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ABSTRACT

Fabrication and Application of Vertically Aligned

Carbon Nanotube Templated Silicon Nanomaterials

Jun Song

Department of Physics and Astronomy

Doctor of Philosophy

A process, called carbon nanotube templated microfabrication (CNT-M) makes high
aspect ratio microstructures out of a wide variety of materials by growing patterned vertically
aligned carbon nanotubes (VACNTs) as a framework and then infiltrating various materials
into the frameworks by chemical vapor deposition (CVD). By using the CNT-M procedure,
a partial Si infiltration of carbon nanotube frameworks results in porous three dimensional
microscale shapes consisting of silicon-carbon nanotube composites. The addition of thin
silicon shells to the VACNTs enables the fabrication of robust silicon nanostructures with
flexibility to design a wide range of geometries. Nanoscale dimensions are determined by the
diameter and spacing of the resulting silicon/carbon nanotubes while microscale dimensions
are controlled by the lithographic patterning of CNT growth catalyst. The characterization
and application of the new silicon nanomaterial, silicon-carbon core-shell nanotube (Si/CNT)
composite, is investigated thoroughly in the dissertation.

The Si/CNT composite is used as thin layer chromatography (TLC) separation media
with precise microscale channels for fluid flow control and nanoscale porosity for high an-
alyte capacity. Chemical separations done on the CNT-M structured media outperform
commercial high performance TLC media resulting from separation efficiency and retention
factor.

The Si/CNT composite is also used as an anode material for lithium ion batteries. The
composite is assembled into cells and tested by cycling against a lithium counter electrode.
This CNT-M structured composite provides an effective test bed for studying the effects
of geometry (e.g. electrode thickness, porosity, and surface area) on capacity and cycling
performance. A combination of high gravimetric, volumetric, and areal capacity makes the
composite an enabling materials system for high performance Li-ion batteries.

Last, a thermal annealing to the Si/CNT composite results in the formation of silicon
carbide nanowires (SiCNWs). This combination of annealing and Si/CNTs yields a unique
fabrication approach resulting in porous three dimensional silicon carbide structures with



iiiprecise control over shape and porosity.
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Chapter 1

Introduction

1.1 Nanomaterials

Nanomaterials are often defined as materials whose sizes in at least one dimension are signifi-

cantly smaller than one micrometer. Nanomaterials usually include nanoparticles, nanowires,

nanotubes, and nanoscale thin films. A nanoparticle is a particle whose diameter is less than

100 nm. Nanowires are solid materials in the form of wire with a diameter smaller than about

100 nm. A nanotube is a hollow nanowire. Thin films whose thickness is below 100 nm can

be considered nanoscale thin films. Nanoparticles, nanowires/nanotubes, and nanoscale thin

films are quasi zero dimensional, one dimensional, and two dimensional materials, respec-

tively. Due to the unique size, nanomaterials have extraordinary fundamental mechanical,

electronic, and thermal properties.1–3

The mechanical property of materials can be influenced by internal structural defects such

as dislocations, micro twins, and impurity precipitates which are widespread in materials. By

thermal annealing, imperfections in nanomaterials can easily migrate to the surface resulting

in low defect densities inside the nanomaterials. The low defect density in nanomaterials

can enhance the strength or ductility.1

1
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The thermal properties of nanomaterials are also different from those of bulk materials.

Heat is carried both by free electrons (and holes in semiconductors) and phonons. The

scattering lengths of phonons and electrons are different, it is possible to realize phonon

blocking and electron transmission by controlling the size of nanomaterials.2 However, the

thermal properties of nanomaterials have not been investigated thoroughly because it is

difficult to control and measure the thermal conductivity of nanomaterials.4

The electronic and optical properties of nanomaterials deviate substantially from those

of bulk materials. The energy band structure and corresponding optical properties in the

materials can change significantly due to the quantum confinement of nanomaterials. In

nanomaterials, the density of energy states will appear continuous near the center of the

band but consists of discrete levels at the edges of the band. Metal conductivity is dominated

by states at the Femi energy, but the band edges play a role in semiconductor conductivity.

For this reason, the conductivity of semiconductors is more sensitive to nanoscale dimension

than metals.2

Nanostructured materials are used in many applications. Nanowires can be potentially

used in nanophotonics, laser, nanoelectronics, solar cells, energy storage, resonators, and high

sensitivity sensors. Nanoparticles can be potentially used in catalysts, functional coatings,

nanoelectronics, energy storage, drug delivery, and biomedicines. Nanoscale thin films can

be used in light emitting devices, displays, and high efficiency photovoltaics.

1.1.1 Carbon Nanotubes

Carbon nanotubes (CNTs), a form of pure carbon, can be visualized as rolled hexagonal

carbon networks that are capped by pentagonal carbon rings. There are two types of CNTs:

single-walled carbon nanotubes (SWCNTs) and multi-walled carbon nanotubes (MWCNTs).

SWCNTs consist of a single graphite sheet wrapped into a cylindrical tube with a diameter
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from 1 nm to 5 nm. In contrast, MWCNTs comprise an array of tubes that are concentrically

nested. The diameter of MWCNTs is typically from 6 nm to 100 nm. CNTs have been

constructed with length-to-diameter ratio of up to 132,000,000:1.5

The discovery of carbon nanotubes has a complicated history.6 The earliest research

on carbon nanofibers was reported by L. V. Radushkevich and V. M. Lukyanovich in

1952(SovietJournalofPhysicalChemistry).7 However, the report did not attract atten-

tion possibly due to the Russian language. The first time hollow carbon fibers were observed

by Oberlin, Endo, and Koyama by using high-resolution transmission electron microscopy

(HRTEM) in 1976.8

In 1991 Sumio Iijima published a paper that initiated intensive research on CNTs.9 In

the report, Iijima synthesized helical carbon microtubules (now called nanotubes) by using

an arc-discharge fullerene reactor. The nanomaterials consist of nested graphene tubules and

were identified with HRTEM and electron diffraction. These concentric tubules exhibited

interlayer spacings of ∼ 3.4 Å, a value slightly greater than that of graphite (3.35 Å). Iijima

associated this spacing difference to a combination of the graphene sheet curvature and

weaker van der Waals forces acting between the successive cylinders.

In CNTs, carbon atoms exhibit sp2 hybridization, in which each atom is connected evenly

to three carbons (120◦) in the xy plane and a weak π bond is present in z axis. The C-C

sp2 bond length is 1.42 Å. The sp2 hybridization forms a hexagonal lattice typical graphite

sheet. Theoretically, it is possible to construct sp2-hybridized carbon tubule by rolling

up a hexagonal graphene sheet and the rolling in different ways results in chirality vari-

ance including armchair, zigzag, and chiral configurations. Depending upon tube diameter,

graphitization and chirality, carbon nanotubes can be either metallic or semiconducting with

an electron mobility of 100,000 cm2/(V.s).10 Carbon nanotubes also have high stiffness and

axial strength resulting from the high carbon-carbon sp2 bonding energy (113 kcal/mole).
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The thermal conductivity of an individual SWCNT can reach up to 200,000 W/K compared

to 3,000 W/K of graphite.11

Carbon nanotubes can be produced using a wide variety of processes such as arc-discharge,

laser ablation, and chemical vapor deposition.

In the 1991 work by Iijima, an arc-discharge evaporation method was used to synthesize

needle-like carbon tubes.9 The carbon tubes, ranging from 4 to 30 nm in diameter and up

to 1 mm in length, grew on the negative end of the carbon electrode. An arc-discharge

chamber filled with a gas mixture of 10 Torr methane and 40 Torr argon was used, and two

vertical thin electrodes were installed in the center of the chamber. The arc-discharge was

generated by running a direct current (DC) of 200 A at 20 V between the electrodes. Both

MWCNTs and SWCNTs can be synthesized by the arc-discharge evaporation method, but

diameter and length of nanotubes are dependent on gas components, metal catalyst, current

and pressure.12

In 1996, Smalley et al produced SWCNTs by laser-ablation (vaporization) of graphite

rods with small amounts of Ni and Co at 1200 ◦C.13 In the method, the CNTs kept growing

until too many catalyst atoms aggregate on the top of nanotubes, which allows nanotubes

to terminate with a fullerene-like tip or with a catalyst particle.

In 1996, a CVD process was used to produce CNTs with capability of controlling growth

direction and synthesizing a large quantity of nanotubes.14 In the process, a substrate with

catalyst on it is put into a furnace reactor and heated up in an oxygen free environment.

After a desired high temperature from 700 ◦C to 900 ◦C is reached, a mixture of hydrocarbon

gas (acetylene, methane or ethylene) and nitrogen (or argon or helium) is introduced into

the reactor at atmospheric pressure resulting in CNTs growth. The substrate is usually

silicon, but some metals15 and quartz16 are also used. The catalysts, Fe, Co, and Ni, can

be deposited on substrates from solution, electron beam evaporation, or sputtering. The
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diameter and length of nanotubes depend on catalyst particle, temperature, growth time,

and gases components.17,18

In conclusion, CNTs are important low-dimensional nanomaterials because of their small

diameter, high aspect ratio, high mechanical strength, high thermal and chemical stabilities,

and excellent heat and electrical conduction. As a result, CNTs are promising materials in a

variety of applications, such as fillers for polymer matrices, sensors, or field effect transistors.

1.1.2 Silicon Nanomaterials

Silicon nanostructure materials, including silicon thin film, silicon nanoparticles, silicon

nanowires (SiNWs) and silicon nanotubes (SiNTs), have attracted attention due to interest

in nanoscale properties such as light emission,19 quantum confinement effects,20 and energy

storage.21 In these nanostructure materials, SiNWs are expected to play a key role as in-

terconnection and functional components in future silicon based nanosized electronic and

optical devices.

In 1998, Morales and Lieber first synthesized nanoscale silicon wires with a laser ablation

method.22 In their work, laser ablation was used to prepare nanometer-diameter catalyst

clusters that define the size of wires produced by vapor-liquid-solid (VLS) growth. This

approach was used to prepare bulk quantities of uniform single-crystal silicon and germanium

nanowires with diameters of 6 to 20 and 3 to 9 nanometers, respectively, and lengths ranging

from 1 to 30 micrometers.

Since then, considerable effort has been devoted to synthesize SiNWs by VLS,23 chemi-

cal vapor deposition,24 laser ablation,22 thermal evaporation,25 template-assisted growth,26

lithography related etching,27 and oxide-assisted growth (OAG).19 Presently, SiNWs are

mainly applied in catalysis, Li ion batteries, solar cells, biological and chemical sensors.
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1.2 Materials Characterization Techniques

To better understand the CNT templated silicon nanomaterials, I used precise characteriza-

tion tools including atomic force microscopy (AFM), scanning electron microscopy (SEM),

transmission electron microscopy (TEM), Raman spectroscopy, and electron energy loss

spectroscopy (EELS).

1.2.1 Atomic Force Microscope (AFM)

In 1986, Binnig, Quate, and Gerber first demonstrated atomic force microscopy (AFM),

which combined the principles of operation of STM and the stylus profilometer.28 AFM is

used for imaging, measuring, and manipulating matter with demonstrated resolution at the

nanoscale.29 An AFM has a cantilever with a sharp tip at its end. An AFM obtains an

image of surface topography by using the tip to scan a sample surface and measuring the

force between the tip and the sample surface. The force is typically from 10−11 N to 10−6 N

and causes the cantilever to bend. The bending of the cantilever is monitored by a detection

of the deflection of the laser beam at a quadrant photodiode. Typical cantilever spring

constants are in range of 0.001-100 N/m. The deflection detector can measure motions from

micrometers to 0.1 Å.

1.2.2 Scanning Electron Microscope (SEM)

A Scanning Electron Microscope (SEM) is a common tool for high resolution imaging, allow-

ing displaying feature sizes of nanometers. In 1935, Max Knoll first produced a SEM image

of silicon steel showing electron channeling contrast.30

A SEM is an electron microscope by using a high energy beam of electrons to scan a

sample.31 The electrons interact with the sample atoms to produce signals that contain



1.2 Materials Characterization Techniques 7

information about the sample’s structure and composition. The signals include secondary

electrons, back-scattered electrons (BSE), characteristic X-rays, specimen current and trans-

mitted electrons. A wide range of magnifications are available, from about 10 times to more

than 500,000 times.

1.2.3 Transmission Electron Microscopy (TEM)

In 1931, Max Knoll and Ernst Ruska invented the first Transmission Electron Microscope

(TEM).32 A sample used in TEM must be an ultra thin specimen, through which a beam

of electrons can be transmitted. The interaction of electrons transmitted forms an image of

the specimen, and the image is focused on a fluorescent screen or detected by a sensor such

as a CCD camera. TEMs are able to produce images with a significantly high resolution

owing to the small de Broglie wavelength of electrons. As a result, TEMs allow users to

examine fine detail from two hundred nanometers to an angstrom scale magnification.33,34

At low magnifications, TEM image contrast is dependent on the absorption of electrons in

the material. At high magnifications complex wave interactions modulate the intensity of

the image. Alternate modes in the TEM can obtain more material information including

chemical identity, crystal orientation, electronic structure, and sample induced electron phase

shift as well as the regular absorption based imaging.

Combined with a SEM or a TEM, Energy-dispersive X-ray spectroscopy (EDX) has been

an analytical technique used for the elemental components or chemical characterization of

a sample since 1960s. An incident beam on the surface of a sample may excite an electron

from an inner shell bound to the nucleus, eject it from the shell and create a hole where the

electron originally was. An electron from an outer, higher-energy shell then fills the hole,

and the difference in energy between the higher-energy shell and the lower energy shell may

be released in the form of an X-ray. The number and energy of the X-rays emitted from the
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specimen can be measured by an energy-dispersive spectrometer.35

Combined with a TEM, an Electron Energy Loss Spectroscopy (EELS) is regarded as

being complementary to EDX and was developed by James Hillier and RF Baker in 1944.36

In EELS, a beam of electrons, with a narrow range of kinetic energies, is transmitted through

the sample. Some electrons will lose energy and are deflected slightly and randomly after

undergoing inelastic scattering. The lost energy can be measured via an electron spectrom-

eter and interpreted in terms of what caused the energy loss. One can determine the types

of atoms and the numbers of atoms of each type by carefully comparing the energy loss

spectroscopy with the reference.37

1.2.4 Raman Spectroscopy

A Raman effect is the inelastic scattering of a photon, named after one of its discoverers,

Sir.C.V.Raman. In 1934, George Placzek developed the theory of Raman effects.38

Typically in the Raman measurement, a sample is illuminated with a laser beam. The

laser beam can result in molecular vibrations, phonons or other excitations which makes the

energy of the laser photons shift up or down. The shift in energy gives information about

the vibrational modes in the sample. Light from the illuminated spot is collected with a

lens and sent through a monochromator. Wavelengths close to the laser line are filtered out

while the rest of the collected light is dispersed onto a detector.39

1.3 Lithium Ion Battery Background

Lithium-ion batteries are energy-storage devices which convert chemical energy into electri-

cal energy by electrochemical reduction and oxidation reactions. In this dissertation, only

rechargeable lithium-ion batteries are discussed. A rechargeable lithium-ion battery contains
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one anode, one cathode, and electrolyte. The anode is the negative electrode from which

electrons are generated to do external work. The cathode is the positive electrode where

positive ions migrate toward the LiMO layer structure (M stands for metal). The electrolyte

allows lithium ions, not electrons, to flow from one electrode to another. The electrolyte is

a liquid solution containing a salt dissolved in a solvent. The electrolyte must be stable in

the presence of both electrodes. During the discharge process, lithium ions depart from the

negative electrode, diffuse and migrate to, and intercalate into the positive electrode. The

electrons are released from the negative electrode and move to the positive electrode through

the external circuit. The reverse procedure occurs during the charge process.

The typical cathode materials of lithium-ion batteries are principally transition metal

oxides such as LiCoO2, LiNiO2, or LiMn2O2.
40 LiMn2O2 is ideal for intercalation of small

ions such as H+ and Li+2O4. Its other advantages include low cost,high thermal threshold,

excellent rate capability, and minimal health and environmental impacts.The standard anode

material is carbon. Silicon is an interesting alternative to carbonaceous anodes. Silicon has

the highest known specific lithium energy storage capacity at 4,200 mAh/g,41 which is 10

times larger than in traditional carbonaceous anode materials. It is also the second most

abundant element on the earth’s crust. As a result, it is very attractive as a potential

lithium-ion battery anode material.

However, with this large capacity comes a large capacity fade during initial cycling and a

volume change of as much as 400 %.42 Several methodologies have been adopted to overcome

the problem: one of these approaches is to replace bulk powders with thin films.43,44 The

thin films allow for volume expansion and strain relaxation, but thin film thickness has an

effect on both the rate capability and cycling stability. An other approach is to increase

the free space which can accommodate the volume variations by using silicon nanoparti-

cles,45,46 silicon nanowires (SiNWs), or silicon nanotubes (SiNTs).21,47,48 Reducing the size
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of particles or limiting the dimension of materials does not control the volume expansion

but increases the stability presumably because of strain relaxation and more uniform expan-

sion. Silicon nanoparticles below 20 nm in diameter exhibit a capacity up to 3467 mAh/g

at C-rate C/5.45 C-rate is defined by the capacity of electrodes, for example for 1C, the

current is chosen for pure silicon such that I = silicon mass × capacity(4200 mA/g). SiNWs

were applied as lithium battery anodes which exhibit a capacity up to 4000 mAh/g at a

C-rate C/20,21 which also makes possible to have more active materials per area. Since

2008, SiNWs and SiNTs have been investigated thoroughly for application to lithium ion

batteries, including the influence of diameters,49 dopant50 and carbon coating.47 Another

approach is to form silicon-carbon nanocomposites by using carbon nanotubes or nanofibers.

The Si-C nanocomposites were found to be effective in reducing capacity degradation during

cycling.51–53 Though carbon nanotubes have a relative high energy barrier restricting them-

selves as active materials in lithium ion batteries,54 they are promising active matrices due

to their nano-scale and good conductivity. Cui et al, spread carbon nanofibers (CNFs) on

stainless steel foils and deposited silicon onto CNFs by a CVD procedure.51 Kumta et al,

grew carbon nanotubes (CNTs) on the glass, deposited silicon onto CNTs, and transferred

the Si/CNT nanocomposites to copper foils.52

All work above has achieved much higher gravimetric capacities than carbonaceous anode

by using silicon anode. However, to realize high capacity batteries, high areal and volumet-

ric capacities are as critical as gravimetric capacities. My work in Chapter 4 focuses on

an approach using silicon-CNT composites to achieve a combination of high gravimetric,

volumetric, and areal capacity. Chapter 4 has been written up as a journal article and is in

review at the Journal of Electrochemical Society.
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1.4 Thin Layer Chromatography

Chromatography can be defined as ”a physical method of separation in which components

to be separated are distributed between two phases, one of which is stationary (stationary

phase) while the other (the mobile phase) moves in a definite direction”. Stationary phase

is a solid or a liquid supported on a solid support surface, and mobile phase is a gas,

liquid, or a supercritical fluid flowing over the stationary phase. The physical and chemical

natures of these two phases determine the characteristics of a chromatographic separation.

Chromatography is often used for separation, extraction, and analysis of various constituents,

or fractions, of a sample interested. Chromatography may also be used for the preparation,

purification, concentration, and clean-up of samples.

Thin layer chromatography (TLC) technique is a typical chromatography that separates

molecule mixtures.55 A TLC plate is usually a sheet of glass, plastic, or aluminum foil

with a coating of adsorbent materials, such as silica gel, aluminum oxide, or cellulose. The

adsorbent materials are used as the stationary phase, and a solvent carrying mixtures is

regarded as a mobile phase. When mixtures and a solvent are applied on the plate, capillary

action will pull the solvent upward along the plate. Because different analytes ascend the

TLC plate at different rates, separation is achieved.

Today, commercial TLC plates are fabricated by coating glass or metal surfaces with

porous silica microparticles. The microparticles are deposited on the surface under carefully

controlled processes and held together with a binder (e.g., gypsum or polyvinyl alcohol).

However, there is room to improve separation resolution and speed in TLC plates. The

control of structure on the microscale is one of the solutions to the problem. Furthermore,

though microscale structures have previously been fabricated for chromatography, the lack

of nanoscale porosity limits the capacity of these structures. Here we applied the CNT-M

process to fabricate TLC media with high degree control microscale geometry. The work is
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described in Chapter 3 and was written up as a journal article and published in Advanced

Functional Materials.

1.5 Significance of the Dissertation

A novel nanostructured material, silicon-carbon core-shell nanotube (Si/CNT) composite, is

explored thoroughly in this dissertation including synthesis, characterizations, and applica-

tions of this material.

1. Fabricated silicon-carbon nanotube composites

The Si/CNT composite has a high aspect ratio in three dimensions resulting in large

surface area. The controllable diameters, heights, patterning and crystallization of the

materials are useful in many applications. The achievements were published in Ad-

vanced Functional Materials (J. Song et al. Carbon-Nanotube-Templated Microfabri-

cation of Porous Silicon-Carbon Materials with Application to Chemical Separations.

Advanced Functional Materials 21, 1132-1139, 2011;

2. Applied to thin layer chromatography

The patterned Si/CNT composite was oxidized and used as TLC media. The pre-

cise pattern of the composite improves fluid flow control and nanoscale porosity of

the composite provides high analyte capacity. The chemical separations media out-

performed commercial HPTLC plates. The achievements were published in Advanced

Functional Materials (J. Song et al. Carbon-Nanotube-Templated Microfabrication of

Porous Silicon-Carbon Materials with Application to Chemical Separations. Advanced

Functional Materials 21, 1132-1139, 2011;

3. Applied to lithium ion batteries
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The composite was used as anode materials in lithium ion batteries, and resulted in

a combination of high gravimetric, volumetric, and areal capacity and is ideal for

high performance Li-ion batteries. The achievements were submitted to Journal of

Electrochemical Society;

4. Synthesized silicon carbon nanowires

The composite was annealed in a high-temperature environment with argon. The

composite was converted to a wide band gap semiconductor material, silicon car-

bide nanowires (SiCNWs), with keeping three dimensional patterning as original. The

achievement is being prepared for submission to Nanotechnology.



Chapter 2

Microfabrication procedure and

characterization of silicon-carbon

core-shell nanotubes

2.1 Introduction

Nanostructured silicon materials including silicon nanowires (SiNWs)22 and silicon nanotubes

(SiNTs)56 have attracted attention due to interest in future silicon based nanodevices and

nanoscale properties such as light emission19 and quantum confinement effects.20 SiNWs or

SiNTs can be prepared by either physical or chemical methods. However for some applica-

tions, for example, in lithium-ion battery anodes21 and hydrogen storage devices57 the lithium

or hydrogen ions require more accommodation sites and smoother transfer pathways, so the

improved control of length, diameter, crystallization, and patterning of nanowires/nanotubes

is needed. Although considerable effort has been devoted to developing controlled synthesis of

silicon nanostructure materials, the precise control of large-scale formation of a well-aligned

14
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forest is still elusive.

2.2 Synthesis of Vertically Aligned Carbon Nanotubs

In general, chemical vapor deposition (CVD) improves yield and purity of CNTs, allows for

various substrates, and produces vertically aligned CNTs.15 As a result, the CVD technique

is widely used to grow CNTs today.

Figure 2.1 A diagram of a CNT growth instrument and a pre-
pared substrate

In our work, CVD carbon nanotube synthesis consists of a three-step process. The first

step is preparation of patterns on substrates. To realize a pattern, lithography technology

can be used including e-beam lithography or photolithography. The pattern features sizes

that are determined by the lithography can be as small as a few nanometers to as large

as several centimeters. Photolithography was used due to its low-cost and efficiency. The
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second step is deposition of a catalyst stack consisting of alumina and iron. The catalyst is

critical to the nanotube synthesis in the sense that the diameter of CNTs depends on the

size of catalyst clusters.17 A thin film of alumina is deposited on patterned substrates using

an e-beam evaporator, and then a thin film of iron is deposited on patterned substrates

with alumina using a thermal evaporator. The thin film of alumina is used as a barrier

layer between substrates and iron, and the thin film of iron is the active catalyst for CNTs

growth. After the depositions of the thin films, a lift-off process removes photoresist which

results in a patterned catalyst layer. The final step is to grow CNTs on the substrate in

a carbon-rich gaseous environment. Normally, we put the substrates into a quartz tube

heated up by a furnace with hydrogen. When the desired temperature (750 ◦C) is achieved,

vertically aligned CNTs (VACNTs) are grown with the flowing mixed gases of ethylene and

hydrogen. Cooling is done under argon. The as-grown nanotubes have diameter ∼ 10 nm

and the length can be several microns to millimeters dependent on CNTs growth time. The

diagram of a CNT growth instrument and a prepared substrate is shown in Fig. (2.1).

CVD CNT synthesis involves many parameters such as hydrocarbon, catalyst, temper-

ature, pressure, gas flow rate, deposition time, and reactor geometry. The parameters can

influence diameter, length, growth speed, and alignment of CNTs. In this dissertation, the

VACNTs will be used as a template to fabricate vertically aligned silicon nanomaterials,

so the alignment and length are critical. Based on our experiment results and literature

research,58 catalyst is the most important for the alignment and length of CNTs. The inves-

tigation to thickness of catalyst is shown in Fig. (2.2). The roughness of a 10 nm alumina thin

film is ∼ 37 nm (Fig. (2.2)a), while the roughness of a 30 nm alumina thin film (Fig. (2.2)d)is

∼ 3 nm. After 0.6 nm iron deposition and annealing in hydrogen, the surface morphology

did not change significantly. With same quantity of iron, the VACNT growth is good in

either speed or orientation when the alumina film thickness was over 10 nm. The standard
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Figure 2.2 AFM images of catalyst layer with various thick alu-
mina of 10 nm (a-c) and 30 nm (d-f). Alumina thin film 10 nm
thick (a) and 30 nm thick (d); 0.6 nm iron was deposited on alu-
mina (b,e); surface morphology after annealing with hydrogen
(c,f)
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good VACNT growth is shown in Fig. (2.3), which shows SEM images of VACNTs with a

catalyst layer consisting of 2 nm iron on 30 nm alumina. A grid-patterned VACNTs is shown

in Fig. (2.3)a, and a close-up view of VACNTs is shown in Fig. (2.3)b.

Figure 2.3 SEM images of VACNTs. (a) CVD synthesis of pat-
terned CNTs on a silicon wafer. (b) a close-up view of VACNTs.

2.3 Fabrication of Silicon-Carbon Core-Shell Nanotubes

Low Pressure Chemical Vapor Deposition (LPCVD) silicon forms remarkably uniform films

around patterned multi-walled carbon nanotubes (MWCNTs); Fig. (2.4) shows typical SEM

images of patterned silicon-carbon core shell nanotube (Si/CNT) structures. Silicon was

deposited onto the nanotubes by LPCVD where Silane (20 sccm) reacted with the specimen

at an elevated temperature and low pressure (150 mtorr). The Si/CNTs are vertically aligned

and retain the vertical orientation of the initial CNT forest. Complex 3D structures and

lines of vertical Si/CNTs are shown in Fig. (2.4)a and (2.4)b. The height of the synthesized

Si/CNTs is controlled by varying the run time for carbon nanotube growth. For example, 2

min growth resulted in 100 µm high CNTs.

The Si/CNT diameters can be from 10 nm to 120 nm, which depends on the LPCVD
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process parameters and time. Fig. (2.4)c and (2.4)d are close-up views of Si/CNTs with

thinner ( (2.4)c) and thicker ( (2.4)d) silicon films deposited at 530 ◦C and 560 ◦C for 60

mins. The 560 ◦C LPCVD deposition has a higher deposition rate and therefore grows a

thicker silicon coating. The structure of the Si/CNTs is generally vertical with individual

nanotubes in the structure following an undulating path, as seen in Fig. (2.4)c and (2.4)d.

Figure 2.4 SEM images of patterned Si/CNTs. (a) An arbi-
trary 2D catalyst pattern results in a robust 3D Si/CNT struc-
ture, in this case a 400 µm high BYU logo. (b) Lines of 10 µm
tall vertical Si/CNTs are shown. The close-up views of (b) are
shown in the inset. (c) High magnification view shows Si/CNTs
synthesized with LPCVD silicon at 530 ◦C for 60 min, which de-
posits a thin Si coating and results in 70 nm diameter Si/CNTs.
(d) Si/CNTs synthesized with LPCVD silicon at 560 ◦C for 60
min, which deposits a thicker Si coating and results in 120 nm
diameter Si/CNTs
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2.4 Characterization of Silicon-Carbon Core-Shell Nan-

otubes

The structural characteristics of Si/CNTs were investigated by Raman spectroscopy. The

Raman spectra of vertically aligned Si/CNTs are shown in Fig. (2.5) for both amorphous

and crystalline samples. The amorphous silicon peak is centered at 465 cm−1 and seen

in Fig. (2.5)a and (2.5)b. Because of the amorphous structure, the momentum selection

rule is relaxed, and a broad peak is seen. In crystalline silicon, only the 64 meV optical

phonon is allowed59 resulting in a sharp peak at 517 cm−1 and a broad feature at 945 cm−1

seen in Fig. (2.5)c. The peak at 517 cm−1 of crystalline Si/CNTs is slightly broader, and

more asymmetric than that of bulk silicon, which is consistent with Raman measurements

of silicon nanowires.60,61 All three Raman spectra show the first order D band (1305 cm−1)

and G band (1587 cm−1) of carbon nanotubes. Increasing the thickness of silicon gives a

corresponding increase in the silicon signal and decreases the CNT signal. Additionally,

the relative intensities of the D and G bands change as the silicon thickness is increased.

One question is whether a SiC layer was formed at the Si-CNT interface. SiC has many

polytypes which have different Raman spectra. The maximum intensity folded transverse

optical (FTO) modes for all 6 polytypes62 fall in the range between 764 and 796 cm−1, but

there are no features in our spectra in this range indicating that within the detection limits of

this instrument, there is no SiC present. Panitz et. al63 have used Raman in the wavelength

range from 250 to 1000 cm−1 to distinguish silicon carbide from silicon; our spectra are an

excellent match to their silicon spectra including the broad feature just below 1000 cm−1.

A series of transmission electron microscopy (TEM) images of Si/CNTs are shown in

Fig. (2.6). The TEM images show two silicon morphologies after silicon deposition, either

as beads formed along the CNT or a conformal shell of silicon over the CNT. Fig. (2.6)a
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Figure 2.5 (a,b) 10 nm and 30 nm of amorphous silicon de-
posited at 530 ◦C. Raman spectrum peak of amorphous silicon
is shown. With a thicker silicon shell, the peak of silicon (around
465 cm−1) is higher; (c) 50 nm of crystalline silicon deposited
at 560 ◦C and annealed at 700 ◦C overnight. Raman shifts of
517 cm−1 and 945 cm−1 indicate a crystalline silicon coating.
Carbon nanotubes are identifiable in all spectrum (a,b,c)
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and its inset show typical images where the multi-walled carbon nanotube core and the ∼

10 nm (average) silicon coating can be seen. The fairly uniform silicon coating on these

carbon nanotubes gives 30 nm wide Si/CNTs with occasional bead formation. At 530 ◦C,

amorphous silicon was deposited on the nanotubes and above 560 ◦C polycrystalline silicon

was deposited. The high resolution micrographs (Fig. (2.6)b is an amorphous silicon coating

and Fig. (2.6)c is a crystalline silicon coating) show the morphology of these Si/CNTs, and

the inset in Fig. (2.6)c shows the selected-area electron diffraction (SAED) pattern of that

specimen showing its polycrystalline nature. To attain a uniform crystalline silicon coating,

amorphous silicon was deposited at 560 ◦C and then thermally annealed at 700 ◦C for 12-14

hours.

Figure 2.6 (a) TEM images of Si/CNTs with a 10 nm sili-
con coating are shown. The inset shows an enlarged view of
Si/CNTs. (b) The high magnification image shows the morphol-
ogy of Si/CNTs coated with amorphous silicon. (c) Polycrys-
talline silicon coated carbon nanotubes is proved by the SAED
(Inset in c)

Scanning transmission electron microscopy (STEM) images and electron energy-loss spec-
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troscopy (EELS) data are shown in Fig. (2.7). In Fig. (2.7)a, the annular dark field image

shows a horizontally oriented Si/CNT. The core-shell structure seen in projection should

have a dip in intensity at the carbon core as seen. The line on Fig. (2.7)a is the location of

the EELS line scan shown in Fig. (2.7)b and Fig. (2.6)c. In Fig. (2.7)c, an EELS spectrum

is shown from the middle of the Si/CNT. In the data shown, the decreasing background has

been fit to the region before the silicon edge and subtracted from the entire spectrum. The

silicon peak is just above (higher energy loss) the background window. The fine structure

of the silicon peak is consistent with crystalline silicon. The carbon peak is also labeled on

the right half of the spectrum and its fine structure is consistent with that of carbon nan-

otubes.64 In the middle of the spectrum is an artifact that arises from a mismatch between

the quadrants of the EELS CCD readout. We include the full spectrum (with artifact) to

show that the silicon and carbon data come from the same data set with perfect spatial

registry. With the background subtraction as shown in Fig. (2.7)c, the counts in the silicon

peak (over some region close to the edge onset) are proportional to the number of silicon

atoms seen by the beam. Fig. (2.7)b shows the number of counts in the silicon edge along the

line scan. Also in Fig. (2.7)b, the carbon edge counts are shown. The carbon data used the

same data sets but with the background subtraction taken just before the carbon edge, and

the counts were then collected from near the carbon edge onset. The two lines in Fig. (2.7)b

show the distribution of silicon and carbon across the Si/CNT. The silicon shows a dip in

the middle of its distribution with a corresponding increase in carbon at the edges of the

dip. Carbon also shows a dip in the middle of its distribution. This profile is what would be

expected from the ”tube” nature of both the silicon and CNT structure.
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Figure 2.7 (a) Dark field image of an individual Si/CNT by
STEM. An EELS measurement is made at each point as the
beam is scanned through the Si/CNT along red line 1. (b)
Counts above background in the Si and the C peaks are plot-
ted vs. position along this scan line. The percentage of silicon
and carbon varies along this cross-section of the Si/CNT. (c)
EELS near the core of the Si/CNTs shows both silicon peaks
and carbon peaks (from CNTs)
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2.5 Mechanism of Silicon Infiltration

LPCVD is known to produce conformal coatings with excellent penetration into cracks and

porous structures. Our results also show excellent penetration into the CNT forest, though

the thickness and morphology of the silicon coating, under the conditions used, does depend

somewhat on depth (and distance from the pattern edges) into the carbon nanotube forest,

as shown in Fig. (2.8). The Si coating of the CNTs is compared between the top (a) and

bottom (b) regions of the forest. In Fig. (2.8)a, the top region shows a uniformly thick

coating, in Fig. (2.8)b the thinner coating is generally smooth, but in places it is discrete like

beads on a string. Fig. (2.8)c plots the Si/CNT diameter at various depths in the structure

showing that deep in the structure the deposition rate is lower. We define the diameter of

Si/CNTs as the average width of tubes (top of the forest) or beads (bottom of the forest).

The average diameter of Si/CNTs ranges from 48 nm on the top to 40 nm at the bottom for

this deposition. The diameter and morphology variance arises from differences in the silicon

deposition rate from the top to the bottom. To determine the difference in silicon deposition

rate, we calculate the silicon volume per nanotube length using equation (2.1).

V/L = π(R2 − r2)C/L (2.1)

In the formula above, V/L is the silicon volume per unit length of nanotube, R is the

radius of the Si/CNTs, r is the radius of the CNTs, and C is the fraction of the nanotube

length coated with silicon. All parameters here are illustrated in the Fig. (2.8)d. From an

analysis of the 40 min Si deposition at 530 ◦C shown in Fig. (2.8)a and (2.8)b, V/L on

the top is about 1750 nm2, and at the bottom of the 400 µm forest V/L is about 900 nm2,

approximately half of that on the top.

To achieve uniform Si/CNT diameters, the deposition rate is expected to be limited

by the kinetics of surface growth rather than the transport of gases to and from the CNT
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Figure 2.8 An un-patterned CNT forest was grown to a height
of 400 µm and coated with silicon at 530 ◦C for 40 min. (a) The
SEM image of the top of Si/CNTs shows a uniform coating.
(b) The morphology of most tubes near the bottom is smooth,
but there also are some discrete silicon beads. (c) The Si/CNT
diameter is measured at various depths in the structure. The
diameter of Si/CNTs decreases and more beadlike morphology
is seen at greater depths. (d) A sketch shows parameters used
to calculate the volume of deposited silicon
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surface. The former is determined by an adsorption on the CNT surface, but the latter

is related to a concentration change in a CNT forest. A model is set up to investigate

Si/CNT diameter variance from the top to the bottom of a Si/CNT forest. In the model,

from the top to the bottom of a CNT forest, the surface growth rate on CNTs is assumed

consistent but the concentration of silane vapor is not. The Fig. (2.9) is a model sketch for

an infiltration process, where a sample including the CNT forest on substrate is laid in the

reactor. The height of the CNT forest is h, and coordinate is from the top (z=0) of CNTs to

the bottom (z=h) of CNTs. The vapor comes from one side to the other side, which has a

constant concentration at z=0 but varies from z=0 to z=h. The substrate forms a boundary

condition which no diffusing species can pass through the z=h line.

Figure 2.9 A infiltration process diagram for a theoretical study

Fick’s second law of diffusion for some small volume gives a relation including a ”sink

form (αφ)” as follows:

φ̇/ṫ = Dφ̈/ẍ− αφ (2.2)
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Here φ is the concentration of the vapor. D is the diffusivity. Because the deposition

time is long enough, the concentration profile should be time independent. Without the

boundary conditions, the solution to the differential above is:

φ = A exp(βz) +B exp(−βz) (2.3)

Here β is
√
α/D. With the boundary conditions:

φz=0 = φ0 (2.4)

˙φz=h/ż = 0 (2.5)

Here φ0 is the vapor concentration at z=0, and the corrected vapor concentration distri-

bution is:

φ = φ0(exp(βz) + exp(2βh− βz))/(1 + exp(2βh)) (2.6)

If the vapor concentration is dominant in the diameter of the Si/CNTs, the Si/CNT

diameter should be proportional to the vapor concentration and infiltration time. To verify

the effect of the concentration variance on the infiltration process, we choose a diffusivity and

time a proportional coefficient to the equation (2.6). A comparison between the adjusted

result and the Si/CNT diameters is shown in Fig. (2.10), in which the red line is the modeling

result and the blue dots are Si/CNT diameters measured by the SEM.

The modeling result fits well to the experimental measurement, however, there is a mis-

match at the bottom of the forest. The mismatch may result from the temperature gradient

from the top to the bottom of the forest. Although the temperature difference between

the top and the bottom of the forest is small, the diffusivity varies in most systems as an
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Figure 2.10 Trendlines of the diameter os Si/CNTs by a SEM
measurement (blue dots) and a theoretical model (red line)

exponential function of temperature. As a result, the weak temperature gradient affects

obviously on the concentration. Concluded from Fig. (2.10), the concentration variance is

more dominant in Si/CNT diameter variance than the other infiltration process parameters

including pressure and vapor flow rate. As a result, if we expect to improving the Si/CNT

diameter uniformity, the concentration difference between the top and the bottom of a CNT

forest should be minimized.

2.6 Discussion and Conclusion

The data shown for Raman, EELS and imaging results are consistent with the proposed

pictures of carbon nanotubes coated with amorphous or poly-crystalline silicon. The coating

rate is weakly dependent on depth, and the rate should also depend on the CNT pattern as

well as the parameters of the LPCVD process. To achieve uniform Si/CNT diameters, the
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deposition rate must be limited by the kinetics of surface growth rather than the transport of

gases to and from the CNT surface. Patterning gas access holes have previously been shown

to improve gas transport and silicon infiltration uniformity,65 which is agreed with our the-

oretical study because gas holes contribute to the vapor concentration uniform distribution

in the CNT forest. To improve the uniformity of silicon coatings on CNTs, temperature can

be helpful since diffusivity (D) is dependent on temperature. We have seen some evidence

that lower LPCVD temperatures coat more slowly but more uniformly. The average spacing

between CNTs in this process is ∼ 100-150 nm, thus limiting Si/CNT diameters to ∼ 200

nm at which point the structure is mostly filled.

Silicon deposition on the CNTs typically forms a conformal coating but occasionally

results in separated beads along the CNTs, as seen in Fig. (2.8)b and Fig. (2.6)a. This bead

formation may be due to insufficient coating, a smaller diameter of the underlying nanotube

or a combination of these factors. In general, droplet or bead formation on a fiber depends

upon the atoms having sufficient mobility to form the energetically preferred structure, the

relative surface energies, on the diameter of the fiber.66 In our CNT growth process, multi-

walled CNTs were formed with a distribution of tube diameters (averaging 8 to 10 nm in

diameter). We suggest that at the Si deposition temperature (> 500 ◦C) silicon atoms have

sufficient mobility to form beads of silicon on the multi-walled CNTs. Those initially formed

beads then grow and combine to form conformal coatings. The specifics of that bead-to-

conformal coating process will depend upon the individual CNT diameter, the deposition

temperature, and the amount of silicon on the CNT. In Fig. (2.8) we estimate that at 530

◦C our typical CNT (8 to 10 nm in diameter) is conformally coated after approximately 15

nm of deposition (∼ 40 nm total diameter including the CNT).

In conclusion, vertically aligned and patterned silicon-carbon core shell nanotubes have

been synthesized by the CNT-M process. These Si/CNTs are uniform in morphology con-
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sisting of a multi-walled nanotube core and an amorphous or crystalline silicon shell. No

evidence of a SiC layer at the interface was seen by Raman or EELS.



Chapter 3

Carbon Nanotube Templated

Microfabrication of Porous

Silicon-Oxide Nanowires with an

Application to Chemical Separations

3.1 Introduction

Several functional properties of materials are impacted by the three dimensional shape of

the material on both the micrometer scale (microscale) and nanometer scale (nanoscale).

Microscale patterning of a material affects several functional properties including fluid flow,

ion and electron conductivity, mechanical response, and interactions with electromagnetic

fields and waves.67,68 Nanoscale structuring can dramatically change chemical reaction rates

and surface adsorption capacity as the surface to volume ratio significantly increases.69 Elec-

tronic materials properties including band structure, recombination rates, and mobilities are

32
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strongly influenced by nanoscale structuring.70 Often multiple physical properties are cou-

pled and are jointly influenced by nanoscale structuring as is the case for strained silicon:

nanoscale strain control is used to produce higher mobilities than achievable in the bulk.71

Coupling between strain and electrochemical properties was observed in nanoscale silicon

particles deposited on carbon nanotubes which resulted in improved electrochemical cycling

over bulk silicon anodes for lithium ion batteries.72

Since both micro and nanoscale structuring influences functional material properties,

the ability to control microscale shape in a variety of nanostructured materials will enable

a wide range of applications. Precise three dimensional microscale structures have been

widely fabricated by reactive ion etching (RIE) wherein bulk semiconductor, metal, and

ceramic materials are micromachined into the desired shapes.73 Deep reactive ion etching

has resulted in high aspect ratio structures in silicon.74 High aspect ratio structures with

vertical sidewalls were also fabricated by using vertically aligned carbon nanotube grown from

micropatterned catalyst layers.75,76 However, the as-grown nanotube density is low and the

tubes are held to each other only by weak van der Waals forces resulting in structures that

are too weak to maintain their microscale shape when put in contact with fluids. Recently,

templated microfabrication of robust high aspect ratio structures in silicon, silicon nitride,

and carbon has been done using carbon nanotube (CNT) frameworks.65 On the nanoscale,

silicon materials including silicon nanowires (SiNWs), silicon nanotubes (SiNTs), and porous

silicon have previously been fabricated by a variety of methods including chemical vapor

deposition, template-assisted growth, solution phase synthesis, and electrochemical etching.

Vertically etched porous silicon has been used to produce microscale features with vertical

nano-pores by masking and plasma etching. Carbon nanotubes also have been used as a

nanoscale template for various materials, including polymers,77 metal,78 metal alloy,79,80 and

silicon.51,81–83 While these prior methods have been used to fabricate structures on the nano
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and microscale there has not been a general, flexible method for three dimensional patterning

that spans the entire range from nano to micro.

3.2 Fabrication of Porous Silicon-Oxide Nanowires

Here we introduce a fabrication process that results in control over length scales, ranging from

several nanometers to several hundred microns. The process, called carbon nanotube tem-

plated microfabrication (CNT-M) uses partial Si infiltration of carbon nanotube frameworks

to fabricate porous three dimensional microscale shapes consisting of silicon-carbon core-shell

nanotubes (Si/CNTs) as illustrated in Fig. (3.1)a-c. The addition of thin silicon shells to the

vertically aligned CNTs (VACNTs) enables the fabrication of robust silicon nanostructures

with the flexibility to design a wide range of geometries by CNT-M. Fig. (3.1) illustrates the

hierarchical nature of the geometry and the ability to control geometric dimensions over a

broad range of length scales.

We illustrate the utility of this hierarchical structuring approach by fabricating micropat-

terned plates for a chemical separation technique, high resolution thin layer chromatography

(TLC). In TLC, samples are spotted near the bottom of a plate and carried up the plate by

solvent fluid flow by capillary action. If the solvent (mobile phase) and materials in the TLC

plate, i.e., stationary phase, are chosen correctly, different analytes move up the plate at dif-

ferent speeds resulting in separated spots when multiple analytes are present. In TLC, the

separation mechanism results from different equilibrium constants of analytes partitioning

themselves between the mobile and stationary phases. Spatial non-uniformity in fluid flow

spreads each TLC analyte spot, resulting in low resolution. Consequently, high resolution

separations require control of structure on the microscale for uniform solvent flow.55 High

resolution TLC (at practical concentrations) requires a nanostructured, high area surface to

keep the surface from overloading with analyte and consequently spreading the analyte spot.
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Figure 3.1 Patterning 3D structures with control over a hier-
archical set of length scales. (a-c) Diagram of the fabrication
process for patterned Si/CNTs using a vertical CNT template.
(a) Photolithography, deposition and a lift-off process yields a
two dimensional (2D) alumina and iron catalyst layer. (b) CNTs
grow vertically from the patterned catalyst and form a three di-
mensional (3D) structure. (c) Si/CNTs are formed by coating
the CNTs with Si by LPCVD. (d) The fabrication dimensions
can be controlled over several length scales as outlined in the
table, and limited only by the lithography system
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Commercial TLC plates are fabricated by coating glass or metal surfaces with porous silica

microparticles. The microparticles are deposited on the surface under carefully controlled

processes and held together with a binder (e.g., gypsum or polyvinyl alcohol). Although

commercial TLC is a mature technology there is significant room for improvement in mi-

crostructure regularity when compared to lithographically defined structures. Structures

have previously been microfabricated for chromatography but the lack of nanoscale porosity

severely limits the capacity of these structures.84 Here we have constructed binder-free TLC

plates using an extension of the CNT-M process. The extension adds a thermal oxidation

step after Si infiltration; the oxidation step converts the Si to silica and removes the carbon

nanotubes. TLC was performed on the resulting silica plates, showing improvement over

commercial high performance TLC (HPTLC) plates.

Vertically-aligned CNT forests were grown from a patterned iron catalyst layer on a

silicon substrate by thermal chemical vapor deposition (CVD) methods. Briefly, the silicon

substrate was patterned by photolithography and lift-off of a catalyst stack consisting of

30 nm of Al2O3 and 3 nm of Fe. The substrate was placed in a 1” tube furnace and the

temperature was ramped to 750 ◦C over 10 mins in hydrogen (400 sccm). When the furnace

reached 750 ◦C, the CNTs were grown by flowing ethylene (700 sccm) and hydrogen (400

sccm). Following growth, cooling was done under Argon (250 sccm). The CNTs were then

put into a 16 cm diameter tube in a low pressure chemical vapor deposition (LPCVD) reactor.

Amorphous silicon films were deposited onto the nanotubes from silane (20 sccm) at 530 ◦C

and at 150 mtorr.

The Si/CNTs were then annealed in air at 1000 ◦C for 5 hrs to oxidize the silicon and

to combust the cabon nanotubes. The Si/CNT structures used for the oxidation process

had continuous silicon rather than the beadlike morphology. This is because the samples

for oxidation started as shorter, patterned CNT structures that were coated with silicon
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for a longer time, resulting in thicker silicon layers and a core-shell tube morphology. The

silica nanowires are then subjected to a hydrating step to increase the silanol content on the

surface. The hydrating process employed a 0.1 M HCl: methanol (1:1) solution that was

heated overnight at reflux temperatures and methanol is used to aid in wetting the surface.

After the hydration process the material was rinsed thoroughly with water to remove any

residual acid and was dried at 110 ◦C.

Figure 3.2 TEM images of Si/CNTs before oxidization (a) and
after oxidization (b) are shown; EDAX spectra of Si/CNTs be-
fore oxidization (c) and after oxidization (d) are shown

In addition to the CNT-M plate, a Merck TLC plate (250 µm thick sorbent layer) and

a Merck HPTLC plate (150 µm thick sorbent layer) were used for comparison. The TLC

plates were used to separate a CAMAG (Muttenz, Switzerland) test dye solution that was

dissolved in hexanes (3% v/v). A 0.5 µL aliquot of the diluted test dye mixture was spotted

5 mm from the bottom of the plate. Toluene was used as the mobile phase. A twin trough

chamber (CAMAG, Muttenz, Switzerland) was equilibrated with 3 mL of toluene for 10

minutes prior to chromatography. The TLC plates were developed over a 45 mm length
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with 3 mL of toluene. The resulting developed TLC plates were digitized using a flat-bed

scanner (600 × 600 dpi., MX-2300N, Sharp, Romeovill, IL).

3.3 Application of Nanowires in Thin Layer Chromatog-

raphy

We applied the CNT-M process to fabricate plates for thin-layer chromatography (TLC).

The Si/CNTs were grown in a herringbone pattern as shown in Fig. (3.3)a,b. The resulting

pattern has the right microscale shape for TLC: open channels for rapid fluid flow and thin

porous walls for rapid analyte diffusion and interaction. The high nanoscale porosity and

corresponding high surface area are also important for high analyte capacity. A significant

problem, however, is that the Si/CNT forest is optically dark whereas TLC plates are typ-

ically white for easy visualization of the analyte spots. To reduce optical absorption, the

Si/CNT structure was annealed in air to convert the silicon to silica and oxidize the CNTs

as shown in Fig. (3.2). The 3D herringbone pattern was preserved through the oxidation

step and the samples are optically white. The high temperature oxidization process did

cause volume expansion resulting in the features becoming wider. In our TLC experiments,

we used mask designs that compensated for this expansion. TEM analysis of the oxidized

materials confirmed that the silicon was converted to silicon oxide and that the CNTs were

removed. SEM images of the chromatographic material are shown in figure 3d along with a

demonstration of TLC plate performance in separating a series of dyes.

The CNT-M plate performance was compared with commercial TLC and HPTLC plates

as shown in Fig. (3.4). The comparison was quantitative by two figures of merit: TLC

efficiency and retention factor. The efficiency (number of theoretical plates, N) and retention

factor (Rf ) for each analyte have been calculated for CTN-M TLC, commercial HPTLC, and
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Figure 3.3 Si/CNTs based chromatography plates. (a,b) Her-
ringbone CNT pattern was partially infiltrated with silicon for
80 minutes resulting in 4 micron hedges and 7 micron spaces. (c)
Herringbone pattern after annealing at 1000 ◦C for 5 hours in
air for oxidation of the silicon and the nanotubes. The resulting
structure consists entirely of SiO2 nanowires. (d) Separation of
a CAMAG dye test mixture
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commercial TLC plates and are tabulated in Fig. (3.5). The efficiency was calculated by

equation (3.1), where z is the distance the analyte traveled, l is the distance the solvent

front traveled (migration distance), and w is the chromatographic width of the analyte in

the direction of the solvent front.

N = 16zl/w2 (3.1)

Figure 3.4 The images of the CNT-M plate (a) and two com-
mercial plates (b and c) after the separation were compared. z
is the distance the analyte traveled, l is the distance the sol-
vent front traveled (migration distance), and w is the chromato-
graphic width of the analyte in the direction of the solvent front

The retention factor was calculated by equation (3.2), where z is the distance the analyte

traveled and l is the distance the solvent front traveled.

Rf = z/l (3.2)
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Figure 3.5 The efficiency (number of theoretical plates, N) and
retention factor (Rf ) for each analyte are compared between
CNT-M TLC, TLC, and HPTLC plates. (The colors in x-axis
from yellow to purple represent different analytes in dyes.)

3.4 Analysis of Thin Layer Chromatography

These 3D patterned silica structures demonstrate chromatographic efficiencies that either

equal or exceed those of HPTLC and exceed those of commercial TLC plate. In addition to

the increased efficiencies that have been demonstrated there was also an improvement in the

speed of the separation. To analyze the features that allow CNT-M plates to outperform

commercial plates, we refer to the van Deemter equation ( (3.3)) for plate height (H).

H = A+B/v + C .v (3.3)

A smaller plate height will result in a larger number of plates and a corresponding higher

efficiency. The first term in the equation, the A term, is the eddy diffusion term and is caused

by differences in fluid path length taken by different solute molecules. In microstructured

media these path length differences result from inhomogeneities in the microscale structures,

which for us are minimized due to the precisely controlled microscale patterns of CNT-M

plates. The contribution from the second term, the B term, relates to longitudinal diffusion
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and is reduced at higher flow velocities. The CNT-M plates had much shorter development

times corresponding to higher velocities and therefore a reduction in the diffusion term

contribution is expected. These higher velocities were possible because the CNT-M structures

could be fabricated with wider, more direct flow channels than particulate media. The last

term, the C term, comes from the mass transfer kinetics of the analyte between mobile and

stationary phases and is reduced by decreasing particle size, or in our case hedge width. Our

hedge width is nominally 4 µm wide for the CNT-M plates analyzed. This is smaller than

the particle sizes of both of the commercial plates. The commercial TLC plates had particles

with diameters ranging from 5-20 µm and the HPTLC plates had particles ranging from 6-8

µm. Therefore the C term should also be significantly lower than C term of commercial TLC

plates and slightly lower than C term of HPTLC plates. Since this term is multiplied by the

velocity v, there may not be an improvement in this term as CNT-M velocities are higher.

Additionally the ability to controllably adjust the microscale geometry with CNT-M should

provide an ideal test bed for future quantitative studies of the contribution of each of these

terms to efficiency.

Since the solute travels different distances between the inner corner and outer corner of

the hedge shown in Fig. (3.6), so solute spreading can delay the mobile phase transport.

Moreover, the effect can be quantified by comparing the spreading width and the hedge

length as following:

L = 2a/(tan θ/2) (3.4)

Here a is the perpendicular distance between two hedges, θ is the corner angle of the

hedge, and L is the mobile phase traveling difference between inner lane and outer lane

when it passed through the corner. In our plate, a is 7 µm and is 90◦, so L is 14 µm.
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Figure 3.6 A sketch of mobile phase transferring through the
zigzag pattern

t = L/u (3.5)

t is time spent by solute molecules in the mobile phase, and u is the average mobile

phase velocity. In our case, u is about 400 µm/s. The spreading of a zone due to molecular

diffusion in the mobile phase can be calculated from the Einstein equation:

σ =
2
√

2Dt (3.6)

Here D is a diffusion coefficient of a solute, approximately 1000 µm2/s. As a result, the

spreading width σ is 8.4 µm.

The mobile phase transport can be influenced by the fluid spreading along the fluid

flowing direction. The fluid spreading h can be gained by a geometry conclusion as shown

in Fig. (3.7). Compared with the length of hedge (100 µm), the fluid spreading is large so

the solute spreading can influence on the mobile phase transport.
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Figure 3.7 A sketch of mobile phase transferring through the
zigzag pattern
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3.5 Conclusion

Using the CNT-M process, we were able to fabricate porous Si/CNT and silica structures

with control over 3D microscale shape and nanoscale porosity. We view these 3-D porous

structures as powerful testbeds for studying a variety of micro and nanostructured materials

properties as well as chemical and physical processes on the micro and nanoscale. Fur-

thermore, these hierarchical structures appear promising in applications including chemical

separations, catalysis, energy storage, and energy conversion. We applied the CNT-M pro-

cess to fabricate silica plates for TLC that outperformed commercial HPTLC plates. It

should be possible to extend the CNT-M process to microfluidics, high performance liquid

chromatography (HPLC) and ultra high performance liquid chromatography (UPLC).



Chapter 4

High Capacity Carbon Nanotube

Templated Silicon Anodes for Lithium

Ion Batteries

4.1 Introduction

Silicon is a promising candidate anode material for lithium ion batteries due to its high

theoretical capacity (4000 mAh/g).41,42 However, volume changes during the insertion and

extraction of lithium cause pulverization of bulk silicon resulting in failure of the electrode af-

ter very few cycles.42,85 Nanostructured silicon including silicon nanoparticles,45 nanowires

and nanotubes21,47,86 has been used to make electrodes with specific capacities over 3000

mAh/g (10 times higher than commercial carbon anodes) and improved cycle life relative

to bulk silicon. Research on nanostructured silicon as an electrode material has recently

accelerated with investigation of the influence of diameter,49 doping,87 carbon coating,47,86

and solid electrolyte interphase (SEI) layer stability88–91 on electrochemical performance. A

46
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significant hurdle is maintaining electrical and ionic conductivity in these materials during

the considerable volume changes that occur upon cycling.90–92 Carbon nanofibers (CNFs)

and carbon nanotubes (CNTs) have been used as templates to form silicon-carbon nanocom-

posites by depositing silicon onto the nanostructured carbon.51–53,93

Although research on nanostructured silicon anodes has resulted in materials with ex-

tremely high specific capacities, it has not generally resulted in materials with correspond-

ingly high areal and volumetric capacity. High areal and volumetric capacities are critical for

realizing high capacity batteries as the anode is only one of several contributors to the battery

mass and volume. In Li-ion batteries, the active materials typically contribute less than half

of the total battery mass.94 Other contributions to the mass scale with the electrode area

(superficial) and, in the case of electrolyte mass, the pore volume of the electrode. Silicon

areal capacities (capacity per ”top down” or superficial area) have generally been quite low

for nanostructured electrodes,21 although areal capacities slightly higher (4 mAh/cm2) than

that of commercial carbon anodes (∼ 3 mAh/cm2)94 have been demonstrated.15,94 Volumet-

ric capacities have been very high in thin film silicon anodes (9320 mAh/cm3), but these thin

silicon films yield very low areal capacities.95 Recently, Hu et al. reported much higher areal

capacities of 40 mAh/cm2 that were achieved with the use of a Si-CNT ”sponge.”21 Although

promising, this approach resulted in a small volumetric silicon loading and correspondingly

low volumetric capacity.96

We report here the synthesis of Si/CNT composites by deposition of silicon onto vertically

aligned CNT (VACNT) templates. VACNT templates eliminate the need for a polymer

binder in electrode fabrication and facilitate the desired lithium ion and electron transport

in the electrode.17 In this study we take advantage of the precise control of electrode geometry

made possible by such templates to investigate a wide range of silicon loadings by varying

both the silicon to carbon nanotube (Si:CNT) mass ratio and the electrode thickness. The



4.2 Fabrication of Silicon-Carbon Nanotube Composites 48

Si:CNT mass ratio was varied from 9:1 to over 80:1, and electrode thickness was varied from

7 µm to 40 µm. Stable cycling was observed for electrodes with Si:CNT mass ratios up to

50:1; electrodes with mass ratios higher than this were observed to fade at a significantly

more rapid rate. A Si:C mass ratio of close to 50:1 yielded areal capacities over 9 mAh/cm2,

(3 times the value for commercial carbon anodes), volumetric capacities over 4600 mAh/cm3

(20 times the value for commercial carbon anodes), and a specific capacity of 2700 mAh/g.

4.2 Fabrication of Silicon-Carbon Nanotube Compos-

ites

VACNT templated synthesis of nanostructured silicon allows control of structural parameters

over a wide range; these parameters include the thickness of the composite layer, the silicon

to CNT (Si:CNT) mass ratio, and the silicon microstructure. A sketch of the silicon-carbon

nanotube (Si/CNT) composite structure is illustrated in Fig. (4.1)a. Experimental details on

the fabrication of the composite electrodes are described in the supplementary information.

Briefly, vertically aligned multi-walled carbon nanotubes (MWCNTs) were grown on stainless

steel substrates with the aid of a catalyst layer. The catalyst layer consisted of a bilayer

of 4 nm of iron on a 30 nm thick alumina barrier layer. Silicon infiltration of the carbon

nanotube framework with LPCVD resulted in robust, porous Si/CNT composites consisting

of silicon shells surrounding individual CNTs. The porosity of the nanocomposites (and

correspondingly, the Si:CNT mass ratio) is dependent on the silicon infiltration process

parameters and the infiltration time. Fig. (4.1)b-h show SEM and TEM images of the

Si/CNT composites. As seen in Fig. (4.1)b and (4.1)e, the composites retain the vertical

orientation of the pristine CNT forest. The different thicknesses of the composites are the

result of different CNT forest heights, which are controlled by varying the run time for
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carbon nanotube growth. The CNT growth rate is nearly constant for short growth times.

For example, 21 seconds results in a CNT forest with an average height of 9±2 µm, and 75

seconds results in a CNT forest with an average height of 27±5 µm.

Figure 4.1 (a) A diagram of a VACNT templated silicon elec-
trode (Si/CNT composites) is shown. All materials have been
labeled in the sketch but the dimensions of the materials are not
to scale; (b) An SEM image of a ∼ 12 µm thick Si/CNT com-
posite electrode on the stainless steel foil is shown; (c,d) SEM
profile views of the Si/CNT composite with thin (c) and thick
(d) silicon shells are shown; (e) An SEM image of a ∼ 27 µm
thick Si/CNT composite electrode on the stainless steel foil is
shown; (f,g) TEM images of silicon coated CNTs with 16 nm
(f) and 36 nm (g) silicon shells are shown; (h) A TEM image
of an individual silicon coated CNT is shown; the CNT and
amorphous silicon are labeled

The average diameter of MWCNTs synthesized in our experiment (∼ 12 nm) is signifi-

cantly less than the average space between nanotubes ( ∼ 100 nm); consequently, the silicon

shell thickness can be varied over a large range. These silicon shells are quite uniform on

VACNT samples up to 50 microns high.93 The thickness of the silicon shell coating was 14±3
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nm for a 40 min silicon infiltration, 25±5 nm for 60 min infiltration, and 35±5 nm for an 80

min infiltration. Fig. (4.1)c and (4.1)d are close-up views of nanotubes with thinner (∼ 16

nm) and thicker (∼ 36 nm) silicon shells, respectively. As seen in the image, the structure of

the Si/CNT material is generally vertical, but with individual tubes following an undulating

path. TEM images of individual nanotubes coated with silicon for different times are shown

in Fig. (4.1)f (40 min coating) and Fig. (4.1)g (80 min coating) resulting in ∼ 44 nm and ∼

84 nm diameter structures respectively. Varying the silicon coating time resulted in Si:CNT

mass ratios from 9:1 to 80:1, as determined from SEM measured diameters of the tubes

before and after coating. The mass ratios were calculated from these diameters using the

following expression:

Massratio = ρSi × (r2Si/CNT − r2CNT )/(ρCNT × (r2CNT )) (4.1)

Here d the expected density of the amorphous silicon (1.9 g/cm3), rSi/CNT is the radius

of Si/CNTs, rCNT is the radius of CNTs, and is the expected density of mutilwalled carbon

nanotubes (1.5 g/cm3). The high resolution micrograph in Fig. (4.1)h shows the morphology

of a silicon coated CNT in which the silicon and CNT locations are labeled. In our work,

low deposition temperatures (500 - 550 ◦C) were used to provide uniform deposits. These

low temperatures also yield amorphous silicon layers, which exhibit much smaller first cycle

capacity losses than crystalline silicon films.97

The nanocomposite electrodes were tested in battery cells consisting of the electrode of

interest, the electrolyte, and a lithium metal counter electrode. A Celgard separator was

used for the tests. Because of the sensitivity of the cell components to water and oxygen,

cells were assembled in an argon-filled glove box (moisture content 0.9 ppm and oxygen

content < 0.25 ppm, VAC, Hawthorne, CA) and packaged for testing outside of the box.

A standard electrolyte mixture of EC and DEC containing 1M LiPF6 was used. The tests
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were performed with use of a MACCOR system (Maccor 4300, Maccor Inc.). In this work,

we refer to lithium insertion into silicon (alloying) as charging, and lithium extraction from

silicon (de-alloying) as discharging. All cells were cycled between 1.0 and 0.02 V. Reported C

rates assume an electrode capacity of 2.5 hr/g, as is common practice for silicon electrodes.51

For example for 1C, the current is chosen such that I = capacity(2.5 A/g) × silicon mass.

4.3 Electrochemical Performance of Si/CNT Compos-

ites

Electrochemical testing of our Si/CNT composite is shown in Fig. (4.2). The voltage profile,

including the slope changes at at 0.3 V and at 0.1 V during the first charging cycle, is

consistent with the previous studies of nanostructured amorphous silicon.95 In the first cycle,

the observed charge capacity was 3000 mAh/g and discharge capacity was 2118 mAh/g,

corresponding to a columbic efficiency of 71 %. A drop in capacity was observed in the third

cycle due to an increase in the C-rate (from 0.4C to 0.8C), followed by a slight increase in

capacity starting with the fourth cycle. A stable capacity of ∼ 2050 mAh/g at 0.8C was

observed for 20 cycles, with a coulombic efficiency of

∼

93 %. The specific capacity of these electrodes at this C rate is significantly higher than that

observed for silicon/carbon composite electrodes reported previously in the literature.

Experiments were performed to determine the impact of composite thickness and silicon

shell thickness (silicon loading) on the specific capacity. The results shown in Fig. (4.3) rep-

resent the charge capacity of the 4th cycle at a C/4 rate. No significant decrease in capacity

as the thickness increased from 6.9 to 30 microns was observed (Fig. (4.3)a). Similarly, no
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Figure 4.2 Electrochemical performance of Si/CNT compos-
ite electrodes with a thickness 6.5 µm and a Si:CNT mass ra-
tio 17:1. (a) Voltage profile of Si/CNT composites; (b) Charge
(square) and discharge (diamond) capacity and Columbic effi-
ciency (round) versus cycle number for the Si/CNT composite
electrode at 0.8 C (two 0.4 C conditioning cycles were done first)

significant decrease in capacity was observed as a function of Si:CNT mass ratio for mass

ratios that ranged from 9:1 to 79:1 (Fig. (4.3)b). In contrast, a similar comparison at a

higher rate of C/2 indicated a dependence of the capacity on loading, with higher silicon

loadings showing lower capacities. Specifically, the capacities at Si:CNT mass ratios of 15:1

and 65:1 were ∼ 1900 and ∼ 1500 mAh/g, respectively.

The stability of the capacity upon repeated charge and discharge cycling is strongly

dependent on the silicon loading as summarized in Fig. (4.4). For low silicon loading, the

cycle stability was good for all composite layer thicknesses tested (figure Fig. (4.4)a). In

contrast, highly loaded samples (Si:CNT above 60:1) did not cycle well for the same range of

layer thicknesses (Fig. (4.4)b). A summary of capacity stability at different silicon loadings

is shown in Fig. (4.4)c where samples with capacity fading less than 20 % in 20 cycles are

classified as good. The fraction of samples with good cycle stability was 0.95 when Si:CNT



4.3 Electrochemical Performance of Si/CNT Composites 53

Figure 4.3 The 4th cycle charge capacities of 13 samples with
varying heights (from 6.9 µm to 30 µm ) and varying Si to CNT
mass ratios (from 9:1 to 79:1) at a rate of C/4 as a function of
(a) electrode thickness and (b) mass ratio

ratios were below 60, but 0.05 when ratios were above 60.

A high areal capacity with good capacity stability is achieved in electrodes ∼ 20 microns

thick with Si to CNT mass ratios of approximately 50:1. Fig. (4.5) shows an electrode

consisting of a composite layer 19.4 µm thick with a Si:CNT mass ratio of 51:1 and an areal

capacity of ∼ 9 mAh/cm2. This is three times the areal capacity of commercial graphite

lithium ion battery anodes (∼ 3 mAh/cm2),94 which is shown by the dashed line in Fig. (4.5)

for comparison. The volumetric capacity of the electrode was ∼ 4600 mAh/cm3, which is

about 20 times that of commercial lithium ion battery anodes (∼ 230 mAh/cm3). After 20

cycles, the capacity loss was ∼ 12 % of the initial capacity.

Fig. (4.6) shows charge and discharge capacity observed at rates of C/10, C/5, C/2, and

1C. At each C-rate, the cell was tested for 4 cycles to ensure the reliability of the capacity

data. The observed capacities per mass were approximately 3000, 2570, 1890, and 1440

mAh/g, respectively. The capacity decreased significantly with increasing C-rate as shown
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Figure 4.4 The influence of composite layer thickness and Si
loading on cycle stability: (a) sample with a strong cycle sta-
bility, (b) sample with a weak cycle stability, and (c) summary
of cycle stability results for different Si/CNT mass ratios. Each
data point in (c) represents an average of multiple samples; data
from each sample is given in the supplementary information.
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Figure 4.5 The capacity per area of a Si/CNT composite elec-
trode with a thickness of 19.4 µm, a Si:CNT mass ratio of 51:1,
and a volumetric silicon loading of 1.6 g/cm3. Charge (square)
and discharge (diamond) capacities at a rate of 0.1 C are shown
versus cycle number
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in the Fig. (4.6). However, a return to a lower C-rate resulted in a corresponding increase

in the capacity back to the initial level.

Figure 4.6 Specific capacity of a Si/CNT composite cycled at
different C-rates. The composite has a thickness of 18.4 µm and
a Si:CNT mass ratio of 35:1

Fig. (4.7) shows typical Nyquist plots of Si/CNT composites before and after cycling.

The Nyquist plots are useful in identifying the kinetic contributions, for example, diffusion,

convection, or migration. More details about Nyquist are shown in the discussion section

and appendix. Before cycling, the ohmic resistance R is 13 Ω, the transfer resistance is

around 1100 Ω, and the diffusion impedance angle is about 90◦ which is close to an ideal

capacity. After a charging, R doesn’t change and the transfer resistance did not change, but

the diffusion impedance angle becomes 45◦. However, the transfer resistance becomes small

∼ 140 Ω.
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Figure 4.7 Nyquist plots for Si/CNT composites before and
after cycling

4.4 Discussion and Conclusion

For high performance electrodes, capacity per area (and per volume) can be as important as

capacity per mass. However, thicker electrodes often result in reduced specific and volumet-

ric capacities due to the increasing electronic or ionic resistance. Our VACNT templated

electrodes do not suffer from this trade-off over the range thicknesses considered.

It would be useful to know whether the high silicon per area loading and corresponding

high areal capacities seen here can be even higher. The high areal loading comes from

silicon’s high volumetric capacity and the high silicon concentration in these electrodes. The

high Si:CNT mass ratio (corresponding high volumetric capacity) is due to the small volume

fraction (< 1 %) taken up by the CNTs and the high uniformity of the silicon infiltration.93

Areal loading can be further increased by either increasing the thickness of nanocomposite

electrodes or increasing the Si:CNT mass ratio. Fig. (4.3)a shows no significant decrease

in specific capacity as the thickness is increased from 10 microns to 30 microns. This is
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consistent with excellent silicon penetration during the infiltration of forests less than 50

microns tall, which results in uniform silicon shell thicknesses from top to bottom.93 This

also indicates that the capacities of these electrodes were limited by neither electron nor ion

transport. This is likely due to the high electrical conductivity of the CNTs and the vertical

nature of the resulting pores in the composite. We conclude that it should be possible to

fabricate electrodes thicker than 30 microns to further increase areal capacity.

Our results showed no significant decrease in capacity (Cycle 4) as the Si:CNT mass

ratio was increased from 9:1 to 84:1 (Fig. (4.3)b); however, silicon loadings higher than 60:1

showed severe fading problems (Fig. (4.4)c). A recent paper proposed a failure mechanism

in nanostructured silicon anodes based on unstable SEI layers and continual SEI film growth

that eventually blocks ion transport through porous anodes.91 This explanation is consistent

with our observations here; higher silicon loadings in our material will result in a shorter

distance between silicon shells in the electrode yielding smaller pores for ion transport that

are more readily blocked by SEI growth over time. The samples with thicker silicon shells

likely have additional resistance associated with lithium ion diffusion in the solid, consistent

with the rate data mentioned above; however, this is not expected to contribute to capacity

fading during cycling.

For moderate loading, we see a large reversible capacity dependence on rate as shown

in Fig. (4.6), indicating that irreversible SEI formation in the nanochannels is not the only

significant rate limiting effect in this system. The columbic efficiencies observed in this study

appear to be consistent with SEI growth on silicon.90,97,98 Significant future work is required

to fully understand and mitigate the rate limiting mechanisms and the role of SEI layers in

these and other high surface area nanostructured electrode materials.

To evaluate the contribution of each component in electrochemical impedance spec-

troscopy (EIS) and to derive electrode characteristic parameters, we obtain Nyquist plots by
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experiments as shown in Fig. (4.7). Now we compare an experimental plot to an equivalent

circuit plot to explain the contribution of each component.

At high frequencies (above 10 kHz), the spectrum is dominated by the contribution of

the connection resistance, including the electronic conduction between stainless steel and

nanotubes, and the ionic conduction in electrolyte. According to our experimental results,

no significant changes were observed in Re (from 10 to 20 Ω) throughout all the experiments

for samples with various thicknesses and Si:CNT ratios.

As the frequency decreases (between 10 kHz and 10 Hz) each nanotube contributes to

the surface resistance, which is due to electron transfer resistance (Rct) on the electrode

interface and the presence of a passivating SEI layer. This resistance is in parallel with

a double layer capacitance (Cdl) and appears in the Nyquist plot as a depressed semicircle

having a diameter equal to the value of the surface resistance. As discussed in Chapter 2, the

silicon coating on individual CNTs is not uniform, resulting in various Si/CNT diameters.

EIS performed in the work is not for individual Si/CNTs but for a Si/CNT forest, so the

unmatched part as shown in Fig. (4.8) may be due to nonuniform Si/CNT diameters. The

nonuniformity may result in a constant phase element in Cdl.
99

At lower frequencies (below 10 Hz), the contribution from solid state diffusion is present,

i.e., Li ions moving into the bulk of the Si/CNT composite. In this frequency region the

diffusional impedance is large and a straight line of 45◦ slope is seen over the frequency

range.

In conclusion, vertically aligned silicon-carbon nanotube composites fabricated directly

on stainless steel substrates showed high specific, areal, and volumetric capacity. The com-

posites consisted of multi-walled nanotubes covered with a uniform shell of amorphous silicon.

The behavior of these nanocomposites as battery anodes was investigated for a wide range

of silicon loadings; silicon to carbon mass ratio was varied from 9:1 to over 80:1. High, stable



4.4 Discussion and Conclusion 60

Figure 4.8 A typical experimental Nyquist plot for Si/CNTs
(blue) and a simulation plot from the equivalent circuit (red)

capacities up to 3000 mAh/g were seen in electrodes with Si:CNT mass ratios up to 50:1.

Areal capacities greater than 9 mAh/cm2 and volumetric capacities over 4600 mAh/cm3

were achieved. This was done while maintaining a high specific capacity (2700 mAh/g).

This combination of high gravimetric, volumetric, and areal capacity could make this an

enabling materials system for high performance Li-ion batteries.



Chapter 5

Synthesis of Three Dimensional

Patterned Silicon Carbide Nanowires

5.1 Introduction

Silicon carbide (SiC) has outstanding physical and mechanical properties including high ther-

mal conductivity, high melting point, high mechanical strength, high electric breakdown field

and excellent field emission properties.100–102 Therefore, SiC is an ideal semiconductor ma-

terial in extreme environments (i.e. high temperature, high power or high stress).103,104 For

potential applications in microelectronics and optoelectronics, one dimensional nanostruc-

tured silicon carbide nanowires (SiCNWs) have been synthesized by various methods such

as: chemical vapor deposition (CVD),105 laser ablation,106 sol-gel,107 vapor liquid solid,108

and conversion of silicon coated carbon nanotubes.109,110
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5.2 Fabrication of Three Dimensional Patterned Sili-

con Carbide Nanowires

We combine the conversion of silicon coated carbon nanotubes11 with a carbon nanotube

templated microfabrication (CNT-M) process to demonstrate porous three dimensional mi-

croscale shapes consisting of silicon carbide nanowires (SiCNWs). The process is illustrated

in Fig. (5.1). The CNT-M process uses partial material infiltration of patterned carbon

nanotube frameworks to fabricate M-carbon nanocomposites with a wide variety of shapes

and sizes.65 Here ”M” represents the material infiltrated into CNTs, for example, Si, C,

Si3N4, metals etc. In this report, Si is infiltrated into the CNT pattern to form silicon-

carbon core-shell nanotubes (Si/CNTs) and the Si/CNTs are then converted to SiCNWs

by high temperature thermal annealing. The SiCNWs synthesized in controllable-length,

large-quantity, and microscale shapes have potential applications in microelectronics and

optoelectronics.

The fabrication process is illustrated in Fig. (5.1). The silicon wafer was patterned by

photolithography and a lift-off procedure to produce a catalyst stack consisting of 30 nm of

Al2O3 and 4 nm of Fe. Vertically-aligned CNT forests were grown from the patterned iron

catalyst layer by thermal chemical vapor deposition (CVD). The vertical growth propagates

the two dimensional patterning into a three dimensional structure. The feature sizes and

shapes are determined by the lithography with features as small as a few microns to as large

as several centimeters being achieved. Feature height is determined by the growth time.

CNT growth was performed in a 1” tube furnace via the three step process as discussed

in Chapter 2. Thin amorphous silicon was deposited onto the nanotubes by low pressure

chemical vapor deposition (LPCVD) via the pyrolysis of silane in a 6” tube reactor. The

silane flow rate was 20 sccm, the reactor temperature 530 ◦C, and the pressure 150 mTorr.
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The Si/CNTs were then annealed at 1200 ◦C for 5 hours in argon.

Figure 5.1 The fabrication diagram of three dimensional pat-
terned SiCNWs. (a) The lithography (lift-off) is used to pattern
the catalyst layer. The catalyst consists of iron and alumina. (b)
CNTs grow only at the catalyst location. (c) Silicon is deposited
on CNTs by the LPCVD process to form Si/CNTs. (d) Si/CNTs
are converted to SiCNWs by thermal annealing

SEM images of a variety of patterned Si/CNTs are shown in Fig. (5.2). Depending on

the lithography mask design, the pattern can consist of feature sizes from a few microns to

centimeters as shown in Fig. (5.2)a. A variety of shaped Si/CNTs are shown in Fig. (5.2)b-

d. The height of the synthesized Si/CNTs is controlled by controlling the run time for

carbon nanotube growth: for example, a 2 min growth resulted in a ∼ 90 µm tall CNT

forest (Fig. (5.2)c). After a silicon infiltration, the Si/CNT forest can retain the vertical

orientation of the initial CNT forest even at a height 270 µm (fig Fig. (5.2)d).

SEM images of Si/CNTs before thermal annealing (Fig. (5.3)a and b) and after thermal

annealing (Fig. (5.3)c and d) are shown in Fig. (5.3). The before and after images show

the same microscale honeycomb patterns, however, the comparison of a rectangle bar struc-

tured Si/CNTs before annealing (Fig. (5.3)c) and after annealing (Fig. (5.3)d) shows a small
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Figure 5.2 SEM images of Si/CNTs with various patterns and
heights

expansion (∼ 5 %) in the width.

The morphologies of individual CNTs, Si/CNTs, and SiCNWs are shown in Fig. (5.4).

Fig. (5.4)a is an SEM image of as grown CNTs showing an average CNT diameter of ∼ 12

nm. Si/CNTs are shown in Fig. (5.4)b and d. The diameter of Si/CNTs can range from 12

nm to 120 nm dependent on the LPCVD deposition. A 40 minute Si deposition produced a ∼

16 nm silicon shell on the individual CNT resulting in 44 nm diameter Si/CNTs (Fig. (5.4)b),

while a 60 minute deposition resulted in a 72 nm diameter Si/CNTs (Fig. (5.4)d). Figure

4c and 4e show the annealed SiCNWs that correspond to the Fig. (5.4)b and Fig. (5.4)d

starting point.
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Figure 5.3 Patterned Si/CNTs (a,c) and patterned SiCNWs
(b,d) are shown. (a) Honeycomb patterned Si/CNTs (b) Hon-
eycomb patterned SiCNWs after the thermal annealing (c,d)
A comparison of rectangle patterned Si/CNTs before anneal-
ing and after annealing. The dashed lines highlight the pattern
variance
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Figure 5.4 (a) A pristine CNT forest is shown. (b,c) A Si/CNT
forest with 40 mins Si infiltration before annealing (b) and after
annealing (c). (d,e) A Si/CNT forest with 60 mins Si infiltration
before annealing (d) and after annealing (e)

5.3 Characterization of Silicon Carbide Nanowires

TEM and EELS analysis were used to investigate the nanoscale structure of the SiCNWs.

A bright field/dark field pair of images is shown in Fig. (5.5). As seen in the SEM and TEM

images, the overall ”nanotube” type structure is retained. However, the CNTs were converted

to the carbon component of SiC after the annealing process. The resulting structure seen in

Fig. (5.5) consists of polycrystalline grains embedded in a matrix of amorphous material.

A STEM image with EELS analysis is shown in Fig. (5.6). The line in Fig. (5.6)a

shows the region of an EELS line scan and the spectra (b,c) show typical examples of the

silicon EELS spectra. Fig. (5.6)c shows the silicon spectra from the polycrystalline grain

and Fig. (5.6)b is from the amorphous matrix. The EELS spectra from the amorphous edges

of the wire show fine structure characteristic of silicon dioxide. In contrast, Fig. (5.6)c has
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Figure 5.5 Bright and dark field TEM images showing several
wires with large grains. Twins are also clearly visible in many
grains, and the diffuse scattering in the dark field image is con-
sistent with an amorphous material

a different fine structure with the edge shifted approximately 4 eV lower than the silicon

dioxide. The fine structure and edge onset is consistent with SiC.111 The silicon dioxide

matrix indicates oxygen contamination during the annealing. The contamination could have

arisen from a contamination of the argon gas or perhaps leakage due to the softening of the

quartz tube at 1200 ◦C.

The selected area electron diffraction (SAED) patterns from several nanowires is shown

in Fig. (5.7). A comparison of the measured d-spacings to reference values for β-SiC shows

a very good correspondence. The few percent deviation is within the expected error for this

TEM measurement.
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Figure 5.6 The red line in 6a indicates the scan path used to
collect the Si EELS spectra. 6b and 6c show spectra taken at
the edge (b) and center (c) of a wire

Figure 5.7 SAED Pattern with Comparison of measured d-
spacings to β-SiC
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5.4 Discussion and Conclusion

The experimental data shown for SEM, TEM, and EELS are consistent with the expected

results of silicon carbide nanowires. The SiCNWs retain the original shape and orientation

of the Si/CNT. The interior of the nanowires is marked by the presence of distinct polycrys-

talline grains covered by an amorphous SiO2 coating. There are a large number of defects

visible in the grains, and many of them exhibit twinning. No preferred orientation was

observed among the grains. The silicon dioxide coating indicates an experimental oxygen

contamination. One sample was subjected to a wet etch to remove the oxide layer and allow

a more thorough analysis of the core. It was qualitatively found that the etching treatment

decreased the strength of the nanowires based on how easy it was to break parts of the struc-

ture with tweezers. This would be expected based on the TEM images showing that the

SiC grains were often poorly connected and thus cemented together with the silicon oxide

matrix. The granular tubes that remained after etching did show clearer SiC EELS spectra

and SAED patterns.

In conclusion, vertically aligned and patterned silicon carbide nanowires were fabricated

by a CNT-M procedure consisting of a partial infiltration of silicon followed by a high tem-

perature thermal annealing. The combination of CNT-M procedure and annealing resulted

in three-dimensional patterned SiCNWs. The pattern was determined by the lithography

and the diameter of SiCNWs was dependent on infiltration time and annealing time. The

properties of SiCNWs were verified by SEM, TEM, and EELS.



Chapter 6

Conclusion and Future Work

6.1 Conclusion

I developed a carbon nanotube templated microfabrication (CNT-M) process to demonstrate

porous three dimensional microscale shapes consisting of silicon-carbon core-shell nanotubes.

The CNT-M process uses partial material infiltration of patterned carbon nanotube frame-

works to fabricate M-carbon nanocomposites with a wide variety of shapes and sizes. Here

”M” represents the material infiltrated into CNTs, for example, silicon, carbon, silicon ni-

tride, metals, etc. In this work, I focused on nanocomposites resulting from silicon infiltration

into VACNTs and their applications.

The heights of Si/CNTs are determined by the synthesis procedure of VACNTs, which

can be from several microns to millimeters. The CNT-Si process resulted in an amorphous

or crystalline silicon shell on the synthesized VACNTs. The uniformity of the shell is weakly

dependent on depth of VACNTs, which are caused by a vapor concentration variance from

top to bottom of VACNTs. Lower LPCVD temperatures and patterning gas access holes

improve the gas transport and silicon infiltration uniformity. The Si/CNT diameters can

be from 12 nm to 200 nm. In the former situation, there is little silicon coated on CNTs,
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and the structure is mostly filled for a 200 nm diameter Si/CNT. Occasionally the silicon

coating on CNTs forms separated beads along the CNTs. The bead formation may be due

to insufficient coating, a smaller diameter of the underlying nanotube or a combination of

two factors.

Silicon deposition temperatures (> 500 ◦) can result in a sufficient mobility of silicon

atoms to form beads of silicon on the multi-walled CNTs. Moreover, the higher temperatures

(> 560 ◦) produce a polysilicon structure and an amorphous silicon shell results from lower

temperatures.

I view these 3-D porous structures as powerful testbeds for studying a variety of micro and

nanostructured materials properties as well as chemical and physical processes on the micro

and nanoscale. First, I applied the CNT-M process to fabricate silica nanowires for TLC

that outperformed commercial HPTLC plates. The TLC plates provide chemical separations

media with precise microscale channels for fluid flow control and nanoscale porosity for high

analyte capacity.

Secondly, the CNT-M process was used to fabricate high capacity vertically aligned

silicon-carbon nanotube composites directly on stainless steel substrates. The composites

consisted of multi-walled nanotubes covered with a uniform coating of amorphous silicon.

The behavior of these nanocomposites as battery anodes was investigated for a wide range of

silicon loadings; silicon to carbon mass ratios were varied from 9:1 to over 80:1. High, stable

capacities up to 3000 mAh/g were seen in electrodes with Si:CNT mass ratios up to 50:1.

Areal capacities greater than 9 mAh/cm2 were observed, which are high areal capacities

with a good cycle stability. The volumetric capacity of the electrode was ∼ 4600 mAh/cm3

which is about 20 times that of commercial lithium ion battery anodes (∼ 230 mAh/cm3).

This combination of high gravimetric, volumetric, and areal capacity makes this an enabling

materials system for high performance Li-ion batteries.



6.2 Future Work 72

Last, the CNT-M procedure followed by a high temperature thermal annealing can fabri-

cate three dimensional silicon carbide nanowires. The combination of CNT-M procedure and

annealing resulted in three-dimensional patterned SiCNWs. The pattern was determinate

by the lithography. The thermal annealing produced SiCNWs with a silicon oxide coating

(due to oxygen contamination), and the diameter of SiCNWs was dependent on infiltration

time and annealing time.

6.2 Future Work

In the application of thin layer chromatography, the precise microscale geometry with CNT-

M provide an ideal test bed for future quantitative studies of the contribution of each term

in van Deemter equation to efficiency.

In the application of lithium ion batteries, the cycle stability for higher silicon carbon

nanotube mass ratios is still a problem. The possible reason is the formation and decom-

position of SEI layers during charging and discharging. Significant future work is required

to fully understand and mitigate the role of SEI layers in these and other high surface area

nanostructured electrode materials.

There are broad areas that CNT-M procedure can be applied to such as catalysis, chemical

separations, energy storage, energy conversion, biological and sensors. As a result, the metal

infiltration into CNTs may be interesting, for example, in Microelectromechanical Systems

(MEMS).
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Appendix A

Diffusion

In Chapter 2 or Chapter 3, we discussed solutes transferred from one place to another. For

example, silane vapor diffuses from the top to the bottom of a CNT forest (Chapter 2), and

analytes transport along a CNT-M TLC plate (Chapter 3). There are three transport mech-

anisms to transfer matter: migration, diffusion, and convection.112 The three mechanisms

are different from each other. Migration is a transport mechanism that applies only to ionic

solutes exposed to an electromagnetic field. Diffusion of a solute results in different concen-

trations in adjoining regions, and diffusion is caused by the thermal motion and subsequent

collisions of the molecules. Two types of diffusion can be distinguished: transport diffusion

resulting from a concentration gradient, and self -diffusion which takes place in a system

which is at equilibrium. Convection is the movement of molecules within solutes. There

are two varieties of convection: neutral and forced. Neutral convection results from stray

vibrations or from density gradients caused by temperature or a concentration differential.

Forced convection arises from stirring the solution, bubbling gases, etc.

Nanoporous materials were extensively used in technical applications, such as heteroge-

neous catalysis,113–115 fuel cells,116 adsorption,117 and separations.118 Many of these processes

are diffusion controlled, so that a correct assessment of their efficiency depends on more ac-
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curate determinations of the dependence of diffusion on the structure geometry. Effects of

pore interconnections can be accounted for through methods such as percolation theory,

the effective medium approximation, re-normalization group theory, and Monte Carlo sim-

ulations.113,114 Pore shape and surface morphology may also play a crucial role, which is

typically ignored because of greater difficulties in modeling it realistically.119

The effective diffusivity of a solute within a porous medium is usually less than its

value within bulk media. The phenomenon is known as ”hindered” or ”restricted” diffusion

and it arises fundamentally from the fact that the characteristic dimension of the solute

molecule is no longer small compared to that of the pore through which it passes. Several

theoretical descriptions of solutes in porous structure have been developed.84,120,121 The

advantages of such physical models over phenomenological approaches, such as the based

on non-equilibrium thermodynamics, is that they offer the possibility of predicting mass

transfer rates from a limited number of independently measurable properties of the solute

and porous barrier.

The diffusion of gas molecules through a porous medium depends on the collisions between

the gas molecules as well as on the collisions of the gas with the pore walls.122 In the transport

pores, the so-called Knudsen diffusion dominates, where the interaction of the molecules with

the pore walls play the crucial role and the intermolecular collisions can be neglected. In this

case, the molecules perform a series of free flights and change the flight direction statistically

after collisions with the pore walls.

In our discussion, we only consider diffusion in matter transport. A Fick’s second law of

diffusion gives:

ċ/ṫ = Dφ̈/ẍ (A.1)

The time derivative of concentration is directly proportional to the second derivative of
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concentration with respect to distance. The Fick’s second law diffusion equation was used

in Chapter 2. To explore the silicon infiltration, we model the infiltration process by using

and revising the diffusion equation.

First we have:

0 = Dφ̈/ẍ− αφ (A.2)

Here φ is the concentration of the vapor. D is the diffusivity. Because the deposition

time is long enough, the concentration profile should be time independent. Without the

boundary conditions, the solution to the differential above is:

φ = A exp(βz) +B exp(−βz) (A.3)

(2-3) With the boundary conditions:

φz=0 = φ0 (A.4)

˙φz=h/ż = 0 (A.5)

we can get

A+B = φ0 (A.6)

β(A exp(βh)−B exp(−βh)) = 0 (A.7)

A = φ0/(1 + exp(2βh)) (A.8)
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B = φ0 exp(2βh)/(1 + exp(2βh)) (A.9)

Finally, the concentration is:

φ = φ0(exp(βz) + exp(2βh− βz))/(1 + exp(2βh)) (A.10)



Appendix B

EIS Model

To elucidate the electrode process and to derive its characteristic parameters, we obtain

Nyquist plots by using Electrochemical Impedance Spectroscopy (EIS).123 EIS is a sensitive

technique but it does not provide a direct physical explanation for the performance of an

electrode. Electrochemical impedance is usually measured by applying an AC potential to an

electrochemical cell and then measuring the current through the cell. We apply a sinusoidal

potential excitation. The response to this potential is an AC current signal.124

The impedance is the ratio between the input potential and the output current signal.

The impedance is represented as a complex number. If the real part is plotted on the X-

axis and the imaginary part is plotted on the Y-axis of a chart, we get a ”Nyquist Plot”.

Because the physical explanation can’t be given directly by a EIS equipment, Nyquist plots

are often used in the electrochemical literature because they allow for easy comparison with

an equivalent circuit model.123

An equivalent circuit shown in Fig. (B.1) is used in analyzing the Nyquist plot.

Here R is the ohmic resistance including electronic resistance in the electrodes and ionic

resistance in the electrolyte. Rct is the charge transfer resistance between the electrolyte and

the test electrode, formed by a kinetically controlled electrochemical reaction.
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Figure B.1 An equivalent circuit of a Nyquist plot

Cdl is the double layer pseudocapacitance between electrolyte and test electrode. An

electrical double layer exists on the interface between the test electrode and its surrounding

electrolyte. This double layer is formed as ions from the solution enter the electrode surface.

The charged electrode is separated from the charged ions.

Zd represents the impedance element describing the diffusion process inside the electrolyte

and test electrode. The diffusion is driven by a gradient in composition and not by an

electric field, which creates an impedance called a Warburg impedance.125 The impedance

depends on the frequency of the potential perturbation. At high frequencies, the Warburg

impedance is small since diffusing reactants don’t have to move very far. At low frequencies,

the reactants have to diffuse farther, increasing the Warburg-impedance.

So the total impendence Ztol,

Ztol = R+(iρc+1/Rct)
2+( 2

√
iρY0)

−1) = R+Rct/((Rctωc)
2+1)+

2
√

2/(2Y0
2
√
ω)−i((Rct)

2ωc/((Rctωc)
2+1)+

2
√

2/(2Y0
2
√
ω))

(B.1)

To investigate the contribution of each part, we analyze each part of the total impedance.

For example, if we only consider partial impedance Zpart which did not include diffusion

impedance, we will get

Zpart = R + (iρc+ 1/Rct)
2 = R +Rct/((Rctωc)

2 + 1)− i((Rct)
2ωc/((Rctωc)

2 + 1)) (B.2)
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Assume Zr represents the impedance real part, Zi represents the impedance imaginary

part.

Zr = R +Rct/((Rctωc)
2 + 1) (B.3)

Zi = (Rct)
2ωc/((Rctωc)

2 + 1) (B.4)

The relationship between impedance real part and imaginary part:

(Im)2 + (Ie −R−Rct/2)2 = (Rct)
2/4 (B.5)

Figure B.2 A diagram shows the relationship between the
impedance real part and imaginary part
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