
Brigham Young University Brigham Young University

BYU ScholarsArchive BYU ScholarsArchive

Theses and Dissertations

2012-04-10

Automated Fingertip Detection Automated Fingertip Detection

Joseph G. Butler
Brigham Young University - Provo

Follow this and additional works at: https://scholarsarchive.byu.edu/etd

 Part of the Computer Sciences Commons

BYU ScholarsArchive Citation BYU ScholarsArchive Citation
Butler, Joseph G., "Automated Fingertip Detection" (2012). Theses and Dissertations. 3164.
https://scholarsarchive.byu.edu/etd/3164

This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion
in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please
contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.

http://home.byu.edu/home/
http://home.byu.edu/home/
https://scholarsarchive.byu.edu/
https://scholarsarchive.byu.edu/etd
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F3164&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsarchive.byu.edu%2Fetd%2F3164&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/3164?utm_source=scholarsarchive.byu.edu%2Fetd%2F3164&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu,%20ellen_amatangelo@byu.edu

Automated Fingertip Detection

Joseph Butler

A thesis submitted to the faculty of
Brigham Young University

in partial fulfillment of the requirements for the degree of

Master of Science

Parris Egbert, Chair
Bryan Morse
Eric Ringger

Department of Computer Science

Brigham Young University

June 2012

Copyright c© 2012 Joseph Butler

All Rights Reserved

ABSTRACT

Automated Fingertip Detection

Joseph Butler
Department of Computer Science, BYU

Master of Science

One of the oldest biometrics that has been used to uniquely identify a person is their
fingerprint. Recent developments in research on fingerprint collection have made it possible to
collect fingerprint data from a stand-off digital image. Each of the techniques developed so far
have relied on either a very controlled capture environment to ensure only a single fingertip
is collected or manual cropping of the image down to the fingertip. The main body of the
research focuses on extracting the fingerprint itself. If fingerprint collection via digital image
is ever to be fielded in the real world on such devices as smart phones or tablets it will be
necessary for the software to automatically detect a single or multiple fingertips in an image
and isolate them for extracting the fingerprint. We introduce an automatic fingertip detection
algorithm that couples image processing techniques with a machine learning capability to
successfully identify varying numbers of fingertips in digital images. Our algorithm proves
that while it is difficult to remove all constraints from the capture environment it is achievable
with the method we have developed and we can achieve a recall of 69.77% at a precision
of 78.95%. This gives us the important capability to detect varying numbers of fingertips
in an image and provide a crucial piece in what could be a complete automated fingerprint
recognition system.

Keywords: Fingertip detection, fingerprint capture

ACKNOWLEDGMENTS

Thanks go to Dr. Egbert for his patience and support throughout the work on this

project. Additional thanks to the other committee members, Dr. Morse and Dr. Ringger for

their time in reviewing my work. Finally, thanks to my wife and kids for their support and

sacrificing their time with me to allow me to complete this work.

Table of Contents

List of Figures v

1 Introduction 1

2 Related Work 3

3 Automated Fingertip Detection Solution 9

4 Color and Texture Masking 12

5 Orientation Estimation and Poincare Index 16

6 Support Vector Classification, Connected Neighbors and Automated Crop-

ping 20

7 Results 23

8 Future Work 28

References 30

iv

List of Figures

4.1 Histograms for U and V . 13

5.1 Friction ridge orientations . 17

6.1 Core block classification . 21

7.1 Web collection samples . 23

7.2 Resulting fingertip images . 24

7.3 Harsh lighting example . 25

7.4 Out of focus example . 25

7.5 Our collection samples . 26

7.6 Four finger example from web . 26

v

Chapter 1

Introduction

The field of biometrics is one that has greatly benefited from the advancement of

technology. Without technology certain biometric modalities would not even be possible

and some of the older, more traditional modalities, such as fingerprint matching or facial

recognition would not be as widely used. The application of technology to the modality

of facial recognition has afforded us the capability to now automatically detect faces in

images and identify these faces as the people to whom they belong. Both detection and

recognition are necessary parts of the facial recognition modality [Zhao et al., 2003]. While

facial detection is the easier problem of the two, automated facial recognition would not be

possible without automated facial detection. The fingerprint modality has a similar need of a

two-part solution to automatically detect and recognize fingerprints in digital images.

Traditionally fingerprint data was collected from an individual by the means of applying

ink to the fingers of the individual and then pressing the fingers onto paper. As technology

has advanced, more sophisticated fingerprint sensors have been developed to help increase

the accuracy of the fingerprint data collected and make collection easier. As this process has

matured, the use of fingerprints has increased and has become much more common. One

can now use fingerprint sensors to open the locks on doors or provide access to personal

computers. One problem with incorporating fingerprint sensors into devices is the additional

cost to manufacturers. One of the cutting edge developments in fingerprint acquisition that

helps alleviate this cost is the ability to extract a fingerprint from a stand-off digital image of

a finger. This development turns a simple digital camera into an inexpensive and increasingly

1

higher-definition fingerprint sensor. Many personal computing devices such as tablets, laptops

and even smart phones are attempting to provide the most capability in the smallest form

factor. The ability then to use a digital camera, with which many of these devices are already

equipped, as a multi-use device that can also act as the fingerprint sensor is an attractive

proposition.

The current ability of capturing fingerprints from digital images has its limitations.

These include the need to have either a controlled capture environment where the lighting

and focus distance are uniform for all images captured or the need to manually crop the

image collected down to the individual fingertip of interest. These restrictions, while they

do not take away from the significant achievement of extracting the fingerprint data from

the image, do leave the system unfinished. Just as in a facial recognition system, the ability

to match a fingerprint to its owner is not enough. A complete system must also be able to

automatically detect the location of the fingertip in the image so that it can then be matched

to its owner.

Some methods have been developed in an effort to pre-process a digital image of a

finger and prepare it for fingerprint extraction. However, the methods developed to date

all rely on either placing constraints in the capture environment to control some of the

variables such as lighting, background, or focal distance or they rely on the manual step

of cropping the image. We present an automated fingertip detection algorithm that is free

of the constraints of a controlled environment and free of the need for manual cropping.

Through the combination of skin color pixel masking, high frequency texture masking, friction

ridge orientation estimation and Support Vector Machine (SVM) classification our algorithm

decides which regions of the image are classified as fingertips. This provides fingerprint

capture and storage that is much more robust than earlier techniques.

2

Chapter 2

Related Work

In a color image of a finger one of the most recognizable features of the finger is

the skin tone. Lee et al. [2005] developed a method of determining the skin colored pixels

in an image by converting the RGB values into the YUV color space and comparing the

chrominance values of each pixel to a distribution of skin color taken from several images of

skin across the different races. The values were then used to generate a binary mask of the

image. In addition to distinguishing the skin colored pixels Lee et al. [2005] use a Discrete

Wavelet Transform to determine the areas of high frequency in the image with the reasoning

being that the finger is going to be closer to the camera than the background, and should

be in focus. In additional research Lee et al. [2006] developed an algorithm that calculates

the recognizable portions of the image using three main factors of focus, quality and pose to

determine which regions are recognizable.

Hiew et al. [2007, 2006] constructed a box in which they can control the lighting and

focus distance of the image captured by having the subject place a single finger through

a hole in the box. Given the constant background color, the isolation of the skin colored

pixels is trivial. The authors then use adaptive thresholding to isolate the pixels that are

in focus enough to be used in case the image is of poor enough quality that portions of the

finger are not usable. The image resulting from the adaptive thresholding and normalization

they perform is then cropped to remove all of the background and edges of the fingertip. A

short-time Fourier transform is then used to enhance the image and produce more contrast

between the friction ridges and valleys. Finally they developed a Gabor filter based feature

3

extractor to detect the core points of the fingerprint. Given the strictly controlled capture

environment they require through the use of their capture apparatus, the method used in

their research is not robust enough for our application.

Yu et al. [2009] developed an algorithm for identifying the fingertips in an image of

a hand. Their approach was to first convert the image of the hand to a binary image and

employ an edge detection algorithm to locate the edges of the hand. They then used their

border tracing algorithm to find the peaks of the fingertips and the valleys between them.

Using these peak and valley locations they were able to segment the image and crop out

entire fingers. The authors employed the morphological operation known as opening to accent

the noise in the first knuckle of the finger making it easier to detect. They then cropped

the image at the first knuckle leaving only the fingertip. It was necessary in their work to

restrict the capture environment by controlling the background against which the images

were taken and requiring the fingers to be extended providing adequate space between each

finger for their algorithm to identify both the peaks and valleys of the border of the hand.

While the solution they provided did allow them to locate the fingertips in the image it was

still necessary to control the capture environment leaving the problem of uncontrolled robust

capture unsolved.

The friction ridges of the fingertip are its identifying feature and are crucial to

distinguishing between the actual fingertip versus other possible high-texture skin colored

regions of an image. Work done by Hong et al. [1998] developed an algorithm to estimate

the orientation and frequency of friction ridges in an image of a fingerprint. Orientation

estimation was done by taking the least mean square of the gradient value at each pixel within

the individual blocks of the image. The result of this calculation gave them the direction

orthogonal to the dominant direction of the Fourier spectrum of each block. The authors

noted that noise in the image could lead to incorrect orientation estimation and introduced

the solution of low-pass filtering the image prior to orientation estimation. Gray-scale images

of fingerprints are more susceptible to noise in the image than are color images of fingers

4

making low-pass filtering unnecessary in our algorithm. Hong et al. also introduced an

algorithm for calculating the frequency of the friction ridges. Using the orientation of the

blocks in the image they compute a window of a set size and orient the window to match

the orientation of the image. They then computed what they called the x-signature of the

window, which would form a discrete sinusoidal-shape wave, the frequency of which was

determined to be the frequency of the ridges. Working with images of fingerprints that were

all at the resolution of 500 dpi the authors knew that the frequency of the ridges should

fall within a certain range. If the frequency of a certain block fell outside of this range it

was marked as invalid and the authors used interpolation between the neighboring blocks’

frequencies to set the frequency value for the invalid block.

Wang and Wang [2004] introduced a method of enhancing a fingerprint image in its

singular point region. The singular point region of the image is the region where the ridge

curvature is higher than normal and where the direction of the ridges changes rapidly. To

enhance the singular point region the authors first needed to identify this region of the image.

To do so they employed a method developed by Jain et al. [1997]. This method divided the

image into equal blocks of a set size and calculated the gradient average of each block. After

the orientation of each block was calculated, Wang and Wang presented the algorithm for

calculating the Poincare index value of each block. Through their work they determined

that singular point regions would have Poincare values of either −1
2

or 1
2
. Once the singular

point regions were detected they then designed a band-pass filter to enhance the region and

suppress possible noise.

Van and Le [2009] developed an algorithm that could consistently detect the reference

point in fingerprint images for all types of fingerprints. The algorithm they developed employs

the gradient average of sub-blocks within the image. After calculating the gradient average

for each block the algorithm then employs a method of adaptive neighborhood smoothing

to smooth the orientation values calculated and reduce the effects of noise that could have

been introduced by scars or creases in the fingertip. The orientation is then used to calculate

5

what they term the convex orientation consistency field, allowing them to locate the reference

point in the image. This orientation consistency field is a representation of the relationship

between the orientation of each block and the orientations of the neighboring blocks. This

is similar to the Poincare index value used by Wang and Wang [2004] in that in both cases

the authors are trying to use this relationship of the orientation between neighboring blocks.

Van and Le also compute the convex curvature of each block using a unique algorithm that

they developed. Through combining the orientation consistency field and convex curvature

of each block the authors are able to locate the reference point of the fingertip. The images

used in this project were not digital images of fingers but instead actual fingerprint images

from a fingerprint database.

Working with fingerprint images obtained from touch sensors, Qi and Xie [2008]

developed a method to detect and remove background information from the image. The

authors split the image into blocks and calculate the average gradient magnitude and the

direction variance of each block. They use this information to give a block quality score to

each block. After setting a threshold for suitable block quality they classify all of the blocks

in the image as either background or foreground, then remove all of the blocks classified as

background. The algorithm they produced from their research will quickly and efficiently

remove background blocks from images of fingerprints obtained from touch sensors and give

an overall image quality score. This preprocessing they performed was proposed as a solution

for increasing the effectiveness of a fingerprint recognition system by enhancing the value of

the image sent to the system.

Another solution to the problem of removing unwanted background information from

images of fingerprints obtained from touch sensors was presented by Weixin et al. [2009].

They build upon the active contouring algorithm which uses a snake or an energy-minimizing

spline. The snake is guided by external constraint energies and influenced by image energies

to pull it to salient features of the image such as the edges of the fingerprint. To increase

the performance of the active contouring the authors first normalize the image to smooth

6

out the gray values along the ridges and valleys. They then divide the image into blocks

and calculate the gradient average for each block. They discretize the orientation values into

eight different possibilities and then compute a directional histogram with the discretized

orientations of all the blocks in the image. The active contouring algorithm is then fed

orientation-variance information and histogram-peak differences for neighborhoods of the

image. This method works well for fingerprint images that are collected via touch sensor since

the only high frequency areas in the image were in the foreground and the contrast between

the edge of the fingerprint and the background was well defined. Attempting to apply this

method to segmenting out a fingertip from a digital color image of a hand in a robust capture

environment such as we are presenting would present too difficult of a challenge given that

the background might very well contain information that would confuse the active contouring

algorithm.

Song et al. [2004] developed a new system of touch-less fingerprint recognition. Their

system involved both a hardware apparatus for capturing the images as well as image-

processing techniques to enhance the image and prepare it for fingerprint extraction. The

hardware apparatus used a digital camera to provide touch-less capture. The camera was

built into a platform onto which the subject would place their finger. The tip of the finger

where the fingerprint was being captured from was not touching the sensor but the joint just

below the fingertip was resting on the platform to allow a controlled focal distance in all of

the images captured. The apparatus they constructed was also able to somewhat control the

lighting and the background. A blue light was placed in the apparatus that shone on the

fingertip during capture. This blue light helped reduce the effects of the other lighting in

the image. To further help reduce the effects of other lighting on the image a blue filter was

added to the camera. As well as controlling the lighting, the apparatus also controlled the

background by using an opening only large enough for the camera to capture the fingertip

itself without any background. Once the image was captured the image was converted to

gray-scale, then Gaussian smoothing was performed and the image was then split into blocks.

7

The gradient average for each block was computed and used to construct block-specific Gabor

filters to further smooth out noise and enhance the contrast between the ridges and valleys.

All of the work done to allow the collection of fingerprint data via digital images has

been restricted to images of single fingertips or images that were collected in a controlled

environment. Thus the need to make capture more realistic in an uncontrolled environment

via a simple digital camera without the need for any additional sensors or capture apparatuses

still exists. To solve this problem it will be necessary to automatically detect fingertips in an

image where multiple fingertips could be present and where the collection environment is

uncontrolled. This paper describes our solution to that problem.

8

Chapter 3

Automated Fingertip Detection Solution

Uncontrolled capture of images with varying numbers of fingers in the image, varying

lighting situations, varied backgrounds and focal distances is a difficult problem. Each control

that we eliminate from the capture process must be accounted for. Our solution to this

problem uses various methods developed in the previous work as well as our own novel

techniques.

The first step in the process is to determine what portion of the image contains the

hand and ignore the rest. In a color image we can assume that the likelihood of skin tones in

the background is going to be low. This assumption led us to adopt the method of skin color

masking as used by Lee et al. [2005]. While the likelihood of skin tones in the background

may be low we did not want to rely on it being impossible. In order to allow for possible skin

color masks that fail to occlude all of the background we look to another significant feature

of the image, texture.

If an image is going to be usable then the hand, and more specifically the fingertips,

will need to be in focus. For the hand to be in focus and fingerprint detail to be discernible,

the focal distance will have to be relatively short, thus making anything behind the hand out

of focus. We utilize this feature of texture to create a texture mask similar to the method

used by Lee et al. [2005]. Through the combination of both the color mask and the texture

mask we are able to reduce the remainder of the calculation to the portion of the image that

has been determined to include the fingers.

9

We then utilize the most distinguishing feature of the fingertip, the friction ridges, as

the basis for further processing. Many of the previous works employ a method of orientation

estimation to calculate the orientation of the friction ridges within each sub-block of the

image. Our solution employs the method of gradient average to estimate the ridge orientation.

We enhance orientation estimation in our solution through the use of an iterative process of

orientation estimation and ridge frequency estimation. In a method similar to Hong et al.

[1998] we use the orientation value to help us calculate ridge frequency. Hong et al. calculate

a window around each block that is rotated to match the orientation value of that block

and attempt to find a sinusoidal-shaped wave that fits the alternating intensity values of

the ridges and valleys. The frequency of the wave gives them the ridge frequency near that

block. To enhance the accuracy of our ridge frequency estimation we only calculate the ridge

frequency of the blocks in which none of the pixels are masked. Iterating through all of the

unmasked blocks we first calculate the threshold between the ridges and valleys based on

the average intensity values of the ridges and valleys. We then interpolate across each block

perpendicular to the orientation value for that block. As we interpolate across the block

we count the width of the ridges by the number of pixels that are higher than the average

threshold. This ridge width calculation is then used to adjust the size of the blocks and

re-calculate the orientation information.

As shown in previous work [Van and Le, 2009] and [Wang and Wang, 2004], the

orientation estimation value can be used to determine a relationship between neighboring

blocks. Our solution utilizes the Poincare index value as presented by Wang and Wang to

represent this relationship. However, instead of using the Poincare index as the deciding

factor, we use this information as input to a SVM to perform classification. The possibility

of more than just fingertips in the images we use means we can’t rely on simply the Poincare

value. We need something more to help us decide which regions of the image were indeed

fingertips.

10

The final step to our solution is to use all of the information gathered so far to decide

which regions of the image are fingertips and to isolate these regions for input into a fingerprint

extraction system. To do this we developed our connected-neighbor algorithm, which finds

the core regions of the fingertips based on the number of connected blocks which have been

classified by the SVM as core blocks. These regions are determined to be the core of the

fingertip and a dynamic region around each core is set based on the average ridge width.

Each fingertip region is then saved as a single image and is ready for fingertip extraction.

Each step in our solution will be presented in detail in the following chapters.

Our research builds upon the previous work by adapting and enhancing the methods

used to identify skin color and high texture information. We enhance a commonly used

approach to estimate friction ridge orientation and add our unique method of calculating

ridge width to provide a more accurate orientation estimation. We take the information given

us by the calculation of the Poincare value and build upon it through the use of the SVM to

allow a decision to automatically be made by the software. This automation is made all the

more unique by removing the controls in the capture environment. While the end goal of all

of the previous work was to extract the fingerprint from a single fingertip in the image, our

goal is to provide a solution to the unsolved problem of automating the detection of varying

numbers of fingertips that may be present in an image. Just as facial recognition would

not be what it is today without automated facial detection, we are confident that our novel

solution to the problem of automated fingertip detection will move fingerprint recognition

via digital image further along its path of development.

11

Chapter 4

Color and Texture Masking

To allow a much more robust method of collecting fingerprint data via digital images

we have developed the automatic fingertip detection algorithm. This algorithm builds on

previous work and adds the decision-making capability of the support vector classification.

This provides the freedom from constraint that the previous methods have had to operate

under such as controlled capture environments and only capturing a single finger at a time.

The first step in our algorithm is to produce two masks that will be used in the fingerprint

detection phase. The first is a color mask which allows us to determine portions of the image

that are candidate skin regions. The second is a texture mask that will be used to determine

actual fingerprints. These masks allow us to isolate the regions of the image that are both

skin color and high frequency texture areas.

Our skin color determination algorithm is based on the method used by Lee et al.

[2005] but we have extended it to produce more accurate results. Instead of converting to a

normalized RGB color space we convert the image to Y ′UV color space. The Y ′ refers to

the intensity value of each pixel or, in other words, the gray-scale value of the pixel. The U

and V are different chrominance values that represent the color in the image. To convert

from RGB to Y ′UV we use

Y ′ = WRR +WGG+WBB (4.1)

U = Umax
B − Y ′

1−WB

(4.2)

12

V = Vmax
R− Y ′

1−WR

(4.3)

where

WR = 0.299

WB = 0.114

WG = 1−WR −WB

Umax = 0.436

Vmax = 0.615

(4.4)

Once converted, the pixels are compared to a skin-color distribution. To build the

skin-color distribution we gathered skin-patch images from each of the different races using

various image search websites. Each skin-patch image was collected from the palm or fingers

to provide a tighter distribution. We converted the skin-patch images to the Y ′UV color

space and created a histogram of the U and V values. The Y ′ value is not used since it only

represents the intensity or gray-scale value at each pixel. These histograms are shown in

Figure 4.1.

(a) U distribution histogram (b) V distribution histogram

Figure 4.1: The distribution of the U and V values taken from the skin color patches in our
collection

The skin-colored pixels in our collection were distributed in a bimodal Gaussian curve.

Recognizing this we knew we could employ the optimal thresholding technique to discover

the threshold between the two curves. To do so we first need to calculate the probability that

a given U or V value would fall into each curve. Once we have determined the probabilities

we can then use the following to find the optimal threshold T between the two distributions:

13

AT 2 +BT + C = 0 (4.5)

where

A = σ2
1 − σ2

2 (4.6)

B = 2(µ1σ
2
2 − µ2σ

2
1) (4.7)

C = σ2
1µ

2
2 − σ2

2µ
2
1 + 2σ2

1σ
2
2ln(σ2P1/σ1P2) (4.8)

and µ1 and σ1 are the mean and standard deviation of the lower curve, µ2 and σ2 are the

mean and standard deviation of the upper curve and P1 and P2 are the probabilities that

each U and V value will fall into the lower and upper curves respectively. In solving for T in

Eq. 4.5 there is a possibility of obtaining two possible solutions between the means of both

distributions. If such is the case then two thresholds would need to be used. In our case

there was only one solution for T between the means of both distributions leaving us with

the optimal threshold.

Using this optimal thresholding technique we are able to first classify a pixel value

as falling into either the upper or lower distribution. Then through empirical testing we

determined that the upper curve of both the U and V distributions are more likely to contain

the true skin color values whereas the lower curves are more likely to contain the color values

that are impostor skin colored values. Impostor skin colors can come from items in the image

such as jewelry being worn that contain certain shades of gold, orange, red or yellow. Our

testing showed that the U and V values within three standard deviations of the mean of the

upper curve and within one standard deviation of the lower curve were generally the actual

skin colored pixels. Given that it is possible to have skin tones in the background, the color

mask alone is not sufficient for removing all unwanted information from the image.

An image taken of a hand and focused on the fingers will have a short enough depth

of field that the fingers will be in focus but the background will be out of focus. This means

14

that we only want to center our attention on the area of the image that is in focus. This will

help us remove any unwanted background information that may have passed the color mask

but is not actually part of the fingers or hand. To allow us to concentrate only on the regions

of the image that are in focus we determine the high frequency areas of the image through

the use of a Discrete Wavelet Transform. Specifically we use a Haar wavelet to extract the

texture information from the image. Running the image through a two-dimensional Haar

wavelet transform will divide the image into four subregions. The lower right subregion

of the image will contain the lowest frequency data, the lower left will contain mostly the

horizontal edges, the upper right will contain mostly the vertical edges and the upper left

subregion will contain the highest frequency information from the image. To ensure that we

are only getting high frequency information for the mask we perform two iterations of the

Haar transformation on our input image. From the subregion of the resulting image that

contains the highest frequency change, a texture mask is generated and scaled back to the

original size of the image.

The resulting color and texture masks are then both passed through a dilation and

erosion process to smooth the edges and close any holes. The masks are then combined with

more weight given to the texture mask to account for the possible background color that

passes as skin color. This combined mask is then applied to the image.

15

Chapter 5

Orientation Estimation and Poincare Index

Once we have isolated the usable regions of the image we then need to determine

what is fingertip and what is not. To do this we will leverage the friction ridges of the finger.

One of the most common and effective methods for estimating the orientation of the friction

ridges is by calculating the gradient average of a sub-block of the image as done in [Wang

and Wang, 2004], [Van and Le, 2009] and [Weixin et al., 2009]. While other methods of

estimating the orientation of each block were presented by [Hong et al., 1998] and [Qi and

Xie, 2008], we elected to use the gradient average method as it has not only proven itself to

be effective but we also wanted to extend it using our two step process. The first step of our

process is to divide the image into sub-blocks of default size (16 pixels) and calculate the

gradient average for each block with the following equation:

θ =
1

2
tan−1

(∑W
i=1

∑W
j=1 2Gx(i, j)Gy(i, j)∑W

i=1

∑W
j=1(G

2
x(i, j)−G2

y(i, J))

)
(5.1)

where W is the size of the block, Gx is the gradient in the x direction at the location i, j and

Gy is the gradient in the y direction at the location i, j [Wang and Wang, 2004]. Looping over

the pixels in a block of size W we calculate the gradient at each pixel and the resulting θ is

the gradient average of the entire block or the direction of greatest change within the block.

The friction ridge orientation is perpendicular to the gradient average of each block as

seen in Figure 5.1. This first calculation of the orientation estimation with the blocks set to

a default size may have been adequate in cases where the input images in which the fingers

were all very similar in size. We found however, that it is not as accurate when the sizes of

the fingers in the image can vary greatly such as in our uncontrolled capture environment.

16

Figure 5.1: Friction ridge orientations. The red lines on the image indicate the friction ridge
orientation which is perpendicular to the gradient average as calculated by our algorithm.

To enhance the process we determined that the size of the block used should vary depending

on the size of the finger which is the second step in our process. We determine the size of the

finger by measuring the average width of the friction ridges.

After having obtained the orientation of each block of default size, we then loop

through the unmasked blocks of the image and find the upper and lower intensity values

in each block. The upper intensity value represents the ridges in the image and the lower

represents the valleys. The threshold of each block is half the difference between the two

values. The average of all the thresholds will be used to calculate the ridge width. After

determining the threshold, we then loop through the image and extrapolate across each block

perpendicular to the block’s orientation. As we extrapolate we determine the ridge width

based on the number of continuous pixels that are above the average intensity threshold. To

counteract the possibility of noise such as creases or scars we use the average ridge width of

all the blocks. Once the average ridge width is set we resize the sub-blocks of the image to

contain two ridges and valleys per block and re-estimate the orientation.

After the final orientation estimation is complete we can now look at the relationship

each block has with its neighbors. This relationship is important because it helps us determine

when the orientation values for the neighboring blocks are all similar, such as we would

see in the edges of the fingertip or the regions of the finger below the first knuckle. More

17

importantly, this relationship also helps us determine when the orientation values differ in

specific ways, such as at the singular points of the image. To provide information on this

relationship we calculate the Poincare index values for each block. Using the orientation

value from each block and its eight connected neighboring blocks we calculate the Poincare

index as follows:

Poincare(i, j) =
(

1

2π

)N−1∑
k=0

∆(k) (5.2)

∆(k) =

δ(k) |δ(k)| < π

2

π + δ(k) δ(k) < −π
2

π − δ(k) otherwise

(5.3)

δ(k) = θ(X(k′), Y (k′))− θ(X(k), Y (k)) (5.4)

k′ = (k + 1)mod(N) (5.5)

where θ(i, j) is the orientation for the block at i, j, X(k), Y (k) are the coordinates of the

blocks that are in a closed loop around block i, j, and the total number of blocks in the loop

is N [Wang and Wang, 2004]. The resulting Poincare value for each block gives us a measure

of the center block’s orientation and how it compares to the orientations of its neighbors. If

all of the neighboring orientations are quite similar, such as is the case at the outer regions

of the fingertip or below the knuckle of the finger, then the Poincare index value will reflect

this. On the other hand, if there is a significant difference in the orientation between the

neighbors, like we would see at the singular point regions of the fingerprint, this will also

be reflected in the Poincare index value. Wang and Wang reported in their research that

Poincare index values of 1
2

and −1
2

represent the key features, known as the core and delta,

of the singular point region. Our solution does not use the Poincare index value as the sole

18

deciding factor on the location of the fingertip in the image but we utilize the information it

gives us about the relationships between neighboring blocks as input to the next step in the

process, support vector classification.

19

Chapter 6

Support Vector Classification, Connected Neighbors and Automated Cropping

With all of the information that we have gathered on the image so far we can now

make a decision on where the fingertip is in the image. By analyzing the information we

have calculated in the Poincare index value for a block and its neighbors we can attempt

to classify blocks into different classes. For our solution we chose to divide the blocks into

two classes, core and non-core. The core blocks of the image are the blocks in which the

core features of the fingerprint, such as the loop, arch, whirl or delta, are located. Dividing

the blocks into these two classes makes sense because the core of a fingerprint is the most

distinguishing characteristic of the fingerprint and it is a pattern unique to the fingertip

that will not be found among the other friction ridges on the finger or hand. The tool that

we chose to perform our classification is the support vector machine (SVM) as developed

by Chang et al. [2011]. The SVM is a powerful classification tool that is also simple to

understand conceptually. Given a set of data that could fall into two different classes, the

SVM will attempt to find a hyper-plane that would best define the boundary between the

two classes.

Support vector classification requires that the SVM be trained with examples of the

classes into which the data will be classified. We gather training data for the SVM by selecting

example images and visually determining the core blocks and non-core blocks. From each

block we construct a feature vector which consists of the Poincare value for that block and

its eight connected neighbors. These feature vectors are then given a class number and the

data is formatted and scaled for the SVM training function. After training the SVM the

20

(a) Image with four fingers (b) Core blocks identified in image

Figure 6.1: Core block classification: (a) Test image from which we expect to detect four
fingertips. (b) The resulting image with both the color and texture masks applied and the
blocks classified as core blocks highlighted in green and those classified as non-core highlighted
in red.

best fitting plane was found that defined the boundary between our training set data. This

best fitting plane is known as the hard boundary between the training set data. To allow us

to effectively perform classification it is also necessary to define the soft boundary between

the data. The soft boundary is defined as C > 0 were C is the magnitude of the vector

orthogonal to the best fitting plane. The SVM library provided by Chang et al. includes a

tool to perform cross-validation of the C parameter used for the model. Upon performing

this cross validation the tool gave us the value of C = 0.5. This parameter helps define the

margin between the class boundary and the feature vectors in either class. This value of C

provides the most accurate classification using a linear kernel. The kernel determines what

method will be used to define the class boundary, in our case a linear plane.

Once all of the blocks in the image have been classified as core and non-core we

need to be able to discern between erroneous classifications and the true core regions of the

image. To do this we developed the connected neighbors search. Through examination of

the resulting classifications we found that there were several seemingly anomalous blocks

that were determined to be core blocks as seen in Figure 6.1b. Through empirical results

we noted that true core regions of the image would have at least four or more neighboring

blocks classified as core blocks. Using a recursive counting algorithm we are able to count

21

the number of connected neighbors each core block has. Those blocks with a count above the

threshold are determined to be the fingertip regions of the image.

As stated, the purpose of the fingertip detection algorithm is to automate the process

of detecting and cropping out varying numbers of fingertips in an image. In order to make

this a more robust solution we also developed the capability to automatically determine the

orientation of the overall image and rotate it so that the fingertips were at the top of the

image. To do so we determine the center of mass of the color mask and rotate that to be

the bottom of the image. This simplistic solution to rotation is sufficient since the center of

mass of the color mask will either include the palm of the hand or the majority of the finger

below the tip. This auto rotation is important in that it rotates the test data to the same

orientation as the training data therefore providing more accurate classification.

The auto rotation of the image also makes the cropping of the fingertip regions easier to

perform since a singular rectangular proportion can be used for cropping. Using the connected

neighbors search we are able to automatically locate the core regions of the fingertip. After

the core region is located a rectangular portion of the image around that region is saved off as

the single fingertip image ready to be used to extract the fingerprint data. The blocks within

the previously detected fingertip regions are skipped in the remaining connected neighbors

search to reduce the possibility of erroneously detecting multiple core regions on a single

finger.

22

Chapter 7

Results

In order to accomplish the goals of this research, our automated fingertip detection

algorithm must accomplish two things. First the algorithm must successfully detect fingertips

in an image. Second, it must be able to do so in images captured in uncontrolled environments

that contain varying numbers of fingers. To test the success of these two goals we set up a

two-prong image collection approach. First we wanted to use a simple off-the-shelf point-

and-shoot camera to prove that high enough quality images could come from such simple

equipment. With this camera we took images in both indoor and outdoor environments with

different lighting. We also collected images with the hand in various orientations as well as

with varying numbers of fingers present. Examples of images from our collection can be seen

in Figure 7.1. The most common number of fingers in the image was four since it is easiest

for the subject to hold their hand out facing up with all of the fingers extended. However,

we tested images of various numbers of fingers, images with some fingers bent or occluded,

and so forth. The image in Figure 6.1 was collected outdoors in the evening with the flash

active on the camera. We expected this image to be easy for our algorithm since the detail in

(a) Ours 1 (b) Ours 2 (c) Ours 3 (d) Ours 4

Figure 7.1: Web collection samples. Examples of the images we gathered with our 7 megapixel
consumer camera

23

(a) Index finger (b) Middle finger (c) Ring finger (d) Pinky finger

Figure 7.2: Resulting fingertip images. Fingertip images extracted by our algorithm from the
image in Figure 6.1

the fingerprints is easy to see. Our algorithm successfully identified four core regions in the

image and extracted the images seen in Figure 7.2. An example of an image we expected our

algorithm to struggle with can be seen in Figure 7.4. The image in this figure shows that one

of the fingers, the middle finger, is not in focus enough to visually determine the fingerprint.

Our algorithm was able to successfully identify the index finger but not the middle finger.

Finally, an example of an image we expected to be hard for our algorithm to process because

of the extreme lighting and hard shadow can be seen in Figure 7.3. Our algorithm was able

to identify the index finger but given the difficulty with the lighting it identified the incorrect

region of the middle finger.

The second goal of this research was to have our fingertip detection algorithm work in

an uncontrolled environment i.e. under any lighting conditions, with any background, with

the hand at any orientation etc. The images that we took ourselves could be seen to have

an element of control in them because we knew what kind of image we wanted and were

trying to get the best images we could even though we were not using any controlled lighting

or background or a capture apparatus. To eliminate even the appearance of control we

determined the best approach would be to gather images from various image search websites.

This would reduce the appearance of control because those who took the pictures did not do

so with the intent to send it through our algorithm. That being said, we still had to settle on

24

(a) Harsh lighting (b) Index finger (c) Middle finger

Figure 7.3: Harsh lighting example: (a) Image collected outdoors in full afternoon sun with
hard shadow (b) the index finger as identified by our algorithm (c) the portion of the middle
finger not in the hard shadow. The algorithm failed to capture the correct core region of the
image

some selection criteria for the images that we would be searching for. Given that we were

attempting to find images that could be used to ultimately extract fingerprint information

from, the selection criteria we settled on were that the fingertips had to contain humanly

discernible fingerprint data and, if possible, more than one finger.

(a) Two Fingers (b) Index finger

Figure 7.4: Out of focus example: (a) two fingers in full sun, one in focus the other not (b)
the index finger passed the texture mask and was detected successfully

Collecting adequate images via image search results on the internet proved to be more

difficult than we had originally thought. The requirement that the details of the fingerprint

be visible disqualified a large number of the hand images that we saw. The images in Figure

25

(a) Web 1 (b) Web 2 (c) Web 3 (d) Web 4

Figure 7.5: Our collection samples. Examples of the images we gathered from various internet
image searches

(a) Hand (b) Index fin-
ger

(c) Middle
finger

(d) Ring fin-
ger

Figure 7.6: Four finger example from web: (a) an image from our web collection (b) the
index finger, (c) the middle finger and (d) the ring finger extracted by our algorithm. The
little finger was not identified by our algorithm

7.5 and Figure 7.6 are examples of the images that we were able to collect from our web

search.

Of the collection that we were able to gather from the internet our algorithm achieved

a recall of 78.57% and a precision of 68.75%. Of the images that we collected ourselves, our

algorithm had a recall of 69.77% with a precision of 78.95%. As can be seen by the low

percentage of precision, the problem of robust fingertip detection is very difficult to solve.

Without control in the environment there are many variables that can hinder a positive

detection and reduce the precision. Our automatic fingertip detection algorithm, while not

yet perfect, is able to detect varying numbers of fingertips from images captured in real-world

uncontrolled environments. It lays the foundation for moving fingerprint capture via digital

image into the real world on such devices as smart phones and tablets.

26

One technique we thought about using in order to perform validation testing of our

technique was to compare our technique head-to-head with other techniques. However, a

meaningful comparison of the performance of our solution to that of other systems was not

possible. Because the main goal of our system was different from the main goals of the

systems developed by other researchers. The main goals of the previous systems varied

from providing unique capture apparatuses for capturing digital images of fingerprints to

providing the possibility of extracting fingerprint data from digital images to enhancing the

extraction of fingerprint data. The main goal of our research was to automatically detect

varying numbers of fingertips in digital images captured in an uncontrolled environment. The

performance metric commonly used in fingerprint extractions systems is that of a positive

recognition rate, or how many fingerprints were matched to their respective owners. For our

performance metric however, we decided to use the common classification metric of precision

versus recall. The difference in metrics invalidates any comparison that might be done.

27

Chapter 8

Future Work

Our novel solution to automatic fingertip detection builds on the previous work done

and pushes the technology forward through the use of new methods. Our enhanced skin color

masking technique provides more accurate color masking of the image. The combination

of the color mask and texture mask allows us to handle images collected in uncontrolled

environments with varied lighting and backgrounds. Our novel two-step approach to friction

ridge orientation estimation provides accurate orientation estimation on images with fingers

of varying size. The use of the Poincare index as input to the SVM classification algorithm

allows us to leverage the information on the relationships between orientation values for

the different blocks to correctly classify the core blocks of the fingertip. Using all of this

information in connection with our auto-rotate and connected neighbors search we are able

to successfully automate the detection of varying numbers of fingertip regions in an image

collected in an uncontrolled environment. This is the crucial first step in taking automated

fingertip recognition in digital images into a real world environment.

Given the difficulty of the problem of uncontrolled fingerprint capture via digital

camera and the necessity to use a collection of complicated processes to solve it, there

are ways to increase the accuracy and performance of our solution. One of the greatest

hindrances to automatically detecting fingertips in a color image of varying numbers of fingers

is the lack of stark contrast between the ridges and valleys such as is present in an image

of a fingerprint captured via a typical fingerprint sensor. Given this lack of stark contrast,

accurate estimation of friction ridge orientation is difficult. Application of tools used for

28

actual fingerprint extraction such as a Gabor filter to enhance the detail of the ridges and

valleys in the fingertip may help improve fingertip detection even further.

Additionally, it may be possible to increase the accuracy of the friction ridge orientation

estimation by taking steps to attenuate noise in the image before estimating the orientation.

As we found in our research and in the research we studied the orientation values are critical

to the calculation of the Poincare index and the rest of the process. Taking steps then to

increase the accuracy of the ridge orientation may further improve our accuracy.

Another area in which further work might be able to increase the performance and/or

accuracy of automated fingertip detection would be to use the skin color estimation capability

we developed to perform active contouring as presented by Weixin et al. [2009]. One of

the shortcomings of using a skin color mask the way we have done in our solution is that,

when coupled with extreme lighting conditions that can occur in an uncontrolled capture

environment, portions of the skin within the hand can be masked because of the intensity of

the light reflecting off of the skin. Active contouring might be able to address this problem

by determining the outside border of the hand. Active contouring would still need to be used

in conjunction with the texture masking as we have developed it to allow the regions of the

hand that would be out of focus in the image to be excluded from consideration.

29

References

C.C. Chang and C.J. Lin. LIBSVM: a library for support vector machines. ACM Transactions

on Intelligent Systems and Technology, pages 27:1–27:27, 2011. Software available at

http://www.csie.ntu.edu.tw/cjlin/libsvm.

B.Y. Hiew, A.B.J. Teoh, and D.C.L. Ngo. Automatic digital camera based fingerprint image

preprocessing. In Proceedings of the IEEE International Conference on Computer Graphics,

Imaging and Visualization, pages 182–189, 2006.

B.Y. Hiew, A.B.J. Teoh, and Y.H. Pang. Digital camera based fingerprint recognition.

In Proceedings of IEEE International Conference on Telecommunications and Malaysia

International Conference on Communications, pages 676–681, 2007.

L. Hong, Y. Wan, and A. Jain. Fingerprint image enhancement: algorithm and performance

evaluation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(8):777

–789, 1998.

A. Jain, L. Hong, and R. Bolle. On-line fingerprint verification. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 19:302–314, 1997.

C. Lee, S. Lee, J. Kim, and S.J. Kim. Preprocessing of a fingerprint image captured with

a mobile camera. In Proceedings of International Conference on Advances in Biometrics,

pages 348–355, 2006.

S. Lee, C. Lee, and J. Kim. Model-based quality estimation of fingerprint images. In Advances

in Biometrics, volume 3832 of Lecture Notes in Computer Science, pages 229–235. Springer

Berlin / Heidelberg, 2005.

J. Qi and M. Xie. Segmentation of fingerprint images using the gradient vector field. In

Proceedings of IEEE Conference on Cybernetics and Intelligent Systems, pages 543 –545,

2008.

Y. Song, C. Lee, and J. Kim. A new scheme for touchless fingerprint recognition sys-

tem. In Proceedings of International Symposium on Intelligent Signal Processing and

Communication Systems, pages 524 – 527, 2004.

30

T.H. Van and H.T. Le. An efficient algorithm for fingerprint reference-point detection. In

Proceedings of International Conference on Computing and Communication Technologies,

pages 1 –7, 2009.

S. Wang and Y. Wang. Fingerprint enhancement in the singular point area. IEEE Signal

Processing Letters, 11(1):16 – 19, 2004.

B. Weixin, X. Deqin, and Z. Yi-wei. Fingerprint segmentation based on improved active

contour. In Proceedings of International Conference on Networking and Digital Society,

volume 2, pages 44 –47, may 2009.

P. Yu, D. Xu, H. Li, and H. Zhou. Fingerprint image preprocessing based on whole-hand image

captured by digital camera. In Proceedings of International Conference on Computational

Intelligence and Software Engineering, pages 1 –4, 2009.

W. Zhao, R. Chellappa, P. J. Phillips, and A. Rosenfeld. Face recognition: A literature

survey. ACM Computing Surveys, 35:399–458, 2003.

31

	Automated Fingertip Detection
	BYU ScholarsArchive Citation

	Title Page
	Abstract
	Table of Contents
	List of Figures
	1 Introduction
	2 Related Work
	3 Automated Fingertip Detection Solution
	4 Color and Texture Masking
	5 Orientation Estimation and Poincare Index
	6 Support Vector Classification, Connected Neighbors and Automated Cropping
	7 Results
	8 Future Work
	References

