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ABSTRACT

Infinitesimal Perturbation Analysis for the Capacitated Finite-Horizon
Multi-Period Multiproduct Newsvendor Problem

Brigham B. Wilson
Department of Computer Science, BYU

Master of Science

An optimal ordering scheme for the capacitated, finite-horizon, multi-period, mul-
tiproduct newsvendor problem was proposed by Shaoxiang [2006] using a hedging point
policy. This solution requires the calculation of a central curve that divides the different
ordering regions and a vector that defines the target inventory levels. The central curve is
a nonlinear curve that determines the optimal order quantities as a function of the initial
inventory levels. In this paper we propose a method for calculating this curve and vector
using spline functions, infinitesimal perturbation analysis (IPA), and convex optimization.
Using IPA the derivatives of the cost with respect to the variables that determine the spline
function are efficiently calculated. A convex optimization algorithm is used to optimize the
spline function, resulting in a optimal policy. We present the mathematical derivations and
simulation results validating this solution.

Keywords: Infinitesimal Perturbation Analysis, Spline Function, Capacitated Newsvendor
Problem
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Chapter 1

Introduction

The classic inventory management problem is deciding how many products to order

in every time period over a specific time horizon in order to minimize costs. The newsvendor

problem is a special case where there are no fixed costs, and there is uncertainty in the

demand for the products. If at the end of the time horizon all products have not been sold,

then they must be salvaged at a cost. There is a tradeoff between having sufficient inventory

to meet demand while minimizing the holding and backorder costs as well as the cost of any

leftover inventory. As a result of the uncertainty in the demand, any solution involves an

understanding of both the current situation and what is likely to happen in the future.

1.1 Literature Review

Inventory management has been studied for decades. For the most part our discussion of the

inventory theory literature is limited to multiproduct, stochastic, single-stage systems with a

capacity constraint. Optimal ordering policies for one-product systems have been extensively

studied (Bertsekas [2005], Glasserman [1994], Tayur [1993]), but multiproduct systems have

not received as much attention. Most of the following papers propose simple heuristics with

no theoretical performance guarantees.

Evans [1967] was one of the first to analyze the multiproduct inventory management

problem. While Evans establishes certain results pertaining to convexity and some key

characteristics of the optimal policy, he does not completely characterize the optimal policy

for a capacitated model that can start from any possible inventory level. DeCroix and
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Arreola-Risa [1998] analyze the problem, but assume that all products are homogeneous.

The results by Wein [1992] propose certain qualitative characteristics of the optimal policy

obtained by approximating the production of goods as a heavy traffic system. Gershwin

[1994] surveys previous work and analyzes inventory management systems with constant

demands.

Ha [1997] proves the optimality of the hedging point policy for two identical products.

Using sample path comparisons and dynamic programming, de Vericourt et al. [2000] partially

characterize the optimal hedging point policy. Pena-Perez and Zipkin [1997] develop a

heuristic for a multiproduct, capacitated, stochastic demand system and test their method

using numerical methods. Graves [1980] and Gallego [1990] analyze the problem as a cyclic

scheduling system. Srivatsan and Dallery [1998] partially characterize the optimal hedging

point policy for a two-product system.

Shaoxiang [2006] establishes the optimality of hedging point policies for stochastic

two-product systems. This type of policy uses a central curve and a vector of inventory levels

to define five regions (see Figure 1.1). The policy is most easily described by imagining the

vector of inventory levels increasing continuously from its pre-order level to its post-order level

and describing the path that the vector traverses. In Region I, product 2 is not ordered. The

inventory level for product 1 increases until either the inventory vector reaches the diagonal

line that separates regions I and V or until all of the capacity has been used. In Region II

the inventory vector moves right until reaching the central curve. Then it follows the central

curve until the target inventory levels are reached. Movement is halted before that if the

available capacity has all been used. In Region III the inventory vector moves up until it

reaches the central curve. Then it follows the central curve until the target inventory levels

are reached, but it stops before that if the capacity constraint becomes tight. In Region IV

the inventory vector moves up until the diagonal line adjacent to Region V has been reached,

or the capacity has all been used. In Region V nothing is ordered. Although this policy

is shown to be optimal, Shaoxiang does not show how to compute the central curve that
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separates regions II and III, nor does he say how to calculate the vector that defines the

target inventory levels or the lines adjacent to Region V.

Figure 1.1: Five Regions

Infinitesimal Perturbation Analysis (IPA) is explained in Glasserman [1991] and Ho

and Cao [1991]. Our work builds on the single product IPA work done by Kapuscinski and

Tayur [2003]. They analyze a capacitated serial system for one product, where the product

is transported between multiple stages and demand is a random variable. Although many

of the assumptions of our model match theirs, Kapuscinski and Tayur do not account for

multiple, heterogeneous products nor a finite time horizon.

The goal of this thesis is to compute the central curve, which determines the optimal

ordering amounts given any starting inventory level. We represent the central curve using

a spline function. Given an initial estimate of the spline parameters that determine the

central curve, we simulate the system and use Infinitesimal Perturbation Analysis (IPA) to

efficiently calculate the derivatives of the expected cost with respect to the spline parameters.

These parameters are then adjusted by a convex minimization algorithm and the process is

repeated, until the optimization is complete. In summary, we calculate an ordering scheme

for the capacitated finite-horizon multi-period multiproduct newsvendor problem using spline

functions, IPA, and convex optimization.

This paper is organized as follows. In Chapter III, the model assumptions are explained

along with the inventory dynamics and model costs. Chapter IV presents our approach,

which uses spline functions, IPA and convex optimization. Chapter V discusses the numerical
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experiment we performed. Chapter VI gives our conclusions. Chapter VII is the appendix,

which includes a number of derivations and proofs.
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Chapter 2

Model Assumptions

The inventory model we use is the traditional model presented in the literature

(Bertsekas [2005]). In each time period the order quantity is calculated, demand occurs, and

the inventory levels are updated.

The version of the newsvendor problem that we analyze has a finite time horizon, two

different products, and a fixed capacity. In every time period a decision must be made as to

how many of each type of product to order. The costs are proportional to the inventory and

backorder levels. Demand has a stationary distribution where the demand in each period

is independent of demand in every other period. We assume that the demand in each time

period has density. Excess demand is backordered; excess inventory is stored. The goal is to

manage the inventory system in the near future, say, the next 5-10 time periods.

The inventory dynamics are as follows: xt+1 = X̄t+1(xt) = xt + qt − dt for t =

0, 1, ..., T − 1, where t is the time period, xt ∈ Rn is a vector of the inventory levels of the

products at the beginning of time period t, qt ∈ Rn is a vector of the order quantities in time

period t, and dt ∈ Rn is the demand vector in time period t. We must choose qt before dt

has been observed. The capacity is c ∈ R1. x0 is the initial inventory level and the first order

is in time period t = 1. We use n = 2. Hence each vector is 2-dimensional and there are 2

different products.

The system is represented graphically in Figure 2.1. The block K is a static controller,

a function that receives the initial inventory levels and uses the central curve and the target

inventory levels to determine the order quantities of each product. The block P keeps track
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of the inventory levels of the previous period and receives as input the changes in inventory

due to the order quantity and the demand quantity, and increments the time period t by one.

The loop that takes the plant output (the end-of-period inventory levels) and becomes input

to the controller (the starting point for the next time period) is called state feedback. The

block C evaluates the holding or backorder costs due to the end-of-period inventory levels.

Figure 2.1: System Diagram

Qualitatively, certain features of the solution are consistent with our understanding of

this type of problem. For example, with state feedback a static controller should be optimal.

Moreover, with a nonlinear cost function the controller should also be nonlinear. This is the

case.

The objective is to minimize the expected costs. The inventory must be maintained

until the product is shipped. Holding costs are incurred when end-of-period inventory levels

are positive. Backorder costs are incurred when demand exceeds supply. (We assume that

when there is not inventory arriving customers do not simply go to another supplier, but

instead wait until the next time period to receive their product.) Leftover inventory is

disposed of at a set salvage value at the end of the horizon. Thus, the total costs are given by

C(~ωt) =
T∑
t=1

Ct(~ωt),

Ct(~ωt) = hTt max(xt, 0) + pTt max(−xt, 0), for 1 ≤ t < T , and

CT (~ωt) = 1t=Tσ
Txt

(2.1)

where Ct(~ωt) is the period-t cost, ht ∈ R2 is the holding cost vector in time period t, pt ∈ R2

is the backorder cost vector in time period t, and σ ∈ R2 is the salvage value vector. These
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parameters are given at the beginning of the simulation. The vector ~ωt of decision variables

is defined in Section 3.1 below.
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Chapter 3

Approach

Although Shaoxiang [2006] shows that a hedging point policy is optimal, he does

not discuss how one can calculate the central curve or the vector of target inventory levels

that determine the different regions. To date no one has succeeded in defining these curves

analytically.

We propose a solution with three elements: spline functions, IPA, and convex opti-

mization. We use a spline function to define the central curve. We define a fixed number of

knots and then create a function that is composed of low order polynomials between each

pair of consecutive knots. The vector of variables ~ωt determines the low order polynomials.

After guessing ~ωt we run a large number of simulations in order to evaluate the expected

costs. The simulations use IPA in order to calculate the gradient of the expected costs with

respect to ~ωt. The convex optimization algorithm then adjusts ~ωt in order to minimize the

costs. The process is repeated until it converges.

The control policy (the central curve and the target inventory levels) differ in each

time period. Even if demands and costs are stationary, the proximity of the current time

period to the final time period can cause the optimal control policy to be different in different

time periods.

Dynamic programming can solve this problem for a single product; however, this

method does not scale effectively as the number of products grows. In our simulation we only

use two different products, but our methods should scale well as the number of products grows.
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The computations required to evaluate the expected cost and its gradient via simulation with

IPA grow linearly in n.

There is a shortcoming in our work: according to Shaoxiang [2006] the lines that

separate Region V from Regions I and IV in Figure 1.1 are not necessarily straight. The

methods that we are using for the central curve can clearly be applied to these curves as well.

We approximate them with straight lines, with slopes that make intuitive sense.

3.1 Spline Functions

We use spline functions to determine the central curve that separates regions II and III of

Figure 1.1. The spline function is defined by a set of fixed points {(ai, 0) : 1 ≤ i ≤ m} located

along the horizontal axis of Figure 1.1 and a corresponding set of variable lengths θit. The

distance from (ai, 0) to the central curve, along the line x1t+x2t = ai, is θit (see Figure 3.1). We

define ωit = θit√
2
. From here on we will use ωit, not θit. The spline function St(a) interpolates

the points (a1, ω1t), (a2, ω2t), ..., (am, ωmt). Thus the point (x1t, x2t) = (ai − S(ai), S(ai)) is

on the central curve. The spline function is a piece-wise cubic polynomial, defined as follows

for ai ≤ a ≤ ai+1: St(a) = E(a − ai)3 + F (a − ai)2 + G(a − ai) + H. We constrain S ′t(ai)

so that the slope of the central curve at each point (ai − St(ai), St(ai)) is equal to the

slope of the line segment connecting the two adjoining points, (ai−1 − St(ai−1), St(ai−1)) and

(ai+1−St(ai+1), St(ai+1)). Because of this ωit has an impact on St(a) only for a ∈ (ai−2, ai+2).

This property is very useful in IPA because it means that we only need to calculate a limited

number of derivatives for each time period. Many commonly used spline functions do not

have this property. In addition, this ensures that the spline function will be smooth at ai.

In period t, for each i, given ωi−1,t, ωit, ωi+1,t and ωi+2,t, we determine St(ai), St(ai+1), S ′t(ai)

and S ′t(ai+1), and we solve for E,F,G and H. In this way we fully define the spline function

between ai and ai+1.

The vector (R1t, R2t) is the vector of target inventory levels. It is determined by

the variable aRt and the spline function. The point (aRt, 0) is located along the horizontal

9



Figure 3.1: Spline Function

axis of Figure 3.1 and (R1t, R2t) is the intersection of the line with a slope of −1 passing

through (aRt, 0), and the central curve. Note that both the central curve and (R1t, R1t)

change from period to period. The vector of all variables whose values we optimize is

~ωt = (ωit : 1 ≤ i ≤ m, 0 ≤ t ≤ T ; aRt : 1 ≤ t ≤ T ).

As the inventory levels go to −∞ or +∞, the central curve asymptotically approaches

a straight line with known slope. We pre-specify the fixed points ai with the goal of covering

the areas where the inventory will most likely be at any given time period. We append

straight lines to the far left and right of the central curve. On the far left the slope of the

line depends on the cost parameters and is either 0, ∞, or 1. On the far right the slope of

the line does not matter because no orders are placed in Region V (see Figure 1.1). We give

the central curve a slope of 1 there.

3.2 Simulation with IPA

IPA is combined with our simulation so that a single simulation gives us the gradient as well

as the cost for the entire finite time horizon. We simulate the T -period system many times;

the number of replications is K. According to IPA, as a simulation is executed we observe

and record what the impact of a small perturbation to each of the variables would have been

on the costs incurred in the replication. In this way we compute the gradient of the cost with
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respect to ~ωt, as a function of the specific random numbers used in that replication. We then

average those gradients over the different replications. This converges, as K → ∞, to the

expectation of the gradient of the cost. We want to minimize the expected cost, so we need

the gradient of the expectation of the cost, not the expectation of the gradient. Expectation

and differentiation are not always invertible, but we will prove that they are in this case, i.e.

E [C ′t(~ωt)]
∼= E [Ct(~ωt)]

′ (see Section 6.2).

3.3 Optimization

A convex optimization algorithm passes an initial vector ~ωt of variables to the simulation. It

receives from the simulation estimates of the expected cost and the gradient of the expected

cost with respect to ~ωt. Then the algorithm adjusts ~ωt and passes the new vector to the

simulation. This continues until the optimization algorithm converges.

The optimization problem has constraints that guarantee that the central curve will

be monotone increasing. This optimization problem is a convex minimization with convex

inequality constraints,

minimize
~ωt

C(~ωt)

subject to Ψ∗it(~ωt) ≤ 0, for i = 2, . . . ,m− 2

Φ∗it(~ωt) ≤ 0, for i = 2, . . . ,m− 2

The two constraints guarantee that the central curve is monotone increasing between ai and

ai+1, in other words, that the vector (a− St(a), St(a)) is a nondecreasing function of a for

a ∈ [ai, ai+1]. In the appendix we derive expressions for Ψ∗it and Φ∗it, and show that they are

convex functions of ~ωt that only depend on ωit, k − 1 ≤ i ≤ k + 2.

11



Chapter 4

Computational Procedure

The simulation and optimization were programmed in MATLAB. For the convex

optimization we use the MATALB function fmincon, which satisfies our need for a convex

minimization with inequality constraints and a previously calculated gradient. The code for

determining the order quantity using the spline function and calculating the gradient using

IPA are integrated into the simulation.

The gradient is calculated differently depending on which section of the central curve

is used to determine the order quantity. In order to obtain more accurate approximations of

the derivatives, the inventory position needs to fall between every pair of knots multiple times.

This requires locating the ai to cover the area where the inventory levels will most likely

occur. It also helps to use different starting inventories. Consequently, the starting inventories

were determined for every replication as random variables from a uniform distribution of

each product between [0, 10] or [−3, 7] depending on the case. To mitigate the impact of the

randomness in the demand on the optimization we use common random number seeds. In

other words, each vector of variables ~ωt is tested against the same set of random demands.

4.1 Computational Results

We define a Base Case that has stationary demands, the number of replication K = 500,

the number of time periods T = 10, the holding cost hjt = 1, the backorder cost pjt = 10,

the salvage value σ = .1, σdjt = 1, µdjt = 3, capacity c = (3/4) ∗
√

(σ2
d1t

+ σ2
d2t

) + µd1t + µd2t ,

where djt has mean µdjt and standard deviation σdjt .

12



The simulation is coded in MATLAB. There are 10 knots located between a1 = −4

and a10 = 14. The optimal central curve and target inventory levels were reached in between

50-150 optimization steps, depending on the number of replications and starting central curve

and target inventory levels.

A dashed red line runs through the origin with slope of 1 simply as a reference. The

three green dotted lines have slope -1 and indicate the 0.1, 0.5, and 0.9 quantiles of Wt. Since

the derivative is only calculated near Wt, the central curve is really only accurate between

the two extreme green lines. The greatest accuracy is near the middle green line. Outside of

this region, a few simulations can cause large shifts in the curve that would not be corrected

later simply because the inventory levels never return there. Also, since beyond the point

(R1t, R2t) only affects the derivative of the cost with respect to aRt, the central curve beyond

that point is not accurate.

The Base Case is shown in Figure 4.1. We can see that it follows a 45-degree line (as

expected) so that the ideal inventory amounts are identical for both product.

Figure 4.1: Simulation Results for Base Case

When all parameters are equal except that p1t = 0, see Figure 4.2. Since there is no

punishment for not having enough of product 1, a horizontal central curve makes sure that

product 2 reaches its target inventory level before any of product 1 is ordered.

13



Figure 4.2: Simulation Results for Identical Products, Except p1t = 0

When all parameters are equal except that the variance of the demand for product 1

is zero, see Figure 4.3. When xt + qt ≤ (3, 0)T backorders are guaranteed in the next time

period for both products and it does not matter how they are allocated between the products.

Therefore any non-decreasing central curve that leads to (3, 0)T is optimal. Above and to the

right of (3, 0)T the central curve should be vertical. But because very large inventory levels

do not occur in the simulation, the optimization algorithm simply ignores points beyond

(R1t, R2t) since they have no effect on the cost. Thus the trend of the line beyond that point

eventually dies. Since the demand for product 1 is always 3, the vertical line segment at

x1t = 3 matches what would be expected.

Figure 4.3: Simulation Results for Identical Products, Except σd1t = 0
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These simulation results of central curves and target inventory levels match the

theoretical results that are appropriate for each case. In addition to the abstract tracking

done with the code and the derivations in the appendix, these results provide greater confidence

in the accuracy of our solution.
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Chapter 5

Conclusions

We have presented a method for calculating the optimal ordering policy for the

capacitated, finite-horizon, multi-period, multiproduct newsvendor problem proposed by

Shaoxiang [2006] using a hedging point policy. We used spline functions, IPA, and convex

optimization in order to calculate the central curve and target inventory levels. The simulation

results agreeing with their expected cases and the mathematical derivations and proofs validate

our solution.
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Chapter 6

Appendix

6.1 Derivation of Derivatives

This section explains how we calculated the gradient of the cost with respect to the control

variables, i.e. C ′t(~ωt). We will define Ct(~ωt) = C̄t(xt+1) and xt+1 = Xt+1(~ωt). The future

evolution of the system after period t is a function of xt+1. The period-t cost is also a function

of xt+1 (see Equation 2.1). When we view Ct(~ωt) as a function of ~ωs for some s ≤ t, with all

other elements of ~ωt temporarily fixed, we have

Ct(~ωt) = C̄t(xt+1(xt(· · · (xs+1(~ωs)) · · · ))). (6.1)

If we use X̄ ′t+1(xt) to refer to the 2× 2 matrix whose j− l entry is
∂xl,t+1

∂xj,t+1
, and define C̄ ′t(xt+1)

and Xs+1(~ωs) in like manner as 1 × 2 and 2 × (m + 1) matrices, then the Chain Rule for

vector functions implies that

(C ′t(~ωt)) = C̄ ′t(xt+1)X̄ ′t+1(xt) · · · X̄ ′t+1(xt)X
′
s+1(~ωs) (6.2)

The computation of the first term, the derivatives of the period-t cost with respect

to the inventory levels at the end of period t, is straightforward. In the remainder of this

section we focus on the other terms.

The derivatives that explain the impact of the inventory level of one product at one

time period on the inventory level of another product at the next time period (each of the

terms of the form X ′t+1(xt) above), are called the intertemporal derivatives. The intertemporal
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derivatives alone are not sufficient to solve the inventory management problem since they

only relate how the inventory in one time period affects another.

The single-period derivatives are X ′s+1(~ωs). The time periods are different because the

inventory level is measured at the beginning of the time period but the effect of the control

variables is felt and costs are incurred at the end of a time period. Consequently, it is the

period-s control variables that have the direct effect on the period-s+ 1 inventory levels and

the period-s costs.

The following subsection describes the derivation of the spline parameters, which are

necessary for the following subsection that derives the single-period derivatives. Finally, the

derivation of the intertemporal derivatives is given.

6.1.1 Derivation of Spline Parameters

We first need to express St(a) as a function of ~ωt. More specifically, we need E, F , G, and H

as functions of ~ωt which are easy to differentiate. Let a = x1t + x2t + q1t + q2t. In period t,

for ai ≤ a ≤ ai+1 we have

St(a) = E(a− ai)3 + F (a− ai)2 +G(a− ai) +H. (6.3)

There are five cases to consider.

Case A, ai ≤ a ≤ ai+1 where 2 ≤ i ≤ m− 2: We see that

H = St(ai) = ωit and G = S ′t(ai) =
ωi+1,t − ωi−1,t

ai+1 − ai−1

(6.4)

(see Section 3.1). For convenience, let δ = ai+1−ai. Then ωit = St(ai+1) = Eδ3+Fδ2+Gδ+H

and
ωi+2,t−ωi,t

ai+2−ai = S ′t(ai+1) = 3Eδ2 + 2Fδ +G. We obtain

F =

[
−2δG− 3H + 3ωi+1,t − δ

(ωi+2,t − ωit)
(ai+2,t − ai)

]
/δ2 (6.5)

18



E =

[
δG+ 2H − 2ωi+1,t + δ

(ωi+2,t − ωit)
(ai+2,t − ai)

]
/δ3 (6.6)

From Equations 6.3-6.6, for a given a, ai ≤ a ≤ ai+1, it is straightforward to compute ∂St(a)
∂ωkt

for k ∈ {i− 1, i, i+ 1, i+ 2}. These are the only elements of ~ωt that have an impact on St(a).

Case B, a < a1 : In Equation 6.3, i = 1. E, F , G, and H become

E = 0, F = 0, G =

{
1

2
if Π1t = Π2t, 1 if Π1t < Π2t, 0 if Π1t > Π2t

}
, H = ω1t (6.7)

where Πjt =
T−1∑
τ=t

−pj,τ . Note that since the central curve is (a− St(a), St(a)), if S ′t(a) is equal

to 0, 1
2
, or 1 then the slope of the central curve at (a− St(a), St(a)) is, respectively, equal to

0, 1, or ∞.

Case C, a > am: In Equation 6.3, i = m. E, F , G, and H become

E = 0, F = 0, G =
1

2
, H = ωmt. (6.8)

Case D, ai ≤ a ≤ ai+1 where i = 1: In this case, the value of S ′t(ai) is given, and S ′t(ai) ∈

{0, 1
2
, 1}. This leads to

E =

[
δG+ 2H − 2ω2t + δ

(ω3t − ω1t)

(a3t − a1)

]
/δ3,

F =

[
−2δG− 3H + 3ω2t − δ

(ω3t − ω1t)

(a3t − a1)

]
/δ2,

G = S ′t(a1), H = ω1t

(6.9)

Case E, ai ≤ a ≤ ai+1 where i = m− 1: In this case, S ′t(ai+1) = 1
2
. This leads to

E =

[
δG+ 2H − 2ωmt + δ

1

2
)

]
/δ3,

F =

[
−2δG− 3H + 3ωmt − δ

1

2
)

]
/δ2,

G =
ωmt − ωm−2,t

am − am−2

, H = ωm−1,t

(6.10)
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6.1.2 Single-Period Derivatives With Respect to ωit

We now establish the derivatives of xt+1 = (x1,t+1, x2,t+1)
T with respect to ωit, 1 ≤ i ≤ m.

Note that these derivatives are computed as the simulation is executed. Consequently, in this

context we think of the manner in which the system evolves for one specific set of randomly

generated demands. These derivatives are all equal to zero if xt + qt is not on the central

curve. If xt + qt is on the central curve then we assume that ai ≤ a < ai+1 where, for

convenience, we define

a0 = −∞, and am+1 =∞

and

Wt = x1t + x2t. (6.11)

Then x2t + q2t = St(Wt+1) and x1t + q1t = Wt+1 − St(Wt+1). Since xt+1 = xt + qt − dt and

the demands dt are exogenous, and since S ′t(a) = 3E(a− ai)2 + 2F (a− ai) +G, we have

∂x2,t+1

∂ωkt
=

∂

∂ωkt
(x2t + q2t)

=
∂

∂ωkt
[St(Wt+1)]

=
∂St(a)

∂ωkt

∣∣∣∣
a=Wt+1

+ S ′t(Wt+1)
∂Wt+1

∂ωkt

= (Wt+1 − ai)3 ∂E

∂ωkt
+ (Wt+1 − ai)2 ∂F

∂ωkt
+ (Wt+1 − ai)

∂G

∂ωkt
+

∂H

∂ωkt

+ (3E(Wt+1 − ai)2 + 2F (Wt+1 − ai) +G)
∂Wt+1

∂ωkt
.

(6.12)

If all of the capacity is being used, q1t + q2t = c and the central curve in period t has no effect

on Wt+1. If all of the capacity is not used, then Wt+1 = aRt and the central curve still has no

effect. Therefore ∂Wt+1

∂ωjt
= 0. We are left with

∂x2,t+1

∂ωkt
= (Wt+1 − ai)3 ∂E

∂ωkt
+ (Wt+1 − ai)2 ∂F

∂ωkt
+ (Wt+1 − ai)

∂G

∂ωkt
+

∂H

∂ωkt
(6.13)
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These derivatives are all 0 if either k < max(1, i − 1) or k > min(m, i + 2). Since Wt+1 =

x1t + x2t + q1t + q2t − d1t − d2t, and ∂Wt+1

∂ωkt
= 0,

∂x1,t+1

∂ωkt
= −∂x2,t+1

∂ωkt
(6.14)

Equations 6.3-6.14 and 2.1 can now be used to obtain the partial derivatives of the period-t

cost and of xt+1, with respect to ωkt, in a straightforward manner.

6.1.3 Single-Period Derivatives With Respect to aRt

We now consider the partial derivatives of x1,t+1 and x2,t+1 with respect to aRt. This derivative

is equal to zero unless x1t + x2t = aRt, i.e unless xt+1 lies on the boundary of Region V in

Figure 1.1. Note that Wt+1 = aRt. There are two cases to consider.

Case A, xt+1 = (R1t, R2t): Equation 6.12 applies if we replace ωkt with aRt. But the derivatives

of E, F , G, and H with respect to aRt are all zero. Since Wt+1 = aRt, Equation 6.12 becomes

∂x2,t+1

∂aRt
= 3E(aRt − ai)2 + 2F (aRt − ai) +G (6.15)

where if a < a1 we use Equation 6.7 and if am < a we use Equation 6.8.

Case B, xt+1 on the boundary of Region V but not at (R1t, R2t): The derivative depends

on whether the post-order inventory level is on the boundary of Regions I and V or on the

boundary of Regions IV and Vl.

∂x2,t+1

∂aRt
=1 if x1,t+1 > R1t and

=0 if x2,t+1 > R2t

(6.16)

In both Case A and Case B,

∂x1,t+1

∂aRt
=

∂

∂aRt
(aRt − S(aRt)) = 1− ∂x2,t+1

∂aRt
(6.17)
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These equations are tedious to derive, but once programmed, they execute quickly.

6.1.4 Intertemporal Derivatives

In the previous section we computed the derivative of the period-t cost and of xt+1 with

respect to the period-t parameters ωit and aRt. In other words, we computed the last term

of Equation 6.2. The first term is easy using Equation 2.1. To complete the derivation of

C ′t(~ωs) for s < t we need to compute the intertemporal derivatives X̄ ′t+1(xt), which are the

derivatives of xt+1 with respect to xt.

The dependence of xt+1 = xt+qt−dt on xt takes the form of a 2×2 matrix called the

Jacobian. The Jacobian Jt is defined by (Jt)kl =
∂xk,t+1

∂xlt
. Since the dynamics of the system

are stationary over time, Jt has the same structure for all t.

Recall that Wt = x1t + x2t. Thus X ′(Wt) is a 2-element column vector. Often only

Wt effects xt+1. When that is the case, by the Chain Rule,

Jt = X ′(Wt)(∇xtWt) = X ′(Wt)(1, 1) (6.18)

dWt+1

dWt

= (∇xt+1Wt+1)X ′(Wt) = (1, 1)X ′(Wt), and (6.19)

(∇xtWt+1) = (∇xt+1Wt+1)X̄ ′t+1(xt) = (1, 1)Jt (6.20)

We proceed by cases (see Figure 6.1)

Figure 6.1: Intertemporal Derivative Cases
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Case A, xt + qt = (R1t, R2t): In this case a small perturbation in xt has no effect on

xt+1 − dt = (R1t.R2t). Therefore Jt = ~0, where ~0 is a 2× 2 matrix of zeros. With respect to

derivatives, all dependence of the future on the past is wiped out.

Case B, xt+qt 6= (R1t, R2t); xt+qt on the central curve: With respect to small perturbations

in xt, only Wt affects xt+1. xt+1 = ( 1
0 ) (Wt + c) + ( −1

1 )St(Wt + c) − dt. Thus X ′(Wt) =

dxt+1

Wt
= ( 1

0 ) + ( −1
1 )S ′(Wt + c). By Equation 6.18,

Jt = [( 1
0 ) + ( −1

1 )S ′(Wt + c)] (1, 1) (6.21)

Note that by Equation 6.20, (∇xtWt+1) = (1, 1). By Equation 6.19, dWt+1

dWt
= 1.

Case C2, use all capacity; produce only product 1: xt+1 = xt + ( c0 )− dt and Jt = I. Since

Wt+1 = Wt + c− d1t − d2t, ∇xtWt+1 = (1, 1) and dWt+1

dWt
= 1.

Case C1, use all capacity; produce only product 2: Clearly the conclusions of Case C2

regarding Jt, ∇xtWt+1, and dWt+1

dWt
apply.

Case D2, xt + qt is on the boundary between Regions I and V: By definition, xt + qt =

( R1t+R2t−x2t
x2t ). (R1t, R2t) is not impacted by xt. xt+1 = xt + qt − dt is not impacted by x1t,

so J11 = J21 = 0. J∗2 = X ′(x2t) = ( −1
1 ). Thus, J = ( 0 −1

0 1 ). Since Wt+1 = aRt, ∇xtWt+1 = ~0

and dWt+1

dWt
= 0.

Case D1, xt + qt on the boundary of Regions IV and V: Clearly, J = ( 1 0
−1 0 ), ∇xtWt+1 = ~0

and dWt+1

dWt
= 0.

Case F, xt + qt in Region V: qt = ~0. xt+1 = xt − dt. J = ( 1 0
0 1 ), ∇xtWt+1 = (1, 1) and

dWt+1

dWt
= 1.

6.2 Proof for IPA Validity

In order for the IPA results to be valid, the following must hold: E [C ′t(~ωt)] = E [Ct(~ωt)]
′.

This proof follows the methodology, and some of the notation, presented in Glasserman

[1994].
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All of the random demands dt = (djt : 1 ≤ j ≤ 2, 1 ≤ t ≤ T ) are defined on a

probability space (ωt,F , P ). Let ξ be any one of the elements of the vector ~ωt. We view the

cost function Ct(~ωt) as an R-valued, measurable random function of ξ. By selecting a specific

dt ∈ Ω, we obtain a random sample from the function Ct(~ωt). An event is true almost surely

(a.s.) if it is true with probability 1.

For a given ξ ∈ ~ωt we define

Dξ = {f(ξ) : f(ξ) is differentiable at ξ a.s.}

Lemma 1. Ct(~ωt), viewed as a function of ξ, belongs to Dξ for all ξ, i.e. ∂Ct(~ωt)
∂ξ

exists a.s

for each fixed value of ξ.

Proof. As defined in Equation 6.1, Ct(~ωt) is a function of C̄t(xt+1), X̄t+1(xt), and X(~ωt). It

can be shown that for any fixed value of ξ, every one of the functions given is differentiable

in ξ almost surely. C̄t(xt+1) is differentiable everywhere except when dt = xt. Since each dt

has density, P (dt = xt) = 0. Therefore C̄t(xt+1) is differentiable almost surely. X̄t+1(xt) and

X(~ωt) are differentiable everywhere except when the inventory levels reach Cases A, B, D1,

and D2 (see Figure 6.1) and q1t+q2t = c. Since demand is stochastic, this is a probability zero

event. Therefore X̄t+1(xt) and X(~ωt) are differentiable almost surely. Since the component

functions of Ct(~ωt) are differentiable almost surely, C ′t(~ωt) exists with probability one.

We now define

D =
⋂
ξ

Dξ = {f(ξ) : ∀ξ ∈ R, f(ξ) is differentiable at ξ a.s.}

A R→ R function f(ξ) is Lipschitz if |f(ξ2)− f(ξ1)| ≤ kf |ξ2 − ξ1|. The constant kf

cannot depend on ξ1 or ξ2, but it can be a function of the random demands. Define

Lip = {f(ξ) : f(ξ) is a Lipschitz function of ξ a.s.} .
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A subclass can be defined as

Lip1 = {f(ξ) ∈ Lip : a modulus kf of f(ξ)has a finite mean}

Lemma 2. Our cost function Ct(~ωt), viewed as a function of ξ, belongs to Lip1.

Proof. Because Ct(~ωt) is a continuous function of ξ and is differentiable almost everywhere,

Ct(ξ2)− Ct(ξ1) =

∫ ξ2

ξ1

C ′t(~ωt)dξ

It suffices to show that |C ′t(~ωt)| < k <∞, i.e. that if ξ is perturbed by ε then Ct(~ωt)

will only change by κε. From Equation 6.2 we obtain C ′t(~ωt) by selecting the appropriate

column from ∇~ωs(Ct(~ω)) on the left and from X ′s+1(~ωs) on the right. Therefore it suffices to

show that there is a finite upper bound on every entry of every matrix in Equation 6.2.

By Equation 2.1 the entries of C̄ ′t(xt+1) are bounded by the maximum of the elements

of the vectors ht, pt, and σ, which is finite. By Section 6.1.4, X̄ ′u+1(xu) is equal to either

[( 1
0 ) + ( −1

1 )S ′(Wt + c)] (1, 1), ~0, I, ( 0 −1
0 1 ), or ( 1 0

−1 0 ). By Section 6.1.1 S ′(a) is continuous

on [a1, am] and hence bounded there. By Equations 6.7 and 6.8, if a /∈ [a1, am] then

S ′(a) ∈ {0, 1
2
, 1}. Hence the entries of X ′u+1(xu) are bounded. Since each component is

bounded, C ′t(~ωt) is bounded.

Theorem 1. For each ξ ∈ ~ωt, E [C ′t(~ωt)] = E [Ct(~ωt)]
′

Proof. For each ξ ∈ ~ωt, Ct(~ωt) ∈ Lip1 ∩ D by Lemmas 1 and 2. Lemma 6.3.1 in Glasserman

[1994] completes the proof.

6.3 Derivation of Constraint Functions

We need the central curve to be monotonically non-decreasing. In this section we construct

the constraint functions Φ∗it(~ωt) and Ψ∗it(~ωt) that guarantee this. Since the central curve
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is {(a − St(a), St(a)) : −∞ < a < ∞}, the central curve is non-decreasing if both St(a)

and a − St(a) are non decreasing. Thus we seek constraints on ~ωt that are equivalent to

0 ≤ S ′t(a) ≤ 1 for all a.

We begin by calculating S ′t(a). For a ∈ [ai, ai+1], St(a) = E(a− ai)3 + F (a− ai)2 +

G(a− ai) +H. By design, S ′t(ai) = ωi+1−ωi−1

ai+1−ai−1
= m1 and similarly S ′t(ai+1) = ωi+2−ωi

ai+2−ai = m2.

Next we normalize the parameters of the spline function so that the spline function is

defined over a domain of [0, 1] and has range [0, 1]. This makes some of the algebra easier

later on. Define

∆ = ai+1 − ai, ω̄t = ωi+1 − ωi > 0,

δ = (a− ai)/∆, α = E∆3/ω̄t,

β = F∆2/ω̄t, γ = G∆/ω̄t,

∆̄ = ∆/ω̄t, M1 = m1∆̄, and

M2 = m2∆̄.

(6.22)

Then 1
ω̄t
St(a) = g(δ) = αδ3 + βδ2 + γδ + H/ω̄t, 0 ≤ δ ≤ 1. Also, g(0) = 0, g(1) = 1,

g′(0) = M1 and g′(1) = M2. Using these equalities we can express g(δ) and g′(δ) as follows:

g(δ) = (M1 +M2 − 2)δ3 + (3− 2M1 −M2)δ2 +M1δ + ωi/ω̄t and g′(δ) = 3(M1 +M2 − 2)δ2 +

2(3− 2M1 −M2)δ +M1.

The central curve is non-decreasing if 0 ≤ g′(δ) ≤ ∆̄ for 0 ≤ δ ≤ 1. The constraint

Φ∗it(~ωt) ≤ 0 is equivalent to g′(δ) ≥ 0 for 0 ≤ δ ≤ 1, and Ψ∗it(~ωt) ≤ 0 matches g′(δ) ≤ ∆̄.

We begin with Φ∗it(~ωt) ≤ 0 by seeking a constraint on M1 and M2 that is equivalent to

0 ≤ g′(δ) = 3(M1 + M2 − 2)δ2 + 2(3 − 2M1 −M2)δ + M1, for 0 ≤ δ ≤ 1. Substituting in

δ = 0 and δ = 1 we see that M1 ≥ 0 and M2 ≥ 0. We know that 0 ≤ g′(δ) on [0, 1] if g′(δ) is

concave, i.e. if M1 +M2 ≤ 2. So we assume that g′(δ) is convex, i.e. M1 +M2 > 2. Because

0 ≤ g′(0) and 0 ≤ g′(1), the only way g′(δ) can fail to be non-negative on [0, 1] is if the

minimizer of g′(δ) lies between 0 and 1, and the minimum value is negative.

Let Mn = min(M1,M2) and Mx = max(M1,M2). Algebraic manipulations show

that the minimizer lies between 0 and 1 if 3 ≤ 2Mn + Mx, and that the minimum value
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of g′(δ) is negative if (M1 − 2)2 + (M1 − 2)(M2 − 2) + (M2 − 2)2 > 6. We choose to

combine these results in the following manner: The set of vectors (M1,M2) such that

0 ≤ g′(δ) for 0 ≤ δ ≤ 1, is {(M1,M2) : 0 ≤ M1, 0 ≤ M2, and either 6 ≥ 2Mx + Mn or

(M1 − 2)2 + (M1 − 2)(M2 − 2) + (M2 − 2)2 ≤ 3} (see Figure 6.2). We express this condition

as a convex constraint by defining Ψ(M1,M2) = {(M1 − 2)2 + (M1 − 2)(M2 − 2) + (M2 − 2)2,

if 6 ≤ 2Mx + Mn; 3
4
(2 −Mn)2, otherwise}. Thus g′(δ) ≥ 0 for 0 ≤ δ ≤ 1 if and only if

Ψ(M1,M2) ≤ 3. Noticing that the points (M1,M2) = (3, 0), (0, 3), and (2, 2) are all on the

boundary between the cases, the set {(M1,M2) : Ψ(M1,M2) ≤ 3} is easily seen to be a convex

set.

Figure 6.2: Convex Region Defined by Ψ(M1,M2)

We need to cast this constraint in terms of ωi−1,t, ωit, ωi+1,t, and ωi+2,t. This can be

done with the following substitutions:

λ0 = ωit − ωi−1,t, λ1 = ωi+1,t − ωit,

λ2 = ωi+2,t − ωi+1,t, h0 =
(ai+1 − ai)

(ai+1 − ai−1)
,

h2 =
(ai+1 − ai)
(ai+2 − ai)

, hx = max(h0, h2,

hn = min(h0, h2), λx = max(λ0, λ2), and

λn = min(λ0, λ2),
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By Equation 6.22 M1 = h0(λ1 + λ0)/λ1 and M2 = h2(λ1 + λ2)/λ1. Let λ = (λ0, λ1, λ2)T . We

need the constraint to be convex in ~ωt. It suffices to make it convex in λ. To this end we

restate Ψ(M1,M2) ≤ 3 as 0 ≥ λ1

[√
Ψ(M1,M2)−

√
3
]

= Ψ∗it(λ0, λ1, λ2). Thus

Ψ∗it(λ0, λ1, λ2) =



∞ if min{λ0, λ1, λ2} < 0,

((h0(λ1 + λ0)− 2λ1)2+ if 6λ1 ≤ 2hx(λ1 + λx)+

(h0(λ1 + λ0)− 2λ1)(h2(λ1 + λ2)− 2λ1)+ hn(λ1 + λn) and λ ≥ 0

(h2(λ1 + λ2)− 2λ1)2))
1
2 −
√

3λ1

−
√

3
2

(λ1 − hn(λ1 + λn)) otherwise

(6.23)

The final form of the constraint is Ψ∗it(λ0, λ1, λ2) ≤ 0. We note that Ψ∗it(ηλ) = ηΨ∗it(λ)

for all η ≥ 0. Also note that {(λ0, λ2) : Ψ∗it(λ0, 1, λ2) ≤ 0} is convex because it is a linear

transformation of the set {(M1,M2) : Ψ(M1,M2) ≤ 3}, which is a convex set. These facts,

together with line 1 of Equation 6.23, imply that Ψ∗it is a convex function. Since λ is a linear

function of ~ωt, we apparently have what we need, an inequality constraint based on a convex

function of ~ωt that ensures that 0 ≤ S ′(a) for all a. However there is one more thing to

check. In deriving Ψ∗it we multiplied Ψ by λ2
1. To see that we did not introduce spurious

solutions so doing note that if λ1 = 0 and Ψ∗it(λ0, λ1, λ2) ≤ 0 then λ0 = λ2 = 0. Hence

ωi−1,t = ωit = ωi+1,t = ωi+2,t, so by Equation 6.22, M1 = M2 = 0 and Ψ(M1,M2) = 3.

We can now obtain the second constraint, S ′t(a) ≤ 1, by applying the same logic

to a − St(a) that we applied to St(a). The resulting constraint derivation is of the same
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structure, with identical parameters, except that the λi must be translated as follows:

λn0 = δ

(
1

h0

− λ0

)
, λn1 = δ − λ1,

λn2 = δ

(
1

h2

− λ2

)
, λnx = max(λn0 , λ

n
2 ), and

λnn = min(λn0 , λ
n
2 ).

The end result is

Φ∗it(λ
n
0 , λ

n
1 , λ

n
2 ) =



∞ if min{λn0 , λn1 , λn2} < 0,

((h0(λn1 + λn0 )− 2λn1 )2+ if 6λn1 ≤ 2hx(λ
n
1 + λnx)+

(h0(λn1 + λn0 )− 2λn1 )(h2(λn1 + λn2 )− 2λn1 )+ hn(λn1 + λnn) and λ ≥ 0

(h2(λn1 + λn2 )− 2λn1 )2))
1
2 −
√

3λn1

−
√

3
2

(λn1 − hn(λn1 + λnn)) otherwise

(6.24)
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