
Brigham Young University Brigham Young University

BYU ScholarsArchive BYU ScholarsArchive

Theses and Dissertations

2012-02-27

Commit Patterns and Threats to Validity in Analysis of Open Commit Patterns and Threats to Validity in Analysis of Open

Source Software Repositories Source Software Repositories

Alexander Curtis MacLean
Brigham Young University - Provo

Follow this and additional works at: https://scholarsarchive.byu.edu/etd

 Part of the Computer Sciences Commons

BYU ScholarsArchive Citation BYU ScholarsArchive Citation
MacLean, Alexander Curtis, "Commit Patterns and Threats to Validity in Analysis of Open Source Software
Repositories" (2012). Theses and Dissertations. 2963.
https://scholarsarchive.byu.edu/etd/2963

This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion
in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please
contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.

http://home.byu.edu/home/
http://home.byu.edu/home/
https://scholarsarchive.byu.edu/
https://scholarsarchive.byu.edu/etd
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F2963&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsarchive.byu.edu%2Fetd%2F2963&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/2963?utm_source=scholarsarchive.byu.edu%2Fetd%2F2963&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu,%20ellen_amatangelo@byu.edu

Commit Patterns and Threats to Validity in Analysis of Open Source

Software Repositories

Alexander C. MacLean

A thesis submitted to the faculty of
Brigham Young University

in partial fulfillment of the requirements for the degree of

Master of Science

Charles D. Knutson, Chair
Kevin D. Seppi

Robert P. Burton

Department of Computer Science

Brigham Young University

April 2012

Copyright c© 2012 Alexander C. MacLean

All Rights Reserved

ABSTRACT

Commit Patterns and Threats to Validity in Analysis of Open Source
Software Repositories

Alexander C. MacLean
Department of Computer Science, BYU

Master of Science

In the course of studying the effects of programming in multiple languages, we
unearthed troubling trends in SourceForge artifacts. Our initial studies suggest that pro-
gramming in multiple languages concurrently negatively affects developer productivity. While
addressing our initial question of interest, we discovered a pattern of monolithic commits in
the SourceForge community. Consequently, we also report on the effects that this pattern of
commits can have when using SourceForge as a data-source for temporal analysis of open
source projects or for studies of individual developers.

Keywords: Open source, artifact, software engineering, threats to validity

Contents

List of Figures viii

List of Tables x

1 Introduction 1

1.1 The Changing Landscape of Open Source Software Engineering Research . . 1

1.2 Limitations of Traditional Software Engineering Research 1

1.2.1 Small Sample Size . 2

1.2.2 Research Overhead . 2

1.2.3 Sampling Bias . 3

1.3 Forges . 3

1.3.1 Research Community . 4

1.3.2 Enter SEQuOIA . 5

1.4 Thesis . 5

1.4.1 Language Entropy: A Metric for Characterization of Author Program-

ming Language Distribution . 6

1.4.2 Impact of Programming Language Fragmentation on Developer Pro-

ductivity: a SourceForge Empirical Study 6

1.4.3 Threats to Validity in Analysis of Language Fragmentation on Source-

Forge Data . 7

1.4.4 Trends That Affect Temporal Analysis Using SourceForge Data . . . 7

1.5 Going Forward . 8

iii

2 Language Entropy: A Metric for Characterization of Author Programming

Language Distribution 9

2.1 Question of Interest . 9

2.2 Language Entropy . 10

2.2.1 Definition . 10

2.2.2 Calculation . 11

2.2.3 Behavior . 12

2.3 Data . 13

2.3.1 Description of the Data Set . 13

2.3.2 Producing a Data Sample . 14

2.4 Analysis . 15

2.4.1 Transforming the Data . 15

2.4.2 Selecting a Statistical Model . 16

2.4.3 Adjusting for Serial Correlation . 18

2.5 Results . 19

2.6 Limitations . 20

2.6.1 Non-Contributing Months . 20

2.6.2 SourceForge . 21

2.6.3 Productivity Measure . 21

2.6.4 Marginally Active Developers . 21

2.7 Future Work . 21

2.7.1 Establishing Causality . 21

2.7.2 Corporate Case Studies . 22

2.7.3 Paradigm Relationships . 22

2.7.4 Commonly Grouped Languages . 22

2.7.5 Language Entropy as a Productivity Measure 23

2.8 Conclusions . 23

iv

3 Impact of Programming Language Fragmentation on Developer Produc-

tivity: A SourceForge Empirical Study 24

3.1 Introduction . 24

3.2 Productivity . 26

3.3 Language Entropy . 29

3.3.1 Definition . 29

3.3.2 Calculation . 30

3.3.3 Behavior . 30

3.4 Objective . 32

3.5 Data . 33

3.5.1 Description of the Data Set . 33

3.5.2 Producing a Data Sample . 34

3.6 Analysis . 36

3.6.1 Transforming the Data . 36

3.6.2 Selecting a Statistical Model . 37

3.6.3 Adjusting for Serial Correlation . 39

3.6.4 Banding in the Data . 40

3.6.5 Boundary at Entropy Value of 1.0 . 43

3.7 Results . 43

3.8 Conclusions . 46

3.9 Limitations . 47

3.9.1 Inferences . 47

3.9.2 Non-Contributing Months . 47

3.9.3 Productivity Measure . 48

3.9.4 Marginally Active Developers . 48

3.10 Future Work . 48

3.10.1 Establishing Causality . 48

v

3.10.2 Corporate Case Studies . 49

3.10.3 Paradigm Relationships . 49

3.10.4 Commonly Grouped Languages . 49

3.10.5 Language Fragmentation as a

Productivity Measure . 50

3.11 Acknowledgements . 50

4 Threats to Validity in Analysis of Language Fragmentation on SourceForge

Data 51

4.1 Introduction . 51

4.1.1 SourceForge as a Data Source . 52

4.1.2 Language Fragmentation . 52

4.1.3 Data Set . 53

4.1.4 Definitions . 53

4.2 Project Attribute Pitfalls . 53

4.2.1 Java eXPerience FrameWork . 54

4.2.2 Language Entropy . 54

4.2.3 Cliff Walls . 55

4.2.4 Auto-Generated Files . 56

4.2.5 Internal Development . 57

4.2.6 Development Pushes . 57

4.2.7 Generalizing Pitfalls . 58

4.2.8 Small Projects . 59

4.3 Author Behavior Pitfalls . 60

4.3.1 Marginally Active Developers . 60

4.3.2 Non-Contributing Months . 60

4.3.3 Author Project Size Bridging . 61

4.4 Limitations in the Original Study . 63

vi

4.5 Insights and Conclusions . 64

4.5.1 Mitigation of Project Problems . 64

4.5.2 Mitigation of Author Problems . 65

4.5.3 Analytic Adaptations . 65

4.5.4 Impact on the Original Study . 66

4.5.5 Differentiated Replication . 66

5 Trends That Affect Temporal Analysis Using SourceForge Data 67

5.1 Introduction . 67

5.2 Problems . 69

5.2.1 Non-Source Files . 70

5.2.2 Cliff Walls . 70

5.2.3 High Initial Commit Percentage . 72

5.3 Reasons for Problems . 74

5.3.1 Off-line (Internal) Development . 74

5.3.2 Auto-Generated Files . 76

5.3.3 Project Imports . 76

5.3.4 Branching . 77

5.4 Solutions . 77

5.4.1 Identify Merges . 78

5.4.2 Author Behavior . 78

5.4.3 Project Size . 79

5.5 Insights . 80

References 81

vii

List of Figures

2.1 2nd Order Entropy Curve . 11

2.2 Box Plot of Lines Added . 15

2.3 Box Plot of ln(Lines Added) . 16

2.4 Plot of ln(Lines Added) vs. Language Entropy 16

2.5 Graph of the First 10 Entropy Curves for the 2 Language Case 17

3.1 Relationship between entropy and language proportion for two languages . . 31

3.2 Box plots of Lines Contributed . 36

3.3 Plot of ln(Lines Contributed) vs. Language Entropy 37

3.4 Relative density maps of ln(Lines Contributed) vs. Language Entropy 39

3.5 Entropy bands for the two-language case (labeled by equivalence class from

the axes) . 40

3.6 Best-fit model on the normal scale . 45

4.1 Growth of the Java eXPerience FrameWork over time. 55

4.2 Growth of the Java eXPerience FrameWork over time. 56

4.3 Growth of the Java eXPerience FrameWork over time with estimate of actual

growth. 58

4.4 Percentage of the Project Size explained by initial commits. 58

4.5 Percentage of the Project Size explained by initial commits by Project Size

quartile. 59

4.6 Project size groups. 61

4.7 Development behavior of ’keess.’ . 65

viii

5.1 Growth of Firebird over time. 71

5.2 Distribution of projects by largest cliff walls. One outlier has been removed.2 71

5.3 Growth of the Java eXPerience FrameWork over time. 72

5.4 Distribution of projects by Initial Commit Percentage. 73

5.5 Project sizes. 73

5.6 Distribution of project by Initial Commit Percentage discretized by project

size quartile. 74

5.7 Distribution of projects by frequency of author commits. 79

5.8 Distribution of projects by project life span: the time between the first and

the last commit in a project. 79

5.9 Distribution of projects by largest cliff wall as a percentage of project size. See

Section 5.2.2 for a discussion of how to read these histograms. 80

ix

List of Tables

2.1 Entropy Example for two languages, A and B. 10

2.2 Sample Entropy Values . 12

2.3 Top ten programming languages by popularity rankings 14

2.4 Distribution of Data Points by Language Entropy (LE) 17

2.5 Model Parameter Estimates . 18

3.1 Entropy ranges for sample language cases . 32

3.2 Top ten programming languages by popularity rankings (account for 99% of

the lines of code in the data set) . 34

3.3 Distribution of data points by Language Entropy 37

3.4 Model parameter estimates on the log scale 41

4.1 Author bridging, or lack thereof, between Project Size groups (see Section 4.3.3). 62

4.2 Author bridging, or lack thereof, between Project Size groups for authors who

contribute to multiple projects. 63

5.1 Project Size Quartiles (Lines of Code) . 79

x

Chapter 1

Introduction

1.1 The Changing Landscape of Open Source Software Engineering Research

The late 1990’s saw the emergence of “forges,” large collections of open source software

projects. Prominent open source software repositories established during this timeframe

include the Apache Software Foundation (June 1999), SourceForge (November 1999), and the

Eclipse Board of Stewards (November 2001). By the end of 2009, 26 major forges supported

development communities whose members number in the millions [38]. The largest of these,

SourceForge, hosts more than 270,000 open source projects and 3 million developers.

Historically, empirical software engineering researchers have studied relatively small

numbers of projects. Analysis of even a dozen projects represented a vast1 trove of information.

The availability of thousands of project archives through open source software forges represents

a massive archaeological record that researchers are free to inspect. This unprecedented

access to project information has fundamentally changed the empirical software engineering

research landscape.

1.2 Limitations of Traditional Software Engineering Research

To understand the context that precipitated the euphoric response to this new glut of data, we

first explore limitations in traditional methods of software engineering research. Historically,

the only option available to software engineering researchers was to manually gather data

from companies through interviews, code inspections, and other intrusive procedures. Here

1. . . ye scurvy dogs, we seek a treasure. . .

1

we address three specific limitations to these methods: 1) small sample size, 2) research

overhead, and 3) sampling bias. In each of the sections that follow, we discuss the ways in

which these limitations are mitigated or eliminated through the use of artifact data.

1.2.1 Small Sample Size

The most valuable assets within a software company are the engineers. In the process of

building software, engineers develop mental models that are subsequently translated into code.

These mental models are difficult to transfer between engineers and are typically obtained by

an engineer through working with the codebase2. The formation and maintenance of mental

models renders individual engineers indispensable to projects, particularly during key phases.

Needless to say, indispensable engineers are not generally available to be studied.

Artifact-based research using online forges removes this barrier. In essence, data is

gathered while the developers contribute to the project; each interaction with the source

code management tool, online forums, or other online tools, is recorded as part of the normal

work flow. Thus researchers may glean a wealth of information without negatively impacting

project productivity.

1.2.2 Research Overhead

To provide data for a study, a developer must spend time with researchers that would otherwise

be spent working on the project. In small organizations this dampening of productivity has a

large effect on the overall output of the team. Not surprisingly, most traditional software

engineering studies involving professional developers studied large organizations—generally

government funded. A large organization with hundreds of developers can absorb the overhead

imposed by researchers much more readily than can a small company.

2For an engineer new to a project, it takes a significant amount of time develop a mental model from
existing code. The resultant derived mental model is twice removed from the original: 1) the code is an
imperfect implementation of the original model, and 2) the mental model developed from the code is an
imperfect interpretation of the functionality of the product.

2

As with small sample size, this limitation is non-existent when using forge data. All

data is aggregated as a natural byproduct of software development so research studies impose

no overhead on the development process.

1.2.3 Sampling Bias

Statistical extrapolation requires a sample that has been randomly selected from a target

population. However, most companies are reluctant to sacrifice employee productivity on

the altar of research without some clear (and ideally, short term) return on investment.

Consequently, in traditional empirical software engineering studies, researchers select a

sample of professional software engineers from a group of companies to which they have

access. Results drawn from this sample can only be extrapolated to those companies from

which the sample was drawn.

To avoid these difficulties, some studies use college students drawn from one or more

university classes as subjects [7, 13, 43, 49]. This selection strategy allows one to extrapolate

the results of such studies only to the classes from which the students were drawn and not to

the population of professional software developers.

In short, the population of developers generally available for study (college students) is

not representative of the target population that we actually desire to understand (professional

software developers). Traditional empirical software engineering research is plagued by this

unavoidable tradeoff.

Utilizing open source data removes this sampling dilemma; all work contributed by

developers is available to researchers.

1.3 Forges

Researchers quickly realized that online forges contain a wealth of data that indirectly paints

a picture of development practices while mitigating the aforementioned difficulties.

3

1.3.1 Research Community

In 2004, five years after the creation of the Apache Software Foundation, and three years after

the formation of the Eclipse Board of Stewards, the International Conference on Software

Engineering (ICSE) sponsored the first Working Conference on Mining Software Repositories

(MSR) in Edinburgh, Scotland. The stated purpose of the conference was “to consider

methods to use data stored in software repositories to further understanding of software

development practices” [2]. MSR continues to colocate with ICSE each year.

In 2005, the first International Conference on Open Source Systems (OSS) was held

in Genova, Italy, as an ongoing “forum to discuss theories, practices, experiences, and tools

on development and applications of OSS systems” [3]. OSS has been held each year since.

In 2006, OSS sponsored the first Workshop on Public Data about Software Development

(WoPDaSD) in Como, Italy, “to foster the production and analysis of publicly available data

sources about software development and the exchange of data between different research

groups” [4]. WoPDaSD was held in conjunction with OSS for five years before its topics were

subsumed by the conference, obviating the need for a separate workshop.

In 2007, the first International Workshop on Emerging Trends in FLOSS Research

and Development (FLOSS) was held in Irvine, California as a National Science Foundation

sponsored invitation-only event. The second FLOSS workshop was held in Irvine, California

in 2010.

The growing OSS research community is composed of Computer Scientists, Economists,

and Social Scientists. Although members of each discipline approach the questions in Open

Source Systems differently, they share two common goals: to understand the developers who

contribute to open source projects and the organizations within which they operate.

4

1.3.2 Enter SEQuOIA

In 2006, Dr. Charles Knutson established the BYU SEQuOIA3 lab to empirically study

software development. Employing a method they referred to as “Software Archaeology,” lab

researchers began sifting through open source forges in search of insights into the software

development process.

In 2007, Dan Delorey published the first paper of the newly founded lab, using data

from 9,999 projects (every “Production/Stable” or “Maintenance” phase project hosted on

SourceForge at that time) [19]. Over the next four years, members of the lab published

seven additional papers based upon analysis of the same data set, including the four papers

presented in this thesis.

1.4 Thesis

Thesis Statement: Using publicly available artifacts from online source code repositories, we

can quantify the impact on developer productivity of writing software in multiple programming

languages.

Online source code repositories contain meta data concerning file changes, including

the author of the change, the date of the change, and the amount of source code modified.

Using this meta data, we can reconstruct a picture of developer contribution patterns over

time.

We present four papers that address our thesis statement. The first two papers present

two studies in which we used data from SourceForge to identify a negative correlation between

developer productivity and coding in multiple programming languages. These findings support

the thesis statement. The following two papers explore challenges that we identified while

using SourceForge data.

3Software Engineering Quality: Observation, Insight, and Analysis

5

1.4.1 Language Entropy: A Metric for Characterization of Author Program-

ming Language Distribution

In 2009, we developed a metric, which we called Language Entropy, to measure the degree

to which a single developer utilizes multiple languages. High language entropy indicates

that a developer works evenly in multiple languages; low language entropy indicates that the

developer works primarily in a single language. A key feature of this metric is its dramatic

response to the introduction of additional languages. The resulting paper, “Language Entropy:

A Metric for Characterization of Author Programming Language Distribution,” introduced

the metric and presented a preliminary study. Our results suggest a negative correlation

between high developer language entropy (a developer utilizing multiple languages evenly)

and developer productivity (measured in lines of code). Chapter 2 is the full version of the

paper which was presented at the Fourth International Workshop on Public Data about

Software Development in Skövde, Sweden, on 6 June, 2009 (WoPDaSD 2009) [32].

1.4.2 Impact of Programming Language Fragmentation on Developer Produc-

tivity: a SourceForge Empirical Study

After validating Language Entropy as a metric, we visited a new subset of the SourceForge

data to examine our question of interest: does working in multiple programming languages

(and paradigms) impose a cognitive burden on the developer? The resulting paper, “Impact of

Programming Language Fragmentation on Developer Productivity: a SourceForge Empirical

Study,” confirmed the results of our pilot study, that switching between languages had a

statistically significant dampening effect on the output of a developer. Chapter 3 is the

full version of the paper which was published in the International Journal of Open Source

Software and Processes (IJOSSP, June, 2010) [33].

6

1.4.3 Threats to Validity in Analysis of Language Fragmentation on Source-

Forge Data

In early 2010 we began a replication of the Language Fragmentation study, seeking further

enlightenment by approaching the question with fresh data and from a different angle. Within

days we were enlightened by a realization that our data was significantly biased, and that

certain of our assumptions were in fact misguided. We had unwittingly assumed that projects

on SourceForge would mimic the “Linux model” where all development occurs in the open [46].

We were very, very wrong. While certain open source projects exhibit fine-grained commit

patterns that represent daily development efforts, many others appear to use SourceForge

primarly as a distribution mechanism, rather than as an active development repository.

Chapter 4 is the full version of the paper, “Threats to Validity in Analysis of Language

Fragmentation on SourceForge Data,” which was presented at the 1st International Workshop

on Replication in Empirical Software Engineering Research in Cape Town, South Africa, on

4 May, 2010 (RESER 2010) [34].

1.4.4 Trends That Affect Temporal Analysis Using SourceForge Data

Having identified and examined threats in our data, we next sought to mitigate some of these

threats while preserving the ability to use the data to answer our questions of interest. In the

resulting paper, “Trends That Affect Temporal Analysis Using SourceForge Data,” we sought

to identify sources of these anomalous patterns and suggest methods researchers may employ

to mitigate their effects on statistical analysis. Chapter 5 is the full version of the paper

presented at the Fifth International Workshop on Public Data about Software Development

at Notre Dame, on 2 June, 2010 (WoPDaSD 2010) [35].

7

1.5 Going Forward

The work contained in this thesis sheds light on an important aspect of software archaeology:

the need to understand the relationship between the development process that produces

software and the data reflected in an open source forge as a result of that development effort.

Analyzing developer behavior through the study of residual artifacts is a boon to

software engineering researchers who require large sets of data. Utilizing online forges allows

us to make grounded statements about the activities of individual developers and the online

organizations within which they operate. However, these conclusions must be based upon

a solid understanding of the forges and repositories from which the data is drawn. Further

replications of these studies need to examine the nature and personality of other forges,

explore the difference between “open source” and “open development,” and develop a more

refined taxonomy with which to frame our conclusions.

8

Chapter 2

Language Entropy: A Metric for Characterization of Author Programming

Language Distribution

Programmers are often required to develop in multiple languages. In an effort to study

the effects of programming language fragmentation on productivity—and ultimately on a

programmer’s problem solving abilities—we propose a metric, language entropy, for charac-

terizing the distribution of an individual’s development efforts across multiple programming

languages. To evaluate this metric, we present an observational study examining all project

contributions (through August 2006) of a random sample of 500 SourceForge developers.

Using a random coefficients model, we found a statistically significant correlation (alpha level

of 0.05) between language entropy and the size of monthly project contributions (measured

in lines of code added). Our results indicate that language entropy is a good candidate for

characterizing author programming language distribution.

2.1 Question of Interest

What effect does working in multiple programming languages concurrently have on a pro-

grammer’s productivity?

• Positive Correlation: A programmer contributing in multiple programming languages

may be more productive due to his or her ability to draw from multiple programming

paradigms. For example, software developers writing in a functional language such as

Lisp arguably approach a problem differently than those writing in a purely object-

oriented language such as Java.

9

• Negative Correlation: A developer contributing in more than one language may be less

productive because he or she has to context switch between multiple languages.

• No Correlation: A developer’s productivity may be independent of his or her program-

ming language distribution.

2.2 Language Entropy

In order to empirically evaluate the correlation between language fragmentation and pro-

grammer productivity, we require a metric that accurately characterizes the distribution

of an author’s development efforts across multiple programming languages. In this section

we present language entropy as a candidate metric, detail its calculation, and explain its

behavior in response to changes in the number of languages a developer uses. For a deeper

treatment of entropy as it relates to software engineering, see [51].

2.2.1 Definition

Entropy is a measure of chaos in a system. The concept of entropy originated in thermody-

namics but has been adopted by information theory [27]. For our purposes, we use entropy

as a measure of the evenness with which an author contributes in different programming

languages. For example, if an author is working in two languages and splits his or her

contribution evenly between the two, entropy is 1. However, a 75-25 split across the two

languages yields an entropy of approximately 0.8 (see Table 2.1).

% Contribution
A B Entropy

0 100 0
25 75 ∼ 0.8
50 50 1
75 25 ∼ 0.8
100 0 0

Table 2.1: Entropy Example for two languages, A and B.

10

2.2.2 Calculation

The general form for entropy is shown in Equation 3.1.

E(S) ≡ −
c∑

i=1

(pi · log2pi) (2.1)

In this equation, the variables are defined as follows:

• S: the system

• c: the language count

• p: the proportion of the contribution of language i to the total contributions S

The general form of entropy can be applied to any number of languages to generate an

entropy value. Two languages, as shown in Figure 3.1, produce a parabolic curve. Three

languages produce a three-dimensional shape. Entropy calculations beyond three dimensions

are difficult to visualize.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.5 1

E
n

tr
o

p
y

(S
)

p
Figure 2.1: 2nd Order Entropy Curve

To compute an author’s language entropy we calculate the proportion for each pro-

gramming language represented in the author’s total contribution—pi values in Equation

3.11. We then calculate the result of Equation 3.1 using those language proportions.

1For the purposes of this paper, contribution is defined as the number of lines of code produced per month.

11

2.2.3 Behavior

Language entropy characterizes the developer’s fragmentation across multiple programming

languages. However, because entropy is based on logarithms, its response to changes in the

number of languages a developer uses is non-linear. The equation for the maximum possible

entropy value for a given number of languages is shown in Equation 3.2, where c is the

language count.

Emax = log2(c) (2.2)

Notice that the equation’s maximum value increases as c increases. Thus, for each additional

language in the entropy calculation, an author’s maximum possible entropy value rises.2

However, the effect of adding an additional language diminishes as the total number of

languages increases (see Equation 3.3 and Table 3.1).

lim
c→∞

Emax(c + 1) − Emax(c) = 0 (2.3)

Conversely, the minimum possible language entropy is always 0, indicating that the author

only added lines of code in a single language (see Table 3.1).

of Languages Min. Entropy Max. Entropy

1 0 0
2 0 1
3 0 1.585
4 0 2
5 0 2.322
. . .
. . .
. . .

49 0 5.615
50 0 5.644

Table 2.2: Sample Entropy Values

2Note that the log operation is undefined at zero; thus, languages with a pi = 0 must be excluded from
the calculation.

12

2.3 Data

The data set used in this study was previously collected for a separate, but related work. It

was originally extracted from the SourceForge Research Archive (SFRA), August 2006. For a

detailed discussion of the data source, collection tools and processes, and summary statistics,

see [21].

2.3.1 Description of the Data Set

The data set is composed of all SourceForge projects that match the following four criteria:

1) the project is open source; 2) the project utilized CVS for revision control; 3) the project

was under active development as of August 2006; 4) the project was in a Production/Stable

or Maintenance stage. The data set includes nearly 10,000 projects with contributions from

more than 23,000 authors who collectively made in excess of 26,000,000 revisions to roughly

7,250,000 files [21].

A study by Delorey, Knutson, and Chun [19] identified more than 19,000 different

file extensions in the data set, representing 107 unique programming languages. The study

also noted that 10 of those 107 languages are used in 89% of the projects, by 92% of the

authors, and account for 98% of the files, 98% of the revisions, and 99% of the lines of code

in the data set. Table 3.2 shows the 10 most popular languages with rankings. Delorey et al.

ranked the languages based on the following 5 factors: 1) total number of projects using the

language; 2) total number of authors writing in the language; 3) total number of files written

in the language; 4) total number of revisions to files written in the language; and 5) total

number of lines written in the language.

13

Project Author File Revision LOC Final
Rank Rank Rank Rank Rank Rank

C 1 1 2 2 1 1
Java 2 2 1 1 2 2
C++ 4 3 4 4 3 3
PHP 5 4 3 3 4 4
Python 7 7 5 5 5 5
Perl 3 5 9 9 6 6
JavaScript 6 6 6 8 10 7
C# 9 9 7 6 7 8
Pascal 8 10 8 7 8 9
Tcl 11 8 10 10 9 10

Table 2.3: Top ten programming languages by popularity rankings

2.3.2 Producing a Data Sample

From the initial data set we extracted a random sample of 500 developers3 along with

descriptive details of all revisions that those developers made since the inception of the

projects on which they worked. We then condensed this sample by totaling the lines of code

added by each developer for each month in which that developer made at least one code

submission. The final step in generating the sample was calculating the language entropy in

each month for each developer. Note that months in which developers made no contributions

are discarded due to the fact that the language entropy metric is undefined for zero lines of

code.

Ignoring a developer’s “inactive” months is reasonable since for this study we are more

interested in whether lines of code production is related to language entropy than we are in

the actual magnitude of that relationship. However, our model does assume that the code

was written in the month in which it was committed. Therefore, months without submissions

represent a confounding factor in this study.

To help account for multi-month code submissions, as well as the factors identified

in [19], we applied several filters to the data sample. However, analyses of the filtered and

unfiltered data produced approximately equivalent results. Therefore, we report our results

from the more robust, unfiltered data sample.

3For the purposes of this study, a developer is an individual who contributed at least one line of code in at
least one revision.

14

To filter the data, we 1) removed all data points of developers who submitted more than

5,000 lines of code during at least three separate months, and 2) removed all remaining data

points for which the month’s submission was greater than 5,000 lines of code. The first filter

was intended to remove project gatekeepers, who submitted code on behalf of other developers.

If a developer was suspected of being a gatekeeper, all of his/her contributions were excluded.

The second filter was designed to remove significant quantities of auto-generated code.

We feel that these two filters are sufficient on the grounds that in [19], Delorey et al.

ultimately controlled for outliers by capping the annual author contribution at 80,000 lines

of code. Our limit of 5,000 lines of code per month results in a maximum possible annual

contribution of 60,000 lines of code per author—a bit more conservative.

2.4 Analysis

Figure 2.2: Box Plot of Lines Added

2.4.1 Transforming the Data

Figure 3.2(a) shows a box plot of the lines added. Three threats to statistical model

assumptions are clearly visible: significant outliers, a skewed distribution, and a large data

range. We adjust for all three issues by applying a natural log transformation. Notice in

15

Figure 2.3: Box Plot of ln(Lines Added)

figure 3.2(b), which depicts the transformed data, that there are only minimal outliers, the

range is controlled, and the distribution is approximately normal.4

Figure 2.4: Plot of ln(Lines Added) vs. Language Entropy

2.4.2 Selecting a Statistical Model

Figure 3.3 displays a plot of lines added (on the natural log scale) versus language entropy,

in which each point on the graph represents one month of work for one developer. First, be

aware that the volume and distribution of data points (see table 3.3) is masked by crowding,

which causes points to be plotted over other points. In total, there are 3,940 points plotted,

4Statistical models assume specific characteristics about data. Sometimes data must be transformed before
it can be accurately analyzed. However, interpretation of the results must reflect the transformation. In
this study, for instance, the slope of a regression line must be interpreted as a multiplicative factor since the
dependent variable is logged.

16

1-10

100

200

400
300

500
600

800

900

1000

700

. . .

Figure 2.5: Graph of the First 10 Entropy Curves for the 2 Language Case

LE Range Data Points

LE = 0 1,945
0 < LE ≤ 1 1,705
1 < LE 290

Total Data Points: 3,940

Table 2.4: Distribution of Data Points by Language Entropy (LE)

of which 1,945 points lie on the y-axis at the entropy value of zero. Thus, nearly half the

data consists of months in which developers submitted code in only one language.5

Further, there is a pattern of curving lines visible at the bottom of the point cloud

between zero and one entropy. The banding pattern is due to both the nature of the language

entropy calculation and the lines added. Specifically, the two metrics partition the data points

into equivalence classes, one for each band on the graph. Data points in the first equivalence

class—the band closest to the x-axes—correspond to monthly contributions in which all lines

but one were written in the same language. Data points in the second equivalence class

correspond to monthly contributions in which all but two lines were written in one language.

By the fourth equivalence class the bands are so close that they blend together on the graph.

Figure 3.5 shows a graph of the first 10 equivalence classes.

5The distribution of the data points with respect to language entropy is fairly consistent with [20], in which
the authors (referring to the data set of this study) note that for approximately 65% of projects developers
submit code in a single language per year. For 20% and 12% of projects, developers submit code in two and
three languages per year respectively.

17

Lower Upper Standard
Parameter Estimate 95% CL 95% CL p-value Error DF

zeroEntropyGroupMean 4.0690 3.9208 4.2172 ¡.0001 0.07542 425
nonZeroEntropyGroup 2.2870 2.1014 2.4726 ¡.0001 0.09411 196
nonZeroEntropySlope -0.6963 -0.9646 -0.4280 ¡.0001 0.13600 181

Table 2.5: Model Parameter Estimates

The scatter plot also exhibits a vertical boundary of points just before entropy of one.

This pattern is possibly due to the sparseness of the data beyond entropy of one (only 290

points).

It is immediately apparent that the distribution of the data is different during months

in which developers contributed code in only one language (zero entropy), versus months

in which they contributed code in more than one language (greater than zero entropy).

Therefore, it would be inappropriate to apply a simple linear regression model to the full

range of the data. Instead, we use a random coefficients model which allows us to estimate a

mean for the group at zero entropy, as well as fit a regression line to the rest of the data.

These two groups could be analyzed separately, but fitting them under one model allows us

to pool the data when computing the error terms, which results in tighter confidence intervals

and a more efficient analysis.

2.4.3 Adjusting for Serial Correlation

A final concern is the potential for serial correlation in the data (i.e., the data correlates

with itself) as a result of the measurements being taken over time. Estimating the mean

of data that is self-correlated requires statistical adjustment in order to produce accurate

results. The data sample in this study contains an average of eight months of measurements

per developer, which is insufficient to confidently identify a serial correlation. However, to

be conservative we assume serial correlation is present in the data and account for it in our

analysis.

18

2.5 Results

Table 3.4 shows estimates (on the natural log scale) of the model parameters, with confidence

intervals and two-sided p-values. All three parameters are statistically significant with p-values

less than 0.0001. Such small p-values allow us to confidently conclude that the relationship

between language entropy and lines added is not due to random chance. The low error terms,

which result in narrow confidence intervals around the parameter estimates, give us confidence

that our sample size is sufficient to accurately estimate the population variance. Further,

since the data sample was randomly selected (as described in section 3.5.1), we conclude that

the patterns in the data sample characterize the entire SourceForge population. However,

since this is an observational study, we cannot infer causality. Therefore, the remainder of

the discussion of results describes the observed relationship between language entropy and

lines added.

In Table 3.4, the zeroEntropyGroupMean is an estimate of the mean of the data points

at zero language entropy (the zero group, or ZG). The nonZeroEntropyGroup represents the

estimated difference between the ZG mean and the intercept of the regression line for the

non-zero entropy data (the non-zero group, or NZG). The very low p-value for this parameter

indicates that the ZG mean is significantly different from the trend in the NZG. Adding

the first two parameter estimates gives the estimate for the intercept of the NZG regression

line (6.3560). The third parameter, nonZeroEntropySlope, represents the slope of the NZG

regression line, which is negatively correlated with language entropy.

The magnitudes of these parameter estimates make more sense on the original scale.

However, because the analysis is performed on log-transformed data, the back-transformed

estimates must be interpreted differently. Specifically, the ZG mean and the intercept of the

NZG regression line both represent medians on the original scale. Also, the slope of the NZG

regression line becomes a multiplicative factor, which means that an increase in language

entropy results in a multiplicative increase in lines added.

19

Thus, for months in which a developer submits code in one language (ZG), the

developer contributes, on average, 58 lines of code (95% confidence interval from 50 to 68 lines

of code). However, extrapolating the trend in the NZG, which represents months in which

developers submitted code in more than one language, one would expect the ZG median to

be 576 lines of code—a significant difference. Note, though, that this difference considers

both highly and marginally active developers equally. The marginally active developers, who

make only a few small contributions, and for whom a productivity increase is less interesting,

may be significantly pulling down the ZG median (See section 3.9.4 for further discussion).

Lastly, for months in which a developer submits code in more than one language, the

developer’s monthly contributions decrease by an estimated 6.7% for each 0.1 unit increase

in language entropy. For a 1.0 unit increase in language entropy, a developer’s monthly

contribution drops by approximately 50% on average.

2.6 Limitations

In the following subsections we identify several limitations of this study.

2.6.1 Non-Contributing Months

The developers in our data set did not always contribute to projects in contiguous months.

For example, a developer might contribute changes in April, skip May, and contribute again in

June. For the purposes of this study we assumed that developers submitted contributions in

the same months in which those contributions were written. We took steps to help ensure our

assumption (see Section 3.5.2). However, we do not have an empirical foundation for applying

a cap of 5,000 lines to monthly programmer contributions. Also, we have not empirically

validated our method of identifying gatekeepers.

20

2.6.2 SourceForge

Our inferences are limited to developers on SourceForge. Therefore, we cannot make general

conclusions about other software development environments. Also, the SourceForge archive

obscures certain information about developers (such as the identity of gatekeepers).

2.6.3 Productivity Measure

Despite its utility in this preliminary study, lines of code is a weak measure of programmer

productivity. Further studies should extend the analysis of language entropy to other

productivity models.

2.6.4 Marginally Active Developers

Developers who make only small contributions per month may bias the analysis results. Such

developers are probably less likely to write in multiple languages in a given month, in which

case filtering marginally active developers could reduce the disparity between the estimated

mean of the group who wrote in only one language and the trend of the remaining data.

Thus, it would be interesting to add an indicator variable to the model to distinguish such

developers from those who regularly contribute more significant volumes of code.

2.7 Future Work

In this section we outline avenues for future research.

2.7.1 Establishing Causality

This study establishes a correlation between language entropy and the size of developer

contributions for the SourceForge population. To understand the cause of the observed

relationship we need to run controlled, randomized experiments. We believe that such efforts,

in combination with corporate case studies (as described in section 3.10.2), will provide

21

meaningful results from which practitioners may make better-informed decisions regarding

project-developer assignments and the adoption of new languages and frameworks.

2.7.2 Corporate Case Studies

Running a more robust analysis of language entropy utilizing data from industry projects

would allow us to expand our inferences into the corporate domain, at which point we could

ask a number of important questions, including:

• If my company is already maintaining a large code base in COBOL, how would my

developers’ productivity be affected by an additional project in Java?

• My company already supports products in different languages. Will my developers be

more productive if I assign each one to a specific language, as opposed to spreading

them across languages?

2.7.3 Paradigm Relationships

Many of the languages in our study cluster by paradigm (Java, C++, and C#, for example).

Switching between programming languages that share a common paradigm may not be as

cognitively difficult as switching between languages from different paradigms. We expect

changes in entropy to affect a programmer working within a single paradigm less than one

working across multiple paradigms.

2.7.4 Commonly Grouped Languages

In this study we examine the effect of language entropy on productivity across all languages.

However, some languages are commonly used together (e.g., many web projects are based on

Java, JavaScript, and HTML). Is the cognitive burden of context switching between languages

reduced for developers who work across a set of commonly grouped languages?

22

2.7.5 Language Entropy as a Productivity Measure

To better understand the relationship between language entropy and other productivity

metrics, we need to determine whether language entropy provides new information beyond

the metrics already presented in the literature. If shown to be complementary, language

entropy can be incorporated into more complex productivity models [14].

2.8 Conclusions

The results of this study suggest a correlation between language entropy and programmer

productivity. However, because our study is observational, we cannot infer that the differences

in language entropy caused the observed variation in productivity. Nevertheless, since the

data was randomly selected, we can make inferences to the general SourceForge community

for those developers who actively worked on Production/Stable or Maintenance projects from

1995 through August 2006. Specifically, we can make two inferences:

1. For those developers who wrote in multiple languages, higher language entropy is

negatively correlated with the number of lines of code contributed per month.

2. For months in which developers submitted code in a single language, their contributions

were significantly smaller than the trend suggested by the rest of the data.

The primary objective of this study was to develop a metric with which we could investigate

the relationship between an author’s ability to solve software problems and the distribution

of programming languages within his or her project contributions. The relationship between

language entropy and productivity in this initial study demonstrates that language entropy

is a good candidate for measuring the distribution of an author’s development efforts across

multiple programming languages. This result, therefore, justifies further research into the

relationship between language entropy and the problem-solving abilities of developers.

23

Chapter 3

Impact of Programming Language Fragmentation on Developer Productivity:

A SourceForge Empirical Study

Programmers often develop software in multiple languages. In an effort to study the

effects of programming language fragmentation on productivity—and ultimately on a devel-

oper’s problem-solving abilities—we present a metric, language entropy, for characterizing the

distribution of a developer’s programming efforts across multiple programming languages. We

then present an observational study examining the project contributions of a random sample

of 500 SourceForge developers. Using a random coefficients model, we find a statistically

(alpha level of 0.001) and practically significant correlation between language entropy and

the size of monthly project contributions. Our results indicate that programming language

fragmentation is negatively related to the total amount of code contributed by developers

within SourceForge, an open source software (OSS) community.

3.1 Introduction

The ultimate deliverable for a software project is a source code artifact that enables computers

to meet human needs. The process of software development, therefore, involves both problem

solving and the communication of solutions to a computer in the form of software. We believe

that the programming languages with which developers communicate solutions to computers

may in fact play a role in the complex processes by which those developers generate their

solutions.

24

Baldo et al. define language as a “rule-based, symbolic representation system” that

“allows us to not simply represent concepts, but more importantly for problem solving,

facilitates our ability to manipulate those concepts and generate novel solutions” [6]. Although

their study focused on the relationship between natural language and problem solving, their

concept of language is highly representative of languages used in programming activities.

Other research in the area of linguistics examines the differences between mono-, bi-, and

multilingual speakers. One particular study, focusing on the differences between mono- and

bilingual children, found specific differences in the subjects’ abilities to solve problems [8].

These linguistic studies prompt us to ask questions about the effect that working concurrently

in multiple programming languages (a phenomenon we refer to as language fragmentation)

has on the problem-solving abilities of developers.

In an effort to increase both the quality of software applications and the efficiency

with which applications can be written, developers often incorporate multiple programming

languages into software projects. Each language is selected to meet specific project needs, to

which it is specialized—for instance, in a web application a developer might select SQL for

database communication, PHP for server-side processing, JavaScript for client-side processing,

and HTML/CSS for the user interface. Although language specialization arguably introduces

benefits, the total impact of the resulting language fragmentation on developer performance is

unclear. For instance, developers may solve problems more efficiently when they have multiple

language paradigms at their disposal. However, the overhead of maintaining efficiency in more

than one language may also outweigh those benefits. Further, development directors and

programming team managers must make resource allocation, staff training, and technology

acquisition decisions on a daily basis. Understanding the impact of language fragmentation

on developer performance would enable software companies to make better-informed decisions

regarding which programming languages to incorporate into a project, as well as regarding

the division of developers and testers across those languages.

25

To begin understanding these issues, this paper explores the relationship between

language fragmentation and developer productivity. In Sections 3.2 and 3.3 we define and

justify the metrics used in the paper. We first discuss our selection of a productivity metric,

after which we describe an entropy-based metric for characterizing the distribution of a

developer’s efforts across multiple programming languages. Having defined the key terms,

Section 3.4 presents the thesis of the paper, and Sections 3.5 and 3.6 describe, justify, and

validate the data and analysis techniques. We then present in Section 3.7 the results of an

observational study of SourceForge, an open source software (OSS) community, in which

we demonstrate a significant relationship between language fragmentation and productivity.

Establishing this relationship is a necessary first step in understanding the impact that

language fragmentation has on a developer’s problem-solving abilities.

3.2 Productivity

According to the 1993 IEEE Standard for Software Productivity Metrics, “productivity is

defined as the ratio of the output product to the input effort that produced it” [1]. Although

this ratio may be as difficult to accurately quantify as problem-solving ability, it has been

extensively studied in the context of Software Engineering.

In the 1960’s, Edward Nelson performed one of the earliest studies to identify pro-

grammer productivity factors [41]. Nelson found that programmer productivity correlates

with at least 15 factors. More recently (2000), Capers Jones identified approximately 250

factors that he claims influence programmer performance [31]. Summarizing this research,

Endres and Rombach state that reducing productivity to “ten or 15 parameters is certainly a

major simplification” [25]. With so many contributing factors to measure, it is not surprising

that numerous productivity metrics have been proposed in the literature.

Nevertheless, all reasonable productivity metrics intercorrelate to some degree, and all

productivity metrics suffer from threats to validity—the significance of those threats depends

on the circumstances in which the metrics are applied. The researcher, therefore, must weigh

26

the trade-offs and select a suitable metric based on the available data and the context of the

study. For a discussion of the trade-offs inherent in various common productivity metrics, as

well as an overview of the primary threats to the validity of those metrics, we refer the reader

to work by Conte, Dunsmore, and Shen [16] and to work by Endres and Rombach [25]. The

most common software productivity metrics include function points and lines of code (LOC).

Function points attempt to measure software production by assigning quantitative

values to software functionality. Points are accrued for each piece of functionality implemented

in software, with more points assigned to more complex functionality. Function points are

based on the idea that the ultimate goal of software is to meet specific human needs. Since

human needs are formalized into project requirements, measuring the accomplishment of

project requirements provides a good indication of progress. As such, function points are often

applied to software requirements prior to coding in order to estimate needed resources. Thus,

function points work well when measuring productivity for one or two projects, for which

the requirements are well documented. Without requirements, as is the case in SourceForge

data, calculating function points becomes much more difficult. Measuring functionality for

thousands of projects is simply infeasible.

In the literature, the list of studies that rely on LOC and time primitives to estimate

productivity is lengthy. Studies that use these primitives (e.g., [52] [12] [24] [15]) often justify

the selection based on the availability and accessibility of data. Despite their popularity,

LOC and time primitives are not without threats to validity.

The primary concerns with using LOC metrics to estimate productivity include:

1. LOC definitions differ by organization. For instance, are declarative statements counted,

or executable statements only? Are physical lines counted or logical lines?

2. Coding styles vary by developer; some developers are more verbose.

3. When developers are aware that they are being measured, they may inflate their LOC

scores.

27

4. The effort required to produce and incorporate new code is different from that of reused

code.

5. Programming language verbosity varies based on syntax, built-in features, and the use

of libraries (e.g., Perl regular expressions versus parsing C-strings).

The first of these threats is controlled for in this study by extracting all revision data from a

common revision management system (CVS), which counts all lines added, modified, and

deleted in a consistent manner across projects. We control for the second threat by examining

trends within (rather than across) developers. Thus, we do not compare the data points of

one developer directly against those of another (see Section 3.6.2). Concerning the third

threat, we are confident that developers did not try to artificially inflate their LOC scores

since the data was collected after the fact—developers had no prior knowledge of this study

and little incentive to alter their normal habits. Further, OSS community norms would also

tend to prevent developers from contributing large volumes of code, especially since such code

would likely not be of high quality. To address the fourth threat, we applied filters to the data

that help account for code reuse, but found no significant differences between the analyses of

filtered and non-filtered data (see Section 3.5.2). The last threat remains a limitation of this

study. To account for language verbosity we would need a method for normalizing the data,

the development of which is beyond the scope of this paper (see Section 3.9.3).

When estimating input effort using time primitives, the primary concern is maintaining

consistency across organizations. Which activities (e.g., requirements gathering, coding,

maintenance), which people (e.g., direct and indirect project members), and which times

(e.g., productive and unproductive) are counted? We control for time measurement variation

as we did for the consistency issues of the LOC metric, by taking all data from CVS. Thus

for all projects, we consistently count the coding and maintenance activities of direct project

members during productive times.

Under these circumstances, and considering the availability of both LOC and time

information in our SourceForge data, we use developer code contribution per time-month as a

28

productivity measure—where 1) developer code contribution is defined as the total number of

lines modified within, or added to, all source code files, across all projects, by a particular

developer (as reported by CVS), and 2) time-month refers to the literal months of the year,

as opposed to measuring contribution per person-month. Strictly speaking, the time-month

does not directly measure actual input effort, but due to data availability constraints we

use it to approximate person-months. Recognizing this limitation, we believe that studying

developers in aggregate helps control for monthly input effort variations.

Thus, although imperfect, code contribution per time-month is a reasonable produc-

tivity metric within the context of this study. Nevertheless, replicating this study using other

productivity metrics may prove valuable.

3.3 Language Entropy

In order to empirically evaluate the correlation between language fragmentation and pro-

grammer productivity, we require a metric that effectively characterizes the distribution of a

developer’s efforts across multiple programming languages. In this section we present the

language entropy metric developed by Krein, MacLean, Delorey, Knutson, and Eggett [32].

After defining the metric, we detail its calculation and explain its behavior in response to

changes in the number and proportions of languages a developer uses. For a deeper treatment

of entropy as it more broadly relates to software engineering, see work by Taylor, Stevenson,

Delorey, and Knutson [51].

3.3.1 Definition

Entropy is a measure of disorder in a system. In thermodynamics, entropy is used to

characterize the randomness of molecules in a system. Information theory redefines entropy

in terms of probability theory [27] [47]. In this paper, we apply the latter interpretation of

entropy to measure the evenness with which a developer’s total contribution (to one or more

software projects) is spread across one or more programming languages. Other works use

29

similar interpretations of entropy to measure various software characteristics [28] and [9], but

none of them apply entropy to language fragmentation.

3.3.2 Calculation

The general formula for calculating the entropy of a system in information theory is shown in

Equation 3.1, in which S is the system of elements, c is the number of mutually exclusive

classes (or groupings) of the elements of S, and pi is the proportion of the elements of S that

belong to class i.

E(S) = −
c∑

i=1

(pi · log2pi) (3.1)

To apply this general entropy formula to language fragmentation, we specifically define the

variables in Equation 3.1 as follows:

• S: a developer’s total contribution (i.e., the number of lines modified within, or added

to, all source code files by a particular developer)

• c: the number of programming languages represented in S

• pi: the proportion of S represented by programming language i

• E(S): the language entropy of the developer

For example, if a developer is working in two languages and splits his or her contribution

evenly between the two, the entropy of the developer’s total contribution is 1. However, a

75-25 split across the two languages yields an entropy value of approximately 0.8 (see Figure

3.1).

3.3.3 Behavior

Language entropy characterizes the distribution of a developer’s efforts across multiple

programming languages. Maximum entropy occurs when a developer produces code using

programming languages in equal proportions. Thus, substituting pi = 1/c for all i in Equation

3.1, we arrive at a discrete function for the maximum possible entropy for a given number of

30

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.5 1

E
n
tr

o
p
y
(S

)

p

Figure 3.1: Relationship between entropy and language proportion for two languages

languages (see Equation 3.2).

Emax = log2(c) (3.2)

Notice in Equation 3.2 that Emax increases as c increases, such that for each additional

language a developer uses, his or her maximum possible entropy value rises. However, because

entropy is based on logarithms, its response to changes in the number of languages a developer

uses is non-linear. Specifically, the effect on the entropy score of adding an additional language

diminishes as the total number of languages increases (see Equation 3.3 and Table 3.1).

lim
c→∞

Emax(c + 1) − Emax(c) = 0 (3.3)

We believe this behavior is appropriate for studying programming language use because the

impact of adding a new language to the working set of a developer who already programs in

multiple languages is, in many respects, less than the impact on a developer who previously

worked in only one language.

However, considering the case of a person who already knows multiple languages from

the same paradigm (say imperative), it is unclear whether the addition of a new language

from a different paradigm (say object-oriented) would, in reality, impact the developer less

than the addition of the previous language from the familiar paradigm. More generally, we

suspect that the addition of a language from an unfamiliar paradigm would result in a more

31

dramatic impact than would the addition of a language from a familiar paradigm (see Section

3.10.3).

Conversely, the minimum language entropy for all values of c is essentially zero1,

indicating that the developer contributed in only one language (see Table 3.1).

of Languages Min. Entropy Max. Entropy

1 0 0.00
2 0 1.00
3 0 1.59
4 0 2.00
5 0 2.32
. . .
. . .
. . .

49 0 5.62
50 0 5.64

Table 3.1: Entropy ranges for sample language cases

The entropy metric is applicable to any number of languages. Two languages, as

shown in Figure 3.1, produce a parabolic curve. Three languages produce a three-dimensional

shape. Entropy calculations beyond three dimensions are difficult to visualize.

3.4 Objective

The primary objective of this study is to take a first step in establishing the effect that

language fragmentation has on the problem-solving abilities of developers by addressing the

question, “What is the relationship between programmer productivity and the concurrent

use of multiple programming languages?”

Prior to this study we anticipated three potential outcomes:
1. Positive Correlation: A developer contributing in multiple programming languages is

more productive, possibly due to his or her ability to draw from multiple programming

paradigms. For example, software developers working in a functional language such

as Lisp arguably approach a problem differently than those writing in a purely object-

oriented language such as Java.

1The log operation is undefined at zero; thus, languages with a pi = 0 must be excluded from the
calculation. As a result, for all values c > 1 the minimum language entropy of 0 occurs in the limit as some
pi approaches 1.

32

2. Negative Correlation: A developer contributing in multiple languages is less productive,

possibly as a consequence of the added burden required to concurrently maintain skills

in multiple programming languages.

3. No Correlation: A developer’s productivity is independent of language fragmentation.

In this paper, we provide evidence of a relationship between language fragmentation and the

problem-solving abilities of developers by demonstrating a significant negative correlation

between language entropy and programmer productivity within the SourceForge community.

3.5 Data

The data set used in this study was previously collected for a separate, but related work.

It was originally extracted from the August 2006 SourceForge Research Archive (SFRA).

For a detailed discussion of the data source, including summary statistics and collection

tools/processes, see work by Delorey, Knutson, and MacLean [21].

3.5.1 Description of the Data Set

The data set is composed of all SourceForge projects that match the following four criteria:

1) the project is open source; 2) the project utilized CVS for revision control; 3) the project

was under active development as of August 2006; 4) the project was in a Production/Stable

or Maintenance stage. The data set includes nearly 10,000 projects with contributions from

more than 23,000 authors who collectively made in excess of 26,000,000 revisions to roughly

7,250,000 files [21].

A study by Delorey, Knutson, and Chun [19] identified more than 19,000 unique file

extensions in the data set, representing 107 programming languages. The study also noted

that 10 of those 107 languages are used in 89% of the projects, by 92% of the developers, and

account for 98% of the files, 98% of the revisions, and 99% of the lines of code in the data

set. Table 3.2 shows the 10 most popular languages with rankings. Delorey et al. ranked the

languages based on the following five factors: 1) total number of projects using the language;

33

Project Author File Revision LOC Final
Rank Rank Rank Rank Rank Rank

C 1 1 2 2 1 1
Java 2 2 1 1 2 2
C++ 4 3 4 4 3 3
PHP 5 4 3 3 4 4
Python 7 7 5 5 5 5
Perl 3 5 9 9 6 6
JavaScript 6 6 6 8 10 7
C# 9 9 7 6 7 8
Pascal 8 10 8 7 8 9
Tcl 11 8 10 10 9 10

Table 3.2: Top ten programming languages by popularity rankings (account for 99% of the
lines of code in the data set)

2) total number of developers writing in the language; 3) total number of files written in the

language; 4) total number of revisions to files written in the language; and 5) total number

of lines written in the language.

3.5.2 Producing a Data Sample

Because our analysis was computationally demanding, we extracted from the initial data set

a random sample of 500 developers together with descriptive details of all revisions that those

developers made since the inception of the projects on which they worked (for the purposes

of this study, a developer is an individual who contributed at least one line of code in at least

one revision to a source file). A sample size of 500 provides more than sufficient statistical

precision to identify any practically significant relationships. This intuition is validated in

the results by the extremely low p-values.

After sampling the data set, we condensed the sample by totaling the lines of code

contributed by each developer for each month in which a developer made at least one code

submission. Finally, we calculated the language entropy per month for each developer. Note

that months in which a developer did not contribute are discarded because the language

entropy metric is undefined for zero lines of code.

34

Inactive Months

Ignoring a developer’s “inactive” months is reasonable for this study since we are more

interested in the existence of a relationship between lines of code production and language

entropy than we are in the actual magnitude of that relationship. However, our model does

assume that the code was written in the month in which it was committed. Therefore, months

without submissions represent a confounding factor in this study.

Filtering the Data

To help account for multi-month code submissions, as well as the six factors identified by

Delorey et al. [19]—migration, dead file restoration, multi-project files, gatekeepers, batch

commits, and automatic code generation—we applied filters to the data sample. However,

analyses of the filtered and unfiltered data produced statistically indistinguishable results,

suggesting that the data is insensitive to outliers. Therefore, we report our results from the

more robust, unfiltered data sample.

For completeness, however, we describe the filtering technique: To filter the data, we

1) removed all data points of developers who submitted more than 5,000 LOC during at

least three separate months, and 2) removed all data points for which a month’s submission

was greater than 5,000 LOC. The first filter was intended to remove project gatekeepers

who submitted code on behalf of other developers. If a developer was suspected of being

a gatekeeper, all of his/her contributions were excluded. The second filter was designed to

remove significant quantities of auto-generated code.

We feel that these two filters are sufficient on the grounds cited by Delorey et al. [19],

in which the authors controlled for outliers by capping the annual developer contribution

at 80,000 LOC. Our limit of 5,000 LOC per month resulted in a maximum possible annual

contribution of 60,000 LOC per developer—a bit more conservative.

35

3.6 Analysis

In this section, we first analyze the data sample for 500 randomly selected developers. We

then select a statistical model appropriate for both the question of interest and the data (see

Sections 3.4 and 3.5, respectively). We conclude this section by justifying and validating the

selected model.

(a) Normal scale: Indicates significant outliers (no-
tice the numerous individually plotted data points),
a skewed distribution (so much so that the box plot
is flattened into the x-axis), and a large data range
(see the y-axis).

(b) Natural log scale: Indicates minimal outliers,
the distribution is approximately normal, and the
range is controlled.

Figure 3.2: Box plots of Lines Contributed

3.6.1 Transforming the Data

Figure 3.2(a) shows a box plot of the lines contributed. Three threats to the assumptions of

a linear regression model are clearly visible: significant outliers, a skewed distribution, and

a large data range. We adjust for all three issues by applying a natural log transformation.

Notice in figure 3.2(b) that outliers are minimized, the distribution is approximately normal,

and the range is controlled.2

2Statistical models assume certain characteristics about data. Sometimes data must be transformed before
it can be accurately analyzed. However, interpretation of the results must reflect the transformation. In
this study, for instance, the slope of the regression line must be interpreted as a multiplicative factor since a
logarithmic transformation has been applied to the dependent variable.

36

Figure 3.3: Plot of ln(Lines Contributed) vs. Language Entropy

Entropy Range Data Points

E(S) = 0 2,394
0 < E(S) ≤ 1 2,177
1 < E(S) 385

Total Data Points: 4,956

Table 3.3: Distribution of data points by Language Entropy

3.6.2 Selecting a Statistical Model

Figure 3.3 displays a plot of lines contributed (on the natural log scale) versus language

entropy, in which each point on the graph represents one month of work for one developer.

First, be aware that the volume and distribution of data points (see Table 3.3) is masked

by crowding, which causes points to be plotted over other points. In total, nearly 5,000

points are plotted, of which approximately 48% lie on the y-axis at the entropy value of zero.

Thus, nearly half the data consists of months in which developers submitted code in only one

language. The distribution of the data points with respect to language entropy is consistent

with the findings of Delorey, Knutson, and Giraud-Carrier who, for the same SourceForge

data set, report that approximately 70% of developers write in a single language per year

[20].

The relative density of the data is much easier to see in Figure 3.4. Density maps

3.4(a) and 3.4(b) confirm that the greatest density occurs on the y-axis. In fact, the data at

entropy zero is so dense that it washes out the rest of the data. Density maps 3.4(c) and

37

3.4(d) increase the contrast by calculating the densities for only the data with entropy values

greater than zero.

Since this study intends to show a significant relationship between language entropy

and lines contributed, we must demonstrate both a significant correlation between the two

metrics and a reasonable variance in the data. The data plot and density maps, however, show

a large spread in the data, indicating considerable variance. For the non-zero-entropy data

(not on the y-axis), there does not appear to be a significant correlation between language

entropy and lines contributed. However, the variance in the data is consistent with numerous

studies in which the authors report large variability in programmer productivity (e.g., [42],

[36], [22] and [17]). Thus, we do not expect to find consistent results across developers when

examining productivity-related metrics. In this study we are interested in (and expect to

find) a correlation within developers. Therefore, we use a random coefficients model to group

the data by developer. Because this mixed model accounts for the non-independence of the

data, it allows us to analyze trends within developers, as well as to combine all 500 analyses

into a result that is representative of the SourceForge community.

Further, because the distribution of the data is considerably different during months

in which developers contributed code in only one language (zero entropy), versus months

in which they contributed code in more than one language (entropy greater than zero), it

would be inappropriate to apply a single regression line to the full range of the data. A

random coefficients model solves this problem by allowing us to estimate a mean for the

group at zero entropy, while fitting a regression line to the rest of the data. The two groups

could be analyzed separately, but fitting them under one model allows us to pool the data

when computing the error terms, which results in tighter confidence intervals and a more

efficient analysis. Thus, our model estimates three parameters: 1) the mean of the data at

zero entropy, 2) the slope of a regression line fit to the non-zero-entropy data, and 3) the

intercept of the regression line.

38

(a) Density heat map; data at E(S) = 0 dominates

0.8
1.7

2.5

0.0

0.0

4.7

9.3

14.0

Max
Density

(b) Density height map; data at E(S) = 0 domi-
nates

(c) Density heat map; limit E(S) > 0

0.8
1.7

2.5

0.0

0.0

4.7

9.3

14.0

Max
Density

(d) Density height map; limit E(S) > 0

Figure 3.4: Relative density maps of ln(Lines Contributed) vs. Language Entropy

3.6.3 Adjusting for Serial Correlation

Another concern is the potential for serial correlation, which may occur when measurements

are taken over time. Estimating the mean of serially-correlated data requires statistical

adjustment in order to produce accurate results. The data sample in this study contains an

average of eight months of measurements per developer, which is insufficient to confidently

identify a serial correlation [44]. However, to be conservative we assume that serial correlation

exists in the data and adjust for it in our analysis.

39

2560
1280
640
320
160
80
40
20

2–10

1

. . .

(a) Log scale

1-10

100

200

400
300

500
600

800

900

1000

700

. . .

(b) Normal scale

Figure 3.5: Entropy bands for the two-language case (labeled by equivalence class from the
axes)

3.6.4 Banding in the Data

The scatter plot in Figure 3.3 reveals a pattern of curving lines at the bottom of the point

cloud between zero and one entropy. This banding pattern is due to the interplay between

the metrics for language entropy and lines contributed. Specifically, the two metrics partition

the data points into equivalence classes, one for each band on the graph. Figure 3.5(a) shows

a graph of the equivalence classes on the log scale for the two-language case. Data points in

the first equivalence class (forming the band closest to the x-axis) correspond to monthly

contributions in which all but one line was written in the same language. Data points in

the second equivalence class correspond to monthly contributions in which all but two lines

were written in the same language. Notice that for each equivalence class, as the total lines

contributed increases, the entropy score approaches zero. Entropy bands for three or more

languages look similar to the two-language case, except that they extend to their respective

maximum entropy values (refer back to Table 3.1).

Figure 3.5(a) also demonstrates that as the equivalence classes progress in the positive

y-direction they grow exponentially closer together. By the fourth equivalence class the bands

visibly blend on the graph. Thus, even though the bands are discrete in the y-direction, the

space between them quickly becomes negligible.

40

Lower Upper Standard
Parameter Estimate 95% CL 95% CL p-value Error DF

zeroEntropyGroupMean 4.0678 3.9262 4.2094 ¡.0001 0.07209 499
nonZeroEntropyGroupDiff 2.1983 2.0152 2.3814 ¡.0001 0.09300 259
nonZeroEntropyGroupSlope -0.5072 -0.7281 -0.2863 ¡.0001 0.11210 236

Table 3.4: Model parameter estimates on the log scale

Impact on Regression Coefficients

The banding pattern demonstrates that the discrete range of the LOC metric restricts the

area of the graph into which data may fall. For the range of the data in Figure 3.3, the

restriction appears significant, which brings into question the regression model previously

discussed. Specifically, since the model assumes that the domain and range of the data are

continuous, will it yield inaccurate results due to the non-continuous space into which the

data are mapped by the metrics? It appears plausible from Figure 3.5(a) that the restricted

area at the origin and/or the slope of the bands may cause the slope of a regression line to

be inaccurately negative.

One method for validating the regression model is to test it on data for which the

correlation between language entropy and lines contributed is known. Therefore, we produce

an artificial data sample for the two-language case such that no correlation exists between

language entropy and lines contributed. We generate our artificial sample by replacing all

y-values in the real sample with random values. Each random y-value is selected from the

range of all possible values that could produce the corresponding entropy score. In addition

to limiting the sample to the two-language case, we also cap the maximum lines contributed

at 5,000, a reasonable upper bound for one month’s work for a single developer (see Section

3.5.2). Additionally, this limit increases the impact of the restricted area on the regression

line. Applying these limits, the artificial sample incorporates 92.1% of the data points from

the real sample. Further, the artificial sample retains many of the characteristics of the real

sample (e.g., developer groupings).

Running the selected regression analysis on the artificial, non-correlated sample

demonstrates that the shape of the space into which the data is mapped by the metrics does

41

not appreciably affect the model’s slope parameter. For our artificial sample, the analysis

results in a small negative slope that is not statistically distinguishable from zero (two-sided

p-value of 0.50). Consequently, any significant negative (or positive) slope found in the real

data should indicate a true correlation between language entropy and lines contributed.

This result is due to the fact that on the normal scale the restricted area at the

origin is actually negligible for the range of the data (see Figure 3.5(b)). Logging the

dependent variable does not compromise the analysis because the compression ratio of the

log transformation increases exponentially as its argument increases linearly. In effect, the

transformation’s amplification of the low-range data is counteracted by the way it compresses

the high-range data more significantly, causing the analysis to appropriately place greater

weight on the high range.

The second parameter, that estimates the mean for the data at zero entropy, is also

unaffected by the data mapping. The analysis of the artificial, non-correlated data yields a

parameter estimate of 2,502 for the mean of the data at zero entropy (two-sided p-value less

than 0.0001), as expected for data randomly selected from the range 1 to 5,000. Although

the p-value is extremely low (because the sample size is large), a two-line deviation from the

median of the range is not practically significant. Thus, any practically significant deviation

from the mean for the zero-entropy data would indicate a non-random effect.

Although the mean for the zero-entropy data and the slope of the regression line for the

non-zero-entropy data are not affected by the data mapping, the intercept of the regression

line is affected. The analysis of the artificial, non-correlated data yields an intercept of 3,311

LOC—809 lines above the median of the data range (2,500 LOC). The positive shift in the

intercept of the regression line is another artifact of the interplay between the metrics, which

results in a mapping of the data into a space with a density gradient that increases radially

from the origin (see Figure 3.5(b)). Thus even before taking the natural log of the dependent

variable, the higher-range data is denser, artificially pulling up the intercept of the regression

line. The regression model accounts for the density shift due to the log transformation, but

42

not for the gradient introduced by the metrics. Thus, finding a positive difference in the real

data sample between the intercept of the regression line and the mean of the zero-entropy data

may not indicate a real difference between the two groups.

3.6.5 Boundary at Entropy Value of 1.0

The data exhibit a vertical boundary at the entropy value of 1.0 (refer back to Figure 3.3).

This pattern is a consequence of the distribution of the data points. Delorey, Knutson, and

Giraud-Carrier found in their analysis of the SourceForge data set that only 10% of developers

use more than two languages per year [20]. As a result, we expect the data beyond two

languages to be sparse. Since entropy values greater than 1.0 can only belong to the case of

three or more languages, the boundary at the entropy value of 1.0 is simply an artifact of the

shift in data point density around the maximum entropy value for the two-language case (as

is evident from the density maps in Figure 3.4).

3.7 Results

Table 3.4 shows estimates (on the natural log scale) of the model parameters, with confidence

intervals and two-sided p-values. All three parameters are statistically significant with p-values

less than 0.0001. Such small p-values allow us to confidently conclude that the relationship

between language entropy and lines contributed is not due to random chance. The low error

terms (which result in narrow confidence intervals around the parameter estimates) give us

confidence that our sample size is sufficient to accurately estimate the population variance.

Further, since the data sample was randomly selected (as described in section 3.5.1), we can

conclude that the observed patterns characterize the SourceForge community. However, since

this is an observational study, we cannot infer causality. Therefore, the remainder of the

discussion of results describes the magnitude of the observed relationship between language

entropy and lines contributed.

43

In Table 3.4, the zeroEntropyGroupMean is an estimate of the mean of the data

points at zero language entropy (the zero group, or ZG). The nonZeroEntropyGroupDiff

represents the estimated difference between the ZG mean and the intercept of the regression

line for the non-zero-entropy data (the non-zero group, or NZG). The very low p-value

for this parameter would normally indicate that the ZG mean is significantly different

from the trend in the NZG. However, as discussed in Section 3.6.4, a positive difference

between the intercept of the regression line and the estimate of the mean at entropy zero

may be nothing more than an artifact of the metrics. Adding the first two parameter

estimates gives the estimate for the intercept of the NZG regression line (6.2661). The third

parameter, nonZeroEntropyGroupSlope, represents the slope of the NZG regression line, which

is negatively correlated with language entropy.

The magnitudes of these parameter estimates make more sense on the original scale.

However, the back-transformed estimates must be reinterpreted because the analysis is

performed on log-transformed data. Specifically, the ZG mean and the intercept of the NZG

regression line both represent medians on the original scale. Further, the slope of the NZG

regression line becomes a multiplicative factor, which means that an increase in language

entropy results in a multiplicative decrease in lines contributed. Equations 3.4 and 3.5 show

the back-transformed model, and Figure 3.6 shows the model graphed on the normal scale.

ZGmedian = e4.0678

= 58.4 (3.4)

NZG = e(4.0678+2.1983)e−0.5072x

= 526.4(e−0.5x) (3.5)

For months in which a developer submits code in one language (ZG), the developer

contributes, on average, 58 LOC (95% confidence interval from 51 to 67 LOC). However,

44

 !

0 0.4 0.8 1.2 1.6 2 2.4

100

200

300

400

500

600

NZG

"!!ZG Median

High
Fragmentation

Low
Fragmentation

Low
Productivity

High
Productivity

Figure 3.6: Best-fit model on the normal scale

extrapolating the trend in the NZG, which represents months in which developers submitted

code in more than one language, one would expect the ZG median to be 526 LOC—a

significant difference. Thus, the best-fit model for the data indicates that during months

in which a developer contributes code in only one language, the developer also tends to

contribute significantly less code than during months in which he or she contributes in more

than one language.

However, taking into account the fact that the metrics artificially inflate the intercept

of the regression line in our analysis (see Section 3.6.4), the positive difference between the

intercept of the regression line and the mean of the zero-entropy data may not be a real

effect. Further, this difference considers both highly and marginally active developers equally.

The marginally active developers, who make only a few small contributions (and for whom a

productivity increase is relatively uninteresting), are likely pulling down the ZG median. In

particular, when a developer writes only a small amount of code it is more likely that the

developer will write in a single language. Removing marginally active developers, therefore,

should remove more data points from those on the y-axis than from the rest of the graph,

which would reduce the difference between the two groups.

For months in which a developer submits code in more than one language, the

developer’s monthly contributions decrease by an estimated 4.9% for each 0.1 unit increase

in language entropy (95% confidence interval from 2.8% to 7.0%). For a 1.0 unit increase

45

in language entropy (e.g., writing equally in two languages versus writing predominantly in

one language), a developer’s monthly contribution drops by approximately 39.8% on average

(95% confidence interval from 24.9% to 51.7%).

Thus, in answer to the central question—What is the relationship between

programmer productivity and the concurrent use of multiple programming lan-

guages?—for a developer who programs in multiple languages, it appears that he or she

is most productive when language fragmentation is minimal (i.e., the developer programs

predominately in a single language).

3.8 Conclusions

The primary objective of this study was to test the relationship between programming

language fragmentation and developer productivity in the SourceForge community. The

results of the study demonstrate a significant negative correlation between language entropy

and the size of developer contributions. Since the data was randomly selected, we can

make inferences to the general SourceForge community for those developers who worked

on open-source, Production/Stable or Maintenance projects using CVS from 1995 through

August 2006. Specifically, for SourceForge developers writing in multiple languages, we can

infer with high confidence that writing evenly across languages negatively impacts the size

of monthly code contributions. However, because our study is observational, we cannot

infer that the differences in language entropy caused the observed variation in productivity.

Nevertheless, the results open up avenues of research for investigating the relationship and

possible effects of multi-language development on productivity.

We also have high statistical confidence that, for SourceForge developers writing in

a single language, the average monthly contribution is about 58 LOC. However, since our

sample includes minimally active developers, this estimate is likely too low for full-time,

professional developers. Although we can generalize this result to the SourceForge community,

conclusions about the more interesting group of active developers are somewhat suspect.

46

Additionally, without further analysis we cannot make conclusions about the productivity

difference between writing in a single language versus multiple languages. Applying our

analysis tools to the non-correlated data clearly demonstrates that the tools are unable to

accurately differentiate these two groups.

3.9 Limitations

In the following subsections we identify several limitations of this study.

3.9.1 Inferences

Our inferences are limited to developers on SourceForge. Therefore, we cannot make gen-

eral conclusions about other software development environments. Also, the SourceForge

archive obscures certain information about developers (such as the identity of gatekeepers).

These issues would be best addressed through replication of results in other development

environments.

This study also does not confirm causality inferences. To understand the cause of the

observed relationship between language entropy and lines contributed, we would need to run

controlled, randomized experiments (see Section 3.10.1).

3.9.2 Non-Contributing Months

The developers in our data set did not always contribute to projects in contiguous months.

For example, a developer might contribute changes in April, skip May, and contribute again

in June. For the purposes of this study we assumed that developers submitted contributions

in the same months in which those contributions were written. We took steps to help ensure

our assumption (see Section 3.5.2 and 3.5.2). However, the data likely still contain some

instances that violate the assumption, for which we have not been able to control. Although

we believe the impact of such instances to be minimal, the extent of their impact on the

study results is unknown.

47

3.9.3 Productivity Measure

Despite its utility in this study, the LOC/month metric is only one of many programmer

productivity metrics. Further studies could extend this analysis to other productivity models.

Additionally, our productivity model did not account for differing levels of programming

language verbosity (e.g., Perl versus C). In a future study we may be able to normalize the

data using average commit size as an estimate of language verbosity.

3.9.4 Marginally Active Developers

Developers who make only small contributions per month may bias the analysis results. First,

these marginally active developers are probably less likely to write in multiple languages

during a given month. In this case, filtering them out could reduce the disparity between

the zero- and non-zero-entropy groups (especially considering the power law trends found

by Healy and Schussman in SourceForge data [29]). Further, the estimated contribution

averages for the active developer group are much less likely to suffer from sampling error (not

to mention that the active group is more interesting to study from a productivity standpoint).

Thus, it would be valuable to repeat this study with only “active” developers.

3.10 Future Work

In this section we outline avenues for future research.

3.10.1 Establishing Causality

This study demonstrates a correlation between language entropy and the size of developer

contributions within the population of SourceForge developers. To understand the cause of

the observed relationship we need to run controlled randomized experiments. We believe that

such efforts, in combination with corporate case studies (as described in Section 3.10.2), would

provide meaningful results from which practitioners could make better-informed decisions

regarding project-developer assignments and the adoption of new languages and frameworks.

48

3.10.2 Corporate Case Studies

Running an impact analysis of language entropy utilizing data from industry projects would

allow us to expand our inferences into the corporate domain, at which point we could ask a

number of important questions, including:

• If my company is maintaining a large code base in COBOL, how will my developers’

productivity be affected by an additional project in Java?3

• My company already supports products in different languages. Will my developers be

more productive if I assign each one to a specific language, as opposed to spreading

them across languages?

3.10.3 Paradigm Relationships

Many of the languages in our study seem to cluster by paradigm (for example, object-oriented

languages such as Java, C++, and C#). Switching between programming languages that share

a common paradigm may not be as cognitively difficult as switching between languages from

different paradigms. We expect changes in language fragmentation to affect a programmer

working within a single paradigm less than one working across multiple paradigms.

3.10.4 Commonly Grouped Languages

In this study, we examine the relationship between language entropy and productivity across

all languages. However, some languages are commonly used together (e.g., many web projects

are based on Java, JavaScript, and HTML). Is the cognitive burden of context switching

between languages reduced for developers who work across a set of commonly grouped

languages? What about the burden of maintaining skills in multiple languages?

3Lest the reader dismiss this example as unrealistic, the scenario is taken from an actual corporate project,
the thrust of which is a massive migration of application software from COBOL to Java.

49

3.10.5 Language Fragmentation as a

Productivity Measure

To better understand the relationship between language fragmentation and other productivity

metrics, we need to determine whether language fragmentation provides new information

beyond the metrics already presented in the literature. If shown to be complementary, language

fragmentation can be incorporated into more complex productivity and cost-estimation models

[14].

3.11 Acknowledgements

We are grateful to reviewers and attendees of the 4th Workshop on Public Data about

Software Development (WoPDaSD 2009) in Skovde, Sweden for valuable feedback on early

versions of this work. We are also grateful to Christian Bird for his insightful comments on a

draft of this paper.

50

Chapter 4

Threats to Validity in Analysis of Language Fragmentation on SourceForge

Data

Reaching general conclusions through analysis of SourceForge data is difficult and

error prone. Several factors conspire to produce data that is sparse, biased, masked, and

ambiguous. We explore these factors and the negative effect that they had on the results of

“Impact of Programming Language Fragmentation on Developer Productivity: a SourceForge

Empirical Study.” In addition, we question the validity of evolutionary or temporal analysis

of development practices based on this data.

4.1 Introduction

The present work began as a replication of a study by Krein, MacLean, Delorey, Knutson,

and Eggett, “Impact of Programming Language Fragmentation on Developer Productivity:

a SourceForge Empirical Study” [33]. This study explored the contributions of individual

software developers in light of their use of multiple programming languages.

As authors of the original study, we desired to conduct a differentiated replication

in order to explore the original question from another angle—that of project evolution.

We hoped to clarify relationships between the nature of project growth and the language

fragmentation of individual authors contributing to such projects. We expected that such a

replication study would shed light on the potential impact of writing software in only one

language, as opposed to developing in two or more languages.

51

In order to assess the impact of language fragmentation on project growth, we first

needed to develop a technique for reliably measuring project growth in the context of our

data set, which required understanding the growth patterns of projects on SourceForge. This

intermediate objective yielded unexpected insights into the nature and usability of project

data on SourceForge, particularly as it relates to the analysis of project evolution.

In this paper we present potential threats to validity, and insights into the limitations

of SourceForge project data for understanding project evolution. In particular, we present our

results in light of the replication we conducted to explore the effects on projects of developing

software in multiple languages. In order to provide context for our insights, we provide

background information on the original study which we sought to replicate. In addition to

potential pitfalls inherent in SourceForge project data, we also describe threats to validity

inherent in the study of language fragmentation and individual developer productivity using

SourceForge data.

4.1.1 SourceForge as a Data Source

Over 100 researchers use the SourceForge Research Data Archive (SRDA)[5] hosted at Notre

Dame to analyze development and distribution on SourceForge.net. Many utilize the data to

study development behavior in open source projects1.

Howison and Crowston enumerate several pitfalls in using SourceForge as a data source

for research [30]. In section 4.2 we discuss our insights into the limitations of SourceForge for

studying certain project attributes.

4.1.2 Language Fragmentation

The targeted study explored the correlation between language fragmentation and programmer

productivity. Fragmentation is measured by language entropy (originally defined in [32]),

with productivity defined as the number of lines of code committed to all “Production/Stable”

1In addition to the intrinsic value of understanding open source development, some argue that OSS is
sufficiently analogous to commercial software that global conclusions are justified.

52

or “Maintenance” phase projects on SourceForge in a given month. In order to provide

context for our discussion of threats to validity, we briefly present the definitional premises of

the original study.

4.1.3 Data Set

For this study and [33] the data set (Sample) comprises all projects designated “Produc-

tion/Stable” or “Maintenance” as of the SRDA dump of SourceForge. Project history was

gathered from project inception through October 2006. The data was originally collected for

[21].

4.1.4 Definitions

In this study we define two terms precisely.

Definition 1 Daily Commit is the unit of work, defined as the net contributions, in lines of

code, for all authors to a project on a given day.

Although monthly contributions were the unit of work in the Fragmentation study,

we found that Daily Commit unmasks certain attributes of the data that are not visible at a

coarser granularity.

Definition 2 Project Size is the total size of the project, in lines of code, at the most recent

commit in the Sample.

4.2 Project Attribute Pitfalls

Several attributes of SourceForge projects may lead to erroneous results if not properly

considered: 1) Unnatural Project Growth Patterns (which we refer to as Cliff Walls), 2)

Auto-Generated Source Code, 3) Internal Development, 4) Development Pushes, and 5) Small

Projects. To address the first four items we initially examine the Java eXPerience FrameWork

(JXPFW) project as an example of problems in the data that lead to erroneous or artificially

53

inflated results. After articulating the problems in the single case, we show that the same

problems exist in a large percentage of the projects on SourceForge. Finally, we address the

issues that arise when analyzing small projects.

4.2.1 Java eXPerience FrameWork

JXPFW is a moderately sized, “Production / Stable” project written primarily in Java. Other

languages utilized in this project include XML, CSS, HTML, and XHTML. The project was

chosen from 25 randomly selected projects because it had the largest Daily Commit.

As of August 6, 2006 JXPFW contained 160,946 total lines—placing it in the top

quartile of all projects in the Sample—of which 63,720 were classified as source code2. At

least 67,023 lines appear to be auto-generated files (discussed later).

4.2.2 Language Entropy

In order to explain the problems associated with using SourceForge data to analyze Language

Fragmentation, we must first define entropy and its calcualtion. Entropy, defined as

E(S) = −
c∑

i=1

(pi × log2 pi) (4.1)

measures the “evenness” and “richness” of a distribution (p) of classes (c) in a system (S). In

Language Entropy “evenness” describes how evenly a developer contributes code in multiple

languages. For example, if a developer commited 100 lines of Python and 100 lines of Java in

one month, he or she would have maximize entropy for two languages: 1.0. For 150 lines of

Python and 50 lines of Java Language Entropy would be 0.811. “Richness” describes the

number of languages employed by an author in a given month. Maximum entropy is

log2 c (4.2)

2Files were classified as source code or not source code based upon file extension. Our list of extensions
covers 99% of the data in the Sample.

54

where c is the number of languages (classes).

The authors found a negative correlation between language entropy and programmer

productivity. However, further analysis casts doubt on the generality of these conclusions.

4.2.3 Cliff Walls

Abnormal growth spikes in a project (Cliff Walls) constitute a serious threat to validity in

evolutionary research utilizing SourceForge project data. These cliff walls represent periods

of time during which data for the project is masked, missing, or ambiguous. Figure 4.1

shows the growth of the Java eXPerience FrameWork over time. The project was created on

September 8, 1999 but sat dormant for over two and a half years before any source code was

committed.

0
50
00
0
10
00
00

Java eXPerience Framework Total Project Growth

P
ro

je
ct

 S
iz

e
(T

ot
al

 L
in

es
)

2000 2001 2002 2003 2004 2005 2006

Figure 4.1: Growth of the Java eXPerience FrameWork over time.

On May 1, 2002, 138 new source code files were added to the project by a single

author, totaling 18,675 lines of code (see Figure 4.2). In addition, another 62 lines were

modified in 9 existing files. Auto-generated source code, internal development, gate-keepers,

and development pushes are all developmental practices that could lead to these abnormally

large commit sizes. We discuss each of these in turn in the following sections.

55

0
20

00
0

40
00

0
60

00
0

Java eXPerience Framework Source Code Growth

P
ro

je
ct

 S
iz

e
(T

ot
al

 L
in

es
 o

f C
od

e)

2000 2001 2002 2003 2004 2005 2006

Figure 4.2: Growth of the Java eXPerience FrameWork over time.

4.2.4 Auto-Generated Files

42% of the lines in JXPFW are auto-generated .mdl files marked as binary in CVS. However,

unlike image files such as .gif, .mdl line count is included in the lines added statistic. In

JXPFW these files are easy to identify due to their extreme size in proportion to the Project

Size and the fact that they are marked binary. Unfortunately, in many projects auto-generated

files are legitimate source code and don’t exhibit any telltale characteristics. For example,

Java user interface code is often generated by tools rather than written by hand. These files

can be difficult to identify but probably don’t represent a unit of work analogous to code

written by hand.

No correction is made in the Language Fragmentation paper for auto-generated files,

although the issue is listed in the threats to validity. These commits can significantly alter the

result of the language entropy calculation. If auto-generated code is committed in a language

that otherwise represents a small proportion of an author’s efforts (such as auto-generated

XML configuration files), language entropy is artificially increased. Conversely, if the auto-

generated code is in a dominant language (such as Java user interface code), language entropy

is artificially decreased. Both results cast doubt on the validity of the original calculation.

56

4.2.5 Internal Development

Another possible cause of Cliff Walls is internal development not yet stored on SourceForge.

Such activity may result from corporate sponsorship or co-located developers who find it

easier to collaborate locally. In both cases, SourceForge essentially becomes a distribution

tool rather than a collaboration environment. In fact, 12.2% of the projects were only active

on a single day (1,221 of 9,997). In addition, 50% of the projects had fewer than 17 active

days (5,004 of 9,997). One project, “ipfilter” was active for a two and a half hour period on

August 6, 2006, in which 71,878 lines were checked in. No changes were made before the data

was extracted four months later.

Additionally, projects may experience periods of internal development. For example,

shortly before release commits may be restricted to only allow bug fixes. These intermittent

stages of restrictive commits may cause periodic cliff walls.

When development occurs outside of SourceForge, the data committed to the public

repository is of such coarse granularity that conclusions about development efforts and

practices based on the revision data are suspect. In Figure 4.2 we see that there appears to

be no development activity for the first two and a half years of the project. However, given

the large commit size on May 1, 2002, it is probable that the growth approximates Figure

4.3. Unfortunately, without further data we can only make educated guesses.

4.2.6 Development Pushes

Although auto-generated files and internal development may be the culprits in some cases, in

other cases large commits may simply indicate an impending deadline or “development push.”

While it is unlikely that all of the developers on a project wrote 20% of a project in a single

weekend, it is not impossible, and therefore cannot be discounted. Distinguishing between

development pushes and artificially inflated commits is extremely difficult, and requires the

acquisition of knowledge about a project from non-code sources such as email lists, bug

reports, and interviews.

57

0
20

00
0

40
00

0
60

00
0

Java eXPerience Framework Source Code Growth

P
ro

je
ct

 S
iz

e
(T

ot
al

 L
in

es
 o

f C
od

e)

2000 2001 2002 2003 2004 2005 2006

Estim
ated Growth

Recorded Growth?

Date of Creation

Figure 4.3: Growth of the Java eXPerience FrameWork over time with estimate of actual
growth.

Initial Commit Percentage

of

 P
ro

je
ct

s

0% 25% 50% 75% 100% 125% 150%

0
20
00

40
00

60
00

80
00

Figure 4.4: Percentage of the Project Size explained by initial commits.

4.2.7 Generalizing Pitfalls

The Cliff Walls demonstrated in JXPFW occur frequently in the Sample. Over 4,000 projects

are made up almost entirely of initial commits, meaning that the files were checked in at their

maximum size (see Figure 4.4). This effect is most pronounced in projects whose size lies in

the first quartile3, and is only slightly less pronounced in the other three (see Figure 5.6).

3Project size quartiles are: 1) 2 to 3,661.25, 2) 3,661.25 to 15,027, 3) 15,027 to 54,688.25, and 4) 54,688.25
to 27,283,364

58

of

 P
ro

je
ct

s

0% 25% 50% 75% 100% 125% 150%
0

40
0

80
0

12
00

(a) First Quartile

of

 P
ro

je
ct

s

0% 25% 50% 75% 100% 125% 150%

0
40
0

80
0

(b) Second Quartile

of

 P
ro

je
ct

s

0% 25% 50% 75% 100% 125% 150%

0
40
0

80
0

(c) Third Quartile

of

 P
ro

je
ct

s

0% 25% 50% 75% 100% 125% 150%

0
40
0

80
0

(d) Fourth Quartile

Figure 4.5: Percentage of the Project Size explained by initial commits by Project Size
quartile.

4.2.8 Small Projects

The simplest explanation for cliff walls in the data is small project size. If a 4,000 line Daily

Commit is made to a project with a size of 8,000 lines, that commit represents 50%4 of the

Project Size. However, the same Daily Commit to a project with a Project Size of 500,000

lines is negligible. Given the analytical impact of this phenomenon, we explore a possible

explanation for small projects in the Sample, given the requirement that the projects are

marked “Production/Stable” or “Maintenance.”

78% (3,197 of 4,094) of projects with Project Size less than 10,000 and 57% (5,688

of 9,997) of all projects in our Sample have only a single author. Projects that can be

developed and maintained by a single author are generally smaller than those developed

and maintained by a dozen or more authors. To complicate matters, a single author has no

need for collaborative tools, and may therefore be less likely to “commit early, commit often.”

Instead, small projects often exhibit peculiarities unique to an author and not relevant in

discussions of collaborative product development.

4The dramatic cliff wall in Figure 4.1 is just shy of 50% of the total project size

59

4.3 Author Behavior Pitfalls

In addition to the pitfalls of project data that we discuss in the previous section, we observe

a number of problems with author data that render analysis difficult or problematic. Several

limitations are identified in the original study that we set about to replicate [33]. In light of

the Cliff Walls and other limitations with projects, in this section we address Marginally

Active Developers and Non-Contributing Months. Finally, we explore Author Project Size

Bridging as an additional limitation.

4.3.1 Marginally Active Developers

Krein, et. al. [33] state that marginally active developers—those who contribute code during

a limited number of months—may bias the results since they may be less likely to write

in multiple languages. Observed at a granularity of one month, these authors represented

few data points and therefore were less likely to generate realistic regression lines in the

random coefficients model. We suggest addressing potential errors in analysis (discussed in

Section 4.4) as well as using a finer granularity to mitigate the effects of low productivity.

If developers are truly developing in multiple languages concurrently, this approach would

reveal that limitation while still capturing language entropy.

4.3.2 Non-Contributing Months

In addition to marginal activity, many developers don’t contribute regularly. Krein, et.

al., recognize the potential problems with this data masking, and filter the data to remove

abnormally large commits. However, given the Cliff Walls exposed in Section 4.2, this

approach is likely insufficient to mitigate the potentially induced error.

Figure 4.3 shows a time period of two and a half years during which development

occurred, but for which data is entirely missing. In [33] the entire development period would

have been analyzed as the contributions for a single author (named keess) in the month of

May, 2002. Classes for language entropy for the month include HTML, Java, XML, SQL, and

60

CSS. Although this data point for JXPFW would have been excluded in [33] due to its size

(19,881 lines of code), it is easy to imagine a similarly drawn-out development process with a

smaller total size that fell below the threshold of exclusion. Alternatively, if four developers

had collaborated on the JXPFW commit, it would not have been filtered.

Regardless of the size of Cliff Walls following months of inactivity, the potential for

errors in the language entropy calculation is high. Researchers must take care to filter or

categorize anomalous commits to accurately analyze developer activity.

4.3.3 Author Project Size Bridging

Analysis of author contributions reveals that authors don’t often bridge between project sizes

(see Table 4.1). Authors tend to contribute to projects of a similar size and tend not to cross

project size boundaries. To illustrate, we first must discretize projects into groups. Figure 4.6

shows a discretization by quartile on contributions ordered by project size5. In other words,

25% of the contributions were to projects of size 0 to 102,852, 25% to projects of size 102,852

to 337,858, etc.

0200400600800

0

102,852
337,858
1,086,952

27,283,364

Li
ne

s
of

 S
ou

rc
e

Co
de

 (L
og

 S
ca

le
)

of Contributions

Group 4

Group 3
Group 2

Group 1

Figure 4.6: Project size groups.

If projects are discretized into groups using these quartiles, only 6.82% (1,499 of

22,095) of authors contribute to projects in multiple groups. 93.18% of authors contribute

5Because y is on the log scale, the bins towards the top of the histogram cover much greater range than
the bins towards the bottom (notice the range of Group 1, 102,852, compared to the range of Group 4,
26,196,412). To elucidate this, we provide a boxplot. The boxplot demonstrates that most of the data in
Group 4 are outliers.

61

Group Combined
Group Authors Percentage Authors Percentage
1 11,632 52.90%

20,491 93.18%
2 4,202 19.11%
3 3,024 13.75%
4 1,633 7.43%
1, 2 633 2.88%

804 3.66%2, 3 133 0.51%
3, 4 58 0.26%
1, 3 340 1.55%

577 2.53%2, 4 151 0.69%
1, 4 66 0.30%
1, 2, 3 79 0.36%

87 0.40%
2, 3, 4 8 0.04%
1, 2, 4 25 0.11%

42 0.19%
1, 3, 4 17 0.08%
1, 2, 3, 4 9 0.04% 9 0.04%

21,990 100.00% 21,990 100.00%

Table 4.1: Author bridging, or lack thereof, between Project Size groups (see Section 4.3.3).

within a single contribution group. Another 3.66% bridge only between contiguous groups.

This general lack of bridging suggests that the author data represent four distinct populations,

rather than one. If true, this assertion requires that researchers block analysis of author

productivity and contribution by contribution group.

When the same analysis is performed on only those authors who contribute to multiple

projects, the contrast is not as extreme (see Table 4.2). However, only 13.14% (2,891 of

21,990) contribute to more than one project. Since removing single project authors also strips

out nearly 90% of the data, doing so is not a viable solution.

Further analysis of author contribution is required to determine the meaning of

the 5.15% of authors who bridge between contiguous groups. We expect that shifting the

boundaries of the groups will increase the number of authors who contribute to a single

group.

62

Group Combined
Group Authors Percentage Authors Percentage
1 1,197 41.4%

1,392 48.15%
2 75 2.59%
3 112 3.87%
4 8 0.28%
1, 2 633 21.90%

804 27.81%2, 3 133 3.91%
3, 4 58 2.01%
1, 3 340 11.76%

577 19.27%2, 4 151 5.22%
1, 4 66 2.28%
1, 2, 3 79 2.73%

87 3.01%
2, 3, 4 8 0.28%
1, 2, 4 25 0.86%

42 1.45%
1, 3, 4 17 0.59%
1, 2, 3, 4 9 0.31% 9 0.31%

2,891 100.00% 2,891 100.00%

Table 4.2: Author bridging, or lack thereof, between Project Size groups for authors who
contribute to multiple projects.

4.4 Limitations in the Original Study

In [33], the authors use lines added as the metric for productivity. They argue that lines added

captures developer productivity in two ways. First, new lines committed to a project are

recorded in the metric. Second, a line modified is recorded as a lines added and lines removed.

While this metric captures development after a file has been created, it misses a critical fact:

a file has a size when it is committed that is not recorded in lines added. This size represents

development effort that was performed outside of the purview of CVS and is recorded in

initial size. These initial sizes represent the vast majority of the size of the project.

As a result of the omission, the analysis in [33] was calculated upon a small, biased

subset of the available data—only revisions that modified existing files were included. It is

likely that the analysis is biased towards later stages of development and maintenance when

changes are more likely to modify existing files than they are to commit new files. Bug fixes

and modifications can inflate language entropy because they require few changes to numerous

63

files. A web developer who adds a field of information to an ecommerce site may make single

line changes in SQL, Java, CSS, and HTML. In initial development, on the other hand, a

single developer may work on the Java file for an extensive period of time, to the exclusion of

other languages. If the initial development is committed as a whole, and not as incremental

changes, it would not have been included in the language entropy analysis.

4.5 Insights and Conclusions

While we’ve tried to articulate a series of caveats with respect to the use of SourceForge data

for evolutionary analysis, we don’t intend to send an overly negative message. With proper

awareness and appropriate methodological adjustments, SourceForge data is a fertile source

from which to draw information and conclusions about open source development. However,

these conclusions must be tempered by taxonomic caveats based on a full understanding of

the problems we’ve identified in this paper.

4.5.1 Mitigation of Project Problems

Unnatural project growth occurs in a high percentage of projects, depending on the definition

of “unnatural.” Several questions must be answered in order to form a workable understanding:

1. What is the threshold of Daily Commit beyond which we can comfortably conclude

that the data is not fully representative of the development effort?

2. How should that threshold of Daily Commit change based upon the number of authors

contributing at a particular point in the project life cycle?

3. Is there a model that will expose, with high probability, projects for which the data is of

sufficiently fine granularity that researchers can draw conclusions about developmental

and collaborative practices without requiring heavy qualification of the results due to

data sparseness?

64

Answering these questions will provide researchers far more confidence in their results

than is currently advisable.

4.5.2 Mitigation of Author Problems

Author problems may be slightly easier to overcome than project problems. Unlike project

data, author data is derived from a single source, although there is some question whether

or not source code always represents a single developer. Temporal analysis of a developer’s

activities readily reveals unusual spikes in development, such as those at the beginning of

Figure 4.7. After the initial spike, it appears that ‘keess’ has a somewhat normal commit

pattern which could be used for analysis. However, further work is required to ensure that

this assertion is correct.

0
50
00

10
00
0

keess Development

Li
ne

s
of

 C
od

e

2003 2004 2005 2006

Figure 4.7: Development behavior of ’keess.’

4.5.3 Analytic Adaptations

SourceForge provides a wealth of data that, like other data sources, can easily be misinterpreted

due to biases, masking, ambiguity, and sparseness. As researchers, by identifying pitfalls in

the data and methods of compensation we increase the applicability of our results. These

methods of analysis fortify our results against data irregularities and validate our exploration

in this realm of open source software development.

65

4.5.4 Impact on the Original Study

The original study likely suffers from inflated language entropy numbers due to the cliff

walls discussed herein as well as the exclusion of the initial size values. As discussed in

Section 4.4, these omissions probably bias the study towards later stages of development

when incremental changes are more prevalent than new source files. Ultimately, the study

needs to be reevaluated in light of the findings discussed in this work.

4.5.5 Differentiated Replication

This study highlights the benefits of differentiated replication. The authors of the original

study were satisfied that their work accurately summarized author programming language

usage in SourceForge. However, when analyzed from a different angle—project development

rather than single developer activity—it is apparent that they failed to account for several

anomalies in the data. Although the authors in the original study strove to provide an

unbiased, complete analysis of the data, the domain is simply too large to understand through

a single study. Replication affords researchers new avenues and veins of exploration in

partially explored areas and is a valuable tool to broaden and deepen understanding in a

domain.

66

Chapter 5

Trends That Affect Temporal Analysis Using SourceForge Data

SourceForge is a valuable source of software artifact data for researchers who study

project evolution and developer behavior. However, the data exhibit patterns that may bias

temporal analyses. Most notable are cliff walls in project source code repository timelines,

which indicate large commits that are out of character for the given project. These cliff walls

often hide significant periods of development and developer collaboration—a threat to studies

that rely on SourceForge repository data. We demonstrate how to identify these cliff walls,

discuss reasons for their appearance, and propose preliminary measures for mitigating their

effects in evolution-oriented studies.

5.1 Introduction

As organizations construct software, they naturally and inevitably generate artifacts, including

source code, defect reports, and email discussions. Artifact-based software engineering

researchers are akin to archaeologists, sifting through the remnants of a project looking for

software pottery shards or searching for ancient software development burial grounds. In

the artifacts, researchers find a wealth of information about the software product itself, the

organization that built the product, and the process that was followed in order to construct

it. Further, researchers gain the ability to view artifacts not only as static snapshots, but

also from an evolutionary perspective, as a function of time. [40, 18]

Artifact-based research methods help resolve some of the limitations of traditional

research methodologies. For instance, data collection is often the most time consuming

67

research activity. Leveraging data that is already resident in repositories—collected as a

byproduct of production processes—can save a significant amount of time and effort. Using

artifact data, researchers can address software evolution questions in a matter of months that

would otherwise require longitudinal studies to be conducted over multiple years. Further,

since artifact data is a product of “natural” development processes, research procedures

are less likely to have tainted it. Generally speaking, the act of observing human-driven

processes can cause those processes to change. Since observational studies are designed to

analyze a process “in the wild,” any tampering with the context of that process threatens

the primary assumption of the study. Therefore, artifact-based research significantly reduces

the likelihood that a study’s procedure will impact the observed processes.

Despite its benefits, artifact-based research suffers from limitations. For instance, arti-

fact data is temporally separated from the processes that produced it. Therefore, researchers

must reconstruct the context in which the artifacts were originally created. Additionally,

since artifact data is removed from its original context, identifying the development attributes

actually recorded in the data can be difficult. It is challenging enough to ensure that mea-

surements taken for a specific purpose actually measure what they claim to measure [14]. It

is all the more difficult (and necessary), therefore, to validate artifact data, which is generally

collected without a targeted purpose.

Understanding the limitations of artifact data is integral to the agendas of several

research communities (e.g., FLOSS, MSR, ICSE, and WoPDaSD) and is an important step

toward validating the results of numerous studies (e.g., [10, 19, 28, 32, 39, 50, 53]). In this

paper we examine some of the limitations of artifact data by specifically addressing the

applicability of SourceForge data to the study of project evolution.

We select SourceForge data for several reasons. First, although thousands of software

projects produce millions of artifacts each year, many of those projects are conducted behind

closed doors, where access to data is prohibited by corporate and/or government policies.

Consequently, projects for which the artifacts are freely available are generally produced

68

under the banner of Open Source Software (OSS). Although some argue that the OSS model

is fundamentally different from industrial software development models [45], recent studies

suggest that the two may not be as different as originally thought [11, 23]. Further, as

one of the largest OSS hubs, SourceForge hosts thousands of projects—providing extensive

data on thousands of mature projects [20]. These projects are also stored in a consistent

format (formerly CVS for source code, but more recently SVN), which allows researchers

to compare measurements across projects and to reuse mining techniques across studies.

SourceForge data is important to the work of a large and growing community of several

hundred researchers.1

Our concerns regarding the limitations of SourceForge data originated from efforts

to replicate the results of a previous study [32, 33]. This effort led us to analyze the

growth patterns of SourceForge projects. As we visualized the evolutionary development of

SourceForge projects, we discovered that temporal studies within SourceForge are not as

straightforward as they at first appear, and that measuring project evolution in SourceForge

is fraught with complications. Mitigating the limitations we discuss in this paper is essential

to validating the results of studies that examine the evolutionary aspects of SourceForge

data.

Objective: Understand the limitations of using SourceForge data to address software

evolution research questions.

5.2 Problems

SourceForge data presents several problems that can bias or invalidate evolutionary analyses.

In this section, we address three of these problems: Non-Source Files, Cliff Walls, and High

Initial Commit Percentage. These problems particularly affect calculations that utilize project

growth measures based on lines of code added or removed. For our analysis we examine

1The number of subscribers to the SRDA (SourceForge Research Data Archive) currently exceeds 100 [5].
The actual number of researchers engaging SourceForge data is likely several times that.

69

9,997 Production/Stable or Maintenance phase projects stored in CVS on SourceForge and

extracted in October of 2006 [19].

5.2.1 Non-Source Files

Many of the text-based files in projects on SourceForge are not source code files. Examples

include documentation files, XML-based storage formats, and text-based data files such as

maps for games. It is unclear how to compare source code production with production of

non-source text-based files. In order to accurately analyze author and team contributions to

projects, we filter out these non-source files.

Most file extensions occur infrequently in SourceForge data. Of the 21,125 unique

file extensions identified, 195 were classified as common source code extensions. Studies of

source code development should limit themselves to these source code files. Our treatment of

additional data problems herein presumes a set of projects filtered under these criteria.

5.2.2 Cliff Walls

Many projects in our data set exhibit stepwise growth patterns which we refer to as “Cliff

Walls.” These monolithic commits appear as vertical (or near vertical) lines in an otherwise

smooth project growth timeline (see Figure 5.1). In our analysis we group commits into days

to identify cliff walls programmatically.

Anomaly Description

The average size of the largest cliff wall for a project is 41.8% of the total size of the project.

The median is 30.8%, meaning that half of the projects in our data set have a cliff wall that is

nearly a third of the project size. Figure 5.2 shows the distribution of projects by largest cliff

walls as a percentage of total project size as of the date of data collection. The histogram

represents the number of projects discretized by their largest cliff wall. For example, in the

70

2

Firebird Project Growth (All Source Code)

P
ro

je
ct

 S
iz

e
(M

ill
io

n
Li

ne
 o

f C
od

e)

2001 2002 2003 2004 2005 2006 2007

Vulcan Project Import (~1.3 million lines)

1

3

4

5

6

0

7

Branch Merge (~417,000 lines)

Figure 5.1: Growth of Firebird over time.

of Projects
1500 200010005000

100%

80%

60%

40%

20%

0%

80%

60%

40%

20%

0%

100%

Cliff Wall Distribution

Figure 5.2: Distribution of projects by largest cliff walls. One outlier has been removed.2

0 − 10% bin there are 1,882 projects, meaning that for these 1,882 projects the largest cliff

wall is 0 − 10% of the project size. 2

Cliff walls appear in all phases of project growth. In Figure 5.1 we see monolithic

commits throughout the studied life cycle of the project. However, in the Java eXPerience

FrameWork project (JXPFW), we only see this pattern at the beginning (see Figure 5.3).

After the initial source commit (2 1/2 years after the project was created) JXPFW appears

to grow normally.

2 We removed one outlier from the data set when creating these images. The “Codice Fiscale” project
had a large commit of 14,158 lines of code of which 13,686 were removed the following day. The total size
of the project was only 4,530 on the date our data was gathered. As a result, the project has a cliff wall
percentage of 312.54%. All other projects in our data set lie between 0% and 100%.

71

0
20
00
0

40
00
0

60
00
0

Java eXPerience Framework Source Code Growth

P
ro

je
ct

 S
iz

e
(T

ot
al

 L
in

es
)

2000 2001 2002 2003 2004 2005 2006

Figure 5.3: Growth of the Java eXPerience FrameWork over time.

Problems in Analysis

Cliff walls can cause severe biases in analysis of project evolution. If a large commit comprises

several months of software development activity, productivity metrics will be erroneously

high for the time period prior to the commit. In addition, developers will wrongfully appear

to be inactive for the previous time periods.

A cliff wall may appear in the data for a number of reasons. In Section 5.3 we discuss

four of those reasons.

5.2.3 High Initial Commit Percentage

Most of the projects in our data set grow almost exclusively by initial commit size (the size

of files when they are initially checked into CVS). The size associated with this commit, in

lines of code, is distinct from lines of code committed to (or deleted from) a preexisting file.

Anomaly Description

Initial Commit Percentage (ICP) is the percentage of the total size of the project that is made

up of initial commits. Figure 5.4 shows that most projects have a high ICP. In fact, 83.6% of

projects have an ICP of 80% or higher. This would seem to make sense given the power law

distribution of projects sizes and the assumption that a big commit to a smaller project has

a more pronounced effect (see Figure 5.5; note the log scale on the y-axis). However, this

72

Initial Commit Percentage

of

 P
ro

je
ct

s

0% 25% 50% 75% 100% 125% 150%
0

20
00

40
00

60
00

80
00

Figure 5.4: Distribution of projects by Initial Commit Percentage.

distribution holds, with small variation, regardless of project size (see Figure 5.6). High ICP

indicates that revisionary changes to existing files constitute a small percentage of project

growth.

Project Sizes

Project Size (Lines of Code)

of

 P
ro

je
ct

s

100

101

102

103

0.0e+00 5.0e+06 1.0e+07 1.5e+07 2.0e+07 2.5e+07

Figure 5.5: Project sizes.

Problems in Analysis

High ICP does not, by itself, threaten appropriate and effective analysis. However, many of

the causes of high ICP may introduce threats to validity, as discussed in Section 5.3.

73

of

 P
ro

je
ct

s

0% 25% 50% 75% 100% 125% 150%
0

50
0

15
00

(a) First Quartile

of

 P
ro

je
ct

s

0% 25% 50% 75% 100% 125% 150%

0
50
0

15
00

(b) Second Quartile

of

 P
ro

je
ct

s

0% 25% 50% 75% 100% 125% 150%

0
50
0

15
00

(c) Third Quartile

of

 P
ro

je
ct

s

0% 25% 50% 75% 100% 125% 150%

0
50
0
10
00

(d) Fourth Quartile

Figure 5.6: Distribution of project by Initial Commit Percentage discretized by project size
quartile.

5.3 Reasons for Problems

Although there are many possible causes for the anomalies mentioned in Section 5.2, we

identify four that we believe to be chief among them: Off-line Development, Auto-Generated

Files, Project Imports, and Branching. Our inclusion of these four should not be construed

as dismissive of other causes. Instead, these four causes represent, in the opinion of the

authors, the largest contributors to the aforementioned anomalies in projects on SourceForge

as a whole. Other factors may be more important than these when examining an individual

project.

5.3.1 Off-line (Internal) Development

Many projects in our data set are committed as finished, monolithic entities. After the

initial commit the authors commit infrequently and in large chunks. They do not commit

frequent, incremental changes that capture development at a fine granularity. In essence, these

projects use SourceForge as a delivery mechanism rather than a collaborative development

environment. We postulate that a few key factors may explain this phenomenon.

74

The first factor is that it may be easier or preferable for co-located developers to

collaborate via local tools, such as a locally hosted repository, or tools that are unavailable on

SourceForge, such as GIT. These teams of “volunteer”3 developers are free to use a separate

“Repository of Use” and utilize SourceForge as a “Repository of Record” [30].

Second, projects with large corporate sponsors may be primarily developed in-house

within a local development framework. When an established development organization begins

or adopts an open source project it is logical to assume that the organization will continue to

operate as it has in the past. This assumption precludes integrating SourceForge into the

collaboration and build process. Instead, SourceForge becomes a release mechanism, rather

than an integral part of the development process.

Lastly, some projects use gatekeepers as a means of quality control. These first tier

authors are responsible for reviewing source code before it can be committed to the repository.

In benign cases the second tier author creates a branch (discussed in Section 5.3.4) within

the SourceForge CVS repository which the gatekeeper inspects before merging it into the

trunk. The branch preserves all of the temporal data relating to the development efforts

of the second tier author. However, in other cases this review process occurs outside the

purview of the repository. In essence, there exist only first tier authors who commit all of the

changes to the repository, regardless of who actually produced them.

Each of these occurrences produces commits that are bursty and lossy. Both outcomes

result from aggregating an extended work period into a single recorded event. Instead of

recording events throughout the work period, and thereby retaining finer grained development

information, authors commit at the end of a protracted development effort. Consequently,

cliff walls are evident in the data and the ICP is high.

3We use the term “volunteer” in deference to other researchers who categorized open source developers as
such. However, many key “volunteers” are on the payroll of open source projects, which calls into question
the use of the term “volunteer”.

75

5.3.2 Auto-Generated Files

While the bulk of code in source code repositories is written manually, developers can use

several tools to automatically generate copious amounts of source code (e.g., GUI design

tools, lexical analyzers, and program translators [37]). The presence of auto-generated code is

a source of uncertainty when analyzing data extracted from SourceForge. Tools that generate

such code often produce large quantities of code very quickly, which is attributed to whomever

commits it. The result is that factors such as project size, productivity, cost, effort, and

defect density are often inaccurate [37]. We believe that commits containing auto-generated

code contribute to the presence of the cliff walls we have identified.

Unfortunately, the problems created by auto-generated code in SourceForge are not

easily resolved. Due to the variety of tools generating such code, the existence of a one-size-

fits-all solution for identifying auto-generated code is unlikely. Uchida et al. suggest that

code clones may be useful in the detection of auto-generated code. Their study found that

auto-generated code was a common cause of code clones in a sample of 125 packages of open

source code written in C [48]. Further investigation is needed to substantiate the utility

of code clones as an indicator for auto-generated code. However, given the computational

intensity of current methods of identifying code clones, their detection is unlikely to be a

panacea.

5.3.3 Project Imports

In Figure 5.1 we see a cliff wall labelled “Vulcan Project Import.” This cliff wall represents

an import of slightly over 1.3 million lines of code from a project named Vulcan into Firebird.

Imports represent development that occurred outside of the current repository. Depending on

their size, they can result in cliff walls and high ICP. All code committed through an import

is considered an initial revision, rather than a revisionary change.

76

5.3.4 Branching

The CVS version control system supports branching, a feature that enables concurrent

development of parallel versions of a project. However, Zimmermann et al. note that branch

merges in CVS cause undesirable side-effects for two main reasons: they group unrelated

changes into one transaction and they duplicate changes made in the branches [54].

One such side effect materializes when researchers attempt to estimate project size

through analysis of CVS logs. Changes made in a branch are counted twice: first when they

are introduced into the branch, and second when the branch is merged, resulting in a project

size estimate inflated by as much as a factor of two. A portion of cliff walls can also be

explained by merges. A merge combines all transactions on a branch that have not previously

been merged into one transaction. If a significant amount of development has taken place

prior to the merge, the merge will likely appear as a large cliff wall. In Figure 5.1 the cliff

wall labeled “Branch Merge” is a merge, not new code.

Merges can also falsely inflate measures of author contributions. All of the changes

reflected in the merge transaction are attributed to the developer who performs the merge,

regardless of whether or not that author actually produced any of those changes. If researchers

do not take measures to correctly handle merges, analysis results may be unreliable.

5.4 Solutions

In order to derive useful, accurate results in temporal analysis of projects hosted on Source-

Forge we must identify methods of mitigating the problems and associated causes that we’ve

identified. Fortunately, for most of these issues, complete or partial solutions are available

and computationally solvable. However, for some of these issues, a scalable solution is not

readily apparent.

77

5.4.1 Identify Merges

In Section 5.3.4 we discuss some of the difficulties that merges create for those studying

SourceForge data. However, certain approaches may allow researchers to overcome issues

caused by merges.

Zimmermann et al, suggest a very simple approach to identifying merge transactions

wherein researchers manually examine each transaction for which the log message contains the

word “merge” and determine if the transaction is indeed the merge of a branch [54]. There

are drawbacks to this approach. First, it is unknown what percentage of merges actually

include the word “merge” in the log message. It is possible that researchers may overlook a

significant number of valid merges due to custom log messages that use synonyms for “merge”

or that remove the word altogether. Additionally, manual approaches scale poorly as the size

of the data set increases. As a result, this method may be excessively time consuming for

large quantities of data.

Fischer, Pinzger, and Gall suggest a different approach for identifying merges in CVS.

The authors utilize revision numbers, dates, and diffs between different revisions of a source

file [26]. This approach is computationally intensive and may not scale to studies of large

sets of projects.

We suggest the possibility of a third method, that of simply assuming that all revisions

containing the “merge” keyword are merges. This is the fastest method that we have yet

identified, but would also likely suffer in terms of accuracy. Future work is required to

establish the best method(s) for identifying merges in CVS, in terms of speed and accuracy.

5.4.2 Author Behavior

One way to identify project records that contain fine grained evolutionary data is to filter

for projects that have authors who “commit early, commit often.” Frequency of commits is

a metric that captures this behavior. Figure 5.7 illustrates the distribution of projects by

commit frequency. We also show the distribution for projects with more than 40 commits

78

Days

of

 P
ro

je
ct

s

0 20 40 60 80 100

0
20
00

40
00

(a) All Projects

Days

of

 P
ro

je
ct

s

0 20 40 60 80 100

0
10
00

20
00

(b) ¿ 40 commits

Figure 5.7: Distribution of projects by frequency of author commits.

Days

of

 P
ro

je
ct

s

0 500 1000 1500 2000

0
10
00

20
00

(a) All Projects

Days

of

 P
ro

je
ct

s

0 500 1000 1500 2000

0
20
0

40
0

(b) ¿ 40 commits

Figure 5.8: Distribution of projects by project life span: the time between the first and the
last commit in a project.

to show that the graphic is not overly biased by small projects that are completed quickly.

There appear to be plenty of projects that satisfy a high frequency of commits requirement.

In Figure 5.8 we see that by limiting the data set to projects with more than 40 commits we

also get rid of most of the short-lived projects.

5.4.3 Project Size

Small projects have a much higher occurrence of large cliff walls than large projects. Figure

5.9(a) illustrates that in the first quartile of project sizes (0 to 12,307 lines of code) 31.8%

of projects are almost entirely made up of one monolithic commit. Interestingly, all of the

histograms in Figure 5.9 have a spike at 100%. However, 5.9(b), 5.9(c), and 5.9(d) have

successively greater area under the curve towards 0% (see Table 5.1 for quartiles). This

0% 25% 50% 75% 100%
0.0 12,307.5 58,517.0 271,848.2 117,147,667.0

Table 5.1: Project Size Quartiles (Lines of Code)

79

of

 P
ro

je
ct

s

0% 20% 40% 60% 80% 100%
0

20
0

60
0

(a) First Quartile

of

 P
ro

je
ct

s

0% 20% 40% 60% 80% 100%

0
10
0

20
0

30
0

(b) Second Quartile

of

 P
ro

je
ct

s

0% 20% 40% 60% 80% 100%

0
50

10
0

15
0

(c) Third Quartile

of

 P
ro

je
ct

s

0% 20% 40% 60% 80% 100%

0
10
0
20
0
30
0

(d) Fourth Quartile

Figure 5.9: Distribution of projects by largest cliff wall as a percentage of project size. See
Section 5.2.2 for a discussion of how to read these histograms.

suggests that in the second, third, and fourth quartiles there are many projects that have

small, incremental commits and may be appropriate for temporal analysis.

5.5 Insights

Artifact-based evolutionary research of projects on SourceForge can yield unbiased results

corroborated by thousands of projects. However, we must choose projects cautiously to avoid

the pitfalls identified in this paper. Further work is necessary to develop a taxonomy of

projects in this ecosystem to better understand how to choose projects automatically.

Additionally, analysis of the interaction between available meta variables may help

expose projects that capture a fine-grained development effort. Figures 5.7 and 5.8 suggest that

a significant subset of medium to large projects on SourceForge can be used for evolutionary

analysis. We hope that as we further refine our methods of selecting projects we can develop

an automated procedure for choosing projects that have the finest possible detail in their

revision history.

80

References

[1] IEEE Standard for Software Productivity Metrics. IEEE Std 1045-1992, 1993.

[2] Call for Papers. Proceedings of the International Workshop on Mining Software Reposi-

tories . http://msr.uwaterloo.ca/TSE04/CFP.pdf, 2004.

[3] Call For Participation. International Conference on Open Source Systems. http://

oss2005.case.unibz.it/Resources/Calls/OSS2005CFP.txt, 2005.

[4] 5th Workshop on Public Data about Software Development Call For Papers, 2010.

[5] Matthew Van Antwerp and Greg Madey. Advances in the SourceForge Research Data

Archive (SRDA). In Fourth International Conference on Open Source Systems, Milan,

Italy, September 2008.

[6] Juliana V. Baldo, Nina F. Dronkers, David Wilkins, Carl Ludy, Patricia Raskin, and Jiye

Kim. Is Problem Solving Dependent on Language? Brain and Language, 92(3):240–250,

2005.

[7] Victor Basili, Scott Green, Oliver Laitenberger, Filippo Lanubile, Forrest Shull, Sivert

Sørumg̊ard, and Marvin Zelkowitz. The Empirical Investigation of Perspective-Based

Reading. Empirical Software Engineering, 1(2):133–164, 1996.

[8] Ellen Bialystok and Shilpi Majumder. The Relationship Between Bilingualism and

the Development of Cognitive Processes in Problem Solving. Applied Psycholinguistics,

19(1):69–85, 1998.

[9] Alessandro Bianchi, Danilo Caivano, Filippo Lanubile, and Giuseppe Visaggio. Evaluating

Software Degradation through Entropy. volume 0, page 210, Los Alamitos, CA, USA,

2001. IEEE Computer Society.

[10] Christian Bird, Alex Gourley, Prem Devanbu, Anand Swaminathan, and Greta Hsu.

Open Borders? Immigration in Open Source Projects. volume 0, page 6, Los Alamitos,

CA, USA, 2007. IEEE Computer Society.

81

http://msr.uwaterloo.ca/TSE04/CFP.pdf
http://oss2005.case.unibz.it/Resources/Calls/OSS2005CFP.txt
http://oss2005.case.unibz.it/Resources/Calls/OSS2005CFP.txt

[11] Christian Bird, David Pattison, Raissa D’Souza, Vladimir Filkov, and Premkumar

Devanbu. Latent Social Structure in Open Source Projects. In 16th ACM SIGSOFT

International Symposium on Foundations of Software Engineering, pages 24–35, New

York, NY, USA, 2008. ACM.

[12] Barry Boehm. Managing Software Productivity and Reuse. IEEE Computer, 32(9):111–

113, 1999.

[13] Barry Boehm, Terrence Gray, and Thomas Seewaldt. Prototyping Versus Specifying:

A Multiproject Experiment. IEEE Transactions on Software Engineering, (3):290–303,

1984.

[14] Lionel Briand, Sandro Morasca, and Victor Basili. Defining and Validating Measures for

Object-Based High-Level Design. volume 25, pages 722–743, Sep/Oct 1999.

[15] D.N. Card, F.E. McGarry, and G.T. Page. Evaluating Software Engineering Technologies.

IEEE Transactions on Software Engineering, 13(7):845–851, 1987.

[16] Samuel Conte, Hubert Dunsmore, and Vincent Shen. Software Engineering Metrics

and Models. Benjamin/Cummings Series in Software Engineering. Benjamin/Cummings

Publishing Company, Inc., Menlo Park, California, USA, 1986.

[17] Bill Curtis. Substantiating Programmer Variability. Proceedings of the IEEE, 69(7):846,

July 1981.

[18] Cleidson de Souza, Jon Froehlich, and Paul Dourish. Seeking the Source: Software

Source Code as a Social and Technical Artifact. In Proceedings of the 2005 International

ACM SIGGROUP Conference on Supporting Group Work, pages 197–206, New York,

NY, USA, 2005. ACM.

[19] Daniel P. Delorey, Charles D. Knutson, and Scott Chun. Do Programming Languages

Affect Productivity? A Case Study Using Data from Open Source Projects. In 1st

International Workshop on Emerging Trends in FLOSS Research and Development, May

2007.

[20] Daniel P. Delorey, Charles D. Knutson, and Christophe Giraud-Carrier. Programming

Language Trends in Open Source Development: An Evaluation Using Data from All

Production Phase SourceForge Projects. In 2nd International Workshop on Public Data

about Software Development, June 2007.

82

[21] Daniel P. Delorey, Charles D. Knutson, and Alex MacLean. Studying Production

Phase SourceForge Projects: A Case Study Using cvs2mysql and SFRA+. In Second

International Workshop on Public Data about Software Development, June 2007.

[22] Tom DeMarco and Timothy Lister. Programmer Performance and the Effects of the

Workplace. In Proceedings of the 8th International Conference on Software Engineering,

pages 268–272, Los Alamitos, California, USA, 1985. IEEE Computer Society Press.

[23] Nicolas Ducheneaut. Socialization in an Open Source Software Community: A Socio-

Technical Analysis. Computer Supported Cooperative Work, 14(4):323–368, 2005.

[24] Anne Smith Duncan. Software development productivity tools and metrics. In Proceedings

of the 10th International Conference on Software Engineering, pages 41–48, Los Alamitos,

CA, USA, 1988. IEEE Computer Society Press.

[25] Albert Endres and Dieter Rombach. A Handbook of Software and Systems Engineering:

Empirical Observations, Laws and Theories, chapter 9, pages 190–192. Fraunhofer IESE

Series on Software Engineering. Pearson Education Limited, Harlow, England, 2003.

[26] Michael Fischer, Martin Pinzger, and Harald Gall. Populating a Release History Database

from Version Control and Bug Tracking Systems. In Proceedings of the International

Conference on Software Maintenance, page 23, Washington, DC, USA, 2003. IEEE

Computer Society.

[27] Warren Harrison. An Entropy-Based Measure of Software Complexity. IEEE Transactions

on Software Engineering, 18(11):1025–1029, Nov 1992.

[28] Ahmed E. Hassan. Predicting Faults Using the Complexity of Code Changes. In

Proceedings of the 31st International Conference on Software Engineering (ICSE ’09),

pages 78–88, New York, NY, USA, 2009. ACM.

[29] Kieran Healy and Alan Schussman. The Ecology of Open-Source Software Development.

Technical report, University of Arizona, USA, January 2003.

[30] James Howison and Kevin Crowston. The Perils and Pitfalls of Mining SourceForge. In

Proceedings of the International Workshop on Mining Software Repositories, pages 7–11,

2004.

[31] Capers Jones. Software Assessments, Benchmarks, and Best Practices. Addison-Wesley

Longman Publishing Co., Inc., Boston, Massachusettes, USA, 2000.

83

[32] Jonathan L. Krein, Alexander C. MacLean, Daniel P. Delorey, Charles D. Knutson,

and Dennis L. Eggett. Language Entropy: A Metric for Characterization of Author

Programming Language Distribution. 4th Workshop on Public Data about Software

Development, 2009.

[33] Jonathan L. Krein, Alexander C. MacLean, Daniel P. Delorey, Charles D. Knutson,

and Dennis L. Eggett. Impact of Programming Language Fragmentation on Developer

Productivity: a SourceForge Empirical Study. In International Journal of Open Source

Software and Processes, volume 2, pages 41–61, June 2010.

[34] Alexander C. MacLean, Landon J. Pratt, Jonathan L. Krein, and Charles D. Knutson.

Threats to Validity in Analysis of Language Fragmentation on SourceForge Data. In

Proceedings of the 1st International Workshop on Replication in Empirical Software

Engineering Research, May 2010.

[35] Alexander C. MacLean, Landon J. Pratt, Jonathan L. Krein, and Charles D. Knutson.

Trends That Affect Temporal Analysis Using SourceForge Data. In Proceedings of the

5th International Workshop on Public Data about Software Development, June 2010.

[36] Katrina Maxwell, Luk Van Wassenhove, and Soumitra Dutta. Software Development

Productivity of European Space, Military and Industrial Applications. IEEE Transactions

on Software Engineering, 22(10):706–718, October 1996.

[37] Pam McDonald, Dan Strickland, and Charles Wildman. Estimating the Effective Size of

Autogenerated Code in a Large Software Project. In Proceedings of the 17th International

Forum on COCOMO and Software Cost Modeling, 2002.

[38] Audris Mockus. Amassing and Indexing a Large Sample of Version Control Systems:

Towards the Census of Public Source Code History. In 6th IEEE International Working

Conference on Mining Software Repositories, 2009, pages 11–20. IEEE, 2009.

[39] Audris Mockus, Roy T. Fielding, and James D. Herbsleb. Two Case Studies of Open

Source Software Development: Apache and Mozilla. ACM Transactions on Software

Engineering and Methodology, 11(3):309–346, 2002.

[40] Kumiyo Nakakoji, Yasuhiro Yamamoto, Yoshiyuki Nishinaka, Kouichi Kishida, and

Yunwen Ye. Evolution Patterns of Open-Source Software Systems and Communities. In

Proceedings of the International Workshop on Principles of Software Evolution, pages

76–85, New York, NY, USA, 2002. ACM.

84

[41] Edward Nelson. Management Handbook for the Estimation of Computer Programming

Costs. Technical report, Systems Development Corporation, 1966.

[42] Lutz Prechelt. The 28:1 Grant/Sackman Legend is Misleading, or: How Large Is

Interpersonal Variation Really? Technical report, Universität Karlsruhe, Fakultät für

Informatik, Germany, December 1999.

[43] Lutz Prechelt and Walter Tichy. A Controlled Experiment to Assess the Benefits of

Procedure Argument Type Checking. IEEE Transactions on Software Engineering,

24(4):302–312, 1998.

[44] Fred L. Ramsey and Daniel W. Schafer. The Statistical Sleuth: A Course in Methods

of Data Analysis, chapter 15, pages 436–455. Duxbury, Pacific Grove, California, USA,

2nd edition, 2002.

[45] Eric S. Raymond. The Cathedral and the Bazaar. Knowledge, Technology & Policy,

12(3):23–49, 1999.

[46] Eric S. Raymond et al. The Cathedral and the Bazaar: Musings on Linux and Open

Source by an Accidental Revolutionary. O’Reilly & Associates, Inc., 2001.

[47] Claude Shannon. A Mathematical Theory of Communication. The Bell System Technical

Journal, 27:379–423, 623–656, Jul/Oct 1948.

[48] ShinjiUchida, Akito Monden, Naoki Ohsugi, Toshihiro Kamiya, Ken-Ichi Matsumoto,

and Hideo Kudo. Software Analysis by Code Clones in Open Source Software. The

Journal of Computer Information Systems, 45(3):1–11, 2005.

[49] Forrest Shull, Filippo Lanubile, and Victor Basili. Investigating Reading Techniques for

Object-Oriented Framework Learning. volume 26, pages 1101–1118. IEEE, 2000.

[50] Alexander Tarvo. Mining Software History to Improve Software Maintenance Quality:

A Case Study. IEEE Software, 26(1):34–40, 2009.

[51] Quinn C. Taylor, James E. Stevenson, Daniel P. Delorey, and Charles D. Knutson.

Author Entropy: A Metric for Characterization of Software Authorship Patterns. In 3rd

International Workshop on Public Data about Software Development, September 2008.

[52] Piotr Tomaszewski and Lars Lundberg. Software Development Productivity on a New

Platform: an Industrial Case Study. Information and Software Technology, 47(4):257–269,

2005.

85

[53] Jin Xu, Yongqin Gao, Scott Christley, and Gregory Madey. A Topological Analysis of

the Open Souce Software Development Community. volume 7, Los Alamitos, CA, USA,

2005. IEEE Computer Society.

[54] Thomas Zimmermann, Peter Weißgerber, Stephan Diehl, and Andreas Zeller. Mining Ver-

sion Histories to Guide Software Changes. IEEE Transactions on Software Engineering,

31(6):429–445, 2005.

86

	Commit Patterns and Threats to Validity in Analysis of Open Source Software Repositories
	BYU ScholarsArchive Citation

	Title Page
	Abstract
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 The Changing Landscape of Open Source Software Engineering Research
	1.2 Limitations of Traditional Software Engineering Research
	1.2.1 Small Sample Size
	1.2.2 Research Overhead
	1.2.3 Sampling Bias

	1.3 Forges
	1.3.1 Research Community
	1.3.2 Enter SEQuOIA

	1.4 Thesis
	1.4.1 Language Entropy: A Metric for Characterization of Author Programming Language Distribution
	1.4.2 Impact of Programming Language Fragmentation on Developer Productivity: a SourceForge Empirical Study
	1.4.3 Threats to Validity in Analysis of Language Fragmentation on SourceForge Data
	1.4.4 Trends That Affect Temporal Analysis Using SourceForge Data

	1.5 Going Forward

	2 Language Entropy: A Metric for Characterization of Author Programming Language Distribution
	2.1 Question of Interest
	2.2 Language Entropy
	2.2.1 Definition
	2.2.2 Calculation
	2.2.3 Behavior

	2.3 Data
	2.3.1 Description of the Data Set
	2.3.2 Producing a Data Sample

	2.4 Analysis
	2.4.1 Transforming the Data
	2.4.2 Selecting a Statistical Model
	2.4.3 Adjusting for Serial Correlation

	2.5 Results
	2.6 Limitations
	2.6.1 Non-Contributing Months
	2.6.2 SourceForge
	2.6.3 Productivity Measure
	2.6.4 Marginally Active Developers

	2.7 Future Work
	2.7.1 Establishing Causality
	2.7.2 Corporate Case Studies
	2.7.3 Paradigm Relationships
	2.7.4 Commonly Grouped Languages
	2.7.5 Language Entropy as a Productivity Measure

	2.8 Conclusions

	3 Impact of Programming Language Fragmentation on Developer Productivity: A SourceForge Empirical Study
	3.1 Introduction
	3.2 Productivity
	3.3 Language Entropy
	3.3.1 Definition
	3.3.2 Calculation
	3.3.3 Behavior

	3.4 Objective
	3.5 Data
	3.5.1 Description of the Data Set
	3.5.2 Producing a Data Sample

	3.6 Analysis
	3.6.1 Transforming the Data
	3.6.2 Selecting a Statistical Model
	3.6.3 Adjusting for Serial Correlation
	3.6.4 Banding in the Data
	3.6.5 Boundary at Entropy Value of 1.0

	3.7 Results
	3.8 Conclusions
	3.9 Limitations
	3.9.1 Inferences
	3.9.2 Non-Contributing Months
	3.9.3 Productivity Measure
	3.9.4 Marginally Active Developers

	3.10 Future Work
	3.10.1 Establishing Causality
	3.10.2 Corporate Case Studies
	3.10.3 Paradigm Relationships
	3.10.4 Commonly Grouped Languages
	3.10.5 Language Fragmentation as a Productivity Measure

	3.11 Acknowledgements

	4 Threats to Validity in Analysis of Language Fragmentation on SourceForge Data
	4.1 Introduction
	4.1.1 SourceForge as a Data Source
	4.1.2 Language Fragmentation
	4.1.3 Data Set
	4.1.4 Definitions

	4.2 Project Attribute Pitfalls
	4.2.1 Java eXPerience FrameWork
	4.2.2 Language Entropy
	4.2.3 Cliff Walls
	4.2.4 Auto-Generated Files
	4.2.5 Internal Development
	4.2.6 Development Pushes
	4.2.7 Generalizing Pitfalls
	4.2.8 Small Projects

	4.3 Author Behavior Pitfalls
	4.3.1 Marginally Active Developers
	4.3.2 Non-Contributing Months
	4.3.3 Author Project Size Bridging

	4.4 Limitations in the Original Study
	4.5 Insights and Conclusions
	4.5.1 Mitigation of Project Problems
	4.5.2 Mitigation of Author Problems
	4.5.3 Analytic Adaptations
	4.5.4 Impact on the Original Study
	4.5.5 Differentiated Replication

	5 Trends That Affect Temporal Analysis Using SourceForge Data
	5.1 Introduction
	5.2 Problems
	5.2.1 Non-Source Files
	5.2.2 Cliff Walls
	5.2.3 High Initial Commit Percentage

	5.3 Reasons for Problems
	5.3.1 Off-line (Internal) Development
	5.3.2 Auto-Generated Files
	5.3.3 Project Imports
	5.3.4 Branching

	5.4 Solutions
	5.4.1 Identify Merges
	5.4.2 Author Behavior
	5.4.3 Project Size

	5.5 Insights

	References

