
Brigham Young University Brigham Young University

BYU ScholarsArchive BYU ScholarsArchive

Theses and Dissertations

2012-03-16

Centralized Visualization of Distributed Collaborative Note-taking Centralized Visualization of Distributed Collaborative Note-taking

Aaron W. Johnson
Brigham Young University - Provo

Follow this and additional works at: https://scholarsarchive.byu.edu/etd

 Part of the Educational Psychology Commons

BYU ScholarsArchive Citation BYU ScholarsArchive Citation
Johnson, Aaron W., "Centralized Visualization of Distributed Collaborative Note-taking" (2012). Theses
and Dissertations. 3147.
https://scholarsarchive.byu.edu/etd/3147

This Selected Project is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for
inclusion in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more
information, please contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.

http://home.byu.edu/home/
http://home.byu.edu/home/
https://scholarsarchive.byu.edu/
https://scholarsarchive.byu.edu/etd
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F3147&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/798?utm_source=scholarsarchive.byu.edu%2Fetd%2F3147&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/3147?utm_source=scholarsarchive.byu.edu%2Fetd%2F3147&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu,%20ellen_amatangelo@byu.edu

Centralized Visualization of Distributed Collaborative Note-taking

Aaron Johnson

A selected project submitted to the faculty of
Brigham Young University

in partial fulfillment of the requirements for the degree of

Master of Science

David Wiley, Chair
Peter Rich
Rick West

Department of Instructional Psychology and Technology

Brigham Young University

April 2012

Copyright © 2012 Aaron W. Johnson

This work is licensed under a
Creative Commons Attribution-NonCommercial 3.0 United States License

(CC By-NC 3.0)

ABSTRACT

Centralized Visualization of Distributed Collaborative Note-taking

Aaron W. Johnson
Department of Instructional Psychology and Technology, BYU

Master of Science

This development project originated in response to the enormous daily increase of
information that becomes available on the internet as a result of social media activities. Twitter,
a quintessential example of social media, can also be considered a framework for collaborative
note-taking. The October 2010 General Conference of the Church of Jesus Christ of Latter-day
Saints provided an interesting example of distributed collaborative note-taking as thousands of
Twitter users took notes on the conference addresses. The result was a collection of 26,479
tweets. The purpose of this project is to describe a novel information visualization algorithm that
generates a centralized visual representation of the conference tweets to facilitate absorption of
the ideas presented therein. This algorithm could feasibly be used in many other massively
distributed collaborative note-taking activities. It is hoped that this algorithm, as well as the
variant approaches that it may inspire, will assist larger groups to deal with the potential
information overload that can arise in these collaborative note-taking activities.

Keywords: collaborative note-taking, information visualization, Twitter, conferences

ACKNOWLEDGMENTS

 Above all, I wish to thank my dear, patient wife, who through it all remained my greatest

support and the best cheerleader ever. I know it wasn’t always easy. This is for you!

 Also, I owe a sincere debt of gratitude to my two boys. Your early arrival gave me the

necessary motivation and courage to finish this up as quickly as possible.

Next, I thank all the faculty of the Department of Instructional Psychology and

Technology at Brigham Young University. Each of you enthusiastically provided me with new

tools, new perspectives, and new appreciation.

Finally, I thank my committee members, David Wiley, Peter Rich, and Rick West. It was

my singular experience to benefit from your inexhaustible patience, to grow from your wise

counsel, and to have a good time along the way.

 iv

Table of Contents

Abstract ... ii

Acknowledgments.. iii

List of Tables ... vi

List of Figures ... vii

Introduction ... 1

Characteristics of Collaborative Note-taking .. 3

Information overload .. 5

Information visualization .. 6

Existing Text Visualization Algorithms ... 7

Word frequency tables .. 8

Tag clouds ... 9

Word clouds .. 9

Concordance lines ... 12

Word trees ... 13

Phrase nets .. 13

Summary of text visualization algorithms .. 17

Method and Findings .. 19

Genesis of Algorithm .. 20

Acquisition of a More Robust Data Set .. 21

Downloading the new data set .. 22

Obtaining transcripts of the talks .. 23

Analysis: Matching Tweets with Talks ... 24

 v

Transformation of Language Data into Highlighting Data ... 28

Conversion of tweet text into highlight magnitude values ... 30

Conversion of highlight magnitude values into colors ... 31

Visualization: Superimposing Highlights onto Original HTML .. 33

Evaluation of the Final Visualization ... 33

Survey Questions .. 34

Summary of Survey Results.. 38

Discussion of the Final Visualization ... 38

Implications and Applications .. 39

Limitations of the Current Algorithm ... 39

Suggested Improvements .. 40

Suggestions for Future Research .. 41

Conclusion .. 42

References ... 44

Appendix A: Example of Plain Text Conference Talk Prepared for Indexing 47

Appendix B: Example of Highlighted Conference Talk ... 52

Appendix C: Source Code for the Visualization Algorithm ... 57

 vi

List of Tables

Table 1. N-grams for the Phrase ‘What did you say?’ .. 26

Table 2. Illustrative Example Analysis of Matching Procedure on Hypothetical Data 29

 vii

List of Figures

Figure 1. Sorted Frequency List from Chapter 1 of Robinson Crusoe ... 10

Figure 2. Tag Cloud from Chapter 1 of Robinson Crusoe .. 11

Figure 3. Word Cloud (“Wordle”) from Chapter 1 of Robinson Crusoe 14

Figure 4. Concordance Lines for “father” from Chapter 1 of Robinson Crusoe 15

Figure 5. Word Tree for “father” from Chapter 1 of Robinson Crusoe .. 16

Figure 6. Phrase Net for * of * from Chapter 1 of Robinson Crusoe ... 18

Figure 7. Example of Highlighted HTML .. 33

VISUALIZATION OF COLLABORATIVE NOTE-TAKING 1

Introduction

The recent rise and proliferation of cheap, portable personal computing devices has

resulted in convenient access to historically unprecedented amounts of information. This rising

swell of available information has made increasingly pertinent the concept of information

overload, a condition in which individuals find themselves unable to consume an overabundance

of information due to the relative scarcity of their own available time and attention.

 Information overload is daily becoming a more relevant obstacle to modern education. A

significant amount of time and resources in the mainstream educational research community has

focused on harnessing the connective capabilities of personal computing devices and using them

to facilitate social learning situations. However, the educational benefits of increased

connectivity come with potential limiting factors; any social learning situation that encourages

students to create and share content could potentially result in a state of information overload.

 One such example of an educational activity that can suffer from information overload is

collaborative note-taking. In the broadest sense, collaborative note-taking is any activity in

which a group of participants share with each other their personal notes describing a topic of

common interest. Some collaborative note-taking activities can result in a large amount of

shared information, largely textual in nature. If the number of participants is too great, or if the

information is shared in real time, a state of information overload can decrease the efficacy of the

exercise as participants struggle to consume the incoming notes from other members of the

group.

 One particularly effective way of coping with information overload is to apply a variety

of visualization algorithms to the raw information in order to produce visual summaries of the

trends and patterns in the information. Various algorithms have been developed to visualize

VISUALIZATION OF COLLABORATIVE NOTE-TAKING 2

specific types of data (e.g., numerical, categorical, time series, etc.). The input devices

commonly available on most personal computing equipment lend themselves well to text input;

the data produced during technology-supported collaborative note-taking activities therefore

tends to be textual in nature. Consequently, in order to effectively visualize this information, we

must apply an algorithm that is well suited to the visualization of textual data.

 This is not always a simple matter. Depending on one’s objectives, and owing to the

innate complexity of human language, it can be difficult to find a visualization algorithm for

textual data that gives insight into questions of interest. Such an algorithm would strike a

suitable compromise between highlighting the low-level details of the text (e.g., presence or

absence of individual words, phrase counts, etc.) and details of a more contextual, high-level

nature (e.g., author sentiment, repetition of ideas, etc.)

 This project report will chronicle my efforts to develop a novel visualization algorithm

that can be applied to certain types of textual data, striving to convey low-level information (such

as word and phrase counts) while still maintaining high-level details and the context of the

environment in which the data was gathered. Specifically, I will apply this algorithm to the

textual data produced during an instance of massively distributed collaborative note-taking

activity.

At present, I will further pursue the concepts of collaborative note-taking, giving

examples of several recent collaborative note-taking systems. Additionally, I will further discuss

information overload and information visualization in relation to collaborative note-taking. I

will follow this with a review of several of the most common text visualization algorithms and

then proceed to describe in detail a novel visualization algorithm for textual data.

VISUALIZATION OF COLLABORATIVE NOTE-TAKING 3

After giving the implementation details of the algorithm, I will proceed with a discussion

of the implications of this algorithm for collaborative note-taking and similar multi-user, text-

heavy collaborative activities. Finally, I will conclude this report with a summary of results from

a user survey and with an outline for future improvements to the algorithm.

Characteristics of Collaborative Note-taking

In recent years, desktop, laptop, and tablet computers, as well as PDAs, cell phones,

video recorders, and even MP3 players are growing in popularity as educational support tools.

 The interconnected nature of these devices via the Internet and other computer networks

provides the ability to quickly share information among members of a group.

The collaborative opportunities that these devices can bring to the classroom have

inspired many recent developments in teaching and learning. One such activity is collaborative

note-taking (e.g., Denoue, Singh, & Das, 2004), a group learning activity that typically consists

of three core elements: multiple collaborators, a topic of interest, and the sharing of topic-

relevant information among collaborators.

While the practice of collaborative note-taking is literally centuries old (c.f., the account

of team note-taking in 15th-century Florence in Blair, 2008), the progressive rise of personal

computing devices in recent decades has provided fertile ground for research in new

collaborative note-taking methods. In fact, many recent collaborative note-taking methods

entirely move away from traditional pen-and-paper note-taking paradigms and gravitate instead

toward personal computing devices as the sole medium for sharing information.

Many different types of technologies can be used in various ways to facilitate

collaborative note-taking. For example, Chiu and Chen (2010) explore students’ attitudes toward

using wikis and blogs for collaborative note-taking activities. In their study, students in the wiki

VISUALIZATION OF COLLABORATIVE NOTE-TAKING 4

group assigned responsibility for specific aspects of the lecture topic to each member of the

group. During the course of the lecture, group members proceeded to record in wiki pages the

facts and ideas relevant to their respective areas of responsibility. After the pages had been

created and populated with notes, students in the group could subsequently read and edit group

members’ pages, completing the collaborative loop by adding their own notes and commentary.

 Students in the blog group used blogs in a similar manner and for similar purposes.

While Chiu and Chen capitalized on the non-restrictive, generic hardware requirements

of web technologies, Berque, Bonebright, and Whitesell (2004) describe DyKnow, a software

application with more specific hardware requirements, designed to facilitate collaborative note-

taking in computer science classrooms. They describe a context in which each student in a

classroom has a tablet computer and uses it to record their notes during a lecture. At any time

during the lecture, and with the permission of the student, the instructor can use the DyKnow

software to broadcast a student’s notes to the tablet screens of everyone else in the classroom.

Another innovative use of personal computing hardware for collaborative note-taking is

described by Singh, Denoue, and Das (2005). They developed a software program to enable

users of PDAs to participate in collaborative note-taking by connecting the users together and

sharing their notes in real time. It also allows users to re-use words from other students’ notes,

thus eliminating a substantial portion of the burden of text input on these small devices.

These examples begin to give an idea of the many ways in which educators are using

personal computing devices to facilitate collaborative note-taking by enabling the sharing of

information. A multitude of hardware components, software choices, and options for structuring

the interaction of collaborators can be combined in various ways to produce many variations on

VISUALIZATION OF COLLABORATIVE NOTE-TAKING 5

the basic idea of collaborative note-taking, each tailored to meet the technological and

pedagogical needs of a specific group of learners.

Information overload. Despite the many possible forms it can take, collaborative note-

taking has always suffered from one striking limitation—information overload. If either the

number of collaborators or the scope of the topic of collaboration increases, the members of the

collaborative group will find it increasingly difficult to consume all of the information captured

and shared by the group because of time and attention constraints. Thus, while two, three, or

four collaborators can typically manage to share and consume information effectively, the task of

sharing and consuming information among a group of 10 or 20 quickly becomes cumbersome

and difficult to sustain. Yet with the advent of social media sites such as Twitter, it is now

conceivable to find a group of a hundred, a thousand, or even a million or more collaborators

sharing information on a specific topic of interest.

However, while the specific collaborative note-taking activities proposed by researchers

in the previous section aim to improve the sharing of information, they do little to facilitate the

consumption of that information. Consequently, many collaborative note-taking methods have

evolved in a constrained manner under the assumption that it is necessary to somehow limit the

amount of information shared. Yet one can easily imagine scenarios in which each bit of

information makes a valid contribution to an understanding of the topic as a whole. In such a

scenario it is less than satisfactory to simply sidestep the issue of information overload by

imposing an artificial limit on the amount of available information.

VISUALIZATION OF COLLABORATIVE NOTE-TAKING 6

Information visualization. Instead of simply reducing the amount of information, we

can reduce the magnitude of the information-to-attention mismatch by increasing the efficiency

of available time and attention. Visualization algorithms are specifically designed to facilitate

the comprehension of large quantities of information, especially in information overload

situations where the consumption of that data would otherwise be impossible. They accomplish

this by attempting to graphically depict the data in a manner that ensures that similar data appear

visually similar, while dissimilar data result in visual contrast. A visualization algorithm thus

pre-processes and arranges the data in order to improve the efficiency of a user’s time and

attention.

By presenting complex data in this way, we translate it into a format that enables us to

apply the powerful capabilities of the human visual system. The components of this system

constitute a high-bandwidth, low latency information processing network that is able to rapidly

consume large amounts of visual information and quickly recognize patterns and trends, despite

the complexity of noise in the data. A great deal of this processing occurs on a subconscious

level, reducing the cognitive burden on the conscious mind and improving the efficiency of

information consumption activities (Ware, 2004).

For these reasons, visualization algorithms in general are of special interest to us as we

seek to overcome the potential information overload problems associated with collaborative

note-taking. Specifically, visualization algorithms for textual data will be most useful to us, as

the data resulting from collaborative note-taking activities tends to be textual in nature. In the

next section, I will discuss several existing algorithms for visualizing textual data that are

relatively well-known.

VISUALIZATION OF COLLABORATIVE NOTE-TAKING 7

Existing Text Visualization Algorithms

Information visualization is an emerging field that is often more art than science,

although academic efforts are being made to establish a robust theoretical foundation (Kosara,

2010). Such efforts aim to help the field progress beyond guidelines for best practice toward

established, empirically validated methods for constructing optimal visualizations of specific

data types.

One theory of information visualization (Wilkinson, 2005; Wickham, 2009) suggests that

meaningful visualizations can be created by connecting a finite set of foundational elements

together in regular and meaningful ways. This is highly analogous to the way in which we

combine individual words using grammatical conventions in order to construct a meaningful

sentence.

The logical conclusion of this “grammar of graphics” theory is that an infinite number of

unique visualizations may proceed from a finite set of foundational graphical elements.

Accordingly, the purpose of this section is not to provide an exhaustive list of all possible textual

visualizations, nor will I give a treatment of the aforementioned theory (interested readers may

refer to Wilkinson (2005) for a thorough explanation.) Rather, I will present several textual

visualizations that provide illustrative examples, setting an appropriate context for the following

discussion of my novel visualization algorithm for collaborative note-taking data.

It is worth noting that for the purposes of demonstrating the following text visualization

methods, I have selected the first chapter of the novel Robinson Crusoe by Defoe (1919) as my

sample text data. I selected this text primarily because it is in the public domain and therefore

unencumbered by copyright restrictions. Any other textual work in the public domain would

likely have served equally well for the purposes of demonstrating these visualization methods.

VISUALIZATION OF COLLABORATIVE NOTE-TAKING 8

Word frequency tables. One common approach to the analysis of textual data is to

quantify phenomena of interest (Hunston, 2002). Quantification is a preliminary step in many

visualization algorithms in general, and many of the most commonly used textual visualization

algorithms produce depictions of quantified aspects of a language sample.

The most fundamental example of this is the simple word frequency table. While some

may argue that a simple table does not by itself constitute a visualization, it nonetheless performs

many of the same functions as a visualization, and its widespread usage as a basic tool of textual

analysis warrants mention. We can produce word frequency tables by simply breaking apart a

text sample on word boundaries and counting the individual words. We can then arrange this list

of word counts in descending order (see Figure 1) to compare the relative frequencies of the

words used in the text.

In Figure 1, non-grammatical (“content”) words are shown in bold italics. The table

shows that in this text sample the vast majority of the 100 most frequent words are functional or

grammatical words (e.g., a, the, it, this). It also enables us to easily compare the relative and

absolute frequencies of the different words used in this text.

However, we are often not interested in the absolute frequencies of words, but only in

their relative frequencies. Note that Figure 1 lists only the 100 most frequent words in the text

sample. What if it were necessary to compare all of the words in the text? There are 1,162

unique words used in the first chapter of Robinson Crusoe. Comparing word frequencies in a

table containing all of these words would be a tedious, cumbersome process because the table

would necessarily span over several pages. Because we are often interested only in comparing

the relative frequencies of words, it may be beneficial to construct a visualization that eliminates

VISUALIZATION OF COLLABORATIVE NOTE-TAKING 9

the absolute frequency data. Such a visualization would make more efficient use of screen space

yet still allow comparison of relative frequencies.

 Tag clouds. Tag clouds (see Hearst, 2008 for an interesting treatment) are one possible

solution to the problem of excessively large frequency tables. Like frequency tables, tag cloud

visualizations are based on the frequency of words in the text sample. Unlike frequency tables,

tag clouds do not convey the absolute frequency information. Instead, they communicate the

relative frequencies by rendering each word with a font size proportional to its relative

frequency.

Figure 2 shows a tag cloud for the same text sample (Chapter 1 from Robinson Crusoe).

The tag cloud has a number of advantages over the simple frequency table. One obvious

advantage is that the words are given in alphabetical order, enabling one to locate a word of

interest more quickly. Another advantage is that common functional words have been removed,

allowing for more interesting content words to be displayed.

The words father, ship, sea, and storm achieve visual prominence due to their greater font

size, which is proportional to their frequency relative to other words. By comparing the font size

of these words with that of the word inclination, for example, one quickly gains a rough

understanding of their relative frequencies.

Word clouds. Closely related to tag clouds are so-called “word clouds,” of which the

most famous example is probably the “Wordle” (Feinberg, 2011). The Wordle algorithm also

produces a simple relative frequency visualization, but in a much more aesthetically pleasing

manner.

The Wordle website (http://wordle.net) makes creating these Wordle visualizations

simple. By simply copying and pasting text into the web browser, anyone can create a custom

VISUALIZATION OF COLLABORATIVE NOTE-TAKING 10

Figure 1. Sorted Frequency List from Chapter 1 of Robinson Crusoe

VISUALIZATION OF COLLABORATIVE NOTE-TAKING 11

Figure 2. Tag Cloud from Chapter 1 of Robinson Crusoe

VISUALIZATION OF COLLABORATIVE NOTE-TAKING 12

Wordle visualization. Consequently, the Wordle has enjoyed immense popularity in recent

years.

Although highly popular, Wordles and tag clouds are not beyond criticism. One

legitimate complaint against Wordles is that the improved aesthetics of the visualization do

nothing to increase comprehension when compared to Wordle’s less glamorous cousin, the tag

cloud; Wordle’s various colors have no particular meaning, nor do the orientation and location of

words offer any additional insight (see Figure 3). On the contrary, there is some concern that

this visualization (and tag clouds in general) actually inhibit the user’s ability to interpret data

(Hearst, 2008).

Frequency tables, tag clouds, Wordles, and many similar visualization algorithms can be

applied easily to simple quantified attributes such as word frequency. However, it is sometimes

desirable to perform a deeper analysis of a text using its more complex characteristics. This

typically also requires more complex visualization algorithms.

Concordance lines. One such visualization is the concordance (Manning & Schütze,

1999). Also called KWIC lines (Key Word In Context), concordance lines provide much more

information than simple quantitative visualizations by showing words in their immediate usage

contexts. For each instance of a specific word in a specific text (or collection of texts), a

concordance line set shows a predetermined number of words on either side of the instance of the

word of interest. In other words, for a specific word, a set of concordance lines shows how each

instance of that word was used in context. The contextual analysis afforded by concordance

lines allows a researcher to look for trends and patterns in word usage that would not be evident

by considering visualizing simple quantitative aspects of each word.

VISUALIZATION OF COLLABORATIVE NOTE-TAKING 13

Typically, concordance lines appear in a specific order. They can be ordered by location

in the text, or alphabetically by the words surrounding the word of interest (see Figure 4). The

order chosen for the concordance lines can reveal various aspects of word usage. For example,

by ordering the lines according to location in the text, it might be possible to identify shifts in the

author’s usage of certain words over the course of the text.

Figure 4 provides five words of context on each side of every occurrence of father and

sorts the lines alphabetically according to the context words preceding father. This ordering of

lines readily reveals that in Chapter 1 of Robinson Crusoe, the word father is almost exclusively

used to refer to the protagonist’s own father, although it shows that another character’s father

plays a somewhat significant role in this chapter as well (“his father”).

Word trees. Similar to the concordance, but with a greater visual emphasis, is the word

tree (International Business Machines, 2012a). The word tree combines the proportional font

size attributes of the tag cloud with the functionality of a set of concordance lines. The resulting

visualization provides contextual examples of word usage, but also quickly reveals the relative

frequencies of words (see Figure 5).

Figure 5 reveals the same information as the set of concordance lines in Figure 4, namely,

that the majority of occurrences of the word father are referring to the protagonist’s own father,

with several references to another character’s father. However, the font size visual cue in the

word tree visualization makes these usage patterns evident much more quickly than can be

accomplished with a set of concordance lines that appear visually indistinct.

Phrase nets. One final visualization that is very experimental, but worth mentioning, is

the Phrase Net (IBM, 2012b). The Phrase Net represents yet another increase in visual

complexity. Much like the concordance and Word Tree, the Phrase Net is based on a central

VISUALIZATION OF COLLABORATIVE NOTE-TAKING 14

Figure 3. Word Cloud (“Wordle”) from Chapter 1 of Robinson Crusoe

VISUALIZATION OF COLLABORATIVE NOTE-TAKING 15

Figure 4. Concordance Lines for “father” from Chapter 1 of Robinson Crusoe

VISUALIZATION OF COLLABORATIVE NOTE-TAKING 16

Figure 5. Word Tree for “father” from Chapter 1 of Robinson Crusoe

VISUALIZATION OF COLLABORATIVE NOTE-TAKING 17

word of interest. It shows how the word of interest is used as the second word of three-word

phrases (for example, ___ of ___). The relative frequency of words is again indicated by font

size, while the relative frequency of each three word phrase is indicated by the thickness of its

respective arrow. That arrow represents the second word of the phrase, the central word of

interest. An example of this type of visualization appears in Figure 6, where the central word of

interest is “of”.

Figure 6 shows that the phrases “course of life”, “station of life”, “state of life”, as well as

“part of mankind” and “ashamed of the” occur more often than other three-word phrases, such as

“thoughts of it.” Such information could be useful for literary analysis, author comparison, or a

variety of other tasks.

However, it is worth noting that increased visual complexity does not always result in a

commensurate increase in communicative power. The busyness of the Phrase Net visualization

requires one to think longer about its meaning, whereas the information conveyed by earlier

visualizations was more transparent. This is a good example of how information actually can be

obscured when attempting to cover too much information with a single visualization.

Summary of text visualization algorithms. When analyzing collaborative note-taking

data, there are a number of aspects of the data that we may wish to consider. We may be

interested in topic-specific vocabulary, in which case a simple word frequency table would

provide us with information regarding the most commonly used words in the body of notes.

For other reasons, we may be interested in word usage. To help us understand how

people are using words and phrases, we could employ concordance lines, word trees, or phrase

nets.

VISUALIZATION OF COLLABORATIVE NOTE-TAKING 18

Figure 6. Phrase Net for * of * from Chapter 1 of Robinson Crusoe

VISUALIZATION OF COLLABORATIVE NOTE-TAKING 19

However, the basic purpose of collaborative note-taking is to share information and to

enrich our understanding of the topic of interest based on the ideas we receive from other people.

Thus, when we are participating in a collaborative note-taking activity, we are more likely to

benefit from those visualizations of the shared notes that convey information about ideas, rather

than the detailed minutia of the language used to express those ideas.

While each of the aforementioned textual visualizations helps us look at details of

language used, they each strip individual words and phrases of their context and, consequently,

do little to communicate the prominence and significance of ideas expressed. In the remaining

sections of this project report, I will describe how I created a new textual visualization algorithm

that can in a clear and straightforward manner convey the most significant and frequent ideas

expressed in a collection of shared notes.

Method and Findings

 From the perspective of the Grammar of Graphics theory discussed earlier, there are

infinite possible visualizations for a given data set. Unfortunately, this fact does little to settle

the questions of optimality that could arise when discussing visualizations. Additionally,

information visualization is an emerging science. Practitioners and academics in this field are

still striving to establish a solid foundation of theory, and many diverse opinions exist regarding

“best practices.”

Consequently, the optimal method of development for this algorithm was unknown in

advance. In general, I followed what may be loosely termed a modular and iterative approach to

development. The final algorithm emerged in an evolutionary manner as the result of

exploration. Amid discussion with colleagues, I refined various aspects of the algorithm

VISUALIZATION OF COLLABORATIVE NOTE-TAKING 20

numerous times in reply to the feedback I received and the problems that manifested themselves

along the way.

Therefore, in the sections that follow, I have chosen not to belabor any explanation of the

development methodology itself, but rather to give a clear explanation of the problems

encountered during development and the methods and rationale that I used to solve them. Thus,

the method and findings are overlapping and interlocking, and are consequently presented as one

in this section.

Genesis of Algorithm

 The idea for the following visualization algorithm originated from a data exploration

issue in which a colleague and I found ourselves with a large dataset, wondering what we could

learn from it. The dataset comprised all public tweets with the #ldsconf hash tag that were made

by Twitter users tuning in to broadcasts of the April 2010 General Conference of the Church of

Jesus Christ of Latter-day Saints (2010a).

 The collection contained a number of different types of tweets. Among them was a

smattering of good-natured nonsense and chatter that is typical to online communications among

friends and acquaintances. However, a great deal of these tweets directly referenced the talks

given by speakers at the conference. In fact, many tweets contained (semi-)verbatim quotations

from the conference talks.

In this context, it is reasonable to assume that the tweets belonging to a specific Twitter

user represent ideas and sayings from the talks that resonated with that individual. By recording

these ideas and quotes online, the user was engaged in the act of note-taking. By identifying

these tweets with the #ldsconf hash tag, the user shared these notes with interested persons.

VISUALIZATION OF COLLABORATIVE NOTE-TAKING 21

Effectively, the Twitter users tuned in to General Conference were engaged in a form of

massively distributed collaborative note-taking.

 Having before us a digital record of this collaborative note-taking activity, we began to

ask a number of exploratory questions in order to gain a sense of the types of information that

could be gleaned from this data set. The one question that figured most prominently in this

project was essentially, Since many of these tweets contain direct quotes, can we find out which

phrases were quoted most frequently? By answering this question, we hoped to identify those

tweet-sized statements and phrases—ideas from the conference talks—that were salient to large

numbers of people.

 For reasons described in the earlier “Information Visualization” section, we felt that some

of the best answers to this question could be found through visualization of the tweets

themselves. We needed a visualization that would appropriately identify frequently quoted

material without removing those quotes from their context. The visualization that we ultimately

envisioned comprised the full text of the talk (in order to preserve context) with varying amounts

of highlighting commensurately applied to each word or phrase according to the number of times

the word or phrase was quoted.

Accordingly, I began developing an algorithm to produce this visualization of quoted

material from the #ldsconf tweet data that we had obtained.

Acquisition of a More Robust Data Set

After becoming casually acquainted with the original April 2010 tweet data, we found it

insufficient for our purposes. Each tweet, as delivered through the Twitter system, has a large

number of data fields that describe various attributes of the tweet (e.g., timestamp, the sending

user, the receiving user, their respective time zones, etc.) (Twitter, 2012). However, the tweet

VISUALIZATION OF COLLABORATIVE NOTE-TAKING 22

data from the April 2010 conference, as delivered to us by a third party, had been stripped of

most of these fields. We were, unsurprisingly, displeased with the prospect of proceeding with

far less data than could otherwise be available.

Additionally, the third-party nature of the data left us unaware of precisely how the data

had been collected. We could not with confidence answer even basic questions pertaining to the

completeness and representativeness of the tweet data.

We ultimately decided to acquire a new data set of General Conference tweets. This

decision seemed appropriate for several reasons. First, the LDS Church holds a General

Conference every six months, and at the time here described the next conference (October 2010)

was less than two weeks in the future (LDS, 2010b). It was therefore very convenient for us to

collect our own data set of tweets from the October 2010 conference. By doing so, we had full

control over which tweets were collected and which were filtered out. We also had access to all

of the data fields from each tweet, instead of the restricted subset from the April 2010 data set.

Second, we had advanced knowledge of the hash tag—#ldsconf—that Twitter users used

to label their conference-related tweets. Without knowing the hashtag in advance, it would have

been much more difficult to obtain the tweets from the conference.

Third, the community of Twitter users using the #ldsconf hash tag had been steadily

growing. We expected the October 2010 data set to be substantially larger than the April 2010

set. This additional data would improve the quality of our visualizations, increase the likelihood

of discovering trends and patterns in the data, and strengthen any conclusions that might

ultimately be drawn.

Downloading the new data set. With this in consideration, I began to write the code

that would allow us to collect the #ldsconf tweets for the October 2010 General Conference. I

VISUALIZATION OF COLLABORATIVE NOTE-TAKING 23

ultimately decided to write the code for this part of the project in Python (2012a). Python is a

freely-available programming language with a large selection of user-contributed software

libraries. One of these libraries, tweetstream (Python, 2012b), proved particularly useful for our

purposes. This library facilitates access to Twitter’s Streaming API (Twitter, 2012b), a service

that allows automated programs, such as that which was under construction at the time, to

download tweets in real-time based on specific search terms.

Using this Python script, I recorded every #ldsconf tweet returned from the Streaming

API between Friday, October 1, 2010 and Monday, October 11, 2010—a period of

approximately 250 hours. While the conference itself convened only Saturday, October 2 and

Sunday, October 3, I ran the script for an extra week in order to catch any post-conference tweets

that might arise. In the end, the extended collection period did little to supplement the size of the

data set; the vast majority of the 26,479 collected #ldsconf tweets occurred on Saturday and

Sunday.

The Streaming API returned the tweet data in JSON (Crockford, 2012) format. In the

interest of making our data set more accessible and amenable to human analysis, I created

another Python script to import the tweet data from the JSON format into a MySQL relational

database (Oracle, 2012). Doing so opened our data to SQL queries. This, by itself, gave us the

ability to quickly filter and aggregate data on a whim, greatly increasing the efficiency of future

analysis.

Obtaining transcripts of the talks. In addition to the tweet data, we also required the

transcripts of the 35 talks given during the conference. I waited for several days after the

conference for the LDS Church to place the transcripts online in HTML format. I downloaded

the talk transcripts (in HTML format) and created a Perl script to eliminate the HTML markup

VISUALIZATION OF COLLABORATIVE NOTE-TAKING 24

from the downloaded files. The result of this script was a plain-text format better suited for text

indexing. This simplified format included only the title of the talk, the speaker’s name, a short

quote from the talk, and the text of the talk itself. (See Appendix A for an example.)

Finally, I used Apache Lucene (Apache Foundation, 2012) to create an index of the plain-

text talk files. There are many text indexing software packages available, and it is likely that any

one of them would have sufficed for our purposes. However, Lucene was the most attractive

option for several reasons: first, Lucene is freely available due to its open-source license; second,

it has been in active development since March 2000, is quite stable, has an established support

community, and has a large amount of available documentation; third, Lucene is written for Java,

a well-supported general-purpose programming language that is suitable for many diverse types

of projects; fourth, I was already familiar with Lucene, having used it in previous projects. For

these reasons, Lucene seemed the most likely candidate for fulfilling the text indexing

requirements of this project.

I added the text of each talk to a Lucene index. This searchable index served two

fundamental purposes: first, it allowed us to quickly identify individual talks containing specific

words and phrases; second, it provided location information for words and phrases within the

talks themselves.

Analysis: Matching Tweets with Talks

Having gathered the requisite data, the next task was to perform a comparison between

each tweet and each of the conference talks. This process ultimately allowed me to associate

each tweet with the one talk from which it most likely originated. This process rests on two

simplifying, underlying assumptions:

(1) Each #ldsconf tweet contains quoted material from a conference talk.

VISUALIZATION OF COLLABORATIVE NOTE-TAKING 25

(2) Each #ldsconf tweet quotes from only one conference talk.

Correctly identifying a one-to-one talk-to-tweet quote relationship proved to be an

interesting challenge that was complicated by two facts: first, quotes demonstrated varying

degrees of fidelity to the source material. In general, some individuals will attentively craft a

thoroughly verbatim quote, while others will throw together a loose paraphrase of the original

speaker’s intent. Second, individuals may or may not use syntactic annotations to delineate the

boundaries between quoted and non-quoted text; it would not be at all surprising to find in a

large set of tweets multiple examples of quoted material that lack quotation marks. It is quite a

complex problem to create an algorithm, devoid of the human endowment of intellect and

contextual linguistic experience, to identify quotes under these circumstances.

While computers are largely inept at making meaningful interpretations of vague data,

they excel at making strict comparisons between specific, well-defined data points. Thus, an

approach involving comparisons between tweet text and talk text seemed to be potentially

profitable for identifying quotes.

The comparison algorithm, however, requires additional complexity in order to be

sufficiently robust to identify quotes that are nearly verbatim. Due to the likely inconsistencies

between the source text and a quote (for example, a slight grammatical change, a misspelled

word, or even a misplaced comma), a strict character-by-character comparison of talk text and

tweet text would be extremely unlikely to correctly identify a quote in most situations.

Consequently, a simple search query of the verbatim tweet text across all talks would be unlikely

to find any matches.

 The imperfect quality of the quote data forced me to approach the issue from a different

perspective. I decided temporarily to lay aside the strict question of Does tweet X quote from

VISUALIZATION OF COLLABORATIVE NOTE-TAKING 26

talk Y? in favor of the less stringent (and arguably more useful) question, How likely is it that

tweet X quotes from talk Y? From this perspective, the focus shifts from the quote in its entirety

to the individual parts that make up the quote.

As the basis for our comparison becomes less complex, the likelihood of matching a

tweet with a talk increases. Thus, we expect that a computer would be able to find matches

between tweet text and talk text, provided that we make the comparison simple enough. We can

then combine the results of these smaller comparisons into a numerical measure of the degree of

similarity between a quote and a talk. By deriving a similarity metric, we are able to use

straightforward and simple mathematical methods to provide an answer for what was originally a

very complex question.

In order to perform smaller, simpler comparisons between tweets and talks, the first step

was to reduce each quote to a set of constituent parts. The approach I used was to generate an

exhaustive set of n-gram phrases from the text of each quote. In this context, an n-gram is a

length n sub-sequence of adjacent words from the text of the tweet. For example, if the text of a

tweet were What did you say?, then the exhaustive set of n-gram phrases for that tweet would be

as shown in Table 1.

Table 1

N-grams for the Phrase ‘What did you say?’

n = 1 n = 2 n = 3 n = 4

what what did what did you what did you say

did did you did you say --

you you say -- --

say -- -- --

VISUALIZATION OF COLLABORATIVE NOTE-TAKING 27

Breaking up the text of a tweet in this way establishes a set of criteria by which to

measure the degree of similarity between the tweet and each of the talks; if a talk contains one or

more of the n-gram phrases, then it may be said that the tweet has to this extent quoted from that

talk.

Therefore, by using the Lucene text index, we can find out which of the tweet’s

constituent n-gram phrases are contained in each conference talk. By considering the number of

matching n-grams between a tweet and a talk, we can begin to make an intelligent guess as to

which talk was most likely the source of the tweet’s quote. At first glance, it may seem that the

most likely match is the talk that contains the greatest number of these n-gram phrases in

common with the tweet. However, as we will shortly see, the situation requires a slightly more

complex solution.

For example, it is obvious that a match on the 1-gram “the” would not be very

significant; “the” is an extremely common word, and it likely appears many times in each of the

conference talks. A 2-gram match such as “the purpose” would be slightly more significant.

 However, a 2-gram match is likewise not as significant as a match on the 5-gram “the purpose

of this life.” The probability that the n-gram represents quoted material from the talk clearly

increases with the length of the n-gram.

Therefore, the certainty with which we may say that a particular tweet quotes from a

particular talk is not simply a function of counting the distinct tweet n-grams that occur within

the talk. We must weight the n-grams somehow, such that a 1-gram match weighs less heavily

toward establishing a quote relationship, while a 5-gram match would weigh more heavily.

 Further, a 10- or 15-gram match would all but guarantee that the user had intended to quote

from that specific talk, and our weighting system should reflect this.

VISUALIZATION OF COLLABORATIVE NOTE-TAKING 28

Accordingly, I chose to weight the n-grams on an exponential scale, proportional to the

length of the n-gram. Specifically, I set n-gram weight to be n2. Therefore, a 2-gram match

contributes a value of 4 to the overall relationship score between the tweet and a talk, a 5-gram

match contributes 25, and so forth.

 As a hypothetical example, assume that we are trying to match one tweet T to one of

three documents, DA, DB, or DC. After breaking T into its constituent n-grams, and searching for

each of these n-grams in the three documents, we discover the matches presented in Table 2.

After summing the weighted n-gram scores for each of the matches, we select the document with

the greatest relationship score for tweet T. In this example, DC earned a score (118) higher than

either DA or DB (26 and 37, respectively). We would therefore postulate that tweet T contained

material quoted from DC.

 I processed each of the 26,479 #ldsconf tweets in this manner by searching for their

respective n-grams in each of the 35 general conference talks. The final result was the one-to-

one mapping of postulated tweet-to-talk quote relationships that I had originally sought. Given

this information, I was able to separate the tweets into 35 separate groups that would form the

basis for the highlighting to be applied to the text of each talk.

Transformation of Language Data into Highlighting Data

 Having established a relationship between each talk and a set of tweets, the next step was

to create a visualization for each talk based on its associated set of tweets. This visualization

uses the metaphor of “highlighting” a document. In other words, the final visualization will

appear to be a copy of the conference talk collaboratively highlighted by the entire community.

The remainder of this section describes the process of creating the visualization for one

VISUALIZATION OF COLLABORATIVE NOTE-TAKING 29

Table 2

Illustrative Example Analysis of Matching Procedure on Hypothetical Data

Document
N-gram

Match Length (n)
Weighted

Match Score (n2)

Document A (DA)

Match 1 1 1

Match 2 3 9

Match 3 4 16

Final Score for DA 26

Document B (DB)

Match 1 1 1

Match 2 6 36

Final Score for DB 37

Document C (DC)

Match 1 1 1

Match 2 1 1

Match 3 10 100

Match 4 4 16

Final Score for DC 118

Note: Final Score for each document is the sum of the Weighted Match Score column.

VISUALIZATION OF COLLABORATIVE NOTE-TAKING 30

conference talk, given a set of tweets. Ultimately, I performed this process 35 times (once per

conference talk) to generate a complete set of visualizations for the conference data.

Conversion of tweet text into highlight magnitude values. To begin, let us consider

the final visualization for each talk as the result of merging two separate types of data: text and

highlighting. The text data comprises a sequence of words—each word of the talk, in order. The

highlighting data is a sequence of numerical values, one for each word in the talk. These

numbers determine the intensity of the highlighting each word in the talk will receive in the

visualization. A large value in the highlighting data will correspond to a greater intensity of

highlighting for its corresponding word. We will next discuss how these numerical highlighting

values are calculated.

Initially, each word has a highlighting value of 0 (corresponding to no highlighting). By

applying the process that we will hereafter describe to each word in each talk, we increased each

word’s highlighting value according to the quality and frequency of the quotes contained in the

tweets.

Earlier, when seeking to postulate a tweet-talk quote relationship for each tweet, I

segmented the text of each tweet into its constituent n-grams as a means of dealing with the

inconsistent quality of the quote data. In a similar manner, I segmented the text of each of this

talk’s tweets into n-grams to facilitate matching them with phrases used in the text of the talk.

 The locations of these matches determine where to increase the highlighting intensity values.

 Each n-gram of a particular tweet could occur 0 or more times within the text of the talk.

I used Lucene to search for each n-gram within the text of the talk, resulting in a list of

indexed locations for all occurrences of that n-gram within the talk. For each

VISUALIZATION OF COLLABORATIVE NOTE-TAKING 31

occurrence/location, I increased the corresponding numbers in the highlight data by the match

score (n2). The final value for each number in the highlight data is the sum of the match scores

for all matches encompassing the word corresponding to that particular highlight value. Thus,

each value in the highlight data is a result both of the frequency with which the corresponding

word matched a tweet n-gram and of the quality of the quote (as expressed by the length of the

matching n-grams).

Conversion of highlight magnitude values into colors. Having derived the

highlighting intensity values for each word in the text of the talk, the next step was to convert

these values into actual RGB color values. RGB is the color model in use on most modern

display devices. The RGB color model defines a color as the additive combination of three

component color values—red, green, and blue. A triplet of numbers corresponding to amounts

of red, green, and blue can represent any color in the RGB color space. These numbers are

limited to the range [0 - 255]. Mixing various amounts of the three component colors gives rise

to the vast array of colors that are possible on RGB display devices: there are 16,777,216 unique

color representations in the 24-bit RGB color space.

To begin the process of converting our highlighting intensity values into actual RGB

values, I first needed to choose a base highlighting color. Because yellow markers are often used

for highlighting text, I initially chose yellow as the highlighting color. However, after several

revisions of the visualization, I found that lighter shades of blue are more visible on an LCD

monitor when compared to lighter shades of yellow. Thus, I chose to use blue as the

highlighting color.

In order to convert the highlighting intensity values for the talk into shades of blue, I first

normalized the values by rescaling them to the range [0 - 1], according to the formula value[0 - 1]

VISUALIZATION OF COLLABORATIVE NOTE-TAKING 32

= [value – MIN(value)]/[MAX(value) – MIN(value)]. Here, MIN(value) is the minimum

highlighting intensity value in this talk (usually 0), and MAX(value) is the maximum

highlighting intensity value in this talk. This normalization is advantageous for several reasons.

 First, it ensures that all values in the highlight data will be between 0 and 1, inclusive. This sets

definite, known boundaries to the otherwise unbounded highlight data and also enables

consistent, meaningful comparisons among the highlight intensity values of separate talks.

Secondly, by rescaling our highlighting intensity values to the range [0 - 1], they become

a convenient multiplier that we can use to create a gradient of colors from white to blue. If blue

(R=0, G=0, B=255) is our highlighting color, then white (R=255, G=255, B=255) is the color we

would like to use to represent the absence of highlighting. Therefore, we would like our

highlighting colors to be in a range from white to blue. If a word has a corresponding

normalized highlighting intensity value of 0, it should receive no highlighting (white). If the

corresponding normalized intensity value is 1, the word should receive full highlighting (bright

blue). All other values in the [0 - 1] range correspond to lighter and darker shades of blue.

The key to producing this gradient is to hold the Blue component of the color constant at

255 (producing a bright blue) and add increasing amounts of Red and Green to generate less

intense shades of blue. I calculated the Red and Green component values according to the

formula Red = Green = 255 * (1 - Normalized Highlighting Intensity Value).

I derived highlighting colors from intensity values for each word in the talk, according to

the preceding method. Having established a highlighting strength for each word in the talk, the

final step in creating visualization was to weave the text data and highlighting color data into the

final visualization format.

VISUALIZATION OF COLLABORATIVE NOTE-TAKING 33

Visualization: Superimposing Highlights onto Original HTML

The final step in creating the visualization was to reconstruct the talk in HTML format,

based on the original HTML file and the derived highlight colors. The HTML structure

primarily consists of <div> and tags. The <div> tags structure the document into

paragraphs (as in the original HTML file), and the tags provide hooks for CSS code to

add the highlighting to each word. A line from the final HTML file may look like Figure 7.

<div>

 The <span style=”color:

rgb(255, 255, 120)”>word …

</div>

Figure 7. Example of Highlighted HTML

This modified HTML file constitutes the final visualization of the talk and can be viewed

in any standards-compliant web browser. See Appendix B for an example of a fully highlighted

conference talk.

Evaluation of the Final Visualization

 In order to obtain a basic evaluation of the visualization output, several individuals were

invited to participate in an online survey. The survey consisted of a single, highlighted

conference talk, followed by a number of questions intended to evaluate the potential usefulness

of the visualization. These questions included eight Likert-type questions and six free-response

questions. Thirteen people completed the survey. Overall, they found the tool helpful, as

evidenced by the survey results. In this section, I present each of the survey questions and

VISUALIZATION OF COLLABORATIVE NOTE-TAKING 34

briefly discuss participant data, followed by a summary of the resulting suggestions for

improving the visualization.

Survey Questions

Question 1: Overall, I found the visualization (tweet-based highlighting of conference

talk text) intuitive and easy to understand. It appears that the conventions used in the

visualization were straightforward and easily understood. Four respondents (31%) Strongly

Agreed with this statement and nine respondents (69%) Agreed. No respondents selected

Neutral, Disagree, or Strongly Disagree for this item.

Question 2: The visualization helped me identify interesting excerpts from the talk that I

might not have otherwise discovered. The results for this item suggest that the visualization is

helpful for bringing potentially interesting quotes to the attention of the reader. Three

respondents (23%) Strongly Agreed with this statement, six (46%) Agreed, and four respondents

(31%) were Neutral. No respondents selected Disagree of Strongly Disagree for this item.

Question 3: Being able to access this visualization would improve my learning from

General Conference. The results for this item were interesting because it showed a greater

spread of opinions. The majority agreed with this statement, but almost one third of respondents

were either neutral or in disagreement. One respondent (8%) Strongly Agreed with this

statement and eight (62%) Agreed. Two respondents (15%) were Neutral. One respondent (8%)

Disagreed and one (8%) Strongly Disagreed.

Question 4: If this were available to me, I would use this tool and visualization in

studying conference talks. Again, the majority of respondents were in agreement with this

statement. Two (15%) Strongly Agreed with this statement, and nine (69%) Agreed. One

VISUALIZATION OF COLLABORATIVE NOTE-TAKING 35

respondent (8%) was Neutral, and one (8%) Strongly Disagreed. No respondents marked

Disagree for this item.

Question 5: If I were taught how (if necessary), I would participate in tweeting thoughts

during Conference to create visualizations such as this. The results of this item were surprising.

While the majority of respondents indicated in question 4 that they would use this tool, the

majority of respondents also disinclined to participate in the creation of the visualizations. One

respondent (8%) Strongly Agreed with this statement, and three (23%) Agreed. Five (38%) were

Neutral, one (8%) Disagreed, and three respondents (23%) Strongly Disagreed.

Question 6: On the previous page, I read the entire talk, word for word. The majority of

respondents skimmed the talk rather than read it thoroughly. One respondent (8%) Strongly

Agreed, and three (23%) Agreed. Two respondents (15%) were Neutral, while five (38%)

Disagreed, and two (15%) Strongly Disagreed.

Question 7: When reading in general, I prefer to skim the material rather than to read

the piece in its entirety. This item revealed an interesting split among respondents. Five

respondents (38%) Strongly Agreed, while four (31%) were Neutral and four (31%) Disagreed.

No respondents selected Agree or Strongly Disagree.

Question 8: The highlighting in the conference talk encouraged me to skim more than I

normally would. While question 7 revealed a distinction between those who prefer to skim read

and those who prefer to read thoroughly, the majority of respondents affirmed that they felt the

visualization encouraged them to skim through the talk more than they normally would. Four

respondents (31%) Strongly Agreed, and six (46%) Agreed. Two respondents (15%) were

Neutral, while one (8%) Disagreed. No respondents Strongly Disagreed with this statement.

VISUALIZATION OF COLLABORATIVE NOTE-TAKING 36

Question 9: What questions came to mind (about the data, the visualization, or anything

else) as you were using this visualization? The majority of responses to this question centered

on the use of highlighting. Two respondents wondered how the relative highlighting magnitudes

mapped to actual number of people who tweeted a particular quote. (This question was raised

again by a respondent in question 11.) Two others indicated their dislike for blue as the

highlighting color, citing difficulty in reading the dark blue segments. Other responses indicated

uncertainty about why some seemingly unimportant parts of the talk were highlighted while

other more important parts received no highlighting at all.

Question 10: Was there any way in which the visualization was not helpful, or was

confusing? Three respondents indicated that in many instances, certain parts of the talk are

highlighted in awkward ways. For example, one noted that sometimes “the edges of the

highlighting were not semantically appropriate, as it goes beyond the edge of a thought or

sentence and picks up the first word or two of the next.” Two other respondents mentioned that

small words and phrases, including names, received dark highlighting and noted that these

highlighted segments seemed meaningless.

Question 11: How could the visualization of the tweet data be improved? The majority of

respondents focused their responses on the use of color. Two respondents indicated that they

would like to see multiple colors used, either to indicate the user that tweeted the quote or to

distinguish between different ideas in the text. Two respondents indicated their dislike of the

color blue, stating that it was difficult to read at times. Interestingly, one respondent supported

the decision to highlight in blue, saying that “it is easy on the eyes.”

Question 12: Would you personally use this visualization tool to study General

Conference? All respondents indicated (with varying degrees of certainty) that they either would

VISUALIZATION OF COLLABORATIVE NOTE-TAKING 37

use the visualization for personal study of General Conference or that they could find other uses

for it. For example, three respondents indicated that this tool would be very useful in preparing

to teach others a lesson based on the talk. Of those who indicated they would use it for personal

study, four respondents suggested using the visualization in conjunction with the unmarked

version of the talk. They each stated that the visualization could be useful either as a pre-reading

or a review tool in addition to a thorough reading of the non-highlighted talk.

Question 13: How could this visualization tool be useful in studying other topics? Do

you have any examples? The clear benefit of this visualization as expressed by many of the

respondents is its ability to help you skim through the most important parts of a large text. Seven

out of thirteen respondents suggested that this method of collaborative highlighting could be

applied to textbooks, essays, journal articles, or any other reading item that one might encounter

in a university course. Three respondents suggested that it could be used in university classes,

especially large lecture-hall type classes with large numbers of students. Two other respondents

noted that this could be useful for any situation in which a transcript is produced and the speaker

is looking for feedback. Such situations could include (as already stated) classroom lectures or

even political speeches.

Question 14: Do you have any other comments in general? As a broad “catch-all” type

of question, this item elicited a wide variety of responses, of which there were two particularly

noteworthy observations from the respondents. One respondent noted that while this

visualization makes clear what the majority of one’s peers thought was important, it might

actually detract the learner from specific details that are important for improving his or her own

understanding. Another respondent noted that this type of visualization (based on tweets) is

probably better suited to the younger population. Older generations, who are unfamiliar with

VISUALIZATION OF COLLABORATIVE NOTE-TAKING 38

tweeting and social media in general, would likely be less inclined to participate in the

production of such a visualization.

Summary of Survey Results

The complete set of survey responses provided me with insightful feedback that could

help improve the next version of this visualization. Among these ideas, the following items

stand out as major improvements:

• In order to help the reader understand how many people quoted a specific phrase,

provide a key describing how highlighting intensity corresponds to frequency.

• In order to accommodate individuals with varying color preferences, allow users

to choose the highlight color that works best for them.

• In order to decrease visual clutter, enhance the algorithm to avoid highlighting

seemingly disconnected bits of information.

Discussion of the Final Visualization

In this study I set out to create a centralized visualization from the notes generated during

a large-scale distributed collaborative note-taking exercise. I chose to base this project on data

collected from Twitter during the October 2010 General Conference of the Church of Jesus

Christ of Latter-day Saints (hashtag: #ldsconf). During the data collection period, over 2,500

users produced over 26,000 tweets, sharing their observations, comments, notes, and favorite

quotes with everyone else monitoring the #ldsconf hashtag. These Twitter users were located all

over the world, making this collaborative note-taking exercise a truly large-scale, distributed

endeavor. I used the method described above to convert the tweets into 35 distinct

visualizations, one for each conference talk.

VISUALIZATION OF COLLABORATIVE NOTE-TAKING 39

Implications and Applications

These visualizations support collaborative note-taking efforts by ameliorating some of the

effects of information overload. Collaborative note-taking among 2,500 collaborators would be

unthinkable under most circumstances, and to consume 26,000 notes would typically exceed the

time and attention constraints of most collaborators. However, these visualizations are

theoretically unlimited in the number of collaborators and the number of notes they can support.

Furthermore, an increase in the number of notes (i.e., tweets) actually increases the

representativeness of such a visualization. It may be possible that an even more well-tweeted

event, such as a presidential speech, might reach a point of diminishing returns wherein the sheer

volume of tweets reduces the overall utility of this visualization approach, warranting further

research on its boundaries and limitations.

These visualizations illuminate the most frequently used words and phrases in the

#ldsconf tweets collected during the conference. In general, words and phrases that were most

frequently quoted by Twitter users are shown with a more intense blue highlighting. Other text

visualizations, such as Wordle, also show the relative frequency of words in a given body of text.

 However, the visualization algorithm described in this study has an advantage over other text

visualizations in that it preserves the original context of the quoted words and phrases as a

unifying framework with which to condense the information represented in the individual notes.

 This context also clearly aids the eventual consumer of the notes in obtaining a more complete

understanding of the notes.

Limitations of the Current Algorithm

While the visualization algorithm generally appears to perform as expected, it suffers

from two limitations in its present form. First, because the structure of the visualization is

VISUALIZATION OF COLLABORATIVE NOTE-TAKING 40

defined by the text of the talk from which people were quoting, the algorithm makes no

allowance for text that is not contained within the talk. In other words, if all 2,500 Twitter users

made an identical tweet, but the text of that tweet (or sub-components thereof) was not found in

the text of a talk, the final visualization would not give any indication that the expression in

question was tweeted 2,500 times. In this way, it is possible for the visualizations to omit certain

words or expressions that many people tweeted.

 The second major limitation stands opposite to the first. Because the weighting of each

phrase is based on the length of the phrase, it is possible for one individual to tweet a verbatim

quote of a lengthy passage from the text of the talk and skew the highlighting scale. If the quote

were long enough, its weight would trump the weights of almost all other quotes, resulting in a

very dark highlighting for this one quote (tweeted by only one individual) and very weak

highlighting for other quotes which, although shorter in length, were quoted by many more

individuals.

Suggested Improvements

 Future versions of the visualization algorithm need to address the issues outlined in the

“Limitations” section. Additionally, the algorithm and visualizations could be improved in

several other ways. First, the algorithm could be optimized for speed. Currently, the algorithm

searches for all n-gram phrase matches. However, if a 5-gram match is found, then its

constituent 4-, 3-, 2-, and 1- grams logically must also be found. If the algorithm searched for

matches, starting with highest order n-grams first, we could eliminate the need to search for

many of the smaller n-gram phrases, thus significantly improving the speed and efficiency of the

algorithm.

 A second improvement that would greatly improve the usability of the visualization

VISUALIZATION OF COLLABORATIVE NOTE-TAKING 41

would be to enable dynamic highlighting scale modification by means of a user interface

component such as a slider widget. This slider would give the user the ability to choose the

desired amount of highlighting, thus eliminating any excess highlighting due to frequently

occurring, though less important, words and phrases.

Suggestions for Future Research

 There are many ways in which the research undertaken in this project can be expanded

and improved. One major limitation of the algorithm, described above, is the inability to

visualize words and phrases that were used by many of the collaborators but not found in the text

of the source document. One way in which this limitation might be overcome is to combine this

visualization method with another visualization method, such as IBM’s WordTree visualization.

 Such a setup would allow the user to both visualize tweets quoting from the source text and

catch frequently used words and phrases that were not used in the source text.

 While the automated approach associates tweets with phrases within conference

addresses, there is currently no way to gain access to the tweets used by the system to highlight

those phrases. In another version of the system, it should be possible to click on a highlighted

word or phrase and see the tweets that the system associated with that word or phrase. In addition

to providing a quick way to check the accuracy of the system, this would also provide

individuals who want to dive deeper into a certain phrase with access to the raw data related to

the phrase. This will further expand the context-preserving nature of the system.

 The approach could be expanded and used together with tools that track public sentiment

or opinion. Combining these approaches to analyze political speeches would be particularly

interesting. Political speeches commonly have transcripts published and commonly generate a

large number of tweets. The capability to quickly and easily visualize public response to

VISUALIZATION OF COLLABORATIVE NOTE-TAKING 42

political addresses could be a key piece of infrastructure for reinvigorating democracy in an

information age.

 This project centered on the collaborative note-taking activities of participants in the LDS

General Conference. However, this method could be applied to any situation in which a

transcript for the event is eventually published. For example, in a classroom lecture, the teacher

could record the lecture using free voice-recording software and a cheap microphone. That

audio recording could be fed through inexpensive automatic transcription software, such as

Dragon Naturally Speaking, and turned into a transcript of the talk. If the students in the class

recorded their notes digitally in small pieces (similar to Twitter), then these notes and the

transcript of the lecture could be fed into the visualization algorithm, producing a visualization of

class notes for every class period.

 While all of the previous examples require the existence of a transcript, it may also be

possible to apply this algorithm to situations in which no transcript exists. However, it would

still be necessary to provide some body of text to be used for the structure of the visualization.

 For example, one study might involve collecting tweets from the Twitter Stream regarding a

topic like #economics. Then, all articles on economics from Wikipedia might be downloaded to

be used as the structure text. By applying the algorithm to this data and selecting those snippets

from the Wikipedia article text, one may still be able to produce a contextual visualization that

shows what people are saying about that specific topic.

Conclusion

 Each day, an incredible amount of information is produced in the form of tweets, blog

posts, forum discussions, emails, and a host of other formats. Much of this information is

produced by people with specific interests, with the intent of sharing information with others.

VISUALIZATION OF COLLABORATIVE NOTE-TAKING 43

 This massively distributed form of collaborative note-taking represents an untapped reservoir of

valuable information. Hopefully the technique described in this project, together with others it

may inspire, will help individuals around the world derive greater value from the ever-growing

amount of information available online.

VISUALIZATION OF COLLABORATIVE NOTE-TAKING 44

References

Apache Foundation. (2012). Apache Lucene. Retrieved from

http://lucene.apache.org/java/docs/index.html

Berque, D., & Bonebright, T. (2004). Using pen-based computers across the computer science

curriculum. SIGCSE ’04 Proceedings of the 35th SIGCSE Technical Symposium on

Computer Science Education (pp. 61 - 65). New York, NY: ACM.

Blair, A. (2008). Student manuscripts and the textbook. In E. Campi, S. De Angelis, A. Goeing,

& A. Grafton (Eds.), Scholarly knowledge: Textbooks in early modern Europe (pp. 39-

73). Geneva: Droz.

Chiu, C. H., Chen, C. H., Wu, C. Y., & Chen, S. W. (2010). Elementary school students’

attitudes toward applying wikis or blogs for collaborative note-taking activities. In Z. W.

Abas, I. Jung, & J. Luca (Eds.), Proceedings of Global Learn Asia Pacific 2010 (pp. 298-

302). Chesapeake, VA: AACE.

Crockford, D. (2012). JSON. Retrieved from http://json.org/

Defoe, D. (1919). The life and adventures of Robinson Crusoe. London: Seeley, Service & Co.

Denoue, L., Singh, G., & Das, A. (2004). Taking notes on PDAs with shared text input. In L.

Cantoni & C. McLoughlin (Eds.), Proceedings of World Conference on Educational

Multimedia, Hypermedia and Telecommunications 2004 (pp. 2553-2560). Chesapeake,

VA: AACE.

Feinberg, J. (2011). Wordle - beautiful word clouds. Retrieved January 10, 2012, from

http://www.wordle.net

VISUALIZATION OF COLLABORATIVE NOTE-TAKING 45

Hearst, M. A., & Rosner, D. (2008). Tag clouds: Data analysis tool or social signaller?

Proceedings of the 41st Annual Hawaii International Conference on System Sciences

(HICSS 2008) (p. 160). IEEE.

Hunston, S. (2002). Corpora in applied linguistics. (M. H. Long & J. C. Richards, Eds.).

Cambridge: Cambridge University Press.

International Business Machines. (2012a). Many eyes: Word tree. Retrieved from http://www-

958.ibm.com/software/data/cognos/manyeyes/page/Word_Tree.html

International Business Machines. (2012b). Many eyes: Phrase net. Retrieved from http://www-

958.ibm.com/software/data/cognos/manyeyes/page/Phrase_Net.html

Kosara, R. (2010). The year of infovis theory. Retrieved from

http://eagereyes.org/blog/2010/the-year-of-infovis-theory

Manning, C. D., & Schütze, H. (1999). Foundations of statistical natural language processing.

Cambridge, MA: The MIT Press.

Oracle. (2012). MySQL : The world's most popular open source database. Retrieved from

http://www.mysql.com/

Python. (2012a). Python programming language – Official website. Retrieved from

http://python.org/

Python. (2012b). tweetstream 0.3.1 : Python package index. Retrieved from

http://pypi.python.org/pypi/tweetstream/0.3.1

Singh, G., Denoue, L., & Das, A. (2005). Collaborative note taking using PDAs. Journal of

Information Science and Engineering, 21, 835-848.

The Church of Jesus Christ of Latter-day Saints. (2010a). April 2010 General Conference.

Retrieved from http://lds.org/general-conference/sessions/2010/04?lang=eng

VISUALIZATION OF COLLABORATIVE NOTE-TAKING 46

The Church of Jesus Christ of Latter-day Saints. (2010b). October 2010 General Conference.

Retrieved from http://lds.org/general-conference/sessions/2010/10?lang=eng

Twitter. (2012a). Twitter developers. Retrieved from https://dev.twitter.com/

Twitter. (2012b). Streaming API - Twitter developers. Retrieved from

https://dev.twitter.com/docs/streaming-api

Ware, C. (2004). Information visualization: Perception for design (2nd ed.). San Francisco:

Morgan Kaufmann.

Wickham, H. (2009). ggplot2: Elegant graphics for data analysis. (R. Gentleman, K. Hornik, &

G. Parmigiani, Eds.). New York: Springer.

Wilkinson, L. (2005). The grammar of graphics. (J. Chambers, D. Hand, & W. Haerdle, Eds.)

(2nd ed.). London: Springer.

VISUALIZATION OF COLLABORATIVE NOTE-TAKING 47

Appendix A

Example of Plain Text Conference Talk Prepared for Indexing

Pride and the Priesthood

President Dieter F. Uchtdorf Second Counselor in the First Presidency

Pride is a switch that turns off priesthood power. Humility is a switch that turns it on.

My dear brothers, thank you for assembling all around the world for this priesthood session of
general conference. Your presence shows your commitment to stand, wherever you are, with
your brothers who bear the holy priesthood and serve and honor your Lord and Redeemer, Jesus
Christ.

Often we mark the span of our lives by events that leave imprints on our minds and hearts. There
are many such events in my life, one of which happened in 1989 when I heard a timeless sermon
by President Ezra Taft Benson, "Beware of Pride." In the introduction it was noted that this topic
had been weighing heavily on President Benson's soul for some time.

I have felt a similar burden during the past months. The promptings of the Holy Spirit have urged
me to add my voice as another witness to President Benson's message delivered 21 years ago.

Every mortal has at least a casual if not intimate relationship with the sin of pride. No one has
avoided it; few overcome it. When I told my wife that this would be the topic of my talk, she
smiled and said, "It is so good that you talk about things you know so much about."

Other Meanings of Pride

I also remember one interesting side effect of President Benson's influential talk. For a while it
almost became taboo among Church members to say that they were "proud" of their children or
their country or that they took "pride" in their work. The very word pride seemed to become an
outcast in our vocabulary.

In the scriptures we find plenty of examples of good and righteous people who rejoice in
righteousness and at the same time glory in the goodness of God. Our Heavenly Father Himself
introduced His Beloved Son with the words "in whom I am well pleased."

Alma gloried in the thought that he might "be an instrument in the hands of God." The Apostle
Paul gloried in the faithfulness of members of the Church. The great missionary Ammon gloried
in the success he and his brothers had experienced as missionaries.

I believe there is a difference between being proud of certain things and being prideful. I am
proud of many things. I am proud of my wife. I am proud of our children and grandchildren.

I am proud of the youth of the Church, and I rejoice in their goodness. I am proud of you, my
dear and faithful brethren. I am proud to stand shoulder to shoulder with you as a bearer of the
holy priesthood of God.

VISUALIZATION OF COLLABORATIVE NOTE-TAKING 48

Pride Is the Sin of Self-Elevation

So what is the difference between this kind of feeling and the pride that President Benson called
"the universal sin"? Pride is sinful, as President Benson so memorably taught, because it breeds
hatred or hostility and places us in opposition to God and our fellowmen. At its core, pride is a
sin of comparison, for though it usually begins with "Look how wonderful I am and what great
things I have done," it always seems to end with "Therefore, I am better than you."

When our hearts are filled with pride, we commit a grave sin, for we violate the two great
commandments. Instead of worshipping God and loving our neighbor, we reveal the real object
of our worship and love--the image we see in the mirror.

Pride is the great sin of self-elevation. It is for so many a personal Rameumptom, a holy stand
that justifies envy, greed, and vanity. In a sense, pride is the original sin, for before the
foundations of this earth, pride felled Lucifer, a son of the morning "who was in authority in the
presence of God." If pride can corrupt one as capable and promising as this, should we not
examine our own souls as well?

Pride Has Many Faces

Pride is a deadly cancer. It is a gateway sin that leads to a host of other human weaknesses. In
fact, it could be said that every other sin is, in essence, a manifestation of pride.

This sin has many faces. It leads some to revel in their own perceived self-worth,
accomplishments, talents, wealth, or position. They count these blessings as evidence of being
"chosen," "superior," or "more righteous" than others. This is the sin of "Thank God I am more
special than you." At its core is the desire to be admired or envied. It is the sin of self-
glorification.

For others, pride turns to envy: they look bitterly at those who have better positions, more
talents, or greater possessions than they do. They seek to hurt, diminish, and tear down others in
a misguided and unworthy attempt at self-elevation. When those they envy stumble or suffer,
they secretly cheer.

The Laboratory of Sports

Perhaps there is no better laboratory to observe the sin of pride than the world of sports. I have
always loved participating in and attending sporting events. But I confess there are times when
the lack of civility in sports is embarrassing. How is it that normally kind and compassionate
human beings can be so intolerant and filled with hatred toward an opposing team and its fans?

I have watched sports fans vilify and demonize their rivals. They look for any flaw and magnify
it. They justify their hatred with broad generalizations and apply them to everyone associated
with the other team. When ill fortune afflicts their rival, they rejoice.

Brethren, unfortunately we see today too often the same kind of attitude and behavior spill over
into the public discourse of politics, ethnicity, and religion.

VISUALIZATION OF COLLABORATIVE NOTE-TAKING 49

My dear brethren of the priesthood, my beloved fellow disciples of the gentle Christ, should we
not hold ourselves to a higher standard? As priesthood bearers, we must realize that all of God's
children wear the same jersey. Our team is the brotherhood of man. This mortal life is our
playing field. Our goal is to learn to love God and to extend that same love toward our
fellowman. We are here to live according to His law and establish the kingdom of God. We are
here to build, uplift, treat fairly, and encourage all of Heavenly Father's children.

We Must Not Inhale

When I was called as a General Authority, I was blessed to be tutored by many of the senior
Brethren in the Church. One day I had the opportunity to drive President James E. Faust to a
stake conference. During the hours we spent in the car, President Faust took the time to teach me
some important principles about my assignment. He explained also how gracious the members of
the Church are, especially to General Authorities. He said, "They will treat you very kindly.
They will say nice things about you." He laughed a little and then said, "Dieter, be thankful for
this. But don't you ever inhale it."

That is a good lesson for us all, brethren, in any calling or life situation. We can be grateful for
our health, wealth, possessions, or positions, but when we begin to inhale it--when we become
obsessed with our status; when we focus on our own importance, power, or reputation; when we
dwell upon our public image and believe our own press clippings--that's when the trouble begins;
that's when pride begins to corrupt.

There are plenty of warnings about pride in the scriptures: "Only by pride cometh contention: but
with the well advised is wisdom."

The Apostle Peter warned that "God resisteth the proud, and giveth grace to the humble."
Mormon explained, "None is acceptable before God, save the meek and lowly in heart." And by
design, the Lord chooses "the weak things of the world to confound the things which are
mighty." The Lord does this to show that His hand is in His work, lest we "trust in the arm of
flesh."

We are servants of our Lord and Savior, Jesus Christ. We are not given the priesthood so that we
can take our bows and bask in praise. We are here to roll up our sleeves and go to work. We are
enlisted in no ordinary task. We are called to prepare the world for the coming of our Lord and
Savior, Jesus Christ. We seek not our own honor but give praise and glory to God. We know that
the contribution we can make by ourselves is small; nevertheless, as we exercise the power of the
priesthood in righteousness, God can cause a great and marvelous work to come forth through
our efforts. We must learn, as Moses did, that "man is nothing" by himself but that "with God all
things are possible."

Jesus Christ Is the Perfect Example of Humility

In this, as in all things, Jesus Christ is our perfect example. Whereas Lucifer tried to change the
Father's plan of salvation and obtain honor for himself, the Savior said, "Father, thy will be done,
and the glory be thine forever." Despite His magnificent abilities and accomplishments, the
Savior was always meek and humble.

VISUALIZATION OF COLLABORATIVE NOTE-TAKING 50

Brethren, we hold "the Holy Priesthood, after the Order of the Son of God." It is the power God
has granted to men on earth to act for Him. In order to exercise His power, we must strive to be
like the Savior. This means that in all things we seek to do the will of the Father, just as the
Savior did. It means that we give all glory to the Father, just as the Savior did. It means that we
lose ourselves in the service of others, just as the Savior did.

Pride is a switch that turns off priesthood power. Humility is a switch that turns it on.

Be Humble and Full of Love

So how do we conquer this sin of pride that is so prevalent and so damaging? How do we
become more humble?

It is almost impossible to be lifted up in pride when our hearts are filled with charity. "No one
can assist in this work except he shall be humble and full of love." When we see the world
around us through the lens of the pure love of Christ, we begin to understand humility.

Some suppose that humility is about beating ourselves up. Humility does not mean convincing
ourselves that we are worthless, meaningless, or of little value. Nor does it mean denying or
withholding the talents God has given us. We don't discover humility by thinking less of
ourselves; we discover humility by thinking less about ourselves. It comes as we go about our
work with an attitude of serving God and our fellowman.

Humility directs our attention and love toward others and to Heavenly Father's purposes. Pride
does the opposite. Pride draws its energy and strength from the deep wells of selfishness. The
moment we stop obsessing with ourselves and lose ourselves in service, our pride diminishes and
begins to die.

My dear brethren, there are so many people in need whom we could be thinking about instead of
ourselves. And please don't ever forget your own family, your own wife. There are so many
ways we could be serving. We have no time to become absorbed in ourselves.

I once owned a pen that I loved to use during my career as an airline captain. By simply turning
the shaft, I could choose one of four colors. The pen did not complain when I wanted to use red
ink instead of blue. It did not say to me, "I would rather not write after 10:00 p.m., in heavy fog,
or at high altitudes." The pen did not say, "Use me only for important documents, not for the
daily mundane tasks." With greatest reliability it performed every task I needed, no matter how
important or insignificant. It was always ready to serve.

In a similar way we are tools in the hands of God. When our heart is in the right place, we do not
complain that our assigned task is unworthy of our abilities. We gladly serve wherever we are
asked. When we do this, the Lord can use us in ways beyond our understanding to accomplish
His work.

Let me conclude with words from President Ezra Taft Benson's inspired message of 21 years
ago:

"Pride is the great stumbling block to Zion.

VISUALIZATION OF COLLABORATIVE NOTE-TAKING 51

"We must cleanse the inner vessel by conquering pride. . . .

"We must yield 'to the enticings of the Holy Spirit,' put off the prideful 'natural man,' become 'a
saint through the atonement of Christ the Lord,' and become 'as a child, submissive, meek,
humble.' . . .

"God will have a humble people. . . . 'Blessed are they who humble themselves without being
compelled to be humble.' . . .

"Let us choose to be humble. We can do it. I know we can."

My beloved brethren, let us follow the example of our Savior and reach out to serve rather than
seeking the praise and honor of men. It is my prayer that we will recognize and root out
unrighteous pride in our hearts and that we will replace it with "righteousness, godliness, faith,
love, patience, [and] meekness." In the sacred name of Jesus Christ, amen.

VISUALIZATION OF COLLABORATIVE NOTE-TAKING 52

Appendix B

Example of Highlighted Conference Talk

Pride and the Priesthood

President Dieter F. Uchtdorf Second Counselor in the First Presidency

Pride is a switch that turns off priesthood power. Humility is a switch that turns it on.

My dear brothers, thank you for assembling all around the world for this priesthood session of
general conference. Your presence shows your commitment to stand, wherever you are, with
your brothers who bear the holy priesthood and serve and honor your Lord and Redeemer, Jesus
Christ.

Often we mark the span of our lives by events that leave imprints on our minds and hearts. There
are many such events in my life, one of which happened in 1989 when I heard a timeless sermon
by President Ezra Taft Benson, "Beware of Pride." In the introduction it was noted that this topic
had been weighing heavily on President Benson's soul for some time.

I have felt a similar burden during the past months. The promptings of the Holy Spirit have urged
me to add my voice as another witness to President Benson's message delivered 21 years ago.

Every mortal has at least a casual if not intimate relationship with the sin of pride. No one has
avoided it; few overcome it. When I told my wife that this would be the topic of my talk, she
smiled and said, "It is so good that you talk about things you know so much about."

Other Meanings of Pride

I also remember one interesting side effect of President Benson's influential talk. For a while it
almost became taboo among Church members to say that they were "proud" of their children or
their country or that they took "pride" in their work. The very word pride seemed to become an
outcast in our vocabulary.

In the scriptures we find plenty of examples of good and righteous people who rejoice in
righteousness and at the same time glory in the goodness of God. Our Heavenly Father Himself
introduced His Beloved Son with the words "in whom I am well pleased."

Alma gloried in the thought that he might "be an instrument in the hands of God." The Apostle
Paul gloried in the faithfulness of members of the Church. The great missionary Ammon gloried
in the success he and his brothers had experienced as missionaries.

I believe there is a difference between being proud of certain things and being prideful. I am
proud of many things. I am proud of my wife. I am proud of our children and grandchildren.

VISUALIZATION OF COLLABORATIVE NOTE-TAKING 53

I am proud of the youth of the Church, and I rejoice in their goodness. I am proud of you, my
dear and faithful brethren. I am proud to stand shoulder to shoulder with you as a bearer of the
holy priesthood of God.

Pride Is the Sin of Self-Elevation

So what is the difference between this kind of feeling and the pride that President Benson called
"the universal sin"? Pride is sinful, as President Benson so memorably taught, because it breeds
hatred or hostility and places us in opposition to God and our fellowmen. At its core, pride is a
sin of comparison, for though it usually begins with "Look how wonderful I am and what great
things I have done," it always seems to end with "Therefore, I am better than you."

When our hearts are filled with pride, we commit a grave sin, for we violate the two great
commandments. Instead of worshipping God and loving our neighbor, we reveal the real object
of our worship and love--the image we see in the mirror.

Pride is the great sin of self-elevation. It is for so many a personal Rameumptom, a holy stand
that justifies envy, greed, and vanity. In a sense, pride is the original sin, for before the
foundations of this earth, pride felled Lucifer, a son of the morning "who was in authority in the
presence of God." If pride can corrupt one as capable and promising as this, should we not
examine our own souls as well?

Pride Has Many Faces

Pride is a deadly cancer. It is a gateway sin that leads to a host of other human weaknesses. In
fact, it could be said that every other sin is, in essence, a manifestation of pride.

This sin has many faces. It leads some to revel in their own perceived self-worth,
accomplishments, talents, wealth, or position. They count these blessings as evidence of being
"chosen," "superior," or "more righteous" than others. This is the sin of "Thank God I am more
special than you." At its core is the desire to be admired or envied. It is the sin of self-
glorification.

For others, pride turns to envy: they look bitterly at those who have better positions, more
talents, or greater possessions than they do. They seek to hurt, diminish, and tear down others in
a misguided and unworthy attempt at self-elevation. When those they envy stumble or suffer,
they secretly cheer.

The Laboratory of Sports

Perhaps there is no better laboratory to observe the sin of pride than the world of sports. I have
always loved participating in and attending sporting events. But I confess there are times when
the lack of civility in sports is embarrassing. How is it that normally kind and compassionate
human beings can be so intolerant and filled with hatred toward an opposing team and its fans?

VISUALIZATION OF COLLABORATIVE NOTE-TAKING 54

I have watched sports fans vilify and demonize their rivals. They look for any flaw and magnify
it. They justify their hatred with broad generalizations and apply them to everyone associated
with the other team. When ill fortune afflicts their rival, they rejoice.

Brethren, unfortunately we see today too often the same kind of attitude and behavior spill over
into the public discourse of politics, ethnicity, and religion.

My dear brethren of the priesthood, my beloved fellow disciples of the gentle Christ, should we
not hold ourselves to a higher standard? As priesthood bearers, we must realize that all of God's
children wear the same jersey. Our team is the brotherhood of man. This mortal life is our
playing field. Our goal is to learn to love God and to extend that same love toward our
fellowman. We are here to live according to His law and establish the kingdom of God. We are
here to build, uplift, treat fairly, and encourage all of Heavenly Father's children.

We Must Not Inhale

When I was called as a General Authority, I was blessed to be tutored by many of the senior
Brethren in the Church. One day I had the opportunity to drive President James E. Faust to a
stake conference. During the hours we spent in the car, President Faust took the time to teach me
some important principles about my assignment. He explained also how gracious the members of
the Church are, especially to General Authorities. He said, "They will treat you very kindly.
They will say nice things about you." He laughed a little and then said, "Dieter, be thankful for
this. But don't you ever inhale it."

That is a good lesson for us all, brethren, in any calling or life situation. We can be grateful for
our health, wealth, possessions, or positions, but when we begin to inhale it--when we become
obsessed with our status; when we focus on our own importance, power, or reputation; when we
dwell upon our public image and believe our own press clippings--that's when the trouble begins;
that's when pride begins to corrupt.

There are plenty of warnings about pride in the scriptures: "Only by pride cometh contention: but
with the well advised is wisdom."

The Apostle Peter warned that "God resisteth the proud, and giveth grace to the humble."
Mormon explained, "None is acceptable before God, save the meek and lowly in heart." And by
design, the Lord chooses "the weak things of the world to confound the things which are
mighty." The Lord does this to show that His hand is in His work, lest we "trust in the arm of
flesh."

We are servants of our Lord and Savior, Jesus Christ. We are not given the priesthood so that we
can take our bows and bask in praise. We are here to roll up our sleeves and go to work. We are
enlisted in no ordinary task. We are called to prepare the world for the coming of our Lord and
Savior, Jesus Christ. We seek not our own honor but give praise and glory to God. We know that
the contribution we can make by ourselves is small; nevertheless, as we exercise the power of the
priesthood in righteousness, God can cause a great and marvelous work to come forth through

VISUALIZATION OF COLLABORATIVE NOTE-TAKING 55

our efforts. We must learn, as Moses did, that "man is nothing" by himself but that "with God all
things are possible."

Jesus Christ Is the Perfect Example of Humility

In this, as in all things, Jesus Christ is our perfect example. Whereas Lucifer tried to change the
Father's plan of salvation and obtain honor for himself, the Savior said, "Father, thy will be done,
and the glory be thine forever." Despite His magnificent abilities and accomplishments, the
Savior was always meek and humble.

Brethren, we hold "the Holy Priesthood, after the Order of the Son of God." It is the power God
has granted to men on earth to act for Him. In order to exercise His power, we must strive to be
like the Savior. This means that in all things we seek to do the will of the Father, just as the
Savior did. It means that we give all glory to the Father, just as the Savior did. It means that we
lose ourselves in the service of others, just as the Savior did.

Pride is a switch that turns off priesthood power. Humility is a switch that turns it on.

Be Humble and Full of Love

So how do we conquer this sin of pride that is so prevalent and so damaging? How do we
become more humble?

It is almost impossible to be lifted up in pride when our hearts are filled with charity. "No one
can assist in this work except he shall be humble and full of love." When we see the world
around us through the lens of the pure love of Christ, we begin to understand humility.

Some suppose that humility is about beating ourselves up. Humility does not mean convincing
ourselves that we are worthless, meaningless, or of little value. Nor does it mean denying or
withholding the talents God has given us. We don't discover humility by thinking less of
ourselves; we discover humility by thinking less about ourselves. It comes as we go about our
work with an attitude of serving God and our fellowman.

Humility directs our attention and love toward others and to Heavenly Father's purposes. Pride
does the opposite. Pride draws its energy and strength from the deep wells of selfishness. The
moment we stop obsessing with ourselves and lose ourselves in service, our pride diminishes and
begins to die.

My dear brethren, there are so many people in need whom we could be thinking about instead of
ourselves. And please don't ever forget your own family, your own wife. There are so many
ways we could be serving. We have no time to become absorbed in ourselves.

I once owned a pen that I loved to use during my career as an airline captain. By simply turning
the shaft, I could choose one of four colors. The pen did not complain when I wanted to use red
ink instead of blue. It did not say to me, "I would rather not write after 10:00 p.m., in heavy fog,
or at high altitudes." The pen did not say, "Use me only for important documents, not for the

VISUALIZATION OF COLLABORATIVE NOTE-TAKING 56

daily mundane tasks." With greatest reliability it performed every task I needed, no matter how
important or insignificant. It was always ready to serve.

In a similar way we are tools in the hands of God. When our heart is in the right place, we do not
complain that our assigned task is unworthy of our abilities. We gladly serve wherever we are
asked. When we do this, the Lord can use us in ways beyond our understanding to accomplish
His work.

Let me conclude with words from President Ezra Taft Benson's inspired message of 21 years
ago:

"Pride is the great stumbling block to Zion.

"We must cleanse the inner vessel by conquering pride. . . .

"We must yield 'to the enticings of the Holy Spirit,' put off the prideful 'natural man,' become 'a
saint through the atonement of Christ the Lord,' and become 'as a child, submissive, meek,
humble.' . . .

"God will have a humble people. . . . 'Blessed are they who humble themselves without being
compelled to be humble.' . . .

"Let us choose to be humble. We can do it. I know we can."

My beloved brethren, let us follow the example of our Savior and reach out to serve rather than
seeking the praise and honor of men. It is my prayer that we will recognize and root out
unrighteous pride in our hearts and that we will replace it with "righteousness, godliness, faith,
love, patience, [and] meekness." In the sacred name of Jesus Christ, amen.

VISUALIZATION OF COLLABORATIVE NOTE-TAKING 57

Appendix C

Source Code for the Visualization Algorithm

The following source code can be downloaded from:

 https://github.com/ajmagnifico/Arpodwot-Twheatmap

org/arpodwot/heatmaps/documents/input/DocumentListFile.java 1/35

package org.arpodwot.heatmaps.documents.input;

import java.io.BufferedReader;
import java.io.FileReader;
import java.io.IOException;
import java.util.LinkedList;

public class DocumentListFile {
 private String _filePath;
 private int _fileCount;
 private int _currentPosition;

 private LinkedList<String> _list;

 public DocumentListFile(String filePath) throws IOException {
 _currentPosition = 0;
 _list = new LinkedList<String>();
 _filePath = filePath;

 // read in the notes from the file
 FileReader fr = new FileReader(_filePath);
 BufferedReader br = new BufferedReader(fr);

 String file;
 while((file = br.readLine()) != null){
 _list.add(file);
 }
 br.close();
 fr.close();

 _fileCount = _list.size();
 }

 public String[] getFiles() {
 return (String[])_list.toArray();
 }

 public void reset() {

https://github.com/ajmagnifico/Arpodwot-Twheatmap�

VISUALIZATION OF COLLABORATIVE NOTE-TAKING 58

 _currentPosition = 0;
 }

 public boolean hasNext() {
 if (_currentPosition >= _list.size())
 return false;

 return true;
 }

 public String nextFile() {
 if (hasNext()){
 String file = _list.get(_currentPosition);
 _currentPosition++;
 return file;
 }

 return null;
 }

 public int size(){
 return _fileCount;
 }
}

org/arpodwot/heatmaps/documents/input/InputDocumentCollection.java 2/35

package org.arpodwot.heatmaps.documents.input;

import java.io.IOException;
import java.util.ArrayList;

public class InputDocumentCollection extends ArrayList<InputDocument> {
 private static final long serialVersionUID = 1L;

 public InputDocumentCollection(String filePath) throws IOException {
 DocumentListFile docList = new DocumentListFile(filePath);
 int nextId = 0;
 while (docList.hasNext()){
 InputDocument d = new SimpleTextDocument(docList.nextFile());
 d.setId(nextId);
 this.add(d);
 nextId++;
 }
 }
}

org/arpodwot/heatmaps/documents/input/InputDocument.java 3/35

package org.arpodwot.heatmaps.documents.input;

VISUALIZATION OF COLLABORATIVE NOTE-TAKING 59

import org.apache.lucene.analysis.Analyzer;
import org.apache.lucene.index.TermPositionVector;

public interface InputDocument {
 public int getId();
 public void setId(int id);

 public String getFilePath();
 public void setFilePath(String filePath);

 public String getDirPath();
 public void setDirPath(String dirPath);

 public String getFileName();
 public void setFileName(String fileName);

 public String getText();
 public void setText(String text);

 public TermPositionVector getTermPositionVector();
 public void setTermPositionVector(TermPositionVector tpv);

 public double[] getRawHighlightData();
 public void setRawHighlightData(double[] highlightData);

 public Analyzer getDocumentClassAnalyzer();
}

org/arpodwot/heatmaps/documents/input/SimpleTextDocument.java 4/35

package org.arpodwot.heatmaps.documents.input;

import java.io.BufferedReader;
import java.io.File;
import java.io.FileReader;
import java.io.IOException;

import org.apache.lucene.analysis.Analyzer;
import org.apache.lucene.analysis.SimpleAnalyzer;
import org.apache.lucene.index.TermPositionVector;

public class SimpleTextDocument implements InputDocument {
 public static Analyzer DEFAULT_ANALYZER = new SimpleAnalyzer();

 @Override
 public Analyzer getDocumentClassAnalyzer(){
 return DEFAULT_ANALYZER;
 }

 private int _id;
 private String _filePath;
 private String _dirPath;

VISUALIZATION OF COLLABORATIVE NOTE-TAKING 60

 private String _fileName;
 private String _text;

 private TermPositionVector _termPositionVector;
 private double[] _rawHighlightData;

 public SimpleTextDocument(){
 // return a blank document
 }

 public SimpleTextDocument(String filePath) throws IOException {
 _filePath = filePath;
 File f = new File(_filePath);
 _dirPath = f.getParent();
 _fileName = f.getName();

 FileReader fr = new FileReader(_filePath);
 BufferedReader br = new BufferedReader(fr);

 StringBuilder builder = new StringBuilder();
 String line;
 while ((line = br.readLine()) != null){
 if (line.trim().length() == 0) continue;
 builder.append(line+"\n");
 }

 br.close();
 fr.close();

 _text = builder.toString();
 }

 @Override
 public String getText() {
 return _text;
 }
 @Override
 public void setText(String text){
 _text = text;
 }

 @Override
 public int getId() {
 return _id;
 }
 @Override
 public void setId(int id) {
 _id = id;
 }

 @Override
 public String getFilePath(){
 return _filePath;
 }
 @Override

VISUALIZATION OF COLLABORATIVE NOTE-TAKING 61

 public void setFilePath(String filePath){
 _filePath = filePath;
 }

 @Override
 public String getDirPath(){
 return _dirPath;
 }
 @Override
 public void setDirPath(String dirPath){
 _dirPath = dirPath;
 }

 @Override
 public String getFileName(){
 return _fileName;
 }
 @Override
 public void setFileName(String fileName){
 _fileName = fileName;
 }

 @Override
 public TermPositionVector getTermPositionVector(){
 return _termPositionVector;
 }
 @Override
 public void setTermPositionVector(TermPositionVector tpv){
 _termPositionVector = tpv;
 }

 @Override
 public double[] getRawHighlightData(){
 return _rawHighlightData;
 }
 @Override
 public void setRawHighlightData(double[] highlightData){
 _rawHighlightData = highlightData;
 }
}

org/arpodwot/heatmaps/documents/output/HighlightedHTMLDocumentGenerator.java

5/35

package org.arpodwot.heatmaps.documents.output;

import java.io.FileWriter;
import java.util.ArrayList;
import java.util.regex.Matcher;
import java.util.regex.Pattern;

import org.arpodwot.heatmaps.highlighting.color.BlueHighlighter;

VISUALIZATION OF COLLABORATIVE NOTE-TAKING 62

import org.arpodwot.heatmaps.highlighting.color.HighlightColorCSSGenerator;
import org.arpodwot.heatmaps.highlighting.color.YellowHighlighter;

public class HighlightedHTMLDocumentGenerator implements
OutputDocumentGenerator {

 @Override
 public void writeToFile (
 double[] highlightData,
 String originalText,
 String filePath)
 throws Exception
 {
 String htmlFilePath = filePath+".html";
 Pattern linePattern = Pattern.compile("^.+$", Pattern.MULTILINE);
 Matcher lineMatcher = linePattern.matcher(originalText);
 Pattern tokenPattern = Pattern.compile("[a-z]+",
Pattern.CASE_INSENSITIVE);
 Matcher tokenMatcher = tokenPattern.matcher(originalText);

 HighlightColorCSSGenerator cssGen = new BlueHighlighter(0.1, 0.9);
 StringBuilder outputText = new StringBuilder();
 int currentToken = 0;

 // take it one line at a time
 int start = 0;
 while (lineMatcher.find(start)){
 int lineStart = lineMatcher.start();
 int lineEnd = lineMatcher.end();

 // find all tokens in this line
 ArrayList<Integer> tokenStarts = new ArrayList<Integer>();
 int tmpStart = lineStart;
 while (tmpStart < lineEnd){
 if (tokenMatcher.find(tmpStart) && tokenMatcher.start() <
lineEnd){
 tokenStarts.add(tokenMatcher.start());
 tmpStart = tokenMatcher.end();
 } else {
 break;
 }
 }

 // add this line to the output
 outputText.append("<div class=\"paragraph\">");
 for (int i = 0; i < tokenStarts.size(); i++){
 int subSeqStart;
 int subSeqEnd;

 if (i == 0)
 subSeqStart = lineStart;
 else
 subSeqStart = tokenStarts.get(i);

VISUALIZATION OF COLLABORATIVE NOTE-TAKING 63

 if (i == tokenStarts.size() - 1)
 subSeqEnd = lineEnd;
 else
 subSeqEnd = tokenStarts.get(i+1);

 // get the highlighting color
 String highlightCSS =
cssGen.generateHighlightCSS(highlightData[currentToken]);

 outputText.append("");
 outputText.append(originalText.substring(subSeqStart,
subSeqEnd));
 outputText.append("");
 currentToken++;
 }
 outputText.append("</div>\n");

 // move to the next line
 start = lineMatcher.end();
 }

 // write out the file
 FileWriter fw = new FileWriter(htmlFilePath);
 fw.write(outputText.toString());
 fw.close();
 }
}

org/arpodwot/heatmaps/documents/output/OutputDocumentGenerator.java 6/35

package org.arpodwot.heatmaps.documents.output;

public interface OutputDocumentGenerator {
 public void writeToFile(double[] highlightData, String originalText,
String filePath) throws Exception;
}

org/arpodwot/heatmaps/documents/SearchableDocumentCollection.java 7/35

package org.arpodwot.heatmaps.documents;

import java.io.IOException;

import org.apache.lucene.queryParser.ParseException;
import org.arpodwot.heatmaps.documents.input.InputDocument;

public interface SearchableDocumentCollection {
 public int[] searchDocuments(String queryText) throws
 IOException,
 ParseException;
 public InputDocument getDocumentById(int id) throws IOException;

VISUALIZATION OF COLLABORATIVE NOTE-TAKING 64

}

org/arpodwot/heatmaps/highlighting/color/BlueHighlighter.java 8/35

package org.arpodwot.heatmaps.highlighting.color;

public class BlueHighlighter implements HighlightColorCSSGenerator {
 private double _minPercent;
 private double _maxPercent;

 public BlueHighlighter(){
 _minPercent = 0.0;
 _maxPercent = 1.0;
 }

 public BlueHighlighter(double minPercent, double maxPercent){
 _minPercent = minPercent;
 _maxPercent = maxPercent;
 }

 @Override
 public String generateHighlightCSS(double highlightValue) {
 double min255 = 255 * _minPercent;
 double max255 = 255 * _maxPercent;
 int blueValue = 255;

 if (highlightValue < 0.01)
 return "background-color:rgb(255,255,255);";

 int redGreenValue = (int)Math.floor(max255 - ((highlightValue *
(max255-min255))+min255));

 return "background-
color:rgb("+redGreenValue+","+redGreenValue+","+blueValue+");";
 }

}

org/arpodwot/heatmaps/highlighting/color/HighlightColorCSSGenerator.java 9/35

package org.arpodwot.heatmaps.highlighting.color;

public interface HighlightColorCSSGenerator {
 public String generateHighlightCSS(double highlightValue);
}

org/arpodwot/heatmaps/highlighting/color/YellowHighlighter.java 10/35

VISUALIZATION OF COLLABORATIVE NOTE-TAKING 65

package org.arpodwot.heatmaps.highlighting.color;

public class YellowHighlighter implements HighlightColorCSSGenerator {
 private double _minPercent;

 public YellowHighlighter(){
 _minPercent = 0.0;
 }
 public YellowHighlighter(double minPercent){
 _minPercent = minPercent;
 }

 @Override
 public String generateHighlightCSS(double highlightValue) {
 double min255 = 255 * _minPercent;
 int redValue = 255;
 int greenValue = 255;

 if (highlightValue < 0.01)
 return "background-color:rgb(255,255,255);";

 int blueValue = (int)Math.floor(255 - ((highlightValue * (255-
min255))+min255));

 return "background-
color:rgb("+redValue+","+greenValue+","+blueValue+");";
 }
}

org/arpodwot/heatmaps/highlighting/DocumentHighlighter.java 11/35

package org.arpodwot.heatmaps.highlighting;

import org.arpodwot.heatmaps.documents.input.InputDocument;
import org.arpodwot.heatmaps.notes.Note;

public interface DocumentHighlighter {
 public void highlightDocument(InputDocument doc, Note[] notes);
}

org/arpodwot/heatmaps/highlighting/HighlightedNote.java 12/35

package org.arpodwot.heatmaps.highlighting;

import java.util.ArrayList;

public class HighlightedNote extends ArrayList<HighlightedPhrase> {
 private static final long serialVersionUID = 1L;

 private double _minProbability = Double.MAX_VALUE;
 private double _maxProbability = Double.MIN_VALUE;

VISUALIZATION OF COLLABORATIVE NOTE-TAKING 66

 private int _maxLength = Integer.MIN_VALUE;

 public HighlightedNote(int initialCapacity){
 super(initialCapacity);
 }

 @Override
 public boolean add(HighlightedPhrase hp){
 boolean result = super.add(hp);
 int length = hp.getLength();
 double prob = hp.getProbability();
 if (prob < _minProbability)
 _minProbability = prob;
 if (prob > _maxProbability)
 _maxProbability = prob;
 if (length > _maxLength)
 _maxLength = length;

 return result;
 }

 public double getMinProbability(){
 return _minProbability;
 }
 public double getMaxProbability(){
 return _maxProbability;
 }
 public int getMaxLength(){
 return _maxLength;
 }
}

org/arpodwot/heatmaps/highlighting/HighlightedPhrase.java 13/35

package org.arpodwot.heatmaps.highlighting;

import java.util.ArrayList;
import java.util.HashSet;

public class HighlightedPhrase {
 private int _length;
 private String[] _phrase;
 private double _probability;
 private int _matchCount;

 private HashSet<Integer> _docPositions;

 public HighlightedPhrase(){
 _docPositions = new HashSet<Integer>();
 }

 public int getLength(){
 return _length;

VISUALIZATION OF COLLABORATIVE NOTE-TAKING 67

 }
 public void setLength(int len){
 _length = len;
 }

 public double getProbability(){
 return _probability;
 }
 public void setProbability(double prob){
 _probability = prob;
 }
 public int getMatchCount(){
 return _matchCount;
 }

 public String[] getPhrase(){
 return _phrase;
 }
 public void setPhrase(String[] phrase){
 _phrase = phrase;
 }

 public void addDocPositions(int[] positions){
 _matchCount++;
 ArrayList<Integer> tmpIndices = new
ArrayList<Integer>(positions.length);
 for (int i = 0; i < positions.length; i++){
 tmpIndices.add(positions[i]);
 }
 _docPositions.addAll(tmpIndices);
 }

 public Integer[] getDocPositions(){
 return _docPositions.toArray(new Integer[_docPositions.size()]);
 }
}

org/arpodwot/heatmaps/highlighting/ProbabilityGenerator.java 14/35

package org.arpodwot.heatmaps.highlighting;

import java.util.HashMap;

import org.apache.lucene.index.TermPositionVector;

public class ProbabilityGenerator {
 private HashMap<String, Double> _probabilityMap = new HashMap<String,
Double>();

 public ProbabilityGenerator(TermPositionVector index){
 String[] terms = index.getTerms();
 int[] freqs = index.getTermFrequencies();

VISUALIZATION OF COLLABORATIVE NOTE-TAKING 68

 double sum = 0;
 // get the sum
 for (int i = 0; i < freqs.length; i++){
 sum += freqs[i];
 }

 // compute probabilities
 for (int i = 0; i < freqs.length; i++){
 _probabilityMap.put(terms[i], new Double(freqs[i] / sum));
 }
 }

 public double getPhraseProbability(String[] phrase){
 double prod = 1;
 for (int i = 0; i < phrase.length; i++){
 prod *= _probabilityMap.get(phrase[i]);
 }
 return prod;
 }

org/arpodwot/heatmaps/highlighting/SimpleDocumentHighlighter.java 15/35

package org.arpodwot.heatmaps.highlighting;

import java.util.ArrayList;

import org.apache.lucene.index.TermPositionVector;
import org.arpodwot.heatmaps.documents.input.InputDocument;
import org.arpodwot.heatmaps.indexing.ngrams.SimpleAnalyzerNGramGenerator;
import org.arpodwot.heatmaps.notes.Note;
import org.arpodwot.heatmaps.util.Stopwords;

public class SimpleDocumentHighlighter implements DocumentHighlighter {
 @Override
 public void highlightDocument(InputDocument doc, Note[] notes) {
 TermPositionVector tpv = doc.getTermPositionVector();

 ArrayList<HighlightedNote> allHighlightedNotes =
 new ArrayList<HighlightedNote>(notes.length);

 // go find all of the matches
 for (Note n : notes){
 allHighlightedNotes.add(getNoteHighlighting(n, tpv));
 }

 Stopwords stops = new Stopwords();

 // initial values are 0
 double[] docHighlightValues = new
double[sum(tpv.getTermFrequencies())];

 // now apply their respective highlight values

VISUALIZATION OF COLLABORATIVE NOTE-TAKING 69

 for (HighlightedNote note : allHighlightedNotes){
 double[] noteHighlightValues = new
double[docHighlightValues.length];
 double noteMinProb = note.getMinProbability();
 double noteMaxProb = note.getMaxProbability();
 int noteMaxLength = note.getMaxLength();
 double probRange = noteMaxProb - noteMinProb;
 for (HighlightedPhrase phrase : note){
 int phraseLength = phrase.getLength();
 if (phraseLength < 4)
 continue;
 if (stops.areAllStopWords(phrase.getPhrase()))
 continue;
 if (phrase.getLength() < 5 &&
stops.getStopwordPercentage(phrase.getPhrase()) >= 0.5)
 continue;

 double normPhraseProb = (probRange == 0.0 ? 1 :
(phrase.getProbability() - noteMinProb)/probRange);
 double phraseQuoteyness = 1 - normPhraseProb;
 phraseQuoteyness = phraseQuoteyness * (phraseLength /
noteMaxLength);
 if (phraseQuoteyness == 0)
 continue;
 for (int position : phrase.getDocPositions()){
 if (phraseQuoteyness > noteHighlightValues[position])
 noteHighlightValues[position] = phraseQuoteyness;
 }
 }

 // add note highlights to doc highlights
 for (int i = 0; i < noteHighlightValues.length; i++){
 docHighlightValues[i] += noteHighlightValues[i];
 }
 }

 // put this highlight data into the InputDocument object
 doc.setRawHighlightData(docHighlightValues);
 }

 private HighlightedNote getNoteHighlighting(Note n, TermPositionVector
tpv){
 SimpleAnalyzerNGramGenerator ngrams =
SimpleAnalyzerNGramGenerator.createGenerator(n);
 HighlightedNote highlights = new
HighlightedNote(ngrams.getTotalCount());
 ProbabilityGenerator prob = new ProbabilityGenerator(tpv);

 // look for phrase matches, add them to the HP
 while(ngrams.hasNext()){
 HighlightedPhrase hp = new HighlightedPhrase();
 String[] ngram = ngrams.nextNGramArray();
 hp.setLength(ngram.length);
 hp.setPhrase(ngram);

VISUALIZATION OF COLLABORATIVE NOTE-TAKING 70

 int rarestTermIndex = -1;
 int rarestTermFreq = Integer.MAX_VALUE;

 int[][] termPosVectors = new int[ngram.length][];
 for (int i = 0; i < ngram.length; i++){
 termPosVectors[i] =
tpv.getTermPositions(tpv.indexOf(ngram[i]));
 if (termPosVectors[i].length < rarestTermFreq){
 rarestTermFreq = termPosVectors[i].length;
 rarestTermIndex = i;
 }
 }

 // all of the positions that the rarest word in the ngram occurs
 int[] rarestTermPosVector = termPosVectors[rarestTermIndex];

 // how far we've gotten through the position array for each term
 int[] seekMarkers = new int[ngram.length];

 // go through each of the positions for the rarest word in the
ngram
 for (int i = 0; i < rarestTermPosVector.length; i++){
 boolean match = true; // each one is a potential match

 // this is where our searching is anchored
 int anchorPos = rarestTermPosVector[i];

 // this is where everything else should be
 int[] proposedMatch = new int[ngram.length];
 for (int j = 0; j < proposedMatch.length; j++){
 proposedMatch[j] = anchorPos + (j - rarestTermIndex);
 }

 // for each of the other words in the ngram, see if they
 // fall in the right place
 for (int j = 0; j < termPosVectors.length; j++){
 if (j == rarestTermIndex) continue;

 // the position array of this word that we're checking
 int[] jthTermPositions = termPosVectors[j];

 // the position that we want to find for this word, given
the
 // current value of p
 int findPos = proposedMatch[j];

 // look through this position array until we either find
 // the position we're looking for (findPos) or we
exceed it
 for (; seekMarkers[j] < jthTermPositions.length;
seekMarkers[j]++){
 // if we found the position we're looking for
 if (jthTermPositions[seekMarkers[j]] == findPos)
 break;

VISUALIZATION OF COLLABORATIVE NOTE-TAKING 71

 // if the current check position has exceeded the
position
 // we're looking for
 if (jthTermPositions[seekMarkers[j]] > findPos){
 match = false;
 break;
 }

 // if we ran out of positions to check before finding
 // the correct one
 if (seekMarkers[j] == jthTermPositions.length - 1){
 match = false;
 break;
 }
 }

 if (!match)
 break;
 }

 if (match){
 hp.setProbability(prob.getPhraseProbability(ngram));
 hp.addDocPositions(proposedMatch);
 }
 }

 if (hp.getMatchCount() > 0)
 highlights.add(hp);
 }

 highlights.trimToSize();
 return highlights;
 }

 private int sum(int[] x){
 int total = 0;
 for (int i = 0; i < x.length; i++){
 total += x[i];
 }
 return total;
 }
}

org/arpodwot/heatmaps/indexing/MultiDocumentIndexBuilder.java 16/35

package org.arpodwot.heatmaps.indexing;

import java.io.File;
import java.io.IOException;

import org.apache.lucene.analysis.Analyzer;
import org.apache.lucene.analysis.SimpleAnalyzer;
import org.apache.lucene.document.Document;

VISUALIZATION OF COLLABORATIVE NOTE-TAKING 72

import org.apache.lucene.document.Field;
import org.apache.lucene.document.NumericField;
import org.apache.lucene.index.IndexWriter;
import org.apache.lucene.store.FSDirectory;
import org.arpodwot.heatmaps.documents.input.InputDocument;
import org.arpodwot.heatmaps.documents.input.InputDocumentCollection;

public class MultiDocumentIndexBuilder {
 public static IndexWriter.MaxFieldLength DEFAULT_MAX_FIELD_LENGTH =
IndexWriter.MaxFieldLength.UNLIMITED;

 public static void buildMultiDocumentIndex(String indexPath,
InputDocumentCollection docs) throws IOException {
 InputDocument[] docArray = new InputDocument[docs.size()];
 buildMultiDocumentIndex(indexPath, docs.toArray(docArray));
 }

 public static void buildMultiDocumentIndex(String indexPath,
InputDocument[] docs) throws IOException {
 String _indexPath = indexPath;

 // set various index settings
 Analyzer _analyzer = new SimpleAnalyzer();
 IndexWriter.MaxFieldLength _maxFieldLength =
DEFAULT_MAX_FIELD_LENGTH;

 // initialize the document template
 Document _doc = new Document();
 NumericField _idField = new NumericField("id", Field.Store.YES,
true);
 Field _filePathField = new Field("filePath", "Default",
Field.Store.YES, Field.Index.NO, Field.TermVector.NO);
 Field _dirPathField = new Field("dirPath", "Default",
Field.Store.YES, Field.Index.NO, Field.TermVector.NO);
 Field _fileNameField = new Field("fileName", "Default",
Field.Store.YES, Field.Index.ANALYZED_NO_NORMS,
Field.TermVector.WITH_POSITIONS_OFFSETS);
 Field _textField = new Field("text", "Default", Field.Store.YES,
Field.Index.ANALYZED_NO_NORMS, Field.TermVector.WITH_POSITIONS_OFFSETS);
 _doc.add(_idField);
 _doc.add(_filePathField);
 _doc.add(_dirPathField);
 _doc.add(_fileNameField);
 _doc.add(_textField);

 // initialize the IndexWriter
 File f = new File(_indexPath);
 FSDirectory dir = FSDirectory.open(f);
 IndexWriter writer = new IndexWriter(dir, _analyzer, true,
_maxFieldLength);

 // write each file to the index
 for (InputDocument doc : docs){
 _idField.setIntValue(doc.getId());
 _filePathField.setValue(doc.getFilePath());

VISUALIZATION OF COLLABORATIVE NOTE-TAKING 73

 _dirPathField.setValue(doc.getDirPath());
 _fileNameField.setValue(doc.getFileName());
 _textField.setValue(doc.getText());

 writer.addDocument(_doc);
 }

 // close the IndexWriter
 writer.commit();
 writer.optimize();
 writer.close();
 }
}

org/arpodwot/heatmaps/indexing/MultiDocumentIndexSearcher.java 17/35

package org.arpodwot.heatmaps.indexing;

import java.io.File;
import java.io.IOException;
import java.util.HashMap;

import org.apache.lucene.analysis.Analyzer;
import org.apache.lucene.analysis.SimpleAnalyzer;
import org.apache.lucene.document.Document;
import org.apache.lucene.index.IndexReader;
import org.apache.lucene.index.TermPositionVector;
import org.apache.lucene.queryParser.ParseException;
import org.apache.lucene.queryParser.QueryParser;
import org.apache.lucene.search.IndexSearcher;
import org.apache.lucene.search.Query;
import org.apache.lucene.search.NumericRangeQuery;
import org.apache.lucene.search.TopDocs;
import org.apache.lucene.store.FSDirectory;
import org.apache.lucene.util.Version;
import org.arpodwot.heatmaps.documents.SearchableDocumentCollection;
import org.arpodwot.heatmaps.documents.input.InputDocument;
import org.arpodwot.heatmaps.documents.input.SimpleTextDocument;

public class MultiDocumentIndexSearcher implements
 SearchableDocumentCollection
{
 public static Analyzer DEFAULT_ANALYZER = new SimpleAnalyzer();
 public static QueryParser DEFAULT_PARSER = new
QueryParser(Version.LUCENE_30, "text", DEFAULT_ANALYZER);

 private HashMap<Integer, InputDocument> _documentCache;

 private String _indexPath;
 private IndexReader _reader;
 private IndexSearcher _searcher;

 private QueryParser _parser;

VISUALIZATION OF COLLABORATIVE NOTE-TAKING 74

 public MultiDocumentIndexSearcher(String indexPath) throws IOException {
 // initialize things
 _parser = DEFAULT_PARSER;
 _indexPath = indexPath;
 _documentCache = new HashMap<Integer, InputDocument>();

 openIndex();
 }

 private void openIndex() throws IOException {
 File f = new File(_indexPath);
 FSDirectory dir = FSDirectory.open(f);
 _searcher = new IndexSearcher(dir);
 _reader = _searcher.getIndexReader();
 }

 public void close() throws IOException {
 _searcher.close();
 _reader.close();

 _searcher = null;
 _reader = null;
 }

 @Override
 public int[] searchDocuments(String queryText) throws
 IOException,
 ParseException
 {
 if (_reader == null || _searcher == null)
 throw new IllegalStateException("This instance has already been
closed and is no longer usable.");

 Query query = _parser.parse(queryText);
 TopDocs hits = _searcher.search(query, _reader.numDocs());

 int[] ids = new int[hits.scoreDocs.length];
 for (int i = 0; i < hits.scoreDocs.length; i++){
 Document d = _reader.document(hits.scoreDocs[i].doc);
 ids[i] = Integer.parseInt(d.get("id"));
 }

 return ids;
 }

 @Override
 public InputDocument getDocumentById(int id) throws IOException {
 Integer idObj = new Integer(id);

 // see if we've already retrieved it from the index
 if (_documentCache.containsKey(idObj)){
 return _documentCache.get(idObj);
 } else {
 // if not, go get it!

VISUALIZATION OF COLLABORATIVE NOTE-TAKING 75

 InputDocument retDoc = new SimpleTextDocument();

 // retrieve the document from the index
 Query q = NumericRangeQuery.newIntRange("id", idObj, idObj, true,
true);
 TopDocs hits = _searcher.search(q, 1);

 if (hits.totalHits == 0)
 return null; // couldn't find this id in the index!

 int internalDocId = hits.scoreDocs[0].doc;
 Document doc = _reader.document(internalDocId);

 retDoc.setId(Integer.parseInt(doc.get("id")));
 retDoc.setFilePath(doc.get("filePath"));
 retDoc.setDirPath(doc.get("dirPath"));
 retDoc.setFileName(doc.get("fileName"));
 retDoc.setText(doc.get("text"));

retDoc.setTermPositionVector((TermPositionVector)_reader.getTermFreqVector(in
ternalDocId, "text"));

 // add it to the cache
 _documentCache.put(idObj, retDoc);

 return retDoc;
 }
 }
}

org/arpodwot/heatmaps/indexing/ngrams/NGramGenerator.java 18/35

package org.arpodwot.heatmaps.indexing.ngrams;

import java.util.List;

public class NGramGenerator implements NGramQueryGenerator {
 private String[] _textBits;
 private int _bitCount;

 private int _previousNGramLength;
 private int _currentLength;
 private int _currentIndex;

 private int _totalCount;

 public static NGramGenerator createGenerator(List<String> textBits){
 String[] tb = new String[textBits.size()];
 return new NGramGenerator(textBits.toArray(tb));
 }

 public static NGramGenerator createGenerator(String[] textBits){
 return new NGramGenerator(textBits);

VISUALIZATION OF COLLABORATIVE NOTE-TAKING 76

 }

 protected NGramGenerator(String[] textBits){
 _textBits = textBits;
 _bitCount = _textBits.length;
 _totalCount = ((_bitCount * _bitCount) + _bitCount) / 2;
 _currentLength = 1;
 _currentIndex = 0;
 }

 @Override
 public String nextNGramString() {
 if (hasNext()){
 // jump to the next length if we need to
 if (_currentIndex + _currentLength > _bitCount){
 _currentIndex = 0;
 _currentLength++;
 }
 _previousNGramLength = _currentLength;

 StringBuilder ngram = new StringBuilder("\"");
 for (int i = 0; i < _currentLength; i++){
 if (i > 0)
 ngram.append(' ');

 ngram.append(_textBits[_currentIndex + i]);
 }
 ngram.append('"');

 _currentIndex++;

 return ngram.toString();
 }

 return null;
 }

 public String[] nextNGramArray(){
 if (hasNext()){
 // jump to the next length if we need to
 if (_currentIndex + _currentLength > _bitCount){
 _currentIndex = 0;
 _currentLength++;
 }
 _previousNGramLength = _currentLength;

 String[] ngram = new String[_currentLength];
 for (int i = 0; i < _currentLength; i++){
 ngram[i] = _textBits[_currentIndex + i];
 }

 _currentIndex++;

 return ngram;
 }

VISUALIZATION OF COLLABORATIVE NOTE-TAKING 77

 return null;
 }

 @Override
 public boolean hasNext(){
 if (_currentLength > _bitCount)
 return false;

 if (_currentLength == _bitCount & _currentIndex + _currentLength >
_bitCount)
 return false;

 return true;
 }

 @Override
 public void reset() {
 _currentIndex = 0;
 _currentLength = 1;
 }
 public void reset(int index, int length){
 _currentIndex = index;
 _currentLength = length;
 }

 @Override
 public int getPreviousNGramLength(){
 return _previousNGramLength;
 }

 @Override
 public int getTotalCount(){
 return _totalCount;
 }
}

org/arpodwot/heatmaps/indexing/ngrams/NGramQueryGenerator.java 19/35

package org.arpodwot.heatmaps.indexing.ngrams;

public interface NGramQueryGenerator {
 public int getTotalCount();
 public int getPreviousNGramLength();
 public String nextNGramString();
 public String[] nextNGramArray();
 public boolean hasNext();
 public void reset();
}

VISUALIZATION OF COLLABORATIVE NOTE-TAKING 78

org/arpodwot/heatmaps/indexing/ngrams/SimpleAnalyzerNGramGenerator.java 20/35

package org.arpodwot.heatmaps.indexing.ngrams;

import java.util.ArrayList;
import java.util.regex.Matcher;
import java.util.regex.Pattern;

import org.arpodwot.heatmaps.notes.Note;

public class SimpleAnalyzerNGramGenerator extends NGramGenerator {
 public static Pattern tokenPattern = Pattern.compile("[a-z]+");

 public static SimpleAnalyzerNGramGenerator createGenerator(Note n){
 return createGenerator(n.getText());
 }

 public static SimpleAnalyzerNGramGenerator createGenerator(String text){
 //String[] textBits = text.trim().toLowerCase().split("[^a-z]+");
 // using n.getText().trim().toLowerCase().split("[^a-z]+")
 // yields an empty string in position 0 ("") if the note text
 // begins with a non a-z character.
 // This creates more tokens than actually exist, and causes
problems
 // with token counts in other places in the code.
 // Ergo, any code using the .split() command should instead
 // aggregate tokens with the regular expressions as shown below.

 String cleanText = text.trim().toLowerCase();
 Matcher m = tokenPattern.matcher(cleanText);
 ArrayList<String> tokens = new ArrayList<String>();
 while(m.find()){
 tokens.add(m.group());
 }
 String[] textBits = tokens.toArray(new String[tokens.size()]);
 return new SimpleAnalyzerNGramGenerator(textBits);
 }

 protected SimpleAnalyzerNGramGenerator(String[] textBits){
 super(textBits);
 }
}

org/arpodwot/heatmaps/matching/DocumentScoreAggregator.java 21/35

package org.arpodwot.heatmaps.matching;

import java.util.HashMap;

import org.apache.lucene.search.ScoreDoc;

public class DocumentScoreAggregator {
 @SuppressWarnings("unused")

VISUALIZATION OF COLLABORATIVE NOTE-TAKING 79

 private static final long serialVersionUID = 1L;

 private HashMap<Integer, Double> _scoreMap = new HashMap<Integer,
Double>();
 private int _maxScoreDocId;
 private double _maxScore;

 public DocumentScoreAggregator(){
 _maxScoreDocId = -1;
 _maxScore = -1;
 }

 public void incrementDocumentScores(int[] docs, double score){
 for (int i = 0; i < docs.length; i++){
 incrementDocumentScore(docs[i], score);
 }
 }

 public void incrementDocumentScores(ScoreDoc[] documents, double score){
 for (int i = 0; i < documents.length; i++){
 ScoreDoc sd = documents[i];
 incrementDocumentScore(sd.doc, score);
 }
 }

 public double incrementDocumentScore(int docId, double score){
 // docScore is either 0 or the existing score
 double docScore = 0;
 if (_scoreMap.containsKey(docId))
 docScore = _scoreMap.get(docId);

 // increase docScore by the score argument
 docScore += score;

 // store that new score in the map
 _scoreMap.put(docId, docScore);

 // if this is the new maximum
 if (docScore > _maxScore){
 _maxScoreDocId = docId;
 _maxScore = docScore;
 }

 return docScore;
 }

 public int getMaxScoreDocId(){
 return _maxScoreDocId;
 }

 public double getMaxScore(){
 return _maxScore;
 }
}

VISUALIZATION OF COLLABORATIVE NOTE-TAKING 80

org/arpodwot/heatmaps/matching/MatchesFile.java 22/35

package org.arpodwot.heatmaps.matching;

import java.io.BufferedReader;
import java.io.FileReader;
import java.io.IOException;
import java.util.ArrayList;
import java.util.HashMap;

import org.arpodwot.heatmaps.documents.input.InputDocument;
import org.arpodwot.heatmaps.indexing.MultiDocumentIndexSearcher;
import org.arpodwot.heatmaps.notes.Note;
import org.arpodwot.heatmaps.notes.NoteCollection;
import org.arpodwot.heatmaps.notes.SimpleNoteFile;

public class MatchesFile {
 public static HashMap<InputDocument, ArrayList<Note>>
getMatchesFromFile(String indexPath, String noteFilePath, String
matchFilePath) throws
 IOException
 {
 System.out.print("Initializing document index ... ");
 MultiDocumentIndexSearcher search =
 new MultiDocumentIndexSearcher(indexPath);
 System.out.println("Done!");

 System.out.print("Loading notes from file ... ");
 NoteCollection notes = new SimpleNoteFile(noteFilePath);
 System.out.println("Done!");

 HashMap<InputDocument, ArrayList<Note>> matches =
 new HashMap<InputDocument, ArrayList<Note>>();

 FileReader fr = new FileReader(matchFilePath);
 BufferedReader br = new BufferedReader(fr);

 System.out.print("Loading in matches from file ... ");
 String line;
 while ((line = br.readLine()) != null){
 if (line.trim().length() == 0) continue;

 String[] ids = line.split("\t");
 int noteId = Integer.parseInt(ids[0]);
 int docId = Integer.parseInt(ids[1]);

 Note n = notes.getNote(noteId);
 InputDocument doc = search.getDocumentById(docId);

 if (!matches.containsKey(doc))
 matches.put(doc, new ArrayList<Note>());

 matches.get(doc).add(n);
 }

VISUALIZATION OF COLLABORATIVE NOTE-TAKING 81

 br.close();
 fr.close();

 System.out.println("Done!");

 return matches;
 }
}

org/arpodwot/heatmaps/matching/MatchScoreCalculation.java 23/35

package org.arpodwot.heatmaps.matching;

public interface MatchScoreCalculation {
 public double calculateMatchScore(int ngramLength);
}

org/arpodwot/heatmaps/matching/NoteDocumentMatcher.java 24/35

package org.arpodwot.heatmaps.matching;

import java.io.IOException;

import org.apache.lucene.queryParser.ParseException;
import org.arpodwot.heatmaps.documents.SearchableDocumentCollection;
import org.arpodwot.heatmaps.documents.input.InputDocument;
import org.arpodwot.heatmaps.indexing.ngrams.SimpleAnalyzerNGramGenerator;
import org.arpodwot.heatmaps.notes.Note;

public class NoteDocumentMatcher {
 public static InputDocument findMatchingDocument(Note n,
SearchableDocumentCollection docs) throws
 IOException,
 ParseException
 {
 SimpleAnalyzerNGramGenerator ngrams =
SimpleAnalyzerNGramGenerator.createGenerator(n);

 MatchScoreCalculation calc = new NSquaredMatchScore();
 DocumentScoreAggregator scores = new DocumentScoreAggregator();
 while(ngrams.hasNext()){
 // parse the query and do the search
 int[] hits = docs.searchDocuments(ngrams.nextNGramString());
 scores.incrementDocumentScores(hits,
calc.calculateMatchScore(ngrams.getPreviousNGramLength()));
 }

 return docs.getDocumentById(scores.getMaxScoreDocId());
 }
}

VISUALIZATION OF COLLABORATIVE NOTE-TAKING 82

org/arpodwot/heatmaps/matching/NSquaredMatchScore.java 25/35

package org.arpodwot.heatmaps.matching;

public class NSquaredMatchScore implements MatchScoreCalculation {
 @Override
 public double calculateMatchScore(int ngramLength){
 return Math.pow(ngramLength, 2);
 }
}

org/arpodwot/heatmaps/notes/NoteCollection.java 26/35

package org.arpodwot.heatmaps.notes;

public interface NoteCollection {
 public Note getNote(int index);
 public Note[] getNotes();
 public void reset();
 public boolean hasNext();
 public Note nextNote();
 public int size();
}

org/arpodwot/heatmaps/notes/Note.java 27/35

package org.arpodwot.heatmaps.notes;

public class Note {
 private int _id;
 private String _note;

 public Note (int id, String note){
 _id = id;
 _note = note;
 }

 public Note (String note){
 _note = note;
 }

 public int getId(){
 return _id;
 }
 public void setId(int id){
 _id = id;
 }

VISUALIZATION OF COLLABORATIVE NOTE-TAKING 83

 public String getText(){
 return _note;
 }
}

org/arpodwot/heatmaps/notes/SimpleNoteFile.java 28/35

package org.arpodwot.heatmaps.notes;

import java.util.LinkedList;
import java.io.BufferedReader;
import java.io.FileReader;
import java.io.IOException;

public class SimpleNoteFile implements NoteCollection {
 private String _filePath;
 private int _noteCount;
 private int _currentPosition;

 private LinkedList<Note> _list;

 public SimpleNoteFile(String filePath) throws IOException {
 _currentPosition = 0;
 _list = new LinkedList<Note>();
 _filePath = filePath;

 // read in the notes from the file
 FileReader fr = new FileReader(_filePath);
 BufferedReader br = new BufferedReader(fr);

 String note;
 while((note = br.readLine()) != null){
 _list.add(new Note(_list.size(), note));
 }
 br.close();
 fr.close();

 _noteCount = _list.size();
 }

 @Override
 public Note getNote(int index) throws IndexOutOfBoundsException {
 return _list.get(index);
 }

 @Override
 public Note[] getNotes() {
 return (Note[])_list.toArray();
 }

 @Override
 public void reset() {
 _currentPosition = 0;

VISUALIZATION OF COLLABORATIVE NOTE-TAKING 84

 }

 @Override
 public boolean hasNext() {
 if (_currentPosition >= _list.size())
 return false;

 return true;
 }

 @Override
 public Note nextNote() {
 if (hasNext()){
 Note n = _list.get(_currentPosition);
 _currentPosition++;
 return n;
 }

 return null;
 }

 @Override
 public int size(){
 return _noteCount;
 }
}

org/arpodwot/heatmaps/util/Stopwords.java 29/35

package org.arpodwot.heatmaps.util;

import java.util.HashSet;

public class Stopwords {
 private String[] _stopwords = {
 "a","about","above","after","again",
 "against","all","am","an","and",
 "any","are","aren't","as","at",
 "be","because","been","before","being",
 "below","between","both","but","by", "can",
 "can't","cannot","could","couldn't","did",
 "didn't","do","does","doesn't","doing",
 "don't","down","during","each","few",
 "for","from","further","had","hadn't",
 "has","hasn't","have","haven't","having",
 "he","he'd","he'll","he's","her",
 "here","here's","hers","herself","him",
 "himself","his","how","how's","i",
 "i'd","i'll","i'm","i've","if",
 "in","into","is","isn't","it",
 "it's","its","itself","let's","me",
 "more","most","mustn't","my","myself",
 "no","nor","not","of","off",

VISUALIZATION OF COLLABORATIVE NOTE-TAKING 85

 "on","once","only","or","other",
 "ought","our","ours","ourselves","out",
 "over","own","same","shan't","she",
 "she'd","she'll","she's","should","shouldn't",
 "so","some","such","than","that",
 "that's","the","their","theirs","them",
 "themselves","then","there","there's","these",
 "they","they'd","they'll","they're","they've",
 "this","those","through","to","too",
 "under","until","up","very","was",
 "wasn't","we","we'd","we'll","we're",
 "we've","were","weren't","what","what's",
 "when","when's","where","where's","which",
 "while","who","who's","whom","why",
 "why's","with","won't","would","wouldn't",
 "you","you'd","you'll","you're","you've",
 "your","yours","yourself","yourselves"};
 private HashSet<String> _stopwordSet;

 public Stopwords(){
 _stopwordSet = new HashSet<String>();
 for (String w : _stopwords){
 _stopwordSet.add(w);
 }
 }

 public boolean isStopWord(String w){
 return _stopwordSet.contains(w);
 }

 public boolean areAllStopWords(String[] words){
 for (String w : words){
 if (!isStopWord(w)) return false;
 }

 return true;
 }

 public double getStopwordPercentage(String[] words){
 double wordCount = words.length;
 double stopwordCount = 0.0;
 for (String w : words){
 if (isStopWord(w)){
 stopwordCount += 1;
 }
 }

 return stopwordCount / wordCount;
 }
}

VISUALIZATION OF COLLABORATIVE NOTE-TAKING 86

org/arpodwot/heatmaps/util/Transformation.java 30/35

package org.arpodwot.heatmaps.util;

public interface Transformation {
 public double[] transform(double[] highlightData);
}

org/arpodwot/heatmaps/util/UnitIntervalTransformation.java 31/35

package org.arpodwot.heatmaps.util;

public class UnitIntervalTransformation implements Transformation {
 @Override
 public double[] transform(double[] highlightData) {
 double minHighlightValue = Double.MAX_VALUE;
 double maxHighlightValue = Double.MIN_VALUE;

 for (int i = 0; i < highlightData.length; i++){
 if (highlightData[i] < minHighlightValue)
 minHighlightValue = highlightData[i];
 if (highlightData[i] > maxHighlightValue){
 maxHighlightValue = highlightData[i];
 }
 }

 double highlightRange = maxHighlightValue - minHighlightValue;
 for (int i = 0; i < highlightData.length; i++){
 highlightData[i] = (highlightData[i] -
minHighlightValue)/highlightRange;
 }
 return highlightData;
 }
}

org/arpodwot/heatmaps/workflows/AddDocsToIndex.java 32/35

package org.arpodwot.heatmaps.workflows;

import java.io.IOException;

import org.apache.lucene.queryParser.ParseException;
import org.arpodwot.heatmaps.documents.input.InputDocumentCollection;
import org.arpodwot.heatmaps.indexing.MultiDocumentIndexBuilder;

public class AddDocsToIndex {
 public static void main(String[] args) throws
 Exception,
 IOException,
 ParseException
 {

VISUALIZATION OF COLLABORATIVE NOTE-TAKING 87

 // args[0] = document filepath list file
 // args[1] = note file
 String docListFilePath = args[0];
 String indexPath = args[1];

 // load in all of the documents
 System.out.print("Loading Documents ... ");
 InputDocumentCollection docs = new
InputDocumentCollection(docListFilePath);
 System.out.println("Done!");

 // put documents into an index
 System.out.print("Building index ... ");
 MultiDocumentIndexBuilder.buildMultiDocumentIndex(indexPath, docs);
 docs = null; // we'll be accessing these via index shortly
 System.out.println("Done!");
 }
}

org/arpodwot/heatmaps/workflows/CreateVisualization.java 33/35

package org.arpodwot.heatmaps.workflows;

import java.io.File;
import java.util.ArrayList;
import java.util.HashMap;

import org.arpodwot.heatmaps.documents.input.InputDocument;
import
org.arpodwot.heatmaps.documents.output.HighlightedHTMLDocumentGenerator;
import org.arpodwot.heatmaps.documents.output.OutputDocumentGenerator;
import org.arpodwot.heatmaps.highlighting.SimpleDocumentHighlighter;
import org.arpodwot.heatmaps.matching.MatchesFile;
import org.arpodwot.heatmaps.notes.Note;
import org.arpodwot.heatmaps.util.Transformation;
import org.arpodwot.heatmaps.util.UnitIntervalTransformation;

public class CreateVisualization {
 public static void main(String[] args) throws Exception {
 String indexPath = args[0];
 String noteFilePath = args[1];
 String matchFilePath = args[2];

 HashMap<InputDocument, ArrayList<Note>> docNoteMap =
 MatchesFile.getMatchesFromFile(indexPath, noteFilePath,
matchFilePath);

 // for each document,
 // Apply all notes to it, giving raw highlight data
 System.out.println("Calculating highlights for each document ...");
 SimpleDocumentHighlighter highlight = new
SimpleDocumentHighlighter();
 for (InputDocument doc : docNoteMap.keySet()){

VISUALIZATION OF COLLABORATIVE NOTE-TAKING 88

 System.out.println("\t"+doc.getFileName());
 Note[] notes = docNoteMap.get(doc).toArray(new Note[0]);
 highlight.highlightDocument(doc, notes);
 }
 System.out.println("\t---Done!");

 // Rescale to 0.0-1.0
 System.out.print("Normalizing highlight values ... ");
 Transformation t = new UnitIntervalTransformation();
 for (InputDocument doc : docNoteMap.keySet()){
 doc.setRawHighlightData(t.transform(doc.getRawHighlightData()));
 }
 System.out.println("Done!");

 // output to HTML
 System.out.println("Generating HTML output ...");
 OutputDocumentGenerator out = new HighlightedHTMLDocumentGenerator();
 for (InputDocument doc : docNoteMap.keySet()){
 String outFilePath =
doc.getDirPath()+File.separator+"HL_"+doc.getFileName();
 System.out.println("\t"+outFilePath);
 out.writeToFile(doc.getRawHighlightData(), doc.getText(),
outFilePath);
 }
 System.out.println("\t---Done!\n");
 System.out.println("PROCESS COMPLETE");
 }
}

org/arpodwot/heatmaps/workflows/MatchNotesToDocs.java 34/35

package org.arpodwot.heatmaps.workflows;

import java.io.BufferedWriter;
import java.io.FileWriter;
import java.io.IOException;

import org.apache.lucene.queryParser.ParseException;
import org.arpodwot.heatmaps.documents.input.InputDocument;
import org.arpodwot.heatmaps.indexing.MultiDocumentIndexSearcher;
import org.arpodwot.heatmaps.matching.NoteDocumentMatcher;
import org.arpodwot.heatmaps.notes.Note;
import org.arpodwot.heatmaps.notes.SimpleNoteFile;

public class MatchNotesToDocs {
 public static void main(String[] args) throws
 Exception,
 IOException,
 ParseException
 {
 // args[0] = document index path
 // args[1] = note file
 String indexPath = args[0];

VISUALIZATION OF COLLABORATIVE NOTE-TAKING 89

 String noteFilePath = args[1];
 String matchOutputFilePath = args[2];

 // load in the notes
 System.out.print("Loading notes ... ");
 SimpleNoteFile noteCollection = new SimpleNoteFile(noteFilePath);
 System.out.println("Done!");

 // get ready to write the mappings file
 FileWriter fw = new FileWriter(matchOutputFilePath);
 BufferedWriter bw = new BufferedWriter(fw);

 // match the notes to their respective documents
 System.out.println("Matching notes to documents:");
 MultiDocumentIndexSearcher searcher = new
MultiDocumentIndexSearcher(indexPath);
 int noteCount = 0;
 while (noteCollection.hasNext()){
 if (++noteCount % 100 == 0)
 System.out.print("\t"+noteCount+" of
"+noteCollection.size()+"\r");

 Note n = noteCollection.nextNote();
 InputDocument doc = NoteDocumentMatcher.findMatchingDocument(n,
searcher);
 if (doc == null) continue;

 bw.write(n.getId()+"\t"+doc.getId()+"\n");
 }

 bw.close();
 fw.close();

 System.out.println("\t---Done!");
 }
}

org/arpodwot/heatmaps/workflows/MultiNotesMultiDocs.java 35/35

package org.arpodwot.heatmaps.workflows;

import java.io.File;
import java.io.IOException;
import java.util.ArrayList;
import java.util.HashMap;

import org.apache.lucene.queryParser.ParseException;
import org.arpodwot.heatmaps.documents.input.InputDocument;
import org.arpodwot.heatmaps.documents.input.InputDocumentCollection;
import
org.arpodwot.heatmaps.documents.output.HighlightedHTMLDocumentGenerator;
import org.arpodwot.heatmaps.documents.output.OutputDocumentGenerator;
import org.arpodwot.heatmaps.highlighting.SimpleDocumentHighlighter;

VISUALIZATION OF COLLABORATIVE NOTE-TAKING 90

import org.arpodwot.heatmaps.indexing.MultiDocumentIndexBuilder;
import org.arpodwot.heatmaps.indexing.MultiDocumentIndexSearcher;
import org.arpodwot.heatmaps.matching.NoteDocumentMatcher;
import org.arpodwot.heatmaps.notes.Note;
import org.arpodwot.heatmaps.notes.SimpleNoteFile;
import org.arpodwot.heatmaps.util.Transformation;
import org.arpodwot.heatmaps.util.UnitIntervalTransformation;

public class MultiNotesMultiDocs {
 public static void main(String[] args) throws
 Exception,
 IOException,
 ParseException
 {
 // args[0] = document list file path
 // args[1] = document index path
 // args[2] = note file
 String docListFilePath = args[0];
 String indexPath = args[1];
 String noteFilePath = args[2];

 // load in all of the documents
 System.out.print("Loading Documents ... ");
 InputDocumentCollection docs = new
InputDocumentCollection(docListFilePath);
 System.out.println("Done!");

 // put documents into an index
 System.out.print("Building index ... ");
 MultiDocumentIndexBuilder.buildMultiDocumentIndex(indexPath, docs);
 docs = null; // we'll be accessing these via index shortly
 System.out.println("Done!");

 // load in the notes
 System.out.print("Loading notes ... ");
 SimpleNoteFile noteCollection = new SimpleNoteFile(noteFilePath);
 System.out.println("Done!");

 // match the notes to their respective documents
 System.out.println("Matching notes to documents:");
 MultiDocumentIndexSearcher searcher = new
MultiDocumentIndexSearcher(indexPath);
 HashMap<InputDocument, ArrayList<Note>> docNoteMap =
 new HashMap<InputDocument, ArrayList<Note>>();
 int noteCount = 0;
 while (noteCollection.hasNext()){
 if (++noteCount % 100 == 0)
 System.out.print("\t"+noteCount+"\r");

 Note n = noteCollection.nextNote();
 InputDocument doc = NoteDocumentMatcher.findMatchingDocument(n,
searcher);
 if (doc == null) continue;

 if (!docNoteMap.containsKey(doc))

VISUALIZATION OF COLLABORATIVE NOTE-TAKING 91

 docNoteMap.put(doc, new ArrayList<Note>());

 docNoteMap.get(doc).add(n);
 }
 System.out.println("\t---Done!");

 // for each document,
 // Apply all notes to it, giving raw highlight data
 System.out.println("Calculating highlights for each document ...");
 SimpleDocumentHighlighter highlight = new
SimpleDocumentHighlighter();
 for (InputDocument doc : docNoteMap.keySet()){
 System.out.println("\t"+doc.getFileName());
 Note[] notes = docNoteMap.get(doc).toArray(new Note[0]);
 highlight.highlightDocument(doc, notes);
 }
 System.out.println("\t---Done!");

 // Rescale to 0.0-1.0
 System.out.print("Normalizing highlight values ... ");
 Transformation t = new UnitIntervalTransformation();
 for (InputDocument doc : docNoteMap.keySet()){
 doc.setRawHighlightData(t.transform(doc.getRawHighlightData()));
 }
 System.out.println("Done!");

 // output to HTML
 System.out.println("Generating HTML output ...");
 OutputDocumentGenerator out = new HighlightedHTMLDocumentGenerator();
 for (InputDocument doc : docNoteMap.keySet()){
 String outFilePath =
doc.getDirPath()+File.separator+"HL_"+doc.getFileName();
 System.out.println("\t"+outFilePath);
 out.writeToFile(doc.getRawHighlightData(), doc.getText(),
outFilePath);
 }
 System.out.println("\t---Done!\n");
 System.out.println("PROCESS COMPLETE");
 }
}

Generated by GNU Enscript 1.6.5.2.

http://www.iki.fi/~mtr/genscript/�

	Centralized Visualization of Distributed Collaborative Note-taking
	BYU ScholarsArchive Citation

	Title Page
	ABSTRACT
	ACKNOWLEDGMENTS
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Characteristics of Collaborative Note-taking
	Information overload
	Information visualization

	Existing Text Visualization Algorithms
	Word frequency tables
	Tag clouds
	Word clouds
	Concordance lines
	Word trees
	Phrase nets
	Summary of text visualization algorithms

	Method and Findings
	Genesis of Algorithm
	Acquisition of a More Robust Data Set
	Downloading the new data set
	Obtaining transcripts of the talks

	Analysis: Matching Tweets with Talks
	Transformation of Language Data into Highlighting Data
	Conversion of tweet text into highlight magnitude values
	Conversion of highlight magnitude values into colors

	Visualization: Superimposing Highlights onto Original HTML

	Evaluation of the Final Visualization
	Survey Questions
	Summary of Survey Results

	Discussion of the Final Visualization
	Implications and Applications
	Limitations of the Current Algorithm
	Suggested Improvements
	Suggestions for Future Research
	Conclusion

	References
	Appendix A: Example of Plain Text Conference Talk Prepared for Indexing
	Appendix B: Example of Highlighted Conference Talk
	Appendix C: Source Code for the Visualization Algorithm

