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ABSTRACT 

 

 

 

Automated Multidisciplinary Optimizations 

of Conceptual Rocket Fairings 

 

 

Ronald Scott Smart 

Department of Mechanical Engineering 

Master of Science 

 

 

The purpose of this research is to develop and architect a preliminary multidisciplinary 

design optimization (MDO) tool that creates multiple types of generalized rocket fairing models. 

These models are sized relative to input geometric models and are analyzed and optimized, 

taking into account the primary objectives, namely the structural, thermal, and aerodynamic 

aspects of standard rocket flights. A variety of standard nose cone shapes is used as optimization 

proof of concept examples, being sized and compared to determine optimal choices based on the 

input specifications, such as the rocket body geometry and the specified trajectory paths.  Any 

input models can be optimized to their respective best nose cone style or optimized to each of the 

cone styles individually, depending on the desired constraints. 

 

Two proof of concept example rocket model studies are included with varying sizes and 

speeds.  Both have been optimized using the processes described to provide delineative instances 

into how results are improved and time saved.  This is done by optimizing shape and thickness of 

the fairings while ascertaining if the remaining length downstream on the designated rocket 

model remains within specified stress and temperature ranges.  The first optimized example 

exhibits a region of high stress downstream on the rocket body model that champions how these 

tools can be used to catch weaknesses and improve the overall integrity of a rocket design.  The 

second example demonstrates how more established rocket designs can decrease their weight and 

drag through optimization of the fairing design. 
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1 Introduction 

The competing forces in the creation of high performance products in industry, such as 

rockets, are cost and quality.  These two forces have vector directions that can be complete 

opposites of each other which cause a strain between the demand for speed and agility of the 

rocket and the demand for short time to market and less manpower.  Obtaining the best possible 

design for a set of performance parameters can be an expensive lifetime pursuit, but obtaining 

the quick and minimalist cost solution can literally blow up in your face.  Minimizing the time 

and effort for creation of an exceptional design is the struggle in industry that can tear a company 

in two.  This can occur if efforts are not placed on working to better align these two vector forces 

of cost and quality to create less strain on the company.  Aligning these forces supplies a 

component of momentum to the products that will help the company keep a competitive edge on 

the market.  Getting these forces aligned when creating a rocket is as important as understanding 

the physics that create and control the rocket’s flight trajectory.  The methods in this thesis 

improve the ideal product envelope by making the initial product domain more feasible and 

therefore more usable.  Quality is achieved through quicker more detailed optimization of rocket 

fairings which can be implemented on many differing rocket designs. 
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1.1 Problem Statement 

This thesis proposes, implements, demonstrates and tests a method that converges on 

optimal designs for conceptual rocket body models based on the integration of multidisciplinary 

analyses.  Included analyses are the structural, thermal and aerodynamic aspects of any rocket 

model’s trajectory.   

Products and jobs that are not deemed as exceptionally difficult or taxing are often said to 

be “not rocket science” for a reason.  The multiple levels of consideration that must be made 

before acceptable success is achieved are extensive.  Handling multifaceted calculations that 

have extensive interrelations can be a daunting task that can require more than even seasoned 

engineers can calculate alone.  Townsend states “As the application development became more 

complex with increasing levels of fidelity and numbers of disciplines, the need for applying 

software engineering practices became evident.” (Townsend 2002)  The increased levels of 

fidelity are inherent in all advances made in the field of aerodynamics, and the evident need of 

software engineering practices is central to this research.  A great advantage in the methods of 

this thesis is in the integration and automation of the software tools which provide for faster and 

more detailed designs. Increased computing power has led to a shift from purely empirical based 

studies to designs primarily achieved based on analytical research and testing.  These 

advancements allow time to search the vast space of available design possibilities before even 

creating a physical model. However, they come with a caution of possible loss in accuracy that is 

dependent on how efficiently the models truly encapsulate the problem.  There are many 

different forms of analysis, and handling the aspects of all of them simultaneously can be 

challenging and is a prominent subject of current research.  (Alexandrov 2002)  
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The methods in this thesis are designed to integrate the various related fields, as will be 

discussed in this chapter, and to provide insight for designers into how best to manage all aspects 

of the problem.  One of the difficulties of this type of integration is getting the information from 

one software system to another such as from a CAD tool to a flow meshing tool or to a structural 

meshing tool and from there to their respective solvers (See Chapter 2 for more detail on CAD 

and meshing).  Methods for transferring files can take many forms such as IGES and STEP, 

which carry geometric information from CAD systems, but are not always accurate or perfectly 

compatible with the various packages. 

By optimizing and integrating the automated tools created for this thesis, 

multidisciplinary design optimization (MDO) can be performed.  Defined, MDO is an 

engineering discipline that incorporates the use of a collection of tools that cover multiple fields 

of the design process.  MDO is another powerful aspect of this thesis and is more complex to 

generate than a traditional optimization due to the excess of separate but interrelated disciplines.  

“Aerospace vehicles generally require input of design variables from a variety of traditional 

aerospace fields such as aerodynamic, structure, propulsion, performance, cost and trajectory.  

Traditional optimization methods cannot always be applied as they use variables from one field 

only.  Multidisciplinary techniques are required for this class of design problems.” (Roshanian 

2006) In engineering and aerodynamic optimization, there is an ever increasing need for the tools 

to cover more than the aspects of any one engineering discipline.  This thesis presents a 

multidisciplinary design optimization that overcomes the difficulties of dealing with the various 

interrelated fields. 
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1.2 Thesis Objective 

 The objective of this thesis is to show the development and architecture of a preliminary 

MDO tool that expedites the creation, evaluation and selection of optimal rocket fairing models.  

These models are to be analyzed and optimized taking into account the primary objectives, 

namely the structural, thermal, and aerodynamic aspects of standard flights for each rocket used 

in the implementation.  A variety of standard nose cone shapes will be used as optimization 

proof of concept examples, being sized and compared to determine optimal choices based on the 

input specifications such as the rocket body geometry, and the specified trajectory path.  The 

optimal convergence will be determined through the integrated analytical consideration of the 

conflicting objectives based on controllable user input parameters. 

A display of a current simple MDO design process used commonly in industry is given in 

Figure 1-1.  Often, as illustrated in this process, the work done by engineers is done for an 

individual task with no thought of repeatability.  The input is manually inserted into a manually 

built CAD model that is then manually input into a manually created FEA model. This model is 

then checked for adequacy and it either passes or fails (for more on FEA see chapter 2).  When 

the minimal requirements are finally met, the sufficient design is accepted and the now 

unnecessary process is scrapped, as indicated by the garbage can.  Although there is no reuse, the 

engineers have learned how to make related models better the next time.  The majority of lost 

time comes in rework and  labor delays.    
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Figure 1-1: Traditional Simple MDO Design Process 

1.3 Benefits 

An improved process that is becoming more desired in industry is given in Figure 1-2.  

The benefit in repeatability of the work being done by engineers is being seen, and the reuse of 

computation models is growing.  These reusable models are often called parametric models 

because of their ability to update based on the key parameters supplied.  Instead of a garbage 

can, a recycle bin is displayed indicating much of the substance of this process can be reused for 

future iterations.  This is a large step towards an automated MDO process. 
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Figure 1-2: Parametric Design Process 

The process given in Figure 1-3 builds upon the parametric process and creates some 

additions specific to the needs of a multidisciplinary analysis of a fairing.  A much better 

communication between the various disciplines is required to allow for a user free, and also more 

seamless transition. The benefits of the parametric models are still encapsulated, and because 

more specifics are known about the process, additional improvements can be made that 

streamline the process, and remove unnecessary down time. 
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Figure 1-3: Proposed Specific Process 

Many of the benefits of this proposed process come from the level of integration between 

the multiple models.  A higher coordination between the CAD and analysis models allows for 

improved fluidity of the project and a greater allowance for automation.  Because of these 

improvements the process can go a step further and be put into an optimization loop. This 

enables the process to find better results in a quicker fashion than the trial and error of a person 

making repeated attempts at improvement.  The process is shown being saved on a computer for 

future use, because the same tool can be used again to optimize the next preliminary rocket 

model. 
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1.4 Thesis Outline 

Chapter 2 covers related and significant challenges and foundational literature necessary 

to construct the basis for this research.  The foundation of Computer Aided Design (CAD) and of 

Finite Element Analysis (FEA) is discussed as well as Multidisciplinary Design Optimization 

(MDO).   

Chapter 3 presents the developed method which consists of nine parts; first, the method 

describes the automation process which outlines the plan for execution of the process.  Following 

this is a description of how the geometry of the rocket will be referenced and described in the 

Rocket Body Geometry section.  The purpose of the outer mold line of the rocket and how it is 

created is described in the OML creation section.  The unique creation of the fairing geometry is 

described next, followed by the breakdown of the rocket model into discretized pieces is shown 

as well as how these pieces are managed.  There is also a description of the structural geometric 

model creation, and input into how data is transferred between each program.   Next, the 

Structural FEA is described and then the CFD calculations are given and described in detail. 

Following this chapter, a more detailed description of the process and tools used will be 

given in Chapter 4.  Chapter 5 presents a discussion of the results, and Chapter 6 gives 

conclusions and future recommendations. 
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2 Literature Review 

This chapter contains research and foundational information regarding the background, 

developments, and issues related to the automated multidisciplinary optimization concepts that 

are put forth in this thesis.  There are many complications with the aerodynamics of supersonic 

flight that must be overcome that may or may not have been represented adequately in specific 

cases before.  “Many aspects of transitional and turbulent flows are not fully understood….  In 

the absence of detailed experimental or computational databases to better understand these 

physical phenomena, we are left with excessive design conservatism and unrefined conceptual 

designs.” (Martin 2001)  This issue can be simply termed as a lack of knowledge, or better 

stated as a lack of the means of getting knowledge in a timely manner.  If there is a way to 

overcome this issue, and to overcome excessive conservatism, it would open up new paths of 

possibility through breakdown of the barriers of ignorance.   

There are many tools being created that surpass previous limitations and give increased 

accuracy to solutions which provide the foundation for the work of this thesis.  The tools that 

will be described here are mostly computational in nature, but these were grounded upon the 

works of others who sought to describe the physical world through equations and laws.  Three 

main categories of discussion competently encapsulate the areas of research and work that have 

been extended in this thesis: the subject of parametric CAD, the realm of computational 

analyses (such as FEA and CFD), and the methodologies of rocket body design. 
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A short description of Computer Aided Design (CAD) is provided here, with its methods 

for automation and developments upon which this thesis is based. This is followed by a similar 

foundation in the area of Finite Element Analysis (FEA) and Computational Fluid Dynamics 

(CFD).  Then, some methodologies for integration and automation of rocket body design such 

as a Multidisciplinary Design Optimization (MDO) are presented here as foundation for use in 

this research.  These sections also mention areas that are marginal or lack robustness and 

consistency with current design processes. 

2.1 Parametric CAD 

Computer Aided Design (CAD) systems first started as electronic 2D-drafting devices, 

the first of which was the Sketchpad System (Sutherland 1963). From these early beginnings, 

CAD packages have advanced from 2D models, to wire frame models, then to surfaces and 

finally into the current advanced 3D modeling packages of today.  Large steps forward have been 

taken since the 1960’s wherein computers have greatly improved, and the new area of Computer 

Aided Design (CAD) began to become a reality for more and more designers.  For more 

information regarding the basics of CAD and its formulation, see - (Zeid 2005). 

 Many CAD tools provide for vast possibilities of improved development and research.  

Today’s research focus in CAD has been in parameterization of models to allow for reuse of 

designs and for quick adjustments and improvements to be made to current designs.  (Taylor 

1992) (Dye 2007) (King 2006) Such advancements provide for design improvement possibilities 

and lead to orchestrated changes being made more quickly and reliably.  The benefits of CAD 

models are essential to the work of this thesis and make such quick changes and iterations 

possible.   
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There are some difficulties associated with competent CAD designs.  It can take more 

time to create a generic CAD tool than to make a specific model once.  If the design of the 

product changes dimensionally, parametrics can easily compensate.  However, if the design 

changes topologically, the tool can become outdated before it has justified the time and cost of 

its creation.  Making the tool applicable to extensive changes is a primary goal of this thesis.   

2.2 Finite Element Analysis (FEA) 

Another advance in computing has been in the area of finite element analysis (FEA).  

FEA is a technique used to determine the static and dynamic structural and aerodynamic analyses 

of a part.  This is done by discretizing the geometry of a CAD model into small finite elements 

(each of which is influenced by its neighbors) and determining the strengths and weaknesses of 

each element and then from this, interpreting the integrity of the whole.  Before such 

advancements, calculations were limited to known physical calculations based on standard 

geometries.  Determining validity of the actual complex design was based ultimately on the 

performance of what was physically produced after the cost of creation had already been 

incurred.   

The branch of analysis related to aerodynamics that will be used is Computational Fluid 

Dynamics (CFD).  CFD, as its name indicates refers to the calculation of the governing equations 

of fluid motion on a computer using numerical methods.   

CFD is being validated for increasingly challenging configurations. However, the setup 

and solution time for CFD is an impediment to extensive use early in the design process, where 

many configuration variations need to be considered. As a result, simpler methods are used 

during conceptual or preliminary design, even if they neglect important aspects of the flow 
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physics.” (Gatzke 1998) Overcoming the conceptual limitations of some preliminary design 

methods is another contribution of this thesis. 

As with CAD, the development has grown from simple 2D into 3D models, many of 

which still must be approximated due to size and computation time, even using advanced super 

computers.  The vast amount of possibilities makes it impossible to test them all.   Many rocket 

models, as have been seen during industry experience are inherently axisymmetric in design.  

Consequently, this is how the models are designed for this thesis.  The reason for using this type 

of model is that it keeps modeling and computations simpler and still fits a large quantity of 

standard rockets. 

CFD has been used for variety of simulations and analyses of flow over a rocket.  Some 

key results given by various studies include the drag coefficient of the rocket and pressure and 

velocity fields in the surrounding air.  Many individual cases have been explored which are very 

similar to those presented in this thesis.  They are often painstakingly meshed and then analyzed 

to determine performance of a design that cannot be easily adjusted.  This thesis presents 

methods to fix this issue through increased adjustability of the models and integration of the 

tools created. 

2.3 Optimization Using Automation and Integration (MDO) 

MDO uses optimization techniques to solve design problems involving a number of 

disciplines. It is also known as multidisciplinary optimization and multidisciplinary system 

design optimization (MSDO). 

“CAD models from conceptual design often follow the “over-the-wall” approach for 

downstream analyses such as FEA and CFD. The over-the-wall approach consists of four domain 
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experts namely: the designer, airsolid designer, mesh expert, and CFD expert. When the designer 

has proposed a design it is transferred to the airsolid designer to create the fluid domain, 

hereafter referred to as an airsolid, then to the mesh expert to create the mesh, and finally the 

CFD expert to run the CFD analysis. These experts frequently use CAD neutral formats as the 

model moves from one domain to the next and even duplicate efforts. This over-the-wall 

approach creates opportunity for error or design escapes that cost a company large amounts of 

time and money. Since the CAD-to-CFD process is time consuming, CFD has played a limited 

role in conceptual design, especially where complex models are involved.”  (King 2006)  This 

transitional issue is part of what MDO can be used to overcome through its implementation.   

Another issue that MDO solves is that of optimizing on a specific aspect of the design 

can lead to disregard for other aspects of the design.  As an example, an optimization based 

purely on CFD results could lead to a design that is not structurally sound.  MDO incorporates 

the influence of all relevant disciplines considered together.  An optimum found using this 

technique is superior to the design found by optimizing based on the individual disciplines one at 

a time, since it can utilize the interactions between the disciplines. This is currently the standard 

optimization practice used in the aerospace world.   

Disregarding one or more important disciplines during a design study can exploit the 

inaccuracies in the representation and lead to a false optimal design at an infeasible region. The 

cost of MDO is that including all disciplines simultaneously significantly increases the 

complexity of the problem.  “A major task in MDO remains the integration of analysis codes, 

since each discipline’s tools require a different description of the design. This may not be 

onerous for simple systems completely described by a simple set of design variables. For 

aerodynamic and structural applications however, the design variables determine the form of 
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complicated geometries. As the design variables change during optimization, so too does the 

geometry. The new geometry is then used to build meshes and extract other properties, such as 

mass and inertia for evaluation of the design.” (Crawford 2004) Creating sound links between 

CAD, FEA, and CFD is an important aspect of MDO because integration of these tools allows 

for much quicker and more fluid analytical optimization.  (Lee 1999) 

In the past, development of structural and aerodynamic vehicles has been performed by 

separate groups representing the various disciplines; and each group’s expertise was of course 

focused on their particular objective.  These conflicting objectives often led to discord among the 

different groups and also a much longer time for the disjoint objectives to converge upon a 

feasible, let alone optimal, design.  The variety of software packages involved, each focusing on 

its own area of expertise and supporting only its emphasized results, only serves to increase the 

problem.  “The ceaseless increase in computational hardware capability has only exacerbated 

this problem, as engineers and researchers struggle with the use and development of computer 

programs that have become increasingly more complex in order to fully utilize the available 

computational power.” (Alonso 2004)  

Various fields have now begun to try and incorporate MDO, including automobile 

design, naval architecture, electronics, and computer creation.  A large number of these 

applications have appeared in the field of aerospace engineering, mostly involving aircraft, but 

also in the beginnings of spacecraft design.  There is currently no tool that covers the 

optimization of rocket fairings based on the input of varying CAD models. 

In the past, basic 2D models or physical scaled models have been used to give 

preliminary estimates before the creation of a more finalized product.  “Often an aircraft is 

represented by a simple model during the conceptual and preliminary designs. Because simple 
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models are neither accurate nor complete, optimization of these models could lead to an 

impractical design.” (Samareh 1996)  This is of vital concern in this project because the models 

are to be preliminary but not to be at the expense of accurate results.  Therefore, improved detail 

and assurance of the validity of the models is essential and will be an important part of this 

research.  A balance will be sought to encapsulate only the level of detail required so as to 

maintain the minimum required computational time. 

To recap the process and the acronyms used to be sure they are understood, the objective 

will be restated here.  This thesis will make use of selected rocket CAD models to optimize a 

fairing design for each using an MDO process.  An MDO process generates Parametric CFD 

models and FEA structural models, which are integrated and analyzed based on the parameters 

of the MDO, to determine what fairing model is best for the rocket mission being considered.   
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3 Methods 

The methods described in this chapter are representative of specific processes that are 

unique, but are related, to other fields.  Although they have been applied to the specific example 

of this thesis, many of the methods are applicable in other areas related to apexes or cowls of 

vehicles, or to the other related geometries of the methods.  Most attempts at relating this 

research to outside applications will be made in the conclusions and future work chapter of this 

thesis.  However, the tools used in the methods will be generalized to demonstrate the 

independence of the methods from any specific tool.  The methods defined in this chapter are: 

The Automation Process, Rocket Body Geometry, OML Creation, Fairing Geometry Creation, 

Slice Properties Implementation, Structural Geometry Generation, Structural FEA, CFD 

Calculations, and Optimization. The detailed implementation of these methods will be discussed 

in detail in chapter 4. 

3.1 Automation Process 

In Figure 3-1 the predicted process is shown which was used as the outline for this thesis.  

This process outlines what the inputs are and what steps must happen to get an optimal rocket 

fairing model that has been analyzed for flow, stress and temperature.  Each block description 

listed has many execution choices that will greatly influence the speed, accuracy and quality of 

the result of the process.  In the top left, there is an arrow that shows where the process begins.  
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The additional arrows show the course of the design and analysis of the fairing from initial 

gathering of the input rocket dimensions, to the addition multiple nose cone designs, to the 

analyses of the cones made.  The flow, structural, and thermal analyses lead to a variety of 

choices from which to pick the most exceptional design.  This served as a foundation for this 

thesis.  Additions have been made to these beginnings that improve the results such as the 

optimization, and integration of the models. 

 

 

Figure 3-1: Overall Process Design 



 19 

3.2 Rocket Body Geometry 

A CAD rocket body model is an input to this process which is the entire model excluding 

the cone itself that will be generated.  It requires solid models of the geometry with material 

properties assigned to all of the various parts to obtain meaningful results.  The interior parts 

play no role in the CFD, but are included if available in the calculations for the FEA model.  The 

rocket body model is used by a few steps at the beginning of the process.  All relevant rocket 

information is gathered and kept in a data structure so that further access to the model itself is not 

required during later process steps and computational speed can be maintained.   

For future descriptions of the parts, a representation created by Scott et al will be used.  

(Scott 2009) For more detail regarding this, see this reference.  “A will represent an assembly-

type part (a parent to at least one other part) and C will represent a component type part (one 

having no children).  The superscript of A or C will represent the hierarchical level of the part 

and the subscript will represent its position relative to its sibling parts, e.g. A
2

1 is the first child of 

its parent and is a second level assembly, and C
3

2 is the second child of its parent and is a third 

level component.  No subscript will be used when referring to the collection of all parts on a 

certain hierarchical level.”(Scott 2009)  The various levels are displayed here in Figure 3-2. 

 

Figure 3-2: Assembly Part Notation as Arranged by Scott et al 
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 “The notation from set theory for boundaries (bS) will be modified by a subscript 2 or 3 

to distinguish between two-dimensional boundaries b2 (sketch geometry) and three-dimensional 

boundaries b3 (faces and edges of the solid).  b2C
2
 represents the two dimensional boundary of a 

component.  b3C
2
 represents the three dimensional boundary of a component.  Iij is a unit of the 

control structure which represents the interface between components i and j.  The clearance 

between components is denoted by  and the red chain link symbol denotes the sketch constraints 

between Iij and b2C
2
.  A

1
 is the top level assembly that contains the control structure.” (Scott 

2009)  These key terms are displayed here in Figure 3-3 which show a cross section view of aset 

of parts that are revolved about a central axis.  Similar revolutions are presented throughout this 

thesis by merely showing the cross sectional cut of such parts and indicated by the oranges lines 

in Figure 3-3. 

 

Figure 3-3: Key Terms Used by Scott et al  
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3.3 OML Creation 

For a CFD analysis, an exterior representation of the model is required.  For the FEA 

models, inner and outer radii are needed for calculations.  In models such as this, it can be very 

difficult to find a good way to unite the parts of the model into good representatives of the 

exterior.  The exterior is also termed the Outer Mold Line (OML) and the interior is termed the 

Inner Mold Line (IML).  Below, in the figures from Figure 3-4 to Figure 3-11, the developed 

process for accomplishing this task is shown. 

Figure 3-4 shows a simple example of an initial part cross section layout.  The part is 

displayed as a cross sectional slice in the axial direction which would be revolved about the 

center axis represented as a dotted line.  This example is a simple group of tubes that increase in 

diameter from left to right with a kind of cap on the top.  Combining all the part models into one 

single part can be done using a few steps that begin with the exterior boundaries of the parts.  

The lines that make up each boundary will be termed Lk and are defined in Equation 3-1.  The 

use of the ∑ symbol in this equation and others that follow is not to be interpreted as the 

summation of all numbers into one value.  The ∑ symbol instead represents a collection of all the 

points or lines that fit the criteria as indicated by the surrounding subscripts.  There are a varying 

total (termed w) of lines in each boundary of a component. 
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Figure 3-4: Initial Assembly Axial Slice 
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Equation 3-1: Set of Part Exterior Lines 

To start the parts are interrogated for all of their edges.  In Figure 3-5, the points on each 

of these corners are labeled in red.  Some of these points are in the main areas of interest for 

uniting the model into a common body.   

 

 

Figure 3-5: Points from Boundary Line Intersections 

These points can be defined as the intersections of each exterior line with all of the other 

exterior lines (also known as the complement C) from each part as mathematically described in 

(3-1) 
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Equation 3-2 where Ptq is the current point.   Then in Equation 3-3, Ptedges is shown as the 

summation of all line intersections.
 

C

qqq LLPt  

Equation 3-2: A Line Intersection 

H

q

qedges PtPt
1

 

Equation 3-3: Summation of Points from Line Intersections 

These edge points are used to find intersections with the lines on all the other parts of the 

model.  This is done by investigating vertically relative to each edge for intersections in all of the 

part models.  Vertical lines through each Ptq titled Lvq in Equation 3-4 are used to intersect any 

other lines that they cross in all of the assembly.  The resulting additional points that were not 

already included are labeled here in green in Figure 3-6. 

 

 

Figure 3-6: Primary Points Based on All Edge Intersections of Parts in Y 

 

 

 

(3-2) 

(3-3) 
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Together with the points in red, they make up what are termed the Primary Points (Ptprim) 

as shown in Equation 3-4. 

H

q

w

k

qkprim LvLPt
1 1  

Equation 3-4: Primary Points of the models 

Sometimes, there are more than just two points that fall in a vertical line because multiple 

parts overlap at the location.  Picking which two points are the extreme max and min at every 

location gives you the inner and outer radii of that location.  So the vertical maximum and 

minimum points at each x location of the Primary Points are determined by comparison.  These 

extremes all lie on the exterior or interior of the desired resultant shape.  This is mathematically 

defined here in Equation 3-5 and is represented visually as the circled points in Figure 3-7. 
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Equation 3-5: Extreme Vertical Points of the Primary Points  

 

Figure 3-7: Minimum and Maximum of Primary Points in Y on Other Edges and Parts 
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When these max and min primary points are attached correctly, they make a 

representation of the model that is close, but still has some areas that are poorly defined as seen 

in Figure 3-8.  This is because some corners that may have looked like they were purely inside 

the model were really just a surface that was vertically aligned with another outside surface and 

was incorrectly discarded. 

 

 

Figure 3-8: Solid Made from Current Max and Min Primary Points 

To correct the model and improve these surfaces, additional points are placed on the 

model shifted slightly to the right and left of each Primary Point and these are added to the set of 

Primary Points.  This shift distance can approach the neighbor points infinitesimally so that it is 

well within the tolerances of the part, but still unique from the Primary Point.   The additional 

points are shown here in Figure 3-9 as purple vertical hash marks.  Picture these purple marks 

approaching the neighbor points until they are not visibly distinguishable (yet are still unique).  

These values shifted just left and right in the x-directions are presented as q+ and q- terms in 

Equation 3-6. 

Hadv

qadv

w

k

qkqkqkadvprim LvLLvLLvLPt
1 1

 (3-6) 
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Equation 3-6: The Advanced Version of the Primary Points 

 

Figure 3-9: Additional Primary Points from Shifting Left and Right of Current Points 

These new points shown as purple vertical hash marks can then also be intersected with 

all the other part edges in the model which add the yellow hash marks as seen here in Figure 

3-10.  These points are termed the Key Points in this document.   

 

 

Figure 3-10: Key Points Based on New Set Placed on Other Edges and Parts in Y 
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Equation 3-7: The Advanced Version of the Exterior Key Points 

(3-7) 
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By taking these max and min exterior key points as was done before, the new solid 

shown in Figure 3-11 is created by sorting through these points and connecting them in the 

correct order.  Note that for each max point there is always a corresponding min point so it can 

be easily determined which ones are part of the OML and which are part of the IML surfaces.   

 

 

Figure 3-11: Solid Based on New Set of Max and Min Key Points 

Other applications are achievable with this tool that are outside the scope of this project, 

but that could be future work for other areas of research.  The possibilities of this tool apply not 

only to other areas directly related to rockets, but to any axisymmetric models in existence where 

it is desired to create a common solid, exterior, or interior.  Examples could range from models 

as small as a pen, a dart, or a flashlight, to much larger bodies such as a fuselage, pipes or shafts 

in vehicles. 

3.4 Fairing Geometry Creation 

There are a variety of equations that are used in generating Fairings.  The equations 

calculate the y value relative to the x location with the left facing tip of the nose cone being the 

zero location. 
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From Equation 3-8 to Equation 3-16, the cone equations that can be applied to this 

process are discussed.  They each have some general common variables such as the x location 

which varies as it traverses the cone with the initial value of zero being the tip and increasing 

until it reaches the base.  Then there is also the Length which is the distance of the cone from tip 

to base (L).  The radius of the nose cone (r) is defined as the value at the base.   

A distance is also set on the front which allows for a radius blend (tip_rad).  This distance 

is not the value of the radius at the tip, but how much room you would like to give to a radius 

blend that will hold tangent to the cone and round perfectly at the top.  Ensuring that this edge is 

tangent is very important since a harsh edge can negatively impact travel in supersonic flight.  

“Flow at a compression corner, such as the junction between a cylinder and a conical frustum, 

causes separation of the boundary layer. Shockwaves form at the flow separation and 

reattachment points during supersonic flight.” (Yang 2008) 

Figure 3-12 shows the new cone radius in orange and the original curve in blue with a 

tip_rad = 7.  The tip ends up a little shorter than the initial equation would have.  The new radius 

holds tangent to the curve connection and also perpendicular at the bottom so that the tip is 

rounded and not pointed.  This clipping of the nose tip from an infinitely sharp edge to a finite 

value allows it to be manufactured and is vital to the analysis.  “The amount of heat transfer is 

inversely proportional to a square root of nose radius, and so the nose bluntness has a 

considerable effect on the surface heat transfer, even though it has slight effect on the surface 

pressure distribution.” (Lee 2001)  So though it may not be critical to the pressure distribution 

and might be disregarded by some, the thermal aspect is strongly influenced by its shape and so 

is included in this research. 
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Figure 3-12: Description of tip_rad Dimension Relative to True Radius 

All of the following curve equations are defined relative to their y-axis value (labeled as 

Ythistype) which varies as you proceed in x.  In all of the figures from Figure 3-13 to Figure 3-19, 

the common values are set with L=100, r=50, and tip_rad=7.  All other values unique to the 

equation type are described in their captions.  In both Equation 3-8 and Equation 3-9, the 

calculation of an ogive curve is shown.  This is a common style of cone configuration.  It is 

written relative to the y-axis value (labeled as YOGIVE) which varies as you proceed along the x-

axis.  Figure 3-13 shows an example of the Ogive curve. 
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Equation 3-8: Ogive Curve Equation Relative to Y-axis 
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Equation 3-9: Definition of ρ in the Ogive Equation 

(3-8) 

(3-9) 
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Figure 3-13: Ogive Curve Example 

Another equation used to control the shape of a nose cone is an elliptic curve (labeled as 

YElliptic). It is defined in Equation 3-10.  An example is shown in Figure 3-14. 

2
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rYElliptic  

Equation 3-10: Elliptic Curve Equation Relative to Y-axis 

 

Figure 3-14: Elliptic Curve with L(100), r(50), and tip_rad=7 

A standard cone equation is described here in Equation 3-11 which is based merely on a 

line defined by the radius (r) and the length (L) relative to the y-axis (labeled as YConic). 

L

rx
YConic  

Equation 3-11: Cone Line Equation Relative to Y-axis 

(3-10) 

(3-11) 
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Figure 3-15: Cone Line Equation Example 

An alteration to the basic cone equation is described here in Equation 3-12.  The bi-conic 

cone has two parts, and so it has another radius (r1) and length (L1) control.  The equation 

changes for X L1.  Figure 3-16 shows an example bi-conic cone curve. 
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Equation 3-12: Bi-conic Line Equation Relative to Y-axis 

 

Figure 3-16: Bi-conic Curve Example with r1=3*r/4 and L1=L/2 

The parabolic curve equation is shown here in Equation 3-13.  This equation has a constant 

value K that can vary from 0 to 1.  This controls how slim the parabola is, varying from a true 

parabola (K=1) to a cone (K=0).  The added spectrum of choices provided by the K value gives a 

variety of possibilities that are not necessarily considered true parabolas, but provide for more 

(3-12) 
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flexibility in design.  An example of just such a parabolic blend, with K=0.5 is shown in Figure 

3-17. 

K

length

x
K

length

x
r

YParabolic
2

2
2

 

Equation 3-13: Parabolic Curve Equation Relative to Y-axis 

 

Figure 3-17: Parabolic Curve Example with K=.5 

In a power curve equation, as given in Equation 3-14, the variable n can vary from 0 to 1.   

n

Power
length

x
rY  

Equation 3-14: Power Curve Equation Relative to Y-axis 

As n increases from 0 to 1, the cone transitions from a cylinder to a cone in shape.  At 

n=0.5, the resultant is a parabola.  An example is shown here with n=0.5 in Figure 3-18. 

 

(3-14) 

(3-13) 
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Figure 3-18: Power Curve Example with n=.5 

The HAACK equation shown in Equation 3-15 is the only one that is not based on 

geometric shapes, but is derived to minimize the drag.  Like the parabolic equations, the 

HAACK series nose cones are not quite tangent to the body at their base, but they are close to 

tangent.  It is so close that it is hard to see with the human eye that they are not parallel where 

they meet. The value  is broken out into a separate equation to simplify the equations and is 

specifically defined in Equation 3-16.   
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Equation 3-15: HAACK Curve Equation Relative to Y-axis 

L

x2
1arccos

180
 

Equation 3-16: Theta Definition for HAACK Equation 

There is also a C parameter that can vary from 0 to 1.  When C=0, the cone is called an 

LD-HAACK which means it’s the minimum drag for the given length and diameter, and when 

C=1/3, it is called LV-HAACK which indicates minimum drag for a given length and volume.  

The LV-HAACK is also often referred to as the Von Karman, or the Von Karman Ogive, and is 

commonly used for rocket fairings. 

(3-15) 

(3-16) 
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Figure 3-19: HAACK Curve Example with C=1/3 

All of these equations need to be updated parametrically and be interchangeable while 

still maintaining the same common control parameters.  These cones are attached to the 

structural and to the CFD fairing models which are described in more detail later. 

3.5 Slice Properties Implementation 

The information regarding the implementation of the slice properties tool can be 

organized into three categories.  This list describes how the sections are categorized: 

1. Slice Properties Calculations 

2. Slice Properties Usage 

3. Slice Properties Storage 

3.5.1 Slice Properties Calculations 

A simple description of a slice is all the material inside a region R bounded on both sides 

in the x dimension.  It can be mathematically described by Equation 3-17 where Sw is the 

resultant Slice and is the width of the increment Rw.  

n

i
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2  (3-17) 
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Equation 3-17: Slice Creation Equation 

The region Rw is given a fixed length in x, starting at the most extreme left position in x 

and then by shifting one increment to the right with each iteration.  The set of all desired 

information termed Islice that needs to be obtained from each slice is achieved using a function 

termed Fset() and is shown in Equation 3-18. 
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Equation 3-18: Slice Iterations 

Each slice can theoretically be created in any CAD package using the intersection of the 

region and all the parts that fall within that block or within two bounding planes.  The concept is 

much easier than the implementations, as can be seen in chapter 4.  One difficulty is that not all 

parts that are created in an assembly are defined using the same coordinate system.  As an 

example, say the slice is 1 inch from the assembly coordinates of x=3 to x=4.  If the model was 

completely modeled relative to this same coordinate system, you could just create a block in each 

part from x=3 to x=4 and intersect that with the parts.  If however one of the parts was modeled 

from x=0 to x=1 and then was positioned in the assembly at x=3 to x=4, creating an intersection 

block at x=3 to x=4 inside that part would completely miss the intended part and misrepresent 

the region of x=3 to x=4.  This problem intensifies when the parts have different orientations 

from the assembly.   

This problem is solved by creating the block part in the main assembly, at the assembly 

coordinates desired, and then using transformation matrices to copy the block into the various 

parts at the right position, which are now referenced relative to the local coordinate systems.  

Next is to determine which portion of the parts intersects with the block. 

(3-18) 
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When you have the determined slice of all parts in the assembly, the next step is to 

separate exterior parts from interior parts.  This can be done using methods similar to the OML 

tool described earlier, replacing the concept of lines with solids.  The exterior pieces need their 

density, thickness, and outer radius determined.  These pieces are then directly represented in a 

beam model. 

The interior parts are represented as lumped masses so more properties are calculated like 

the inertial moments in the x, y and z directions (Ixx, Iyy, Izz), and the center of gravity (CG).  

These can be calculated individually for each of the parts in the slice.  Then the mass properties 

are summed to determine the lumped mass properties of the entire slice.   The reason and usage 

of the lumped masses is explained in the following sections of this chapter. 

Some difficulties with the models are the doors and other access panels that dot the 

exterior of the rocket body.  A simple version of the model, with no doors, is adequate at this 

stage. The challenge lies in determining the appropriate skin thickness and outer radius for these 

regions.  Around the doors tends to have a thicker region of support that is not indicative of the 

rest of the revolved solid. So avoiding this region for the representative slice can be helpful.  

This thickness usually occurs inward and so does not affect the OML Creation result of the outer 

mold line.  The process in section 3.3 describing this OML Creation tool is made to bridge the 

gaps of such holes to create a seamless surface.  This is done by selecting a typical region far 

from the door hole as the representative thickness and outer radius.  More specific discussion of 

this is detailed in the implementation section. 

3.5.2 Slice Properties Usage 

Beam representations of the slices will be linked together and lumped masses are placed 

at their centers.  This gives a simple but adequate structural representation of the rocket body.  
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These beam models can be used to perform many tests to determine the structural integrity of the 

model.   

3.5.3 Slice Properties Storage 

It is better to wait until more information is known about these models (such as the forces 

applied) so that all the information can be concurrently imported to the structural model, but this 

cannot happen until flow analysis is done.  The flow analysis requires some of the same input 

geometric data so these details had to be calculated first and subsequently saved for later.  This 

leads to the divide between the initial slicing and the structural model creation.  Because of 

timing issues related to when the slice and structure model are created, the process requires a 

method for information storage and retrieval.   

Other analyses can also be done with this information so it is helpful to have a readable 

format that is user friendly and organized well.  It is also beneficial to have a format that is 

automatically readable by a computer program without need of parsing the information again 

that was previously available.  Because these formats have alternative uses, it was found to be 

more beneficial to make both copies.   

3.6 Structural Geometry Creation 

Analyses of such models can occur on multiple levels of fidelity.  The models can be 2D 

beams, 3D shells, or 3D solid models.  By moving to a higher fidelity level, you move to a realm 

which can hold higher accuracy but also higher complexity and runtime.  So, when a sufficiently 

accurate result can be obtained by a lower fidelity model, this is the ideal choice because the 

results are computed in less time which allows the process to be optimizable.  Because the goal 

of this thesis is to create preliminary fairings that are more simplistic and axisymmetric in shape, 
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the 3D shell models are a good level of fidelity for the nose cone.  The rest of the rocket is a 

more secondary study, which has previously received and will yet receive detailed review in a 

rocket development process so it is sufficient to use a faster 2D beam representation of this 

portion.   

Beam models have multiple types, each with different properties and features.    Many 

programs such as Abaqus FEA, ANSYS, LS-DYNA, and forms of Nastran have similar 

elements.  Only general element details will be described.  For specific element examples, see 

chapter 4 under the beam section.  One specific type of beam element has been identified as a 

useful option for this project.  Also, a form of a 1D mass element has been found with desirable 

attributes.  The chosen type of beam element has two radial cross sections associated with it.  It 

is defined on each end by an inner radius and outer radius or by a radius and thickness.  The 

beam is computed to be a taper from the one section to the other and is ideal for this analysis.  

This element also has a density input and a length. From these, the volume and mass can be 

computed and used by the solver.  The 1D mass element type has no cross sectional area but has 

mass and inertial properties.  These masses are used to exhibit the attributes of all parts interior 

to the model.  They are attached to the 2D beam models which are representative of the exterior 

parts of the model.  It should be noted that though the lumped masses are attached in line with 

the beam model, their center of gravity is not necessarily co-axial with the rocket.  The Slicer 

Dicer tool gathered this information earlier and stored it for use in this model.   

There are many options here for different levels of analysis, but for this thesis, a 

combination of these different mesh qualities has been implemented.  The initial plan for the 

structural analyses was to make a 2D beam model of the fairing attached to the rocket body.  

This was to be created as a sufficient analytical result for the structural integrity of the rocket 
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body and as an initial estimate of the nose cone which would then be refined.  The refinement 

was to be a separate, higher detail 3D sheet model that focused on the fairing alone.  The forces 

calculated in the initial beam model were for determining the loads that the rocket body itself 

(being propelled up) is placing on the 3D sheet fairing model.  These loads could then be input to 

a more detailed sheet model of just the fairing itself.  Upon further research, it was determined 

that these two processes could be done better simultaneously.  Instead of creating a beam model 

of the fairing, the detailed sheet mesh can be attached directly to the rocket body beam model.  

This reduces the time and the difficulty of transferring data from one model to another.  Also, 

there was no need to make an inferior fairing beam model that would contain less detail before 

proceeding to the higher fidelity model.     The calculation of the forces that would be placed into 

the higher fidelity model would also be less accurate when compared to the direct connection of 

the models. 

The beam element information was gathered earlier in the OML Slicer Dicer tool and is 

now applied here.  Each of the beam elements has its own Ixx, Iyy, Izz, CG, Moment, Inner 

Radius, Outer Radius and Material type. 

3.7 Structural FEA 

As mentioned before, the analytical rocket models have different levels of fidelity.  The 

first part is the beam model of the entire rocket and the second is a structural shell mesh of the 

fairing itself.  Both models have pressures, forces, and temperatures applied to them based on the 

results of the CFD analyses previously performed.  From this information, the data can be 

analyzed using structural analysis programs such as Abaqus FEA, ANSYS, LS-DYNA, and 
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Nastran.  From these analyses, the stresses can be compared to the yield strength or to some 

safety factor to determine if it meets the desired criteria.  

3.8 CFD Calculations 

Much like the structural model, there are multiple levels of fidelity that can be obtained 

ranging from an empirical based code, or a panel code up to a 2D or 3D mesh.  The panel codes 

which calculate based on small regions called panels and the empirical based codes use 

previously gathered empirical data to calculate and predict results.  The 2D meshes are 

representative of the influenced air flowing around the model, with one side representing the 

wall of the rocket and the opposite side often representing the end of the region of air influenced 

by the motion of the rocket.  Remaining sides are often inlets and outlets for the air to flow 

through.  Similarly for the 3D models, the mesh represents the air around the rocket.  The most 

interior wall of elements is the rocket wall, and the most exterior is the farthest away air 

represented.  There is often an inlet and outlet condition on each end.   

Navier-Stokes equations (as given in Equation 3-19) characterize any situation of fluid 

flow in the x-direction, and a corresponding equation for the y-direction.  The ρ is density, p is 

pressure, V is the velocity vector, µ is viscosity, and u is velocity in the x-direction.  The partial 

derivative of ρu with respect to time has been removed due to the steady state condition.  The 

inviscid assumption, which is justified hereafter, further simplifies this equation by removing the 

divergence term on the right-hand side. 
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Equation 3-19: Navier-Stokes Equation as Implemented 

(3-19) 
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The mass continuity equation is used in the solution.  The partial derivative of density 

with respect to time, which normally appears as the first term, was also zero due to the steady 

state condition, leaving Equation 3-20. 

0)( udiv  

Equation 3-20: Simplified Mass Continuity Equation 

The conservation of energy equation is also used and is listed here in Equation 3-21.  

This is the last governing equation, where k is conductivity, T is temperature, Si is the momentum 

source, and Φ is the dissipation function. 

iSkgradTdivpdivuiudiv )()(  

Equation 3-21: Conservation of Energy Equation 

3.8.1 Pressure and Drag Coefficients 

The coefficients of pressure and drag are used for the flow calculations in this thesis.  The 

coefficient of drag (CD) is listed here in terms of the Drag Force (FD) as is given in Equation 

3-22.   
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Equation 3-22: Coefficient of drag equation 

The coefficient of pressure (CP) is also shown here in Equation 3-23.   
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Equation 3-23: Coefficient of pressure equation 

(3-20) 
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(3-23) 
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3.9 Optimization 

Others have tried many different techniques to arrive at an optimal solution.  The vast 

combinations make it impossible to exhaustively search the feasible space.  Different algorithms, 

such as gradient based algorithms, genetic algorithms, and response surface methodology have 

been employed to more quickly, yet adequately, traverse the space.  These cases have usually 

been created encompassing only one or two aspects of the problem because integrating the 

various software packages can be tedious and hard to automate.  This limited integration of tools 

often leads to improper exploitation of inaccuracies.  (Unal 1996) (Kim 2000) (Lee 2006) 

Similar applications have been performed on engine aircraft.  Tappeta et al  (Tappeta 

1999) developed an MDO optimization for engine components involving similar tools. “The 

basic disciplines used for simulating the multidisciplinary environment are fluids, modal, 

structural and thermal analysis models.” (Tappeta 1999)  These same areas are as applicable to 

rocket fairings as to other aerodynamic fields. 

The multi-objective optimization can be described as shown in Figure 3-20.  The i

values are the objectives to minimize.  The 1 term represents the objective to minimize the 

weight of the cone, and the 2 term is the objective to minimize the stress. 

A generalized reduced gradient method was used here that alternates the variables so that 

on each iteration only one is dependent and all the others are independent.  The goals are subject 

to the constraints listed, and are in terms of the structural integrity (SI), and the stresses in the 

beams ( bi ). 
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Figure 3-20: Multi-Objective Optimization Problem 
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4 Implementation 

The implementation described in this chapter is an instance of the type of process that can 

be applied to other unique products.  The implementation example here is of rocket nose cones.  

Although they are applied to a specific example in this chapter, the methods are applicable in 

other areas related to apexes or cowls.  This section shows how an input rocket is taken and, 

using various codes and techniques, is optimized based on the input flight parameters.  

4.1 Process Flow Descriptions 

In Figure 4-1 the process has been broken down into its primary steps.  Each of the pieces 

lists its function and the software and coding style used to create it.  The starting location is the 

input part model.  This model can be very large and complex and the time it takes on the initial 

steps is adversely affected by the size of the input model.  Fortunately, the original part model is 

not involved in the optimization loop. Hence, once the required information is extracted, the 

model can be set aside and future iterations can be made independent of the model.  The first 

three steps, shown in the purple box, perform the data gathering and extraction preparation 

functions required as input to the optimization process.  The remaining process steps in Figure 

4-1 are run repeatedly according to the controls imposed on the iSIGHT-FD optimization run.  

This portion of the method is run on a computer indicated by the blue box.  The iterations are all 

stored in separate folders and can be kept as a history of the process.  The steps that are shown in 

the green box are computationally intense and should be run on a supercomputer or a batch 
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cluster.  In this way, the purple, blue, and green computer systems can even be different 

operating systems.  Only the purple steps require user input and the green and blue computers 

must share a common drive.  The blue computer requires a visual display for the NX6 batch files 

to run. 

 

 

Figure 4-1: Overall Process Design 

Non-proprietary rocket examples will be used throughout the following chapters to help 

show how the process progresses.  The first rocket (Figure 4-2) has fictitious components, but 

the body regions are representative of what is needed for the process. 
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Figure 4-2: Simple Example NX6 Rocket Body Model 

Figure 4-3 shows a cross sectional cutaway of the example rocket.  Some of the 

components are not axisymmetric and some are not centered on the x-axis.  These parts can be 

more difficult to represent in a simplified model, and is one of the purposes of slicing the model 

and creating the lumped masses that are representative of these interior parts.  These lumped 

masses can be given multiple levels of fidelity based on how much detail is desired.   

 

Figure 4-3: Cross Section View of Simple Example Model 
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4.1.1 OML Slicer Dicer Overview 

The Slicer Dicer tool takes in a rocket body and “slices” the body into small, one inch 

segments (or any size chosen by the programmer).  The sizes of the slices can be one set 

increment or a file of key points and lengths can be input to specify the divisions.  The program 

then takes these slices and determines the properties of each, namely the inertial properties (Ixx, 

Iyy, Izz), the center of gravity (CG), and moments of the slice.  These results are stored in a 

serialized array. Serialization involves storing C++ data, such as classes and structs, in a way that 

allows it to be used more seamlessly later in other programs.  This is because it can be used 

without ever writing the data to a text file which in turn would need to be parsed, having the data 

reassigned to their original structures for a downstream program. This serialized data is used by 

the Section Maker tool.  The data is also exported to a comma delimited text file that is helpful in 

other advanced rocket applications not required by this project.  The rest of this section describes 

how the OML Slicer Dicer process is performed.  

Figure 4-4 is the Graphical User Interface (GUI) associated with the OML Slicer Dicer 

application.  The choices allow the user to perform various tasks based on their needs.  If a 

greater level of customization is wanted, an increment file could be selected which would 

manage more details than the Primary Increment input allows for alone.  The File Output Name 

is written out to the desired location with details into the operation and results.  The Suppress 

Display Until Completion option makes the program run faster but progress cannot be seen on 

the display as it happens.  For the optimization process, the Output Binary Serialization File 

choice is selected so that the data is stored for later use.   
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Figure 4-4: Slicer Dicer GUI 

4.1.2 OML Slicer Dicer Steps 

The code for this portion was created using C++ for use in NX6.  This is the most 

complex portion of all the code for this project.  The data management of the operations and 

control of boundaries is more complex than the initial description details. 

To start, the rocket model to test is opened and the code begins by cycling through all the 

parts in the assembly to determine the left and right extremes in the model.  Planes have been 

placed extremely far away in the parent assembly (-15000 and +15000 units away).  The 

complexity is due to the fact that each part may have been modeled in a different coordinate 

system.  Checking the distance from the planes using the UF_MODL_ask_minimum_dist 

function determines how far each datum plane is apart relative to its own system.  So even if in 

an assembly, the parts appear to be next to each other, if they are not brought in relative to the 

assembly, the distance will not give the desired result.  This can be done by wave linking.  

Waving in or wave linking describes the action of taking the locations of one object in an 

assembly and  placing it in another part model at the same relative distance as it was in the 

assembly.  When the planes are wave linked in relative to the individual parts, the 
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UF_MODL_ask_minimum_dist function returns the correct distance values between all the 

components and can be used for determining the extreme ends.  All the points are stored and the 

minimum of the minimum values and the maximum of the maximum values are determined to be 

the extreme ends of the model. 

Once the basic rocket dimensions are determined, the Use Increment File check box in 

Figure 4-4 can be selected to allow for higher detailed control.  If it is chosen, the input file is 

selected, read and key points with related increments are used as the file creates the slices.  An 

angle control is also applicable, which allows the user to avoid complex regions on the model 

that would not be representative of the general thickness of the region, such as a door or a rivet 

hole.  The angle control is really defined by two numbers, which are vector based in the YZ 

plane, and is described in more detail in the Appendix.  Otherwise, the Primary Increment input 

value, seen in Figure 4-4 is used and a purely planar (XY plane) is used for the OR and IR 

calculations.  The weight, inertial properties, moments and CG are all calculated off of the true 

dimensional quantities and are not rounded like the OR and IR dimensions.  If the check box for 

suppression of the display is set, the UF_DISP_set_display function is used to suppress the 

updates of the picture during the operations until completion of the execution.  It is easier to see 

how the program progresses through the part without it being suppressed but it is slower due to 

the screen updates that occur.   

A revolved disc is created at the master level assembly that represents the volume of the 

region to be sliced.  As a note, this disc could be changed for projects outside the scope of this 

project to be smaller so as to just catch the interior of the model or be turned into a donut just to 

catch a ring of results.  The revolved disc can be seen in Figure 4-5 as a thin purple disc.  This 

example segment is one inch thick.   
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Figure 4-5: One Thin Purple Slice Region of the Simple Example Model 

The function that actually creates the slices is then called recursively until every part has 

been cycled through.  The parts are cycling first based on component and then in each 

component by solid body, because multiple solid bodies can be in a component.  Each time it 

comes to a new body, the disc created in the master assembly is wave linked in to the current 

component and then used to intersect the current solid body.  This ensures that the disc is at the 

proper slice location relative to the assembly coordinate system and not relative to the individual 

parts.  In Figure 4-6 below, an example slice is shown corresponding to the disc slice shown in 

Figure 4-5.   
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Figure 4-6: One Resultant Slice of Simple Example Model 

Now that the slices have been created, it is important to determine which pieces in a 

given slice constitute a slice of the exterior case.  Users will want the mass properties together 

and not separated into interior and exterior items for some applications of this tool.  This is 

especially true for the text output option which writes mass properties to a Comma Separated 

Values (CSV) file, like the one shown here in Figure 4-7.  In cases like this, where all the items 

are desired as a whole, you do not want a serialized file for future use; so unchecking the 

serialization check box allows you to skip the Serialize_Section_Info option.   
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Figure 4-7: Slice_Props.csv File Based on Interior Parts of Example 

4.1.3 OML Slicer Dicer Element Properties 

In each slice, there are two different elements that have properties to be defined.  The first 

type is a beam element.  These beam elements have an exterior radius and thickness at both ends.  

These ends define the tapered slope of the element from the one side to the other (much like a 

cone with the tip cut off).   

By using two equal length elements per slice the center has a node location for 

attachment.  A lumped mass is placed at this location which defines the interior weight, CG, and 
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inertial properties.  It can be defined as being offset from the node it is attached to in any 

direction.  It was determined that it is easier to divide each slice region into two beam elements 

with an averaged cross section at its center. Then when the lumped mass is attached at this center 

point, there is no need to adjust for the offset of attaching at one of the ends.  The slice data is 

stored in block sets, which represent these two beams with a lumped mass at their center.  This is 

much more understandable to someone using the model later for other analyses because the 

lumped masses are not placed at locations which are offset from their true weight centers.  See 

section 6.2.1 for more on these properties. 

4.1.4 OML Slicer Dicer Storage 

In Figure 4-8 is listed the C++ class of information that is stored and used throughout the 

optimization process.  Each element from a slice is placed into this structure.  The function that 

is used for recovering the information is also listed.  It provides the means by which the 

information can be broken down to a binary level and reconstituted for use later on.   

This process of storing the information at a binary level is known as serialization.  It 

provides a way of both storing and accessing the information without needing to deal with 

extensive issues of text formatting and data management.  This method is easier to manage than 

say an example of storing a text list of all the information, which could be very large in size.  

This text file would then require a program to parse through it over and over again at multiple 

stages of the optimization to regain the desired information. 
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Figure 4-8: Class C_Sect_Info Used for Storing Properties for Other Programs 

#ifndef C_SECT_INFO_H 

#define C_SECT_INFO_H 

class C_Sect_Info 

{ 

//private: 

public:  

 double Mass; double CGx; double CGy; double CGz; 

 double Ixx; double Iyy; double Izz; 

 double Ixy; double Ixz; double Iyz; 

 double   Offset_X; double  Offset_Y; double   Offset_Z; 

 double Density;  double Pr_Axe[9]; double Pr_Mom[3]; 

 double Start_IR; double Start_OR; 

 double End_IR;  double End_OR; 

 double Start_X;  double End_X; 

 int Mat_Num;  int Node_Num; 

//public: 

    C_Sect_Info(double ma, double cgx, double cgy, double cgz, double ixx,double 

iyy,double izz,double ixy, double ixz, double iyz,double off_x, double off_y, double 

off_z, double density, double start_ir, double start_or, double end_ir, double end_or, 

double start_x, double end_x,int mat_num, int node_num )// : mass(ma)  

 { 

  Mass = ma; 

  CGx = cgx; 

  CGy = cgy; 

  CGz = cgz; 

  Ixx = ixx; 

  Iyy = iyy; 

  Izz = izz; 

  Ixy = ixy; 

  Ixz = ixz; 

  Iyz = iyz; 

  Offset_X = off_x; 

  Offset_Y = off_y; 

  Offset_Z = off_z; 

  Density = density; 

  Start_IR = start_ir; 

  Start_OR = start_or; 

  End_IR = end_ir; 

  End_OR = end_or; 

  Start_X = start_x; 

  End_X = end_x; 

  Mat_Num = mat_num; 

  Node_Num  = node_num; 

 

 } 

    ~C_Sect_Info() { } 

};  

#endif // C_SECT_INFO_H 

 

int Serialize_Section_Info() 

{ 

 ofstream out("S:\\Section_Info.bin", ios::binary); 

 for(unsigned int i=0;i<section_info.size();i++) 

 { 

  out.write((char*)&section_info.at(i), sizeof(section_info.at(i))); 

 } 

    cout<<"*Closing File Stream...n"<<endl; 

    out.close(); 

 cout<<"----------End of Serialize Function"<<endl; 

 //system("pause"); 

 return 0; 

} 
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4.1.5 Cone Expression Maker 

This C++ code is run in NX6 and is the basis for a parametric part file.  It includes all the 

equations for nose cones, as described in Chapter 3.  By including all the choices for the different 

cone types, the model can seamlessly transition from one type to another.  The current cone type 

is indicated by the choice yt and is currently set to yt_Parabolic.  It also sets the initial values for 

the radius and length of the nose cone.  Any other values related to specific cone types are also 

set at a default, such as the bi-conic, where the secondary length is set to half the primary length.  

An example list of expressions for the simple part just covered is shown in Figure 4-9.     

 

 

Figure 4-9: NX6 Expressions Set by Cone Expression Maker Tool 
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4.1.6 Parametric Mid Cone Tool 

This code is a text based macro run in NX6 that sets the necessary options for creation of 

a law curve as defined in NX6 documentation.  The functionality in the C++ library of NX6 was 

not yet capable of performing a law curve operation programmatically so this workaround was 

instituted.   

After this tool is run, a user can even interactively change the options in the expressions 

list of the part model to update the cone style.  This includes parametric changes in lengths and 

also allows for complete changes in style.  For example, a change from a power curve to an 

elliptic or a bi-conic style could be made without disrupting the surface sheet created or any 

other associated features like a FEA or CFD mesh.   

4.1.7 OML Maker Tool 

This tool is used to determine the outer mold line (outer radius along the length) of the 

rocket.  The large number of parts that are present in a file make it difficult to determine which 

are related to the exterior and how to bridge the gaps between adjacent parts.  The basic 

principles of how this is performed were shown in Chapter 3.  Figure 4-10 is the OML Maker 

GUI.     



 58 

 

Figure 4-10: OML Maker GUI in NX5 

There are three outputs available that might be used based on the user’s needs.  Any 

combination of the OR, IR and Solid check box options can be selected.  The exterior parts can 

be selected using the Select Entities button.  They are highlighted as they are selected and can be 

reselected to deselect.  Also, desired parts can be chosen by making only those parts visible.  

Examples of both of these methods are shown in two cases below (Figure 4-11 through Figure 

4-14). 

In Figure 4-11, the solids that are not wanted as part of the exterior have been hidden and 

only the desired exterior solids remain.  Using this input and running the OML Maker Tool, 

where OR and IR are checked, results in the model shown in Figure 4-12.  Only a cross section 

cut of the resultant sheets is displayed so that the internal lines can be seen.  The Solid check box 

can also be selected to get a solid combination of these IR and OR sheets.  
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Figure 4-11: Desired Exterior Pieces Shown on Model 

 

Figure 4-12: Resultant IR and OR Sheets of Model 
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The example in Figure 4-13 shows the solids selected using the Select Entities button and 

Figure 4-14 shows the resultant if only the OR check box is selected.  The resultant sheets and 

solid are ideal for creating meshes for flow or for structural analyses, and can be placed into 

separate part files using the New Part radio button.   

 

 

Figure 4-13: Selected Solids on Model 



 61 

 

Figure 4-14: Resultant OR Sheet Based on Selections 

4.1.8 CFD Parametric OML Tool 

This tool is used to calculate the outer mold line of the rocket for creation of a parametric 

sheet for meshing.  It is run in NX6 and is built using C++.  This tool is the more focused version 

of the OML Maker tool used for setup of the CFD Fluent Mesh.   

4.1.9 Missile DATCOM File Writer 

The C++ code developed for this section was created in Visual Studio .NET 2005 and is 

run using an executable.  It is made to do multiple runs in Missile DATCOM, which is a United 

States Air Force code based on experimental data.  The data is tabularized into a database that 

allows for a realistic resultant output of pressures along the surfaces based on the inputs given.  

The inputs used for this project are: the mach number (MACH), the altitude (ALT), the alpha 
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angle (ALPHA), the type of nose cone, which has 6 types, (TNOSE), the length of the nose 

(LNOSE), the diameter at the base of the nose (DNOSE), the length of the center body 

(LCENTR), the diameter of the back of the center (DCENTR), the length of the aft portion 

(LAFT), and the diameter of the back of the aft portion (DAFT).  There are other commands 

which are used in the input decks for this program but they are constants and are not varied in 

this study.  Some are used to create specific output files for use by following programs such as 

the PRESSURES command card, which writes all the pressures for the various runs selected to a 

file for later use.  This option has proven to be very helpful for simple rocket designs, but Missile 

DATCOM is limited to a single stage shape rocket with no complex section combinations.  This 

makes this tool far less capable than Fluent and more limiting than it is worth for most 

optimizations.  Some effort could be made to make this option more capable, but this falls to a 

future work scenario and is described in Chapter 6. 

4.1.10 Fluent Expression Maker 

The code for this section is similar to the cone expression maker described above; the 

principle difference is the replacement of the cone thickness with an exterior shape (OML) 

equation.  This new geometry is used as the basis of the mesh for calculating the effects of flow 

(CFD) over the rocket.  This program was created using C++ and is run in NX6.  A 

representative set of expressions, based on the simple example above, is listed here in Figure 

4-15. 
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Figure 4-15: NX6 Expressions set by Fluent Expression Maker Tool 

4.1.11 CFD Sheet/Solid Maker 

This file generates a sheet that is an axisymmetric representation of the effected air 

around the rocket body.  This code was written in C++ for use in NX6.  Stated simply, this 

program removes the revolved cross-sectional shape of the rocket from the sheet, leaving behind 

dimensional parameters that build an associative link to the rocket body geometry.  Only half the 

model is needed for the 2D case when symmetry is applied.  The cone is not yet trimmed from 

the sheet.  This is again due to the difficulty of programmatically making law curves, see Figure 

4-16.  The air solid size can be controlled and increased as needed for the type of analyses being 

performed.  Because a farfield condition is being used here, this size should be sufficient and will 

be tested and discussed in more detail later. 
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Figure 4-16: NX6 Sheet for Fluent Mesh 

4.1.12 Parametric CFD Cone Tool 

This tool takes the sheet made in the previous step and attaches a subtracted parametric 

cone that now makes the sheet easily updatable for the series of analyses.  This is done in NX6 

using the macro journaling option.  This equation represents the exterior shape of the nose cone, 

see Figure 4-17.   

 

 

Figure 4-17:NX6 Sheet with Parametric Nose Cone Attached 

An initial radius is also applied on the front of the cone for a desired length to make it so 

it can be manufactured and less prone to melting on the tip.  This is another input to the NX6 

equations that can be updated to modify the cone.  This ensures that no aerodynamic anomalies 

occur as described by Khalid et al. “Very high temperatures are generated near the leading edges 

of hypersonic projectiles, such as at the tip of the nose or the upstream surface of the fins, which 

may cause gas dissociation effects in the flow and other structural deformations that result in 
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aerodynamic implications. The intense temperatures near the leading edges can cause material 

melting and induce bluntness, which is often asymmetric.” (Khalid 2003)   

A few additional surfaces are also added here to help with the mesh creation in Fluent.  

One that fills the total rocket cavity and another that follows below the center axis of the rocket 

for the entire length of the preparatory CFD Sheet Model.  Both a small tip radius and the 

additional sheets are included as an example in Figure 4-18. 

 

 

Figure 4-18: Example Sheet with Basic Nose Cone Ready for Fluent 

4.1.13 Parametric Fluent Mesh 

Because the OML solid made earlier has all the equations of the nose cone types built in, 

the sheet is fully parametric and can now be updated manually or programmatically.  This sheet 

is then given a 2D triangular ANSYS mesh as shown in Figure 4-19.  However, this is done in 

NX6 using the simulation tools.  The triangle elements were found to be the most effective for 

the supersonic flights tested although quad elements can also be used.  Better, more refined 

meshes were created by using a weighting system in NX6 to apply more elements closer to the 

surface of the rocket. However, this was not always uniform and was excluded to keep 

consistency between the models.  Consequently, a higher element density was used instead to 

maintain the fidelity (see the results section under Verification and Validation).  This causes the 

process to be slower and could be an area of future research and improvement.    
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Figure 4-19: 2D Triangular Mesh of Simple Example 

This 2D mesh surface can also be revolved to create a 3D representation of the rocket.  

One advantage of going to a 3D model is that it is easier to automate because the edges do not 

have to be defined and named. More importantly, moving to a 3D model allows the user to 

change the angle of attack, which alters the pressures on the rocket and therefore the structural 

integrity of the model.  This is shown in Figure 4-20.   

 

Figure 4-20: 3D Hexagonal Mesh of Simple Example 
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The interior of this model is hollow in the shape of the rocket, since this mesh is 

representative of the surrounding air.  This mesh may be easier for the programmer to 

implement, but comes at a large cost in time for computations since the model is exponentially 

increased in element count, and depending on the model, can have a diminishing rate of return. 

4.1.14 CFD Advanced Analysis 

The selected options for Fluent can be seen in the following figures.  Each analysis 

iterates tens of thousands of times until convergence of the residuals is made to within a defined 

tolerance.  For the optimization, this must be automated.  The automation of this section of code 

is done using Fluent journal scripts.  The same steps written in the journals can be performed 

interactively using the Fluent GUIs.  Each GUI choice that was selected to create a journal script 

will be displayed so that the interactive process can also be seen.  The outputs, such as pressure 

and temperature, are sent to comma delimited text files (.csv extensions) for use later in the 

structural models.  The descriptions here are for the 2D case but the same techniques can be 

applied to the 3D case for defining schemes and for setting up boundary conditions.   

A Second-Order Upwind scheme was used; like any upwind scheme, it sets the value of 

any property at the boundary of a cell equal to the node directly upwind of it.  This method is 

considered to be more accurate for high speeds (and high Péclet numbers) than the simpler 

Central scheme.  Its order means that nodes are mathematically related not just to their 

neighboring nodes, but nodes that are two away in any direction. 

The process for running Fluent manually is shown below.  To show menu selections, the 

“>” symbol is used to denote the next level in the menu hierarchy.  Variations will occur with 

version numbers and operating systems.  This one is shown for windows Fluent 6.3.26, and is 

using the two-dimensional scheme for the axisymmetric rockets.   
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To start the program press Start > Programs > Fluent Inc > Fluent 6.3.26. 

Select the 2ddp option and then click Run.  This tells the program to run using its double 

precision solver, which uses 64 bits instead of 32 bits, which creates higher precision but takes 

more memory.  For more information and examples, see the Fluent infinite wedge example of 

Cornell University.  (Bhaskaran 2002) 

At this point we have a mesh from NX6 that has been exported as an ANSYS input mesh 

“.inp” file.  This can be imported using File > Import > ANSYS > Input File and selecting the 

input file.   

The boundaries have not yet been described correctly in NX6 for use in Fluent and now 

the trick is to create the boundaries correctly in Fluent without resorting to using another 

meshing program such as Gambit, TGrid or HyperMesh.  In Figure 4-21, the desired mesh is 

shown in green with the unique boundary conditions required for solving shown in black, blue 

and yellow. 

 

 

Figure 4-21: Desired Mesh with Required Boundary Conditions 

 

Unfortunately, there is no way to simply define boundaries in Fluent.  Usually a 

preprocessing tool such as Gambit, TGrid or HyperMesh would be used, but these are difficult 

programs to automate.  There is, however, a way to change the type of boundaries in Fluent if 

they have previously been made.  A default exterior boundary type exists for the black line 
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which corresponds to the gas farthest from the model.  This can serve perfectly as the farfield 

boundary which is needed in future sections.  A default boundary type also exists between two 

meshes.  By creating an extra mesh that is connected to the interior of the mesh (which is the 

exterior of the rocket) we create a boundary that can be described as a wall type, which is the 

blue in Figure 4-22.  The wall type defines the rocket surface that air will flow over.  

 

 

Figure 4-22: Additional Mesh for Wall Boundary Creation 

 

Lastly, the axial boundary needs to be defined, which is displayed in yellow.  The most 

accurate implementation discovered to handle this involves making a copy of the entire desired 

mesh about the center axis.  This creates a boundary that connects in a straight line along the 

axial center.  This method consistently defines the line correctly, both in front of and behind the 

rocket, with no misalignment or entanglement into the rocket interior mesh.  These mesh 

additions are computationally added in the Parametric Fluent Mesh section above.  This is also 

why some additional sheets were made Parametric CFD Cone Tool section.  In Figure 4-23 the 

resultant mesh is shown. 

 

 

Figure 4-23: More Mesh Additions for Axial Boundary Creation 
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Now there are two extra meshes which are not desired for use in the Fluent run.  This cost 

some time to create and some memory to store, but will luckily not be an addition to the 

optimization solver time because it can now be deleted.  By going to Surface > Manage and 

selecting the extra meshes, the surfaces can be deleted as shown in Figure 4-24.  In this same 

figure is shown the interface surfaces that are going to be used for the boundary conditions, 

which remain even after the deletion of one of the entities.  

 

 

Figure 4-24: Surface Manager in Fluent 

 

 In Figure 4-25, the three boundary conditions are displayed.  The black one is the 

default-exterior-1 and will be renamed “farfield” for the remainder of the thesis.  The green is the 

default_exterior-2 and represented the interface between the mesh flow and the rocket mesh 

inside.  It will be named “wall” for the remainder of the thesis.  The orange (which actually 

shows up green in Fluent but has been changed for a clear division between the boundaries) 

represents the interface between the desired mesh and its mirrored copy about the axis and will 

be called “axis2” for the remainder of this thesis.  
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Figure 4-25: Boundaries Described in Fluent 

 

There are two solver options using different equations:  Pressure-Based and Density-

Based.  The documentation for Fluent discusses the time for selecting each of these options.   

“Historically speaking, the pressure-based approach was developed for low-speed 

incompressible flows, while the density-based approach was mainly used for high-speed 

compressible flows. However, recently both methods have been extended and reformulated to 

solve and operate for a wide range of flow conditions beyond their traditional or original intent.  

In both methods the velocity field is obtained from the momentum equations. In the 

density-based approach, the continuity equation is used to obtain the density field while the 

pressure field is determined from the equation of state.  

On the other hand, in the pressure-based approach, the pressure field is extracted by 

solving a pressure or pressure correction equation which is obtained by manipulating continuity 

and momentum equations.”  (Fluent Inc. 2006)   

Both can do a decent job but the selection was made to go with the density-based solver 

based on the work of Bhaskaran et al. “Since we expect an oblique shock for our problem and 

the density-based solver is likely to resolve the shock better, let's pick this solver.”  (Bhaskaran 

2002) 

Next, the journal selects Density Based in the Solver menu as shown in Figure 4-26. 
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Figure 4-26: Fluent Settings 

In a compressible flow model, the continuity and momentum equations are coupled to the 

energy equations, and so the energy equation option is selected for this problem.  Turning on the 

energy equation is done by going to Define > Models > Energy and checking the box next to 

Energy Equation and then by clicking OK as shown in Figure 4-27. 

 

 

Figure 4-27: Energy Equation Option 

If the only interest in the run was pressure results, the Inviscid option would be selected, 

which by ignoring the viscosity of the fluid, allows for a quicker and clearer cut result.  

However, if the temperature results are important, the Laminar option is selected to include the 

increased complexity of the air and allow for resultant heat to occur at the body of the model.  

Care must be taken in the selection based on what is expected.  Khalid et al emphasized this 

point.  “Even control surfaces at moderate hypersonic speeds close to Mach numbers of 7 

experience heat-transfer effects that can cause fatal structural deformations, leading to total loss 

of control.” (Khalid 2003)  This is perhaps one of the greatest required trade-offs of this thesis.  
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Through experimentation, the Inviscid option improved the accuracy of the flow results.  

However, loss of accuracy to the heat-transfer effects cannot be overlooked; in this case the 

Laminar option was selected. 

 

 

Figure 4-28: Inviscid or Laminar Options 

The next step is to define the materials used.  This is done by clicking Define > Materials.  

The air the rocket is going through is chosen next under Fluent Fluid Materials.  Then the 

Density option is set to ideal-gas as shown in Figure 4-29.   

 

 

Figure 4-29: Material Type Options 
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This sets up the program to use the ideal gas law which is shown here in Equation 4-1. It 

relates the pressure of the gas to the density and Mass in a way that is independent from the 

amount of gas being considered.  In the equation, the p is the pressure, the ρ is the density, and 

the R is the ideal gas constant. The M is the molar mass of the material, and the T is the 

Temperature. 
 

T
M

R
p   

Equation 4-1: Ideal Gas Law  

The operating conditions are defined next by selecting Define > Operating Conditions.  

The Operating Pressure is set to zero as shown in Figure 4-30.  This is used by Fluent to 

calculate the absolute pressure by adding the gauge pressure to it, as shown in Equation 4-2.   

 

 

Figure 4-30: Operating Conditions 

gaugeopabs ppp
 

Equation 4-2: Operating Pressure Relative to Absolute and Gauge Pressures 

The gauge pressure is used internally by Fluent to handle round-off errors and the 

absolute pressure is only calculated when required. 

(4-1) 

(4-2) 
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“Round-off errors occur when pressure changes Δp in the flow are much smaller than the 

pressure values p. One then gets small differences of large numbers. For our supersonic flow, 

we'll get significant variation in the absolute pressure so that pressure changes Δp are comparable 

to pressure levels p. So we can work in terms of absolute pressure without being hassled by 

pesky round-off errors.” (Bhaskaran 2002)  Setting the Operating Pressure to zero is the way to 

have Fluent work in terms of the absolute pressure and is the best option for the rocket 

simulations. 

The next step is to define the boundary conditions.  This is done using Define > 

Boundary Conditions and setting the “farfield” zone to be a pressure-far-field boundary type.    

 

 

Figure 4-31: Boundary Conditions 

The next step is to set the Gauge Pressure (as described in Equation 4-2) to be the desired 

pressure  which is representative of the cruise altitude.  In this case the pressure is at 101325 Pa, 

which is sea level.  This is accepted by clicking the Set button. Also, the Mach Number has been 

set to 3. The rocket’s drag is strongly influenced by these two values.  As altitude changes, so 

does the air viscosity, speed of sound and air density.  All of these are intertwined with the 
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resultant Mach number value.  Under X-Component of Flow Direction, the value of 1 has been 

inserted which states the boundary condition named “farfield” will have a flow in the x-direction. 

For this example, the ambient temperature is initially set to 300K using the Thermal Tab.  

 

Figure 4-32: Pressure Far-Field Settings 

Similarly, the other boundaries must be set to the proper types.  The boundary named 

“wall” is of course set to be a wall type and the one named “axis2” is set to be an axis type.  In 

time it can be helpful to change the Courant Number shown in  Figure 4-33 from a lower 

value to something higher as it becomes more stable, but this can lead to instability so for this 

project it has been left low (at 0.1).   

 

 

 Figure 4-33: Solution Controls  
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A Second Order Upwind scheme is set as shown in Figure 4-34 by clicking Solve > 

Initialize > Initialize.  Initialization defines or sets initial values for every node in the 

computational domain.  This scheme assumes that if flow is going from left to right that the right 

side of each element can be approximated as the value of the left side.  When the elements are 

small enough, this technique allows you to traverse the domain more quickly and with enough 

iteration, it still achieves a good accuracy.  The solution is given some initial values, which are 

best computed from the “farfield” boundary condition that has been set earlier.   

 

 

Figure 4-34: Solution Initialization 

The convergence criteria are set by clicking Solve > Monitors > Residuals, as shown in 

Figure 4-35.  The criteria to check for convergence are set to a very small value, namely 1e-06.  

This means that the solution will not stop until the residuals go down to that range when 

iterating.  For the interactive version, the check boxes for print and plot can be set so that it can 

be seen how far the results have come.  The iteration is then run by clicking Solve > Iterate, then 

selecting the number of iterations, then by clicking OK.  All of these steps have been automated 

and are stored in the journal file for use by the optimization to create solutions.   
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Figure 4-35: Residual Monitors 

4.1.15 Section Maker 

This section of the code begins the structural model creation.  The OML Slicer Dicer 

Tool and Parametric Mid Cone Tool both have stored serialized data sets of information that can 

now be used to create the structural model.  The code for retrieving the stored data is listed here 

in Figure 4-36.  This allows the unknown quantities of data to be reconstituted into a useable 

format without the need for parsing through a text file to determine all the information again.  As 

can be seen in the code, if the file is successfully found, the process then iterates looking for 

elements of the C_Sect_Info class as described in Figure 4-8.  It is printing the mass portion of 

the structure as verification of retrieval of each of the C_Sect_Info elements. 
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Figure 4-36: Code for Retrieving the Section Info Data 

Initially, the plan was to make a 2D beam model (in Nastran) like the one in Figure 4-37 

to recreate the fairing and the rocket body.  This was to be created as a sufficient analytical result 

for the structural integrity of the rocket and as an initial estimate of the nose cone, which would 

then be refined in another study.  The refinement was to be a separate, higher detail 3D sheet 

model that focused on the Fairing alone as in Figure 4-38.  The forces found in the initial beam 

model were to be used as a means of determining the loads that the rocket body itself (being 

propelled up) is placing on the 3D sheet fairing model.   

 

Figure 4-37: Beam Model Example 

 

if (exists("C:\\Section_Info.bin")) 

{ 

 std::ifstream in("C:\\Section_Info.bin", ios::binary); 

 C_Sect_Info temp_mass_r(1.0); 

 while (!in.eof()) 

 { 

  int blahsss = sizeof(temp_mass_r); 

  in.read((char*)&temp_mass_r, blahsss); 

  the_masses.push_back(temp_mass_r); 

  cout<<"Mass t-Object has value "<< temp_mass_r.Mass 

<<endl; 

 } 

 the_masses.pop_back(); 

} 

else 

{ 

 cout<<"error: no mass file found"<<endl; 

 return 0; 

} 



 80 

 

Figure 4-38: Example Rocket Fairing Structural Mesh (HAACK) 

These loads could then be input to a more detailed sheet model of just the fairing itself.  

Upon further research, it was determined that these two processes could be done better together 

and instead of creating a beam model of the fairing, the detailed sheet mesh was attached directly 

to the rocket body beam model as shown in Figure 4-39.   

 

Figure 4-39: Section Maker Model in NX6 Uniting 2D Mesh and Beam Model 
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By doing these two analyses simultaneously, the time was reduced and the difficulty of 

transferring data from one model to another was eliminated.  Also, there was no need to make an 

inferior fairing beam model that would provide less accurate geometry and forces before 

proceeding to the higher fidelity model.  The fairing sheet is given an input density, meshed, and 

is still parametric so its size can be changed programmatically and interactively and the mesh 

will update.  This includes the ability to change from one type of fairing to another.  This process 

needs only to edit the original expressions, and then to run an update command for the model.  

This applies a mesh again to the new surface as it was previously applied to the first surface.  

This is much faster than running this Section Maker tool over and over again in the loop.   

The meshing surface also has a radius control (as did the CFD model) for more accurate 

representation of the tip. The sheet is meshed, using a quad mesh that is controlled based on a 

pre-specified density. 

The beam element information was gathered earlier in the OML Slicer Dicer tool and is 

now applied here.  Each of the beam elements has its own Ixx, Iyy, Izz, CG, Moment, Material 

type, as well as two Inner Radii, and two Outer Radii associated with it. 

4.1.16 Apply Forces 

The next task is to apply the forces and pressures, as created previously in Fluent and 

exported to the text files (.csv files).  These are applied around and along the fairing and the 

rocket body beam model.  It is difficult to display a pressure that is applied around the rocket 

body when the beam model is only displayed as a point.  NX6 displays the pressures applied 

around the beam as an arrow with a magnitude. The stresses are calculated based on these 

pressures.  This is done using NX6 and C++.  This is shown here in Figure 4-40. 



 82 

 

Figure 4-40: NX Nastran Model with Forces Applied 

4.1.17 Apply Temperatures 

Because a more accurate description of the fairing is desired, greater accuracy can be 

maintained by applying the temperatures to the structural elements of the fairing sheet model.  

The temperatures were determined previously in Fluent and exported to .csv files.  The 

temperatures in this file can also serve as an immediate pass or fail test to determine if the 

material will melt or has hit a critical pre-specified cutoff point.  The text file is parsed and the 

maximum temperature location is determined.  This functionality is performed using Visual 

Basic for Applications (VBA) as shown in Figure 4-41.  This value is compared against the user 

defined iSIGHT-FD limits.  
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Figure 4-41: Excel Automatic Max Temperature Calculation 

4.1.18 Run Nastran Analysis 

This section runs the Nastran model as specified above and exports results of the stresses 

around and along the length of the FEA model.  The results can be viewed in NX6 and evaluated 

manually.  The stresses and weight will be used by iSIGHT-FD for optimization decisions.   
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4.1.19 Setup of iSIGHT-FD Optimization 

This section encapsulates the processes already described and manages the overall inputs 

and output from each process.  Doing this optimization on multiple linked computers made it 

difficult to control.  Though one computer was in charge of the optimization, it meant it had to 

wait for the other computers’ routines to finish before continuing based on the obtained data.  A 

few steps are performed to prepare the inputs before the optimization begins as well as to ensure 

that the process continues without failing.  First, any secondary computers or batch clusters 

should be initialized to be waiting for the Fluent input files.  They are initialized by running the 

0-Check_Fluent_WAITING.bat on a windows box which runs a C++ executable 

(Check_Fluent_File_In.exe ) to have set a loop to wait, sleep and check every so often for an 

input from the host computer.  To run on a Linux computer or batch cluster, the 

watchcommand.sh shell script is started and, similarly, it waits and sleeps while waiting for new 

inputs to show up.  When an input file arrives at the shared folder location, these programs 

initiate Fluent execution.  The file that will flag readiness for Fluent execution is not put in until 

the fourth step in the optimization (the Put File in OK (4) step) is executed, but it is still 

important to start these processes on the other computers so that they are ready when the files 

arrive.   

Next, the Slicer Dicer (1) step is used to run the Slicer Dicer tool on the desired model 

with the desired increments.  Following this, the OML Maker (2) step is executed and the 

external OML surfaces are selected for the CFD Parametric Sheet Tool.  This is the OML tool 

built specifically for this optimization that makes the rocket model mesh for Fluent.  Once these 

steps are done, the optimization process shown in Figure 4-42 is begun.      
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Figure 4-42: Optimization Scheme in iSIGHT-FD 

The optimization tool is now run and the first step in the iteration, Parametric Sheet (3), 

is run.  This step creates a new run folder for this round of the execution.  It runs the NX6 

Journal File, which is named make_cone_mesh_and_exportANSYS.macro. This macro executes 

the Expression_Iterator_NX6.dll and then runs the journal steps for creating the law curve and 

linking the expressions.  The values are controlled by the optimization and are written to the 

control_card.txt file for all the other steps to use.  A generalized reduced gradient method was 

used that alternates the variables so that on each iteration only one is dependent and all the others 

are independent.  This can be very time intensive.  Time could possibly be improved through the 

use of Response Surface Methodology, but was not implemented in this thesis.  Some common 

starting input control values are shown below in Figure 4-43.  The macro then starts the 

NX6_FLUENT_Parametric_Mesh.dll which adds the nose cone to the sheet previously made by 

the OML tool and meshes the airsolid, the rocket and the mirror image of the airsolid for Fluent 

analysis.  
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Figure 4-43: Input Control Card for Parameterization Control 

Next, the Put File in OK (4) step is run that informs the next computer that files are in 

and ready for the CFD Fluent run.  This also begins the Check Fluent Done (5) step, which 

similarly waits and sleeps until a file is returned that flags to the optimization loops that the CFD 

results have all been copied back to the shared folder.  Meanwhile, the other computer is running 

the Fluent program which deletes the non-important meshes, makes the boundary conditions and 

sets up the correct flow parameters.  When the file is returned, the Check Fluent Done (5) step 

completes and the Setup Nastran (6) step is begun, which copies all files back to the optimization 

computer from the shared location and runs the setup_nastran.macro.  This, in turn, executes the 
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Expression_Iterator_NX6.dll, which has the journal steps for creating the law curve and linking 

the expressions.  Then the NX6_Fairing_Maker.dll reads the Fluent outputs and creates the 

combined sheet cone and beam rocket model. 

The Nastran Solve (8) step is then run, which inserts the pressures and sets up the solver 

conditions and begins the analysis.  Following this, the Check Temp (8b) step is run, which runs 

the Microsoft Excel VBA program for determining the max temperature along the rocket.   

The Copy Previous Run (9) step is then run, which zips all the files for storage and saves 

them into a folder where the zip files are all listed numerically.  It then deletes the current run 

folder so that the next iteration can begin.  All the runs are stored so that at the end of the 

optimization, a comprehensive history of all that has happened is catalogued.  The program 

iSIGHT-FD itself also creates histories of the parameters being controlled to show how the 

optimization has progressed and how it arrives at its determined optimal values. 

4.2 General Code Development 

The main code developed for this project was created in Microsoft’s Visual Studio .NET 

2005 Professional and was written in C++.  These main solution code files are listed here in 

Figure 4-44.  As much code as was determined could be shared between each of these different 

projects has been.  This sharing allows for bug fixes to propagate through all of the programs that 

use a function without having to change each one individually.  Unfortunately, it can lead to 

difficulties, since changing one program can unknowingly lead to changes in another that may 

not have been intended. For this reason, extra care must be taken to ensure all the steps of the 

program remain intact.   
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Figure 4-44: Main Solution Showing Included Project Files 
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A few additional C++ coding projects are listed in Figure 4-45 which helped with the 

cyclic nature of iSIGHT-FD and with resetting of the adjoining computers to their ready states.  

Other programs involved included Java, Matlab, Visual Basic for Applications, and Batch Files.  

It was also easier to use journal or macro files from time to time in programs such as NX and 

Fluent when tasks were all but repetitive or could not be handled in C++ or other programming 

languages.  All of these secondary languages played comparatively minor roles in the project and 

were only used when it was advantageous for the related program. 

 

 

Figure 4-45: Additional Programming Solutions 

In Figure 4-46, the Java project created for the iSIGHT-FD Startup GUI is shown.  This 

project was created with the iSIGHT-FD tool for ease of compatibility.  It was determined 

unfortunately, that the version of Java that is compatible with NX6 is not compatible with the 

version of Java for iSIGHT-FD, so multiple types would have to be maintained for use with both 

systems.   
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Figure 4-46: Java Files Used for the iSIGHT-FD Startup GUI 

 

Figure 4-47 shows the files used for actually controlling what is run in iSIGHT-FD.  The 

majority of these control files are batch files and they, in turn, run the other macros and 

executables for the project.  If the program is to be executed in NX, Visual Studio must export 

dll files upon compilation, which are run by the NX macro files.  A few text files that store 

information for management between steps are also listed.  Notice that the sections.macro file, 

which is generated by the C++ Cross Section Maker, is very large comparatively speaking to the 

other macros listed.  This is because it cycles through each slice of the beam model and performs 

the tasks that C++ could not.  Because the macro couldn’t be cyclic in any way, the file gets very 

large.  
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Figure 4-47: Programming Control Files 

For each one of the dll files created, the NX6_UFUSR.cpp code was used and is shown in 

Figure 4-48.  This takes care of all the requirements for connecting to the NX6 libraries and sets 

up the initial error handling for all the NX6 dll files created.  It is set up to reference a Main.h 

document and a Main() function, but each project has its own unique Main.h and Main() function 

that this references.  From the unique Main.cpp files, the other codes and functions related to 

these projects are called respectively. 
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Figure 4-48 NX6_UFUSR.cpp Code 

/***************************************************************************** 

** 

** NX_UFUSR.cpp 

** 

** Description: 

**     Contains Unigraphics entry points for the application. 

**     This takes  

*****************************************************************************/ 

/* Include files */ 

#include "NX6_UFUSR.h" 

#include "Main.h" 

/***************************************************************************** 

**  Activation Methods 

*****************************************************************************/ 

/*  Explicit Activation 

**      This entry point is used to activate the application explicitly, as in 

**      "File->Execute UG/Open->User Function..." */ 

extern DllExport void ufusr( char *parm, int *returnCode, int rlen ) 

{ 

    /* Initialize the API environment */ 

    UgSession session( true ); 

    try 

    { 

 /* TODO: Add your application code here */ 

time_t start_time; time(&start_time); //marks the time the program 

starts 

Main();    //This is the main that is unique to each project 

  elapsed_time(start_time);  //tells how long the program takes to run 

    } 

    /* Handle errors */ 

    catch ( const UgException &exception ) 

    { 

        processException( exception ); 

  std::cout<<"--- Error encountered ---"<<std::endl; 

    } 

 UgInfoWindow::write( "Ending"); 

} 

extern int ufusr_ask_unload( void ) 

{ 

    return (UF_UNLOAD_IMMEDIATELY //use unless you want to run something else from 

the program); 

} 

/* processException 

       Prints error messages to standard error and a Unigraphics 

       information window. */ 

static void processException( const UgException &exception ) 

{ 

    /* Construct a buffer to hold the text. */ 

    ostrstream error_message; 

    /* Initialize the buffer with the required text. */ 

    error_message << endl 

                  << "Error:" << endl 

                  << ( exception.askErrorText() ).c_str() 

                  << endl << endl << ends; 

    /* Open the UgInfoWindow */ 

    UgInfoWindow::open ( ); 

    /* Write the message to the UgInfoWindow.  The str method */ 

    /* freezes the buffer, so it must be unfrozen afterwards. */ 

    UgInfoWindow::write( error_message.str() ); 

    /* Write the message to standard error */ 

    cerr << error_message.str(); 

    error_message.rdbuf()->freeze( 0 ); 

} 
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4.2.1 Additional Code 

This code has been the life blood of the thesis and has made it possible for the 

optimization of the fairing models.  The code for the programs is lengthy enough to be difficult 

to include to its full extent.  Still, an attempt to show the essence of their designs and uses has 

been made in the appendix for those who would like to see more about details of their executions 

(see APPENDIX A).   
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5 Results and Discussion of Results 

This chapter shows verification and validation for the processes and then showcases the 

results obtained from optimizing multiple examples.  The models generated for this thesis have 

been studied and sized for accuracy and for size maintenance.  They have been compared to 

empirical data and are found to be representative of nose cones in use.  Through these 

confirmations, this chapter will show how accuracy and time savings are achieved by adherence 

to the principles provided by these methods. 

5.1 Verification and Validation 

Verification, in its simplest words, is a demonstration of grid independence.  In other 

words, verification ensures that the answer is not being poorly represented due to the mesh 

quality.  To verify the mesh is to ensure that it is detailed enough to portray what the model truly 

represents.  It is a test to see that what the software is setup to solve is truly solved and therefore, 

that necessary depth of detail is given.  This does not ensure however that the software is taking 

into account all the possible influencing factors of the reality. 

Validation is a test to ensure that all important factors are being accounted for in the 

model.  This is done by comparing the model to empirical data.  This can be more challenging 

because there would be no need for this project if empirical data already existed for the problem 
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specified.  By finding similar cases that have been done in the past and mimicking them, the 

resultant accuracy can be used as a measure of confidence in similar models.   

As a simple example of these two tests, imagine a triangle being represented by a number 

of squares.  One large square is a poor approximation of a triangle, but a billion small squares 

arranged in the shape of a triangle is a much better approximation.  If the triangle is to be 

represented on a computer screen, a billion squares might be more representation than there are 

pixels on the screen.  Perhaps, unbeknownst to the user, a triangle on the computer screen of this 

size and shape can at most be displayed as one million squares. This is the capability level of 

your screen and therefore the closest accuracy that is obtainable.  Say it is also determined that 

the steps from those squares that represent a straight edge are more detail than the human eye can 

detect. Then if this was the goal, an adequate level of model can be achieved with merely a 

million squares on this device.  Still, the human eye may not detect even a half million squares as 

being a poor representation.  So if a model of a million squares (or even a half million) is 

perfectly adequate, why create a model that is a billion squares, which uses up excess memory 

and takes longer to create?  The answer may be that the computer and user do not know what the 

human eye will be able detect and therefore the user may play the “safe side” of the fence.   

The job of verification here is to ensure that a sufficient representation (the detail the 

human eye can detect) has been achieved, and also not to do more than is required.  A common 

method of verification is to double your quantity and compare.  So if, at first, your model had 

one thousand squares to then to try two thousand and compare.  If a change can be seen, the 

model is not accurate enough.  Looping through this method until the result is unchanged from 

the previous run (at least to the level desired) gives a closer acceptable approximation.  Based on 

the numbers provided above, after ten iterations of doubling, this example would use 512,000 
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boxes to accurately represent the triangle.  The process to determine the number of boxes is 

shown in Figure 5-1. 

 

 Figure 5-1: Verification Doubling Example for Triangle Approximated as Squares 

Validation, with respect to the example above, might be finding a person who had 

determined that 500,000 boxes were all it took to accurately represent a triangle.  It would still be 

important to verify these findings (by doubling and checking at one million boxes, and halving to 

check at 250,000 boxes). However, the trouble of multiplying by two from 1,000 to 512,000 

would not have been required with the validation, and the model would be even more concise 

than verification provided alone.  However, this example does not give validation its full value.  

Many situations are not as clear cut as a simple eye examination for accuracy.  Things, such as a 

Model #  Verify if Visible Change 

 

1.)  1,000 boxes 

   Change 

2.)  2,000 boxes 

   Change 

3.)  4,000 boxes 

   Change 

4.)  8,000 boxes 

   Change 

5.)  16,000 boxes 

   Change 

6.)  32,000 boxes 

   Change 

7.)  64,000 boxes 

   Change 

8.)  128,000 boxes 

   Change 

9.)  256,000 boxes 

   Change 

10.) 512,000 boxes 

   No Change (Accept above) 

11.)  1,024,000 boxes 
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pressure, calculated on a computer need a reference to the real world to ensure that the 

verification values are not converging to a position due to a shortcoming in their model 

representation.  Validation is what ties computational models to the real world and is therefore a 

key component to determining model accuracy. 

Confidence in a model comes from both verifying and validating the models to help 

confirm that accurate and time efficient results have been achieved.  In the following sections, 

verification and validation are given for the rocket models. 

5.1.1 Fluent Verification 

An example case was performed specifically on the conical section of the rocket to 

ensure that accurate results were being achieved.  Meshes with different air volume size, cell 

shape, and fineness were used in order to establish grid independence.  The first issue to resolve 

was how large a grid was needed to one, capture relevant flow information and two, to accurately 

describe the problem domain.  While the lower boundary is fixed at the cone axis, the top 

boundary was originally set a distance away from the cone edge (equal to about two cone 

diameters away for a 30º cone).  This case was compared to one where that boundary was moved 

closer, to about one cone diameter away.  The cases yielded virtually identical results so it was 

determined that the smaller window size in the second case is acceptably large to model flow 

over the cone.  Comparisons were performed to determine if the shockwave could penetrate the 

“farfield” condition without influencing results; the results remained unchanged.  

Various grid cell sizes were also examined.  For each cone type, the grid was refined until 

two grids whose cell widths differed, on average, by a factor of two were found to produce 

virtually the same solution.  Knowledge gained from this step, about the required grid size, 

would be used later in the creation of the mesh around the full rocket body.   
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An additional method for creating appropriately adapted meshes is the grid adaption tool 

in Fluent.  This tool finds locations in the fluid flow with sufficiently high pressure or velocity 

gradients, and allows the user to refine the grid in those locations, in order to capture the more 

detailed flow behavior there.  Thus, one may start by running a calculation with a coarse grid and 

continually adapt the grid as necessary.  Though great effectiveness was seen in grid 

independence studies, the grid adaption tool was not utilized in these simulations.  This is 

because fine grids were already proven to be adequate, and it is one more thing that would need 

to be recursive. Also, it proved difficult to programmatically ensure sufficient resolution.  Still, it 

certainly could prove to be a useful addition in future studies. 

Four residuals were monitored to judge convergence.  These were the normalized mass 

flow continuity residual, normalized energy residual, and the normalized x- and y- velocity 

continuity residuals.  Many of the simulations converged to a very low level for all residuals 

(~10
-14

), while others leveled off at a significantly higher level (~10
-2

).  Due to the large number 

of variables being considered in this study, it was assumed that if a residual level of 10
-2

 could be 

reached and remain constant for tens of thousands of iterations, the results were kept.  When 

compared to the other results from similar nose cones, they were found to have very comparable 

values, especially in regions downstream on the rocket body where the geometry was of a 

consistent shape. 

5.1.2 Fluent Model Validation 

Meshes were created using both quadrangular (quad) and triangular (tri) shaped cells to 

determine which, if any, gave more valid results compared to known values of the drag 

coefficient.  In all cases, tri meshes gave values much closer to empirical results so it was 

decided that tri meshes would be used on the full rocket body models.  The reason for the 
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difference may be that quads had poor cell alignment with the shockwave at many locations, 

where the tri cells were more randomly distributed and not subject to such misalignment. 

Another design decision made against early work was to use the Inviscid setting.  In all 

examined cases, the inviscid results fared much better than the laminar results for cases that were 

otherwise identical; specifically, the drag coefficients were much closer to accepted empirical 

values (Nielsen 1960).  This also is reflected in the work of Bigarella et al, as can be seen in their 

discussions and the schlieren photographs with numerical density gradient contours of turbulent 

versus laminar and inviscid configurations. (Bigarella 2005) Bigarella et al also reported an 

increase of 25% to computation time from using a laminar instead of an inviscid calculation.  

The use of an inviscid setting is also widely justified in scholarly works for situations such as 

this, which have such a high Reynolds number. (Clark 1969) 

This is also supported by Eremenko et al.  “For certain vertex angles, the drag exhibits a 

minimum for a blunted, rather than sharp forebody geometry. This result, obtained by Euler 

computations, is confirmed by Navier-Stokes simulations at a Reynolds number of 270,000 

performed in selected cases. The latter show that the frictional drag contribution to the total drag 

is negligible.” (Eremenko 2003) 

Since the drag coefficients represent the most succinct validating data, they are 

summarized in Figure 5-2 below, superimposed on the graph that provided the known empirical 

data.  The red squares are the Empirical data at their exact locations on the graph, the green 

triangles are the more coarse mesh, and the blue X’s are the data points with a more fine 

representation.  
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Figure 5-2: Supersonic Cone Drag Coefficients (Nielsen 1960) with Data Results Imposed 

Clearly, there is a strong correlation between the established empirical data and those 

results obtained from Fluent.  It is also worth mentioning that the similarity between the drag 

coefficients for grids of different mesh fineness further verifies grid independence. 

Another exercise of validation was the comparison of the shockwave angles with known 

data.  As a representative example case, a cone with a 15º angle was checked at Mach 3 and was 

found to have a shock angle of 24.45º off the axis, which closely matched the expected value of 

25.14º to within 1º of accuracy.  This is representative of many examples which were tested with 

comparable results. 
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5.2 Test Case I 

The first test case is a simple rocket model that is completely fabricated but made to 

represent the types of assemblies that are used in a real rocket model.  This rocket is put through 

the entire optimization process and provides results based on the application of the discussed 

method.  This test case is referred to as the simple rocket in this thesis.  

5.2.1 Simple Rocket Test Case Description 

A variety of materials make up the internal components of rockets and they have many 

connections that combine in an assortment of complex ways. Below in Figure 5-3, a cut of the 

simple rocket model shows the interior components.  These are a simple representation of the 

various shapes and materials that would be found overlapping in an assortment of ways 

throughout a rocket.  This simple version allows for a faster computation time while still testing 

different forms of mating conditions. 

 

 

Figure 5-3 Picture Showing Simple Rocket Model Interior 
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5.2.2 Simple Rocket Optimization Results 

For this rocket, three nose cone types were allowed as choices for the optimization.  They 

were the Power, Parabolic and OGIVE.  The iSIGHT-FD program iterated 60 times to come to 

an optimal solution that minimized the stress and weight on the rocket, while keeping the 

temperature below the specified limit.  The parameters converged at the following values shown 

in Table 1. 

Table 1: Optimal Parameters for Simple Rocket Model 

 

 

The Simple Rocket was easily converted using the OML Maker tool into the template for 

CFD 2D meshing with a parametric nose cone.  The optimized version of the model is shown 

here in Figure 5-4. 

 

Figure 5-4: Optimized Simple Rocket in OML Maker 

Parameters Value  

Type Parabolic 

Optimal Length (in) 99.449069 

Thickness (in) 4 

tip_rad_dist (in) 4.5693695 
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In Figure 5-5 is a picture of the optimized mesh with the reflected elements and the 

internal elements used for creation of boundary conditions in Fluent.  Upon deletion of these two 

excessive groups of elements, the Fluent boundary conditions are made as shown in Figure 5-6. 

 

Figure 5-5: Optimized Simple Rocket in NX Mesh Maker  

 

Figure 5-6: Optimized Simple Rocket Boundary Conditions in Fluent 
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The resulting ANSYS mesh with boundary conditions is ready for the flow study in 

Fluent and is shown here in Figure 5-7. 

 

Figure 5-7: Optimized Simple Rocket Mesh in Fluent 

After the script created for Fluent has been run, the picture in Figure 5-8 is automatically 

taken which shows how the pressure contours are forming around the rocket.  The surface 

pressures are the main product of the analysis so those have been stored to a text file (.csv file).  

The temperatures along the wall surface are also stored to be programmatically sorted through 

later.  
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Figure 5-8: Optimized Rocket Pressure Contours in Fluent 

The Nastran model is then made in NX6 and the stresses are calculated based on the 

outputs in the pressure file, as shown here in Figure 5-9.  This picture is actually showing the 

deformation results for both the Von-Mises stress on the beams and the Von-Mises stress on the 

cone. These are usually shown independently in NX6, but have been superimposed here using 

the same scales for comparison.  The original min and max scales for the two element types are 

shown at the top in the figure.  As indicated, the beam model had far higher stresses than the 

cone.   
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Figure 5-9: Optimized Simple Rocket Von-Mises Stress Plot 

The model itself was simplistic and unfortunately shows that not just anyone can become 

a rocket scientist. More thought must be taken when throwing together even a simple rocket 

model.  The model had weaknesses that led to failure even though the nose cone itself did not 

fail.  Even by minimizing the maximum stress throughout the rocket as much as possible, the 

rocket will still break at this weak point.   

The highest stress on the rocket is located at the red point about halfway down the visible 

rocket body beam model; this maximum stress (8.733e+006 psi) is well above the plastic 

deformation point of the steel.  The nose cone itself had a max of 3.838e+006 which is still well 
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within the elastic region of the metal and not deflecting significantly.  Below, the ending results 

of the max temperature, max stress, and weight are shown in Table 2. 

Table 2: Optimal Results for Simple Rocket Model 

 

 

All of these results are higher than would be desirable; but again, the nose cone is 

actually performing its best to minimize these values.  In the end, the rocket is not sturdy enough 

to handle the conditions it was placed in, regardless of the nose cone.  Below, in Figure 5-10 the 

pressures along the surface of the entire rocket are displayed.  As can be seen, the nose cone is 

actually seeing the greatest pressures but has been engineered to withstand the increases.  

Unfortunately, the rest of the rocket was not engineered as well and would have to be reworked.  

At this point, the regions which performed poorly would have to be reinvestigated and 

redesigned to improve their results before the rocket could be improved.  It would also be 

advisable to repeat this optimization study to ensure these components are brought up to a level 

that can withstand the specified flight conditions.  A more optimal choice may be available if the 

structural integrity of the rocket body had not been so limiting to the overall design. 

Results Value 

Max Temp (K) 1556.3 

Max Stress (psi) 4.95 x e+05 

Weight (lbs) 18958.6 
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Figure 5-10: Simple Rocket Surface Pressure Plot 

The temperature contour is shown over the whole rocket in Figure 5-11.  The maximum 

temperatures are hard to see because they are all along the surface of the rocket and 

unfortunately, the surface is the place that really matters.  The surface temperatures were 

therefore output to a text file (.csv) and from this, the plot in Figure 5-12 was created to show 

where the maximum temperature is located along the contour of the surface.  The maximum 

temperature value is once again not on the nose cone, but peaks at a poor seam on a location 

midway along the rocket, as shown in Figure 5-12.  This maximum temperature (1556.3 Kelvin) is 

high enough to melt steel over time and is another reason the rocket model design fails.  A look 

into the redesign of this region would be recommended. 
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Figure 5-11: Optimized Simple Rocket Contours of Temperature 

 

Figure 5-12: Simple Rocket Surface Temperatures 
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In summary of the results of the simple rocket model, the optimization tool performed 

well and the rocket did not.  This tool could stop costly continuation of a product, which is not 

yet up to the specified standards required, and could avert disastrous results. 

5.2.3 Test Case II Description 

 To more thoroughly test the tool, it became apparent that a new rocket case would be 

required and that this second case would have to be better engineered to withstand the extreme 

conditions that supersonic speeds place on a rocket.   

 In the following case, which will be referred to as Test Case II, the rocket has been made 

into a design that is similar in principle to the Delta IV Medium rocket.  The Delta IV line of 

rockets is still in use today and served as a basic principle guide in the design of this simplified, 

school level rocket.   

Below in Figure 5-13, the rocket is shown in its original design environment of 

SolidWorks.  Another aspect for evaluation with this optimization tool is to see how well it 

handles parts brought in from another CAD package. This ability is useful since many companies 

employ outside entities to design certain components in their rockets. Being able to easily add 

these into their assemblies without recreating them is helpful.   
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Figure 5-13: Test Case II Large Rocket in SolidWorks 

The import to NX6 transferred all the geometry with excellent results.  All the geometric 

data remained intact and solidified.  The material properties had to be recreated in NX6, 

however, since the specific materials had not previously been made in NX6.  It is necessary for 

NX6 to have an accurate database of all the materials so that it can use them in the creation of the 

slicer dicer mass properties and for the NX Nastran structural analyses.  In Figure 5-14, the 

rocket model can be seen translated into NX6 with its updated material properties. Two 

properties which were added in NX6 were a custom steel for the exterior and a custom rubber for 

the solid fuel.  Other components in the model have also been modeled as a basic standard 1020 

steel. 
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Figure 5-14: Test Case II Rocket Translated into NX6 

The outer mold line was determined by the OML tool and is seen here in Figure 5-15 

with the final iteration nose cone geometry.  The orange surface is the airsolid and represents the 

total region of air to be included in the Fluent analysis.  The airsolid ends against the outer mold 

line of the rocket.  Notice also that the inner mold line can be seen contouring the OML of the 

rocket. 
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Figure 5-15: Test Case II OML Maker Resultant Air Flow Outline 

In this study, it was found that the body maker tool was worth updating.  This test case 

was the largest and longest rocket tested so far (at around 200 feet in length) and updating the 

program removed the possibility of a negative volume error, which occurs in Fluent, that relates 

to the convex shape of the elements.  This error was caused by an extreme ratio of elements in 

the x-direction compared to the y-direction.  The body maker tool now ensures that the element 

ratio in the x and y directions are held similar regardless of the rocket size.  Before, the rocket 

only ensured that the airsolid was a multiple of the radius in the radial direction and a multiple of 

the rocket height in the upwind and downwind directions. 

 

Figure 5-16: Test Case II Updated Mesh for use in Fluent 
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Because the Test Case II simplified design was based on the principles of the Delta IV 

Medium rocket, the speed and altitude for Fluent were also mimicked after it.  They were set to 

the state at which the max pressure condition for that rocket had been, which was an altitude of 

7.76 miles, and a velocity of 0.428 miles per second.  This should be near the extreme condition 

for this rocket and a good test parameter for optimization of the nose cone. 

In Figure 5-17, the surface pressure results from Fluent in the final iteration are 

displayed, showing how the pressures are distributed over the length of the rocket.  The 

maximum pressure is, of course, at the nose cone itself (the region that is negative is the nose 

cone), and shows how extra emphasis on structure and stability is needed for this region of the 

rocket.   

 

Figure 5-17: Test Case II Surface Pressures 
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The final pressures listed in this file are then input into the structural NX6 model as 

shown here in Figure 5-18. 

 

Figure 5-18: Structural Rocket Beam Model with Pressures 

The pressures are used to analyze the model using NX Nastran inside of NX6.  The 

combined Von-Mises stress results for both the beam and shell portions of the model are shown 

here in Figure 5-19.  Two views are given to show the cone in detail and to show the maximum 

stress region right behind the cone. The max stress is on the front of the rocket body but is less 

than half the allowable before plastic deformation.   
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Figure 5-19: Combined Beam and Shell Von Mises Stress Results (2 Views) 

The final iteration surface temperatures shown in Figure 5-20 are well within acceptable 

parameters, but there is a peak that is significantly higher than everything else and it is on the 

harsh edge of the aft nozzle connection.  From this result, the decision might be made to angle 

that edge to remove the disproportionate heat at this location and to help minimize the drag off 

the back at the same time.   
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Figure 5-20: Test Case II Surface Temperatures 
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6 Conclusion 

This thesis gives a detailed process for optimizing fairings that decreases time to design 

the rocket, and improves the reliability of the result by minimizing the weight and the drag on the 

nose cones.  The Conclusion is divided into two basic parts.  The first section is the process 

evaluation, which describes in detail the success of the tools in their native design environment 

as rocket optimization tools.  It describes how implementing these tools can simplify the initial 

design process and streamline the design itself.  The results of the tools have been clear 

improvements over any initial results that have been obtained.  In addition, this process paves the 

way for additional advanced analyses, such as more advanced structural and thermal tests that 

can be performed on the parametric CAD and FEA models.  These possible additions to the 

process are described in detail in the Future Work section.  Also shown is how this thesis 

provides a framework for a library of tools that could be instigated from these functional 

building blocks.   

6.1 Process Evaluation 

The process for optimizing fairings in this thesis has a variety of improvements over the 

past segmented efforts of manually changing one aspect of design, only to learn that another area 

of analysis has been detrimentally impacted.  The time savings and the functionality have been 

improved and the final models are more updateable and reusable than they have been in the past.  
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The following sections detail how the individual components have improved their respective 

areas. 

6.1.1 OML Maker 

The OML Maker tool has proven to be a quick way to sift through a large amount of 

information to obtain the specifics of the OML and IML of a rocket.  It has proven accurate and 

capable of handling a large variety of rocket models and of passing the core features into a 

unified contour–ideal for flow over a surface.   It handles the seamless connection of segmented 

parts in a way that no others have, according to all research done for this project.  In its current 

state, this tool alone has a variety of applications in efforts of flow analysis for both internal and 

external flows.  This tool is also currently capable of helping in simplification of geometry and 

design or for simplification of structural analyses. It could also be expanded to do these 

combinations more extensively, as will be described in the Future Work section.  This tool has 

been averaging with a run time of approximately 10 seconds for all of the example rockets here, 

which took roughly half an hour to create by hand, resulting in a 180 times increase in speed!  It 

should also be noted that in a real rocket, there are literally 1000’s of components to sort through 

manually so a more significant amount of time will be saved.   

6.1.2 Slicer Dicer 

The Slicer Dicer tool has proven very effective at taking a model and disseminating it 

into the core sectional properties of mass, inertia, center of gravity and density.  The user has full 

control of the division regions of the model and the authority over the usage format of the output.  

The outputs have proven accurate for describing the rocket design and allow for multiple tests 

and analyses to be performed ranging from quick weight checks, and static stress tests, to more 
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dynamic loading and fatigue testing.  This tool took what was roughly a dozen hours to do by 

hand and computed it in under a dozen minutes for over a 60 times increase in speed!  

Considering the much larger savings in hours that this represents, it may be considered of more 

value than the OML Maker despite the smaller factor of time savings. 

6.1.3 Beam Modeler 

The Beam Modeler has taken what took a week to design once for one rocket model and 

specific cone design and made a parametric and load updateable design that was created in a few 

minutes for approximately a 400 times increase in speed!  This tool takes advantage of the 

aforementioned tools to seamlessly take what would be a painstakingly tedious and error prone 

process and automate it into an opportunity for more upfront design and analysis. This model 

helps with multiple analyses other than the basic stress tests performed in this thesis, such as 

more dynamic studies of vibration and flutter.   

6.2 Future Work 

The work done in this thesis had several tools that proved exceptional for advancement 

and repeatability of more conventional methods.  More work can be done, however, to improve 

accuracy, speed and to provide more options to the overall package.  Also, in addition to the tests 

performed in this thesis, there are many other tests that would be performed on rocket models. 

Many of the individual tools supplied could be developed to further improve the alternate aspects 

of the main design.  The current process is the groundwork for these viable extensions. 

Below, ideas are listed for future work that can be done to both improve the tools for their 

current tasks, and for branching into other areas of optimization, design, and analysis. 
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6.2.1 Slicer Dicer 

The Slicer Dicer tool controls how the model is divided into discrete entities.  A helpful 

addition, that is not currently available, would be controls for analyzing variable “rings” along 

the length of the rocket. This is an achievable addition that can be very useful.  For example, 

there are those that run analyses that focus primarily on the exterior components of the rocket; 

being able to distinguish and divide out the interior objects from the exterior based on a variable 

interior controllable radius would be a quick way to make such a model.  Another form of 

geometric exclusion that could be of value to others is to create a tool that takes an axisymmetric 

half or quarter of the rocket as a representative of the whole.  This “pie slice” does not help for 

all forms of analysis, but can still be useful for certain structural, thermal and flow analyses with 

the right boundary conditions.  The creation of these axisymmetric wedges could also be used to 

help better divide up complex rocket geometries that present issues for dividing regions into 

slices due to limitations in CAD systems as were mentioned in 4.1.1.   

6.2.2 Beam Modeler 

The current models produced, based on the Slicer Dicer, are too stiff at the joints between 

objects and could be more accurately modeled with a high stiffness spring (with a specified K 

value).  This keeps the model from being more rigid than it really is.  For the case of the analysis 

performed in this process, the excessive stiffness is, if anything, a safer model that would ensure 

that fracture occurs sooner than reality and it would do so consistently for all the models.  For a 

vibrational analysis, however, the added stiffness could “help” or “hurt” the results at the various 

frequencies causing misleading results.  To more accurately portray this scenario, an addition of 

springs should be input by the user, which model the joint regions.  This would be input during 

the first preparation of the structural model and would then be used repetitively for all loops of 
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the optimization in a vibrational study.  The spring values would be pulled from a list that has 

one spring value, with reference to the junction it is related to by position or number.  This would 

then be programmatically inserted into the beam model.  A similar process was created in I-

DEAS for the early version of the beam modeler before more detail into types of analyses to be 

performed was determined.  This was therefore not implemented again for the NX6 version, but 

the package is certainly capable of this improvement.  Some types of joint springs are shown 

attached in this I-DEAS generated model (Figure 6-1). 

 

Figure 6-1: I-DEAS Automated Beam Modeler Example with Springs 

In addition to the spring refinement, another perplexing problem can be the adjustment in 

weight due to fuel depletion.  The stiffness change due to the fuel loss is another valid factor.  It 

is often a known value of depletion as the rocket is propelled, so this could be incorporated, but it 

leads to the question of which moments in time are worth studying.  Between fuel consumption 

and trajectory information the possibilities for calculation are immense.   

Other areas of concern might also include the rocket sitting on the platform in windy 

conditions or stage separations.  All of these situations can benefit from the tools in this thesis, 

help to improve quality and save time.   
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6.2.3 Mesh Maker 

A unique option in Fluent that could greatly improve computation time is the grid 

refinement tool.  This tool is very helpful at finding regions that are in need of additional mesh 

refinement, while also being able to remove excess elements in areas where they are not 

necessary.  This process is cyclic, however, and it can be hard to quantify if the cycles have 

sufficiently refined the model; it is also hard to repeat programmatically.  The journal files would 

have to be created by a C++ (or equivalent) program and the values would have to be determined 

through visual recognition on the screen.  This is because Fluent cannot return the value to the 

C++ program automatically.  This implementation becomes of more value if more than one study 

will be done on the mesh.  Each time the nose cone changes, the mesh would be recreated in 

NX6 and the repetitive refinement process would have to be completed again in Fluent.   

6.2.4 Non-Axisymmetric Meshes 

Another valuable future work would be for the creation of non-axisymmetric meshes, 

which allow for the inclusion of fins and other defining features that are beyond the scope of the 

current project.  This addition makes it possible for more rockets to be optimized that would 

otherwise need to be approximated.  It also improves the flow analysis of said models and leads 

to greater accuracy in their results.  This would benefit the flow analysis models (not 

recommended for the structural models) and could save some frustration in future analyses when 

seemingly small irregularities to the exterior conformity lead to large aerodynamic instabilities.  

At this point, there is an apparent need for a 3D model.  Before, a 3D model would have only 

been a revolve of the 2D model about its center axis, with no irregularities.  This current 2D to 

3D revolve would only require higher computation times with no added knowledge about the 

performance of the exterior surface. 
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6.2.5 Startup Java Code 

For a user familiar with all of the programs used it is easier to set up the steps manually, 

but for someone unfamiliar with the code, an interface is very helpful.  This is a good future 

work item for a final user product and is already significantly prepared. Below in Figure 6-2, an 

initial GUI created for this purpose is shown.  When the Browse… or Open/Save Runs File 

buttons are pressed, the program is designed to open a window that filters the selection options to 

provide only the relevant choices as options ensuring no incorrect data is entered.  In Figure 6-3 

an example for the Matlab Trajectory input file filter is shown in which only “.mat” files are 

allowed to be selected. 

 

Figure 6-2: Java GUI Interface for iSIGHT-FD  
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Figure 6-3: Example Filter for File Inputs 

Some example inputs are given here in Figure 6-4 to show the layout.  Multiple runs can 

be named and added to the list for execution based on a related Assembly and Trajectory.  The 

runs can then be saved or loaded to the list based on an input “.fop” extension, which was made 

for this project.  The print button writes all of the listed runs to a text file as well to show what 

runs have been organized in the past.  When all the desired runs are listed, the Run Listed button 

is pressed to initialize iSIGHT-FD to start those projects. 
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Figure 6-4: Example Inputs for an Optimization Run 

6.2.1 Missile DATCOM 

Early work done in Missile DATCOM was helpful, but was found to be inadequate to 

model the complexity of which the other tools of this thesis are capable.  This is mostly because 

there is only a cone, a body, and an aft section to its inputs.  So any multistage or unique 

geometry, such as joints, along the rocket body cannot be described or analyzed with this tool.  

The one advantage to this tool was the extreme time savings.  If this tool could be used to 

approximate the pressures until a more concrete fairing design is established (and if the more 

comprehensive rocket design in Fluent could be used to do final iterations) it would be far faster.  

The computation of Missile DATCOM takes seconds versus the scale of hours for Fluent.  A 

possible way to disseminate the design into manageable pieces is shown in a few steps, 

beginning with Figure 6-5 and continuing on through Figure 6-7.  This early optimization will 

not be fully accurate, but could at least provide a better starting point for a detailed optimization.  

The principle divides the rocket in Figure 6-5 into its core pieces, as in Figure 6-6, and interprets 
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each as a separate rocket with pressures of its own, like in Figure 6-7.  These values would then 

need to be reconstructed into a common pressure mapping of the rocket and could be used for 

early analyses.  

 

Figure 6-5: Multistage Rocket Beyond Missile DATCOM Capabilities 

 

Figure 6-6: Possible Secondary Rocket Configuration 

 

Figure 6-7: Disseminated Rockets for Missile DATCOM 
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6.3 Closing Remarks 

This thesis has shown many unique and distinct methods for optimizing fairings that 

decrease design time and improve the result reliability.  This is done by seamlessly connecting 

the various areas of design and analysis.  The tools are both interactive and programmatic, 

depending on user needs.  The options for future development are prevalent and applicable to a 

variety of fields.  The methods converge to optimal designs accounting for the structural, thermal 

and aerodynamic aspects of any rocket model’s trajectory.  In short, these tools positively align 

the trajectories of the often opposing goals of minimizing cost while maintaining quality.   
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APPENDIX A.  ADDITIONAL CODE 

The following sections show a compressed version of some of the code that makes up the 

core efforts of this thesis.  It is provided for those who are interested in following how some of 

the processes were designed to flow and shows in more technical terms the steps already 

described in both Chapters 3 and 4.  First, the C++ Files are shown and then a few other 

language files are shown that handled some complexities for different programs. 
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A.1 C++ Files 

A.1.1 NX6_Iterator Code 
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A.1.2 Expression_Maker Code 
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A.1.3 Fluent Part Collector Code 
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A.1.4 NX6_OML_Maker Code 
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A.1.5 NX6_Fairing_Maker Code 
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A.2 Additional Coding Files   

A.2.1 Java Input Code 
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A.2.2 Slicer Dicer Text Input Instructions 

 

Slice_Points.txt Instructions 

A # sign is a comment 

Each line takes in the first three values 

Each is a point X, Y, Z, Increment 

This pattern repeats until there are no more points 

The point inputs are actually carrying two values 

The X coordinate is the slice plane region for the increment value. 

The y and z are the vector direction to consider what direction should be the representative thickness. 

Avoid doors and other large holes using this vector direction control. 

If the default increment is used and not the input file option a input of (Total length, 1, 0, Default Increment) 

will be used. 
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A.2.3 Slice_Points.txt Example 

 

# All “#” lines are comments 

# The Zero is the far left of the model 

# The 2,2 gives a 45 degree angle for getting OML 

# This really only matters when the S:\Sections_Info 

# check box is selected and beam sections are made. 

# 2,2 is no different from 1,1 on following lines 

# The vectors are unitized anyway 

# The first line is the increment from 0 to 10.1 

# The second is the increment from 10.1 to 26.65 etc. 

0,2,2,8 

10.1,3,3,12 

26.65,1,1,8 

37.4125,1,1,5 

# The last 1,1,5 are not really used currently 

# They still should be input to maintain format and may 

# have future meaning as division type specifics 
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