sounds in the signal

with the Splitting Interval features. We compute several Ratio features to test if combined

features yield more information than their separate parts. The Systole Duration features are

a time measure between a start event, noted by the subscript, and an end event, noted by

7



Table 2.1: Heart Sound Features. In this table sig can be one of the following heart sound
signals: HB, S1, S2, A2, or P2, where HB is the whole heart sound signal. Terms such
as tP2start are the onset times of the indicated heart sound component. tR is the ECG
R-wave time and δRR is the time between two successive R-waves (From [9]). Dennis et
al. did not include hass3 or hass4 because of their lack of medical indication of effect on PAP.

Category Features Description
Binary
Features

hass3, Presence of
S2 or S3hass4

Dominant
Frequency

FHB, FS1, FS2, argmax
k

F(sig)k
FA2, FP2

Quality of
Resonance

QHB, QS1, QS2, Fsig/(Rsig − Lsig)QA2, QP2

Power
PHB, PS1, PS2 1

T

∑
x∈sig
|x|2

PA2, PP2

Splitting
Interval

SI S1 tT1start − tM1start

SI S2 tP2start − tA2start
NSI S1

SIS1×HR
600

NSI S2
SIS2×HR

600

Ratios

RFP2
FA2

FP2/FA2
RQP2

QA2
QP2/QA2

RPP2
PA2

PP2/PA2
RPA2
PS2

PA2/PS2
RPP2
PS2

PP2/PS2
RPA2
PS1

PA2/PS1
RPP2
PS1

PP2/PS1
RPS2
PS1

PS2/PS1

Systole
Duration

DA2
R tA2start − tR

DP2
R tP2start − tR

DA2
S1 tA2start − tS1start

DP2
S1 tP2start − tS1start

D̃A2
R DA2

R /δHB
D̃P2
R DP2

R /δHB
D̃A2
S1 DA2

S1/δHB
D̃P2
S1 DP2

S1 /δHB
Heart Rate HR m/

∑m
i=1 δ

i
HB

8



the superscript. The tilde systole features are normalized by the heartbeat length to measure

what percentage of the heartbeat time they consume.

Due to the variable quality and length of the heartbeat recordings, some features

that required identification of specific sounds within the heartbeat, such as the dominant

frequency and quality features, were unextractable on some heart beats. To treat the result-

ing missing values, we construct two data sets, each with a different approach:

• The first data set contains all heart beat rows of the original data set. We impute miss-

ing values while preserving the original distribution of available data by replacing the

missing value with a value selected at random from the same patient with replacement,

or, if all values of this feature are missing for this patient, from another patient ran-

domly selected with replacement. This data set gives us performance results reflecting

how well the system predicts PAP without patient exclusion.

• For the second data set, we remove all heartbeats with any missing data. This first step

removes 90% of the original heartbeats. Because the feature selection algorithms are

designed to work at the patient level, and because we assume the algorithms require

at least 10 full heartbeats per patient for a valid result, we remove the 66 patients out

of 109 that have less than 10 full heartbeats after missing data beats were removed,

leaving 43 patients. In the end, we retain just 3,135 heart beats from the original

33,053. This data set gives us results that we compare to prior work where patients

with noisy data were removed (See Table 3.1).

2.2 Feature Selection

Feature selection refers to the problem of selecting the most predictive feature subset χ

from a set of features H. For this study, we limit ourselves to H adapted from Dennis et

al. [9]. For any data set and machine learning pair there exists an optimally predictive feature

subset [10]. Using too few or too many features, or the wrong features, increases error. Filter

and wrapper methods are the two most common types of feature selection. Filter methods

9



treat the feature selection process independently from the model class selection process by

selecting the features independent of any knowledge of the learning algorithm that will be

used. Wrapper methods search through the space of possible features given the algorithm

that will be used [11]. We use a wrapper approach given that they have been shown to

outperform filter methods [10].

2.2.1 Reverse Search

Given an algorithm f and algorithm parameters α, and data set X, which feature subset

χ ∈ H results in the lowest average SEE on a leave-one-out cross-validation? Obviously, an

exhaustive search over every possible feature set in H is not feasible, as for a feature set of

size n, there are 2n − 1 possible feature subsets, or 238 − 1 = 274, 877, 906, 943 possibilities

for just one fα. Some practitioners simply guess f and α, or only test a few possibilities.

A wider-ranging search is suggested by Guyon and Bennett [12, 13]. Their recursive

reverse search starts with all features and incrementally removes the feature whose removal

results in the lowest error. Though more computationally expensive than a greedy forward

search, recursive reverse selection captures features whose mutual information is greater than

their individual information. For each iteration in the algorithm, one model must be trained

and tested for each attribute remaining in the feature set. To mitigate the computational

time, Guyon uses support vector weight as an iterative feature ranking and selection method.

By using support vector weight as the feature rank, only one model must be constructed per

iteration of the algorithm. The feature with the lowest support vector weight is removed on

each iteration.

Since the ranking metric of the Guyon method is specific to linear support vector

machines, it will not produce the optimal feature set for other algorithms. Because we

investigate the performance of several other algorithms other than linear support vector

machines, we use a standard but more expensive technique. Instead of building one model

for each iteration, we build one model for each attribute in the feature set for each iteration.

10



Using a leave-one-out cross-validation, we calculate the average SEE resulting from removing

each remaining feature for each iteration. The feature whose removal results in the lowest

SEE is removed permanently at each iteration (see Algorithm 2.1). This wrapper-based

method allows for a feature selection process specific to each model class.

In order to obtain the most accurate measure of how our model would perform in

the clinical setting, we use a leave-one-out cross-validation—one split for each patient. We

perform the cross-validation on feature set sizes from 38 down to 1, iteratively dropping the

least useful feature. We use this greedy performance test to limit the number of experiments

required. Our method requires just 80,769 iterations.

For each fα, we initialize the current features χ to the full 38 attribute feature set

H (See Algorithm 2.1). At each iteration, we loop through the current features, using the

selected feature as a hold out feature (Line 3). For each of the features in the set, we

evaluate the results of holding out the current feature as follows: We split the data into

N segments, one for each patient (Line 5, keep in mind that each patient has 10-125 rows

of data). We use one patient at a time as a hold-out test set. We build the test set by

obtaining the data rows for the test patient and only considering the feature columns in

currentFeatures−holdoutFeature (Line 6). We build the training patients set in the same

manner, and use them to train a model (Lines 7 and 8). We then evaluate the model on

the test patient data (Line 9). We add the square of the error for the current patient to a

running sum for the current held out feature. At the completion of the cross-validation for

all 109 patients for the given held out feature, we calculate and store the SEE (Line 11).

Once we finish this process for each of the features in the current feature set, we remove

from the list of current features the held out feature whose removal caused the lowest error,

and the next iteration begins. We call Algorithm 2.1 once for every iteration of current

features from size 38 down to size 1. Multiple runs are required because the goal is not a list

of 38 ranked features, but a set of 38 models of size 38 down to 2 features. Each model is an

approximation of the optimal model for each respective size. In other words, each algorithm

11



Algorithm 2.1: Feature Select: Reverse Search. This illustrates assigning a SEE value to
one feature subset χ using reverse selection. For each feature in the current feature set current-
Features (the full patient set H minus any features which have already been greedily eliminated
in prior iterations of this algorithm), a leave-one-out cross-validation is executed to determine
the average SEE when the holdoutFeature is ignored when building the current models. Each
averaged SEE becomes an entry in seeList. The feature to remove from currentFeatures is
the one which has the lowest SEE from this iteration. This algorithm is run once for every
feature subset size from |H| to 1. After all iterations, the most predictive subset χ is the subset
of H with the lowest average SEE on a per-patient cross-validation.

1: Inputs:
data, currentFeatures, patients

2: seeList← {}
3: for holdoutFeature in currentFeatures do
4: totalSquaredError ← 0
5: for testPatient in patients do
6: testSet← BUILDTEST(data, currentFeatures− holdoutFeature, testPatient)
7: trainSet← BUILDTRAIN(data, currentFeatures− holdoutFeature, testPatient)
8: model← BUILDMODEL(trainSet)
9: error ← ACTUALPAP(testPatient) - TEST(testSet,model)

10: totalSquaredError = totalSquaredError + error2

11: seeList[holdoutFeature]←
√
totalSquaredError/(numPatients− 2)

12: return argmin
i

(seeList[i])

run does not indicate which features are globally least useful, but which feature is least

useful in the specific context of the features considered for the given iteration. For instance,

an iteration of 25 features would output the feature that is least predictive out of those 25

features. This iteration could not suggest the globally less predictive feature selected and

removed in the previous iteration of 26 features. If a feature ranking was output at each run,

the features would change positions at each iteration because each iteration ranks features

among the given feature subsets.

For further clarification, consider the following walkthrough of Algorithm 2.1. Sup-

pose we have currentFeatures = {v1, v2, v3} and patients = {p1, p2, p3, p4}, and we are cur-

rently searching for an approximately optimal feature set for linear regression with data set

X, where X consists of heartbeat feature rows for each patient. We enter the for loop in Line

3. The first holdoutFeature is v1. Now we enter the for loop in line 5 with testPatient = p1.

12



We construct testSet = X−v1,p1 (patient p1’s data from X with the v1 column removed). We

build trainSet = X−v1,−p1 (all patients from X except p1 with the v1 column removed).

Now we build a model using the training data, and test it using the test data. We store

the results in order to later calculate the SEE. The loop in Line 5 repeats once for every

patient. At this point, we have all the data necessary to compute the SEE if we ignore

feature v1. Once we complete this loop (Line 3) for each of the features, we will know the

feature to leave out to locally minimize SEE. That is, the minimum SEE for iteration i may

in fact be greater than the minimum SEE from the iteration i − 1. This is a local greedy

search, which is only concerned with the minimum SEE for the current iteration. This fea-

ture (say, v3) will be removed from currentFeatures, and the algorithm will be run again

with currentFeatures = {v1, v2}. At the conclusion of the feature selection process, we have

a SEE value for each feature subset size from |H| to 1 (See Appendix:Table 5.1 to see an

example.) Note that this column of SEE values corresponds to one specific machine learning

model class f , say linear regression. This whole process must be repeated for each algorithm

class f considered.

The reverse approach to feature selection captures features that contribute more infor-

mation together than if evaluated independently. We use the previously explained algorithm

for feature selection with all model classes considered, except neural networks. Because of

the long training time for neural networks (14 hours per model), we use a hold out set of

two patients at a time until 11 features remain (one feature at a time thereafter), without a

significant effect on the result.

2.2.2 Forward Search

Forward selection cannot capture features that contribute more information together than

apart. However, it takes much less processing time than reverse search since forward selection

cuts out features while building simple models at the beginning, leaving less features to
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Algorithm 2.2: Feature Select: Forward Search. Given a set of currentFeatures that
must be included in the model, forward search finds the next locally best feature (the feature
that results in the lowest SEE for the current iteration) resulting in the greedy best feature set
of size |currentFeatures| + 1. Looping through this algorithm n times will provide n feature
sets of size (1, 2, · · · , n) and respective SEE scores for each feature set.

1: Inputs:
data, patients, currentFeatures, H

2: seeList← {}
3: for currentFeature in H do
4: totalSquaredError ← 0
5: for testPatient in patients do
6: testSet← BUILDTEST(data, currentFeature ∪ currentFeatures, testPatient)
7: trainSet← BUILDTRAIN(data, currentFeature ∪ currentFeatures, testPatient)
8: model← BUILDMODEL(trainSet)
9: error ← ACTUALPAP(testPatient) - TEST(testSet,model)

10: totalSquaredError = totalSquaredError + error2

11: seeList[currentFeature]←
√
totalSquaredError/(numPatients− 2)

12: bestLocalFeature← argmin
i

(seeList[i])

13: H ← H − bestLocalFeature
14: currentFeatures← currentFeatures ∪ bestLocalFeature
15: return H, currentFeatures

include in each model towards the end. Given that foward search involves significantly less

computation, one would hope that Reverse Search would generate more accurate models.

The algorithm is simple (see Algorithm 2.2). For each call of the algorithm, we iterate

through all features in H and each patient in patients (Lines 3, 5). We add the feature which,

in conjunction with the current H, results in the minimum SEE for this iteration (Line 12).

This feature, bestLocalFeature, is removed from H so it is not considered in future runs,

and added to currentFeatures (Lines 13, 14). The result of looping several iterations of this

algorithm for several machine learning model classes f is given in the Appendix, Table 5.4.

2.3 Machine Learning Algorithms

We use four representative regression learning algorithms to construct models which we

evaluate in search of an accurate model. Linear regression is chosen for its simplicity and

pervasive use in the medical field. Support vector machines (SVMs) and multilayer percep-
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trons, a type of neural network (NN) are used for their power and acceptance in the machine

learning domain. Two kernel variants of SVMs are used, linear and radial basis function

(RBF) in order to accurately capture the learning capabilities of the model.

For each model class considered, we will explain how the machine learning algorithm

finds the α parameters and the method for calculating a PAP prediction once an instance

of the model class is defined.

2.3.1 Linear Regression

Linear regression fits a hyperplane to data by minimizing error of fit. Let n be the number

of rows in the data set and m the number of features. Linear regression finds the error-

minimizing line by solving the following system of equations

x1,1 x2,1 · · · xm,1

x1,2 x2,2 · · · xm,2
...

...
. . .

...

x1,n x2,n · · · xm,n


×



α1

α2

...

αn


=



y1 + ε1

y2 + ε2
...

yn + εn


where y is the 1-d vector of target values (PAP values for our problem), X is the n x m

matrix of data vectors (heartbeat feature vectors in our problem), α is the 1-d vector of

coefficients and ε is vector of bias terms. Both α and ε are unknown. The algorithm finds

values of α which minimize
∑
n

ε2.

A trained instance of linear regression can be expressed by

fα(x) = α1x1 + · · ·+αkxk (2.3)

where x is a heart beat data vector, and fα(x) is the predicted PAP value for x. Because

the solution of fα(X) for linear regression is definined uniquely by data set X, the search

for the most predictive model depends only on the feature subset search. The algorithm is
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simple, and therefore fast, but performs well only to the extent that a linear relationship can

explain the data.

2.3.2 Support Vector Machines

A Support Vector Machine (SVM) also learns a hyperplane that, (in the regression case),

best fits a given data set. The function implemented by an SVM model is given by:

fα(x) =
l∑

i=1

α · k(x,xi) + α0 (2.4)

To find this model we attempt to minimize

1

2
||α||2 + C

l∑
i=1

(ξi + ξ∗i ) (2.5)

subject to the following constraints


yi − 〈α,xi〉 −α0 ≤ ε+ ξ∗i

〈α,xi〉+α0 − yi ≤ ε+ ξi

ξ, ξ∗i ≥ 0

 (2.6)

In Equation 2.4, k(·, ·) is a kernel function, such as the linear or RBF kernel functions,

(respectively):

k(x,y) = (x · y) (2.7)

k(x,y) = exp(
−‖x− y‖2

2σ2
) (2.8)

When a linear kernel (see Eq. 2.7) is used for regression, the SVM learns a regression

hyperplane in the input data space. When a non-linear kernel (see Eq. 2.8) is used for

regression, the kernel maps the input data non-linearly into a different (normally higher-
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Figure 2.1: Linear SVM regression. Here each dot represents a vector of feature values
mapped into the feature space. The width of the allowance for error on each side of the
regression line is known as ε. The slack variables ξ control further allowance for error.

dimensional) space called the feature space. In that case, the SVM learns a regression

hyperplane in the feature space.

C and ε Parameters

For some data sets a function will not fit even with the allowance of ε. For this reason,

the optimization problem includes slack variables ξi and ξ∗i , which allow for deviation from

the fit line greater than ε. C is a free parameter in the algorithm which acts as a “knob”

to control the strictness of the ε tube, adjusting for more deviation from ε on a point by

point basis. The effects of C and ε are similar (as they are related to each other), though

they occur for different reasons. The proper selection of C and ε are essential to obtaining

optimal performance from the SVM algorithm.

The interval [ε, -ε] defines the ε tube, within which the error between the data point

and f is ignored (see Figure 2.1). A support vector is a vector of data mapped into one

point in the feature space, which is considered exemplary enough to be retained in the list

of vectors used to define the regression hypersurface. As ε increases, more data points are

ignored, resulting in less support vectors. If ε is too large, the accuracy of f will diminish.

As ε decreases, more importance is given to C, as the number of ξ points increases as the

width of the ε tube shrinks. If ε is too small, the performance of the system on new data

will diminish as a result of overfitting.
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C is the penalty term for data points that lie outside of ε but within ξ (hereafter

referenced as ξ data points). As C increases the system will have more incentive to minimize

the number of ξ points by adding support vectors to move f so that it minimizes the ξ

distance of the ξ points. As C decreases, the model will contain fewer support vectors since

ξ points are cheap and the weight magnitude minimization becomes the highest priority of

the optimization. At some point the model will begin to lose accuracy as the minimal ||α||2

does not permit enough support vectors or high enough weights to learn the behavior of the

training data.

We use the parameter selection method found in [14]: C = 3σ, where σ is the standard

deviation of the target. They calculate ε by:

• Initializing ε to 0.01µy, where µy is the mean of the target.

• Building and testing an SVM on a small training and test set from the data.

• Update ε: εnew = (εold + µerror)/2

• Rebuild and update until ε converges.

2.3.3 Neural Networks

A multilayer perceptron, feed-forward, artificial neural network (MLP) is a structure con-

sisting of one input node for each feature in the data, some number of hidden layers each

consisting of some number of hidden nodes h, an activation function, a learning rate λ, and

some number of training epochs. These parameters define a network of nodes which act as

a function on the data to output a prediction value (see Figure 2.2).

The function of a two-layer network is defined by

fbmα(x) = A2[σ(A1x)] (2.9)

where A1 and A2 are matrices of weights and σ(z) computes an element-wise sigmoid func-

tion on the components of z:
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Figure 2.2: An artificial neural network. Each edge between an input node i and a hidden
node j has weight Aij.

σ(z) =


1

1+exp(−z1)
...

1
1+exp(−zi)

 (2.10)

Strictly speaking, α contains not only the values of weights in A1 and A2, but also h, the

size of the hidden layer. Back propagation seeks to minimize predictive error by changing

the network weights in A1 and A2. Since gradient descent does not solve for h, we treat it

as an algorithm parameter.

Hidden Nodes, Learning Rate, and Training Epoch Parameters

The parameter settings α chosen for a neural network have a dramatic effect on its predictive

accuracy.

Each iteration of feed-forward and backpropogation through the network is called an

epoch. The number of training epochs represent a trade-off between accuracy and time to

train. The more epochs taken to train, the finer tuned a NN becomes, but the longer it takes

to train.

The more hidden nodes h, the more capable the net becomes of learning complex

functions. More hidden nodes allow greater functional complexity, but require more time to
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train and tend to overfit. If more hidden nodes are used than necessary, more training time

will be required to get the same results as a NN with less hidden nodes, and overfit is more

likely.

The learning rate determines how much the weights can be adjusted at each epoch.

The higher the learning rate, the more quickly the NN will converge on a solution, but the

more likely it will be to miss the best solution. The lower the learning rate the less likely

the NN will overshoot the best solution, but the more time will be required for the solution

to converge to a global minima, since the adjustment rate is smaller.

We used an incremental algorithm to discover the number of hidden nodes, learning

rate, and training epoch parameters for the NNs used in these experiments. The other

parameters of the network were left to the Weka defaults.

• We tested the effectiveness of the following learning rates: λ =0.0005, 0.001, 0.005,

0.01, 0.05, 0.1. First, we fixed the epochs to −500 log(λ) to allow for an exponentially

increasing amount of training time for a smaller learning rate. We also set the number

of hidden nodes to twice the number of features. We conducted 50 random trials of 20

train and test patients from the full data set, each using all combinations of learning

rates 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1 and 5, 15, 25, and 35 randomly selected

features. Training error was minimized with λ = 0.05.

• Having fixed λ = 0.05, we determined the best number of hidden nodes by trying

random combinations of feature sets of 35, 25, 15, and 5 with the following numbers

of hidden nodes:

– numberFeatures

– 2 log(numberFeatures)

– 2 ∗ numberFeatures

– 3 ∗ numberFeatures
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The number of hidden nodes with the lowest training error over 50 random trials of 20

patients on each combination was 2× numberFeatures.

• Having fixed λ = 0.05 and h = 2n, we determined the best number of training epochs

by building a learning curve from 100 to 4000 epochs in increments of 100. Each point

consists of the averaged results from 20 training patients for random feature sets of

length 5, 10, 15, 25, and 35. The number of hidden nodes and the learning rate were

fixed at the values computed above. SEE converged at 650 epochs.
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3 RESULTS

The overall computational time for our experiments, run on an internationally ranked

supercomputer, would require 40 years to run on a single-node machine. Perhaps this ex-

plains why it is not usual for practitioners to test a wide variety of model classes, feature

sets, and parameters when building predictive models. Our two data sets are evaluated on

four machine learning model classes in a full reverse search and forward search. Each search

requires the construction of 80,769 models for each algorithm and data set. The forward

search requires less computational time than the reverse search since it begins evaluating

and discarding features using few features, whereas the reverse search begins with the full

feature set. Though these computational times may seem excessive, our methods are greedy

and are significantly more restrictive than a full search, which would be computationally

intractable.

3.1 Reverse Feature Search

Table 5.1 (see Appendix) shows the average per-patient cross-validation SEE of each feature

set size for the four model classes considered. The lowest SEE score for the data set with

patients excluded has 11 features and uses SVM with a linear kernel, with SEE 12.33 mmHg.

MLP produces the lowest SEE score for the full data set (9.40 mmHg) using 18 features.

The only model class to produce SEEs < 10 mmHg was MLP.

Tables 5.2 and 5.3 (see Appendix) show which features are dropped at each iteration

for the large and small data sets, respectively. From top to bottom this list shows the

predictive power of each feature, for each algorithm, in descending order. Some features rate
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well on the same model class for both data sets. For instance, PS2 rated most predictive

on the full patient data set and second most predictive on the culled patient data set for

MLP. Medical practitioners may be surprised to note that the same feature could rank very

differently between two data sets even if both data sets represented the same physiological

problem. Although variance in inter-data set feature performance variance is well known in

machine learning, the degree of inter-data set variance is noteworthy. One example is HR

in linear regression, which ranked 6th on the full data set and 31st on the culled data set.

Of more significance is the intra-data set variance. One such example for the culled data set

is the feature FHB, which ranks as the least predictive feature for linear regression, yet the

most predictive feature for MLP.

The culled data set feature rankings agree for the most part that RPS2
PS1

is the most

predictive feature. There is less agreement amongst the model classes for the full patient data

set, which is no surprise granted the significantly increased number of patients and number

of heartbeats per patient in the full data set. A more complicated data set may pose a

greater opportunity for the computational differences in the learning algorithms to manifest

themselves in the form of greater variance in results, and therefore a greater variance in the

feature ranking.

3.2 Forward Feature Search

Table 5.4 (see Appendix) shows the average per-patient cross-validation SEE of each feature

set size for the four model classes considered. The lowest SEE score for the data set with

patients excluded has 19 features and uses MLP, with SEE 10.28 mmHg. MLP also produces

the lowest SEE score for the full data set (8.28 mmHg) using 8 features. The only model class

to produce SEEs < 10 mmHg was MLP, with the exception of one model—SVM-Linear with

1 feature. It is interesting to note that the 8.28 mmHg SVM-Linear model’s only feature is

hass3, a binary feature that was deemed so medically insignificant that Dennis et al. didn’t

even include it in their classification experiments (see [9]). This result highlights the fact that
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Figure 3.1: A comparison of the best performing models across feature selection algorithm
and data set combinations. The forward search feature selection algorithm on the full patient
data set outperforms all other feature selection and data set combinations.

machine learning can rank features independent of domain-specific insight. Additionally it

suggests the need to provide data-driven methods with all available data so that counter-

intuitive results are not overlooked.

Beginning with just one feature, Tables 5.5 and 5.6 detail the most predictive (error

lowering) feature for each iteration on the large and small data sets, respectively.

Just as with the reverse feature search, we see a strong agreement between model

classes for the most predictive features for the culled set, and slightly less agreement for the

full patient data set. For example, for the culled feature set all four model classes agree that

RPS2
PS1

is the most predictive.

3.3 Predictive Results

Addressing all models, we see two patterns emerge. Figure 3.1 compares how each data set

and feature search algorithm pair performed across each model class. Each plotted point
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Figure 3.2: A comparison of the best performing models across model classes. The MLP
model class dominates all other model classes on all data set and feature selection combina-
tions except reverse search using the culled patient data set.

shows the SEE for the best performing model with the given parameters. The full data set

with forward feature set dominates the performance of the other parameter choices.

The poor performance of the culled data set shows that the length of the sound

recording is quite important. Missing values, whose rows were removed in the culled data

set, resulted from signals whose recording lengths were insufficiently long to conduct the

Fourier transform necessary to generate many of the features. The initial hypothesis was

that, since most competing studies have culled patients with poor heart beats, perhaps the

culled data set would perform better than the full data set. Clearly this is not the case.

Other studies succeeded with this method because they culled patients based on poor heart

beats. Since their discrimination methods were not replicable by us, we instead decided

sound quality based on length of heartbeat. If a heartbeat was insufficiently long to perform

a Fourier transform, it was considered too poor to count and removed from the culled data

set.
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Figure 3.3: A comparison of feature ranking between forward search and reverse search for
each model class using the full data set. Note the feature rank variance between the model
classes and between the search algorithms.

When the performance data is transposed to plot the model class performance on

each feature selection algorithm and data set combination, we see that MLP dominates the

other model classes for all parameters except reverse search with the culled patient data set

(see Figure 3.2). We also notice that this exception had the worst general SEE score among

the parameter choices.

The question arises whether there is any correlation between the forward and reverse

search feature ranks. The graph in Figure 3.3 shows the rank of each feature for the full

data set on each search strategy. Although there are some feature rankings that are highly

corraborative, most are not. There seems to be no clear agreement in feature rank amongst

model classes.

In order to analyze general behavior of the system across both reverse and forward

search, we combine the results into a bubble chart of the performance of each of the features

across all algorithms and data sets (see Figure 3.4). We would expect that if some phys-

iological feature is strongly correlated with PAP, we would see that feature in the bottom
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Figure 3.4: An agglomerative view of feature performance for forward and reverse search,
for all model classes and patient data sets. Each of the 38 features is represented with a
bubble with bubble diameter representing the range of ranks for this feature. The unscaled
diameters range from 20 to 37. The smaller the bubble, the more consistent the performance
of the feature.

left of the graph, indicating that it ensures a high score when it is used, and also that the

feature would have a small variance (indicated by a small diameter in the figure). Though

there are several features located in the bottom left of the graph, none of those features has

low variance. In fact, not even the features with very low best ranking are consistently good.

This confirms that the feature search must include the choice of model class and data set.

Slightly more interesting is the fact that, in this case study, even if we fix the data set there

is still significant variation in the feature ranks across model classes. Even if the model class

and data set are fixed, there is significant difference in the ranks (see Appendix).

The variation of rankings for features among feature search algorithms, model classes,

and data sets suggests that the selection of χ cannot be decoupled from the selection of f

and α. In other words, it is highly unlikely that there exists a set of features which is

predictive across all choices of f and α. For clinical thinkers this is an unexpected result,

since they operate under the assumption that some heart sound features must be more

clinically correlated with PAP than others. Perhaps the medically-suggested features we
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used did not include these univerally relevant features. However, given the fact that Dennis

et al. built their feature list starting with those suggested in the medical literature, it is

possible that such features do not exist—a surprising prospect.

3.4 Comparison to Previous Work

Table 3.1 outlines the results of our experiments described in this paper, as well as the results

of two leading PAP predictive studies from the literature. The experiments by Xu et al. yield

an error rate of 5.8 mmHg [4]. However, their model is derived and tested on the same set of

data. In other words, their model has not been tested on held out data to estimate clinical

performance on unseen data. To show that models built and tested on the same set of data

are biased on training data and can perform worse on new data, and to create a fair baseline

of comparison, we create a subset of our data consisting of 23 randomly selected patients. We

train and test models on this subset of patients with different combinations of four features

(they used two) until we find one combination which yields a SEE of 5.57 mmHg. We then

apply the model to our other 86 hold out patients. The resulting SEE is 11.14 mmHg.

Without replicating their experiments on new patients, we cannot say with certainty just

how much more error their model would produce, but it is well-known that fitted models

tend to perform much worse on new data than their fitted error measures indicate.

One study uses data from pigs [6]. Unlike our experiments, their heartbeats are

randomly assigned to training and test sets without regard to maintaining each subject’s

heartbeats in the same set. Since intra-subject heartbeat variation is likely significantly less

than extra-subject heartbeat variation, the error rates reported in this study are likely much

lower than they would be with each subject’s heartbeats restricted to either the training or

test set. Additionally, another study showed that pig results do not correlate with human

results [4].
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Table 3.1: Best Results Compared to Existing Phonocardiographical Studies. All studies
measure mean PAP. Study [6] has a low SEE, but patient data was mixed between the
training and holdout sets, making their results biased. The model from [4] was trained and
tested on the same data set. We show that it is easy to get a low SEE with this method (see
Rand Select-Training), but when the same model is tested on previously unseen data, the
results are far worse (see Rand Select-Holdout).

Pats
Study Algorithm Validation Pats Excl SEE

Reverse Select(Full) MLP Per-patient CV 109 0 9.40
Reverse Select(Cull) SVM-LINEAR Per-patient CV 109 66 12.33
Forward Select(Full) MLP Per-patient CV 109 0 8.28
Forward Select(Cull) MLP Per-patient CV 109 66 10.28

Rand Select SVM-RBF Training 23 0 5.57
Rand Select SVM-RBF 23 Training 86 Holdout 109 0 11.14
Xu et al. [4] LR Training 23 2 5.8

Tranulis et al. [6] NN 1/3 Mixed Holdout 9 Pigs 0 6.0

3.5 Most Predictive Configuration

The most predictive general model is our Forward Select model on the full data set, which

has a SEE of 8.28 mmHg using MLP and a feature set of size 8. Because this result uses

a two-patient (or leave-two-out) cross-validation, we claim that it is not overtrained. Thus,

we expect our model would prove more accurate on new data than the other models in the

literature. This result is arguably better than previous results, even before considering that,

unlike prior work, we have used cross-validation to minimize overtraining and no patients

have been excluded. Thus, we expect this model will perform better on unseen data, and

also will perform better on the general population.

Our best result removing short-recording patients has a SEE of 10.28 mmHg using

MLP with a feature set size of 19.

While our patient set is larger than others in the literature, it is still small. The

poorer scores among the small data set experiments suggests that, for this problem, more

data, even noisy data, increases accuracy. Perhaps patient exclusion would help improve our

models if we had a larger number of patients.
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4 CONCLUSION

We have shown that our system is accurate and can be used for continuous PAP

estimation. Additionally, because our data came from external microphone recordings, our

system is noninvasive. Our results suggest that phonocardiography should be considered as

a clinical alternative for surgical PAP measurement. Healthy PAP is less than 25 mmHg.

Our best general model has a margin of error of ±8.28 mmHg. Thus, patients who obtain a

result of <16.72 mmHg are most likely healthy while those with a result of > 33.28 mmHg

are most likely hypertensive. However, the real strength of this model is that patients who

know they are hypertensive can use our system to monitor their PAP daily (if need be) in

their homes. Our results suggest that some time in the future, surgical PAP measurements

could be replaced with simple drug store blood-pressure-style kiosks. In other words, less

surgery, less trips to the doctor, and no need for long-term stays for monitoring. Either for

classification or for continuous monitoring, our margin of error suggests that this system is

useful in its current stage of development.

By definition, our cross-validation techniques yield a model which is generalized across

the 109 patient data set used. However, to make such a claim of generality on the entire

patient population, our techniques must be used with more of the data from the 200,000

patients who undergo right heart catheterization each year. The larger the data set used in

these experiments, the more confidently we can assert that the error rates will be consistently

low. We anticipate that our results will motivate the collection of a larger data set in order

to create an even more accurate model.

30



As discussed in the Results section, our feature selection results suggest that the

feature selection problem is really the algorithm-and-feature selection problem. The choice

of a feature subset is coupled to the choice of algorithm. Without using a true wrapper

approach (using the same model class for both feature selection and prediction, as opposed

to Guyon and Bennett’s method of using different model classes for each), we could not

have provided the evidence we have to support this claim. The implications are that saving

time by using an algorithm-dependent feature selection technique (such as that of Guyon),

one can completely overlook a valid and better-performing feature subset. This implies that

an adequate feature selection search is time consuming, and that future work should be

dedicated to finding a faster, more analytical method for finding an approximately-optimal

feature subset and algorithm given a data set.
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Table 5.1: Reverse Select Results on Both Data Sets. Here we compare the standard estimate
of error (SEE) results of each feature set size on the full patient set (left) and culled patient set
(right) for each model class, where features were selected using reverse search (see Algorithm
2.1). The best results for each data set are in bold with ties broken by lowest number of
features. Each SEE is averaged over a per-patient cross-validation.

Features SVM-RBF SVM-Linear MLP Linear Regression
38 11.58/13.52 13.69/13.22 10.95/16.19 13.69/14.50
37 11.51/13.36 13.03/13.30 10.66/13.50 13.29/13.72
36 11.29/13.19 12.33/12.95 9.41/12.60 13.08/13.51
35 11.27/13.19 12.33/12.83 10.32/14.75 12.83/13.44
34 11.36/13.25 12.26/12.77 10.42/14.35 12.64/13.37
33 11.38/13.24 11.90/12.75 10.94/13.37 12.31/13.31
32 11.26/13.16 11.15/12.70 10.75/13.40 12.03/13.26
31 11.25/12.99 11.43/12.70 10.75/13.90 11.81/13.21
30 11.10/13.06 11.52/12.64 10.00/13.26 11.70/13.18
29 11.10/12.96 11.47/12.59 11.57/13.05 11.68/13.14
28 11.00/13.03 11.49/12.55 10.54/13.67 11.21/13.13
27 10.96/13.02 11.36/12.54 10.88/13.39 11.15/13.12
26 10.97/12.99 11.19/12.49 10.11/12.98 11.11/13.11
25 10.99/12.93 11.33/11.76 11.33/13.51 11.09/13.11
24 11.03/12.96 11.34/12.49 11.39/13.24 11.07/13.11
23 10.92/12.90 11.31/12.44 11.10/13.13 11.06/13.08
22 10.92/12.90 11.29/12.41 9.73/12.87 11.05/13.05
21 10.97/13.01 11.09/12.42 9.60/13.70 11.04/13.05
20 11.01/12.98 11.14/12.43 10.26/13.71 11.02/13.04
19 10.92/12.91 11.23/12.39 10.65/13.64 11.02/13.01
18 10.92/12.96 11.07/12.39 9.40/14.93 11.02/13.00
17 11.00/12.97 11.09/12.42 9.78/13.46 11.02/13.00
16 10.91/13.01 11.29/12.42 10.07/13.15 10.95/13.00
15 10.93/13.04 11.23/12.35 10.71/15.49 10.95/12.93
14 10.90/12.93 11.21/12.38 10.56/13.45 10.88/12.91
13 10.94/12.94 11.23/12.36 10.64/13.85 10.88/12.91
12 10.91/13.00 11.21/12.45 11.14/13.17 10.88/12.93
11 11.02/12.93 11.15/12.33 10.26/12.88 10.88/13.00
10 10.93/12.98 11.14/12.38 11.24/15.16 10.75/12.97
9 10.95/13.06 11.08/12.35 11.38/13.85 10.75/12.54
8 10.96/12.98 11.03/12.45 11.21/13.70 10.76/12.52
7 10.96/13.02 11.20/12.48 11.13/13.64 10.79/12.51
6 10.94/13.16 11.12/12.47 11.05/13.61 10.83/12.57
5 10.94/13.19 10.90/12.35 11.01/13.58 10.95/12.61
4 10.98/13.29 10.92/12.36 11.00/13.55 10.96/12.55
3 11.02/13.62 10.96/13.19 10.98/13.57 10.96/13.32
2 11.05/13.97 11.05/12.75 11.08/14.52 11.13/13.13
1 20.50/19.50 20.50/19.50 11.33/14.84 11.33/14.84
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Table 5.2: Feature Dropped on Each Iteration (Full Data Set, Reverse Search). This table
shows the least predictive feature for each feature set size for the large data set, or a ranking
of the worst features, with the least predictive at the top.

Features SVM-RBF SVM-Linear MLP Linear Reg

38 FHB FHB RQP2

QA2
FHB

37 RPA2
PS2

QS2 hass3 FS2
36 FS2 RPA2

PS2
D̃P2
S1 PA2

35 FS1 FS2 HR PS2
34 RQP2

QA2
PA2 RFP2

FA2
QS2

33 DA2
S1 FS1 DP2

S1 QHB

32 DP2
S1 PS1 PP2 FP2

31 PA2 QS1 RPA2
PS1

PS1
30 RPP2

PS2
QHB DA2

S1 PHB
29 DP2

R RFP2
FA2

hass4 QS1

28 DA2
R PS2 DP2

R FS1
27 QS2 PHB SI S1 hass4
26 HR hass4 SI S2 RFP2

FA2

25 FP2 NSI S2 NSI S1 NSI S2
24 QHB FP2 D̃A2

S1 RQP2

QA2

23 SI S1 FA2 RPA2
PS2

RPP2
PS2

22 RFP2
FA2

RQP2

QA2
NSI S2 NSI S1

21 QP2 SI S1 DA2
R SI S1

20 NSI S2 HR FHB FA2
19 FA2 QP2 D̃A2

R RPP2
PA2

18 QS1 RPP2
PA2

RPS2
PS1

hass3
17 PP2 D̃A2

R D̃P2
S1 DA2

R

16 PS1 NSI S1 RPP2
PS2

DP2
R

15 D̃P2
S1 RPP2

PS1
PHB D̃P2

S1

14 RPP2
PA2

D̃A2
S1 PS1 D̃P2

S1

13 D̃P2
S1 D̃P2

S1 FS2 D̃A2
S1

12 RPA2
PS1

DA2
R FA2 D̃A2

R

11 PS2 DP2
R FS1 DP2

S1

10 hass3 RPS2
PS1

RPP2
PS1

DA2
S1

9 D̃A2
R RPA2

PS1
QS1 QP2

8 RPP2
PS1

RPP2
PS2

QS2 RPP2
PS1

7 RPS2
PS1

hass3 FP2 QA2

6 D̃A2
S1 DA2

S1 PA2 HR

5 QA2 DP2
S1 QHB RPA2

PS2

4 hass4 D̃P2
S1 QP2 RPS2

PS1

3 NSI S1 QA2 RPP2
PA2

RPA2
PS1

2 SI S2 SI S2 QA2 PP2

1 PHB PP2 PS2 SI S2
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Table 5.3: Feature Dropped on Each Iteration (Culled Data Set, Reverse Search). This table
shows the least predictive feature for each feature set size for the small data set, or a ranking
of the worst features, with the least predictive at the top.

Features SVM-RBF SVM-Linear MLP Linear Regression

38 SI S1 RPA2
PS2

hass3 FHB
37 PHB PP2 hass4 RPA2

PS2

36 PS1 RPA2
PS1

NSI S1 RPA2
PS1

35 DP2
S1 SI S1 SI S1 SI S1

34 DA2
S1 NSI S1 DA2

S1 NSI S2
33 DA2

R RPP2
PA2

RPS2
PS1

QS1

32 DP2
R RFP2

FA2
RPP2
PS1

RQP2

QA2

31 HR RPP2
PS2

RPA2
PS1

HR

30 RPA2
PS1

PA2 RPP2
PS2

FP2

29 RPP2
PS2

FS1 SI S2 RPP2
PA2

28 PP2 RPP2
PS1

D̃P2
S1 QA2

27 RQP2

QA2
FP2 DP2

S1 FS2
26 RFP2

FA2
HR FS2 FA2

25 FA2 D̃A2
S1 HR hass3

24 D̃A2
R QS1 NSI S2 D̃P2

S1

23 RPP2
PA2

RQP2

QA2
DA2
R D̃A2

S1

22 hass3 D̃A2
R RPA2

PS2
D̃P2
S1

21 NSI S2 NSI S2 DP2
R D̃A2

R

20 QS1 hass3 RFP2
FA2

RFP2
FA2

19 PA2 QP2 D̃A2
R QP2

18 PS2 FS2 RQP2

QA2
QS2

17 D̃A2
S1 SI S2 D̃A2

S1 SI S2
16 QS2 FA2 PS1 DA2

R

15 FP2 QHB PHB DP2
R

14 FS1 QS2 FP2 QHB

13 FS2 DP2
R QHB RPP2

PS1

12 QA2 D̃P2
S1 RPP2

PA2
FS1

11 D̃P2
S1 D̃P2

S1 PP2 RPP2
PS2

10 QHB PS2 D̃P2
S1 DP2

S1

9 D̃P2
S1 QA2 PA2 DA2

S1

8 QP2 FHB FA2 PS2
7 FHB DP2

S1 QS1 hass4
6 SI S2 DA2

S1 QS2 NSI S1
5 NSI S1 DA2

R QP2 PA2
4 RPA2

PS2
hass4 FS1 PP2

3 RPP2
PS1

PHB QA2 PS1
2 hass4 PS1 PS2 PHB
1 RPS2

PS1
RPS2
PS1

FHB RPS2
PS1
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Table 5.4: Forward Select Results on Both Data Sets. Here we compare the standard estimate
of error (SEE) results of each feature set size on the full patient set (left) and culled patient set
(right) for each model class, where features were selected using forward search (see Algorithm
2.2). The best results for each data set are in bold with ties broken by lowest number of
features. Each SEE is averaged over a per-patient cross-validation.

Features SVM-RBF SVM-Linear MLP Linear Regression
1 11.07/14.11 8.94/12.72 10.53/11.33 11.13/13.13
2 11.03/13.60 11.05/12.59 10.26/12.25 10.96/12.83
3 11.02/13.41 10.95/12.48 9.52/10.64 10.89/12.60
4 11.02/13.14 10.91/12.38 10.25/13.45 10.85/12.46
5 10.93/13.10 10.81/12.41 10.15/11.83 10.81/12.34
6 10.95/13.04 10.82/12.32 9.42/10.75 10.80/12.21
7 10.91/12.93 10.80/12.26 8.95/10.82 10.80/12.14
8 10.90/13.02 10.80/12.15 8.28/11.01 10.80/12.10
9 10.91/13.01 10.81/12.16 9.45/10.50 10.80/12.07
10 10.98/12.90 10.90/12.14 9.85/11.12 10.81/12.07
11 10.94/13.01 10.83/12.19 8.65/11.72 10.74/12.07
12 10.92/12.90 10.87/12.18 8.84/11.48 10.75/12.08
13 10.91/13.02 11.01/12.14 10.19/11.16 10.76/12.08
14 11.01/13.00 10.92/12.16 10.41/11.05 10.74/12.09
15 10.92/12.90 11.00/12.21 10.55/11.08 10.76/12.11
16 10.95/13.01 11.02/12.22 10.63/10.68 10.78/12.13
17 10.94/13.02 10.90/12.16 10.57/10.38 10.80/12.17
18 10.94/13.01 11.07/12.17 10.64/11.57 10.81/12.22
19 10.98/13.01 11.09/12.18 10.60/10.28 10.83/12.05
20 10.97/12.96 11.07/12.22 10.69/10.93 10.86/12.02
21 11.04/13.00 11.11/12.21 10.66/11.26 10.92/12.06
22 10.97/12.90 11.21/12.29 10.67/11.03 10.98/12.10
23 10.97/12.91 11.25/12.24 10.65/10.91 10.98/12.14
24 10.29/13.00 11.06/12.24 10.78/11.11 11.07/12.19
25 11.01/12.94 11.21/12.28 10.77/10.93 11.18/12.16
26 11.04/12.91 11.37/12.43 10.84/10.76 11.34/12.25
27 11.05/13.01 11.53/12.59 11.69/10.36 11.53/12.32
28 11.10/13.02 11.70/12.65 11.59/11.42 11.53/12.42
29 11.16/13.01 11.00/12.56 11.51/12.47 11.58/12.56
30 11.13/13.08 11.81/12.71 11.70/12.56 11.58/12.68
31 11.29/13.08 16.39/12.76 12.10/12.75 11.84/12.68
32 11.30/13.15 15.71/12.97 11.51/12.77 12.07/12.84
33 11.33/13.32 16.09/13.12 13.74/13.01 12.34/12.84
34 11.39/13.32 17.74/13.23 14.32/13.67 12.70/13.19
35 11.46/13.34 14.31/13.40 12.27/14.04 13.05/13.33
36 11.55/13.42 17.75/13.15 12.58/14.48 13.67/13.48
37 11.56/13.45 16.66/13.27 14.42/14.72 13.69/15.14
38 11.61/13.55 15.25/13.50 15.36/14.80 16.67/15.48
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Table 5.5: Feature Dropped on Each Iteration (Full Data Set, Forward Search). This table
shows the most predictive feature for each feature set size for the large data set, or a ranking
of the best features, with the most predictive at the top.

Features SVM-RBF SVM-Linear MLP Linear Regression
1 PHB hass3 PP2 SI S2
2 SI S2 PP2 hass4 PP2

3 NSI S1 SI S2 FHB NSI S1
4 RPA2

PS2
RPA2
PS2

SI S2 hass4
5 PP2 NSI S1 NSI S1 QA2

6 FA2 QA2 FA2 D̃A2
R

7 QA2 hass4 QS2 hass3
8 hass3 D̃A2

S1 QHB RPA2
PS1

9 D̃P2
S1 RFP2

FA2
RPA2
PS2

RPP2
PA2

10 RPS2
PS1

FA2 PS1 RPP2
PS2

11 D̃P2
S1 RPA2

PS1
RFP2
FA2

RPS2
PS1

12 RPP2
PS1

QHB PHB FA2
13 RPA2

PS1
RPP2
PS1

RQP2

QA2
RPA2
PS2

14 D̃A2
R D̃A2

R NSI S2 RPP2
PS1

15 D̃A2
S1 RPS2

PS1
PS2 RQP2

QA2

16 RPP2
PS2

RPP2
PA2

hass3 D̃A2
S1

17 RPP2
PA2

RPP2
PS2

SI S1 NSI S2
18 QP2 HR RPP2

PA2
HR

19 HR NSI S2 PA2 SI S1
20 SI S1 SI S1 FP2 RFP2

FA2

21 NSI S2 RQP2

QA2
FS1 QP2

22 QHB D̃P2
S1 QS1 D̃P2

S1

23 QS1 QP2 FS2 D̃P2
S1

24 PS2 D̃P2
S1 DP2

R FP2

25 QS2 FP2 DA2
R PHB

26 RFP2
FA2

PS2 D̃A2
S1 PS1

27 RQP2

QA2
PHB DA2

S1 DA2
S1

28 PS1 PS1 QA2 DP2
S1

29 FP2 FS2 D̃P2
S1 DP2

R

30 PA2 FHB DP2
S1 DA2

R

31 hass4 QS1 RPP2
PS1

PS2
32 FS2 FS1 D̃A2

R PA2
33 FS1 PA2 RPA2

PS1
QHB

34 DA2
R DA2

S1 D̃P2
S1 QS2

35 DP2
R DA2

R QP2 FS2
36 DP2

S1 DP2
R RPS2

PS1
FS1

37 DA2
S1 DP2

S1 RPP2
PS2

QS1

38 FHB QS2 HR FHB
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Table 5.6: Feature Dropped on Each Iteration (Culled Data Set, Forward Search). This table
shows the most predictive feature for each feature set size for the small data set, or a ranking
of the best features, with the most predictive at the top.

Features SVM-RBF SVM-Linear MLP Linear Regression

1 RPS2
PS1

RPP2
PS1

RPS2
PS1

RPS2
PS1

2 hass4 hass4 SI S2 FHB
3 RPP2

PS1
SI S2 SI S1 RPA2

PS2

4 RPA2
PS2

FHB FS1 hass4
5 SI S2 NSI S1 hass4 NSI S1
6 NSI S1 FS1 PHB SI S2
7 D̃P2

S1 RPA2
PS2

RPP2
PS2

QHB

8 PS2 RPP2
PS2

FA2 RPP2
PS2

9 FHB RPS2
PS1

QA2 RQP2

QA2

10 FS2 QHB RPA2
PS2

D̃A2
S1

11 FS1 D̃P2
S1 RPP2

PA2
QA2

12 D̃P2
S1 hass3 RQP2

QA2
hass3

13 QS1 FA2 RPA2
PS1

QS2

14 RQP2

QA2
D̃P2
S1 FP2 QP2

15 NSI S2 RPP2
PA2

RFP2
FA2

RPP2
PA2

16 QS2 D̃A2
S1 D̃A2

R FS2
17 QA2 QS2 D̃P2

S1 FA2
18 hass3 QP2 FHB RPP2

PS1

19 FP2 D̃A2
R PA2 RPA2

PS1

20 PA2 RFP2
FA2

NSI S2 D̃P2
S1

21 QP2 RQP2

QA2
D̃A2
S1 FP2

22 FA2 FS2 RPP2
PS1

RFP2
FA2

23 QHB QA2 PS1 HR

24 D̃A2
S1 FP2 QHB QS1

25 RPP2
PA2

QS1 QP2 FS1
26 D̃A2

R RPA2
PS1

FS2 NSI S2
27 RFP2

FA2
HR NSI S1 D̃A2

R

28 PP2 NSI S2 QS2 SI S1
29 RPA2

PS1
SI S1 HR D̃P2

S1

30 RPP2
PS2

DP2
R QS1 DA2

R

31 HR DA2
R D̃P2

S1 DP2
R

32 PHB PA2 hass3 DP2
S1

33 PS1 DA2
S1 PS2 DA2

S1

34 SI S1 DP2
S1 DP2

S1 PA2
35 DP2

R PS1 DA2
S1 PS1

36 DA2
R PHB PP2 PHB

37 DP2
S1 PS2 DA2

R PP2

38 DA2
S1 PP2 DP2

R PS2
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