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Abstract

Dynamic Appointment Scheduling for Healthcare

McKay Heasley

Department of Mathematics

Master of Science

In recent years, healthcare management has become fertile ground for the scheduling
theory community. In addition to an extensive academic literature on this subject, there has
also been a proliferation of healthcare scheduling software companies in the marketplace.
Typical scheduling systems use rule-based analytics that give schedulers advisory informa-
tion from programable heuristics such as the Bailey-Welch rule [1, 2], which recommends
overbooking early in the day to fill-in potential no-shows later on. We propose a dynamic
programming problem formulation to the scheduling problem that maximizes revenue. We
formulate the problem and discuss the effectiveness of 3 different algorithms that solve the
problem. We find that the 3rd algorithm, which has smallest amount of nodes in the decision
tree, has an upper bound given by the Bell numbers. We then present an alternative problem
formulation that includes stochastic appointment lengths and no shows.
Keywords: dynamic programming, appointment scheduling, health care, Bell numbers
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Chapter 1. Introduction

Scheduling theory pertains to the allocation and management of time and operational re-

sources within an organization, spanning myriad business operations from factory design to

airline routing. Generally, scheduling algorithms are formulated as optimization problems,

with multiple, and often conflicting, objectives such as the efficient utilization of labor, space,

equipment, and inventories.

In recent years, healthcare management has become fertile ground for the scheduling

theory community. In addition to an extensive academic literature on this subject, there has

also been a proliferation of healthcare scheduling software companies in the marketplace.

Principle areas of focus include the scheduling of emergency-rooms, laboratory services,

hospital beds, nurse and physician staffing, and outpatient scheduling [3, 4]. Our primary

interest is outpatient scheduling, but with an eye toward demand management.

Most of the commercial outpatient scheduling systems on the market today seem to

focus on calendaring, thereby relegating all of the actual decision making to the scheduler.

While there are a few outpatient scheduling systems that do provide decision support in

addition to calendaring, these solutions typically use rule-based analytics that give schedulers

advisory information from programable heuristics such as the Bailey-Welch rule [1, 2], which

recommends overbooking early in the day to fill-in potential no-shows later on.

Although there are a few optimization-based decision algorithms in both the market-

place and in the academic literature that manage outpatient scheduling, the solutions we

observed primarily use tactical ad-hoc methods in an attempt to simultaneously satisfy mul-

tiple disparate objectives. For example, one system focuses on minimizing a weighted sum

of physician idle time, patient mean-waiting time, and the lateness of the doctors to the

scheduled appointment [6].
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In Chapter 1 we give a review of the literature on appointment scheduling and discuss

our unique approach to the scheduling problem. Chapter 2 gives a brief overview of dynamic

programming with stochastic and deterministic examples. In Chapter 3 we formulate the

appointment scheduling problem in terms of a finite horizon dynamic program. We consider

3 different algorithms that each solve the case when every appointment scheduled is the

same length. Each algorithm differs in how the decision tree is organized, which is used as

a means of finding the optimal decisions. We find that the 3rd algorithm, which has the

fewest number of nodes, has an upper bound which is the same as the number of partitions

of n elements. The sequence of numbers is commonly referred to as Bell’s numbers. We

then consider stochastic appointment lengths in Chapter 4. One of the goals of this paper is

to formulate adaptive and profit-maximizing decision support into a scheduling system. In

addition, we also propose the use of an outpatient scheduling system as the launching point

for demand management and clinic utilization. As the scheduling system is the primary tool

used to interface with patients outside of the examination room, we suggest that it also be

the data-collection engine that links together all of the diverse information systems used to

manage a practice. Along these lines, in Chapter 5 we also consider the use of radio-frequency

identification (RFID) technology in the clinic as a way to capture the various stages of a

visit. With this additional information, a scheduling system could be made to adapt to the

particular clinic, thus providing tailored decision support as conditions change over time. In

Chapter 6 we draw conclusions and discuss directions for further research.

1.1 Literature Review

The literature on appointment scheduling can be separated into two categories: static and

dynamic. Static scheduling is where all decisions are made before the clinical session begins.

This is the most common scheduling system in health care. Consequently most of the

literature is for static schedules. In static scheduling it is assumed that the number of patients
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to be scheduled has already been determined. This may seem limiting but often general

dynamic strategies can be inferred by static solutions. Dynamic scheduling is where future

decisions are changed to adapt to the current state of the schedule. For a comprehensive

review of both types of problems see Cayirli and Veral [5].

The seminal papers by Bailey and Welch [1, 2] showed that patient waiting time and

doctor idle time can be simultaneously reduced by scheduling each appointment to last the

length of the average appointment time and by overbooking at the beginning of a clinical

session. They suggest moderation in overbooking but recommend it in order to make up for

patients that do not show up for their appointments. Their work has been the foundation of

both static and dynamic appointment scheduling literature. Since then most of the literature

focuses on developing algorithms or implementing heuristics that minimize patient waiting

time, doctor idle time, some convex combination of both, or some other time-based measure.

They often seek to show that the Bailey-Welch rule is optimal under certain conditions

[6, 7]. Occasionally these algorithms will maximize profit where the costs come in the form

of missed sales or waiting time [7].

Klassen and Rohleder are two of the lead researchers in dynamic appointment scheduling.

In [8] they consider the impact of various overloading rules and rule delays on different patient

and server measures. Overloading rules are heuristics that take affect when a schedule is full

such as double booking and overtime. Rule delays are conditions that must be met before

the overloading rules are implemented. They conclude that the combination of rules that a

clinic should apply is highly dependent on the performance measure chosen and the demand

rate. They comment that a performance measure ought to be determined by what is most

important to the clinic. It is implicit that most clinics are first concerned about revenue.

Hence, our research will be aimed at maximizing revenue. The same authors also considered

what rules to implement in a multi-period environment [9]. That is if a patient calls in to

schedule an appointment and the current scheduling period is full, then they are placed into

a later period or an overtime slot. While there research is insightful and practical we will
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divert from the usual way of approaching dynamic appointment scheduling by formulating

it as an optimization problem.

Chapter 2. Dynamic Programming

Before we state the scheduling problem we give a brief introduction to dynamic program-

ming with some examples. Dynamic programming is a method for solving problems where

decisions are made in successive discrete time periods. Decisions are made by maximizing

(or minimizing) a profit (cost) function for each period while simultaneously optimizing over

future profits. This yields solutions with foresight in that short term profit is sometimes

sacrificed for long term profit. This is accomplished by optimizing, in each period, the sum

of the profit function and the expected future profits.

The problem formulation consists of two parts; the profit function and a dynamic system.

The dynamic system shows how the state being observed changes over time with respect to

decisions and random outcomes. We assume that after a decision and random outcome we

can observe the evolution of the state. Let xk, dk, and wk represent respectively the state,

decision and random variable at period k. The system is described by

xk+1 = fk(xk, dk, wk), k ∈ {0, 1, . . . , T − 1} (2.1)

where T is the number of periods.

To provide spaces for our variables to live in we let xk ∈ Xk be the state space, dk ∈

Γk(xk, wk) be the decision space, and the wk ∈ Wk the space of random variables. The set

Γk(xk, wk) is dependent on xk and wk since in many problems the current state and the

realization of wk determine the admissible decisions.

The profit function Rk(xk, dk, wk) gives the profit for a single period. The sum of the
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profit equations

RT (xT ) +
T−1∑
k=0

Rk(xk, dk, wk) (2.2)

gives the profit over all time periods. We omit dT and wT from RT (xT ) meaning that there is

no decision or random outcome at the end. RT (xT ) is sometimes referred to as the terminal

profit. Since wk represents a random variable then it is more fitting to say that the profit

over all time periods is the expected value

E

[
RT (xT ) +

T−1∑
k=0

Rk(xk, dk, wk)

]
.

Let x0 be the initial state and Π = {(d0, d1, . . . , dT−1)|dk ∈ Γ(xk, wk)} for k = 1, . . . , T − 1

be the set of sequences of decisions. Let

Vπ(x0) = E

[
RT (xT ) +

T−1∑
k=0

Rk(xk, dk, wk)

]
. (2.3)

The dynamic programming algorithm, which we will describe in section 2.1, finds π? ∈ Π so

that

Vπ?(x0) = max
π∈Π

Vπ(x0) (2.4)

2.1 Principle of Optimality

Theorem 2.1 (Principle of optimality). Let x0 be the initial state and π? = (d?0, d
?
1, . . . , d

?
T−1)

be a solution given by (2.4). Suppose that while using π? we arrive at state xi then π?i =

(d?i , d
?
i+1, . . . , d

?
T−1) is a minimizing policy to the truncated subproblem

E

[
RT (xT ) +

T−1∑
k=i

Rk(xk, dk, wk)

]
(2.5)

The principle of optimality implies that if we solve the subproblem (2.5) we will obtain a
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portion of the solution given by (2.4). This is the foundation of the dynamic programming

algorithm. We break up the problem into subproblems and solve each piece. Since each

individual solution is a piece of the solution to a larger problem then a recursive problem

formulation of (2.5) would be useful. Let

Vk(xk) = max
dk,...,dT−1

E

[
RT (xT ) +

T−1∑
i=k

Ri(xi, di, wi)

]
. (2.6)

We can restate this recursively as

Vk(xk) = max
dk∈Γ(xk,wk)

E [Rk(xk, dk, wk) + Vk+1(fk(xk, dk, wk))] . (2.7)

where

VT (xT ) = RT (xT ). (2.8)

Equation (2.7) is commonly referred to as the value equation.

2.2 Dynamic Programming Algorithm

Recursively solving equations (2.7) and (2.8) constitutes the dynamic programming algo-

rithm. There are a several ways to solve this recursion. The method that you choose

depends somewhat on preference but mostly on the problem specifics. We present some

common methods in this section. Regardless of the method the basic strategy is the same.

We consider the possible values for VT (xT ) and solve VT−1(xT−1) for each of the possibilities.

We then take another step back to VT−2(xT−2) and solve it using the values we found from

solving VT−1(xT−1). We continue sweeping back in time until we have solved V0(x0) where

x0 is the initial state, which is given.
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2.2.1 Deterministic Case: Shortest Path Problem. Consider the deterministic

problem where the state equation is given by xk = f(xk−1, dk−1). We also suppose that

the state space Xk is finite as is the space of admissible decisions Γ(xk). The shortest path

problem is one where the initial and terminal conditions x0 and xT are given. With each de-

cision there is a cost Rk(xk, dk) incurred. The problem is to find a policy π? = {d?0, . . . , d?T−1}

such that

Vπ?(x0) = min
π∈Π

{
R(xT ) +

T−1∑
k=0

R(xk, dk)

}
.

If Rk(xk, dk) is viewed as a distance then we are essentially finding the shortest path from

x0 to xT .

Example. Consider the problem

min
3∑

k=0

x2
k + u2

k

subject to

xk+1 = xk + dk, k = 0, 1, 2, 3 (2.9)

x0 = 0, x4 = 8, dk ∈ {0, 1, 2, 3} (2.10)

To put this in the context of dynamic programming we will identify the dynamic system and

the value function. We can see that the dynamic system is given by f(xk, dk) = xk + dk and

the cost Rk(xk, dk) = x2
k + d2

k. Since it is not specified otherwise we let the terminal cost
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R4(x4) = 0. Given (2.9) and (2.10) we can deduce that our state spaces are

X0 = {0}

X1 = {0, 1, 2, 3}

X2 = {2, 3, 4, 5, 6}

X3 = {5, 6, 7, 8}

X4 = {8}

The feasible decisions are Γ(xk) = {dk ∈ {0, 1, 2, 3}|f(xk, dk) ∈ Xk+1}.

We will utilize the principle of optimality by solving the truncated subproblem given by

the value function

Vk(xk) = min
dk∈Γ(xk)

{Rk(xk, dk) + Vk+1(f(xk, dk))} .

We start the dynamic programming algorithm by looking at the second to last step k = 3.

The value equation is

V3(x3) = min
d3∈Γ(x3)

{
x2

3 + d2
3

}
since V4(x3 + d3) = R4(x4) = 0. We must find the best decision for each element in X3.

Since x4 = 8 then if x3 = 5 then d3 = 3 because x3 + d3 = 8. Likewise if x3 = 6 then d3 = 2

and so on. In this case each x3 ∈ X3 has only one possible control d3. We can see that in

each case the cost of moving from x3 to x4 will be

V3(5) = 52 + 32 = 34⇒ u3 = 3

V3(6) = 62 + 22 = 40⇒ u3 = 2

V3(7) = 72 + 12 = 50⇒ u3 = 1

V3(8) = 82 + 02 = 64⇒ u3 = 0.
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We now go back another time step to x2. We must find the minimum cost and the best

control d2 ∈ Γ(x2) for each x2 ∈ X2.

V2(2) = min
d3∈{3}

{
22 + d2

3 + V3(2 + d3)
}

= 22 + 32 + 34 = 47⇒ u2 = 3

V2(3) = min
d3∈{2,3}

{
32 + d2

3 + V3(3 + d3)
}

= min{32 + 22 + 34, 32 + 32 + 40} = 47⇒ u2 = 2

V2(4) = min{42 + 12 + 34, 42 + 22 + 40, 42 + 32 + 50} = 51⇒ u2 = 1

V2(5) = min{52 + 02 + 34, 52 + 12 + 40, 52 + 22 + 50, 52 + 32 + 64} = 59⇒ u2 = 0

V2(6) = min{62 + 02 + 40, 62 + 12 + 50, 62 + 22 + 64} = 76⇒ u2 = 0

Again we go back another time step and find the best d1 ∈ Γ(x1) for each x1 ∈ X1.

V1(0) = min{02 + 22 + 47, 02 + 32 + 47} = 51⇒ u1 = 2

V1(1) = min{12 + 12 + 47, 12 + 22 + 47, 12 + 32 + 51} = 49⇒ u1 = 1

V1(2) = min{22 + 02 + 47, 22 + 12 + 47, 22 + 22 + 51, 22 + 32 + 59} = 51⇒ u1 = 0

V1(3) = min{32 + 02 + 47, 32 + 12 + 51, 32 + 22 + 59, 32 + 32 + 76} = 56⇒ u1 = 0

And now we find the minimum cost and best control from x0 = 0.

V0(0) = min{02 + 02 + 51, 02 + 12 + 49, 02 + 22 + 51, 02 + 32 + 56} = 50⇒ u0 = 1

We can now see that the minimum cost is Vπ? = 50 where π? = (1, 1, 3, 3).

2.2.2 Stochastic Case: Inventory Control. There are many different types of stochas-

tic dynamic programming problems. They vary in which parts of the problem the stochastic

variable wk affects. It can affect the feasible decisions Γ(xk, wk), or the dynamic system

fk(xk, dk, wk), or the cost function R(xk, dk, wk), or any combination of these. There are also
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problems where either the decision is made after or before the random outcome is realized.

In the inventory control problem we suppose a retailer wants to maximize his profit over

a finite horizon. We let xk be the inventory state, dk be the decision of how much to order,

and wk be the demand during period k. We assume that the distribution of wk is given.

Orders placed in time k are available in time to meet the demand in time k+1. The demand

wk is realized at the beginning of the period and the decision dk is made after the realization.

We do not allow backlogging so the inventory state is given by

xk+1 = xk + dk −min{xk, wk}.

We assume there is a cost of C per item ordered and a holding cost H for every item

in stock at the beginning of the period. R is the amount earned per item sold and S is the

salvage value of any remaining inventory at the ending time T . When the demand for the

period occurs the retailer can only sell as much is on hand so the revenue earned in a period

is Rmin{xk, wk}. The profit for period k is

R(xk, dk, wk) = −Cdk −Hxk +Rmin{xk, wk}.

Since wk is realized before we make the decision the value function with the boundary

condition is given by

V (xk, wk) = max
dk∈Γk(xk,wk)

{R(xk, dk, wk) + E[V (xk+1, wk+1)]} (2.11)

V (xT ) = SxT

we could use the notation V (xk, wk = w) to make it clear that the decision dk is made after

the realization of wk. We will use this notation in the paper where convenient.

To demonstrate how to solve this problem we choose our parameters to be C = 2, R = 4,
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H = 1, S = 1, and T = 2. Our permissible spaces are Xi = {0, 1, 2} and Wi = {0, 1, 2}.

The set Γ(xk, wk) = {0, 1} if xk −wk + 1 ≤ 2 otherwise it is {0}. We need a distribution for

wi so we let P(wi = j) = 2/5 for j ∈ {1, 2} and P(wi = 0) = 1/5 meaning that demand for

each period cannot exceed 2.

In our last example we solved the dynamic program by looking at the second to last time

period and finding the best decision of each possible state. In this example we present a

method that is useful when solving the problem with a computer. We will first organize all

the possible decisions into a tree. A tree is a graphical way to represent the possible ways

to get from any state to any other. In terms of programming it is a directed data structure

in which each node (except the root) has exactly one parent and can have any number of

children. The tree of all possible decisions is represented by Figure 2.1.

Now that we have a way to quickly reference the possible decisions we can move backwards

through tree eliminating the suboptimal decisions according to equation (2.11). Just as

before, we start with the second to last time and move backwards in time from there. The

solution to this problem will appear different then the solution to the last problem because

we must consider what the best decision is for any of possible outcomes for w0 and w1.

Throughout this paper I will refer to this step in the algorithm as ”trimming the tree” since

the solution is derived from the tree of all possible decisions. Since S = 1 then we have

V (x2) = x2. Taking another step back in time it can be shown that

E[V (w1, x1 = 2)] = 18/5

E[V (w1, x1 = 1)] = 12/5

E[V (w1, x1 = 0)] = 0.
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w1 = 1, d1 = 0

w1 = 1, d1 = 1

w1 = 2, d1 = 1

w1 = 2, d1 = 0

x1 = 1

x1 = 2

x1 = 0

x1 = 1

root

x2 = 0

x2 = 2

x2 = 1

x2 = 2

x2 = 1

x2 = 2

x2 = 0

x2 = 1

x2 = 0

x2 = 1

x2 = 2

x2 = 1

x2 = 2

x2 = 0

x2 = 1

x2 = 0

x2 = 1

x2 = 0

x2 = 1

x2 = 0

x2 = 1

x2 = 1

x2 = 0

x2 = 1

x2 = 0
x2 = 2
x2 = 1

t = 0 t = 1

Figure 2.1: This is a tree graph of all possible decisions for in the inventory control problem.
The parameters that generate this graph are R = 4, C = 2, H = 1, S = 1 and T = 2. The
terms xi = j that are not in boxes represent what happens to the state after the decision
and random event from the previous node.

Another step back in time gives us

V (w0 = 2, x0 = 2) = max{6 + 0, 4 + 12/5}

V (w0 = 1, x0 = 2) = max{2 + 12/5, 0 + 18/5} = 22/5

V (w0 = 0, x0 = 2) = −2 + 18/5 = 8/5.

As we identify the optimal decisions in the above calculations we eliminate the suboptimal

nodes in the tree. Figure 2.2 shows what the tree looks like after the trim. Notice that the
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tree keeps track of which decision to make under any possible random outcome.

w0 = 0, d0 = 0

w0 = 1, d0 = 0

w0 = 2, d0 = 1

x0 = 2

x1 = 2
w1 = 0, d1 = 0

w1 = 1, d1 = 0

w1 = 2, d1 = 0

w1 = 0, d1 = 0

w1 = 1, d1 = 0

w1 = 2, d1 = 0

w1 = 0, d1 = 0

w1 = 1, d1 = 0

w1 = 2, d1 = 0

x1 = 1

x1 = 1

root

x2 = 0

x2 = 1

x2 = 2

x2 = 1

x2 = 0

x2 = 0

x2 = 0

x2 = 0

x2 = 1

t = 0 t = 1

Figure 2.2: This is a tree graph of the optimal decisions in the inventory control problem
after the tree in Figure 2.1 has been trimmed.

Chapter 3. The Scheduling Problem

In this chapter we present the appointment scheduling problem. We want to answer the

following question: When do I schedule an appointment upon request so that I can maximize

my revenue? We state the assumptions and problem formulation. We then present 3 different

algorithms for solving the problem with some simplifying assumptions.
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3.1 Problem Formulation

In this section we state the problem of interest in terms of a dynamic program. Our object

is to determine the profit maximizing appointment time for a patient upon request. We first

solve the problem restricting our attention to a single day.

We consider the dynamic scheduling problem where there are T appointment slots in a

day and M channels of demand. Let wt be a random variable representing the demand at

time t and be defined by

wt =



0 w/ prob p0

1 w/ prob p1

...

M w/ prob pM

(3.1)

where
∑
pi = 1. If no demand occurs then wt = 0 and if demand from channel 1 occurs

then wt = 1 and so on. We seek to formulate the problem in terms of a dynamic program.

To do this we must define the state variable xt, decision variable dt, and revenue function

R(·). Our state xt represents the schedule at time t which we will view as a vector of length

T where xt,i is the ith appointment slot. The vector entry xi,t ∈ N is the number of people

scheduled for appointment slot i. The initial schedule x0 will represent the empty schedule.

We let dt be the start time of the appointment. The revenue function R(xt, wt, dt) is the

revenue of the decision dt. The ordering of events is as follows: the state xt is observed, the

random event wt is realized, and the decision dt is made.

Let dt ∈ Γ(xt, wt), which is to say that dt must lie in the feasible set of decisions. The

set Γ can be governed by a number of heuristics such as a service capacity or willingness to

wait. In this problem we will assume a service capacity C so that xt,i ≤ C for all i. We

let xt+1 = f(xt, dt) where f tells us how the decision affects the schedule. This leads to the
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classic stochastic dynamic program formulation where the value function is given by

V (xt, wt) = max
dt∈Γ(xt,wt)

{E[R(xt, wt, dt) + V (xt+1, wt+1)]}. (3.2)

3.2 Simplified Scheduling problem

In our first solution to this problem we make some simplifying assumptions. We assume that

every appointment is m blocks long. We consider the case where there are only two channels

of demand; walk-ins and call-ins. When a walk-in or call-in occurs then wt = 1 and wt = 2

respectively. We determine the feasible set for walk-ins by making the assumption that if

a walk-in must wait more than ω appointment blocks then he will leave without service.

Likewise, a call-in must wait at least κ appointment slots before he can be scheduled. This

yields the following expressions for Γ,

Γ(xt, 0) = {η} (3.3)

Γ(xt, 1) = {dt|t+ 1 ≤ dt ≤ t+ ω, dt ≤ T −m+ 1

and xt,j < C for all dt ≤ j ≤ dt +m− 1} ∪ {η} (3.4)

Γ(xt, 2) = {dt|t+ κ+ 1 ≤ dt, dt ≤ T −m+ 1

and xt,j < C for all dt ≤ j ≤ dt +m− 1} ∪ {η}. (3.5)

where η represents the null decision, or the decision to not schedule an appointment. There

are a few things to notice about Γ. A walk-in cannot be scheduled during the same slot they

arrive since t + 1 ≤ dt. The condition dt ≤ T −m + 1 is there because that is the latest an

appointment can begin.

We will assume that the revenue for every appointment is r and that all scheduled
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appointments show up at the scheduled time. So

R(dt) =


0 if dt = η

r otherwise

(3.6)

and

V (xt, wt) = max
dt∈Γ(xt,wt)

{R(dt) + E[V (xt+1, wt+1)]}. (3.7)

In this chapter we present three algorithms that solve (3.7). Each of the successive algo-

rithms is a slight modification of the previous one with the intent to reduce the computation

time. We present all three to build intuition for the structure of tree.

3.3 Algorithm 1

We solved this problem by building a tree data structure similar to that in the inventory

control example from section 2.2.2. Every node in the tree represents a different possible

decision corresponding to a different random outcome.

There are two steps to this algorithm; building the tree and trimming the tree. We build

the tree by starting with the root node representing the empty schedule x0 and generating

all of the children of this node which are the decisions made at t = 0. The children are the

decisions in the feasible sets given by equations (3.3), (3.4), and (3.5). We must start at

time t = 0 otherwise the first appointment slot at t = 1 will never get filled. We then create

all the nodes at t = 1 by generating all of the children of the nodes at t = 0. We continue to

build the tree until the last time a decision is made, which is t = T −m. This tree we have

built represents all possible decisions that can be made at any time and any state. Figure

3.1 is a diagram showing the structure of a basic tree before the trim.

After the tree has been built we then trim the tree keeping only the nodes that are revenue

maximizing according to (3.7). We start by finding all nodes at t = T − m − 1, which is
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d0 = 1, w0 = 1

d0 = 2, w0 = 1

d0 = 2, w0 = 2

d0 = η, w0 = 0

root

d1 = η, w1 = 0

d1 = 2, w1 = 1

d1 = η, w1 = 2

d1 = 2, w1 = 1

d1 = η, w1 = 0

d1 = η, w1 = 2

d1 = η, w1 = 1

d1 = η, w1 = 0

d1 = η, w1 = 2

d1 = η, w1 = 1

d1 = η, w1 = 0

d1 = η, w1 = 2

t = 0 t = 1

Figure 3.1: This Figure shows the structure of the tree before the trim under Algorithm 1.
The parameters for this tree are T = 2, m = 1, M = 2, C = 1, ω = 2, and κ = 1.

the second to last time a decision is made in the schedule. Looping through each node we

consider each of the 3 random outcomes and pick the child decision in time t = T −m that

gives us the most revenue. We take another step back to t = T − m − 2 and look at all

of the nodes at that time. Again for each node and for each random outcome we pick the

child node that maximizes expected future revenue under each random outcome. In other

words we keep the child node that has the decision dt that maximizes (3.7). We delete the

remaining nodes. We repeat this process sweeping back all the way until the root node. This

leaves each node in the tree with exactly 3 children as can be seen in Figure 3.2. These three

children correspond to the best decision for each random outcome.

This approach to solving (3.7) is exhaustive and inefficient. Even after the tree has been
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wt+1 = 2

wt+1 = 1

t

t + 1

wt+1 = 1

wt+1 = 0t

t + 1
wt+1 = 0

wt+1 = 2

Trim

Figure 3.2: Algorithm 1: This Figure looks at the changes that occur in one node and its
children when the tree is trimmed by maximizing expected profit.

trimmed it has
T−m+1∑
i=0

3i =
3T−m+2 − 1

2
(3.8)

nodes. The number of nodes in the tree after the trim is exponential. The next 2 algorithms

provide approaches that are more numerically friendly.

3.4 Algorithm 2

Our second algorithm cuts down on the size of the tree by taking advantage of a particular

redundancy. We will explain how this algorithm works. In the first algorithm, depending on

the values of ω and κ there may be some overlap in the sets Γ(xt, 1) and Γ(xt, 2). This means

that a decision that is valid for a walk-in may also be valid for a call-in. Likewise, in each

instance of wt we include the null decision. This creates some redundancy in our tree. In the

second algorithm we take advantage of this structure and merge two nodes that correspond

to the same decision into the same node. This idea is illustrated by a diagram in Figure 3.3.

Figure 3.4 shows the same tree from Figure 3.1 looks under the model of Algorithm 2.

This reduces the size of the tree dramatically. After the trim in the second algorithm
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wt+1 = 2

wt+1 = 1

t

t + 1

Same decision

wt+1 = 1, 2

wt+1 = 1

wt+1 = 0, 1, 2
t

t + 1

Algorithm 1 Algorithm 2

wt+1 = 0

wt+1 = 1

Figure 3.3: This Figure shows how the first algorithm compares to the second. The last
node in the second algorithm corresponds to the null decision since it is the only decision
that is valid for every random event. This Figure describes the tree before the trim in both
algorithms.

the number given by (3.8) is now a very loose upper bound. The code for this algorithm is

included in Appendix A.

3.5 Algorithm 3

Before the trim in Algorithm 2 each node has exactly one child that is a null node. The idea

behind Algorithm 3 is that we do not include the null nodes but just assume that each node

has one as a possible decision. Figure 3.5 is an example of a tree with no null decisions.

This algorithm complicates the tree structure but reduces the number of nodes. In the

past two algorithms, every child of a node was at the same time. Notice under this structure

that a node can have children at several different times. This complicates the computations

necessary to find the expected future profit at a node. In the first two algorithms we summed

over profits of all the children of a node multiplied by its probability to determine the

expected future profit. We can no longer do this since the children of a node can be at a
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d0 = 1, w0 = 1

d0 = 2, w0 = 1, 2

d0 = η, w0 = 0

root

d1 = η, w1 = 0, 2

d1 = 2, w1 = 1

d1 = η, w1 = 0, 2

d1 = 2, w1 = 1

d1 = η, w1 = 0, 1, 2

t = 0 t = 1

Figure 3.4: This Figure shows the structure of the tree before the trim under Algorithm 2.
The parameters for this tree are T = 2, m = 1, M = 2, C = 1, ω = 2, and κ = 1. Compare
this tree with Figure 3.1

number of different times.

To deal with this complicated tree structure we employ some new notation. Suppose that

through a series of decisions we arrive at a node n with state xt. We will denote this state

as x(n). We seek an expression for E[V (x(n), wt(n)+1)] in terms of the expected future values
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d0 = 1, w0 = 1

d0 = 2, w0 = 1, 2root

d1 = 2, w1 = 1

d1 = 2, w1 = 1

t = 0 t = 1

Figure 3.5: This Figure show the structure of the tree before the trim under Algorithm 3.
The parameters for this tree are the same as Figures 3.1 and 3.4 to make them easy to
compare.

of its children nodes under this tree structure. We define the following.

Cn = children of node n

Cn,t = children of node n at time t

= {m ∈ Cn : t(m) = t}

Cn,t,w = children of node n at time t valid for random outcome w

= {m ∈ Cn,t : w ∈ w(m)}

t(n) = time of node n

w(n) = random events corresponding to node n

d(n) = decision for node n which is the starting time

To help with this onslaught of notation we use superscripts ·(n) to denote nodal attributes

of n and subscripts ·n do refer to other nodes in the tree with a particular relationship to n.
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We also let

P(n | t) = probability that we arrive at node n given that we are at time t.

For instance, if w(n) = {1, 2} then P(n | t(n) − 1) = p1 + p2 where pi are defined by (3.1). In

general,

P(n | t(n) − 1) =
∑
i∈w(n)

pi. (3.9)

In Algorithm 3 we will be concerned with computing the probabilities of getting from one

node to a child node that is not at the next time. In such a case there are null decisions that

occur between the two nodes. For a node m that is a child of node n there is t(m) − t(n) − 1

null decisions made between nodes n and m. In a tree without null nodes, we need a way to

compute the probability of having a null decision. We do this by finding the probability of

its compliment. Assuming the independence of successive events, the probabilty of getting

to node m from t(n) where n is the parent of m is

P(m | t(n)) =
∑
i∈w(n)

pi

t(m)−t(n)−1∏
s=1

(1−
∑

j∈w(k) s.t.
k∈C

n,t(n)+s

pj). (3.10)

Equation (3.10) only works if you have trimmed all future nodes.

We can rewrite the value function given by (3.2) with this new notation. We do not want

to confuse the notation w(n) and wt. The first is a set a numbers for which if i ∈ w(n) and

wt = i then d(n) is a valid decision. Our new value function is

V (x(n), wt(n)+1 = w) = max
m∈C

n,t(n)+1,w
∪{η}

{
R(dm) + E[V (x(m), wt(m)+1)]

}
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where

E[V (x(m), wt(m))] =



∑
l∈Cm

P(l | t(m))(R(d(l)) + E[V (x(l), wt(l)+1)]) if m ∈ Cn

∑
l∈Cn

t(l)<t(n)+1

P(l | t(n) + 1)(R(d(l)) + E[V (x(l), wt(l)+1)]) if m = η

(3.11)

Notice that in the case that m = η that we consider the children of node n. This is because

η is not a real node so we can’t look at it’s children. (3.10) can be used to solve (3.11). The

code for this algorithm is included in appendix B.

3.5.1 Tree Size. In an effort to understand the efficiency of Algorithm 3 we look at the

size of the Tree before the trim. We let NT be the number of nodes in a tree for a schedule

of T appointment slots. We let nT,i be the number of nodes corresponding to decisions made

at time i for a schedule with T appointment slots. We have the relationship

NT = 1 +
T−1∑
t=0

nT,t (3.12)

where the 1 in the above sum comes from the root node.

According to our model, the parameters that affect NT are κ, ω, C, m, and T . Obtaining

a closed form expression for NT in terms of each of these parameters would not only be

difficult but also not very useful. We instead seek an upper bound for the case where C = 1.

We need parameters for κ, ω, and m that will maximize NT . Letting m = 1 makes NT

the largest it can be with regards to m. Also if κ ≤ ω then there is overlap in the feasible

appointments for walk-ins and call-ins. This condition maximizes NT with respect to κ and

ω since the cardinality of the union of (3.4) and (3.5) is largest.

Under these conditions, we have that the number of nodes in the tree for varying values

of T is given in Table 3.1. By observation, we see that there is a recursive relationship with
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nT,t given by

nT,t = (T − t)

(
1 +

t−1∑
i=0

nT−1,i

)
(3.13)

Programming this recursion further yields numbers to the sequence {NT}. The sequence

continues as given in Table 3.2.

T NT nT,0 nT,1 nT,2 nT,3 nT,4 nT,5 nT,6 nT,7

1 2 1
2 5 2 2
3 15 3 6 5
4 52 4 12 20 15
5 203 5 20 51 74 52
6 877 6 30 104 231 302 203
7 4140 7 42 185 564 1116 1348 877
8 21147 8 56 300 1175 3196 5745 6526 4140

Table 3.1: This Table shows the number of nodes in a tree NT for varying values of T .

1 2 11 4213597
2 5 12 27644437
3 15 13 190899322
4 52 14 1382958545
5 203 15 10480142147
6 877 16 82864869804
7 4140 17 682076806159
8 21147 18 5832742205057
9 115975 19 51724158235372
10 678570 20 474869816156751

Table 3.2: Gives the number of nodes in each tree according the recursion given by 3.13.
The parameters are m = 1, C = 1, M = 2, and κ ≤ ω.

Coincidentally, this sequence is a the same as the sequence of Bell’s numbers [10], which

is sequence A000110 in the OEIS [11]. We will explore this connection in more detail in

section 3.5.2.
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3.5.2 Bell’s Numbers and an Upper Bound. The Bell numbers give the number of

ways to partition a set of T elements, which we will denote BT . The connection we have is

that BT = NT−1.

Let us consider how to count the number of partitions in a set of T elements so that we

might understand the connection to our problem. Table 3.3 shows all of the partitions of a

sets of T = 2, 3 and 4 elements.

T/k 1 2 3 4 No singletons

2 {(1), (2)} {(1, 2)}
3 {(1), (2, 3)} {(2), (1, 3)} {(3), (1, 2)} {(1, 2, 3)}

{(1), (2), (3)}
4 {(1), (2, 3, 4)} {(2), (1, 3, 4)} {(3), (1, 2, 4)} {(4), (1, 2, 3)} {(1, 2, 3, 4)}

{(1), (2, 3), (4)} {(2), (1, 3), (4)} {(3), (1, 2), (4)} {(1, 2), (3, 4)}
{(1), (3, 4), (2)} {2), (1, 4), (3)} {(1, 3), (2, 4)}
{(1), (2, 4), (3)} {(1, 4), (2, 3)}
{(1), (2), (3), (4)}

Table 3.3: This Table shows all the partitions of T = 2, 3 and 4 elements. We can see that
the number of partitions equals the number of nodes given in Table 3.1 for T = 1, 2 and 3.
The first 4 columns represent the partitions with singleton sets in them. The first column has
all of the singletons (1), the second (2) and so on without double counting. The 5th column
has the partitions without any singletons. We can also compare the number of partitions
against the Figures 3.5 and 3.6.

Lets focus our attention on the tree in Figure 3.6. At t = 0 the root has 3 children. Each

of these children form 3 branches. The number of nodes in each branch including the nodes

at t = 0 are 5,3, and 2 starting from the top and moving down. Now refer to Tables 3.3

and 3.4 and you will see that the number of singleton sets for B4 for 1,2, and 3 are also 5,3,

and 2. The same thing can be seen by comparing the singleton sets of B3 and the tree in

Figure 3.4. The remainder of the nodes including the root node and the nodes that come

from making a null decision at the beginning account for the last column of singleton column

and the “No Singletons” column.

Why does this pattern arise? When the node corresponding to d0 = 1 is created we are

essentially doing the same thing as fixing the singleton (1) and finding all sets that go with
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d0 = 2, w0 = 1, 2

d0 = 1, w0 = 1

d0 = 3, w0 = 2

d1 = 2, w1 = 1

d1 = 2, w1 = 1

d1 = 2, w1 = 1 d2 = 3, w2 = 1

d2 = 3, w2 = 1

d2 = 3, w2 = 1

d2 = 3, w2 = 1

d2 = 3, w2 = 1

d1 = 3, w1 = 1, 2

d1 = 3, w1 = 1, 2

d1 = 3, w1 = 1, 2

root

t = 0 t = 1 t = 2

Figure 3.6: This tree from Algorithm 3 has the parameters T = 3, m = 1, M = 2, C = 1,
ω = 2, and κ = 1.

it. The same goes with d0 = 2, d0 = 3 and so on. In Table 3.4 there are a few interesting

properties we should note. Let PST,k denote the singleton counts and PNT the no singleton

counts in Table 3.4. Notice that PST,1 = BT−1. In terms of decision trees such as 3.5 and

3.6 this happens because when the decision d0 = 1 the problem is then reduced to a schedule

with one less appointment slot. In other words, this makes the branch of d0 = 1 from 3.6 the

same as the entire tree in 3.5. Also notice that PST,T + PNT = BT−1. Referring to Figures

3.5 and 3.6, when a null decision is made at t = 0 the problem is reduced to a schedule of

one less appointment slot.

These things suggest there is a bijection between the partitions of a set of T elements

and the number of nodes in a tree from a schedule of length T − 1 (with the parameters we

have specified). This is useful in finding an upper bound for the number of nodes before the
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BT T/k 1 2 3 4 5 6 No Singletons

2 2 1 1
5 3 2 1 1 1
15 4 5 3 2 1 4
52 5 15 10 7 5 4 11
203 6 52 37 27 20 15 11 41

Table 3.4: The first column of this Table shows the Bell numbers. The remaining columns
show the number of partitions with singletons of 1,2, and so on. The last column show the
number of partitions without any singletons. This Table is to be compared with Table 3.3.

trim. Berend and Tassa [12] proved that an upper bound for this sequence is given by

NT−1 <

(
0.792T

ln(T + 1)

)T
.

This also suggests that a new way to compute Bell’s numbers is given by 3.12 and 3.13.

Comparing this recursion to those in the OEIS [11] this is a new way to find Bell’s numbers.

3.5.3 Computation Time. It should be obvious that the tree in Algorithm 1 is not

computationally efficient. When comparing Algorithms 2 and 3 we can see that Algorithm

2 has more nodes than Algorithm 3 but the trimming the tree in 3 will require more com-

putations at each node. The question remains; which algorithm is better? The previous

result regarding Bell’s numbers implies that Algorithm 3 is NP-hard. So Algorithm 2 is also

NP-hard. Regardless of this, the computation times of the respective algorithms yield and

interesting result.

Figure 3.7 shows the computation times of Algorithms 2 and 3. Notice that Algorithm 2

performs better until T gets large enough. Then Algorithm 3 performs better. The value of

the tradeoff of tree size for computation time depends on how big the tree is. This suggests

that for larger more realistic problems Algorithm 3 may provide a better approach.
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Figure 3.7: The computation times for of Algorithms 2 and 3 for varying values of T . The
parameters for the tree are m = 1, M = 2, C = 1, ω = 2, and κ = 1. The y-axis is a log
scale. The Algorithms were programmed in Python and ran on a computer with a 2.4 GHz
processor.
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Chapter 4. Stochastic Appointment Lengths

In our next problem formulation we assume that appointment lengths are stochastic and

that there is a positive probability of a scheduled appointment not showing up. In the de-

terministic case we assumed that every appointment took up a fixed number of appointment

slots m. In this case we define the number of appointment slots l(n) of node n by

l(n) =



0 w/ prob q0

1 w/ prob q1

...

L w/ prob qL

(4.1)

where L is the longest appointment possible and
∑L

i=0 qi = 1. When l(n)=0 we have a no-

show. In forming the tree of all possible decisions before the trim we include a node n if

xt,j < C for j = d(n). In other words the untrimmed tree will be the same as the one from

Algorithm 3 for m = 1. This means that the Bell numbers will also provide an upper bound

to the number of nodes in this tree for varying values of T , κ, and ω.

The challenge in this problem formulation is in the trim. Let S be the event that a

scheduled appointment shows up. Then

P(S) =
L∑
i=1

qi. (4.2)

As in our last problem formulation, we assume that the office has a service capacity of C.

Since the length of each appointment is unknown there is a chance that there may not be

room for an appointment when its scheduled time comes. Let T (n) be the event that there is

room available for the appointment given by node n. We assume that if there is no capacity

for a scheduled appointment then the patient does not reschedule and leaves. We account for
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this by a cost constant c. By assuming the independence of S and T (n) we have the revenue

equation

R(n) =


r w/ prob P(S)P(T (n))

0 w/ prob 1− P(S)

−c w/ prob P(S)(1− P(T (n))).

Our value equation is similar to the previous formulation but now R(m) is unknown so

we have

V (x(n), wt(n)+1 = w) = max
m∈C

n,t(n)+1,w
∪N
{E[R(m)] + E[V (m,wt + 1)]}

where, by equation (4.2)

E[R(m)] = rP(S)P(T (m)) + 0(1− P(S))− cP(S)(1− P(T (m)))

= [(r + c)P(T (m))− c]P(S)

= [(r + c)P(T (m))− c]
L∑
i=1

qi.

We need to find an expression for P(T (m)). Let Pm be the set of nodes that are the

posterity of node m and let Am be the ancestors of node m. Note that Pm is different

from Cm in that Pm includes multiple generations. We are interested in the length of the

appointments that are within L slots of node m so we let

Fm = {a ∈ Pm ∪ Am|d(m) − L < d(a) ≤ d(m)}. (4.3)

Let 1B denote the indicator function of a set B where 1B(x) = 1 if x ∈ B otherwise

1B(x) = 0. Let Xa,m = 1l(a)≥d(m)−d(a)+1 which is to be interpreted as the bernoulli random

variable that is 1 if appointment a overlaps appointment m and 0 otherwise. Then the
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probability that there is room for node m is

P(T (m)) = P(
∑
a∈Fm

Xa,m ≤ C) (4.4)

= P(Y ≤ C) (4.5)

where Y =
∑

a∈Fm
Xa,m. If the Xa,m were independent and identically distributed then

we would have a binomial distribution. However, we can see that Y is a sum of bernoulli

trials that are not identically distributed. If we assume they are independent then Y is a

poisson-binomial random variable and we can compute the probability we seek by finding

the cumulative distribution function of Y . We explore this distribution further in section

4.1.

The cdf of Y is determined by the individual probabilities P(Xa,m = 1) for each a ∈ Fm.

These probabilities will be different depending on whether a ∈ Am or a ∈ Pm. If a ∈ Am

then the length of node a, l(a), is conditional on the event T (a). So for a ∈ Am, by the law

of total probability we have

P(Xa,m = 1) = P(l(a) ≥ d(m) − d(a) + 1|T (a))P(T (a))

+P(l(a) ≥ d(m) − d(a) + 1|(T (a))′)P((T (a))′)

= P(T (a))
L∑

i=d(m)−d(a)+1

qi (4.6)

since the second conditional probability is 0 and the first conditional probability is given

from equation (4.1). We denote the compliment of the event T (a) by (T (a))′. If a ∈ Pm then

depending on demand we may or may not reach not a. To account for this uncertainty we

multiply (4.6) by the probability that we get to node a given that we are at time t(m) which
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is given by (3.10). This gives us

P(Xa,m = 1) =


P(T (a))

∑L
i=d(m)−d(a)+1 qi if a ∈ Am

P(a|t(m))P(T (a))
∑L

i=d(m)−d(a)+1 qi if a ∈ Pm
(4.7)

The recursive formula given by (4.4) and (4.7) allows you to find the probabilities needed

for the distribution of Y .

4.1 Poisson-binomial distribution

We let N = |Fm|, which is the cardinality of the set Fm which is given by (4.3). We index

the elements in Fm and let P(Xai,m = 1) = αi. Let Bk denote the set of all possible ways

to pick k integers from the set {1, 2, . . . , N} when order doesn’t matter. The elements of Bk

are sets b of k elements. We can write the pdf of Y =
∑N

i=1Xai,m as

fY (k) =
∑
b∈Bk

(∏
i∈b

αi

)(∏
j∈b′

(1− αj)

)

One way to compute P(Y ≤ τ) is to use the the pdf by summing from k = 0 to k = τ . An

alternative expression for the cdf is given by Fernandez and Williams [13]. In their derivation

they used Fourier transforms to get that

P(Y ≤ τ) =
τ + 1

N + 1
+

1

N + 1

N∑
n=1

{
(1− e−i2πn(τ+1)/(N+1))/(1− e−i2πn/(N+1))

N∏
k=1

{αkei2ın/(N+1) + 1− αk}

}
(4.8)
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Chapter 5. The Feedback Loop

The effectiveness of this system of dynamic appointment scheduling will hinge on the the

quality and types of data that are collected. Some useful types of data include:

(i) Patient service time - total time elapsed from when the nurse begins examining vitals

until s/he leaves the clinic.

(ii) Nurse-patient time - total time elapsed when being seen by the nurse for vitals

(iii) Doctor-patient time - time the doctor spends with the patient.

Radio Frequency Indentification Technology (RFID) are revolutionizing the way compa-

nies obtain data about their operations. The most common use of RFIDs is in inventory

management. Retailers have found it be a useful and an efficient alternative to barcodes as

a way to track inventory. This is particularly useful in distribution centers where RFIDs

are placed on pallets and the locations and quantities of inventories are continually tracked.

Among several other applications, RFIDs have been used in toll roads, luggage tracking in

airports, animal identification, casino chip tracking, and hospitals.

In hospitals, RFIDs offer an attractive solution to many hospital inefficiencies. They have

been used to track equipment, patients, and staff. For example, it is common for nurses to

lay claim to supplies that they frequently use by placing them somewhere they can access

easily. This leads to a shortage of items when needed by other staff. By installing an RFID

system, the location of supplies can be tracked and their location can be known at any time.

Other hospitals have given each staff member an RFID to collect data on procedure lengths.

This data is then analyzed to detect any inefficiencies. This can also be used to find doctors

in the hospital if s/he is late for an appointment, is needed for a consult, or in the case of

an emergency.
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An RFID has two primary components: tags and readers (or interrogators). A tag is

placed on the item or person that you wish to track. When the tag is near a reader, it emits

a radio signal and the reader registers its location. Readers are strategically placed, such as

at the entrance of a door, so that the needed information is gathered. The data is then sent

to a computer via an application server where the locations of the tags are displayed.

Example: Suppose that each nurse and physician has an RFID tag on their ID badge. A

patient schedules an appointment with the clinic complaining of a sore throat and congestion

in the back of his throat. Upon his arrival he is given an RFID tag in the form of a bracelet

or card. Then the nurse takes the patient’s vitals marking the beginning of the nurse-patient

time. When the nurse leaves the reader marks the end of the nurse- patient time. The

patient then waits for the doctor. In this room there is another reader that indicates he

is waiting for the doctor to come in. The doctor arrives the reader notes the beginning of

the doctor-patient time. After some thought the doctor decides he needs to run a strep

throat test. The doctor leaves the room, marking the end of the doctor-patient time, as the

test is being processed and the patient experiences more waiting time. The test comes back

positive, he receives his prescription and leaves. When the patient exits the clinic the reader

by the front door notes the end of the service time.

The RFID system has recorded several bits of information about the patient. Lots of

similar data could give us great estimates for equation 4.1. The patient service time could

be used to set up the queues for the nurses and doctors. Alternatively, the information could

be used to create two separate scheduling systems; one for the doctor and one for the nurse.

With this sort of information on many different patients we can determine the likelihood

that a new patient will receive a certain diagnosis based on his complaints. This would

allow even greater accuracy of the probabilities given in equation 4.1 when each decision

is made. The diagnosis will have an associated profitability which will be helpful to the

appointment system as it seeks to maximize profit. We could use the information to get a

better estimation for E[dt]. Table 5.1 shows how this information could be used.
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Complaints Diagnosis Service Time Revenue
...

X post-nasal drip 35% strep throat 20 min $250
swollen glands 40% cold 10 min $100

X sore throat 20% flu 15 min $150
fever 5% mono 30 min $300

...

Table 5.1: The initial complaints of the patient can indicate the likelihood of certain diag-
noses. Data collected overtime could be helpful in determining these probabilities. Data
gathered from the RFIDs could be used to determine service times based off of diagnosis.
The expected service time in this case is 15.5 minutes and the expected profit is $172.50.
Note that these numbers are not based off data.

Chapter 6. Conclusion

In this work we have described 3 different algorithms designed to solve the scheduling prob-

lem for deterministic appointment lengths and stochastic demand. We found that the third

algorithm solved the problem faster than the second algorithm for large schedules. We also

found that Bell’s numbers provided an upper bound for the number of nodes in an untrimmed

tree under Algorithm 3 [12], demonstrating that the problem is NP-hard. Algorithm 3 pro-

vided a useful framework for the case where we include no-shows and stochastic appointment

lengths. We formulated the stochastic appointment length case noting that we would need

a nice way to compute probabilities in the poisson-binomial distribution [13].

It remains to be shown that there is indeed a bijection between the number of nodes in

the untrimmed tree (where all appointments are length 1, the service capacity is 1, and there

is overlap in the hueristic parameters κ and ω) and the partitions of a set of elements. We

also did not consider the infinite horizon case. A useful appointment system often must be

able to see weeks in advance. It might be useful to solve the problem with a moving window

approach [14]. That is to make a decision that is optimal when you restrict your attention

to some finite horizon. When a time period passes you then move your finite horizon up
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to include an additional time period. One of the main results in appointment scheduling is

the Baily-Welch rule, which says it is better to double book early in the schedule so that if

you have a no-show you don’t lose any business. The queue of patients continues to funnel

patients to the doctor to make sure the doctor has little idle time. It would be interesting to

take the problem formulation under the stochastic case and take away the condition that if

someone is not seen on time then they will leave. This would create a queue of patients that

are waiting for service. It is likely that under this model the Baily- Welch rule will hold.

While this work was done with health care in mind, there is no reason why it cannot be

applied to other situations. We could instead schedule cars for an oil change or repairs for

a planes in a hanger. Regardless, of the situation there remains much to be done to derive

and understand optimal scheduling systems. Much of the literature is focused on comparing

heuristics rather than solving an optimization problem. The reason is that optimization

problems grow dramatically in complexity. However, with an infinite horizon approach such

as a moving window or policy iteration it may be reasonable to get close to an optimal

solution.

Appendix A. Algorithm 2 code

The following is my code for Algorithm 2 in Python. You will notice I preassigned several

commonly used objects to save computation time that comes from defining a new object of

the same type. Also be aware that Python uses zero indexing. This means the first element

in a list A is A[0].

class TreeClass:

def __init__(self,W,T,m,omega,kappa,p,R,capacity):

rootNode = nodeClass.NodeClass([],-1)
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rootNode.parent = rootNode

self.startt = -1 #the time of the root node

self.endt = (T-m) #endt is the first time where the nodes of that

#time have no children

self.root = rootNode #root node corresponds to an empty schedule

self.W = W #indexes the three possible random outcomes

self.T = T #number of blocks in appointment schedule

self.m = m #every appointment is m blocks long

self.omega = omega #willingness of walk-ins to wait

self.kappa = kappa #earliest a call-in can be scheduled

self.p = p #p[0]=prob of nothing, p[1]=prob of walk-in,

#p[2]=prob of call-in

self.R = R #every appointment assumes a revenue of R

self.capacity = capacity #service capacity constraint

self.null = ’null’ #a pointer to a null decision

self.Ran = ([tuple([0]),tuple([0,1]),tuple([0,2]),tuple([0,1,2]),

...tuple([1]),tuple([2]),tuple([1,2])])

#a set indicating all possible combinations of random outcomes

#node can be valid for.

def addChild(self, parent, t):

#adds a node to a tree with parent at time t

newNode = nodeClass.NodeClass(parent, t)

parent.children.append(newNode)

def findNodesTime(self,nodes,t):

#returns all the nodes in a tree
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if nodes[0].t == t:

return nodes

else:

N = []

for node in nodes:

N = N + node.children

return self.findNodesTime(N,t)

def buildTree(self,node):

#recursively builds tree of all possible decisions

D,R = node.feasibleSet(node.t,self.T,self.m,self.omega,self.kappa,

...self.capacity,self.Ran,self.W,self.null)

for d in D:

r = R[D.index(d)]

self.addChild(node,node.t+1)

child = node.children[-1]

child.update(d,r,self.R)

if child.t != self.endt:

self.buildTree(child)

def trimTree(self,Parents):

#only keep optimal decisions through the value function

S = set()

for parent in Parents:

#first we identify the optimal nodes under each random outcome

c0 = parent.valueFunction(0,self.endt,self.p,self.W)

c1 = parent.valueFunction(1,self.endt,self.p,self.W)
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c2 = parent.valueFunction(2,self.endt,self.p,self.W)

#now we make sure that node parent has only the optimal children

parent.children = list(set([c0,c1,c2]))

#now we make sure the optimal nodes are only valid for the

#random outcome it was optimized over

c0.random = []; c1.random = []; c2.random = [];

c0.random.append(0); c1.random.append(1); c2.random.append(2);

c0.random = self.Ran[self.Ran.index(tuple(c0.random))]

c1.random = self.Ran[self.Ran.index(tuple(c1.random))]

c2.random = self.Ran[self.Ran.index(tuple(c2.random))]

S.add(parent.parent)

if Parents[0].t != self.startt:

self.trimTree(list(S))

#this function is used later in method valueFunction

argmax = lambda array: max(izip(array,xrange(len(array))))[1]

class NodeClass:

#This node class will be used as members of a tree data structure

#t = period the node lies in, or the period the decision is made

#d = decision

#w = randomness that occurs each period, w = [walk-in,call-in]

def __init__(self, parent, t):

#Initialize a node by creating the pointer to the parent

#and creating an empty list for the children

self.parent = parent
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self.t = t

self.children = []

def update(self,d,r,R):

self.decision = d #decision corresponding to node

self.random = r #random events that this node is valid for

if type(d) == int:

self.profit = R #revenue of node

else:

self.profit = 0

def feasibleSet(self,t,T,m,omega,kappa,capacity,Ran,W,null):

#This method returns the feasible decisions for self.

#D is the set of possible decisions

#R indicates for which random events each element in D

#is valid for

D = set(); R = []

sch = self.assembleSchedule(T,m)

#cond1 and cond2 make sure that the heuristic parameters

#kappa and omega are being satisfied

cond1 = lambda s: s in range(t+1,t+omega+1)

cond2 = lambda s: s in range(t+kappa+1,T-m+1)

#keep only those decisions that satisfy the capacity constraint

for d in range(t+1,T-m+1):

b = []

if cond1(d) and sum(sch[d:d+m]+ones([m,1])<=capacity) == m:

D.add(d)
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b.append(1)

if cond2(d) and sum(sch[d:d+m]+ones([m,1])<=capacity) == m:

D.add(d)

b.append(2)

if len(b) != 0:

R.append(Ran[Ran.index(tuple(b))])

D = list(D)

D.append(null)

R.append(Ran[Ran.index((0,1,2))])

return D,R

def findChildrenRand(self,w):

#returns children of self with random event w

cw = []

for child in self.children:

if w in child.random:

cw.append(child)

return cw

def prob(self,p):

#Returns probability of a node given that we are the preceding time.

P = 0

for r in self.random:

a = p[r]

P = P + a

return P
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def expectedValue(self,endt,p):

#returns the expected future value of a node not including

#the value of self

E = 0

if self.t != endt:

for child in self.children:

E = E + child.prob(p)*(child.profit+child.expFutVal)

return E

def valueFunction(self,w,endt,p,W):

#returns the best node for a child of self for random outcome w

cw = self.findChildrenRand(w)

L = []

for child in cw:

child.expFutVal = child.expectedValue(endt,p)

L.append(child.profit+child.expFutVal)

bestNode = cw[argmax(L)]

return bestNode

def assembleSchedule(self,T,m):

sch = zeros([T,1])

while not(self.parent is self):

d = self.decision

if type(d) == int: sch[d:d+m] = sch[d:d+m] + ones([m,1])

self = self.parent

return sch
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#the following code utilizes the methods and classes above to solve the problem

Tree = treeClass.TreeClass(startt,W,T,n,m,omega,kappa,p,R,stack,Ran)

Tree.buildTree(Tree.root)

lastNodes = Tree.findNodesTime([Tree.root],Tree.endt-1)

Tree.trimTree(lastNodes)

Appendix B. Algorithm 3 code

Here we include the code for Algorithm 3. We will only include those methods that are

different or new from those in Algorithm 2.

class TreeClass:

def findNodesTime(self,node,t):

#returns all decendants of a node with time t

#each node has children at several different times

T = list(c for c in node.children if c.t == t)

if node.t == t: T.append(node)

L = list(c for c in node.children if c.t < t)

while len(L) != 0:

C = []

for l in L: C = C + l.children

T = T + list(c for c in C if c.t == t)

L = list(c for c in C if c.t < t)

return T

def buildTree(self,node,t):
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#builds tree of all possible decisions disregarding optimality

D,R = node.feasibleSet(t,self.T,self.m,self.omega,self.kappa,

...self.capacity,self.Ran,self.W)

for d in D:

r = R[D.index(d)]

self.addChild(node,t+1)

self.numNodesBeforeTrim += 1

child = node.children[-1]

child.update(d,r,self.R)

if child.t != self.endt:

self.buildTree(child,child.t)

else:

child.expFutVal = 0

if t != self.endt:

self.buildTree(node,t+1)

def trimTree(self):

#deletes nodes on tree that are suboptimal

T = range(-1,self.endt); T.reverse()

#we trim the tree at each time t

for t in T:

for node in self.findNodesTime(self.root,t):

#since not all nodes have children we only trim those

#with children

if len(node.children) != 0:

node.paveTheWay(self.endt,self.p,self.W,self.Ran)

c1 = node.valueFunction(self.W[0],self.endt,self.p,self.W)
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c2 = node.valueFunction(self.W[1],self.endt,self.p,self.W)

#we don’t want to remove all nodes but just the suboptimal ones

#at time t+1

for c in node.findChildrenTime(node.t+1):

if c is c1:

c1.random.append(1)

if c is c2:

c2.random.append(2)

if not(c is c1) and not(c is c2):

node.children.remove(c)

del(c)

else:

c.random = self.Ran[self.Ran.index(tuple(c.random))]

node.expFutVal = node.expectedValue(self.p,self.W)

else:

node.expFutVal = 0

class NodeClass:

def findChildrenRand(self,w,t):

#Returns list of children of self at time t with random event w

cw = list()

for child in self.children:

if w in child.random and t == child.t:

cw.append(child)

return cw
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def findChildrenTime(self,t):

#Returns children of self at time t

ct = [child for child in self.children if child.t == t]

return ct

def expectedValue(self,p,W):

#returns the expected future value of a node self not knowing

#what the next random event will be.

E = 0

for child in self.children:

if child.t == self.t+1:

E = E + child.prob(p)*(child.profit+child.expFutVal)

if len(self.children) != 0:

a = 1-sum([c.prob(p) for c in self.findChildrenTime

...(self.t+1)])

E = E + a*self.expValofNull(self.t+1,p,W)

return E

def valueFunction(self,w,endt,p,W):

argmax = lambda array: max(izip(array,xrange(len(array))))[1]

#argmax returns index of max in array

cw = self.findChildrenRand(w,self.t+1)

L = []

for child in cw:

L.append(child.profit+child.expFutVal)

a = self.expValofNull(self.t+1,p,W)

if max(L+[a]) != a:
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best = cw[argmax(L)]

best.expFutVal = best.expectedValue(p,W)

best.random = []

else: best = ’null’

return best

def expValofNull(self,t,p,W):

#null decision is made at time t

#self is the parent node

T = list(set(child.t for child in self.children if child.t > t))

T.sort()

CT = [self.findChildrenTime(t) for t in T]

ep = []

pb = []

for ct in CT:

ep.append(sum([c.prob(p)*(c.profit+c.expFutVal) for c in ct]))

pb.append(1-sum([c.prob(p) for c in ct]))

if len(pb) != 0: pb.pop()

pb.insert(0,1)

a = 0

for i in range(len(T)):

a = a + ep[i]*reduce(lambda x,y: x*y,pb[:i+1])

return a

def paveTheWay(self,endt,p,W,Ran):

#prepares self for the use of the valueFunction by eliminating

#suboptimal nodes that are not first children at time t+1
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argmax = lambda array: max(izip(array,xrange(len(array))))[1]

T = list(set(child.t for child in self.children if child.t

...!= self.t+1))

T.sort(reverse = True)

for t in T:

bestNodes = set()

for w in W:

cw = self.findChildrenRand(w,t)

L = []

a = 0

for child in cw:

L.append(child.profit+child.expFutVal)

if t != T[0]:

a = self.expValofNull(t,p,W)

L.append(a)

if max(L) != a:

best = cw[argmax(L)]

try:

best.temp.append(w)

except AttributeError:

best.temp = []

best.temp.append(w)

bestNodes.add(best)

for c in self.findChildrenTime(t):

if not(c in bestNodes): c.delete()

for b in bestNodes:

b.random = Ran[Ran.index(tuple(b.temp))]
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del(b.temp)

def assembleSchedule(self,T,m):

sch = zeros([T,1])

while not(self.parent is self):

d = self.decision

sch[d:d+m] = sch[d:d+m] + ones([m,1])

self = self.parent

return sch

def feasibleSet(self,t,T,m,omega,kappa,capacity,Ran,W):

D = set(); R = []

sch = self.assembleSchedule(T,m)

cond1 = lambda s: s in range(t+1,t+omega+1)

cond2 = lambda s: (s in range(t+kappa+1,T-m+1))

for d in range(t+1,T-m+1):

b = []

if cond1(d) and sum(sch[d:d+m]+ones([m,1])<=capacity) == m:

D.add(d)

b.append(1)

if cond2(d) and sum(sch[d:d+m]+ones([m,1])<=capacity) == m:

D.add(d)

b.append(2)

if len(b) != 0:

R.append(Ran[Ran.index(tuple(b))])

D = list(D)

return D,R
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#The following lines of code can be run to solve the problem

#You must first specify your parameters

Tree = treeClassS.TreeClassS(W,T,m,omega,kappa,p,R,capacity)

Tree.buildTree(Tree.root,-1)

Tree.trimTree()
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