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ABSTRACT 

 

Environmental Implications of Polymer Coated Urea 

 

Joshua J. LeMonte 

Department of Plant and Wildlife Sciences, BYU 

Master of Science 

 

Nitrogen is an essential plant nutrient in the biosphere. Although N is necessary and 

beneficial for life, it is also a common pollutant in the atmosphere and hydrosphere as it may be 

lost to the atmosphere as ammonia (NH3) or nitrous oxide (N2O) gases or to groundwater as 

nitrate (NO3
-
) following fertilization. Polymer coated urea (PCU) is one type of N fertilizer 

which uses temperature-controlled diffusion to control N release to better match plant demand 

and mitigate environmental losses of N. The objectives of this project were to simultaneously 

compare the effects of PCU on gaseous (as N2O and NH3) and aqueous (as NO3
-
) N losses to the 

environment as compared to uncoated urea in grass systems over the entire PCU N-release 

period and to investigate the viability of photoacoustic infrared spectroscopy as a method to 

ascertain N2O and NH3 losses following fertilization. Two field studies were conducted on 

established turfgrass sites with a mixture of Kentucky bluegrass (KBG; Poa pratensis L.) and 

perennial ryegrass (PRG; Lolium perenne L.) in sand (Site 1) and loam (Site 2) soils. Each study 

compared an untreated control to 200 kg N ha
-1

 applied as either uncoated urea or PCU (Duration 

45 CR®). In these studies PCU reduced NH3 emissions by 41-49% and N2O emissions by 16-

54%, while improving growth and verdure. Leachate NO3
-
 observations were inconclusive at 

each site. Glasshouse studies were conducted to compare N2O and NH3 emissions from PCU and 

uncoated urea to an untreated control utilizing a non-static, non-flow-through chamber in 

conjunction with photoacoustic infrared spectroscopy (PAIRS) for gas collection and analysis. 

Three short-term studies (17-21 d) were done with sand, sandy loam, and loam soils and a full-

term (45 d) study with the loam soil. Each study was done in maize (Zea mays L.). Volatilization 

of ammonia was reduced by 72% and 22% in the sandy loam and loam soils, respectively, in 

2008-2009 and by 14% in the loam in 2010. Evolution of N2O was reduced by 42% and 63% in 

the sandy loam and loam soils in 2008-2009 and by 99% in the loam in 2010. Overall, PCU 

decreased gaseous losses of N following fertilization while providing a steady supply of N to the 

plant. The utilization of PAIRS is a viable analysis method which gives higher temporal 

resolution analysis than is typically reported. These considerable decreases in environmental 

losses of N are major steps toward conserving natural resources and mitigating the negative 

environmental impacts associated with N fertilization in grass systems.   
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ABSTRACT  

Nitrogen is an essential plant nutrient in the biosphere. Although N is necessary and 

beneficial for life, it is also a common pollutant in the atmosphere and hydrosphere as it may be 

lost to the atmosphere as ammonia (NH3) or nitrous oxide (N2O) gases or to groundwater as 

nitrate (NO3
-
) following fertilization. Polymer coated urea (PCU) is one type of N fertilizer 

which uses temperature-controlled diffusion to control N release to better match plant demand 

and mitigate environmental losses of N. The objectives of this study were to simultaneously 

compare the effects of PCU on gaseous (as N2O and NH3) and aqueous (as NO3
-
) N losses to the 

environment as compared to traditional uncoated urea in a cool season turfgrass system over the 

entire PCU N-release period. Two field studies were conducted on established turfgrass sites 

with a mixture of Kentucky bluegrass (Poa pratensis L.) and perennial ryegrass (Lolium perenne 

L.) in sand (Site 1) and loam (Site 2) soils. Each study compared an untreated control to 200 kg 

N ha
-1

 applied as either uncoated urea or PCU (Duration 45 CR®). Using uncoated urea as an N 

fertilizer resulted in 127 – 476% more measured N2O impact on the environment, whereas PCU  

was only 25 – 52% higher (not significant) than background emission levels. Compared to urea, 

PCU reduced NH3 emissions by 41 – 49 % and N2O emissions by 45 – 73%, while improving 

growth and verdure over the control. Leachate NO3
-
 reductions were inconclusive. These 

considerable decreases in environmental losses of N are major steps toward conserving natural 

resources and mitigating the negative environmental impacts associated with N fertilization in 

turfgrass.   

INTRODUCTION 

 Nitrogen is an essential plant nutrient in the biosphere. Conversion or fixation of the 

ubiquitous pool of atmospheric N2 gas to biologically active amine (RNH2) forms occurs through 
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both abiotic (lightning, combustion, and Haber-Bosch industrial processes) and biotic (microbial 

and plant) processes. The process of N fixation is essential for life because of biosynthesis into 

nucleotides used for deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) synthesis and 

amino acids for protein/enzyme production. Although background levels of natural fixation 

enable plants to grow in the wild, fertilization with N is required to provide adequate food, fuel, 

and fiber to sustain the ever-growing human population. 

Although N is beneficial and essential for life, it is also a common pollutant in the 

biosphere. Annual worldwide N fertilizer application is projected to total 139.1 million metric 

tons in 2011/2012 (FAO 2008). Ideally, applied N is held in the soil until it is absorbed by plants 

but N may be evolved as ammonia (NH3) or nitrous oxide (N2O) gases or it leaches or runs off as 

nitrate (NO3
-
).  

Schlesinger (1992) estimated that 10% of manufactured N fertilizer worldwide is 

volatilized as NH3 gas. In a growth chamber study using warm-season bentgrass (Agrostis 

palustis Huds.), volatilization of surface-applied N fertilizers was shown to be in excess of 60% 

over the first 10 days following surface application (Knight et al. 2007). Researchers at Kansas 

State University found nearly 100% loss of N applied to maize (Zea mays L.) from a broadcast 

liquid urea under worst-case conditions of high temperature (>30 
o
C), humidity (>95% RH), and 

wind (>30 km hr
-1

) (Bryan Hopkins, personal communication, 2011). Volatilized NH3 gas from 

fertilizer is a serious environmental concern because it is more likely to be deposited on land or 

water bodies than other forms of anthropogenic N. Ammonia deposition in sensitive ecosystems 

can lead to soil acidification (Sutton et al. 2008) and surface water eutrophication (Boyd 2000). 

Nitrogen deposition can also lead to plant community loss and reduction of biodiversity (Sutton 

et al. 2008). Fenn et al. (1998) reported that increased N availability from NH3 deposition in 
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typically N-limited ecosystems across the globe is leading to unwanted consequences including 

increased aluminum mobility resulting in forest decline.  

In addition to NH3 volatilization, elevated emissions of N2O are also concerning. On 

average, 1% of N applied in inorganic forms is lost to the atmosphere as N2O (GHG Working 

Group 2010). The actual amount lost is directly related to the type, quantity, and method of 

application of the applied fertilizer (GHG Working Group 2010). Hirsch et al. (2006) estimated 

anthropogenic emissions of N2O have increased by approximately 50% over pre-industrial 

levels. It is estimated that N2O emissions directly related to fertilization account for 78% of the 

total annual anthropogenic N2O losses, with automobile and industrial pollution making up most 

of the remainder (USEPA 2007). The environmental concern with N2O is that it is a long-lived, 

potent greenhouse gas with a global warming potential 310 times greater than carbon dioxide 

(CO2) (USEPA 2007). In addition to the ability of N2O to absorb and retain infrared energy in 

the atmosphere, it also catalytically destroys ozone (O3) in the troposphere (IPCC 2007), which 

allows higher levels of ultraviolet (UV) radiation to reach the Earth‘s surface—resulting in 

further warming potential and increased UV radiation exposure to living organisms. Emissions 

of N2O to the atmosphere via denitrification and nitrification are controlled by many interacting 

factors. Soil aeration, temperature, texture, ammonium (NH4
+
) and NO3

-
 concentrations, and 

microbial community factors all affect the rate of soil N2O production and loss (Snyder et al. 

2007). 

 Although N losses to the atmosphere are disconcerting and currently dominate public 

forums, losses to the hydrosphere are also a serious concern. Soil NO3
-
 is easily leached below 

the rooting zone due to similar negative ionic charges associated with soil particles and the NO3
-

molecule. Nitrate (and other forms of N) can also be surface transported through runoff and 
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erosion, resulting in increased N in surface and ground waters. The amount of N lost is a 

function of fertilizer source, timing, soil infiltration rate, shoot density, and soil moisture (Easton 

and Petrovic 2004), as well as percolation rate and macropore flow. In addition to the decreased 

plant available N that results, excess NO3
-
 in watersheds can lead to toxicological problems such 

as eutrophication (large algal blooms which can lead to anoxic conditions) and drinking water 

contamination (Mulvaney et al. 2009). Drinking water contaminated with NO3
-
 is thought to 

cause methemoglobinemia (blue baby syndrome) in young animals and human babies (Olson et 

al. 2009). Excess NO3
-
 in watersheds is also toxic to freshwater biota and disrupts nutrient 

cycling (Fenn et al. 1998).  

 Along with the need to reduce environmental impacts of excess N losses, it is also 

important to acknowledge that N fertilizer is manufactured using natural gas and other non-

renewable resources. Thus, to conserve non-renewable resources and minimize environmental 

impacts, minimizing N losses and maximizing plant utilization are critical. Maximizing N uptake 

by plants is defined as nitrogen use efficiency (NUE, Hopkins et al. 2008).  

Optimizing N fertilizer rate, source, timing, and placement are all necessary to reach an 

ideal balance between grower profitability and NUE. One tactic to increase NUE from a fertilizer 

source approach is use of controlled-release N (CRN) or slow-release N (SRN). These fertilizers 

release N into the soil over an extended period of time, ideally match plant needs, and possibly 

reduce or eliminate labor-intensive and costly in-season N applications (Hopkins et al. 2008). By 

controlling the release of N from fertilizer into the soil, it is hypothesized that N inefficiencies 

and losses to the environment will be mitigated, by increasing N retention by the soil and uptake 

by the plant in relation to the total N applied (Hopkins et al. 2008, Snyder et al. 2007). The 

concept of CRN and SRN fertilizer materials is not new, but success has varied widely across 
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plant species and environmental conditions, and expense has prevented wide utilization (Hopkins 

et al. 2008). More recently, costs of these materials have become more attractive and competitive 

with traditional N sources.  

Polymer-coated urea (PCU) fertilizer is one promising type of CRN that provides 

improved N-release timing. Soil temperature controls N release rate from PCU—allowing for 

protection of N during times when the soil is cool and plants are not growing and then enhancing 

N release as plant growth and N uptake increase (Hopkins et al. 2008). Diffusion of N through 

the polymer coating is driven by the N concentration gradient—temperature being the primary 

regulator under irrigated conditions. Some PCU‘s have been shown to steadily supply the plant 

with N for longer periods of time following fertilizer application than immediately soluble forms 

of N, thus enhancing NUE (Wilson et al. 2010, Hutchinson et al. 2003, Hopkins et al. 2008, Patil 

et al. 2010) and leading to increased crop yield and quality (Blythe et al. 2002, Cahill et al. 2010, 

Knight et al. 2007, Miltner et al. 2004, Pack and Hutchinson 2003, Worthington et al. 2007). 

Hyatt et al. (2010) showed that the slower release of PCU can improve economics by eliminating 

additional in-season N applications.  

Research has also demonstrated PCU‘s ability to mitigate negative environmental 

impacts associated with N fertilizer (Halvorson et al. 2010a, Pack et al. 2006, Wilson et al. 

2010). Polymer-coated urea has been shown to significantly decrease both NO3
-
 leaching (Du et 

al. 2006, Guillard and Kopp 2004, Nelson et al. 2009, Pack et al. 2006, Pack and Hutchinson 

2003, Wilson et al. 2010) and NH3 volatilization (Knight et al. 2007, Pereira et al. 2009, 

Rochette et al. 2009). Nitrous oxide emissions may also be reduced by using PCU (Cao et al. 

2006, Halvorson 2008, Halvorson et al. 2010a, Halvorson et al. 2010b, Hyatt et al. 2010, Jassal 

et al. 2008). 
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Most of the work done to investigate anthropogenic inputs to the atmosphere from 

fertilization has been performed in intensive row crop agricultural systems [such as maize, wheat 

(Triticum spp.), and potato (Solanum tuberosum L.)]. Much less has been done in grass systems 

(Bremer 2006, Knight et al. 2007) despite N fertilizers having a huge role for urban turfgrass and 

agricultural sod, seed, and pasture grass systems. Turfgrass occupies 1.9% of the total surface 

area of the United States, and is the largest irrigated crop in the country (Milesi et al. 2005). 

Coupling this wide geographical distribution to known excessive N application by many 

homeowners and turfgrass managers compared to farmers leads to environmental and economic 

concerns. The attitude of ―if a little is good then more is better‖ prevails with most people 

applying N to turf, especially when visual greening is so apparent. Also, homeowners are often 

uneducated in regard to appropriate rates of fertilizer and methods of correct application.  

Permanent sod grass systems require N addition to maximize production efficiency. This 

is especially true when biomass is removed by mowing, grazing, or harvest. In the case of 

turfgrass, high rates of N are applied to optimize aesthetics. Agrarian turfgrass landowners apply 

between 75 and 500 kg N ha
-1

 as fertilizer each year (Milesi et al. 2005). These rates, though 

comparable to the most intensively cultivated agriculture fields in the world, are often exceeded 

by urban homeowner applications. This high availability of N can promote plant health and vigor 

but can just as easily lead to substantial inefficiencies and losses if improperly managed. 

 The primary objective of this study was to compare N gas evolution, NO3
-
 leaching and 

plant uptake and verdure on cool season turfgrass plots treated with PCU,  uncoated urea and  

untreated control.  
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MATERIALS AND METHODS 

Two field studies at two Utah, USA, sites were conducted on established turfgrass, with a 

mixture of Kentucky bluegrass (KBG; Poa pratensis L.) and perennial ryegrass (PRG; Lolium 

perenne L.). Best management practices for growing cool season turfgrass were generally used at 

both sites. Site 1 in Provo (40°16‘1.40‖N 111°39‘28.59‖W) is a sports turfgrass sod farm at 

Brigham Young University (BYU) with sandy soil (Table 1). Site 2 near Spanish Fork 

(40°4‘1.77‖N 111°37‘44.99‖W) is a turfgrass area at BYU‘s experimental farm with a 

Timpanogos Loam soil and located near their weather station (Table 1). At each site, 1 m x 3 m 

plots were established immediately next to each other in a randomized complete block design 

with three treatments and six replications. Treatments included application of 0, an untreated 

control, and 200 kg N ha
-1

 applied as either uncoated urea or polymer coated urea (PCU; 

Duration 45 CR®, Agrium Advanced Technologies, Loveland, CO). Treatments were uniformly 

surface applied.  

All plots were irrigated with approximately 2 cm water within 12 and 1 h after fertilizer 

treatment application for sites 1 and 2, respectively. Soil volumetric water content was monitored 

using Watermark Soil Moisture Sensors (Spectrum Technologies, Plainfield, Illinois, USA) and 

logged using an AM400 soil moisture data logger (MK Hansen, Wenatchee, Washington, USA). 

Soil temperature was monitored with a thermistor and logged using the same data logger.  

 Simplified modified passive flux collection devices were installed near the center of each 

plot to collect volatilized NH3. Passive flux sampling tubes were vertically oriented (to minimize 

cross plot gas contamination) with the bottom of each tube 10 cm above the plant-soil interface. 

Each sampling device consisted of a glass tube (0.7 cm inside diameter x 10 cm length), with the 

interior coated with 3% oxalic acid in acetic acid to readily react with and collect NH3 from the 

air that flowed through the tube. Flux tubes were replaced daily for the first two days, then every 
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three to four days for an additional 21d, until volatilization levels returned to ambient conditions, 

and then weekly thereafter. When collected for analysis, tubes were capped with rubber septa 

stoppers immediately to eliminate contamination. The NH3 was extracted from the flux tubes by 

adding 1 ml of deionized water, recapping with septa stoppers and shaken mechanically using a 

modified vortex mixer (Labnet International, Inc., Woodbridge, NJ, USA) for 10 minutes. 

Extracts were then diluted with 2 ml of deionized water and analyzed for NH4
+
 using the 

automated cadmium reduction method (Mulvaney, 1996) with a Lachat colorimetric analyzer 

(Lachat Instruments, Loveland, CO, USA). Results were expressed as total NH3-N (mg).  

 Vented poly-vinyl chloride (PVC) static (18 cm diameter x 28 cm height) collection 

chambers were installed near the center of each plot to collect N2O gas. These PVC collars were 

fitted with rubber gaskets on the top lip and buried to a depth of 6-8 cm into the soil. During 

periodic sampling times, the chamber lid was attached to the top of each chamber and sealed 

with the rubber gaskets. Samples were taken three days a week for the first three to four weeks 

after fertilizer application, and once or twice a week thereafter. Samples were taken through a 

septum on top of the chamber with a 10-ml glass syringe fitted with a rubber stopper at intervals 

of 15, 30, and 45 min after installing the chamber. Samples were immediately taken to the lab 

and analyzed with a gas chromatograph coupled with an electron capture detector (Venterea et 

al. 2009; GC, Agilent 6890N, Agilent Technologies, Santa Clara, California, USA). Samples 

were generally analyzed within 4-6 h following sampling. Flux was determined as described by 

Mosier et al. (1991) and by implementing principles of the ideal gas law (PV = nRT) at standard 

temperature and pressure. Flux was calculated by 
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Where V is the headspace volume, ΔC is the change in concentration (Co - Ct) of N2O as 

measured by the GC, A is the area of the static chamber, and Δt is the time elapsed between Co 

and Ct. 

 Suction lysimeters (24 in. 1900 Series, Soil Moisture Corp., Goleta, CA, USA) were 

installed in three blocks at each site at a 30° angle to a depth of 8-10‖. Leachate was collected 

and NO3
- 
N concentrations were determined using a Lachat automated analyzer for NO3

-
 N by 

the salicylate nitroprusside method (Mulvaney 1996). Approximately 21 and 45 d after 

application residual soil NO3
- 
N samples were taken at 0-30 and 30-60 cm depths and 

concentrations were analyzed as described above. 

 Root and shoot samples were also taken approximately 21 and 45 d after fertilization and 

dried at 65
o 
C, ground and then analyzed for total N (Leco® TruSpec® CN elemental 

determinator, St. Joseph, MI, USA). Verdure assessments were done by giving plots visual 

ratings on a 1 – 5 scale, with 1 being brown and 5 being dark green.  

All data was analyzed for statistical significance by ANOVA and Tukey HSD analyses 

using JMP 10.8 statistical software (SAS Institute, Cary, NC, USA). Prior to analysis, data was 

checked for normality and those data sets which did not follow the assumption of normal 

distribution were log transformed and then analyzed for significance. Significance levels were α 

< 0.10. 

RESULTS AND DISCUSSION 

Nitrous Oxide 

Site 1 - The N2O emissions from uncoated urea application were significantly higher than 

the control on half of the sampling dates (Fig. 1; P = 0.10). In contrast, PCU produced 

significantly greater N2O flux than the control on only two sampling periods (of 10), with the 
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magnitude of those differences much smaller. When comparing the fertilizer sources to each 

other, the N2O emissions from uncoated urea were significantly higher than PCU on two 

sampling days. The PCU never produced significantly greater N2O flux over uncoated urea 

during any sampling event. Plots treated with uncoated urea reached a N2O flux peak 

approximately five days after fertilization (DOY 277), while plots receiving PCU reached peak 

flux approximately 26 days (DOY 298) after fertilization.  

Total measured N2O emission at Site 1 from uncoated urea fertilization was 44669 µg   

m
-2

, which was significantly higher than both the PCU (P = .00001) and control (P < .0001) 

treatments which were 11745 and 7749 µg m
-2,

 respectively. It is noteworthy that the sub-

sampling occurred on 10 days of the study and the sampling times were 45 minutes each and, 

therefore, these total amounts do not represent a total cumulative loss but, rather, a representative 

measure of N2O loss over the course of the trial. The total measured N2O emission from PCU 

application was statistically similar to untreated control. The total measured flux from urea 

fertilization was 3.8 and 5.8 times that of PCU and the control, respectively (Fig.1). Using 

uncoated urea as an N fertilizer under these environmental conditions resulted in 476% more 

measured N2O impact on the environment, whereas PCU  was only 52% higher (not significant) 

than background emission levels. 

 Site 2 – Daily comparisons of N2O emissions from treatments found that there were no 

significant differences between any treatments on 7 of the 9 d sampled (Fig. 1). Emissions from 

urea were significantly higher on one day than the control (DOY309) and PCU (DOY 307). The 

PCU never produced significantly greater N2O flux over uncoated urea on any sampling event.    

Total measured N2O emission at Site 2 from uncoated urea application was 16425 µg m
-2 

h
-1

, which was significantly different than  the PCU and the untreated control, which had fluxes 



12 
 

of 9021 and 7245 µg m
-2

, respectively (P = 0.026 and P = 0.001, respectively) (Fig. 2). The PCU 

application was statistically similar to the untreated control (P = 0.31). The total measured flux 

from urea treatments was 1.8 times that of PCU and 2.3 times that of the control. Although the 

magnitude was not as great as Site 1, using uncoated urea as an N fertilizer resulted in 127% 

more measured N2O emission to the atmosphere, whereas PCU was only 25% higher (not 

significant) than background emission levels. 

Because of soil moisture‘s important role in N2O emissions via nitrification and 

denitrification (Bouwman and Boumans 2002), the soil moisture differences at each site likely 

contributed to the different intensities of N2O flux seen. Site 1 was irrigated daily (as it had a 

sand texture, albeit with a perched water table at about 10 cm below the soil surface) and 

maintained at a somewhat high soil moisture level, while the Site 2 was only irrigated 

approximately weekly and soil moisture fluctuating less and overall maintained at lower levels 

than Site 1. Although fine-textured soils typically favor N2O emissions (Bouwman and Boumans 

2002), Site 2 was not maintained at an overall anaerobic threshold at which point denitrification 

would have commenced. Site 1 also avoided saturation for any longer than a few minutes/hours. 

Under these aerobic, slightly alkaline soil conditions, nitrification is assumed to be the primary 

source of N2O emission.  

Hyatt et al. (2010) monitored N2O emissions from PCU and urea in potato with coarse 

textured soils and saw reduction levels (39%) within the range of reduction observed in the 

present study. Other studies have investigated N2O emissions from turfgrass after fertilization 

with varying sources of N, not including PCU, and consistently found that fertilizer type affects 

the emission rate (Bouwman and Boumans 2002, Bergstrom et al. 2001, Bremer 2006, 

Maggiotto et al. 2000). The significant decreases in N2O emissions observed in our study are 
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similar to other studies which investigated various crops fertilized with PCU as an alternative N 

source—finding lower N2O emissions for PCU compared to uncoated urea (Blaylock et al. 2005, 

Halvorson et al. 2008). Decreased emissions of N2O from fertilization with PCU compared to 

uncoated urea over the course of a growing season have been documented in barley (Hordeum 

vulgare L.), cabbage (Brassica oleracea L.), maize (Zea mays L.), and potato (Delgado and 

Mosier 1996, Cheng et al. 2006, Halvorson et al. 2010, Hyatt et al. 2010). However, some 

studies have reported a small late-season peak in N2O flux with PCU, which has been attributed 

to release of N from PCU (Halvorson et al. 2008). In contrast, the data in the present study 

showed no significant peaks other than that which occurred immediately after fertilization. It is 

important to acknowledge that this study was conducted during the fall season to an established 

sod, with relatively low temperatures that steadily decreased with time. Late season fertilization 

of N is common and applying a majority of the N at this time is physiologically beneficial to cool 

season turfgrass species (Christians 2007), which is the reason why this timing was implemented 

in this study. However, additional work is needed to evaluate N2O loss following PCU 

application to cool season turfgrass earlier in the growing season is also needed. 

Ammonia 

 Site 1 – The NH3 volatilization from uncoated urea application were significantly higher 

than the control on one of the sampling dates (Fig. 3; P = 0.10). In contrast, PCU produced 

significantly greater NH3 volatilization than the control during none of the sampling periods (of 

5). When comparing the fertilizer sources to each other, NH3 volatilization from uncoated urea 

was significantly higher than PCU on two sampling days (DOY 271 and 280). The PCU never 

produced significantly greater NH3 volatilization over uncoated urea during any sampling event. 
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Plots treated with uncoated urea and PCU reached an NH3 volatilization peak immediately after 

fertilization (DOY 271).  

 Cumulative NH3 volatilization from uncoated urea application was significantly higher 

compared to PCU and the control at Site 1 (P = 0.07 and 0.04, respectively, Fig. 3). The 

cumulative NH3 volatilization of the uncoated urea plots was 2.0 and 2.1 times that of PCU and 

control, respectively (Fig. 4). Using PCU as N fertilizer decreased total NH3 volatilization by 

41%. 

 Site 2 – The NH3 volatilization from uncoated urea application were significantly higher 

than the control on three of the sampling dates (Fig. 3; P = 0.10). In contrast, PCU produced 

significantly greater NH3 volatilization than the control during none of the sampling periods (of 

5). When comparing the fertilizer sources to each other, NH3 volatilization from uncoated urea 

was significantly higher than PCU on two sampling days (DOY 286 and 288). The PCU never 

produced significantly greater NH3 volatilization over uncoated urea during any sampling event. 

Plots treated with uncoated urea and PCU reached an NH3 volatilization peak three days after 

fertilization (DOY 288).  

 Similar to Site 1, cumulative NH3 volatilization from uncoated urea was significantly 

higher than the control (P = 0.09) but statistically equivalent to that of PCU (P = 0.22, Fig. 3). 

Cumulative NH3 emissions from urea treatments were 2.0 times that of the control. Emissions 

from PCU treatments were never significantly higher than urea or than the untreated control 

treatments. At Site 2, PCU decreased NH3 volatilization by 49% as compared to the urea 

treatments.   

 The relative reductions of NH3 gas loss found in this study attributable to PCU are similar 

to those reported in another study with turfgrass (Knight et al. 2007) as well as in maize systems 



15 
 

(Pereira et al. 2009). Knight et al. (2007) conducted growth chamber experiments with a warm 

season turfgrass species, ‗G-2‘ creeping bentgrass (Agrostis stolonifera L.), grown in a loamy 

sand and found that PCU had the lowest levels of NH3 volatilization among six different forms 

of N fertilizers tested, with no noticeable spike in volatilization in the 10 d  length of the study. 

However, the PCU used in that study would have been expected to release its N over a longer 

period of time than 10 d. Our study was conducted over the entire time of anticipated N release 

from the PCU and we found no spike in the NH3 volatilization later in the season. In the present 

study, an observed peak in volatilization was observed with PCU, although this peak was 

identical to the control and significantly smaller in magnitude than with the uncoated urea. This 

may be attributed to increased climatic variability in our field study as compared to controlled 

growth chamber for others or the fracturing of the micro-thin polymer coatings during handling 

and/or fertilizer application (Rosen et al. 2010), which in effect negates the control release 

properties of the small percentage of damaged fertilizer pellets and rendering them essentially 

identical to uncoated urea as the urea within the polymer is readily soluble and exposed through 

the cracks or ruptures in the polymer coating. Overall, our data support the findings of Knight et 

al. (2007), inasmuch as PCU significantly decreases NH3 emissions when compared to a more 

readily soluble form of N fertilizer (i.e. urea). 

Nitrate 

 Although NO3
-
 leaching data trended towards less concentration for PCU compared to 

urea, these differences were not significant from both sites Site 1 and 2 (P = 0.66 and 0.52, 

respectively) due to sample losses at both locations resulting in poor statistical sensitivity. 
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Nitrogen Uptake and Verdure 

 Growth and verdure improvements were observed in all plots receiving N fertilization as 

compared to the untreated control.  At both sites there were no observable differences in verdure 

or growth between PCU and urea. The average visual rating for both PCU and urea at Site 1 was 

4.5 and Site 2 was 3.8. Visual ratings for control plots at each site were ~ 2.5. Increased growth 

was noticed with both the PCU and urea, but neither treatment appeared greater than the other.  

Total shoot N concentrations from samples removed on DOY 292 at Site 1 varied significantly 

among treatments (Table 2). Specifically, N concentration in turfgrass from the urea application 

was significantly higher than both the control and PCU. Turfgrass grown with PCU application 

also contained significantly higher shoot N than the control. No other root and shoot samples 

taken at either site were significant (Table 2). The lack of treatment effects at Site 2 may have 

been related to a large relatively fresh N pool, high organic matter, and/or high CEC (Table 1) – 

any one of which might contribute to the lack of treatment effect. More rapid release of N to turf 

from uncoated urea compared to PCU explains higher N content from urea application. 

Importantly, levels of shoot N from PCU application were also adequate (Table 2). The adequate 

range for shoot N levels is from 2.51 – 5.10% in KBG and 3.34 – 5.10% in PRG (Mills and 

Jones 1996). At Site 1, where there were differences among treatments in shoot N content at 

DOY 292, N content by DOY 340 were similar regardless of treatment, with values near the 

bottom of the acceptable range for shoot percent N in KBG and PRG. This is likely due to 

accumulation of N in the shoots of the control plots, with little biomass increase and a dilution of 

N in those shoots receiving N fertilizer from growth and clipping. As has been found with other 

crops (Hopkins et al. 2008, Pack et al., 2006, Wilson et al., 2010), PCU provides ample N to the 

plant while mitigating environmental losses of NH3 and N2O.  
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CONCLUSIONS 

 Our findings indicate that Kentucky bluegrass/perennial ryegrass cool season turfgrass 

systems‘ health and appearance can be maintained and environmental losses as N2O and NH3 can 

be mitigated by utilizing PCU. Nitrate leaching is also likely reduced, although not totally 

substantiated in these studies. There were no indications of N deficiency in turfgrass receiving 

PCU, as has been demonstrated by similar research in other crops. While providing an adequate 

N supply, PCU application resulted in decreased NH3 volatilization 41 – 49% compared to urea 

application. Using uncoated urea as an N fertilizer resulted in 127 – 476% more measured N2O 

impact on the environment, whereas PCU  was only 25 – 52% higher (not significant) than 

background emission levels. The large decreases in the emissions of the potent greenhouse gas 

N2O, as well as reactive atmospheric N as NH3 volatilization, while maintaining turfgrass 

verdure and growth, are major developments in improving N use efficiency in turf without 

increasing shoot growth and, therefore, mowing. Our research indicates that there is no downside 

to PCU under these conditions. Initial additional costs for PCU are potentially compensated for 

by decreased labor for fertilization and possibly mowing, as well as increased nutrient use 

efficiency (less fertilizer N needed). Reductions of the magnitude reported herein of N2O [this 

long-lived (150 year stratospheric life), potent (310 times the GWP of CO2) greenhouse gas] 

deserve further investigation by longer term studies under various environmental conditions in 

all fertilized landscapes.  
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Tables 

 

Table 1. Selected soil characteristics for two field studies conducted on established  mixed 

stands of Kentucky bluegrass and perennial ryegrass turf sites in Utah, USA. Site 1 is a sports 

turfgrass sod farm at Brigham Young University, Provo, UT on a disturbed sand soil and site 2 is 

at the BYU experimental farm on a Timpanogos loam soil.  
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Table 2. Root And Shoot N Concentrations For Sites 1 And 2; One In-Season Sample Date, 

One End-Of-Season Sample Date. Those values not connected by common letters indicate 

significant differences at the P = 0.05 level; NS = no significance. 

 

 

 

 

Location N Source Julian Day

Roots Shoots

Site 1 Control 292 - 2.71     C

Site 1 PCU 292 - 4.18     B

Site 1 Urea 292 - 5.05     A

Site 1 Control 340 0.39   NS 3.87   NS

Site 1 PCU 340 0.84   NS 3.24   NS

Site 1 Urea 340 0.70   NS 3.14   NS

Site 2 Control 316 - 3.66   NS

Site 2 PCU 316 - 3.14   NS

Site 2 Urea 316 - 3.99   NS

Site 2 Control 340 0.59   NS 3.30   NS

Site 2 PCU 340 0.54   NS 2.70   NS

Site 2 Urea 340 0.56   NS 2.54   NS

% N
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Figures 

 

Figure 1. Daily N2O Flux for Sites 1 and 2. Significance indicated by † (urea greater than 

control), ‡ (urea greater than PCU), and § (PCU greater than control). Vertical dashed lines 

indicate fertilizer application. 
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Figure 2. Cumulative N2O flux for the field sites from equivalent rates of (200 kg ha
-1

 N) 

urea and polymer coated urea (PCU) over a period of 45 days after application. Those 

treatments not sharing the same letter indicate significant differences (P = 0.05). 
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Figure 3. Passive flux NH3-N values for Sites 1 and 2. Significance indicated by † (urea 

greater than control) and ‡ (urea greater than PCU) where P = 0.05. Vertical dashed lines 

indicate fertilizer application. 
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Figure 4. Cumulative NH3 flux for the field sites from equivalent rates of (200 kg ha
-1

 N) 

urea and polymer coated urea (PCU) over a period of 45 days after application. Those 

treatments not sharing the same letter indicate significant differences (P = 0.05). 
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ABSTRACT 

Although N is beneficial and needed for life, it is also a common pollutant in the 

atmosphere as nitrous oxide (N2O) and ammonia (NH3)—contributed largely from N 

fertilization. Polymer-coated urea (PCU) fertilizer is one promising type of controlled release 

fertilizer that provides improved N-release timing. Glasshouse studies were conducted to 

compare N2O and NH3 emissions from PCU and uncoated urea to an untreated control utilizing a 

non-static, non-flow-through chamber in conjunction with photoacoustic infrared spectroscopy 

(PAIRS) for gas collection and analysis. Three short-term studies (17-21 d) were done with sand, 

sandy loam, and loam soils and a full-term (45 d) study with the loam soil. Volatilization of 

ammonia was reduced by 72% and 22% in the sandy loam and loam soils, respectively, in 2008-

2009 and by 14% in the loam in 2010. Evolution of N2O was reduced by 42% and 63% in the 

sandy loam and loam soils in 2008-2009 and by 99% in the loam in 2010. Overall, PCU 

decreased gaseous losses of N following fertilization while providing a steady supply of N to the 

plant. The utilization of PAIRS is a viable analysis method which gives higher temporal 

resolution analysis than is typically reported. 

 

INTRODUCTION 

 Nitrogen is an essential plant nutrient in the biosphere, but the ubiquitous atmospheric 

form, N2, is not bioavailable. Conversion or fixation of N2 to biologically active amino (NH2) 

forms occurs through both biotic (microbial) and abiotic (lighting, combustion, and Haber-Bosch 

industrial processes) processes. These processes are essential for life as N is biosynthesized into 

the basic building blocks of all living organisms i.e. nucleotides used for deoxyribonucleic acid 

(DNA) and ribonucleic acid (RNA) synthesis and amino acids used for protein production. 

Although background levels of natural fixation enable plants to grow in the wild, N fertilization 
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is needed to provide the food, fuel, and fiber needed to sustain the ever-growing human 

population. 

Despite N being beneficial and critical to life, its anthropogenic use has made it a 

common pollutant in the atmosphere and hydrosphere. Annual worldwide N fertilizer application 

is projected to total 139.1 million metric tons in 2011/2012 (FAO 2008). Ideally, applied N is 

held by the soil until it is taken up by plants. However, some N may be lost as it is evolved as 

ammonia (NH3) or nitrous oxide (N2O) gases during natural conversion processes or lost as 

nitrate (NO3
-
) from the rooting zone through surface runoff/erosion and leaching to groundwater.  

Schlesinger (1992) estimated that 10% of all manufactured N fertilizer worldwide is 

volatilized as NH3 gas. Volatilization of surface-applied N fertilizers reached an excess of 60% 

over the first 10 days following fertilization in a growth chamber study using warm-season 

bentgrass (Agrostis palustis Huds (Knight et al. 2007). A near 100% loss of N applied to maize 

(Zea mays L.) was observed in Kansas from a broadcast liquid urea treatment under worst-case 

conditions of high temperature (>30 
o
C), humidity (>95% RH), and wind (>30 km hr

-1
) (Ray 

Lamond and Bryan Hopkins, personal communication 1994). Volatilized NH3 gas from fertilizer 

application is a serious environmental concern. Ammonia is more likely to deposit on land or 

water bodies through either wet or dry deposition than other forms of anthropogenic N. Such 

deposition in sensitive ecosystems can lead to soil acidification (Sutton et al. 2008) and surface 

water eutrophication (Boyd 2000). Deposition in sensitive ecosystems can also lead to plant 

community loss and reduction of biodiversity (Sutton et al. 2008). Fenn et al. (1998) reported 

that increased NH3 deposition in typically N-limited ecosystems across the globe is having 

unwanted consequences including increased aluminum mobility and resulting forest decline. 
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Increased levels of atmospheric NH3 also negatively affect air quality by contributing to smog 

formation (Rochette et al. 2009). 

Along with NH3, elevated emissions of N2O are also concerning. On average, 1% of all N 

applied as fertilizer in both organic and inorganic forms is lost to the atmosphere as N2O (GHG 

Working Group 2010). The actual amount lost is directly related to the type, quantity, and 

method of application of the applied fertilizer (GHG Working Group 2010). Hirsch et al. (2006) 

estimated that anthropogenic emissions of N2O have increased by approximately 50% over pre-

industrial levels. It is also estimated that 78% of the total annual anthropogenic N2O losses are 

N2O emissions directly related to fertilization, with automobile and industrial pollution 

contributing most of the remainder (USEPA 2007). The concerns are that N2O is a long-lived, 

potent greenhouse gas with a global warming potential 310 times greater than carbon dioxide 

(CO2) (USEPA 2007) and that it catalytically destroys ozone (O3) in the troposphere (IPCC 

2007). Emissions of N2O to the atmosphere via denitrification and nitrification are controlled by 

interacting factors such as soil aeration, temperature, texture, ammonium (NH4
+
) and NO3

-
 

concentrations, and microbial community (Snyder et al. 2007).  

In addition to the need to reduce environmental impacts of excess N loss, N fertilizer is 

manufactured using natural gas and other non-renewable resources.  Minimizing N losses and 

maximizing absorption by plants conserve non-renewable resources and minimize environmental 

impacts. Maximizing N uptake by plants is expressed as N use efficiency (NUE, Hopkins et al. 

2008).  

Optimizing N fertilizer rate, source, timing, and placement are all essential to reach an 

ideal balance between economic profitability and NUE. One method of increasing NUE from a 

fertilizer source approach is to use controlled-release N (CRN) or slow-release N (SRN) 
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fertilizers which release N into the soil over an extended period of time, ideally matching plant 

need, possibly reducing or eliminating labor-intensive and costly in-season N applications 

(Hopkins et al. 2008). It is hypothesized that controlling N release will increase N retention and 

N uptake and thus mitigate N inefficiencies and losses to the environment (Hopkins et al. 2008, 

Snyder et al. 2007). The concept of CRN and SRN fertilizer materials is not new, but success has 

varied widely across plant species and environmental conditions, and expense has prevented 

wide utilization (Hopkins et al. 2008). More recently, costs of these materials have dropped 

relative to traditional N sources. 

Polymer-coated urea (PCU) fertilizer is one promising CRN that provides improved N-

release timing. Rate of N release from PCU is temperature controlled and this protects N during 

times of cool soil temperatures and slow plant growth and releases N as plant growth and N 

uptake increase (Hopkins et al. 2008). Diffusion of N through the polymer coating is driven by 

the N concentration gradient—temperature being the primary regulator under irrigated 

conditions. Some PCU‘s steadily supply the plant with N for longer periods of time following 

fertilizer application than immediately soluble forms of N, thus enhancing NUE (Wilson et al. 

2010, Hutchinson et al. 2003, Hopkins et al. 2008, Patil et al. 2010) and leading to increased crop 

yield and quality (Blythe et al. 2002, Cahill et al. 2010, Knight et al. 2007, Miltner et al. 2004, 

Pack and Hutchinson 2003, Worthington et al. 2007). Hyatt et al. (2010) showed that the slower 

release of PCU can improve economics by eliminating additional in-season N applications. 

Strong evidence supports PCU‘s ability to mitigate negative environmental impacts associated 

with N fertilizer (Halvorson et al. 2010a, Pack et al. 2006, Wilson et al. 2010). 

Polymer-coated urea has been shown to significantly decrease both NO3-N leaching (Du 

et al. 2006, Guillard and Kopp 2004, Nelson et al. 2009, Pack et al. 2006, Pack and Hutchinson 



34 
 

2003, Wilson et al. 2010) and NH3 volatilization (Knight et al. 2007, Pereira et al. 2009, 

Rochette et al. 2009). Nitrous oxide emissions have also been reduced by using PCU (Cao et al. 

2006, Halvorson 2008, Halvorson et al. 2010a, Halvorson et al. 2010b, Hyatt et al. 2010, Jassal 

et al. 2008). 

To properly assess N2O and NH3 emissions from soils under unique N management 

regimes, appropriate methods of analysis must be used. Due to temporal and spatial variability 

and the multi-faceted nature of N2O emissions, reliable estimates are difficult to obtain. The 

widely used static chamber flux technique takes samples from small areas (< 1 m
2
) and is 

relatively inexpensive. However, sampling (typically done as three or more samples per chamber 

in 15-or 20-minute intervals) and analysis using a gas chromatograph (GC) with an electron 

capture detector, increase temporal variability and decrease ability to estimate total losses over 

time. Venterea et al. (2009) stated that nitrous oxide emission estimates range from -60 to 170% 

of the mean. Increasing the sampling frequency is needed to overcome variability (Mosier et al. 

1991). Photoacoustic infrared spectroscopy (PAIRS) is a recently developed method which 

allows in-field analysis of N2O concentrations. Advantages of PAIRS include analysis 

frequency, portability, robustness, and relative ease of use (De Klein et al. 1999).  

Another advantage of PAIRS is that it is easily configured to successively analyze NH3. 

Technological advancements have made capturing and analyzing NH3 more feasible and 

convenient. In the improved denuder system, air is passed through an acid-coated glass tube 

under laminar flowand gases are trapped on the tubing wall. The collected ammonia is then 

extracted and analyzed. This improved method allows for monthly sampling to establish long-

term trends. Low-cost passive sampling is another method which allows assessment of spatial 

variability of NH3 without active air sampling (Sutton et al. 2008). Application of PAIRS in 
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combination with non-static, non-flowthrough chamber collection techniques provides a system 

of NH3 analysis which allows low maintenance, high frequency automated sampling and 

monitoring (Sutton et al. 2008). Increasing the frequency of sampling should decrease temporal 

variation and provide increased understanding of NH3 emissions following fertilizer-N 

applications.  

 Those studies which have implemented PAIRS have commonly done so while utilizing 

either static chamber or flow-through systems (DeKlein et al. 1999). While incorporating PAIRS 

analysis into these accepted collection methods has increased the number of sampling events and 

thereby decreased temporal variability, these collection methods can be expensive to automate 

and laborious to operate. A non-static, non-flowthrough chamber method which adequately 

collects evolved gases while remaining open to the atmosphere would minimize some of the 

associated costs and hassle of sampling.  

The objectives of this paper are to test whether: (i) using a simple non-static, non-flow-

through chamber system will allow continuous gas measurement and recording using PAIRS 

analysis in conjunction with a multiplexer, (ii) this method will be effective in semi-

quantitatively analyzing gas samples from areas receiving different N sources or N rates in close 

proximity to one another, and (iii) evolution of N2O and NH3 following fertilization can be 

mitigated by using PCU in place of uncoated urea. 

MATERIALS AND METHODS 

21-Day Studies - Three glasshouse studies were conducted at Brigham Young University 

(Provo, Utah, N 40° 14‘41.3536 W 111° 38‘ 57.4216). Other than soil texture (Table 1) and time 

of year, each study was nearly identical. The first study (Loam) was conducted from 14 Nov 

through 4 Dec 2008 (21 d) on a Timpanogos loam soil collected from the BYU research station 
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(40°4‘1.77‖N 111°37‘44.99‖W). The second study (Sand) was conducted from 16 Dec 2008 

through 9 January 2009 on a manufactured sand soil (obtained from inert crushed quartz from a 

quarry in Emit, ID, USA). The third study (Sandy Loam) was conducted from 24 Jan through 13 

Feb 2009 with a composited soil comprised of a 50/50 mixture of the manufactured sand and the 

Timpanogos loam. The loam soil was air-dried , rocks removed, and soil clods larger than 4 cm 

diameter were broken up, then mixed thoroughly—avoiding pulverizing the soil‘s structure (sand 

soil did not require drying or removal of rock).  

Treatments included: 1) an untreated control, 2) 336 kg N ha
-1

 urea (46% N), 3) 224 kg N 

ha
-1

 urea and 4) 224 kg N ha
-1

 PCU (44-0-0; Environmentally Smart N, ESN®, Agrium 

Advanced Technologies, Loveland, CO, USA). Three replications of these four treatments were 

applied to soil in chambers arranged in a randomized complete block design (RCBD). The high 

rate of urea chosen was based on an approximated full agronomic rate for maize. The reduced 

rates of urea and PCU were chosen based on preliminary field data (Hopkins et al., 2008) 

suggesting that PCU has nutrient use efficiency (NUE) approximately 1/3 better than uncoated 

urea. Analytical instrument limitations (see below) dictated a maximum of 12 experimental units 

for these studies and, therefore, PCU was not evaluated at the 336 kg N ha
-1

 rate.  

Twelve vented non-static, non-flow-through chambers were constructed out of standard 

19 L polyvinyl chloride (PVC) buckets (30 cm diameter x 37 cm height). The bottom of each 

chamber was vented to allow water to move freely out and air to move freely in or out of the soil 

while simultaneously retaining the soil using a landscape fabric liner (Weed-barrier
® 

1 oz., 

DeWitt Company, Sikeston, MO, USA). Chamber lids were constructed from fitted standard 19 

L PVC bucket lids, sealed onto each chamber. A hole was cut in the center of each lid to 

accommodate a 13 cm diameter by 12 cm length PVC pipe sealed to the lid with acrylic latex 



37 
 

silicone caulk. The PVC pipe reached to within 1-3 cm of the soil surface and to 2-3 cm above 

the lid. This was designed to minimize gas contamination from one chamber to another, to 

maximize accumulation of soil evolved gases in the head space in the chamber yet to allow gas 

exchange with the atmosphere.  

Each chamber contained approximately 13.5 kg of soil filled to within 8-12 cm of the top. 

Maize (Pioneer 35F38) was hydroponically germinated and 4 individual plants with shoots 8-12-

cm high were transplanted into soil in the chambers with the plants extending up through the 

PVC pipe. On day one of each trial, fertilizer treatments were applied , mixed into the top 5 cm 

of soil, and  soils were immediately planted to maize, irrigated with municipal water (EC <280)  

to saturation, and gas sampling was initiated. Targeted day and nocturnal air temperatures were 

25
o
C and 15

o
C, respectively, although limitations in heating/cooling capacity resulted in ranges 

of 20-29
o
C daytime and 11-16

o
C nighttime. Natural light was supplemented with artificial light 

(Hubbell high pressure sodium lamps) to maintain a 14/10-hour light/dark cycle.  

Gas samples, from emission of N2O and volatilization of NH3, were collected using an 

Innova 1309 12-port sampling unit (multiplexer) and analyzed with an Innova 1412 

Photoacoustic Field Gas Analyzer (Lumasense Technologies, Santa Clara, CA, USA), via 

photoacoustic infrared spectroscopy (PAIRS; DeKlein, 1999). Gas samples were transported 

from the head space above the soil using a pump on the PAIRS unit to pull the sample through 6 

m of 4 mm I.D. HDPE tubing to the detector. The PAIRS unit was connected to a computer 

which controlled gas sampling (N2O and NH3) time intervals, and analysis. A complete sample 

set (12) was automatically sampled every 30 minutes; cycling continuously throughout the 21 

days of experiments.  
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45 Day Study – The 21-Day Studies were conducted for only 21 d to refine methodology 

for the PAIRS analysis and determine ―early season‖ N losses when losses from urea are more 

likely and plants are less likely to utilize soil N. A follow up study on the Timpanogos loam soil 

was conducted to evaluate gaseous losses over the full term of anticipated N release from PCU. 

The PCU used in the 20 Day Studies, ESN®, is an agronomic product designed with an S-shaped 

release curve to match crop demand for N over 60-90 d. Duration CR45® (44-0-0, Agrium 

Advanced Technologies, Loveland, CO, USA), is the PCU used in this 45-Day Study, and is also 

provided by Agrium Advanced Technologies but allows a nearly linear release of N for 45 days 

at 20° C in saturated conditions. The conditions of this study (20-29 °C and near saturation) were 

such that N release would occur more quickly than the anticipated release timing. Intended us of 

Duration CR45® is with perennial landscape plants. The shorter release period of Duration 

CR45® made it an ideal candidate for a glasshouse study. 

This study was conducted in the BYU glasshouse from 13Dec 2010 to 27 Jan 2011. 

Treatments included: 1) an untreated control, 2) 200 kg N ha
-1

 urea, and 3) 200 kg N ha
-1

 PCU. 

Four replications of these three treatments were applied to soil in a RCBD. On day one of each 

trial, fertilizer treatments were applied to the surface, and soils were immediately planted to 

maize, irrigated with municipal water (EC <280) to saturation, and gas sampling was initiated. 

Treatments were all surface-applied. Temperatures and light cycles were the same as for the 

above mentioned studies. 

 Twelve chambers were constructed in similar fashion to those described previously, with 

the following modification. The PVC tube was pushed 5 cm into the soil. The PVC tube had four 

equally spaced holes, 5 mm in diameter, drilled through the tube wall 5-8 cm from the soil 
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interface to maximize accumulation of soil evolved gases in the head space in the chamber, yet 

also allow gas exchange with the atmosphere. 

Soil volumetric water content was monitored using Watermark Soil Moisture Sensors 

(Spectrum Technologies, Plainfield, IL, USA) and logged using an AM400 soil moisture data 

logger (MK Hansen, Wenatchee, WA, USA), and soil temperature was monitored and logged 

using a common thermistor and the AM400 data logger.  

Collection and analysis of N2O and NH3 emissions were completed in a nearly identical 

fashion as the earlier mentioned studies utilizing PAIRS analysis, although the sampling interval 

was shortened to 11 minutes for higher temporal resolution. Concentrations, as determined by 

the PAIRS analyzer, were obtained (Fig. 1 and Fig. 2), compiled, and used to determine daily 

flux for each chamber. Daily flux was determined by using the maximum daily concentration 

and the minimum daily concentration which occurred prior in that day to the maximum 

concentration. Flux was then calculated by 

   
    

     
 

Where V is the headspace volume, ΔC is the change in concentration (Cmax – Cmin) of N2O and 

NH3 as measured by PAIRS, A is the area of the chamber not including the 13 cm diameter 

center used for plant growth, and Δt is the time elapsed between Cmin and Cmax. The daily gas 

concentrations were used to determine the change in time and change in concentration for input 

to the above equation. Concentrations were corrected using the ideal gas law, assuming standard 

temperature and pressure. Because this flux value was taken over an extended period of time (in 

some cases over six hours) it was assumed to be representative for that given day. To determine 

mass of N lost, daily flux values were assumed to be constant for a 24-h period. 
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 Daily gas concentrations were analyzed using ANOVA. Loss of N as NH3 and N2O were 

then analyzed for statistical significance by ANOVA and Tukey HSD analyses using JMP 10.8 

statistical software (SAS Institute, Cary, NC, USA) with α = 0.05.  

RESULTS AND DISCUSSION 

Ammonia 

 21-D Studies - The fertilizer source by time interaction generally was significant and 

therefore daily measurements of NH3 concentrations are presented for each treatment for the 

three soils (Fig. 1). There were no significant differences in overall accumulated NH3 flux among 

the three treatments in the sand soil (P = 0.3304; Fig. 1). The individual day differences from the 

different N sources were small, variable and not of practical significance (Fig. 1). The extremely 

low concentrations and fluxes observed are likely due to the sand soil being biologically inert 

and associated low levels of the urease enzyme. A small microbial enumeration analysis using 

soil extract agar and Jensen‘s agar and colony counts were unusually low (70,000 and 0 

microorganisms g
-1

, respectively) and confirm the hypothesis that the sand soil was relatively 

biologically inert.   

There were significantly higher NH3 concentrations evolved from both full and reduced 

rates of urea than from PCU and control treatments on all but days 1 and 2 for the sandy loam 

soil (Fig. 1 and Table 2). During these two days, concentration levels remained near background 

levels for all treatments (Fig. 1). The NH3 concentration differences among the two rates of urea 

also differed significantly from each other often—generally the full rate of urea was significantly 

higher than the low rate (days 9-19).  

Total cumulative N loss from NH3 volatilization (daily summed from the first to the last 

day of the study) was also significantly higher for the reduced rate of urea treatment than both 
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the PCU and control (P < 0.0001, Fig. 2). There was no difference between the urea treatments 

(P = 0.9998) or between the PCU and the control (P = 0.9816). Fertilization with PCU rather 

than urea resulted in an average reduction of NH3 volatilization of 72% when compared the two 

rates of urea (Fig. 2). 

 Similar to another study done with corn in a sandy loam (Clay et al. 1990), elevated NH3 

volatilization did not appear until 2 d after fertilization for both rates of urea (Fig. 1) in the Sandy 

Loam Study. This is likely due to a relatively slow increase in soil pH in areas immediately 

adjacent to the fertilizer granules, and following this increase in soil pH, NH3 volatilization 

conditions were optimized and flux levels were elevated. Volatilization reached its peak after 6 d 

and then remained elevated compared to the PCU and control for the duration of the study. 

However, volatilization from urea after d 6 gradually subsided toward background levels. 

Significantly higher NH3 concentrations from volatilization were observed in the Loam 

Study from both full and reduced urea treatments than the PCU and control. The only exceptions 

were days 1 – 4 on which samples were contaminated from a leak repair in some of chambers. 

Ammonia concentrations from PCU were significantly higher than the control on all included 

days except but days 9-13.  

Cumulative NH3-N volatilization loss was also significantly lower for the control than for 

both urea rates and PCU (P = <.0001, Fig. 2). There was no difference between the two urea 

treatments (P = 0.9033) nor between PCU and either the full or reduced rates of urea (P = 0.2490 

and 0.0562, respectively). Fertilization with PCU rather than urea resulted in no significant 

reduction in N lost via NH3 volatilization in this loam soil (Fig. 2). Despite the lack of 

significance in flux, PCU produced significantly lower NH3 concentration levels than both urea 

treatments on individual days (Fig. 2; Table 2). 
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Appreciable volatilization occurred a day earlier in the loam soil than in the sandy loam. 

This may be because of relatively more urease enzyme and/or soil moisture in the loam 

compared to the sandy loam soil. Volatilization peaked after 6 d for the reduced urea treatment 

and after 7 d for the full urea treatment (Fig. 1) and thereafter levels waned and trended toward 

background levels until the termination of the study at 18 d. Blaise and Prasad (1994) performed 

laboratory studies in which urea and PCU were surface applied to a bare sandy loam soil and 

found significant reductions (up to 53%) in NH3 loss by using PCU in both aerobic and anaerobic 

conditions. Our findings in the Sandy Loam Study were in line with their findings. However, in a 

loam soil there were no significant reductions in total N loss from NH3 volatilization with PCU.  

45-D Study –There was significantly higher NH3 concentration in the head space from 

volatilization of urea than PCU and control treatments on 22 of the first 26 days (d 1, 5 – 18, and 

20 – 26; Fig. 3 and Table 2). Ammonia concentrations from urea were also significantly higher 

than PCU on days 4 and 27 – 30 but similar to the control on those same days. All NH3-N 

concentrations returned to background levels beginning on day 31and there were no significant 

differences among N sources thereafter. In this long-term study, NH3 volatilization from PCU 

was never statistically higher than from urea (Fig. 3, Table 2).  

Cumulative N loss from NH3 volatilization was also significantly higher for urea than 

either PCU or control treatments (P = <0.0001, Fig. 4), but equal for PCU and the control 

(0.9999). Fertilization with PCU resulted in reduction of N loss from NH3 volatilization of 52% 

compared to urea (Fig. 3).  

Nitrous Oxide 

21-D Studies – Unlike NH3 volatilization and all other studies, there was no day by 

source interaction for N2O emissions in the Sand Study. The generally low concentrations and 
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fluxes are likely due to relatively low soil microbe populations. Microbial enumeration analysis 

using soil extract agar and Jensen‘s agar confirmed unusually low colony counts  in this soil 

(70,000 and 0 microorganismsg
-1

, respectively) and supported the idea that this sand soil was 

nearly biologically inert. Likely due to the low microbial impact, N2O evolution was near 

background levels for all treatments (Fig. 3) and any significant differences observed over the 

course of the study were of no practical significance (less than 0.10 mg L
-1 

difference; Fig. 2) and 

will not be discussed further. There were significantly higher N2O concentrations in the head 

space above both rates of urea compared to the PCU and control treatments from day 3 through 

18 (Table 2, Fig. 1). Concentrations of N2O were at significantly higher levels for the full rate of 

urea than the reduced rate of urea rate twice (d 5 and 21) and for PCU treatments than the control 

twice also (d 1 and 5). Thus, N2O evolution was higher from urea than PCU 73% of the days and 

similar on the other 27% of the days (Table 2). 

Cumulative N2O-N losses from the full rate of urea were significantly greater than the 

reduced urea treatments in the Sandy Loam Study at the P = 0.0728 level (Fig. 3). Both rates of 

urea were significantly greater than both the PCU and control treatments (P < 0.0001). 

Cumulative N2O losses for control and PCU treatments were equivalent (P = 0.7592). 

Fertilization with PCU instead of urea resulted in reduction of N2O emissions of 16% compared 

to the reduced rate of urea (Fig. 2).   

As with NH3 volatilization data, data for days 2 – 5 of the Loam Study are omitted from 

statistical analyses due to known analytical errors encountered. However, there were 

significantly higher N2O concentrations in the head space above the two rates of urea than the 

PCU and control treatments on all other days of the study (except d 1; Fig. 1, Table 2). The N2O 

concentrations of the full rate of urea were also significantly higher than the reduced rate on all 
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days of the study. The PCU and control were statistically equivalent until day 18, after 

whichN2O evolution with PCU was significantly higher than the control until the termination of 

the study on day 21 (Fig. 1, Table 2).  

Cumulative N2O-N losses from the two urea treatments in the Loam Study were 

statistically equivalent (Fig. 2; P = 0.3913). The full rate of urea evolved significantly more N2O-

N than both the PCU and control treatments (P = 0.0005 and < 0.0001, respectively). The PCU 

treatments also lost less N2O-N than the reduced rate of urea (P = 0.0278) and were equivalent to 

the control. The reduced rate of urea had near significant losses of N20-N compared to the 

control at the P = 0.0843 level. Fertilization with PCU rather than urea resulted in a 59% 

reduction of N2O emissions when compared to the reduced rate of urea (Fig. 2).   

No visual plant growth or health differences were detectable in the short-term studies 

with sand, sandy loam  or loam soils among PCU and either full or reduced applications of urea. 

Thus, fertilization with PCU rather than urea maintained plant health and resulted in reductions 

of N20 and NH3 emissions (Fig. 1 and 2; Table 2).   

45-D Study – There were significantly higher N2O concentrations in the head space from 

the urea treatment than the PCU and control treatments on all days during the study (except for 

day 1 when concentrations were equivalent to that of the control; Fig. 3, Table 2). From d 12 

through 45 (termination of the study), N2O concentrations for PCU were also significantly higher 

than the control, but also significantly lower than the equivalent rate of urea application (Fig. 3).  

Cumulative N2O-N losses from the urea treatments were significantly larger than both the 

PCU and control treatments (Fig. 4; P < 0.0001) and the PCU and control treatments were 

statistically equivalent (P = 0.6261). Fertilization with 136 kg N ha
-1

 from PCU resulted in an 

87% reduction of N2O emissions compared to 136 kg N ha
-1

 from urea. 
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Emissions of N2O from PCU in the 21-d loam study increased slightly in the last three 

days of the trial and these measurements raised questions that were addressed with the 45-day 

study. Other researchers have reported increased N2O emissions from PCU at later times than 

from urea (Halverson and Del Grosso 2010a). The 45-d study was conducted using a similar 

PCU as used in short-term experiments (Duration CR45®) except designed with a shorter release 

time (45 d) to ascertain whether increased N2O flux from PCU would occur after 21 days. There 

were slightly but significantly elevated N2O emissions from PCU compared to the control from d 

3 through 11 but not during the 12 to 45 d period. Nitrous oxide flux from urea increased 

beginning on d 4, reached a peak after 15-16 d and decreased slightly each day thereafter, never 

reaching background levels even after 45 days (Fig. 3). From our four studies it is clear that N2O 

evolution from PCU is minimal compared to urea even over the full 45 day period for which 

PCU was designed for release (Fig. 1 and 3).   

Halverson and Del Grosso (2010a) performed a study in which they compared readily 

soluble dry granular urea to ―enhanced efficiency‖ N fertilizers, including PCU (ESN®). This 

was a multi-year study in an irrigated no-till corn cropping system with clay loam soils. For gas 

sampling and collection they used the static-chamber method and then used gas chromatography 

(GC) to analyze the samples. Similar to our findings, they saw significant decreases in N2O 

emissions from PCU compared to urea. Unlike their study, any observed differences between 

control and PCU occurred in the first 3-20 days and there was no noticeable peak in flux from 

PCU which would suggest a flush of N to the soil solution. Rather, levels of N2O were slightly 

higher than the control for the duration of the study and usually not significantly different from 

the control. 
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Our results also support the findings of those who have documented decreased emissions 

of N2O from fertilization with PCU compared to uncoated urea in barley, cabbage, corn, potato, 

and turfgrass (Delgado and Mosier, 1996, Cheng et al., 2006, Halvorson et al., 2010, Hyatt et al., 

2010, Maggiotto et al. 2000). Ours is the first to observe these N2O fluxes using PAIRS analysis 

and to provide more than a snapshot of N2O flux following fertilization. In other studies N2O 

flux was measured at most daily and more typically 2-3 times week
-1

 and flux estimated via 

linear interpolation. Mosier et al. (1991) suggested that sampling frequency be increased to 

account for the innately large temporal variability associated with the biologically mediated flux 

of N2O. Venterea et al. (2009) observed a large variability in the accepted static chamber/GC 

method and suggested ways to minimize the inevitable variance. This study demonstrates that by 

using PAIRS analysis, temporally high resolution measures can be made and utilized to observe 

the gaseous losses of N following fertilization. 

There were no noticeable differences in plant health throughout the duration of these 

studies, which further supports the findings of others (Halverson and Del Grosso 2010a, Hopkins 

et al. 2008, Pack et al., 2006, Wilson et al., 2010) that use of PCU maintains and often enhances 

crop yield and quality. 

CONCLUSION 

 While providing an adequate N supply and maintaining plant health (Wilson et al. 

2010, Hutchinson et al. 2003, Hopkins et al. 2008, Patil et al. 2010), PCU treatments were also 

able to decrease N2O and NH3 evolution significantly compared to urea. The large decreases in 

the emissions of the potent greenhouse gas N2O and the atmospheric reactive NH3, while 

adequately supplying N to the plant, are major improvements to N-use efficiency. Our data 

suggest that PCU is a viable option to decrease loss of N following fertilizer application. 
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Utilizing PAIRS analysis with non-static, non-flow through chambers provided a temporally 

high-resolution simultaneous and continuous viewpoint of both N2O and NH3 emissions. This 

research indicates that this method is useful, effective and likely more accurate than methods 

employing far fewer sampling times. Additional research should be done to determine the 

variability associated with this method, as well as a design for a chamber which would allow for 

relatively easy continuous field sampling to be accomplished. Nitrogen losses from urea as NH3 

were reduced by 45% on average and losses as N2O were reduced by 40% on average.  
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TABLES 

 

Table 1. Select Soil Characteristics for the 21 D and 45 D Studies. The sand was obtained 

from a quartz mine in Idaho, the loam used in both the 21 and 45 d studies was a native 

Timpanogos loam, and the sandy loam was a 50/50 mixture of the two.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Study Soil Sand Clay NO3
- 
N OM pH

--- % --- --- % --- --- ppm --- --- % ---

21 Day Sand 86.72 4.2 2.0 0.5 7.2

21 Day Sandy Loam 58.1 17.2 4.9 2.3 7.1

21 Day, 45 Day Loam 29.4 30.2 7.8 4.0 7.1
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Table 2. Statistical Patterns of N2O and NH3 Concentration (ml L
-1

) Levels. Those columns 

in the same study which do not share a common letter were significantly different at the P = 0.05 

level.  

 

 

 

 

 

 

 

 

 

 

 

Control PCU91 Urea91 Urea136

Short-term textural Sand

Short-term textural Sandy loam C C B A 9-16 37

B B A A 3-4, 7-8 21

D C B A 17-19 16

Short-term textural Clay Loam D C B A 5-8, 14-20 69

C C B A 9-13 31

Long Term Sandy Clay Loam B n/a B A 5-18, 20-26 47

A n/a A A 31-45 11

AB n/a B A 4, 27-30 33

Short-term textural Sand

Short-term textural Sandy loam B B A A 3-4, 7-18 64

C B A A 1, 6 9

Short-term textural Clay Loam C C B A 6-18 65

D C B A 19-21 15

Long Term Sandy Clay Loam C n/a B A 3-11 76

B n/a B A 12-45 20

Study Soil

No pattern occurred more than once

Insignificant day by source interaction 

Patterns Most Often Significant (P  < .05)

-------------------- NH3 --------------------

-------------------- N2O --------------------

Proportion 

of Days, %

Days 

Observed
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FIGURES 

 

 

Figure 1. Concentration of N2O and NH3 in chamber headspace for 21 D Studies. Samples 

were collected and analyzed every 30 min. to give this high-resolution view of the changes in 

concentration over time. These values were used to find the daily maximum concentration and 

the daily minimum which occurred prior to the maximum to estimate flux. Each day was 

analyzed individually and the statistics are reported in Table 2. 
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Figure 2. Concentration of N2O and NH3 in chamber headspace for 45 D Study. Samples 

were collected and analyzed every 11 min. to give this high-resolution view of the changes in 

concentration over time. These values were used to find the daily maximum concentration and 

the daily minimum which occurred prior to the maximum to estimate flux. Each day was 

analyzed individually and the statistics are reported in Table 2. 
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Figure 3. Total N Loss from N2O Emission and NH3 Volatilization in 21 D Studies. The total 

N loss from urea treatments was consistently significantly higher than the PCU treatments.  
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Figure 4. Total N Loss from N2O Emission and NH3 Volatilization in 45 Day Study. The 

total N loss from urea treatments was consistently significantly higher than the PCU treatments.  
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Nitrogen Cycle 

Nitrogen is found in a wide variety of forms and oxidation states in the environment. The 

cycling of nitrogen affects how N is found in the environment. Certain forms of N cause 

concerns when in high concentrations, including NO3
-
 in the ground and surface water, and 

gaseous N compounds which contribute to large-scale environmental problems including acid 

rain, catalytic ozone depletion, excess N deposition, and climate change. The major forms that N 

is found in include dinitrogen gas (N2), organic N (biomass and soil organic matter), and 

ammonium and nitrate ions. Dinitrogen gas is present in the highest concentrations in 

ecosystems. Soil organic N is the next most prevalent, followed by plant organic N. Soil 

inorganic N pools are typically found in much lower concentrations compared to the previously 

mentioned pools, due to their high turnover and reactivity rates.  

This transformation of N is defined as the N cycle. A common source of N in fertilized 

systems is urea. Urea is usually surface-applied as small pellets. Once these pellets come in 

contact with the soil surface, the extracellular enzyme urease can hydrolyze urea into carbon 

dioxide and ammonia. This hydrolysis converts urea into the bioavailable ammonia form of N.  

The assimilation of ammonium by microbes and plants occurs via two pathways: 

glutamate dehydrogenase and glutamine synthetase-glutamate synthase (GOGAT). Where 

relatively high levels (> 0.5 mg N kg
-1

 soil) of NH4
+ 

are found, the glutamine dehydrogenase 

pathway is used to assimilate NH4
+
. However, in most soils NH4

+ 
is found in low concentrations. 

Under these conditions, the complex GOGAT pathway is used. The amino acid glutamate is the 

product of these assimilation pathways. The NH4
+ 

found in glutamate is readily transferred into 

other amino acids. The net production of NH4
+ 

in soils is a result of biotic and environmental 

factors and the carbon:nitrogen ratio. At high pH (> 7) NH4
+ 

may be volatilized. Although this 
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may be a significant loss in some situations, most NH4
+ 

in the soil solution is utilized by plant 

uptake, microbial uptake, or converted to nitrate by nitrifying bacteria.  

The nitrification process commonly converts NH3 to NO3
-
 via oxidation pathways. 

Ammonia-oxidizing bacteria first convert NH3 to nitrite (NO2
-
) by chemoautotrophic Nitroso-

genera bacteria (i.e. Nitrosomonas), followed by further oxidation of NO2
- 
to NO3

-
 by 

chemoautotrophic Nitro-genera bacteria (i.e. Nitrobacter). The reactions of these conversions 

are: 

Ammonia Oxidation.  

NH3 + 1.5O2 → NO2
-
 + H

+
 +H2O  

 

Nitrite Oxidation.  

NO2
-
 + 0.5O2 → NO3

-
 

Ammonia oxidation can result in N2O emissions and soil acidification. For every mole of 

NH4
+
 that is oxidized, one mole of H

+
 is released, thus acidifying the soil. Nitrous oxide 

emissions stem from nitrite reductase (contained within ammonia oxidizers), which reduces NO2
-
 

to N2O. This occurs in small amounts under well-aerated conditions, but as oxygen becomes 

more limited N2O emissions from ammonia oxidation increase because NO2
-
 is used as an 

electron acceptor. Nitrification may be a large source of N2O emissions in some environments.  

The probability of nitrification taking place in the soil is dependent upon the nitrifying 

microbial population, aeration (aerobic conditions preferred), N and other nutrient availability, 

temperature, pH (nitrifiers are predominantly neutrophilic), water potential, salinity, and 

presence or absence of inhibitors.  Nitrate is the primary product of nitrification. Similar to NH4
+
, 

NO3
-
 can have various fates in the environment.  
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Nitrate is not limited to its negative effects; it can also be assimilated by plants. Nitrate 

immobilization (plant assimilation) is generally relatively small compared to NH4
+
 

immobilization because it is energetically expensive for the plant. In order to be assimilated, the 

NO3
-
 molecule is first reduced to NH4

+
 and then can be utilized by amino acids. Under some 

conditions, NO3
-
 can be reduced but not assimilated; non-respiratory denitrification is one such 

reduction pathway. This reduction can lead to N losses to the atmosphere as N2O.  

Non-respiratory denitrification plays a small role as compared to respiratory 

denitrification (commonly denitrification). This dissimilatory nitrate reduction process converts 

NO3
-
 to the nitrogenous gases N2 and N2O. The reaction is as follows: 

2NO3
-
 + 5H2 + 2H

+
 → N2 + 6 H2O 

In C limiting soils, this is the most important reductive process due to its energetic yield. 

Denitrification is performed under anaerobic conditions by denitrifying prokaryotic bacteria (e.g. 

Pseudomonas, Bacillus). Denitrification is a four-step process: 1) reduction of NO3
- 
to NO2

-
 by 

the nitrate reductase enzyme, 2) reduction of NO2
-
 to nitric oxide (NO) by the nitrite reductase 

enzyme, 3) conversion of NO to N2O by nitric oxide reductase, and 4) reduction of N2O to N2 by 

the nitrous oxide reductase enzyme.  

Similar to nitrification, denitrification rates are affected by various environmental factors. 

Denitrification predominantly occurs under anaerobic conditions as denitrifying enzyme activity 

is inhibited when oxygen levels reach approximately one tenth that of atmospheric levels. Rates 

of denitrification reach their maximum generally at 80% water filled pore space (WFPS). When 

conditions are aerobic, denitrification can be limited by nitrate and/or carbon concentrations.  
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Other environmental factors which affect denitrification are temperature (mesophilic), pH 

(neutral preferred, though not much research has been done on high pH soils), and soil type.  

Nitrogen in Plants 

The state of N on the earth is paradoxical. Although N is generally found in higher 

concentrations than all other mineral nutrients in plants (up to 6%, Taiz 2006) and the fact that 

there is approximately 1.67 × 10
23

 g of N, 98% of which is found in the lithosphere (rocks, soils, 

sediments, etc.), it is also the most commonly deficient mineral nutrient in plants. Most N is not 

plant-available because it is found in an organic form which cannot be assimilated. As discussed 

above, plants can only assimilate NO3
-
 and NH4

+
.  

Nitrogen is a key nutrient for plant growth and function, and is found in the chlorophyll 

molecule, amino acids, proteins, enzymes, nucleic acids, and many other compounds (RNA and 

DNA) (Fry 2004). Nitrogen deficiencies inhibit synthesis of these compounds and, as a result, 

restrict the growth of all plant parts, which leads to early senescence. Plants with N deficiency 

generally appear chlorotic and have stunted growth. The pattern of N chlorosis appearance can 

be diagnostic in that it appears uniformly across the leaf blade and is first visible in older leaves.  

 Nitrogen‘s essentiality leads to efficient use following assimilation. Nitrogen is only lost 

from plants by rain or mist-induced foliage leaching or defoliation (Barker, 2007). Repeated 

removal of plant biomass by harvesting or mowing can result in depleted soil N reserves. 

Nitrogen does not sufficiently regenerate for high yield and crop use following removal—it must 

be replenished through addition of fertilizer, soil amendments, and, to a lesser degree, through 

atmospheric deposition, irrigation, and fixation of atmospheric N by legumes and some soil 

microbes. Atmospheric deposition and N fixation commonly do not provide adequate amounts of 

N.  To meet demands for crop production and most urban landscapes, N fertilization is required. 
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 Permanent sod cropping systems, such as turfgrass and pasture, demand high amounts of 

N. This is especially true when biomass is removed by grazing or harvest for forage materials or, 

in the case of turfgrass, simply for aesthetics. Land owners apply up to 500 kg N ha
-1

 as fertilizer 

each year. These rates are comparable to the most intensively cultivated agriculture fields in the 

world (Hall, 2008), yet are often exceeded by homeowner applications.  

 Ideally, the rate at which the N is supplied to the plant would match the plant need 

precisely. This ideal is not possible due to inherent inefficiencies or ―leaks‖ in the system. 

However, best management practices (BMPs) can result in substantial increases in NUE. The 

key to good fertilizer stewardship depends on using the right source, at the right rate, at the right 

time, and with the right placement (Snyder2007).  

Nitrogen Fertilizers and the Associated Environmental Concerns 

 The most commonly used dry N fertilizer worldwide is urea (CO(NH2)2; 46% N). Urea, 

like most other commercially produced N fertilizer, is an ammonical (derived from natural gas) 

source of N. Once it hydrolyzes, such as when applied to the soil surface, it converts to NH3 

which can be held in the soil, assimilated by the plant, volatilized and lost to the atmosphere, or 

converted to nitrate via nitrification. Increased applications of N fertilizer have been linked with 

increases in atmospheric NH3 (Sutton 2008).  

I. Ammonia 

Atmospheric ammonia is an environmental concern because it is more likely to deposit 

on land (through wet or dry deposition) than other forms of anthropogenic N. Deposition of this 

atmospheric ammonia to sensitive ecosystems can lead to soil acidification and surface water 

eutrophication. Additions of N in certain ecosystems can also lead to plant community loss 

(Sutton 2008). Fenn (1998) related that increased N availability due to NH3 deposition in 
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typically N-limited terrestrial, freshwater, and marine ecosystems across the globe is having 

unwanted and adverse consequences including increased aluminum mobility, and forest decline. 

Classifying major sources of anthropogenic NH3 is an important step to make reductions, but this 

has been difficult to do until fairly recently.  

Understanding NH3 emissions is difficult due to the nature of the gas. It has been difficult 

historically to separate NH3 from aerosol NH4
+
, and for years it was only reported as the sum 

NH3+NH4
+
 (total inorganic ammonia). To understand long-term trends, however, this separation 

was necessary. Technological advancements have made analyzing NH3 much more feasible and 

convenient. A denuder (device used to separate a gas from an aerosol) system, where air is 

passed through an acid-coated glass tube under laminar flow, traps gases on the tubing wall. The 

collected ammonia is then extracted and analyzed. This method has been improved over the 

years to allow for monthly sampling of long-term trends. Low-cost passive sampling is another 

method which allows for the assessing of spatial variability of NH3 without active air sampling 

(Sutton, 2008). Photoacoustic infrared spectroscopy (PAIRS) is a recently developed method of 

NH3 analysis which provides low maintenance, high frequency automated sampling and 

monitoring (Sutton, 2008). Increasing the frequency of sampling may decrease temporal 

variation and provide increased understanding of NH3 emissions following fertilizer-N 

applications. 

II. Nitrate 

Following conversion to ammonia, N is then converted to NO3
-
 via nitrification. Due to 

its negative ionic charge it can be easily leached and enter surface and ground waters. In addition 

to the decrease in plant available N that results, excess NO3
-
 in watersheds can lead to 

toxicological problems (Mulvaney, 2009) such as eutrophication (large algal blooms which can 
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lead to anoxic conditions), and drinking water contamination. Drinking water contaminated with 

NO3
-
 can cause methemoglobinemia (blue baby syndrome) in young animals and human babies 

(Olson, 2009), and may react with free amines to form carcinogenic nitrosamines. Nitrate in 

watersheds can lead to nitrate-induced toxic effects on freshwater biota, disruption of nutrient 

cycling, and eutrophication of water bodies (Fenn, 1998). 

III. Nitrous Oxide 

Following conversion to nitrate, the N cycle is completed via denitrification and the 

evolution of N2, the gas which makes up 78% of the atmosphere. Denitrification and nitrification 

have been classified as "leaky pathways", as each commonly does not go to completion and 

resultantly emits N2O. On average, 1% of all nitrogen applied as fertilizer in inorganic forms is 

emitted as N2O, and the actual amount lost is directly related to the type, quantity, and method of 

application of that fertilizer (GHG Working Group 2010). Hirsch et al. (2006) related that 

emissions of N2O have increased by approximately 50% over pre-industrial levels due to 

anthropogenic causes. Although agriculture generates less than 10% of the total anthropogenic 

greenhouse gas emissions in the United States, it is estimated that agricultural nitrous oxide 

emissions account for 78% of the total annual anthropogenic N2O losses (USEPA, 2007). 

Nitrous oxide is a potent greenhouse gas, with a global warming potential 296 times that of CO2 

per unit. Long-lived in the atmosphere (up to 150 years), N2O catalystically destroys ozone in the 

troposphere. Emissions via denitrification and nitrification are controlled by many interacting 

factors, which complicate understanding the issue. Soil aeration, temperature, texture, 

ammonium concentration, nitrate concentration, as well as microbial community factors, all 

affect the rate of soil N2O production (Snyder 2007).  
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Due to temporal and spatial variability and the multi-faceted nature of N2O emissions, 

reliable estimates are difficult to obtain. Static chamber flux techniques are widely used. This 

method takes samples from small areas, < 1 m
2
, and is relatively inexpensive. However, 

sampling (typically done as three or more samples per chamber in 15-or 20-minute intervals) and 

analysis using a gas chromatograph (GC) with an electron capture detector, increase temporal 

variability. Venterea (2009) stated that nitrous oxide emission estimates range from -60 to 170% 

of the mean. Increasing the sampling frequency is needed to overcome variability (Mosier, 

1990). Photoacoustic infrared spectroscopy (PAIRS) is a recently developed method which 

allows in-field analysis of N2O concentrations. PAIRS analyzers are advantageous due to their 

analysis frequency, portability, robustness, and relative ease of use (De Klein, 1999). The Innova 

1412 Photoacoustic Field Gas Analyzer is a promising PAIRS device which can analyze 

individual samples in less than 60 seconds and be daisy-chained to two 24-point multiplexers, 

allowing for fully automated sampling and analysis. DeKlein (1996, 1999) indicated that using a 

PAIRS analyzer was accurate and effective in laboratory experiments, but found evidence for 

some leakage from the instrument (which one did they use?)  when compared to GC analysis. 

Further work must be done to validate whether or not a PAIRS analyzer can reliably and 

accurately detect N2O emissions from the soil and provide increased understanding of N2O 

emissions from soils following fertilizer-N application. 

Improving NUE 

By controlling the release of N from fertilizer into the soil, it is hypothesized that N 

inefficiencies and losses to the environment will be mitigated. Controlled-release N (CRN) and 

slow-release N (SRN) sources are fertilizers that release N into the soil over an extended period 

of time, ideally matching plant need, possibly reducing or eliminating labor-intensive and costly 
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in-season N applications and increasing NUE and environmental quality (Hopkins 2008). CRN 

fertilizers are coated or encapsulated and SRN fertilizers are low-solubility compounds, 

primarily sulfur-coated urea, urea-formaldehydes, methylene ureas, and triazine compounds. The 

concept of CRN and SRN fertilizer materials is not new, but success varied widely across plant 

species and environmental conditions, and expense prevented wide utilization (Hopkins 2008). 

Polymer-coated urea (PCU) fertilizers are one promising type of CRN that can potentially 

provide improved N-release timing. Soil temperature controls N release rate and simultaneously 

influences plant growth and nutrient demand (Hopkins 2008). The release process consists of 

diffusion of water through the coating, dissolution of urea inside the particle, and diffusion of 

urea solution through the coating into soil solution. Diffusion is driven by the concentration 

gradient—temperature being the primary regulator under irrigated conditions. PCU has been 

shown to steadily supply the plant with N for longer periods of time following fertilizer 

application, leading to increased crop yield and quality (Blythe 2002, Cahill 2010, Knight 2007, 

Miltner 2004, Pack 2003, Worthington 2007), due to enhanced NUE (Wilson 2010, Hutchinson 

2003, Hopkins 2008, Patil 2010). Hyatt (2010) showed that the slower release of PCU can 

improve economics by eliminating additional in-season N applications. In addition to financial 

and direct plant benefits of the controlled release of N from PCU, research has also demonstrated 

PCU‘s ability to mitigate negative environmental impacts associated with N fertilizer (Halverson 

2010, Pack 2006, Wilson 2010). Nitrate leaching has been shown to be significantly decreased 

by using PCU under some environmental conditions (Du 2006, Guillard 2004, Nelson 2009, 

Pack 2006, Pack 2003, Wilson 2010). Ammonia volatilization can also be reduced using PCU 

(Knight 2007, Pereira 2009, Rochette 2009). With the impending introduction of new air quality 

regulations, N2O emissions have received a large amount of attention. PCU has been shown to 
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reduce N2O emissions under some conditions (Cao 2006, Halverson 2008, Halverson 2010a, 

Halverson 2010b, Hyatt 2010), yet some have reported no difference or even substantial 

increases when compared to soluble forms of N (Jassal 2008, Jiang 2010) .  

Most of the work done to investigate the differences in N environmental losses has been 

performed in intensive agricultural systems (maize, wheat, and rice), but little has been done to 

investigate the impacts of PCU on NUE in grass systems (Bremer 2006, Knight 2007) despite 

these fertilizers having a large role in the turfgrass and permanent sod markets. Grass systems, 

especially turfgrass, typically receive high amounts of N fertilizer and irrigation water. These 

conditions can promote plant health and vigor if managed appropriately, but improper 

management results in substantial losses to the environment as discussed previously.  
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