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ABSTRACT

Bearing-only Cooperative-Localization and Path-Planning
of Ground and Aerial Robots

Rajnikant Sharma
Department of Electrical and Computer Engineering, BYU

Doctor of Philosophy

In this dissertation, we focus on two fundamental problems related to the navigation of
ground robots and small Unmanned Aerial Vehicle (UAVs): cooperative localization and path
planning. The theme running through in all of the work is the use of bearing only sensors, with a
focus on monocular video cameras mounted on ground robots and UAVs.

To begin with, we derive the conditions for the complete observability of the bearing-only
cooperative localization problem. The key element of this analysis is the Relative Position Mea-
surement Graph (RPMG). The nodes of an RPMG represent vehicle states and the edges represent
bearing measurements between nodes. We show that graph theoretic properties like the connec-
tivity and the existence of a path between two nodes can be used to explain the observability of
the system. We obtain the maximum rank of the observability matrix without global information
and derive conditions under which the maximum rank can be achieved. Furthermore, we show
that for the complete observability, all of the nodes in the graph must have a path to at least two
different landmarks of known location. The complete observability can also be obtained without
landmarks if the RPMG is connected and at least one of the robots has a sensor which can mea-
sure its global pose, for example a GPS receiver. We validate these conditions by simulation and
experimental results. The theoretical conditions to attain complete observability in a localization
system is an important step towards reliable and efficient design of localization and path planning
algorithms. With such conditions, a designer does not need to resort to exhaustive simulations
and/or experimentation to verify whether a given selection of a control strategy, topology of the
sensor network, and sensor measurements meets the observability requirements of the system. In
turn, this leads to decreased requirements of time, cost, and effort for designing a localization algo-
rithms. We use these observability conditions to develop a technique, for camera equipped UAVs,
to cooperatively geo-localize a ground target in an urban terrain. We show that the bearing-only
cooperative geo-localization technique overcomes the limitation of requiring a low-flying UAV to
maintain line-of-sight while flying high enough to maintain GPS lock. We design a distributed
path planning algorithm using receding horizon control that improves the localization accuracy of
the target and of all of the UAVs while satisfying the observability conditions.

Next, we use the observability analysis to explicitly design an active local path planning
algorithm for UAVs. The algorithm minimizes the uncertainties in the time-to-collision (TTC)
and bearing estimates while simultaneously avoiding obstacles. Using observability analysis we
show that maximizing the observability and collision avoidance are complementary tasks. We
provide sufficient conditions of the environment which maximizes the chances obstacle avoidance
and UAV reaching the goal. Finally, we develop a reactive path planner for UAVs using sliding
mode control such that it does not require range from the obstacle, and uses bearing to obstacle to





avoid cylindrical obstacles and follow straight and curved walls. The reactive guidance strategy is
fast, computationally inexpensive, and guarantees collision avoidance.

Keywords: cooperative localization, path planning, graph theory, nonlinear system theory, sliding
mode control, extended kalman filter, lie derivatives, vision based estimation and control nolistofta-
bles
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CHAPTER 1. INTRODUCTION

In this dissertation, we focus on two fundamental problems related to the navigation of

ground robots and unmanned aerial vehicles (UAVs): localization and path planning. The theme

running through in all of the work is the use of bearing only sensors, with a focus on monocular

video cameras mounted on ground robots and UAVs.

Localization is a process of estimating the robot’s position and orientation, known together

as the robot’s pose, in real time using sensor measurements. Without knowledge of its pose, a

robot cannot navigate and interact with its environment in a meaningful way. It should be pointed

out that animals and humans themselves possess impressive navigational skills. Through millions

of years of evolution, species have developed mechanisms enabling them to determine their loca-

tion by processing visual information [1, 2], measurements of electric [3] and magnetic [4] fields,

echolocation [5], and other sensory input. The objective of localization methods in the field of

robotics is to endow robots with similar capabilities, which are a prerequisite for robots to be able

to operate autonomously.

Recently, the use UAVs in several civil and military applications has increased significantly.

There are many applications for smaller UAVs that require them to operate in urban terrains. To

navigate in urban environments, the UAVs must have the capability to autonomously plan paths

from point A to B such that they do not collide with buildings, trees or other obstacles.

The sensors employed for mobile robot navigation can be broadly divided into two cat-

egories: proprioceptive and exteroceptive sensors. The proprioceptive sensors provide measure-

ments related to the robot’s motion, such as velocity and acceleration. Examples of propriocep-

tive sensors are wheel encoders known as odometry sensors [6], which provide measurements

of linear and rotational velocity for ground vehicles, and inertial measurement units (IMUs) [7],

which measure rotational velocities and linear accelerations. On the other hand, exteroceptive sen-

sors measure quantities of interest in the robot’s surroundings, such as the range and bearing to

1



Figure 1.1: DR illustration. The solid line represents the true vehicle path, while the dashed
line represents the estimated one. The ellipses represent the uncertainty in the position estimates.
During DR, the uncertainty of the estimates continuously increases, asymptotically approaching
infinity.

a nearby object. Examples of exteroceptive sensors typically employed in robotics applications

include cameras [8], sonars [9], laser range finders [10], and GPS receivers [11]. Among the suite

of possible exteroceptive sensors, a video camera is inexpensive, lightweight, and fits the physical

requirements of small ground robots and UAVs. Furthermore, a camera has high information to

weight ratio and can be used for several applications other than localization. A camera can directly

measure bearing to objects in its image plane with very low computational work. In this disserta-

tion, we explore how bearing-only measurements can be efficiently used for localization and path

planning of ground robots and UAVs.

Due to disturbances, modeling errors, and other factors, the sensor measurements available

to a robot are inevitably corrupted by noise. The presence of noise implies that the true pose,

i.e., position and orientation, of a robot cannot, in general, be estimated with zero error; some

uncertainty will always exist about the robot pose. Thus, the goal of a localization algorithm is

to fuse the available proprioceptive and exteroceptive measurements in real time, to compute an

estimate for the robot pose, as well as a measure of the uncertainty of this estimate. Depending on

the sensors available onboard a robot, several localization approaches are possible [12].

1.1 Single vehicle localization

The simplest localization technique is dead reckoning (DR). The DR technique consists of

propagating the pose estimates of a mobile robot by integrating the measurements of its propri-

oceptive sensors. However, due to the integration of the measurement noise, the pose estimates

quickly drift from their true values, and eventually become unusable [6], as shown in Fig. 1.1.
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Figure 1.2: Illustration of GPS based localization. At time instants t1, t2, and t3, GPS measurements
are recorded, and used for updating the vehicle’s pose estimate. Every time an absolute position
measurement is processes, the uncertainty of the resulting estimate is reduced, as shown in shaded
ellipses. If the robot periodically uses GPS measurements for position updates, drift is prevented,
and at steady state the uncertainty of the pose estimate is bounded.

Therefore, for most practical purposes, additional information from exteroceptive sensors must be

processed, in order to reduce or even eliminate the growth of DR errors. One of the most common

exteroceptive sensors is the GPS receiver. Vehicles moving outdoors can obtain measurements

of their absolute position, by measuring range to the GPS satellites [11]. The availability of the

robot’s position prevents drift, and maintains bounded position errors over time, e.g., see Fig. 1.2.

However, in many environments of interest, GPS signals are unavailable or unreliable, e.g., in-

doors, underwater, on other planets, in the urban canyons. Additionally, the accuracy of pose

estimates based on GPS may be insufficient for some applications, e.g., autonomous navigation in

traffic. Therefore, it is important to develop methods for localization either in the absence or in the

addition to GPS.

When robots operate in unknown environments, they can process their sensor measure-

ments to detect features (also known as landmarks), which can be used to aid localization. The

term feature in this context refers to a distinctive point of interest, which can be detected in the

sensor data by applying an interest operator. In images, for example, features are typically se-

lected as points where the image intensity gradient is large [13, 14], while in laser scanner data,

corners and line segments are the most commonly detected features [15]. When the positions of

the features in the robot’s surroundings are not known in advance, they can be estimated along with

the robot’s trajectory (cf. Fig. 1.3). This is the task of Simultaneous Localization and Mapping

(SLAM) [16, 17]. The main benefit of SLAM is that, since the point features are static, they serve

3



Figure 1.3: Illustration of SLAM: At time t0, the robot observes for the first time a static feature,
which is denoted by a star, and computes an estimate of its position. At later time instants, t1,
t2, and t3, the vehicle re-observes the same feature, and employs these measurements in order
to update its pose estimates, as well as the estimate of the features position. Every re-observation
results in a reduction of the uncertainty, and asymptotically, the errors of the vehicle’s pose remains
bounded. A similar situation arises when multiple cooperating robots localize as a group, while
observing static features.

as localization beacons or landmarks. Observing features over multiple time instants, or when

the robot re-visits an area, this is often termed loop closing, results in bounded estimation errors

over long time periods [18]. Thus, SLAM permits accurate, long term localization in unknown

environments, and is considered an enabling technology for robot autonomy [19].

1.2 Cooperative localization

It has generally been acknowledged within the autonomous robot and UAV research com-

munity that there are many advantages with multiple cooperating robots for tasks, e.g., object

transportation [20], construction [21], exploration [22], surveillance [23], reconnaissance [24],

search [25], and fire monitoring [26, 27]. When multiple autonomous vehicles operate in the same

area, one attractive approach for aiding the localization of all robots is for them to record relative,

i.e., robot-to-robot measurements, such as distance and bearing, and to combine this informa-

tion with their odometric estimates as shown in Fig. 1.4. When robots record, communicate, and

process such relative pose information for localization purposes, the process is termed coopera-

tive localization (CL) [28]. CL provides the means for an implicit sensor sharing, as shown in

Fig. 1.5, as localization information is dissipated over a wireless network to all the members of the
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Figure 1.4: Illustration of CL. At time instants t0, t1, t2, and t3, Vehicle 2 records measurements of
the relative position of Vehicle 1, which is denoted by dotted arrows. Using these measurements
both robots’ pose pose estimates are updated, and the resulting estimates have reduced uncertainty.
However, in the absence of any absolute position information, the relative measurements cannot
fully compensate for position drift. Therefore, the position uncertainty gradually increases over
time, albeit at a rate lower than that of DR

Figure 1.5: Illustration bearing-only CL. UAVs (M1 − M5) measure bearing from other UAVs
and landmarks (L1,L2), which are in their image plane. Cooperative localization creates a joint
synthetic sensor plane which is larger and flexible then the single UAV sensor plane. In CL a
UAV requires two landmarks to keep its localization error bounded(Lemma 2.3.6 in Chapter 2).
Although, due to limited field-of-view a single UAV, itself, cannot measure bearing from two
landmarks, the joint sensor plane, however, can overcomes the limitation by keeping the sensor
network connected(Theorem 2.3.2 in Chapter 2)
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group. Cooperative localization has been an active area of research, e.g., [15, 29–35], because it

provides several potential advantages, including increased localization accuracy, sensor coverage,

robustness, efficiency, and flexibility. Recently, estimation algorithms such as the extended kalman

filter (EKF) [36], minimum mean square estimator (MMSE) [30], maximum likelihood estimation

(MLE) [37], particle pilter [38], and maximum a posteriori (MAP) [39], have been used to solve

the cooperative localization problem. These algorithms can be used either in a centralized [32] or

decentralized manner [30, 36, 39].

1.3 Path planning

The path planning and obstacle avoidance problems for UAVs have received significant

attention [40–44]. The path planning problem can be grouped into global path planning and local

path planning. Global path planning requires complete knowledge about the environment and a

static terrain. In that setting a collision-free path from the start to the destination configuration

is generated before the vehicle starts its motion [45]. The global path planning problem has been

addressed by many researchers with common solutions being probability road map (PRM) [46–48]

methods and rapidly-expanding random Tree (RRT) [49,50] methods. On the other hand, local path

planning is executed in real-time during flight. The basic idea is to first sense the obstacles in the

environment and then determine a collision-free path [40]. The local path planing algorithms are

more suited for unknown and dynamic environments, which are discussed in this work.

1.4 Research overview

For the localization errors to be bounded in CL and C-SLAM, it is required that the system

be observable [51], independent of the estimation technique being used. Therefore, it is necessary

to conduct an observability analysis of the system. Several authors have carried out observability

analysis of the cooperative localization problem [36, 52–54]. However, these efforts have focused

primarily on finding observable and unobservable states of linear measurement consisting of two

robots. As a result, the issue of constraints imposed by the observability of the system on the

motion of robots, connectivity of the sensor network, and type and numbers of sensor have largely

been left unexplored. However, the lack of theoretical conditions to attain complete observability
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in a localization system is a significant impediment to reliable and efficient design of localization

and path planning algorithms. Without such conditions, a designer must resort to exhaustive simu-

lations and/or experimentation to verify whether a given selection of a control strategy, topology of

the sensor network, and sensor measurements meets the observability requirements of the system.

In turn, this leads to increased requirements of time, cost, and effort for designing localization

algorithms.

One of the important applications of camera equipped UAVs is determining the location of

a ground target when imaged from UAVs. The pixel location of the target in the image, the position

and attitude of the air vehicles, the camera pose angles, and knowledge of the terrain elevation are

used to geo-localize the object. Previous target localization work using a camera equipped UAV

is reported in [55–58] and references therein. The existing work on vision based geo-localization

successfully demonstrates the target localization concept and provides several techniques to im-

prove the accuracy of geo-localization. However, the limitations associated with geo-localizing

a target in urban environments are not addressed. All of the existing methods require the UAV’s

position and attitude to geo-localize a target. Furthermore, a camera is a line of sight (LOS) sensor

and there may exist many occlusions in the urban environment, e.g., buildings, trees, which can

lead to unreliable tracking of the target.

In environments where pop-up threats are common, a reactive planner with fixed computa-

tional cost is appropriate. Reactive obstacle avoidance methods have been developed in previous

work using dynamic replanning [59], potential fields [60], simulated annealing [61], predefined

maneuvers [62], and deterministic collision avoidance guidance strategy for stationery cylindrical

objects [63]. The existing methods, however, require range and bearing measurements to compute

the control law. Since a monocular camera is a bearing-only sensor, either the range from the

object should be estimated using bearing measurement or the control law should avoid obstacles

using bearing-only measurements. Also, previous methods are only designed for obstacles mod-

eled as cylindrical objects, however, large obstacles like a wall cannot be modeled as a cylindrical

obstacle.

In this work, we address the aforementioned limitations by (1) performing a rigorous non-

linear observability analysis of bearing-only cooperative localization, (2) using observability con-

ditions of bearing-only localization to geo-localize a target in the urban terrain using a team of
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UAVs, and (3) developing a path planing technique which improves the localization accuracy while

satisfying the observability constraints and avoiding collision from obstacles using bearing-only

measurement. We use mathematical techniques from graph theory, linear algebra, and nonlinear

systems theory. The main contributions of this dissertation are as follows.

• We derive conditions for complete observability of the bearing-only cooperative localization

problem. The key element of this analysis is the Relative Position Measurement Graph

(RPMG). The nodes of an RPMG represent vehicle states and the edges represent bearing

measurements between nodes. We show that graph theoretic properties like the connectivity

and the existence of a path between two nodes can be used to explain the observability of the

system. We obtain the maximum rank of the observability matrix without global information

and derive conditions under which the maximum rank can be achieved. Furthermore, we

show that for the complete observability, all of the nodes in the graph must have a path to

at least two different landmarks of known location. The complete observability can also be

obtained without landmarks if the RPMG is connected and at least one of the robot has a

sensor which can measure its global pose, for example a GPS receiver. These results are

reported in [64–66].

• We develop a technique, for camera equipped UAVs, to cooperatively geo-localize a ground

target in an urban terrain. We use observability conditions for bearing-only localization to

overcome the limitation of requiring a low-flying UAV to maintain line-of-sight while flying

high enough to maintain GPS lock. We design a distributed path planning algorithm using

receding horizon control that improves the localization accuracy of the target and of all of

the UAVs while satisfying the observability conditions. These results are reported in [67].

• We use the observability analysis to explicitly design an active local path planning algorithm

for UAVs. The algorithm minimizes the uncertainties in the time-to-collision (TTC) and

bearing estimates while simultaneously avoiding obstacles. Using observability analysis we

show that maximizing the observability and collision avoidance are complementary tasks.

We provide sufficient conditions of the environment which maximizes the chances that ob-

stacles are avoided and that UAV reaches the goal. These results are reported in [68, 69].
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• We develop a reactive path planner for UAVs using sliding mode control such that it does

not require range from the obstacle, and uses only bearing to obstacle to avoid cylindri-

cal obstacles and follow straight and curved walls. The reactive guidance strategy is fast,

computationally inexpensive, and guarantee collision avoidance. These results are reported

in [70, 71].

1.5 Organization of the manuscript

Chapter 2, includes graph-based observability analysis of bearing-only cooperative local-

ization. In Chapter 3, we present bearing-only cooperative geo-localization. In Chapter 4, we

present observability based path planing for UAVs using bearing-only measurements. In Chapter 5,

we present bearing-only reactive path planing technique for UAVs. Finally, Chapter 6 summarizes

the key results of this work, and identifies interesting avenues for future research.
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CHAPTER 2. GRAPH-BASED OBSERVABILITY ANALYSIS OF BEARING-ONLY
COOPERATIVE LOCALIZATION

2.1 Introduction

In cooperative localization a group of robots exchange relative position measurements from

their exteroceptive sensors (e.g., camera, laser, etc.) and their motion information (velocity and

turn rate) from interoceptive sensors (e.g., IMU, encoders, etc.) to collectively estimate their states.

Cooperative localization has been an active area of research (e.g., [15, 29–35]) because it provides

several potential advantages, including increased localization accuracy, sensor coverage, robust-

ness, efficiency, and flexibility.

Recently, estimation algorithms such as the extended kalman filter (EKF) [36], minimum

mean square estimator (MMSE) [30], maximum likelihood estimation (MLE) [37], particle filter

[38], and maximum a posteriori (MAP) [39], have been used to solve the cooperative localization

problem. These algorithms can be used either in centralized [32] or decentralized manner [30,

36, 39]. For the localization errors to be bounded, it is required that the system be observable,

independent of the estimation technique being used.

Several authors have carried out observability analysis of the cooperative localization prob-

lem. Initial results regarding the observability of cooperative localization were reported by Roume-

liotis and Bekey [36]. They used linear observability analysis to show that the states of the robots

performing cooperative localization are unobservable, but can be made observable by providing

global positioning information to one of the robots. In [36] it was assumed that the absolute

vehicle heading is measured directly and does not need to be estimated. Furthermore, linear ap-

proximation of a nonlinear system can provide different structural properties regarding the ob-

servability [52, 53]. Martinelli et al. [54] investigates the nonlinear observability of cooperative

localization for two robots without heading measurements. They compared the observability prop-

erties of range and bearing measurements and showed that with either type of measurement, the
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maximum rank of the observability matrix is three, i.e., not fully observable. The analysis in [54]

shows that relative bearing is the best observation between the robots. The part of the system

which is observable is in general larger than for the other relative observations (relative distance

and relative orientation). Accordingly, [54] uses polar coordinates for the observability analysis.

Although polar coordinates simplify the analysis for two robots, we use a global coordinate system

because it is more appropriate for graph level (n > 2) observability analysis.

In this chapter, we extend the observability analysis presented in [54] from 2 to n robots,

with bearing-only measurements. The extension for n > 2 is not obvious because of the dynami-

cally changing set of n(n−1)/2 different relative bearing measurements leading to 2n(n−1)/2 pos-

sible configurations. Furthermore, since the robot states in [54] are not observable with respect to a

global reference frame, and since it has been shown that two landmarks are needed for the observ-

ability of a single vehicle [72–74], in this chapter we derive the number of landmarks needed for

full observability of a group of n robots performing cooperative localization. In contrast to [36],

we also assume that the heading of each robot is not directly measured but must be estimated.

To represent a group of robots, we will use the Relative Position Measurement Graph

(RPMG) introduced in [18]. The nodes of an RPMG represent vehicle states and the edges repre-

sent bearing measurements between nodes. We establish a relationship between the graph proper-

ties of the RPMG and the rank of the system observability matrix. We prove that for a connected

RPMG, the observability matrix for a team of n robots, which has size 3n× 3n will have rank

3(n−1). We also derive conditions under which landmarks observed by a subset of robots enable

the system to become fully observable.

The chapter is organized as follows. In Section 2.2 we describe bearing-only cooperative

localization and formulate the problem. In Section 2.3 we perform the nonlinear observability

analysis. The simulation and experimental results are presented in Section 2.4. In Section 2.5 we

give our conclusions.
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2.2 Bearing-only cooperative localization

Consider n robots moving in a horizontal plane performing cooperative localization in the

vicinity of l known landmarks. We can write the equations of motion for the ith robot as

Ẋi = fi(Xi,ui),


Vi cosψi

Vi sinψi

ωi

 , (2.1)

where Xi = [xi yi ψi]
⊤ ∈ R3 is the robot state, including robot location (xi, yi) and robot heading

ψi, and ui = [Vi,ωi]
⊤ is the control input vector. We assume that onboard introspective sensors

(e.g., encoders) measure the linear speed Vi and angular speed ωi of the robot. Each vehicle has an

exteroceptive sensor to measure relative bearing to other vehicles and known landmarks that are in

the field-of-view of the sensor. Bearing from the ith robot to the jth robot can be written as

ηi j = tan−1
(

y j − yi

x j − xi

)
−ψi, (2.2)

and bearing from the ith robot to the kth landmark can be written as

ηik = tan−1
(

yk − yi

xk − xi

)
−ψi, (2.3)

where Xlk = [xk yk]⊤ is the position vector of the kth landmark.

For cooperative localization, each robot exchanges its local sensor measurements (velocity,

turn rate, and bearing to landmarks and other robots) with their neighbors. Let NM
i be the set of

neighbors for which robot i can obtain bearing measurements, and let NC
i be the set of neighbors

with which robot i can communicate. In this chapter, we assume that NM
i = NC

i and we will

therefore denote the set of neighbors as Ni. To represent the connection topology of the robots we

use a relative position measurement graph (RPMG) [18] which is defined as follows.

Definition 2.2.1 An RPMG for n robots performing cooperative localization with l different known

landmarks is a directed graph Gl
n , {Vn,l,En,l}, where Vn,l = {Vn, Vl} is the node set which

consists of vehicle node set Vn = {1, · · · ,n} and landmark node set Vl = {1, · · · , l}, and En,l(t) ⊂

{Vn ×Vn} ∪ {Vn ×Vl} is the edge set of m bearing measurements at time t. Indexes i, j ∈ Vn
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Figure 2.1: Relative position measurement graph (RPMG). The nodes ofan RPMG represent vehi-
cle states and the edges represent bearing measurements between nodes.

represent the ith and jth vehicle nodes, index k ∈ Vl represents the kth landmark, and index p ∈ En,l

represents the pth edge between two nodes. An example RPMG (G3
5 with m = 7) is shown in

Fig. 2.1.

Additionally, without loss of generality we assume that robots maintain a safe distance from each

other and from landmarks, i.e., Ri j > 0, ∀i, j ∈ Vn and Rik > 0, ∀i ∈ Vn and ∀k ∈ Vl . Also, we

assume that the robot sensors have limited sensor range Rsensor and limited field-of-view. There-

fore, agents can only measure the bearing of those robots and landmarks that are located within the

footprint of the sensor. Therefore, the graph Gl
n will likely have a time varying topology.

2.2.1 Cooperative localization implementation

The objective of the cooperative localization is to estimate the combined state X̂(k) =

[X̂1(k), · · · , X̂n(k)]⊤. We use an extended information filter(EIF) to implement the bearing-only

cooperative localization. In the information filter instead of state X̂ and covariance P(k) the infor-

mation vector ŷ(k) and information matrix Y (k) is updated. The information matrix and informa-

tion vector can be computed as

Y (k) = P(k)−1, (2.4)

ŷ(k) = Y (k)X̂(k). (2.5)
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Similar to an extended kalman filter (EKF) the EIF has two steps. The first is the prediction step,

which is given below.

Y (k+1|k) = (F(k)Y (k|k)−1F(k)⊤+B(k)Q(k)B(k)⊤)−1, (2.6)

ŷ(k+1|k) = Y (k+1|k)X̂(k+1|k), (2.7)

X̂(k+1|k) = X(k|k)+Ts f (X̂(k|k),u(k)), (2.8)

where Fk =


F1 0 · · · 0

0 F2 · · · 0
... · · · . . . 0

0 0 · · · Fn

, B(k) =


B1
...

Bn

, and Q(k) =


Qi(k) 0 0

0 . . . 0

0 0 Qn(k)

 is co-

variance of noise in the control input. The matrix Fi and Bi are the system jacobian with respect to

state Xi and control ui, which are given below

Fi = I3 +Ts
∂ fi

∂Xi
|Xi=Xi(k) =


1 0 −ViTs sinψ(k)

0 1 ViTs cosψ(k)

0 0 1

 , (2.9)

Bi = Ts
∂ fi

∂ui
|ui=ui(k)


Ts cosψk 0

Ts sinψk 0

0 Ts

 , (2.10)

and Qi(k) =

 σ2
vi

0

0 σ2
ωi

, where σvi and σωi are the standard deviation in velocity input and turn

rate input respectively.

The measurement update step is given as

Y (k+1|k+1) = Y (k+1|k)+∑Hi j(k)⊤σ−2
ηi j

Hi j(k),

ŷ(k+1|k+1) = ŷ(k+1|k)+∑Hi j(k)⊤R−1
i j (µi j +Hi jX̂(k+1|k)).
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The scalar µi j represents the innovation

µi j = ηi j −hi j(x(k+1|k)), (2.11)

and σηi j is standard deviation of the noise in the bearing measurement. The row vector Hi j is the

measurement jacobian

Hi j(k) =
∂hi j

∂X
|X=X(k). (2.12)

The EIF is dual of the EKF and the EKF is a quasi-local asymptotic observer for nonlinear systems

and its convergence and boundedness are achieved when the system is fully observable [51].

2.2.2 Lie derivatives and nonlinear observability

To determine the observability of the entire system represented by the RPMG we use the

nonlinear observability rank criteria developed by Hermann and Krener [75] which is summarized

in the next paragraph.

Consider a system model with the following form

Σ :
˙X(t) = f (X(t),u(t)) = [ f⊤1 (X1(t),u1(t)), · · · , f⊤n (Xn(t),un(t))]⊤,

Y (t) = h(X(t),Xl) = [h⊤1 (X(t),Xl) · · ·h⊤m(X(t),Xl)]⊤,
(2.13)

where X(t) = [X1(t)⊤, · · · ,Xn(t)⊤]⊤ ∈ R3n is the state of the system at time t, Y (t) ∈ Rm is the

system output vector, Xl = [Xl⊤1 , · · · ,Xl⊤l ]⊤ ∈ R2l is the position vector of all landmarks, Xlk =

[xk yk]
⊤ is the position vector of kth landmark, hp : R3n ×R2l 7→ R, is the measurement model of

the pth bearing measurement, u ∈ Λ ⊆ R2n is the control input vector, f : R3n ×Λ 7→ R3n, and

Λ ⊆ R2n is the set of feasible control inputs. We can write the process model in (2.13) as,

Ẋ = f (X(t),u(t)) =
n

∑
i=1

fvi(X(t))Vi +
n

∑
i=1

fωi(X(t))ωi, (2.14)
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where

fvi = [03(i−1)×1, cosψi(t, sinψi, 0, 03(n−i)×1]
⊤, (2.15)

fωi = [03(i−1)×1, 0, 0, −1, 03(n−i)×1]
⊤, (2.16)

are vector fields on R3n. Two features of this system can be observed. First, the system is time

invariant, in that there is no explicit dependence on time. Second, the system above is linear in

the control. In this dissertation, we use Lie derivatives, which comes under the field of differential

geometry, to answer an important behavior of the system: Is it observable?, in the sense that, for

each state there exists at least one corresponding input which permits us to discriminate between

this state all nearby states. We use Lie derivatives to obtain the observability matrix. A Lie deriva-

tive can be interpreted as the derivative of a scalar along integral curves of the vector field. Some

basics of differential geometric methods and Lie derivatives are provided in Appendix A.

The zeroth-order Lie derivative of the pth bearing measurement hp is the function itself,

i.e., L0hp = hp. Using the definition of Lie derivative in (A.4), the first-order Lie derivative of

function hp along with vector field fvi is given by

L1
fvi

hp = ∇L0hp · fvi, (2.17)

where ∇ represents the gradient operator, and · denotes the vector inner product. Considering that

L1
fvi

hp is a scalar function itself, the second-order Lie derivative of L1
fvi

hp along with vector field

fvi is given by

L2
fvi fvi

hp = ∇L1
fvi

hp · fvi . (2.18)

Higher order Lie derivatives are computed similarly. Additionally, it is possible to define mixed

Lie derivatives, i.e., with respect to different functions of the process model. For example, the

second-order Lie derivative of L1
fvi

hp along with vector field fv j is given by

L2
fvi fv j

hp = ∇L1
fvi

hp · fv j . (2.19)
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Based on the preceding expressions for the Lie derivatives the observability matrix is defined as

the matrix with rows

O ,
{

∇Ld
fvi ,··· , fv j , fωi ,··· , fω j

hp

}
, (2.20)

where i, j ∈ Vn, p ∈ En,l , and d ∈ N. The important role of this matrix in the observability analysis

of a nonlinear system is demonstrated by next theorem, which is proved in [76].

Theorem 2.2.1 ( [76]) A system is locally weakly observable if its observability matrix whose rows

are given in (2.20) has full rank, e.g., in our case rank(O) = 3n.

2.3 Graph-based observability analysis

In this section, we obtain the conditions for the observability of the graph Gl
n. We derive

explicit conditions that establish the rank of the observability matrix of the graph G0
n without

landmarks, and the number of landmarks needed for the full rank of the observability matrix of

the graph Gl
n.

2.3.1 Rows in the observability matrix due to an edge

In a graph Gl
n there are two types of edges: an edge between two robots, and an edge be-

tween a robot and a landmark. We derive the maximum number of linearly independent rows in the

observability sub-matrix of an edge and the conditions for the maximum rank of the observability

sub-matrix of an edge. The linearly independent rows of the observability sub-matrix of an edge

serve as building block for the observability conditions for the graph Gl
n.

Edge between two robots

First we derive the linearly independent rows in the observability matrix for an edge ηi j be-

tween two robots and derive the conditions under which maximum number of linearly independent

rows can be obtained.
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We first find the Lie derivatives of ηi j. We rearrange the nonlinear kinematic equations in

the following convenient form for computing Lie derivatives:

Ẋ =

 Ẋi

Ẋ j

= fviVi + fωiωi + fv jV j + fω jω j, (2.21)

where fvi = [cψi sψi 0 0 0 0]⊤, fωi = [0 0 1 0 0 0]⊤, fv j = [0 0 0 cψ j sψ j 0]⊤, fω j = [0 0 0 0 0 1]⊤,

cψi , cosψi, and sψi , sinψi. We hereafter compute the necessary Lie derivatives of ηi j and their

gradients. Since an edge consists of only one measurement, for clarity, we denote hp by h.

Zeroth-order Lie derivative

L0h = ηi j,

and gradient scaled by R2
i j is given by

∇L0h =
[
−yi j xi j −R2

i j yi j −xi j 0
]
,

where xi j , xi − x j, yi j , yi − y j, and R2
i j = (xi j)

2 +(yi j)
2.

Remark 2.3.1 The scaling by R2
i j is an elementary row operation, therefore, it does not change

the space spanned by the rows of the observability matrix. Also, it simplifies the computation of

the higher order Lie derivatives.

First-order Lie derivatives

L1
fvi

h = ∇L0h · fvi = xi jsψi − yi jcψi,

L1
fv j

h = ∇L0h · fv j =−(xi jsψ j − yi jcψ j),

L1
fωi

h = ∇L0h · fωi =−R2
i j,

L1
fω j

h = ∇L0h · fω j = 0,
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with gradients given by

∇L1
fvi

h =
[

sψi −cψi J+i −sψi cψi 0
]
,

∇L1
fv j

h =
[
−sψ j cψ j 0 sψ j −cψ j −J+j

]
,

∇L1
fωi

h = 2
[
−xi j −yi j 0 xi j yi j 0

]
,

where J+i , xi jcψi + yi jsψi and J+j , xi jcψ j + yi jsψ j .

Second-order Lie derivatives

L2
fvi fvi

h = ∇L1
fvi

h · fvi = sψicψi − sψicψi = 0,

L2
fv j fv j

h = ∇L1
fv j

h · fv j = sψ jcψ j − sψ jcψ j = 0,

L2
fvi fv j

h = ∇L1
fvi

h · fv j =−sψicψ j + sψ jcψi,

L2
fvi fωi

h = ∇L1
fvi

h · fωi = J+i ,

L2
fv j fω j

h = ∇L1
fv j

h · fω j =−J+j ,

L2
fωi fvi

h = ∇L1
fωi

h · fvi =−2J+i ,

L2
fωi fv j

h = ∇L1
fωi

h · fv j = 2J+j ,

with gradients given by

∇L2
fvi fv j

h =
[

0 0 −Jψ 0 0 Jψ

]
,

∇L2
fvi fωi

h =
[

cψi sψi J−i cψi sψi 0
]
,

∇L2
fv j fω j

h =
[
−cψ j −sψ j 0 sψ j −cψ j −J−j

]
,

where Jψ , cψicψ j + sψisψ j , J−i , yi jcψi − xi jsψi , and J−j , yi jcψ j − xi jsψ j .

Remark 2.3.2 Gradients of L2
fωi fvi

h and L2
fωi fv j

h are not included because they are linearly depen-

dent on ∇L2
fvi fωi

h and ∇L2
fv j fω j

h respectively.
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Third-order Lie derivatives

L3
fvi fv j fωi

h = ∇L2
fvi fv j

h · fωi =−(cψicψ j + sψisψ j),

L3
fvi fv j fω j

h = ∇L2
fvi fv j

h · fω j = (cψicψ j + sψisψ j),

L3
fvi fωi fvi

h = ∇L2
fvi fωi

h · fvi = 1,

L3
fv j fω j fv j

h = ∇L2
fvi fω j

h · fv j = 1,

L3
fvi fωi fωi

h = ∇L2
fvi fωi

h · fωi =−(xi jsψi − yi jcψi),

L3
fv j fω j fω j

h = ∇L2
fvi fω j

h · fω j = xi jsψ j − yi jcψ j ,

with gradients given by

∇L3
fvi fv j fωi

h = a1

[
0 0 1 0 0 −1

]
=−a1

a2
∇L2

fvi fv j
h,

∇L3
fvi fv j fω j

h =
a1

a2
∇L2

fvi fv j
h,

∇L3
fvi fωi fωi

h =−(xi jsψi − yi jcψi) =−∇L1
fvi

h,

∇L3
fv j fω j fω j

h = xi jsψ j − yi jcψ j =−∇L1
fv j

h,

where a1 , (sψicψ j − cψisψ j), and a2 , cψicψ j + sψisψ j .

Clearly, third and higher order Lie derivatives are linearly dependent on the gradients of

second and lower order Lie derivatives. Therefore, with all the non-zero inputs the observability

matrix of an edge between two robots can be written using gradients of Lie derivatives up to

second-order as

Oi j =



−yi j xi j −R2
i j yi j −xi j 0

sψi −cψi J+i −sψi cψi 0

−sψ j cψ j 0 sψ j −cψ j −J+j

−2xi j −2yi j 0 2xi j 2yi j 0

0 0 −Jψ 0 0 Jψ

cψi sψi J−i −cψi −sψi 0

−cψ j −sψ j 0 cψ j sψ j −J−j


. (2.22)
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Our objective is to find the number of linearly independent rows in Oi j. Therefore, we

transform Oi j into reduced row echelon form (RREF). RREF is the simplest possible form of a

matrix, which directly provides the number of linearly independent rows in the matrix. Since

RREF is the backbone of the analysis presented in this chapter we state the next lemma, which

explains the properties of a RREF matrix.

Lemma 2.3.1 ( [77]) A matrix A ∈ Rm×n, by means of a finite sequence of elementary row opera-

tions, can be transformed to a row reduced echelon form U ∈ Rm×n such that

EA =U, (2.23)

where E ∈ Rm×m is the elementary operation matrix. If the rank of A is r then

1.

U =

 Ir B

0(m−r)×r 0(m−r)×(n−r)

 , (2.24)

where Ir is the Identity matrix of size r, 0 represents matrix of zeros, and B ∈ Rr×(n−r),

2. the first r rows of matrix U are linearly independent,

3. the non zero rows of the matrix U spans the same row space spanned by A,

4. if A is an invertible matrix ( r = m = n) then U is the Identity matrix.

The next lemma provides conditions for the maximum rank of the observability matrix of

an edge between two robots.

Lemma 2.3.2 The rank of Oi j given by (2.22) (edge between two robots) is three if

1. Vi > 0,

2. Vj > 0,

3. the ith robot, which is measuring the bearing, does not move along the line joining the two

robots,
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4. the jth robot does not move perpendicular to the line joining the two robots.

Proof: To prove the lemma, first we write J−i and J+j as

J−i = v⊤1 v
′
i = yi j cosψi − yi j sinψi, (2.25)

J+j = v⊤1 v j = xi j cosψ j + yi j sinψ j, (2.26)

where v1 , [xi j yi j]
⊤ is a vector along the line between the two robots, v j , [cosψ j sinψ j]

⊤ is the

heading vector of the jth robot, and v
′
i , [−sinψi cosψi]

⊤ is a vector perpendicular to the heading

vector of the ith robot.

From (2.25) and (2.26), we can verify that if the ith robot, which is measuring the bearing,

does not move along the line joining the two robots then J−i ̸= 0, and if the jth robot does not move

perpendicular to the line joining the two robots then J+j ̸= 0. We then use the elementary operation

matrix

Ei j =



−
cψ j J

+
i

J−i J+j
−

cψ j R
2
i j

J−i J+j
− yi j

J+j
0 0 0 0

−
sψ j J

+
i

J−i J+j
−

sψ j R
2
i j

J−i J+j

xi j

J+j
0 0 0 0

− s(ψ j−ψi)

J−i J+j

J−j
J−i J+j

1
J+j

0 0 0 0

−2J+i
J−i

−2R2
i j

J−i
0 1 0 0 0

1
2

s(2ψi−2ψ j)

J−i J+j

c(ψ j−ψi)J−j
J−i J+j

c(ψi−ψ j)

J+j
0 1 0 0

1
J−i

J+i
J−i

0 0 0 1 0

− J+i
J−i J+j

− R2
i j

J−i J+j
−J−j

J+j
0 0 0 1



,

where s(ψ j −ψi), sin(ψ j −ψi), c(ψ j −ψi), cos(ψ j −ψi), and s(2ψi −2ψ j), sin(2ψi −2ψ j).

Ei j transforms Oi j as

Ei jOi j =Ui j =

 I3 Ōi j

03×3 04×3

 , (2.27)
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where

Ōi j ,


−1 0 yi j

0 −1 −xi j

0 0 −1

 . (2.28)

From Lemma 2.3.1 we can say that RREF matrix Ui j has three linearly independent rows and these

rows span the same observability space spanned by rows of Oi j, therefore, maximum rank of Oi j

is three. It should be noted that the top three non-zero rows in Ui j corresponds to L0h, L1
fvi

h, and

L1
fv j

h, therefore, conditions of the Lemma 2.3.2 are the sufficient conditions for rank(Oi j) = 3.

Edge between a robot and a landmark

In this section, we derive the linearly independent rows in the observability matrix for an

edge ηik between a robot and a landmark and derive the conditions under which maximum number

of linearly independent rows can be obtained. We rearrange the nonlinear kinematic equations in

the following convenient form for computing Lie derivatives:

Ẋi = fviVi + fωiωi, (2.29)

where fvi = [cψi sψi 0]⊤ and fωi = [0 0 1]⊤. We hereafter compute the necessary Lie derivatives of

ηik and their gradients.

Zeroth-order Lie derivative

L0h = ηik,

and its gradient, scaled by R2
ik is given by

∇L0h =
[
−yik xik −R2

ik

]
,

where xik , xi − xk, yi j , yi − yk, and R2
ik = (xik)

2 +(yik)
2.
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First-order Lie derivatives

L1
fvi

h = xiksψi − yikcψi,

L1
fωi

h =−R2
ik,

with gradient given by

∇L1
fvi

h =
[

sψi −cψi xikcψi + yiksψi

]
,

∇L1
fωi

h = 2
[
−xik −yik 0

]
.

Second-order Lie derivatives

L2
fvi fvi

h = sψicψi − sψicψi = 0,

L2
fvi fωi

h = xikcψi + yiksψi,

L2
fωi fvi

h =−2L2
fvi fωi

h,

with gradients given by

∇L2
fvi fωi

h =
[

cψi sψi yikcψi − xiksψi

]
.

Remark 2.3.3 Gradient of L2
fωi fvi

h is not included because it is linearly dependent on ∇L2
fvi fωi

h.

Third-order Lie derivatives

L3
fvi fωi fvi

h = 1,

L3
fvi fωi fωi

h =−(xiksψi − yikcψi) =−L1
fvi

h.

Clearly, the gradients of third and higher order Lie derivatives are linearly dependent on the rows

of the observability matrix corresponding to second and lower order Lie derivatives. Therefore,

we can write the rows of the observability matrix corresponding to an edge between a robot and a
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landmark, using the gradients of Lie derivatives up to second order, as

Oik =


−yik xik −R2

ik

sψi −cψi J+

−2xik −2yik 0

cψi sψi J−

 , (2.30)

where J+ , xikcψi + yiksψi and J− , yikcψi − xiksψi .

Lemma 2.3.3 The rank Oik given by (2.30)(edge between a robot and a landmark) is two if

1. Vi > 0,

2. the robot does not move along the line joining the robot and the landmark.

Proof: If the robot does not move along the line joining the robot and the landmark then J− ̸= 0

(see proof of Lemma 2.3.2) and the elementary operation matrix

Eik =



−cψi
J−

−xik
J− 0 0

−sψi
J−

−yik
J− 0 0

−2J+
J−

−2R2
ik

J− 1 0
1

J−
J+
J− 0 1

 ,

transforms Oik as

EikOik =Uik =

 Ōlik

02×3

 , (2.31)

where

Ōlik ,

 1 0 yik

0 1 −xik

 . (2.32)

It should be noted that the top two non-zero rows in the observability matrix are linearly indepen-

dent (from Lemma 2.3.1) and they correspond to L0h and L1
fvi

h. Therefore, Vi > 0 and J− ̸= 0 are

the sufficient conditions for the rank of the observability matrix being two.
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Figure 2.2: The observability conditions between these four possible configurations of a connected,
3-node RPMG are identical.

Definition 2.3.1 An RPMG Gl
n (Definition 2.2.1) is called a proper RPMG if all of the edges

between robot nodes satisfy the conditions of Lemma 2.3.2 and all the edges between robots and

landmarks satisfy Lemma 2.3.3.

In a proper RPM each edge ηi j between two robots contribute three linearly independent rows to

the observability matrix of a proper RPMG and each edge ηik between a robot and a landmark

contributes two linearly independent rows to the observability matrix of a proper RPMG. Using

three linearly independent rows of Ui j in (2.27) and two linearly independent rows of Uik in (2.31),

we can write the observability matrix of a proper RPMG Gl
n as

Op =

 Op
i j

Op
ik

 , i, j ∈ Vn, k ∈ Vl, (2.33)

where Op
i j ,

[
03×3(i−1) I3 03×(3( j−1)−3i) Ōi j 03×3(n− j)

]
and Op

ik ,
[
02×3(i−1)) Ōlik 02×3(n−i)

]
.

Remark 2.3.4 The observability matrix Op in (2.33) is not the original observability matrix of the

graph Gl
n. Since the rows of (2.33) consist of the linearly independent rows after elementary row

operations, from Lemma 2.3.1 we know that the rows of the observability matrix in (2.33) span the

same observable space spanned by the original observability matrix.

2.3.2 Observability analysis without landmarks

In this section we derive the conditions for achieving the maximum rank of the observability

matrix for the graph G0
n without landmarks. We first discuss the observability properties for a

3− node graph G0
3.
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Lemma 2.3.4 If a three node proper RPMG G0
3 is connected, then the rank of the observability

matrix is six.

Proof: There are four possible configurations of a connected graph G0
3, shown as sub-figures (a)

through (d) in Fig. 2.2. We can write the transformed observability matrix for these configurations

using (2.33) as

Op
a =

 I3 Ō12 0

I3 0 Ō13

 ,Op
b =

 I3 Ō12 0

0 I3 Ō23

 ,
Op

c =


I3 Ō12 0

0 I3 Ō23

I3 0 Ō13

 ,Op
d =

 I3 0 Ō13

0 I3 Ō23

 .
We perform elementary operation on Op

a , Op
b , Op

c , and Op
d by multiplying them by elementary

operation matrices Ea =

 03 I3

Ō12 −Ō12

, Eb =

 I3 −Ō12

03 I3

, Ec =


I3 −Ō12 03

03 I3 03

−I3 Ō12 I3

, and

Ed = I6 respectively to get

EaOp
a = EbOp

b = EdOp
d =

 I3 0 Ō13

0 I3 Ō23

 ,

EcOp
c =


I3 0 Ō13

0 I3 Ō23

0 0 0

 .

Therefore, Lemma 2.3.1 implies that the observability sub-matrix of all the four configurations

have six linearly independent rows and that these rows span the same observable space.

Remark 2.3.5 The elementary operation matrix Ed for observability matrix Op
d in Lemma 2.3.4 is

Identity because Op
d is already in a reduced row echelon form.

From Lemma 2.3.4 we can say that the rows of two edges for a proper RPMG with a common

node are independent. The following lemma is an extension of this idea.
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Figure 2.3: An example of converting an arbitrary connected RPMG to a 2-level tree.

Lemma 2.3.5 If a graph G0
n is a proper RPMG and has the form of a 2-level tree (see figure 2.3(f))

which consists of a root node and n− 1 leafs directly connected to the root, then the rank of the

associated observability matrix is 3(n−1).

Proof: Without loss of generality, assume that the root node of the 2-level tree is labelled as n.

The system observability matrix will then be of the form

Op
2−level =


I3 0 0 · · · Ō1n

0 I3 0 · · · Ō2n
... . . . ...

0 0 · · · I3 Ōn−1,n

 . (2.34)

Clearly, the rank(Op
2−level) = 3(n−1).

Theorem 2.3.1 If the graph G0
n is a proper connected RPMG then the rank of the associated

observability matrix is 3(n−1).

Proof: Using Lemma 2.3.4, any connected 3-node subgraph in the larger graph can be replaced

with any other connected 3-node subgraph, without affecting the rank of the system observability

matrix because their associated observability sub-matrices span the same observable sub-space. A

connected graph G0
n can be transformed to a 2-level tree using following algorithm.

1. Choose any node and label it as the root as shown in Fig. 2.3 (a).
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2. Select the nodes whose path from the root consists of two edges(three nodes including root)

as shown in Fig. 2.3 (b). Each such path can be represented as a 3-node subgraph G0
3.

3. If a valid 3-node subgraph is found, perform a subgraph replacement (see Fig. 2.3 (c)) so

that nodes j and i are both a distance of one away from the root node and repeat step 2. If a

valid subgraph G0
3 is not found, continue to step 4.

4. Search for a three node subgraph G0
3 that includes the root node and two nodes (nodes j and

i) distance one away from the root node that contain an edge between these two nodes (see

Fig. 2.3 (d)).

5. If a valid 3-node subgraph was found, perform a subgraph replacement that maintains the

edges between the root node and nodes i and j, but removes the edge between nodes i and j

(see Fig. 2.3 (e)). Repeat step 4 until Gn
0 is transformed into a 2-level tree.

To show that this algorithm transforms a connected proper RPMG to a 2-level tree, first consider

steps 2 and 3. Every time step 2 finds a valid subgraph, the distance of node i to the root node will

be decreased from two to one. Because the graph is connected, the root node will be connected to

any other node within a finite number of steps. Therefore, as steps 2 and 3 continue to execute, all

nodes will be brought to a maximum of distance one away from the root node. This is similar to

the graph shown in Fig. 2.3(e). Steps 4 and 5 simply remove any redundant edges. Therefore, this

algorithm converts any connected graph to a 2-level tree. The algorithm is also a recursive way

of performing elementary row operations on the rows of the observability matrices of sub-graphs

G0
3 to show that the observability matrix of the connected and proper RPMG G0

n is equivalent to

the observability matrix of a 2-level tree. Furthermore, we can say that the basis of the observable

space of a connected proper RPMG G0
n is the rows of Op

2−level and from Lemma 2.3.5, the rank of

the observability matrix is 3(n−1).

2.3.3 Observability analysis with known landmarks

In this subsection, we assume that landmarks of known location are observed by robots

within the network, providing information about the global coordinate system. We derive condi-
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tions for complete observability of the graph Gl
n. First we derive the conditions for the observability

of a single robot.

Lemma 2.3.6 The rank of the observability matrix of a proper RPMG Gl
1 (one robot and l land-

marks) is three if there are at least two landmarks (l ≥ 2) and the robot and two landmarks are not

on the same line (i.e., ηi1 ̸= ηi2).

Proof: Consider a proper RPMG G2
1 with one vehicle and two landmarks such that ηi1 ̸= ηi2.

Using (2.33) the observability matrix of graph G2
1 can be written as, Op

i12 =

 Ōli1

Ōli2

. To find the

number of linearly independent rows we perform elementary row operations on O by multiplying

by Ei12 =


yi2
y12

0 − yi1
y12

0

− xi1
y12

1 xi1
y12

0

− 1
y12

0 1
y12

0

−x12
y12

−1 −x12
y12

1

 , to obtain

Ei12Op
i12 =

 I3

01×3

 .
This implies that two different landmarks provides three independent rows to the observability

matrix. Therefore, from Theorem 2.2.1 the single robot states are completely observable, i.e.,

rank(O) = 3.

From Lemma 2.3.6 we know that, if all of the n vehicles in the group are directly connected to

two different landmark, then the system is completely observable (rank(O) = 3n). However, due

to limited sensor range and bearing all of the vehicles in the group may not be able to see two

landmarks. The following lemmas and theorem show how cooperative localization can overcome

constraints posed by sensor limitations.

Lemma 2.3.7 Given a 3-node RPMG G1
2 with two robots and one landmark, if the graph G1

2 is

proper then the rows of the observability matrix of the two configurations of G1
2 shown in Fig. 2.4(a)

and Fig. 2.4(b) spans the same observable space.

Proof: The two configurations shown in Fig. 2.4(a) and Fig. 2.4(b) only differs in the landmark

l connection. In configuration (a) the landmark is directly connected to the ith node whereas in
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Figure 2.4: Two robots and one landmark RPMG G1
2.
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Figure 2.5: An example of converting an arbitrary connected RPMG with landmark to a two-level
tree.

configuration (b) the landmark is directly connected to the jth node. The observability matrix for

the configurations shown in Fig. 2.4(a) and (b) can be written using (2.33) as

Op
a =

 I3 Ōi j

Ōlik 02×3

 , Op
b =

 I3 Ōik

02×3 Ōl jk

 . (2.35)

We can perform elementary operation on Oa by multiplying by the elementary operation matrix

Ei jk =

 I3 03×2

−Ōlik I2

 to show that Ei jkOp
a = Op

b . Therefore, from Lemma 2.3.1 we can say that

the observability matrix of both the configurations spans the same space.

Lemma 2.3.8 Given the RPMG Gl
n , if it is proper and connected then the associated observability

matrix is equivalent (observability matrix of both graphs span the same space) to the observability

matrix of a 2-level tree.

Proof: Consider a connected proper RPMG Gl
n(example for l = 1 is shown in Fig. 2.5(a)). We can

write the observability matrix for the graph Gl
n using (2.33). To show that the observability matrix

of a connected proper RPMG Gl
n is equivalent (observability matrix of both graphs span the same

space) to the observability matrix of a 2-level tree we perform following steps.
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• First we perform elementary operations only on the rows of the observability matrix of the

edges between robots (subgraph G0
n). From Theorem 2.3.1 we know that these operations

leads to the observability matrix of a 2-level tree. Therefore, the resulting observability

matrix of the graph Gl
n is equivalent to the observability of the 3-level tree (Example shown

in Fig 2.5(b)) with landmarks on level three. In the 3-level tree the path between each

landmark and the root consists of two edges, including edge ηi j between the root and the ith

node (landmark is directly connected to ith node) and edge ηik between kth landmark and the

ith node. The path between each landmark and the root can be represented as a subgraph G1
2

with two robots and one landmark. There are l such subgraphs in the graph Gl
n.

• Next we perform elementary operations on the rows of the observability matrix of each

subgraph G1
2 associated with each landmark. From Lemma 2.3.7 we know that the resulting

observability matrix of the graph Gl
n is equivalent to the observability matrix of a two-level

tree (see Fig. 2.5(c)) with n−1 robot-to-robot leafs and l leafs between root and landmarks.

Theorem 2.3.2 Given a proper RPMG Gl
n, if for each robot there exists a path to at least two

landmarks and the robot and two landmarks are not on the same line (i.e., ηi1 ̸= ηi2,∀ i ∈ Vn) then

the system is completely observable, i.e., the rank of the observability matrix is 3n.

Proof: There are two scenarios for paths between landmarks. (1) All the robots are directly

connected to the landmarks. For this case, from Lemma 2.3.6 we know that the proper RPMG Gl
n

is completely observable if l ≥ 2 and ηi1 ̸= ηi2,∀ i ∈ Vn. (2) Consider the general case where the

proper RPMG Gl
n is connected and only a subset of nodes measure landmarks. In this case all of

the robots are not directly connected to landmarks, but there exists a path between each robot and

the landmarks. From Lemma 2.3.8 we know that the observability matrix of a connected proper

RPMG Gl
n is equivalent to the observability matrix of a 2-level tree. Therefore connected proper

RPMG Gl
n can be replaced by a two-level tree with n−1 robot to robot leafs and l leafs between

the root and landmarks. Furthermore, from Lemma 2.3.5 we know that for a 2-level tree all of the

3(n−1) rows of the observability matrix of n−1 edges between all robots are linearly independent.

Therefore, we only consider a subgraph (two-level) G2
2 which consists of three edges, including an
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edge ηi j between the root ( jth node) and ith node and two edges η j1 and η j2 between the root and

two landmarks. Using (2.33) the observability matrix for this sub-graph G2
2 is given by

Op =


I3 Ōi j

02×3 Ōl j1

02×3 Ōl j2

 . (2.36)

We perform elementary operation on (2.36) using

Ei j12 =



1 0 0 yi2
y12

0 − yi1
y12

0

0 1 0 − xi1
y12

1 xi1
y12

0

0 0 1 − 1
y12

0 1
y12

0

0 0 0 y j2
y12

0 − y j1
y12

0

0 0 0 − x j1
y12

1 x j1
y12

0

0 0 0 − 1
y12

0 1
y12

0

0 0 0 −x12
y12

−1 x12
y12

1


,

to obtain the reduced row echelon form

Ei j12Op =

 I6

01×6

 . (2.37)

This implies that two landmarks add three linearly independent rows to the observability matrix of

graph G2
n, which are linearly independent to the 3(n−1) existing rows. Therefore, the rank of the

observability matrix for the RPMG Gl
n with l = 2 is 3n.

Corollary 2.3.1 Given a RPMG G0
n, if it is proper, connected, and one of the robot has its position

and heading measurement from GPS then the system is completely observable, i.e., the rank of the

observability matrix is 3n.

Proof: If RPMG G0
n is proper and connected then from Lemma 2.3.5 there are 3(n− 1) linearly

independent rows in the observability matrix and if one of the robot measures its position and

heading directly from a GPS receiver then three linearly independent rows, which are linearly
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independent to the existing 3(n− 1) rows, are added. Therefore, the rank of the observability

matrix becomes 3n and system becomes completely observable.

2.4 Results

In this section, we present simulation and hardware results to validate the observability

conditions obtained earlier in this chapter.

2.4.1 Simulation results

The simulation environment consists of five homogenous ground robots and two land-

marks. Each robot is equipped with an encoder, which provides the robot’s linear and rotational

velocities, and an omnidirectional camera, which measures bearing from other robots and land-

marks in the sensor range Rsensor. We assume that the noise in encoder and camera measurement

is Gaussian. Following are the different simulation parameters of a robot used in the simulation

results presented in this chapter.

• Sensing range of the omni-directional camera (Rsensor = 80m).

• Linear velocity of the robot (V = 5 m/s).

• Sampling time period Ts = 1/30 s.

• Initial pose uncertainty (σx0 σy0 σψ0] = [5m 5m 0.2rad]).

• Standard deviations of process noise in encoder [σv σω ]
T = [0.2m/s 0.2rad/s]T .

• Standard deviation of measurement noise ση = 0.2rad.

In Fig. 2.6, we plot the smallest singular value σmin of the observability matrix and β (G2
5),

where β (G2
5) = 1 if conditions of Theorem 2.3.2 are satisfied otherwise β (G2

5) = 0. It can be seen

that when β (G2
5) = 1 then each robot node in RPMG has path to two landmarks and the system is

completely observable. On the other hand, when β (G2
5) = 0 then all of the robots in the do not have

path to two landmarks and system is unobservable. This numerically proves the Theorem 2.3.2.
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Figure 2.6: Connectivity vs Observability: The dashed red curve represents the connectivity, of a
RPMG with five robots and two landmarks. The solid blue curve represents the smallest singular
value of the nonlinear observability matrix as defined in (2.20). When β (G2

5) = 1 then each robot
node in RPMG has path to two landmarks and the system is completely observable. On the other
hand, when β (G2

5) = 0 then all of the robots in the do not have path to two landmarks and system
is unobservable.
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Figure 2.7: Initial topology for bearing-only cooperative localization. The black circles represent
the initial position uncertainty (3σ ). The black diamonds represent the initial position estimates of
robots. The red circles are the true initial positions of the robots. The dashed blue line represents
an edge (bearing measurement) between two nodes. Two numbered squares are the two known
landmarks.
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Figure 2.8: True trajectories of all of the five robots. The trajectories are generated by following
way-points, and the way-points are chosen such that the RPMG G2

5 remains connected.

We run the bearing-only cooperative localization algorithm for four different cases. In

the first case the measurements from the landmarks are not used for estimation. In the second

case bearing measurements from only one landmark are considered, and in the third case bearing

measurements from two landmarks are considered. Finally, we do not consider any landmarks,

however, the absolute position and heading of a robot from a GPS receiver are fused with inter

robot bearing measurements to perform the cooperative localization. The Fig. 2.7 shows the initial

topology of the RPMG with five robots and two landmarks. Initially, the RPMG is connected and

the waypoints for all of the five robots are chosen such that the RPMG is remains connected. The

actual trajectories of all of the five robots is shown in Fig. 2.8, and the Fig 2.9 shows the true and

estimated trajectories of the second robot, for all of the four cases. It can be seen that estimated

trajectories for CL with two landmarks and GPS (first robot) are closest to the true trajectory.

The comparison for position error (second robot) for all the four cases is shown in Fig 2.10 and

Fig. 2.11.

Fig 2.12, Fig. 2.13, and Fig. 2.14 show the plots for the second robot’s estimated uncertainty

(3σ ) in x, y, and ψ respectively for all of the four cases. It can be seen that the uncertainty for two

landmarks and GPS case is lower then the uncertainty related to no landmark and one landmark.
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Figure 2.9: The second robot trajectories:(1) The true trajectory is represented by the dashed curve.
(2) The estimated trajectory using CL with no landmarks is represented by solid curve with cir-
cles.(3) The estimated trajectory using CL with only one landmarks is represented by the solid
curve with squares. (4)The estimated trajectory using CL with two landmarks is represented by
the solid curve with stars. (5) The estimated trajectory using CL, when Robot 1’s position and
attitude is measured using a GPS, is represented by the solid curve with diamonds.
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Figure 2.10: The comparison of second robot’s error in x direction. This figure shows the plots of
error in x direction with no landmark, one landmark, two landmark, and with GPS measurements of
the Robot 1. The error with no landmark and one landmark is higher than error with two landmarks
and GPS because in last two cases the system is observable.
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Figure 2.11: The comparison of second robot’s error in y direction. This figure shows the plots of
error in y direction with no landmark, one landmark, two landmark, and with GPS measurements of
the Robot 1. The error with no landmark and one landmark is higher than error with two landmarks
and GPS because in last two case the system is observable.
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Figure 2.12: The comparison of second robot’s estimation uncertainty(3σx) in x direction. This
figure shows the plots of error covariance in x direction with no landmark, one landmark, two
landmark, and with GPS measurements of the Robot 1.

This is because with two landmarks and absolute position and heading measurement of a robot

from GPS the system is observable.

39



0 20 40 60 80 100
0

5

10

15

time(s)

3
σ

y
(m

)

 

 
0−LM
1−LM
2−LM
GPS

Figure 2.13: The comparison of second robot’s estimation uncertainty (3σy) in y direction. This
figure shows the plots of error covariance in y direction with no landmark, one landmark, two
landmark, and with GPS measurements of the Robot 1.
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Figure 2.14: The comparison of second robot’s estimation uncertainty (3σψ ) in heading. This
figure shows the plots of error covariance in ψ direction with no landmark, one landmark, two
landmark, and with GPS measurements of the Robot 1.
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2.4.2 Experimental results

For experimental validation we use three stinger robots (see Fig. 2.15). For turn rate and

velocity measurement wheel encoders are used. For bearing measurement we use an omnidirec-

tional camera and an EEE pc for onboard processing and communication. The experimental setup

is shown in Fig. 2.16. It consist of three robots with different color (green, blue, and orange) for

their identification. The snapshot of the experimental area taken from the omnidirectional camera

on the orange robot is shown in Fig. 2.17. The robots communicate with each other on a wireless

network using a router. We use an overhead camera to obtain the true robot states and compare the

estimated states. We use color segmentation to find the bearing of the robots and landmarks which

are in the image plane of a omnidirectional camera.

To do cooperative localization, the robots needed a reliable method of exchanging infor-

mation with one another. To meet this need we designed a software system that enabled multiple

agents to discover and reliably communicate with one other over a small local area network. We

called this system the Agent Management System. In the Agent Management System each robot

was represented by a single software construct we called a Software Agent. The Software Agent

was a single process, run on the robot’s onboard computer that concurrently managed the robot’s

processing and communication. There were two core elements that enabled the Software Agents

to communicate reliably. The first element was peer discovery. The second was message handling.

Peer discovery enabled the Software Agents to find an active directory of all other agents that it

could communicate with. As soon as a Software Agent process started, it began listening for and

periodically broadcasting a short discovery message across the local area network. When another

Software Agent heard one of these messages, it sent back a reply informing the sending agent its

contact information (an IP address and port number). Within a short period of time all software

agents had a list of every active agent on the network. Each agent would continue pinging each

other (at a less frequent interval) if the neighboring robot failed to reply to a certain number of

pings, it was removed from the list of available robot’s to communicate with. With a reliable list of

neighboring agents to communicate with, the agents were able to start sending information back

and forth between each other. Each message was serialized and sent as a single UDP packet. When

received, the Software Agent would put the messages in a single message queue that could be read

from and processed. We elected to use the UDP protocol because we needed small rapid measure-
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Figure 2.15: The Stinger robot. This robot is equipped with a controller, two wheel encoders, an
omnidirectional camera, and Asus EEE computer.

ments from each robot in order to make good cooperative estimates. Using the Agent Management

System, we were able to design, test, and record our experiment for cooperative navigation and

control.

The following parameters are used for the experiment

• Linear velocity of the robot (V = 0.2 m/s).

• Sampling time period Ts = 1/30 s.

• Standard deviations of process noise in encoder [σv σω ]
T = [0.08m/s 0.12rad/s]T .

• Standard deviation of measurement noise σηi j = 0.13rad.

Fig. 2.18 shows the trajectory of all of the three robots, which are computed (1) using only

encoders, (2)using bearing-only cooperative localization, and (3)using the overhead camera. It can

be seen that the trajectories computed using bearing only cooperative localization are closer to the

trajectories computed using the overhead camera. The estimation error plots (x, y, and ψ) of the

blue robot are shown in Fig. 2.19, 2.20, and 2.21. It can be seen that the estimation error of all

of the states using bearing-only cooperative localization with two landmarks is bounded, however,

the estimation error using only encoder measurement drifts.
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Figure 2.16: Experimental setup with three ground robots (orange, light green, and blue) and two
landmarks (pink and dark green boxes). The robots and the landmarks are identified from their
color. The robots communicate with each using the TCP-IP protocol over a communication router.
Each robot shares its bearing measurements (measured using omni-directional camera) and linear
and rotational velocities (measured by two wheel encoders) with the the other robots in the group.
The truth position and heading of all of the robots computed using the overhead camera.

Figure 2.17: This figure shows the omnidirectional camera snap shot taken from the orange robot.
The snap shot shows the 360o view of the the experimental area. It can be seen that other two
robots and two landmarks are clearly visible in the image plane. The bearing from the robots and
landmarks in the image plane can computed using color segmentation.
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Figure 2.18: Trajectories of three robots. There are three different trajectories for each robot
including trajectory computed from over head camera (red solid curve), estimated trajectory us-
ing encoder measurement only (black solid curve with diamonds), and estimated trajectory using
bearing-only cooperative localization (blue dotted curve).
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Figure 2.19: Error in x direction of the blue robot:The dashed black curve represents the ±3σx
uncertainty. The estimation error in x direction using encoder measurements is represented by the
red solid curve with diamonds, and the estimation in x direction using bearing-only measurements
is represented by the blue solid curve with circles.
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Figure 2.20: Error in y direction of the blue robot:The dashed black curve represents the ±3σy
uncertainty. The estimation error in y direction using encoder measurements is represented by the
red solid curve with diamonds, and the estimation in y direction using bearing-only measurements
is represented by the blue solid curve with circles.
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Figure 2.21: Error in heading of the blue robot:The dashed black curve represents the ±3σψ
uncertainty. The estimation error in heading using encoder measurements is represented by the red
solid curve with diamonds, and the estimation error in heading using bearing-only measurements
is represented by the blue solid curve with circles.
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Additional videos of simulation and experimental results related to bearing-only coopera-

tive localization can be found in [78].

2.5 Conclusion

In this chapter we have shown that the observability properties of a system performing

cooperative localization can be characterized by the properties of its relative position measure-

ment graph (RPMG). Using graph theoretic properties and nonlinear observability theory, we have

shown that for a connected proper RPMG G0
n without landmarks, the maximum rank of the ob-

servability matrix is 3(n− 1). Furthermore, we have shown that to achieve full observability, all

nodes in the graph must have a path to at least two different landmarks of known location. We have

validated the theoretical observability condition by simulation and experimental results.
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CHAPTER 3. BEARING-ONLY COOPERATIVE GEO-LOCALIZATION

In Chapter 2, we have derived the conditions for the complete observability of bearing-only

cooperative localization for ground robots. In this chapter, we extend the results of Chapter 2 to

obtain the observability conditions for bearing-only cooperative localization for Unmanned Aerial

Vehicles (UAVs). Also, we use bearing-only localization to develop a cooperative technique to

geo-localize a target in an urban terrain.

3.1 Introduction

Recently, there has been an increase in the use of Unmanned Aerial Vehicles (UAVs) in

several military and civil application that are considered dangerous for human pilots. These ap-

plications include surveillance [23], reconnaissance [24], search [25], and fire monitoring [26,27].

Among the suite of possible sensors, a video camera is inexpensive, lightweight, fits the physical

requirements of small UAVs, and has a high information to weight ratio. One of the important

applications of camera equipped UAVs is determining the location of a ground target when imaged

from UAVs. The pixel location of the target in the image, the position and attitude of the air vehi-

cles, the camera’s pose angles, and knowledge of the terrain elevation are used to geo-localize the

object. Previous target localization work using a camera equipped UAV is reported in [55–58] and

references therein. Barber et al. [56] used a camera, mounted on a fixed-wing UAV, to geo-localize

a stationary target. They discussed recursive least square (RLS) filtering, bais estimation, flight

path selection, and wind estimation to reduce the localization errors. Pachter et al. [55] developed

a vision-based target geo-location technique that uses camera equipped unmanned air vehicles.

They jointly estimate the targets position and the vehicles’s attitude errors using linear regression

which results in improved target geo-localization. A salient feature of target geo-localization using

bearing and range based sensors is the dependence of the measurement uncertainty on the posi-

tion of the sensor relative to the target. Therefore, the influence of input parameters on nonlinear
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Figure 3.1: This figure shows the basic concept of bearing-only cooperative geo-localization. The
objective is to geo-localize a ground moving target using a team of camera equipped UAVs by
measuring bearing measures from each other and the the target. A larger air vehicle like predator,
which flies at the higher altitude, measures it’s position and heading using a GPS receiver. This
larger vehicle shares its GPS and bearing measurement with other low flying smaller air vehicles
to cooperatively geo-locate a ground target.

estimation problems, can be exploited to derive the optimal geometric configurations of a team

of sensing platforms. However, maintenance of optimal configurations is not feasible given con-

straints on the kinematics of typical fixed wing aircraft. Frew [57] evaluated the sensitivity of

target geo-localization to orbit coordination, which enables the design of cooperative line of sight

controllers that are robust to variations in the sensor measurement uncertainty and the dynamics of

the target tracked.

While the existing work on vision based geo-localization successfully demonstrates the tar-

get localization concept and provides several techniques to improve the accuracy of geo-localization,

the limitations associated with geo-localizing a target in urban environments are not addressed. All

of the existing methods require the vehicles’s position and attitude to geo-localize a target. The

standard method is to fuse measurements from a global positioning system (GPS) receiver and an

inertial measurement unit (IMU) to estimate the position and attitude of a aircraft. However, in

many environments of interest, the GPS signals are unavailable or unreliable, e.g., indoors, under-

water, on other planets, in the urban canyon. Additionally, the accuracy of pose estimates based

on GPS may be insufficient for accurate target localization. Therefore, it is important to develop
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methods for localization in the absence of or in addition to GPS. Furthermore, a camera is a line

of sight (LOS) sensor and there may exist many occlusions, e.g., buildings, trees, etc., in the urban

environments which can lead to unreliable tracking of the target.

In this chapter, we address the aforementioned limitations for an urban canyon environ-

ment by using cooperative localization to jointly localize a team of air vehicles and geo-localize a

ground target. In cooperative localization a group of vehicles exchange relative position measure-

ments, e.g., range and bearing, from their exteroceptive sensors, e.g., camera, laser, etc., and their

motion information, velocity and angular rate, from interoceptive sensors, e.g., IMU, encoders,

etc., to collectively estimate their states. For ground robots, cooperative localization has been an

active area of research (e.g., [15, 29–35]) because it provides several potential advantages, includ-

ing increased localization accuracy, sensor coverage, robustness, efficiency, and flexibility. In our

previous work [66], for bearing-only localization of robots, we used a graph based approach to

show that if each robot has a path to two different known landmarks then the system is completely

observable and the position and heading of all of the robots can be estimated with bounded un-

certainty. This result can be extended and it can be shown that if the graph is connected and at

least one of the robots measures its position and heading from a GPS receiver, than the system is

completely observable.

In this work, we develop a bearing-only cooperative localization technique for UAVs to

geo-localize a ground target. In bearing-only localization the vehicles measure bearing from each

other and the targets that are in their sensor range. Each air vehicle flies at a constant altitude,

as shown Figure. 3.1, such that the target is in the field-of-view of one of the agents and at least

one vehicle, the larger vehicle which is flying at a higher altitude, receives signals from a suf-

ficient number of GPS satellites to localize its position. By performing graph based nonlinear

observability analysis, we demonstrate that this system is observable, meaning that the target can

be geo-localized with only one vehicle receiving sufficient GPS satellite signals. This overcomes

the limitation that requires a low-flying smaller UAVs to maintain line-of-sight while flying high

enough to maintain GPS lock. Also, we design a distributed path planning algorithm using reced-

ing horizon control that improves the localization accuracy of the target and of all of the agents

while satisfying the observability conditions.
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Figure 3.2: Bearing-only cooperative geo-localization. A0 is the target that is to be cooperatively
geo-localized by a team of n aerial vehicles A1, · · · ,An that are equipped with downward facing
cameras. Each vehicle flies at a constant altitude in descending order and measure bearing from
each other and the target. An flies at the highest altitude, and is assumed to have access to GPS
while the smaller vehicles flying at lower altitude do not have GPS

The chapter is organized as follows. In the next section, we formulate the problem and

discuss the bearing-only cooperative localization for unmanned aerial vehicles. In Section 3.3,

we perform the graph based nonlinear observability analysis, demonstrating the conditions under

which the system is observable. In Section 3.4, we develop a distributed path planner to improve

the accuracy of geo-localization. In Section 3.5, we present simulation results. In Section 3.6, we

give our conclusions.

3.2 Problem formulation

Consider a mobile ground target A0 moving in an urban terrain as shown in Figure 3.2.

Next, consider a team of n aerial vehicles (A1, · · · ,An) flying at different constant altitudes in

descending order. An flies at the highest altitude where a sufficient number of GPS satellites are

available for its localization and A1 flies at the lowest altitude to keep the target in its field-of-view

as shown in Figure 3.2. Each UAV is equipped with an inertial measurement unit (IMU) and a

downward facing gimballed camera. The IMU measures angular rates and accelerations in the

body frame and the camera of the ith agent measure the bearing from the (i− 1)th agent. The

objective is to cooperatively geo-localize, i.e., find the global position and heading of the ground
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target. For geo-localization, the vehicles must have accurate estimates of their position and attitude

and the target must be in the sensor range of at least one of the vehicles. Since only An has the

ability to sense its global position and heading through GPS, the global position and attitude of the

other n−1 agents must be cooperatively estimated. This is accomplished by the agents exchanging

information about their exteroceptive bearing measurements and interoceptive IMU measurements

with other vehicles. This overcomes the limitation of requiring a low-flying smaller air vehicle to

maintain line of sight while simultaneously flying high enough to maintain GPS lock.

There are two problems that need to be solved for cooperative target geo-localization. First,

fuse the bearing-only measurements and IMU measurements from all of the agents and the GPS

measurement from An to cooperative estimate position and heading of all of the air vehicles and the

target. The second problem is to design a distributed path planner that improves the accuracy of

localization and keeps the target in the field-of-view if at least one vehicle. In the next subsection,

we discuss bearing-only cooperative localization for unmanned aerial vehicles.

3.2.1 Bearing-only cooperative localization

In this work, we use the following simplified guidance model for the ith UAV which is

given by 
ẋi

ẏi

żi

ψ̇i

= fi(Xi,ui) =


Vi cosθi cosψi

Vi cosθi sinψi

−Vi sinθi

ωi

 , (3.1)

where Vi is the airspeed, [xi,yi,zi]
⊤ is the 3-D position, ωi =

g
Vi

tanϕi is the turn rate, ui = [Vi,ωi]
⊤

is the control input, g is the gravitational acceleration constant, and [ϕi,θi,ψi]
⊤ are roll, pitch, and

yaw angles.

In this work we assume that there is no wind and the airspeed Vi is available, which can be

estimated from the differential pressure sensor (see Chapter 8 in [79]). Also, we assume that roll

ϕi and θi are available. For small UAVs the roll and pitch angles can be estimated using gyro and

accelerometer measurements (see Chapter 8 in [79]).
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The camera measures bearing from other UAVs, and landmarks that are in its sensor range.

The bearing in azimuth and elevation measured from the ith vehicle to the jth vehicle are written

as

ηa
i j = tan−1

(
y j − yi

x j − xi

)
−ψi +υa, (3.2)

ηe
i j = tan−1

(
z j − zi

Ri j

)
−θi +υe, (3.3)

where Ri j =
√
(x j − xi)2 +(y j − yi)2 and υa ∼ N(0,σ2

η) and υa ∼ N(0,σ2
η) processes with zero

mean and variance σ2
η . In this work, we assume that each camera can be gimballed to keep the

other UAVs, or the target, in it’s field-of-view.

The GPS measurement for An is given as

zgps =


xn

yn

zn

ψn

+


υx

υy

υz

υψ

 , (3.4)

where υx ∼ N(0,σ2
x ), υy ∼ N(0,σ2

y ), υz ∼ N(0,σ2
z ), υψ ∼ N(0,σ2

ψ) are zero mean Gaussian pro-

cesses that model the measurement error in position and heading.

For cooperative localization, each vehicle exchanges its local sensor measurements, which

include velocity, angular rates, and bearing measurements, with their neighbors. Let NM
i be the

set of neighbors for which ith UAV can obtain bearing measurements, and let NC
i be the set of

neighbors with which ith UAV can communicate. In this chapter, we assume that NM
i = NC

i and we

will therefore denote the set of neighbors as Ni. To represent the connection topology of the UAVs

we use a relative position measurement graph (RPMG) [18] which is defined as follows.

Definition 3.2.1 An RPMG for n nodes performing cooperative localization is a directed graph

Gn , {Vn,En}, where Vn = {1, · · · ,n} is the node set consisting of n vehicle nodes and En(t) ⊂

{Vn×Vn}= {ηa
i j,ηe

i j}, i, j ∈Vn is the edge set of m bearing measurements. Index p∈ En represents

the pth measurement. An example RPMG G5 is shown in Fig. 3.3.
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Figure 3.3: Relative position measurement graph (RPMG). The nodes of an RPMG (blue squares
are UAVs) represent vehicle states and the edges represent bearing measurements between nodes.

The objective of cooperative localization is to estimate the combined state of all of the UAVs and

the target. We use an extended information filter(EIF) [80] to implement bearing-only cooperative

localization. The EIF is dual of the EKF and the EKF is a quasi-local asymptotic observer for

nonlinear systems where a necessary condition for its convergence and boundedness are that the

system is fully observable [51]. Therefore, a first step is to find the conditions under which the

system is completely observable.

3.3 Graph-based observability analysis

To determine the observability of the entire system represented by the RPMG we use the

nonlinear observability rank criteria developed by Hermann and Krener [75] which is summarized

in the next paragraph.

Consider a system model with the following form

Σ :
Ẋ = f (X ,u) = [ f⊤1 (X1,u1), · · · , f⊤n (Xn,un)]

⊤,

Y = h(X) = [h1(X), · · · ,hm(X)]⊤,
(3.5)
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where X = [X⊤
1 X⊤

2 · · ·X⊤
n ]⊤ ∈ R4n is the state of the system, Y ∈ Rm is the system output, hp :

R4n 7→ R is the measurement model of the pth sensor measurement, u ∈ Λ ⊆ R2n is the control

input vector, and f : R4n ×Λ 7→ R4n.

We can write the process model in (3.5) can be written as,

Ẋ = f (X(t),u(t)) =
n

∑
i=1

fvi(X(t))Vi +
n

∑
i=1

fωi(X(t))ωi, (3.6)

where

fvi = [04(i−1)×1, cosθi cosψi, cosθi sinψi, − sinθi, 0, 04(n−i)×1]
⊤, (3.7)

fωi = [03(i−1)×1, 0, 0,0, 0, −1, 04(n−i)×1]
⊤, (3.8)

are vector fields on R4n. Two features of this system can be observed. First, the system is time

invariant, in that there is no explicit dependence on time. Second, the system above is linear in

the control. In this dissertation, we use Lie derivatives, which comes under the field of differential

geometry, to answer an important behavior of the system: Is it observable, in the sense that, for each

state there exists at least one corresponding input which permits us to discriminate between this

state all nearby states. We use Lie derivatives to obtain the observability matrix. A Lie derivative

can be interpreted as the derivative of a scalar along integral curves of the vector field. Some basics

of differential geometric methods and Lie derivatives are provided in Appendix A.

The zeroth-order Lie derivative of the pth bearing measurement hp is the function itself,

i.e., L0hp = hp. Using the definition of Lie derivative in (A.4), the first-order Lie derivative of

function hp along with vector field fvi is given by

L1
fvi

hp = ∇L0hp · fvi, (3.9)

where ∇ represents the gradient operator, and · denotes the vector inner product. Considering that

L1
fvi

hp is a scalar function itself, the second-order Lie derivative of L1
fvi

hp along with vector field

fvi is given by

L2
fvi fvi

hp = ∇L1
fvi

hp · fvi . (3.10)
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Higher order Lie derivatives are computed similarly. Additionally, it is possible to define mixed

Lie derivatives, i.e., with respect to different functions of the process model. For example, the

second-order Lie derivative of L1
fvi

hp along with vector field fv j is given by

L2
fvi fv j

hp = ∇L1
fvi

hp · fv j . (3.11)

Based on the preceding expressions for the Lie derivatives the observability matrix is defined as

the matrix with rows

Op ,
{

∇Ld
fvi ,··· , fv j , fωi ,··· , fω j

hp

}
, (3.12)

where i, j ∈ Vn, p ∈ En, and d ∈ N. The important role of this matrix in the observability analysis

of a nonlinear system is demonstrated by next theorem, which is proved in [76].

Theorem 3.3.1 ( [76]) A system is locally weakly observable if its observability matrix whose rows

are given in (3.12) has full rank, e.g., in our case rank(O) = 4n.

3.3.1 Rows in the observability matrix due to an edge

In this subsection, we derive the linearly independent rows in the observability sub-matrix

of an edge between two nodes. The edge consists of two bearing measurements ha(X) = ηa
i j, and

he(X) = ηe
i j. The linearly independent rows of the observability sub-matrix of an edge serve as

building block for the observability conditions for the graph Gn.

We rearrange the nonlinear kinematic equations in the following convenient form for com-

puting Lie derivatives:

Ẋ =

 Ẋi

Ẋ j

= fviVi + fωiωi + fv jV j + fω jω j, (3.13)

where fvi = [cθicψi cθisψi −sθi 0 0 0 0 0]⊤, fωi = [0 0 0 1 0 0 0 0]⊤, fv j = [0, 0, 0, 0, cθ jcψ j cθ jsψ j −

sθ j 0]⊤, fω j = [0 0 0 0 0 0 0 1]⊤, cψi , cosψi, sψi , sinψi, and cθi , cosθi.

Our objective is to find the number of linearly independent rows in a matrix. To do that,

we transform a matrix into reduced row echelon form (RREF). RREF is the simplest possible form
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of a matrix, which directly provides the number of linearly independent rows in the matrix. Since

RREF is the backbone of the analysis presented in this chapter we state the next lemma, which

explains the properties of a RREF matrix.

Lemma 3.3.1 ( [77]) A matrix A ∈ Rm×n, by means of a finite sequence of elementary row opera-

tions, can be transformed to a row reduced echelon form U ∈ Rm×n such that

EA =U, (3.14)

where E ∈ Rm×m is the elementary operation matrix. If the rank of A is r then

1.

U =

 Ir B

0(m−r)×r 0(m−r)×(n−r)

 , (3.15)

where Ir is the Identity matrix of size r and B ∈ Rr×(n−r),

2. the first r rows of matrix U are linearly independent,

3. the non zero rows of the matrix U spans the same row space spanned by A,

4. if A is an invertible matrix ( r = m = n) then U is the Identity matrix.

Lemma 3.3.2 Let Oi j be the observability matrix associated with the bearing measurement ηa
i j

and ηe
i j collected by vehicle i while observing vehicle j. The number of linearly independent rows

of Oi j is four if

1. Vi > 0,

2. Vj > 0,

3. θi ̸= k π
2 , ∀k =±1,±2, · · · ,

4. θ j ̸= k π
2 , ∀k =±1,±2, · · · ,

5. the ith vehicle does not move directly along the projection of Euclidian line, connecting

vehicle i and j, in the horizontal plane,
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6. the jth vehicle does not move directly perpendicular to the projection of Euclidian line,

connecting vehicle i and j, in the horizontal plane.

Proof: Let Oi j be the observability matrix associated with the bearing measurement ηa
i j and ηe

i j

collected by vehicle i while observing vehicle j. If Vi > 0 and Vj > 0, then we can compute L0ha,

L0he, L1 fvih
a, and dL1 fv jh

a. We can write the observability matrix Oi j as

Oi j =


dL0ha

dL0he

dL1 fvih
a

dL1 fv jh
a

 , (3.16)

=


−yi j xi j 0 −R2

i j yi j −xi j 0 0

xi jzi j yi jzi j −R2
i j 0 xi jzi j yi jzi j −R2

i j 0

cθisψi −cψicθi 0 cθiJ
+
i −cθisψi cψicθi 0 0

−cθ jsψ j cψ jcθ j 0 0 cθ jsψ j −cψ jcθ j 0 −cθ jJ
+
j

 , (3.17)

where yi j , yi − y j, xi j , xi − x j, zi j , zi − z j, R2
i j = x2

i j + y2
i j, cθ , cosθ , cψ , cosψ , sψ , sinψ ,

J+i , xi jcψi + yi jsψi , and J−j , yi jcψ j − yi jsψ j .

Also, we can write

J−i = v⊤1 v
′
i = yi j cosψi − yi j sinψi, (3.18)

J+j = v⊤1 v j = xi j cosψ j + yi j sinψ j, (3.19)

where v1 = [xi j yi j]
⊤ is a vector along the line between the two vehicles, v j = [cosψ j sinψ j]

⊤ is

the heading vector of the jth vehicle, and v
′
i = [−sinψi cosψi]

⊤ is a vector perpendicular to the

heading vector of the ith vehicle.

From (3.18) and (3.19), we can verify that if the ith vehicle, which is measuring the bearing,

does not move directly along the projection of the Euclidian line connecting the two agents in the

horizontal plane, then J−i ̸= 0, and if the jth vehicle does not move perpendicular to the projection

of the Euclidian line connecting the two vehicles then J+j ̸= 0. Therefore, if θi ̸=±π
2 and θ j ̸=±π

2
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then the elementary operation matrix

Ei j =



−
cψ j J

+
i

J−i J+j
0 −

cψ j R
2
i j

cθiJ
−
i J+j

− yi j

cθ j J
+
j

−
sψ j J

+
i

J−i J+j
0 −

sψ j R
2
i j

cθiJ
−
i J+j

xi j

cθ j J
+
j

zi jJ+i
J−i R2

i j
− 1

R2
i j

− zi j

cθiJ
−
i

0

sin(ψi−ψ j)

J−i J+j
0

J−j
cθiJ

−
i J+j

1
cθ j J

+
j


,

which transforms Oi j as

Ei jOi j =Ui j =
[

I4 Ōi j

]
, (3.20)

where

Ōi j =


−1 0 0 yi j

0 −1 0 −xi j

0 0 −1 0

0 0 0 −1

 . (3.21)

From Lemma 3.3.1, since the row reduced matrix Ui j has four linearly independent rows and these

rows span the same observability space spanned by rows of Oi j, the conditions of Lemma 3.3.2 are

sufficient for rank(Oi j) = 4.

Definition 3.3.1 An RPMG Gn (Definition 3.2.1) is called a proper RPMG if all of the edges

between two nodes satisfy the conditions of Lemma 3.3.2.

In a proper RPMG each edge contributes four linearly independent rows to the observability of the

overall system. Using four linearly independent rows of Ui j in (3.20), we can write the observabil-

ity matrix of a proper RPMG Gn as

Op ,
{

Op
i j

}
, i, j ∈ Vn, (3.22)

where Op
i j =

[
04×4(i−1) I4 04×(4( j−1)−4i) Ōi j 04×4(n− j)

]
.
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Figure 3.4: The observability conditions between these four possible configurations of a connected,
3-node RPMG are identical.

Remark 3.3.1 The observability matrix Op in (3.22) is not the original observability matrix of the

graph Gn. Since the rows of (3.22) consist of the linearly independent rows after elementary row

operations, from Lemma 3.3.1 we know that the rows of the observability matrix in (3.22) span the

same observable space spanned by the original observability matrix.

3.3.2 Rows in the observability matrix of a 3-node RPMG

Next, we discuss the observability properties for a 3-node graph G3.

Lemma 3.3.3 If a three node proper RPMG G3 is connected, then the rank of the observability

matrix is six.

Proof: There are four possible configurations of a connected graph G3, shown as sub-figures (a)

through (d) in Fig. 3.4. We can write the transformed observability matrix for these configurations

using (3.22) as

Op
a =

 I4 Ō12 0

I4 0 Ō13

 , Op
b =

 I4 Ō12 0

0 I4 Ō23

 ,
Op

c =


I4 Ō12 0

0 I4 Ō23

I4 0 Ō13

 , Op
d =

 I4 0 Ō13

0 I4 Ō23

 .
We perform elementary operation on Op

a , Op
b , Op

c , and Op
d by multiplying them by elementary

operation matrices Ea =

 04 I4

Ō12 −Ō12

, Eb =

 I4 −Ō12

04 I4

, Ec =


I4 −Ō12 04

04 I4 04

−I4 Ō12 I4

, and
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Figure 3.5: An example of converting an arbitrary connected RPMG to a 2-level tree.

Ed = I8 respectively to get

EaOp
a = EbOp

b = EdOp
d =

 I4 0 Ō13

0 I4 Ō23

 ,

EcOc =


I4 0 Ō13

0 I4 Ō23

0 0 0

 .

Therefore, Lemma 3.3.1 implies that the observability sub-matrix of all the four configurations

have eight linearly independent rows and that these rows span the same observable space.

Remark 3.3.2 The elementary operation matrix Ed for observability matrix Op
d in Lemma 3.3.3 is

Identity because Op
d is already in a reduced row echelon form.

From Lemma 3.3.3 we can say that the rows of two edges for a proper RPMG with a common

node are independent. The following lemma is an extension of this idea.

Theorem 3.3.2 If the graph Gn is a proper connected RPMG then the rank of the associated

observability matrix is 4(n−1).

Proof: Using Lemma 3.3.3, any connected 3-node subgraph in the larger graph can be replaced

with any other connected 3-node subgraph, without affecting the rank of the system observability

matrix because their associated observability sub-matrices span the same observable sub-space.
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Figure 3.6: The cooperative geo-localization problem can be represented by a chain RPMG (Gn).

Therefore a connected graph Gn can be transformed to a 2-level tree (see Fig. 3.5 and the proof of

Theorem 2.3.1 in Chapter 2).Without loss of generality, we assume that the root node of the 2-level

tree is labeled as n. The system observability matrix can be transformed into the form

Op
2−level =


I4 0 0 · · · Ō1n

0 I4 0 · · · Ō2n
... . . . ...

0 0 · · · I4 Ōn−1,n

 . (3.23)

Clearly, the rank of Op
2−level 4(n−1).

For example, the observability matrix for a chain RPMG Gn considered in this chapter, as shown

in Fig.3.6, can be written using (3.22) as

Op
chain =


I4 Ō12 0 · · · 0

0 I4 Ō23 · · · 0
... . . . . . . ...

0 0 · · · I4 Ōn−1,n

 . (3.24)
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We can find an elementary operation matrix

Echain =


I4 −Ō12 −Ō23 · · · −Ō1,n−1

0 I4 −Ō23 · · · −Ō2,n−1
...

... . . . . . . ...

0 0 0 I4 −Ōn,n−1

 , (3.25)

such that

EchainOp
chain = Op

2−level, (3.26)

which implies that rank(Op
chain) = 4(n−1).

Theorem 3.3.3 Given an RPMG Gn, if it is proper, connected, and one of the vehicle has its

position and heading measurement from GPS then the system is completely observable, i.e., the

rank of the observability matrix is 4n.

Proof: If RPMG Gn is proper and connected then from Theorem 3.3.2 its observability matrix

spans the same space as the observability matrix of 2-level tree (Op
2−level). Let the nth vehicle

measure its position and heading directly from a GPS receiver and this results in the addition of

four linearly independent rows to the observability matrix as

Op
gps =

[
0 0 · · · 0 I4

]
. (3.27)
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The combined observability matrix of RPMG Gn with GPS measurement by the nth vehicle can be

written as

Op =

 Op
2−level

Ogps

 , (3.28)

=



I4 0 0 · · · Ō1n

0 I4 0 · · · Ō2n
... . . . ...

0 0 · · · I4 Ōn−1,n

0 0 · · · 0 I4


. (3.29)

Clearly, the rank of Op is 4n and the system is completely observable.

The conditions of Theorem 3.3.3 explain the fact that cooperative localization creates a

larger and flexible joint field-of-view and only one vehicle requires global position and heading

measurement from a GPS receiver for the complete observability of position and heading of all

of the agents. This fact motivates us to use cooperative bearing-only localization for target geo-

localization in GPS denied areas.

3.4 Controller for geo-localization

Since in bearing-only cooperative localization both the motion model and measurement

model are nonlinear, the uncertainty in estimates is path dependant. In this section, we develop a

a distributed path planning algorithm that minimizes the uncertainty (maximizes the information)

in the localization of all of the agents and the target while satisfying the observability constraints.

For the target geo-localization problem, we restrict the motion of all of the vehicles in a horizontal

plane at a constant altitude. Also, we assume that the vehicles and the target are moving with

constant velocity, and that these velocities are in increasing order with the altitude i.e., V0 < V1 <

· · ·<Vn. For developing a controller we use the equation of motion of an ith UAV flying at constant
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altitude, θ = 0, and performing a coordinated turns conditions:
ẋi

ẏi

żi

ψ̇i

=


Vi cosψ

Vi sinψ

0
g
Vi

tanϕi

 . (3.30)

Since target moves on ground, its equation of motion is similar to an UAV. For this work, we

assume that the target moves in a straight line, i.e., ψ̇1 = 0, however, a maneuvering target can also

be geo-localized using cooperative localization.

The information matrix is the inverse of the sensor measurement uncertainty and it contains

all the information about the accuracy of the sensor measurement. The information matrix for

bearing measurements in the horizontal plane can be written as

I(t) = H⊤(t)R−1
measH(t), (3.31)

where H is the measurement Jacobian and Rmeas is the covariance matrix of measurement noise.

Since the bearing measurement is a nonlinear function of the states, the information matrix depends

on the states of the vehicles. We can consider any number of cost functions derived from the

information matrix, but in this chapter we will focus on the trace of I(t), which is a scalar function

and it captures the quality of the estimates obtained from the set of bearing measurements.

While designing the optimization algorithm we should keep in mind the constraints im-

posed by the observability of the system that are given in Theorem 3.3.3. The first constraint that

global position and heading is measured by GPS to at least one of the vehicles is easily satis-

fied by flying a An at the high enough altitude. The second constraint requires that the RPMG,

including target, be connected. To satisfy the connectivity constraint, we define a fixed RPMG

topology in which agent Ai should measures the bearing to vehicle Ai−1 at the next lower altitude.

In other words, each vehicle should always keep the vehicle that is at the next lower altitude in its

field-of-view. For the RPMG to be connected, the following condition should be satisfied.

Ri < Rsensor, ∀ i ∈ Vn, (3.32)
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where Ri , Ri,i−i =
√
(xi − xi−1)2 +(yi − yi−1)2 is the horizontal separation between two nodes

and Rsensor is the horizontal sensor range of the camera. In order to improve the localization

accuracy consider the following T step receding horizon control problem:

max
ϕ1(t:t+T ),··· ,ϕn(t:t+T )

∑
τ=0:T

trace(I(t + τ)), (3.33)

subject to

Ri < Rsensor, ∀i ∈ Vn, (3.34)

|ϕi(t)|< ϕmax,∀i ∈ Vn. (3.35)

The condition |ϕi(t)| < ϕmax imposes the physical control constrains on the air vehicle. To solve

the problem (3.33)− (3.35), we use the distributed receding horizon control approach developed

by Dunbar and Murray [81]. For the target geo-localization controller we only consider azimuth

bearing measurement between two nodes and the edge set of the chain RPMG, as shown in Fig. 3.6,

is given by

En = {ηa
10,η

a
21, · · · ,ηa

n,n−1}. (3.36)

For simplicity, we assume that Rmeas = I, which results in a simple cost function given by

trace(I(t)) = trace

(
∑

p∈En

H⊤
p Hp

)
, (3.37)

=
1

R2
10
(t)+

1
R2

21(t)
+ · · ·+ 1

R2
n,n−1(t)

, (3.38)

where Hp is measurement Jacobian of the pth bearing measurement. We can rewrite the distributed

controller for the ith UAV as

max
ϕi(t:t+T )

∑
τ=0:T

1
R2

i,i−1(t + τ)
, (3.39)
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subject to

Ri < Rsensor, (3.40)

|ϕi(t)|< ϕmax. (3.41)

We solve the above optimization problem using single agent dynamic programming [68].

Remark 3.4.1 The maximization of the cost function in (3.39) will result in air vehicle trajectories

that fly over the vehicle at the next lower altitude periodically because the uncertainty in the bear-

ing measurement decreases when the distance between two vehicles decreases. In this approach

the localization information flows from An to A0, and the control information flows from A0 to An.

3.5 Results

In this section, we present the simulation results for the bearing-only cooperative geo-

localization controller for stationary and mobile ground target. We consider four unmanned air

vehicles that are flying at different constant altitudes and a ground mobile vehicle that needs to

be geo-localized. The 4th vehicle is flying at the highest altitude and receives its position and

heading measurements from GPS receiver. The other three agents do not have a GPS receiver.

The forward velocity of the target is V0 = 2 m/s and the velocities of the air vehicles are V1 =

5m/s, V2 = 8m/s, V3 = 10m/s, V4 = 12m/s and their respective altitudes are z1 = 20m, z1 =

30m, z1 = 40m, z4 = 50m. The standard deviation for bearing measurement noise is σn = 0.1 rad.

The sampling time is Ts = 0.1s and we use a 3-step receding horizon for the optimization.

First, we simulate the cooperative target geo-localization problem for a stationary target.

Figure 3.7 shows the trajectories of all of the four air vehicles that are geo-localizing a stationary

ground target. It can be seen that the estimated trajectories of all of the vehicles are close to

their actual trajectories, demonstrating the effectiveness of this approach. The top view of thee

trajectories is shown in Figure 3.8. It can be seen that these trajectories converge on circular orbits

around the target on a line joining all of the air vehicles and the target. The trajectory of A4, which

is at the highest altitude and moving at fastest speed, converges to the outer most orbit and the

trajectory of A1, which is at the lowest altitude and moving at the slowest speed, converges to the

inner most orbit. For clarity, we zoom in on Figure 3.8 to show the position estimates of the target
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Figure 3.7: Bearing-only cooperative geo-localization for a stationary ground target. This figure
shows the trajectories (solid red curve is actual, dashed black curve is estimated) and covariance
(black ellipse) of all of the agents. The top most vehicle has its position and heading measurement
from GPS. The blue dashed curve represents the bearing measurement between two nodes . The
velocity and the turning radius of each vehicle increase with increase in the altitude.
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Figure 3.8: Bearing-only cooperative geo-localization for a stationary ground target. This figure
shows the the top view of trajectories of all of the air vehicles. The black diamonds represents the
estimated position and the red circles represents the true position. The black ellipses represents
the 3σ uncertainties in the estimates. All of the vehicles settle on circular orbits around the target.
Also, all of the air vehicles settle on a line joining them and the target.
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Figure 3.9: The zoomed view, from Figure 3.8, of the position estimates of the ground target. The
position estimates of the stationary ground target is represented by black diamonds). The red circle
represents the true position of the ground target, and the black ellipse represents the 3σ position
uncertainty.
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Figure 3.10: Bearing-only cooperative geo-localization of a stationary ground target. This figure
shows the trace of the joint state error covariance matrix P. It can be seen that the algorithm
minimizes the localization uncertainty in a distributed manner.

as shown in Figure 3.9. It can be seen that the position estimates converge to approximately the

actual position and the uncertainty reduces to a small value. The trace of the covariance matrix of

the joint states of all of the vehicles are shown in the Figure 3.10. It can be seen that the uncertainty

(trace) is minimized using the distributed receding horizon controller. The Figure 3.11 shows the

error plots of the position and heading of all of the vehicles that do not have GPS and the ground
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Figure 3.11: Bearing-only cooperative geo-localization of a stationary ground target. This figure
shows the error plots of position of the target and error plots of position and heading of the vehicles,
which do not have GPS. The blue dashed curve is the 3σ error variance and red solid curve is the
estimation error.

stationary target. It can be seen that uncertainties in the state estimation are minimized and they

remain bounded.

Next, we simulate the bearing-only cooperative target geo-localization for a mobile ground

target. Figure 3.12 shows the snapshots of the trajectories and uncertainty in 2-D position of all of

the vehicles and the ground target taken at different time intervals. The initial RPMG is shown in

Figure 3.12(a), and the Figure 3.12(b) shows the RPMG at t = 0.1s when the 4th UAV measures its

position and heading for the first time from a GPS receiver. From Figure 3.12, we can say that the

localization information flows from top to bottom and the control information flows from bottom

to top. Also, the localization errors and the uncertainty in all of the air vehicles and the ground

target decrease and remain bounded. The trace of the covariance matrix of the joint states of all

of the vehicles and the mobile ground target is shown in the Figure 3.13. It can be seen that the
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joint uncertainty is minimized using the distributed receding horizon controller. The Figure 3.14

shows the error plots of the position and heading of all of the vehicles that do not have GPS and

the ground target. It can be seen that uncertainties in the state estimation are minimized and that

remain bounded. The results presented in this chapter demonstrates that how a target can be geo-

localized using multiple unmanned aerial vehicles in an urban environment where GPS signals are

not directly available.

3.6 Conclusion

In this chapter, we develop a cooperative approach to geo-localize a ground moving tar-

get using bearing-only localization of UAVs. We perform a graph based nonlinear observability

analysis of bearing-only localization to obtain the conditions for complete observability. We have

shown that the system is completely observable if the graph is connected and at least one of the

UAV measures its 3-D position and heading from a GPS receiver. We use this condition to de-

velop a distributed path planning algorithm for UAVs to cooperative geo-localize the target using

bearing-only measurements.
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Figure 3.12: Bearing-only cooperative geo-localization for mobile ground target. This figure shows
the snap shots of the trajectories (solid red curve is actual, dashed black curve is estimated) and
covariance (black ellipse) of all of the vehicles at different time intervals. The top most UAV has
its position and heading measurement from the GPS. The blue dashed curve represent the bearing
measurement between two nodes. The velocity of air vehicles decrease with the altitude. It can be
seen that at the instant t = 0.1s that the top most vehicle receives its global position from a GPS
receiver and its uncertainty shrinks. Also, it can be seen that the localization information flows
from top to bottom and that with time the uncertainty in the estimates is reduced
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Figure 3.13: Bearing-only cooperative geo-localization of a mobile ground target. This figure
shows the trace of the joint state error covariance matrix P. It can be seen that the algorithm
minimizes the localization uncertainty in a distributed manner.
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Figure 3.14: Bearing-only cooperative geo-localization of a mobile ground target. This figure
shows the estimation estimation error plots of the target states (position and heading ) and error
plots of position and heading of the vehicles, which do not have GPS. The blue dashed curve is the
3σ error variance and red solid curve is the estimation error.
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CHAPTER 4. OBSERVABILITY BASED PATH PLANNING

In Chapter 2 and Chapter 3, we discussed how bearing measurement can be used for coop-

erative localization of ground robots and UAVs. In this and next chapter, we discuss how bearing

measurement can be used for path planning of UAVs in urban terrain.

4.1 Introduction

Small and Unmanned Aerial Vehicles(UAVs) have the potential to perform tasks that are

too difficult or dangerous for human pilots. For example, they can monitor critical infrastructure

and real-time disasters, perform search and rescue, and measure weather in-storms [40]. For many

of these applications, UAVs are required to navigate in urban or unknown terrain where obstacles

of various types and sizes may hinder the success of the mission. UAVs must have the capability to

autonomously plan paths that do not collide with buildings, trees or other obstacles. Therefore, the

path planning and obstacle avoidance problems for UAVs have received significant attention [40–

44].

The path planning problem can be grouped into global path planning and local path plan-

ning. Global path planning requires complete knowledge about the environment and a static terrain.

In that setting a collision-free path from the start to the destination configuration is generated be-

fore the vehicle starts its motion [45]. The global path planning problem has been addressed by

many researchers with common solutions being potential fields methods, roadmap methods and

cell decomposition methods [82]. On the other hand, local path planning is executed in real-time

during flight. The basic idea is to first sense the obstacles in the environment and then determine a

collision-free path [40].

Local path planning algorithms require sensors to detect obstacles. Among the suite of pos-

sible sensors, a video camera is cheap and lightweight and fits the physical requirements for small

UAVs [40]. However, because of projective geometry, a monocular camera really only measures
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the bearing to the object. TTC can be estimated by considering the change in the size of the object

in the image plane, but this estimate relies on accurately segmenting the image, which can be a

noisy process. Therefore, it is a reasonable engineering choice to consider a monocular camera as

a bearing-only measurement device and use the camera to estimate both TTC and bearing. We use

an extended Kalman Filter (EKF) to extract TTC from bearing measurements.

The key idea presented in this chapter is to maneuver the UAV to minimize the state esti-

mation uncertainty while simultaneously avoiding obstacles. We will show that these two tasks are

complementary. We use the local mapping technique in our previous work [83–85], which builds

a polar map in the local-level frame of the UAV using the camera measurements directly without

transforming to the inertial frame. However, instead of using both TTC and bearing measurements

as in [83–85], in this work we only use bearing measurements to estimate both the TTC and bear-

ing to obstacles. For this purpose we will use the nonlinear observability theory developed by

Hermann and Krener [75].

Observability is a measure of information available for state estimation. Song et al. [51]

show that the EKF is a quasi-local asymptotic observer for discrete-time nonlinear systems, and

that the convergence and boundedness of the filter are achieved when the system satisfies the non-

linear observability rank condition and when the states stay within a convex compact domain. Ob-

servability analysis has been studied extensively for the purpose of estimation [54, 86, 87]. While

Bryson and Sukkarieh [88] perform the observability analysis of SLAM and develop an active

control algorithm, the observability analysis is not used to develop active control. The contribu-

tion of this chapter is that we use the observability analysis to explicitly design the path planning

algorithm. The main contributions of this chapter are as follows:

• We build polar maps using the TTC, which are independent of the ground or air speed of the

UAV.

• We perform an observability analysis of the state estimation process from bearing-only mea-

surements and find the necessary conditions for observability of the system.

• We design a path planning algorithm based only on the local map around the UAV in the

local-level frame.
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• The algorithm minimizes the uncertainties in the TTC and bearing estimates while simulta-

neously avoiding obstacles.

• We analyze the behavior of the path planning algorithm and determine the class of environ-

ments where the algorithm guarantees collision-free paths that maneuver the UAV to a goal

configuration.

The chapter is organized as follows. Section 4.2 describes the model of the vehicle in

the local-level frame and details a nonlinear observability analysis. In Section 4.3 we describe

the observability-based path planning algorithm. Section 4.4 analyzes the behavior of the path

planning algorithm. Numerical results are provided in Section 4.5, and our conclusions are in

Section 4.6.

4.2 Observability analysis of state estimation

In this section we will build a local map using the TTC to obstacles in the local-level frame

of the UAV. The map is constructed in polar coordinates by estimating the TTC and bearing to

obstacles. We perform a nonlinear observability analysis of the state estimation problem using

bearing-only measurements, find necessary conditions for complete observability of the system,

and establish a link between estimation accuracy and collision avoidance.

We assume the UAV is flying at a constant height above ground level. Since the obstacle

map is in the local-level frame of the UAV, the equations of motion of each obstacle relative to

the UAV need to be derived. The origin of the local-level frame is the UAV’s center of mass. The

x-axis points out the nose of the airframe when the airframe is not pitching, the y-axis points out

the right wing when the airframe is not rolling, and the z-axis points into the Earth. Let V represent

the ground speed of the UAV and let ϕ and ψ represent the roll and heading angles, respectively.

Figure 4.1 shows the motion of the ith obstacle relative to the UAV in the local-level frame, where

τ i is the TTC, η i is the bearing whose positive direction is defined as the right-handed rotation

about the z-axis of the local-level frame, and Oi is the ith obstacle. Based on Fig. 4.1, the equations
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North

East

Figure 4.1: This figure shows the motion of the ith obstacle relative to the UAV. The TTC and
bearing to the obstacle are represented by τ i and η i. The ground speed is represented by V . The
heading angle is represented by ψ . The ith obstacle is represented by Oi.

of motion of the obstacle relative to the UAV in terms of TTC and bearing are given by

τ̇ i = −cosη i, (4.1)

η̇ i =
sinη i

τ i − ψ̇, (4.2)

where, assuming coordinated turn conditions, ψ̇ = g
V tanϕ and where ϕ is the roll angle of the

UAV, which we assume to be a control signal. Since we use the camera to measure the bearing

only (which only requires data association), the measurement at time t is given by

zi
t = η i

t + vi
t , (4.3)

where vi
t is the measurement noise that is assumed to be a zero-mean Gaussian random variable.

Based on the state transition model expressed by Eqs. (4.1) and (4.2) and the observation model

expressed by Eq. (4.3), we use the EKF to estimate the TTC and bearing and we build a TTC map

in the local-level frame using polar coordinates, as shown in Fig. 4.2. The origin of the map is

the current location of the UAV. The circles represent the obstacles and the ellipses around them

represent the TTC and bearing uncertainties.

To decrease the uncertainties in the TTC and bearing estimates, we analyze the observabil-

ity of the system given by Eqs. (4.1), (4.2), and (4.3). Let xi = [τ i,η i]⊤ represent the state vector

associated with the ith obstacle and let u = ϕ represent the control input. Let ẋi = f(xi,u) represent

the state transition model given by Eqs. (4.1) and (4.2) and let zi
t = h(xi

t) represent the observation

model given by Eq (4.3). The observability matrix is computed using Lie derivatives described by
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Figure 4.2: This figure shows the TTC map in the local-level frame of the UAV using polar coordi-
nates. The origin of the map is the current location of the UAV. The circles represent the obstacles
and the ellipses around them represent the TTC and bearing uncertainties. The radial direction is
TTC and it is represented in seconds.

Hermann and Kerner [75]. The 0th order Lie derivative is L0
f (h) = η i and the 1st order Lie deriva-

tive is L1
f (h) =

∂L0
f (h)

∂xi f =−ψ̇ + sinη i

τ i . We define the vector of Lie derivatives Ω = [L0
f (h),L

1
f (h)]

⊤.

The observability matrix is computed as

Oi =
∂Ω
∂xi =

 0 1

− sinη i

(τ i)2
cosη i

τ i

 . (4.4)

The observability matrix has rank two if and only if τ i ̸= ∞, η i ̸= 2π p where p ∈ Z. The EKF is

a quasi-local asymptotic observer for nonlinear systems and its convergence and boundedness are

achieved when the system is fully observable [51]. Bounds on the EKF error covariance Pi are

related to the observability of the system given by Lemma 4.2.1 proved in [51].

Lemma 4.2.1 ( [51]) Suppose that there exist positive real scalars α1, α2, β1, β2 such that β1I ≤

Oi⊤Oi ≤ β2I and α1I ≥ CiCi⊤ ≥ α2I then,

(
1

β2 +
1

α2

)
I ≤ Pi ≤

(
α1 +

1
β1

)
I, (4.5)

where I is the identity matrix and Ci is the controllability matrix.
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From Lemma 4.2.1, we can see that both the maximum and minimum singular values β1

and β2 of the observability matrix should be maximized in order to minimize both the upper and

lower bounds of the error covariance matrix. For the problem in this chapter the order of the system

is two, and therefore minimizing the inverse of the determinant of Oi⊤Oi will maximize the two

eigenvalues of Oi⊤Oi. The determinant of Oi⊤Oi related to the ith obstacle is given by

det(Oi⊤Oi) =
sin2 η i

(τ i)4 . (4.6)

From Eq. (4.6), the inverse of determinant is given by (τ i)4

sin2 η i . It can be seen that for large

τ i, the inverse is high, which means observability is less, because the change in the bearing mea-

surement is very small with the large TTC (low parallax). It can also be seen that the inverse is

minimum at η i = π/2 and is maximum at η i = 0, which means that the vehicle is moving di-

rectly towards the obstacle. Minimizing the inverse will ensure that η i ̸= 2pπ and will regulate

η i → π/2. This implies that the minimization of the inverse of the determinant will minimize the

lower and upper bounds of the error covariance matrix as well as steer the UAV away from the

obstacle. Therefore the minimization of uncertainty and obstacle avoidance are complementary.

4.3 Observability-based path planning

Based on the observability analysis in the previous section, we design the observability-

based path planning algorithm denoted by πo such that (a) the uncertainties in the TTC and bearing

estimates are minimized and (b) the UAV is maneuvered to the goal configuration. For the objective

of goal reaching, the UAV requires knowledge of its own inertial position and the inertial position

of the goal. Accordingly, the path planning algorithm πo requires the use of GPS.

Let τg
t and ηg

t represent the TTC and bearing to the goal configuration at time t, and let

xg
t = [τg

t ,η
g
t ]

⊤. Let τ i
t and η i

t represent the estimated TTC and bearing to the ith obstacle and let

xi
t = [τ i

t ,η i
t ]
⊤. Let xt = [x1

t
⊤
, · · · ,xn

t
⊤]⊤. The determinant of the matrix Oi⊤Oi associated with the

ith obstacle is given by det(Oi
t
⊤Oi

t) =
sin2 η i

t
(τ i

t )
4 . Let νt = [xg

t
⊤
,xt

⊤]⊤. Let It represent the index set of

all n obstacles and let τ l represent the maximum TTC to obstacles that the planning algorithm πo

reacts to. Let Bt = {i ∈ It : τ i
t ≤ τ l,η i

t ≤ π
2} represent the index set of obstacles with the TTC no

greater than τ l and with the azimuth no greater than π
2 . Define the utility function S : R2n+2 → R
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as

S(νt) = a1(τg
t )

2 +a2(ηg
t )

2 +
n

∑
i=1

biIBt (i)
(τ i

t )
4

sin2 η i
t
, (4.7)

where a1, a2, bi, i = 1, · · · ,n are non-negative weights, and IBt (i) is the indicator function of the

index i, which zeros out the contribution of obstacles that are far away or that are passed by the

UAV.

By minimizing the first two terms of Eq. (4.7), the algorithm drives the UAV towards the

goal configuration. The third term penalizes the weighted sum of the inverse of the determinant of

Oi⊤Oi for all obstacles. By minimizing this term, the algorithm achieves two objectives simulta-

neously. First, it minimizes the uncertainties in the TTC and bearing estimates. Second, the UAV

is steered around the obstacles. It is important to note that these two objectives are complementary

to each other. We use a look-ahead policy over the horizon T to design the path planner πo. The

cost function to be minimized is given by

J =
∫ t+T

t
S(νρ)dρ, (4.8)

subject to the constraints

ẋg
ρ = f(xg

ρ ,uρ),

ẋi
ρ = f(xi

ρ ,uρ), i = 1, · · · ,n, (4.9)

|uρ | ≤ ϕmax.

To solve the constrained optimization problem, we discretize the time horizon T as the m-step

look-ahead horizon {t, t +∆t, · · · , t +m∆t}, where ∆t = T/m. Equation (4.8) then becomes

J =
m

∑
j=1

S(νt+ j∆t). (4.10)

The optimal path over the m-step look-ahead horizon is found using the nonlinear optimization

function fmincon in MATLAB and is replanned once the UAV has followed the first portion of the

m-step look-ahead path.
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4.4 Analysis

The utility function given by Eq. (4.7) can be decomposed as the sum of

S1(x
g
t ) = a1(τg

t )
2 +a2(ηg

t )
2, (4.11)

and

S2(xt) =
n

∑
i=1

biIBt (i)
(τ i

t )
4

sin2 η i
t
. (4.12)

Accordingly, the observability-based path planner πo that minimizes Eq. (4.8) can be decomposed

into the goal reaching planner denoted by πg that maneuvers the UAV to the goal by minimizing

the cost function

J1 =
∫ t+T

t
S1(x

g
ρ)dρ, (4.13)

and the collision avoidance planner denoted by πc that maximizes the observability of the system

by minimizing the cost function

J2 =
∫ t+T

t
S2(xρ)dρ. (4.14)

Remark 4.4.1 We decompose the observability-based path planner πo into the collision avoidance

planner πc and the goal reaching planner πg to simplify the analysis of collision avoidance and

goal reaching behaviors.

Accordingly, we analyze the obstacle avoidance behavior of the collision avoidance plan-

ner πc that maximizes the observability of the system and describe under what environment πc

guarantees collision-free paths. We also describe under what environment the collision avoidance

planner πc is guaranteed to drive the UAV to the goal when it is combined with the goal reaching

planner πg.
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4.4.1 Collision avoidance

We analyze the behavior of the collision avoidance planner πc for avoiding circular obsta-

cles. The collision avoidance planner πc minimizes the cost function given by (4.14) subject to

constraints

ẋi
ρ = f(xi

ρ ,uρ), i = 1, · · · ,n, (4.15)

V τ i
ρ ≥ ri, i = 1, · · · ,n, (4.16)

where ri is the radius of the ith obstacle. To guarantee to avoid a single circular obstacle, it is

necessary to establish a minimum turn away distance dmin from the obstacle. Let ϕmax represent

the maximum roll angle of the UAV and let g represent the gravity constant. The minimum turning

radius is then given by [79]

rmt =
V 2

g tan(ϕmax)
. (4.17)

Theorem 4.4.1 shows the minimum turn away distance required to avoid a circular obstacle with

the radius r using the collision avoidance planner πc.

Theorem 4.4.1 Using the collision avoidance planner πc that minimizes the cost function (4.14)

subject to the constraints (4.15) and (4.16), collision avoidance with a circular obstacle with the

radius r is guaranteed if the initial condition satisfies

V τ0 > dmin =

√
(r+ rmt)2 − r2

mt − r, (4.18)

where τ0 represents the initial TTC to the circular obstacle. In addition, the UAV converges to a

circle around the obstacle with the radius max{r,rmt}.

Proof: Consider the worst case scenario where the UAV is flying perpendicular to a circular

obstacle Oi in the local-level frame map, as shown in Fig. 4.3. The minimum turn away distance

dmin from the obstacle can be determined when the maximum roll angle ϕmax is applied and the

generated circle with the minimum turning radius rmt is tangent to the surface of the obstacle.
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Based on the geometry, the planner πc is guaranteed to avoid the obstacle if the initial condition

satisfies V τ0 > dmin =
√

(r+ rmt)2 − r2
mt − r.

To show that the trajectory converges to an orbit around the obstacle, if V τ0 > dmin, the

collision avoidance planner πc will cause the UAV to move in such a way that the TTC to the ob-

stacle decreases and the bearing to the obstacle increases. The UAV will first reach a configuration

at time t where the bearing to the obstacle ηt =
π
2 and the range to the obstacle V τt > r. Then

the planner πc will further cause the UAV to reach a configuration at time t ′ such that ηt ′ =
π
2 and

V τt > V τt ′ > r. This process is repeated such that the TTC decreases progressively. Because of

the constraints (4.16) on the TTC and the minimum turning radius constraint, the UAV converges

to max{r,rmt}.

Figure 4.3: This figure shows the worst case scenario that the UAV is flying perpendicular to a
circular obstacle.

To this point we have found the conditions under which a single circular obstacle can be

successfully avoided using πc. We extend the analysis to investigate the multiple obstacle avoid-

ance problem. Our approach characterizes the environment with minimum separation between

obstacles such that collisions are avoided with all the obstacles.

Let C represent the configuration space. For two configurations q1 = [q1n,q1e,q1ψ ]
⊤ ∈ C

and q2 = [q2n,q2e,q2ψ ]
⊤ ∈ C , where qin and qie, i = 1,2, represent North and East coordinates,

and qiψ , i = 1,2, represent the heading angle, define the distance between q1 and q2 as

∥q1 −q2∥,
√
(q1n −q2n)2 +(q1e −q2e)2. (4.19)
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For a configuration q and the ith obstacle Oi, we define the distance between q and the boundary of

Oi as

di
q , min

q′∈∂Oi
∥q−q′∥. (4.20)

Let di
min and d j

min represent the minimum turn away distance for the ith obstacle Oi and the jth

obstacles O j given by Eq. (4.18). Let

di j , min
pi∈∂Oi,p j∈∂O j

∥pi − p j∥ (4.21)

represent the shortest distance between the points along the boundaries of Oi and O j. Let q0 repre-

sent the initial UAV configuration. Theorem 4.4.2 describes the characteristics of the environment

in which the collision avoidance planner πc guarantees collision-free paths.

Theorem 4.4.2 If the environment satisfies di j > max{di
min,d

j
min}, ∀i, j and the initial UAV con-

figuration q0 satisfies di
q0
> di

min, ∀i, where di j is the distance between the ith and the jth obstacles

given by Eq. (4.21), di
min and d j

min represent the minimum turn away distance for the ith and the

jth obstacles given by Eq. (4.18), and di
q0

is the distance between q0 and the ith obstacle given

by Eq. (4.20), then the collision avoidance planner πc, which minimizes the cost function (4.14)

subject to constraints (4.15) and (4.16), guarantees that the UAV will avoid all obstacles in the

future.

Proof: Consider that the UAV is initially located at q0 with di
q0
> di

min, ∀i, and that it will collide

with an obstacle Oi if it flies along its initial heading, as shown in Fig. 4.4. Since di
q0

> di
min

and di j > max{di
min,d

j
min}, in the worse case scenario the planner πc leads to a collision-free path

from q0 to qA on the boundary of Oi with direction tangent to the boundary, where d j
qA > d j

min.

This means that the UAV certainly has the capability to avoid the obstacle O j when it reaches

qA. In addition, since d jk > max{d j
min,d

k
min}, in the worse case scenario the planner πc leads to

a collision-free path from qA to qB on the boundary of O j with direction tangent to the boundary,

where dk
qB

> dk
min. This process can be repeated so that the UAV does not collide with any obstacle

using πc for all time t.

83



Figure 4.4: This figure shows the collision avoidance planner πc maneuvers the UAV to avoid
multiple obstacles.

4.4.2 Goal reaching

Besides the collision avoidance behavior of the planner πc, we are also interested in its goal

reaching behavior when it is combined with the planner πg. In this section, we combine the two

path planners using a switching algorithm that executes them alternately.

Remark 4.4.2 We analyze the goal reaching behavior of the switching algorithm to simplify the

determination of analytical conditions under which the collision avoidance planner πc is guaran-

teed to drive the UAV to the goal when it is combined with the goal reaching planner πg. However,

in simulation we use the observability-based planning algorithm πo that takes into account colli-

sion avoidance and goal reaching simultaneously.

The switching algorithm is described as follows. The algorithm first executes the goal

reaching planner πg to maneuver the UAV toward the goal from an initial configuration. If there

exist obstacles with the TTC no greater than τ l that collide with the UAV, the algorithm executes

the collision avoidance planner πc to react to nearby obstacles. The collision avoidance planner

πc is executed until the UAV reaches a configuration such that the goal reaching planner πg can

generate a path from that configuration to the goal, which does not collide with any obstacle with

TTC less than τ l . The algorithm then executes the goal reaching planner πg. This process is

repeated until the UAV reaches the goal.

The switching algorithm needs conditions on the environment to ensure that it drives the

UAV to the goal. The following theorem describes the conditions under which the UAV can reach
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the goal from an initial configuration with the heading pointing to the goal using the switching

algorithm.

Theorem 4.4.3 If the environment satisfies di j > 2V τ l , ∀i, j and the initial UAV configuration q0

with the heading pointing to the goal satisfies di
q0

> di
min, ∀i, then the UAV is guaranteed to be

maneuvered to the goal using the switching algorithm.

Proof: Let q0 represent the initial UAV configuration with the heading pointing to the goal at

time t0 as shown in Fig. 4.5 and let dt0 = ∥q0 − q f ∥ represent the distance between q0 and q f .

Consider a scenario that there exists an obstacle Oi in the UAV’s initial course towards the the goal

q f and that the TTC to the obstacle is no greater than τ l . For this scenario, since di j > 2V τ l , ∀i, j,

there are no other obstacles with TTC no greater than τ l when the UAV is located at q0. The

switching algorithm executes the collision avoidance planner πc to react to the obstacle Oi. Based

on Theorem 4.4.1, the planner πc will cause the distance between the UAV and the obstacle Oi

to decrease until the UAV converges to a circle with the radius max{r,rmt}. This implies that

the UAV will stay within the circle Ci centered at Oi with the radius V τ l , where the planner πc

only reacts to the obstacle Oi until the UAV converges to the circle with the radius max{r,rmt}.

Accordingly, the switching algorithm executes the collision avoidance planner πc until the UAV

reaches a configuration q1 at time t1 such that the goal reaching planner πg can generate a path

from q1 to q f that does not collide with the obstacles Oi. While the UAV flies from q0 to q1 using

πc, the bearing to the obstacle Oi is no greater than π
2 . Since the UAV inertial angle to the goal

during its flight from q0 to q1 is less than the bearing to the obstacle, the inertial angle to the goal

must be less than π
2 . Therefore, it must be that dt1 = ∥q1 −q f ∥< dt0 .

Once the UAV reaches q1, the algorithm executes the goal reaching planner πg until the

UAV reaches a configuration q2 outside of the circle Ci, where another obstacle O j with TTC no

greater than τ l exists in the UAV’s course towards the goal. It is apparent that dt2 = ∥q2−q f ∥< dt1 .

Once the UAV reaches q2, the switching algorithm executes the collision avoidance planner πc to

react to the obstacle O j. As the process is repeated, the distance between the UAV and the goal

decreases progressively and the UAV will be eventually maneuvered to the goal using the switching

algorithm.
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Figure 4.5: This figure shows the UAV can be maneuvered to q f using the switching algorithm.

The conditions given by Theorem 4.4.3 require that each two obstacles in the environment

are separated far enough so that the UAV reacts to and avoids obstacles one by one until it reaches

the goal. We assume the environment satisfies these conditions in order to provide a theoretical

guarantee for the goal reaching behavior of the collision avoidance planner πc when it is combined

with the goal reaching planner πg. The conditions may not be necessary for the observability-

based planning algorithm πo to achieve goal reaching performance. This implies that there may

exist environments that do not satisfy the conditions but where the UAV can still be maneuvered to

the goal without causing collisions using πo.

4.5 Numerical results

In this section, we tested the observability-based planning algorithm πo that minimizes

the cost function (4.8) and takes into account collision avoidance and goal reaching simultane-

ously using a simulation environment developed in MATLAB/SIMULINK. The simulator uses

a six degree of freedom model of the aircraft. The coordinate system is represented by NED

(north-east-down) system. The covariance matrices of the process and measurement noises were

Qi =

 0.001 0

0 0.0076

 and Ri = 0.0012. The weighting scalars a1 and a2 were 10 and 1.

All the weighting scalars bi = 2, i = 1, · · · ,n. A look-ahead policy over a horizon 3.6 seconds

was used. The ground speed was V = 13 m/s. The maximum roll angle for the UAV was 30◦.

We tested the algorithm for both single and multiple obstacle avoidance scenarios. We also con-

ducted Monte Carlo simulations to test the collision avoidance and goal reaching performance
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of the observability-based planning algorithm πo with varying measurement uncertainties in the

environments with varying minimum distance between obstacles.

4.5.1 Single obstacle avoidance

In this scenario, the UAV was commanded to maneuver around an obstacle located at

(150,250) between waypoint S (0,100,-40) and waypoint E (600,700,-40) represented by the box

and plus signs shown in Fig. 4.6(a).

Figure 4.6 shows the path followed by the UAV for avoiding the obstacle using the planning

algorithm πo, the determinant of Oi⊤Oi for that obstacle, the TTC and bearing, and the TTC and

bearing estimation error. It can be seen that when the determinant is maximum, then the bearing

is η = π
2 and the TTC reaches its minimum value τmin ≈ 4 s. At the same time, the bound on the

error covariance for the TTC is minimum, which shows that the uncertainties in state estimates can

be minimized while simultaneously avoiding collisions.

4.5.2 Multiple obstacle avoidance

In the multiple obstacle avoidance scenario, the UAV was commanded to maneuver through

twenty-five obstacles between waypoint S (0,100,-40) and waypoint E (600,700,-40), as shown in

the subfigures on the right of Fig. 4.7.

Figure 4.7 shows the evolution of the local map in the local-level frame and the update

of the path in the inertial frame at different time. The dashed circles in the subfigures on the left

represent the TTC at 3 s, 6 s, and 9 s for the inner, middle, and outer circles respectively. The plus

sign in subfigure (d) on the left represents the waypoint E in the local-level frame. Red lines in the

subfigures on the right represent the paths followed by the UAV and black lines represent the opti-

mal look-ahead paths. Figure 4.8 shows the TTC and bearing to the obstacle located at (150,250),

the TTC and bearing estimation error, and the determinant of Oi⊤Oi for that obstacle. We can see

that minimizing the cost function for multiple obstacle avoidance gives the same behavior for the

obstacle avoidance, observability and further estimation uncertainties.

Figure 4.9 shows how the value of the cost function changes as time progresses. Based

on the figure, the cost function decreases initially when there are no obstacles in the local map.
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Figure 4.6: This figure shows the simulation results for single obstacle avoidance problem. Sub-
figure (a) shows the inertial path. Subfigure (b) shows the determinant of Oi⊤Oi. Subfigures (c)
and (d) show the TTC and bearing to the obstacle. Subfigure (e) and (f) show the estimation error
and ±3σ bounds of the error covariance for the TTC and bearing.

The cost function only consists of the first term. Once a new obstacle pops up, the cost function

increases because the obstacle term is added to the cost function. The planning algorithm πo then

minimizes the second term, causing the cost function to decrease. Once the collision is avoided

and the obstacle is passed, it does not add any cost to the cost function. The cost function then

decreases based on the first term. Similar behavior occurs when multiple obstacles are observed.

4.5.3 Monte Carlo simulation

To simplify the analysis of collision avoidance and goal reaching performance and deter-

mine analytical conditions, in previous section we decompose the observability-based planning

algorithm πo into the collision avoidance planner πc and the goal reaching planner πg. We then
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(c) t=53 s
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Figure 4.7: This figure shows the evolution of the local map and the update of the path at different
times. Subfigures on the left show the evolution of the local map. The dashed circles represent the
TTC at 3 s, 6 s, and 9 s for inner, middle, and outer circles respectively. Subfigures on the right
show the path in the inertial frame. The black lines represent the three-step look-ahead paths and
red lines represent the actual path followed by the UAV.

analyze of obstacle avoidance behavior of the planner πc and the goal reaching behavior of the

switching algorithm that executes the two planners alternately. Accordingly, the conditions for col-

lision avoidance and goal reaching described in Theorem 4.4.2 and 4.4.3 may not be identical for

the observability-based planner πo to achieve collision avoidance and goal reaching performance.
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(c) TTC error
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(d) Bearing error
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Figure 4.8: This figure shows the TTC and bearing to the obstacle located at (150,250), the TTC
and bearing tracking error and the determinant of Oi⊤Oi. Subfigures (a) and (b) show the TTC and
bearing. Subfigure (c) and (d) show the error and ±3σ bounds of the error covariance. Subfigure
(e) shows the determinant of Oi⊤Oi.
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Figure 4.9: This picture shows the change in the value of the cost function.

Accordingly, we conducted Monte Carlo simulations to demonstrate the statistical performance of

the observability-based planning algorithm πo.

For each environment with a fixed minimum distance between obstacles, we executed

100 simulation runs. In each simulation run, the UAV was maneuvered from the initial position
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(120,120,-40) to the end position (580,580,-40) through an environment using πo. The environ-

ment was constructed so that each obstacle was added to the environment based on a uniform

distribution over the square area with the South-West corner (100,100) and the North-East corner

(600,600) until no more obstacles could be added. The height and radius for all obstacles were 100

meters and 20 meters, and the UAV was flying at a height of 40 meters. The observability-based

planner πo reacts to obstacles with TTC no greater than τ l =4 s. We evaluate two criteria: the

number of collisions and the percentage of runs where UAV reached the goal. We say that the

UAV reaches the goal if it is maneuvered to the goal in t < 100 seconds without any collisions.

Figure 4.10 (a) plots the average number of collisions over 100 simulation runs versus the

minimum distance between obstacles for the case where the standard deviation of the azimuth

measurement noise is 2◦, as shown by the solid line, and for the case where the locations of

obstacles are perfectly known, as shown by the dashed line. The figure shows the average number

of collisions decreases dramatically as the minimum distance between obstacles increases from 5 to

20 meters for both cases. After the minimum distance is greater than 20 meters, the average number

of collisions decreases slowly for the case with measurement uncertainties and the average number

of collisions is zero for the case where the locations of obstacles are perfectly known. The results

match the obstacle avoidance behavior of the collision avoidance planner πc. Given V = 13 m/s,

ϕmax = 30◦, and Ri = 20 m, ∀i, the minimum distance satisfying the obstacle avoidance conditions

of Theorem 4.4.2 for the planner πc is 19.9345 meters. When the minimum distance is less than

19.9345 meters, the number of collisions decreases quickly as the minimum distance increases.

When the minimum distance is greater than 19.9345 meters, the conditions of Theorem 4.4.2

are satisfied. The collision avoidance planner πc guarantees collision-free paths if the obstacle

locations are perfectly known. For the case with the measurement uncertainties, the UAV still

encounters a small number of collisions when the minimum distance is greater than 20 meters.

In addition, when the minimum distance is 10 and 15 meters for the case with perfectly known

obstacle locations, the average number of collisions is less than one, which implies that there exist

environments that do not satisfy the conditions of Theorem 4.4.2 but where the observability-based

planner πo still generates collision-free paths.

Figure 4.10 (b) plots the percentage of runs where the UAV reached the goal versus the

minimum distance for the two cases. The percentage increases as the minimum distance be-
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tween obstacles increases. When the minimum distance is greater than 80 meters for the case

with measurement uncertainties or when the minimum distance is greater than 70 meters for the

case with perfectly known obstacle locations, the UAV is always maneuvered to the goal using the

observability-based planner. In addition, the percentage for all the environments with the minimum

distance from 10 to 100 meters for both cases is nonzero. Accordingly, the minimum distance

2V τ l = 104 m, which satisfies the goal reaching conditions of Theorem 4.4.3 for the switching

algorithm, is not necessary for the observability-based planner πo to achieve goal reaching perfor-

mance.
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Figure 4.10: This figure shows the statistical performance of the observability-based planning
algorithm implemented in the environments with varying minimum distance between obstacles
for the cases with the standard deviation of the azimuth measurement noise 2◦ and with perfectly
known obstacle locations. Subfigure (a) show the plots of the average number of collisions over
100 simulation runs versus the minimum distance between obstacles. Subfigure (b) show the plots
of the percentage of runs when the UAV reached the goal versus the minimum distance.

To take into account the effect of measurement uncertainties, Monte Carlo simulations were

also conducted to test the performance of the algorithm πo with varying measurement uncertainties.

Similarly, we evaluate the number of collisions and the percentage of runs for the UAV to reach

the goal. Figure 4.11 plots the average number of collisions over 100 simulation runs and the

percentage of runs where the UAV reached the goal versus the standard deviation of the azimuth

measurement noise for the environment with the minimum distance 30 meters. Based on the figure,

as the standard deviation of the measurement noise increases, the number of collisions increases

and the percentage of runs where the UAV reached the goal decreases.
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Figure 4.11: This figure shows the statistical performance of the observability-based planning
algorithm with varying measurement uncertainties in the environment with the minimum distance
30 meters. Subfigure (a) plots the average number of collisions over 100 simulation runs versus
the standard deviation of the azimuth measurement noise. Subfigure (b) shows the percentage of
runs when the UAV reached the goal versus the standard deviation.

4.6 Conclusions

This chapter presents an observability-based planning algorithm using bearing-only mea-

surements. We perform a nonlinear observability analysis for state estimation and argue that colli-

sion avoidance and uncertainty minimization problems are complementary. Based on this analysis,

we design a cost function that minimizes the estimation uncertainties while simultaneously avoid-

ing obstacles. By minimizing the cost function, the path planning algorithm is developed directly in

the local-level frame. We use a look-ahead policy to plan optimal paths over a finite time horizon.

Numerical results show that the observability-based planning algorithm is successful in solving the

single and multiple obstacle avoidance problems while improving the estimation accuracy.
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CHAPTER 5. BEARING-ONLY REACTIVE COLLISION AVOIDANCE FOR UAVS

In Chapter 4, bearing measurement is used to estimate the time-to-collision TTC for an

obstacle and the path planning required both bearing and TTC to avoid the obstacle. However, the

estimation of TTC can slow down the path planning algorithm, which is not suitable for dynamic

urban environments. In this chapter, we design a path planning algorithm for UAVs, which uses

bearing-only measurement to avoid the obstacles.

5.1 Introduction

Recently, the use small Unmanned Aerial Vehicles (UAVs) in several civil and military

applications have increased significantly. Smaller UAVs have different applications that require

them to operate in urban terrains. Urban environments consist of trees, poles, buildings, walls,

tunnels, canyons, etc. Since the urban environments are dynamic in nature, locations of some

objects may not be known a priori, it is necessary to develop local path planning algorithms, which

are fast enough to avoid pop up obstacles and guarantee obstacle avoidance.

In this chapter, we consider two types of object for collision avoidance including cylindri-

cal obstacles and walls. Almost all the obstacles in an urban terrain can be modeled as cylindrical

obstacles or walls. Our focus is to develop reactive guidance strategies for collision avoidance,

which uses bearing-only measurements. There exists a suite of different sensors, which can pro-

vide bearing measurements. One of such sensors is camera, which fits in with size and weight

requirements of a small UAV, and has high information to weight ratio.

Obstacle avoidance and path planning algorithms have been extensively studied in litera-

ture, especially for ground robots. For example, Probability Road Map (PRM) methods generate

random points in the configuration space and connect the points to create a navigation map of the

environment [46–48]. Another probabilistic planning technique is the Rapidly-Expanding Ran-

dom Tree (RRT) [49, 50], which is often used in conjunction with fixed-wing air vehicles. RRTs
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generate random points in the configuration space and connect them to a tree of other points such

that the non-holonomic constraints of the vehicle are satisfied. Points unable to connect to the

tree are removed. While these methods and their many variants (e.g. [46, 89–94]) have shown

considerable success, they often require significant computation time to generate paths around ob-

stacles. Therefore, in environments where pop-up threats are common, a reactive planner with

fixed computational cost may be more appropriate. Reactive obstacle avoidance methods have

been developed in previous work using dynamic replanning [59], potential fields [60], simulated

annealing [61], and predefined maneuvers [62].

Potential fields is a common reactive obstacle avoidance technique [60, 62, 95], but unfor-

tunately it, and many of its variants, only guarantee a high probability of avoiding obstacles. Since

collisions in flight can be catastrophic, aircraft require guaranteed obstacle avoidance. In previous

work, we develop a reactive method that generates a path to one side of an obstacle field, which

is used in conjunction with waypoint paths [96]. While the method in [96] produced paths around

obstacles, it was susceptible to oscillations in the presence of multiple obstacles. In order guaran-

tee collision avoidance, we need a deterministic guidance strategy that reacts to obstacles within

the sensor field-of-view and requires limited computational resources. A deterministic collision

avoidance guidance strategy for stationery cylindrical objects is proposed in [63]. However, the

guidance strategy in [63] requires both range from obstacle and bearing to obstacle to compute the

control law. In this chapter, we extend the work done in [63] by re-deriving the guidance strategy

using sliding mode control such that it does not require range from the obstacle, and uses only

bearing to obstacle to avoid obstacles. Furthermore, we also extend the guidance strategy to avoid

collision from straight and curved walls.

The basic concept of collision avoidance guidance strategy is to move the obstacle in the

sensor plane and maintain the obstacle at a desired constant bearing angle. By keeping the ob-

stacle at a desired bearing angle in the sensor plane causes the UAV to converge at a constant

distance from the obstacle and guarantees collision avoidance. The reactive guidance strategy is

fast, computationally inexpensive, and guarantee collision avoidance, which keeps the obstacle in

the field-of-view and minimizes the chances of collision.

The chapter is organized as follows. In Section 5.2 we formulate detail the relative equa-

tions of motion and formulate the collision avoidance problem. In Section 5.3 we derive bearing-
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only guidance laws for collision avoidance from cylindrical obstacle and following a wall. We

provide simulation results in Section 5.4 and provide our conclusions in Section 5.5.

5.2 Model and problem formulation

In this chapter, we consider a fixed wing UAV with a strapdown camera mounted parallel

to the x-axis of the body frame and is equipped with an onboard autopilot with inner loop control

of roll, pitch, airspeed, and altitude. A forward looking camera allows objects to be viewed in the

short reachable region of the UAV. Equation of motion of a UAV flying at constant altitude can be

written as 
ẋ

ẏ

ψ̇

=


V cosψ

V sinψ
g
V tanϕ

 , (5.1)

where [x,y]⊤ is the position vector, ψ is the heading, V is the airspeed, ϕ is the commanded roll

angle, g is the gravity constant, and we have assumed zero ambient wind.

Almost all the obstacles in urban environments can be modeled either as a cylindrical obsta-

cle (e.g, trees, poles, small buildings, etc.) or a wall (large, buildings, tunnels, subways, canyons,

etc). In next two subsections we discuss relative motions of equation for cylindrical obstacles and

walls, which will be used to derive the guidance strategies.

5.2.1 Relative equation of motion between
cylindrical obstacle and the UAV

The geometry of the cylindrical obstacle avoidance problem is shown in Figure 5.1 where

ρ is the range from the UAV to the center of the obstacle and η is the bearing to the center of the

obstacle. The relative equations of motion for the system are

ρ̇ =−V cosη , (5.2)

η̇ =
V
ρ

sinη − g
V

tanϕ . (5.3)
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Camera field of view Obstacle

Figure 5.1: A conceptual view of the UAV approaching an obstacle. The guidance law moves the
obstacle to the edge of the camera field-of- view to maintain safe distance between the UAV and
the obstacle.

We will assume that the obstacle is a cylinder of radius R, and pose the guidance problem with

respect to the range and bearing to the edge of the cylinder as shown in Figure 5.1 and from

Figure 5.1 we have that

R = ρ sin(η − η̂), (5.4)

ρ̂ = ρ cos(η − η̂). (5.5)

Differentiating (5.4) and (5.5) with respect to time and using Equations (5.2) and (5.3) we get the

modified relative equations of motion

˙̂η =− g
V

tanϕ +
V
ρ̂

sin η̂ , (5.6)

˙̂ρ =−V
[

cos η̂ − R
ρ̂

sin η̂
]
. (5.7)

5.2.2 Relative equation of motion between wall and the UAV

The geometry between the UAV and a wall is shown in Figure 5.2. This geometry is similar

to geometry for stationery obstacle, however in this case, the obstacle is moving on the wall. We
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Figure 5.2: A conceptual view of the UAV approaching a wall. The guidance law keeps the wall at
the edge of the camera field of view to avoid collision.

consider a virtual cylindrical obstacle of radius R. This obstacle moves on the wall with velocity

Vw =V cos(ψ −ψw), (5.8)

where ψ −ψw is the relative orientation of wall with respect to UAV heading, Vw is the projection

of UAV velocity on the wall. The relative orientation of the wall ψ −ψw is directly computed

from the image plane using the the image segmentation followed by orientation computation of the

segment. By keeping the virtual obstacle at desired bearing angle, the portion of the wall always

stays in the image plane and UAV can fly along the wall and maintain a safe distance from the wall.

The minimum distance between wall and UAV is given as

Rmin = ρ sin(ψ −ψw + η̂). (5.9)

To avoid collision from the wall the UAV should maintain Rmin > 0 for all time. From Figure 5.2
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the equations of relative motion between UAV and the obstacle moving on wall can be written as

ρ̇ =Vw cos(ψ −ψw −η)−V cos(η), (5.10)

η̇ =−Vw sin(ψ −ψ +w+η)−V sin(η)

ρ
+

g
V

tan(ϕ). (5.11)

Differentiating (5.4) and (5.5) with respect to time and using Equations (5.10) and (5.11) we get

the modified relative equations of motion

˙̂η =
V sin η̂

ρ̂
− Vw sin(ψw −ψ + η̂)

ρ̂
+

g
V

tanϕ , (5.12)

˙̂ρ =
R
ρ̂

V sin η̂ +Vw cos(ψw −ψ + η̂)− R
ρ̂

Vw sin(ψw −ψ + η̂)−V cos η̂ . (5.13)

5.3 Bearing-only guidance strategies

Our approach is to push the edge of the obstacle to a specified angle ηd in the image plane.

By keeping obstacle at a desired bearing angle the UAV maintains safe distance from the obstacle.

Also, keeping the obstacle in the field-of-view is important because if the obstacle is pushed out of

the field of view of the camera, then it can no longer be tracked by the guidance algorithm and a

collision may occur. Following two subsections detail the collision avoidance guidance strategies

for a cylindrical obstacle and a wall.

5.3.1 Guidance strategy for cylindrical obstacle

In this subsection we derive the control law for cylindrical obstacle. If η̄ is the field of view

of the camera, then we desire that |η | ≤ η̄ . Let |ηd|< η̄ be the desired position of the edge of the

obstacle in the image plane. We use Lyapunov‘s stability theory to move the obstacle at a desired

bearing angle in the image plane.

Control law for cylindrical obstacle using range and bearing measurement

For comparison purpose, we re-derive the control law [63] for cylindrical obstacle.
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Consider the Lyapunov function candidate

W =
1
2
(η̂ −ηd)

2.

Differentiating with respect to time gives

Ẇ = (η̂ −ηd)

(
− g

V
tanϕ +

V
ρ̂

sin η̂
)
.

Therefore, selecting the guidance law as

ϕ = tan−1
(

V 2

gρ̂
sin η̂ +

V k
g
(η̂ −ηd)

)
, (5.14)

gives

Ẇ1 =−k(η̂ −ηd)
2,

which implies that η̂(t) → ηd . The control law (5.14) is a function of both range and bearing

measurement.

Control law for cylindrical obstacle using bearing-only measurement

To make control law in (5.14) independent of range from the obstacle we use sliding mode

control to derive the control law. Suppose we can design a control law that constraints the motion

of the system to the manifold s = η̂ − η̂d = 0, where η̂ = η̂d . The motion on this manifold is

independent of V sin η̂
ρ̂ . The objective is to bring the states to this manifold. Consider Lyapunov

function candidate V = 1
2s2. Differentiate V to obtain

V̇ = s
(

V sin η̂
ρ̂

− g
V

tanϕ
)
, (5.15)

≤ |s|V |sin η̂ |
ρ̂min

− s
g
V

tanϕ , (5.16)

where ρ̂min > 0 is the lower bound on ρ̂ . Choosing

ϕ = tan−1 V
g

{(
|V sin η̂ |

ρ̂min
+β0

)
sat(

η̂ − η̂d

ε
)

}
, (5.17)

101



where constants β0 > 0 and ρ̂min > 0 yields

V̇ ≤−β0|η̂ − η̂d|< 0, ∀ |η̂ − η̂d|> ε. (5.18)

Therefore, when |η̂ − η̂d|> ε , |s(t)| is strictly decreasing, until it reaches the set {|s| ≤ ε} in finite

time and remains inside thereafter and |η̂ − η̂d| ≤ ε .

By holding the edge of a cylindrical object at angle ηd in the camera field of view the

UAV will orbit the object, on a circular trajectory of radius R
√

1+ tan2 ηd [63], as shown in Fig-

ure 5.3. If the UAV is following a waypoint path and an obstacle appears in the image, the collision

avoidance strategy is then to push the edge of the obstacle to an angle of ηd in the image plane

using guidance strategy (5.14), until the UAV moves past the obstacle and can resume tracking its

original path.

Figure 5.3: By keeping the object at angle ηd in the camera field of view, the UAV converges to an
orbit of radius R

√
1+ tan2 ηd [63].

5.3.2 Guidance strategy for following a wall

If η̄ is the field of view of the camera, then we desire that |η | ≤ η̄ . Let |ηd| < η̄ be the

desired position of the edge of the virtual obstacle on the wall in the image plane.
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Control law for following a wall using range and bearing measurement

To derive the control law for wall following, we choose a Layapunov candidate function as

W =
1
2
(η̂ −ηd)

2,

and differentiate to obtain

Ẇ = (η̂ −ηd)(
V sin η̂

ρ̂
+

Vw sin(ψ −ψw + η̂)

ρ̂
+

g
V

tanϕ).

Therefore, picking the guidance law

ϕ = tan−1(−V 2

ρ̂g
sin η̂ +

1
ρ̂g

VVw sin(ψw −ψ + η̂)− V k
g
(η̂ −ηd)), (5.19)

gives

Ẇ =−k(η̂ −ηd)
2,

which implies that η1(t)→ ηd .

Control law for following a wall using bearing-only measurement

To make control law in (5.19) independent of range from the obstacle we use sliding mode

control to derive the control law. We choose the sliding manifold s = η̂ − η̂d and consider Lya-

punov function candidate V = 1
2s2. Differentiate V to obtain

V̇ = s
(

V sin η̂ −Vw sin(ψ −ψw + η̂)

ρ̂
− g

V
tanϕ

)
, (5.20)

≤ |s|V |sin η̂ |+ |Vw||sin(ψ −ψw + η̂)|
ρ̂min

− s
g
V

tanϕ . (5.21)

Choosing

ϕ = tan−1 V
g

{(
|V sin η̂ |+ |Vw||sin(ψ −ψw + η̂)|

ρ̂min
+β0

)
sat(

η̂ − η̂d

ε
),

}
, (5.22)
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where constants β0 > 0 and ρ̂min > 0 yields

V̇ ≤−β0|η̂ − η̂d|< 0, ∀ |η̂ − η̂d|> ε. (5.23)

Therefore, when |η̂ − η̂d|> ε , |s(t)| is strictly decreasing, until it reaches the set {|s| ≤ ε} in finite

time and remains inside thereafter and |η̂ − η̂d| ≤ ε .

Remark 5.3.1 It should be noted that if we replace Vw = 0 in controller for wall in (5.19) and

(5.22) we get controller equation for a stationary obstacle in (5.14) and (5.18) respectively. There-

fore, only one controller in (5.22) can be used for collision avoidance from both cylindrical obsta-

cles and walls.

Guidance law in (5.19) enables the UAV to maintain the virtual obstacle at a constant bearing

angle in the image plane. This indirectly helps the UAV to maintain safe distance from wall while

following the wall.

5.4 Results

In this section we include simulation results to validate the collision avoidance algorithm.

Some of the simulation parameters are; V = 15m/s,k = 0.5, β0 = 0.5, and ρ̂min = 1.

We start with a stationary cylindrical obstacle of radius R = 20m. Figure 5.4(a) shows

the trajectory of UAV around the obstacle using normal controller and sliding mode controller

respectively. For both controllers, the UAV converges to a circular trajectory around obstacle of

radius R
√

1+ tan2 ηd . In Figure 5.4(b) it can be seen that the states using sliding mode control are

almost equivalent to the states using normal controller. Figure 5.5 shows the flight path of the UAV

with multiple cylindrical obstacles in the initial flight path. It can be seen that UAV avoids all the

obstacles successfully using the sliding mode controller.

Trajectories of UAV, close to a straight wall with orientation ψw = 60o, using both nor-

mal and sliding mode controllers are shown in Figure 5.6(a). For both controllers the UAV con-

verges on same trajectory parallel to the wall. Figure 5.6(b) shows that the ψ → ψw, η̂ → η̂d , and

Rmin → R f > Rsin η̂d . The guidance strategy can also follow and avoid collision from a curved

wall. Figure 5.7(a) shows the trajectory of a UAV along a sinusoidal wall. It can be seen that the
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(a) UAV trajectory around a cylindrical obstacle of radius 20m

(b) Range and bearing plots

Figure 5.4: Cylindrical obstacle avoidance

UAV also moves along a sinusoidal trajectory while maintains safe distance from the wall. The Fig-

ure 5.7(b) shows the plots of ψ , η̂ , ρ , and Rmin, which are generated using both normal and sliding

mode controller. It can be seen that Rmin > Rsin(η̂d), hence, collision is avoided successfully.
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Figure 5.5: The results of a simulation are shown. The dashed line shows the path of the UAV in
tracking the waypoint path and avoiding obstacles. The UAV successfully avoids the obstacles.

5.5 Conclusions

In this chapter, we develop vision based collision avoidance algorithms to avoid collision

from different types of popup obstacles. The algorithm moves a obstacle in the image plane to

a desired constant bearing angle. By keeping the obstacle at a constant bearing angle causes the

UAV to maintain a constant distance from the obstacle. Since a camera only provides bearing

measurement to obstacles, we modify the algorithm using sliding mode control such that that depth

measurement is not required for the computation of the control input. The collision avoidance

algorithms are fast, computationally inexpensive, and guarantee collision avoidance.
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(a) UAV trajectory along a straight wall with orientation ψw = 60o

(b) UAV heading, bearing, range, and Rmin plots

Figure 5.6: Straight wall following
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(a) UAV trajectory along a sinusoidal wall

(b) UAV heading, bearing, range, and Rmin plots

Figure 5.7: Sinusoidal wall following
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CHAPTER 6. CONCLUSION AND FUTURE DIRECTIONS

6.1 Conclusion

In this dissertation, we focus on two fundamental problems related to the navigation of

ground robots and unmanned aerial vehicle (UAVs): cooperative localization and path planning.

The theme running through in all of the work is the use of bearing only sensors, with a focus on

monocular video cameras mounted on ground robots and UAVs. The main contributions of this

work are summarized as follows.

• In Chapter 2, we have derived conditions for complete observability of the bearing-only

cooperative localization problem. The key element of this analysis is the Relative Position

Measurement Graph (RPMG). The nodes of an RPMG represent vehicle states and the edges

represent bearing measurements between nodes. We show that graph theoretic properties

like the connectivity and the existence of a path between two nodes can be used to explain

the observability of the system. We obtain the maximum rank of the observability matrix

without global information and derive conditions under which the maximum rank can be

achieved. Furthermore, we show that for the complete observability, all of the nodes in the

graph must have a path to at least two different landmarks of known location. The complete

observability can also be obtained without landmarks if the RPMG is connected and at least

one of the robot has a sensor which can measure its global pose, for example a GPS receiver.

We validate these conditions by simulation and experimental results.

The theoretical conditions to attain complete observability in a localization system is an

important step towards reliable and efficient design of localization and path planning algo-

rithms. With such conditions, a designer does not need to resort to exhaustive simulations

and/or experimentation to verify whether a given selection of a control strategy, topology of

the sensor network, and sensor measurements meets the observability requirements of the
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system. In turn, this leads to decreased requirements of time, cost, and effort for designing a

localization algorithms.

• In Chapter 3, we have developed a cooperative approach to geo-localize a ground mov-

ing target using bearing-only localization of UAVs. We perform a graph based nonlinear

observability analysis of bearing-only localization to obtain the conditions for complete ob-

servability. We have shown that the without any absolute information (landmarks or GPS)

pitch and roll angles of all of the UAVs are observable. We prove that complete observ-

ability can be achieved under two conditions. First, the system is completely observable if

each UAV in the group has path to two different known landmarks. Secondly, the system

is completely observable if the graph is connected and at least one of the UAV measures its

3-D position and heading from a GPS receiver. We use the second condition to develop a

distributed path planning algorithm for UAVs to cooperatively geo-localize the target using

bearing-only measurements.

• In Chapter 4, we have developed an observability-based planning algorithm using bearing-

only measurements. We perform a nonlinear observability analysis for state estimation and

argue that collision avoidance and uncertainty minimization problems are complementary.

Based on this analysis, we design a cost function that minimizes the estimation uncertainties

while simultaneously avoiding obstacles. By minimizing the cost function, the path planning

algorithm is developed directly in the local-level frame. We use a look-ahead policy to plan

optimal paths over a finite time horizon. Numerical results show that the observability-

based planning algorithm is successful in solving the single and multiple obstacle avoidance

problems while improving the estimation accuracy.

• In Chapter 5, we have developed bearing-only collision avoidance algorithms to avoid colli-

sion from different types of popup obstacles using a sliding mode controller. The algorithm

moves a obstacle in the image plane to a desired constant bearing angle. By keeping the

obstacle at a constant bearing angle, a UAV maintains a constant distance from the obsta-

cle. The collision avoidance algorithms are fast, computationally inexpensive, and guarantee

collision avoidance.
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6.2 Future directions

The graph based nonlinear observability analysis of cooperative localization problem in

Chapter 2 has unveiled several interesting properties of RPMG which characterizes the observabil-

ity of the robots in the group. However, several important questions remain open. Of particular

interest is to study the effect of a robot’s position in the RPMG on its state estimation quality. Also,

we can characterize the quality of localization with the eigenvalues of the Laplacian of the RPMG.

In Chapter 2, we have shown that for complete observability of bearing-only localization

each robot should always have a path to two different known landmarks. However, this is a very

strict constraint to satisfy in real time implementation. Therefore, it is important to derive the

conditions for periodic observability, where the system is observable when each robot has a path

to two known landmarks over a time interval.

Furthermore, an important step forward is to design an efficient bearing-only cooperative

localization system using a distributed path planning algorithm which satisfies the observability

constraints and improves the localization accuracy while performing multiple tasks.

In Chapter 3, we have shown that bearing-only cooperative localization creates a larger and

more flexible field-of-view, which overcomes the LOS limitation of a camera and can be used for

applications such as geo-localization in urban environments where there are many occlusions and

availability of GPS signals is questionable. The present distributed controller for geo-localization

considers the UAVs moving in a horizontal plane, however, if the UAV’s motion is planned in 3-D

then it will be easier to maintain the connectivity of the RPMG and the localization accuracy in

attitude and altitude can also be improved. Also the present geo-localization controller considers

only non-maneuvering target. Therefore, an important future extension is to design a controller

that can geo-localize a maneuvering target.

In Chapter 4, we analyzed the collision avoidance and the goal reaching behavior of the

planning algorithm for cylindrical obstacles assuming the locations of obstacles are known. An

important future work is to analyze the behavior of the algorithm for the obstacles with general

shape taking into account the estimation uncertainties. Currently, we use uniform weights for all

the obstacles, which may not result in the best possible behavior. However, the weights can be

chosen based on the TTC and bearing to obstacles.
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The bearing-only reactive collision avoidance algorithm for UAVs in Chapter 5, currently,

takes into account one obstacle at a time. An important extension is to design a collision avoidance

algorithm that can guarantee collision avoidance from multiple obstacles. Currently, the UAV is

maneuvered in the horizontal plane to avoid collision from obstacles, however, maneuvering the

UAV in 3-D will provide an extra degree of freedom for the collision avoidance, i.e., instead of

moving around the obstacle the UAV can fly over it. Also, we consider only static obstacles,

therefore, an another important future extension is to use bearing-only measurements to avoid

collisions with moving objects.
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APPENDIX A. DIFFERENTIAL GEOMETRY AND OBSERVABILITY

In this appendix we discuss basics of differential geometry, Lie derivatives, and observabil-

ity of nonlinear systems.

A.1 Basics of differential geometry

The results presented in this dissertation pertain to nonlinear system described by a of

equations of the form

ẋ(t) = f0(x(t))+
n

∑
i=1

ui(t) fi(x(t)), (A.1)

where x(t) ∈ Rn, and fi, ∀ ∈ {0,1, · · · ,n} are vector fields on Rn. Two features of this system can

be observed. First, the system is time invariant, in that there is no explicit dependence on time.

Therefore we omit the time t term. Second, the system above is linear in the control.

The output of the nonlinear system is given in the form

y = h(x). (A.2)

In this section, we present a well-known theorem from advanced calculus, namely the inverse

function theorem, the notions of vector field, a form, and Lie derivative.

Suppose f : Rn → Rn, and suppose each component of f is continuously differentiable

with respect to each of its arguments. In other words, suppose that f is C1. Then the n×n matrix

whose i jth entry is ∂ fi/∂x j is called the Jacobian matrix of and is denoted by ∂ f/∂x. We say that

f is smooth if every component of f has continuous derivatives of all orders with respect to all

combinations of its arguments. Suppose V S1, V S2 are open subsets of Rn and that f : V S1 → V S2

is C1. Then we say that f is diffeomorphism of V S1 onto V S2 if (1) f (V S1) =V S2, (2) f is one-to-
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one, and (3) the inverse function f−1 : V S2 →V S1 is also C1. f is called a smooth diffeomorphism

if both f and f−1 are smooth functions.

Next theorem for inverse function can be found in Royden(1963)

Theorem A.1.1 (Inverse Function Theorem) Suppose f : Rn →Rn is C1 at x0 ∈Rn, and let y0 =

f (x0). Suppose [∂ f/∂x]x=x0 is non singular. Then there exists open sets V S1 ⊆ Rn containing x0

and V S2 ⊆ Rn containing y0 such that f is a diffeomorphism of V S1 onto V S1. If, in addition, f is

also smooth, i.e., f is a smooth diffeomorphism.

Throughout the remainder of this section, X denotes an open subset of Rn, where n is a fixed

integer.

Definition A.1.1 A vector field on X is a smooth functions mapping X into Rn. The set of all vector

fields on X is denoted by V S1(X). The set of all smooth real-valued function mapping X into R is

denoted by S(X).

For each a,b ∈ S(X), f , g ∈V S1(X), we have

a( f +g) = a f +ag,

(a+b) f = a f +b f ,

(a ·b) f = a · (b f ).

Definition A.1.2 A form X is a smooth function mapping X into (Rn)∗, which is the set of l×n row

vectors. The set of all forms on X is denoted by F(X).

Suppose x0 ∈ X is given. A curve in X passing through x0 is a smooth function c mapping

some open interval (−α ,β ) containing 0 into X , such that c(0) = x0. Suppose f is a vector field

on X and that x0 ∈ X is given. Then we know that there exists a unique solution of the differential

equation

d
dt

x(t) = f (x(t), x(0) = x0, (A.3)
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for sufficiently small values of t. Viewed as a function of t, the solution x(·) defines a curve passing

through x0; it is called integral curve of f passing through x0.

Suppose h ∈ S(X), i.e., h is a smooth real-valued function on X . Then its gradient, denoted

by ∇h, is defined as the row vector [∂h/∂x1, · · · ,∂h/∂xn]. Note that ∇h is a form on X . Now

suppose f ∈V S1(X). Then the map

x 7→ ∇h · f (x) : X → R, (A.4)

is smooth; it is called the Lie derivative of the function h with respect to the vector field f , and is

denoted by L f h. Note that L f h ∈ S(X). The Lie derivative L f h can be interpreted as the derivative

of a scalar along integral curves of the vector field f .

A.2 Observability

Definition A.2.1 Consider a system described described by (A.1) and (A.2). Two states xo and x1

are said to be distinguishable if there exists an input function u(.) such that

y(.,x0,u) ̸= y(.,x1,u), (A.5)

where y(.,xi,u), i = 1,2 is the output function corresponding to the input function u(.) and the

initial condition x(0) = xi. The system is said to be locally observable at x0 ∈ X if there exists a

neighborhood Xn of x0 such that every x ∈ Xn other than x0 is distinguishable from x0. Finally, the

system is said to be locally observable if it is locally observable at each x0 ∈ X.

Before we find the sufficient conditions for the observability of a nonlinear system de-

scribed by (A.1) and (A.2), we find the sufficient condition for the observability of a linear system

given below.

ẋ(t) = Ax(t)+Bu(t), (A.6)

y(t) =Cx(t). (A.7)
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where A ∈ Rn×n, B ∈ Rn×m, m is the number of inputs. Suppose we know u and can measure y;

assume for the sake of the convenience that u(t) is a smooth function of t, i.e., has derivatives of

all orders. Then successive differentiation of the output equation (A.7) gives

y(t) =Cx(t),

ẏ(t) =Cẋ(t) =CAx(t)+CBu(t),

ÿ(t) =CA2x(t)+CABu(t)+CBu̇(t).

Hence, by successively differentiating y, we can infer the quantities

Cx(t), CAx(t), CA2x(t), · · · , CAn−1x(t). (A.8)

after subtracting the known quantities CBu(t), CABu(t), and CB(̇u)(t), etc, and we can write the

observability matrix for a linear system (A.6) as

Olin =



C

CA

CA2

...

CAn−1


. (A.9)

If Olin has rank n, then it is possible to determine x(t) uniquely. Of course there is no need to go

beyond An−1 because of the Cayley-Hamilton theorem.

For nonlinear systems the idea is pretty much the same. Let m denote the number of outputs,

and let yp, hp(x) denote respectively the pth components of y and h(x). Then

yp = hp(x),

ẏp = ∇hpẋ = ∇hp f (x) = (L f hp)(x) = (L f0hp)(x)+
n

∑
i=1

ui(L fihp)(x),
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where the Lie derivative L f hp, and L fihp are defined in accordance with (A.4), and the explicit

dependence on t is not displayed in the interest of clarity. Differentiating one more time gives

ÿp = (L2
f0hp)(x)+

n

∑
i=1

ui(L fiL f0hp)(x)+
n

∑
i=1

u̇i(L f0hp)(x),

n

∑
i=1

ui(L f0L fihp)(x)+
n

∑
j=1

n

∑
i=1

uiu j(L f jL fihp)(x).

Expressions for higher derivatives of yp get progressively nastier, but pattern is clear enough. The

quantity y(d)p is a linear combination of terms of the form (LzsLzs−1 · · ·Lzmhp)(x), where 1 ≤ s ≤ d,

d > 0, and each of the vector fields z1, · · · ,zs is from the set { f0, f1, · · · , fn}.

In view of the foregoing observation, next theorem below seems plausible which is proved

in [76].

Theorem A.2.1 Consider the system described by (A.1) and (A.2), and suppose x0 ∈ X is given.

Consider the forms

∇(LzsLzs−1 · · ·Lzmhp)(x0), s ≥ 0, zi ∈ { f0, f1, · · · , fn}, (A.10)

evaluated at x0. Suppose there are n linearly independent row vectors in this set. Then the system

is locally observable around x0.
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