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ABSTRACT

Aerial Rendezvous Between an Unmanned Air Vehicle and an Orbiting Target Vehicle

Mark A. Owen
Department of Mechanical Engineering, BYU

Master of Science

In this thesis we develop methods that facilitate an aerial rendezvous between two air ve-
hicles. The objective of this research is to produce a method that can be used to insert a miniature
air vehicle behind a rendezvous vehicle and then track that vehicle to enable a visual rendezvous.
For this research we assume the rendezvous vehicle is following a relatively stable and roughly
elliptical orbit. Path planners and controllers have been developed that can be used to effectively
intercept the rendezvous vehicle by inserting the MAV onto the orbit of interest. A method for
planning and following time-optimal Dubins airplane interception paths between a miniature air
vehicle and the rendezvous vehicle is presented. We demonstrate how a vector field path following
a scheme can be used for navigation along these time-optimal Dubins airplane paths. A post-orbit
insertion tracking method is also presented which can be used to track the target vehicle on an ar-
bitrarily oriented elliptical orbit while maintaining a specified following distance. We also present
controllers that can be used for disturbance rejection during the orbit-insertion and interception op-
erations. All of these methods were implemented in simulation and with hardware. Results from
these implementations are presented and analyzed.

Keywords: aerial rendezvous, vector field, path following, dubins airplane, time optimal, uav, mav
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CHAPTER 1. INTRODUCTION

1.1 Problem Statement

Unmanned aerial vehicles (UAVs) have gained much attention over the past few years be-

cause they are capable of carrying out a wide variety of tasks. Small fixed-wing, unmanned aerial

vehicles or micro aerial vehicles (MAVs) have the advantage of being relatively inexpensive plat-

forms that can perform roles that previously have not been financially viable. One of the limitations

of MAVs is their characteristically short flight times. In light of this limitation there has been inter-

est in developing a method for inserting and extracting MAVs from a larger air vehicle capable of

deploying and recovering the MAVs without the need for ground support. Such a capability would

make it possible to deploy a large number of MAVs to an area of interest that is not accessible to

ground units. Scenarios in which such a capability would be valuable include post-disaster, quick

response aerial surveillance, war zone aerial reconnaissance where it is undesirable or impossible

for the MAVs to return to a ground base, and any situation where the area of interest is a long

distance from any ground support.

One of the difficulties involved in recovering MAVs from the air with a larger aircraft

of long endurance is that their characteristic airspeeds are drastically different. We will refer to

the larger vehicle performing the recovery as the mothership. Consequently, it is not feasible to

perform a tail-chase of the mothership by the MAVs. A possible solution to this problem is to have

the mothership reel out a high drag object on a long cable that can function as a dock. It has been

shown through both simulation and experimental data that an air vehicle flying a circular orbit

while towing a relatively high-drag object, which we will hence forth refer to as a drogue, will

result in the drogue adopting a steady-state orbit which is smaller than that of the mothership [3].

Experimentally collected data from a mothership towed drogue system can be found in Figure 1.1.

In the absence of wind, the drogue will adopt a flat circular orbit concentric to the mothership orbit.

1



These data have also shown that in the presence of steady wind, the drogue orbit will be roughly

elliptical and rotated out of the horizontal plane.
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Figure 1.1: Mothership and drogue experimental results [1]

In steady-state flight both vehicles will tend to have the same angular velocity about their

respective orbits. This results in the drogue traveling at a lower velocity than that of the mothership.

If the cable length of the system and drag properties of the drogue are selected appropriately then

the drogue will adopt an orbit that can be feasibly followed by a MAV. This would allow the drogue

to achieve airspeeds lower than the maximum airspeed of the MAVs on an orbit that has a minimum

turn radius greater than the minimum turn radius of the MAVs. In this way a drogue orbit can be

produced that can be followed by the MAVs. With such a capability it becomes feasible to develop

a scheme for recovering these MAVs via the mothership towed drogue system. The basic concept

for this scheme is shown in Figure 1.2.

Simply stated, the contributions of this thesis are a method for inserting the MAV behind the

drogue on an estimated drogue orbit in a near time-optimal fashion and a method for subsequently

closing the distance between the two vehicles while following the estimated drogue orbit. The

intent is to rely primarily on GPS to quickly intercept the drogue by inserting the MAV directly

behind the drogue and continue tracking it until a final vision-based rendezvous can be carried out.

2



Figure 1.2: Depiction of the aerial recovery concept: the mothership pulls a towed drogue which
adopts a slower interior orbit to make a rendezvous between the MAV and drogue possible.

1.2 Drogue Interception Concept

Previous efforts have developed a method for estimating the elliptical drogue orbit given

GPS data of the vehicle [4]. This method has been demonstrated to effectively estimate the pa-

rameters of the drogue orbit, the major and minor radii, and the three euler angles. Armed with an

estimation of the drogue orbit, we will present a method that can be used for planning and follow-

ing a time-optimal interception path from the current MAV location to an appropriately selected

future drogue location along the estimated elliptical orbit. The goal is to plan a time-optimal Du-

bins airplane path for the MAV that coordinates the arrival of the two vehicles on the drogue orbit.

Planning and following time-optimal paths is a useful capability for air vehicles. This is particu-

larly true for vehicles that, similar to MAVs, have relatively short flight times. Such a capability

would increase the time efficiency of vehicle paths and would decrease the time needed to recover

the MAV with a mothership towed drogue system.

Many efforts have investigated time-optimal path planning for reduced-order vehicle mod-

els [5] [6]. One publication provided a mathematically developed model for three dimensional

time-optimal airplane paths. We will develop a practical method for following these paths in ad-

dition to presenting a scheme for using them to intercept a target vehicle that is traveling along a

predictable path. The methods for following these time-optimal paths and pursuing the drogue

3



along an elliptical orbit stem from vector field path following methods. A number of efforts

have been made to develop schemes for fixed-wing aircraft to be able to follow paths of inter-

est [2] [7] [8] [9] [10]. Most notable are two works which develop a method for constructing path

following based vector fields, with desirable convergence properties, around arbitrary curves. We

use one of these methods to develop path following vector fields for navigation along both the

time-optimal Dubins airplane paths and the elliptical orbit path. We also present a method for

normalizing the vector fields to make their convergence properties less susceptible to changes in

path parameters.

A robust method for planning interception paths from the MAV to the drogue along ar-

bitrarily oriented elliptical orbits is presented. This path planning method takes into account the

effects of wind. Airspeed controllers are presented that can be used to reject disturbances expe-

rienced during different stages of the rendezvous operation. These include a controller that can

be used to prevent large miss distances during the interception stage and another that can be used

to maintain a desired following distance between the MAV the drogue after the insertion onto the

drogue orbit has been completed.

1.3 Thesis Overview

In Chapter 2, two methods for constructing path following vector fields about arbitrary

curves are discussed and compared. These methods were adopted from the work presented in [7]

and [9]. Low-level controllers are presented which are needed to feasibly implement these vec-

tor field path following methods. Chapter 3 uses both of the vector field construction methods to

produce two stable vector field path following methods for fixed-wing aircraft navigation along ar-

bitrarily oriented elliptical orbits. These two methods are then simulated and compared. In Chapter

4 we define time-optimal Dubins airplane paths, from the work of [6], and use one of the vector

field path following methods presented in Chapter 2 to develop a vector field path following method

for UAV navigation along these paths. These methods are demonstrated in simulation. Chapter 5

presents a number of algorithms and functions needed to plan the time-optimal Dubins airplane

paths that can be used to intercept the drogue with a MAV. An interception root finding technique

is presented as well as some airspeed controller based disturbance rejection methods. Chapter 6

4



presents experimental flight test results of the methods presented in this thesis. Chapter 7 presents

the general conclusions and contributions of this work and discusses possibilities for future work.
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CHAPTER 2. VECTOR FIELD PATH FOLLOWING

Vector field path following methods are a class of controllers that can be used to navigate

a vehicle along a desired path. The basic idea is that given any point in the vector field domain a

command is computed that, if followed, will result in the vehicle converging to the desired path.

The objective then is to cause vehicle convergence towards the path and simultaneous progression

along the path. Thus, the purpose is to travel along the path and not necessarily arrive at specific

points along the path at specific times. In this way this method is distinct from trajectory tracking

methods. An example vector field constructed about a circular orbit can be seen in Figure 2.1.

The advantages of these path following methods include being very intuitive to tune and

relatively simple to construct and implement. One of the limitations of this method is that once

the vector field has been constructed and tuned the resultant path essentially follows the vector

field integral curves. Thus, there is a limited ability to manipulate the vehicle’s path from its initial

configuration to insertion onto the path of interest. Also, to some extent the path of interest must

be known beforehand so that an appropriate vector field can be constructed to follow it.

A variety of approaches have been taken to produce vector fields. Many of these methods

are case specific and cannot be applied generally for following other paths, such as a vector field

designed specifically for following a circular orbit in two dimensions [10]. Other notable papers

in this area provide results that are generalized and can be used for constructing vector fields that

result in navigation along arbitrary curves [7] [8] [9].

Various efforts have been made to develop three dimensional vector field path following

methods. One of the motivations of using these three dimensional methods compared to previous

works [2] [10] is that it eliminates the need for an altitude controller. This is of particular benefit

when following paths that have neither a constant altitude nor a constant climb rate, such as the

case of an inclined ellipse. Also, the convergence proofs are valid in R3, rather than being limited

7
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Figure 2.1: Two-dimensional view of an example path following vector field with normalized
velocity commands.

to R2, and increase our confidence that these path following convergence properties will hold when

implemented on hardware capable of motion in three dimensions.

In this thesis we discuss two notable papers, [7] and [9], that produce general results for

constructing vector fields along three dimensional paths of interest and have desirable, proven con-

vergence properties. The approach taken for constructing these three dimensional vector fields is

to divide the problem into two complementary and intuitive commands: contraction and circu-

lation. When appropriately combined these forces work together to provide convergence toward

the curve which produces commands feasible for implementation with physical systems. Both [7]

and [9] accomplish this by constructing a Lyapunov-like potential function such that the zero-level

set contains only the curve of interest, the function is positive everywhere else, and is radially

unbounded. Taking the negative gradient of this scalar potential function provides a function that

produces commands that always converge towards the desired path. This command component is

what we will refer to as the convergence term.
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These papers, [7] and [9], also make use of a circulation term which is defined such that it

is orthogonal to the vectors produced by the convergence term. When the resultant vectors of both

of these functions are combined a desired velocity vector is produced. Generally speaking, if this

command is integrated, starting from any initial condition, the integral curve will converge to and

circulate about the curve of interest.

One of the attractive attributes of these two methods, for our application, is that they are

well suited for use with fixed-wing aircraft. This is because the control output of these methods

includes a continual non-zero velocity which coincides with the constraint of fixed-wing aircraft

to always maintain a minimum forward velocity.

In the paper [7], Lawrence, et al. present a generic vector field equation and the correspond-

ing constraints that produce velocity vector commands that, if followed, guarantee convergence to

the curve. This result is then extended to produce a vector field equation that yields a desired ac-

celeration vector which includes a feed-forward, error reduction term. In [9], Gonçalves, et al. also

present a generic vector field equation that produces velocity vector commands, but this method

removes some of the complexity of selecting appropriate functions. Rather than developing the

potentially complex convergence and circulation functions for the specific path from scratch, the

designer only needs to represent the path as the intersection of two surfaces. With this second

method, it is also possible to create a vector field for an arbitrary number of dimensions along

time varying curves —although such a capability will not be employed in this thesis. We will now

discuss these two results in further detail.

We begin by first defining the coordinate frame and position vector that we will use in

discussing these two methods. Rather than constraining our vector fields to use a north-east-down

(NED) inertial coordinate frame, which is the frame typically used in aircraft applications [2], we

will instead define a frame that can be arbitrarily oriented relative to a NED frame. It is important

to carefully select the vector field coordinate frame when constructing the vector field equations

because some frames substantially reduce the complexity of the vector field definitions. We define

the vehicle position in three dimensions as r̄, a 3×1 vector of positions in the x, y, and z directions

relative to the frame origin. As previously mentioned, the outputs of these two vector field methods

are a desired velocity or acceleration vector. These will be notated as ˙̄rd and ¨̄rd respectively.

9



2.1 Three Dimensional Vector Field Construction with a Feed-Forward Correction Term

In the paper [7] a theorem is presented and proven such that by constructing appropriate

functions a Lyapunov stable vector field can be constructed. One begins by defining the curve of

interest C ∈ R3 where C is the zero-level set of positive semi-definite, scalar potential function

VF(r̄). Certain conditions must be satisfied by VF(r̄) for the convergence theorem in the paper to

hold. These are summarized as follows: VF(r̄) = 0⇒ r̄ ∈ C, VF(r̄) is radially unbounded, VF(r̄)

is continuously differentiable, and VF(r̄) cannot be an explicit function of time (i.e. C must be a

static curve). A second function S(r̄) must be selected which satisfies

∂VF

∂ r̄
S(r̄) = 0 (2.1)

for any r̄ in the vector field domain. It is this constraint which enforces orthogonality between the

two vector field terms.

The preliminary result that is produced from these equations is a vector field equation that

provides a desired velocity vector, ˙̄rd , for any point in the function domain. This equation is

˙̄rd =−

[
∂VF

∂ r̄
Γ(r̄, t)

]T

+S(r̄, t), (2.2)

where Γ(r̄, t) is a positive definite function that can be used to control the relative strength of the

two other functions in the equation. The proof that this vector field equation causes convergence to

the desired path shows that the system is Lyapunov stable. This can be shown by taking the time

derivative of VF(r̄) which yields

V̇F(r̄) =
∂Vf

∂ t
+

∂VF

∂ r̄
˙̄r =

∂VF

∂ r̄
˙̄rd. (2.3)

Substituting from (2.2) and drawing upon the constraint in (2.1) provides us with the negative

definite function,
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V̇F(r̄, t) =−
(

∂VF

∂ r̄

)
Γ(r̄, t)

(
∂VF

∂ r̄

)T

, (2.4)

which leads directly to the vector field commands being Lyapunov stable.

Thus, by satisfying the conditions on the scalar potential function and the constraint in

(2.1) we can produce a three dimensional vector field. This has the desirable effect of separating

(2.2) into distinct convergence and circulation terms. The first term in (2.2) causes convergence

towards C , and the second, by nature of the constraint, produces circulation about it. The proof in

the paper shows that all integral curves of these vector fields, that have initial conditions within a

given domain, converge to the set C . Due to the nature of the potential function, when the vehicle

is on or near the curve the velocity command is dominated by the circulation term, and when it is

far from the curve the convergence term dominates. Another attribute of these vector fields is that a

non-isotropic Γ(r̄, t) can be used to vary the contraction normal to the ellipse relative to contraction

in the plane of the ellipse.

These results have the capability of working for arbitrary curves if constructed correctly.

The challenge for the designer is to select a scalar potential function VF(r̄) that satisfies the above

mentioned conditions and then a function S(r̄) that satisfies (2.1). In [7] an example vector field

equation is produced for navigation about a circular orbit. A method for normalizing the vector

fields to produce a desired velocity magnitude command and a desired orbit direction is demon-

strated for the specific case of the circular orbit, but no generally applicable method is presented.

Thus, it is left up to the designer to derive an appropriate normalization term for any other curve.

The velocity based vector field equation, from (2.2), was extended to produce a vector field

that includes a feed-forward correction term. An acceleration control law was derived from the

Lyapunov vector field equation that produces commanded accelerations in the vector field frame.

A proof was provided which also guarantees convergence of the integral curves of these commands.

This generalized equation for producing acceleration commands provides the possibility of error

reduction, but it also adds a significant amount of complexity to construction and implementation.

The generalized equation is

¨̄rd =−P(r̄, ˙̄r)+ ¨̄rff , (2.5)
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where P(r̄, ˙̄r) is another designer-selected proportional tracking term that must satisfy further con-

straints and ¨̄rff is a derived feed-forward acceleration term. For the sake of simplicity we will

not discuss the requisite constraints on P(r̄, ˙̄r). Rather, we present the candidate function that we

adopted for our work:

P(r̄, ˙̄r) = β ( ˙̄rd− ˙̄r), β > 0. (2.6)

The proportional term produces accelerations that direct the vehicle toward the desired

velocity vector as specified by (2.2). The feed-forward term, which is the derivative of the vector

field equation, contributes acceleration commands that anticipate the vector field turn rate. We

define this as

¨̄rff ,
d
dt

˙̄rd, (2.7)

where ˙̄rd is the result from (2.2).

Inclusion of the feed-forward term provides an anticipatory control component that in the-

ory should increases the ability of the controller to accurately track the curve of interest. One of the

drawbacks of this method is that converting desired acceleration into tractable UAV commands is

a challenging problem. For our purposes we adopted a slightly modified version of polar convert-

ing logic [2] [11] which will be further discussed later in this chapter (Section 2.4.2). One of the

limitations of this controller is that currently it does not take into account aircraft flight constraints

such as minimum turn radius, maximum climb rate, and maximum airspeed.

2.2 Explicit Vector Field Construction For Arbitrary Curves in Three Dimensions

The second work we will discuss here, by Gonçalves, et al., produced a relatively simple

method for constructing these three dimensional vector fields along arbitrary curves [9]. When

compared with the the work of [7], by Lawrence, et al., the results of [9] provide a generalized

method for producing these vector fields that is much less involved to design and more intuitive to

tune.

The primary result in R3 is that an explicit vector field equation can be produced if the

curve of interest, C, can be mathematically described as the intersection of two surfaces. One
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substantial contribution of this work to the path following field is that it is not limited to static

curves. All of these results are applicable to time-varying curves. For our present application we

only require the use of static curves. In the cases we investigated, generally speaking, for all initial

conditions the integral curves converged to the desired path. The input to the vector field function

is the vehicle’s position vector expressed in the same frame as the surface functions. The output is

a desired velocity vector. A summary of the results for producing vector fields about static curves

follows.

To construct the vector field about a curve of interest we must first describe it as the in-

tersection of two surfaces. We must define these surfaces mathematically as zero-level surface

functions, αi(x,y,z), which are defined such that the function is equal to zero only when on the

surface and non-zero otherwise. For example, if we wanted to define a cylinder in R3, which can

be written as r = x2+y2, the zero-level function would be α(x,y,z) = x2+y2− r. Once both zero-

level surface functions have been defined, a Lyapunov-like potential function must be created. The

function that we adopted was

V (x,y,z) =
1
2

α
2
1 +

1
2

α
2
2 . (2.8)

With these functions defined, we can use the proceeding explicit equation to easily produce

the path following vector field in three dimensions:

u =−G∇V −

Time varying correction︷ ︸︸ ︷
∇α1

∇α2

∇α1×∇α2


−1

∂α1
∂ t

∂α2
∂ t

0


︸ ︷︷ ︸

Convergence

+H(∇α1×∇α2)︸ ︷︷ ︸
Circulation

, (2.9)

where G is a positive definite, diagonal matrix which can be used to tune the relative strength of the

various directions of the contraction term and H is a strictly positive or strictly negative definite,

diagonal matrix. As we only have need of static curves, we will henceforth eliminate any time

dependence in our function definitions.

A vector field convergence proof for the result of (2.9) is presented in the paper. The proof

is analogous to the one discussed in Section 2.1 but due to the additional complexity associated
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with following n-th dimension, time varying curves we will not discuss it in detail here. When this

vector field method is applied for following static curves in three dimensions it has many similar-

ities to the preceding method. Yet, while there are similarities, the Gonçalves method appears to

have some distinct advantages when compared to the Lawrence vector field construction method.

Some of the advantages of the Gonçalves method include design simplicity, intuitive tun-

ing, and simple implementation. For this method the designer must only select the two surface

functions to describe the desired path and adopt a scalar potential function. At the present, to the

best of the author’s knowledge, this method has not been extended to construct a vector field which

produces stable acceleration vector commands; thus, there may be a reason to accept the increased

complexity of the Lawrence vector field construction method for the benefit of the feed-forward,

error reduction acceleration term.

2.3 Comparison

These two vector field construction methods are quite similar in a number of respects. In

fact, the work of Gonçalves is somewhat of an extension of the Lawrence results. Both of these

works provide methods for constructing three dimensional vector fields along arbitrary curves of

interest. The most significant difference between these two methods is the process for designing

the vector fields. The resultant velocity command based vector fields of the two methods could

be identical, but the processes of creating them are quite distinct. One of the most significant

contributions of [9] is a very simple method for designing these vector fields. The designer only

needs to describe the curve of interest as the intersection of two surfaces and select a scalar potential

function, which is made significantly easier with the surface definitions available. This makes

the process of producing a stable vector field much less complex than the method presented by

Lawrence.

The other primary difference is that the Lawrence paper further extends the vector field

method for use as an acceleration control law that includes the feed-forward term. This extension

is much more complex to derive, loses much of the intuitive properties of the velocity control

vector field laws, is difficult to tune and constrain to behave feasibly, and is significantly more

complex to implement.
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Consequently, the Gonçalves method is superior in simplicity for the designer as well as in

the intuitive nature of manipulating and tuning the resultant vector fields. The Lawrence method

includes the extension of the acceleration control law, with the feed-forward term. This term

offers the possibility of reducing the tracking error in a physical system implementation where

some steady-state error in tracking will assuredly be present. The drawback of the acceleration-

based method is a substantial increase in design and implementation complexity. We will further

compare the implementation and performance of these two vector field construction methods for

use in tracking elliptical orbits in Chapter 3.

2.4 Implementation

We have adopted a system architecture that is well suited for use with vector field path

following functions. A high-level illustration of the concept is depicted in Figure 2.2. This ar-

chitecture divides the UAV navigation problem into four distinct problems: path planning, path

management, path following, and low-level autopilot control and state estimation. The first three

of these problems we will discuss in detail throughout this thesis. For the fourth block, the low-

level autopilot control and state estimation problem, it is assumed that such a solution already

exists and is available for implementation on UAV hardware. The state feedback information that

will be required consists of estimates of inertial position, course angle, airspeed and the wind vec-

tor. A detailed method for this fourth block is developed and presented in [2]. We also assume that

the UAV, on which the algorithms presented later in this paper are to be implemented, is equipped

with a course angle hold loop, a pitch angle hold loop, an airspeed hold loop, a pitch rate hold

loop, and a roll angle hold loop.

Throughout this thesis we rely on the standard fixed-wing aircraft Euler angles, roll (φ ),

pitch (θ ), and yaw (ψ) that relate what we will define as the aircraft body frame and the inertial

frame. These angles and frames are considered standardized in aircraft literature and many re-

sources can be found describing them in detail [2] [12]. We will present these frame definitions

and corresponding transformations throughout this paper in greater detail as needed.

The role of the path planner is to plan current or future vehicle paths that can then be

communicated to the path manager. In this work we will investigate path planning schemes for
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Figure 2.2: A high-level depiction of the system architecture used for the implementation of the
vector field path following methods

interception of an aerial target vehicle. These path planning algorithms will be discussed in Chap-

ter 5.

Path parameters are sent to the path manager from the path planner. In cases where a

planned path consists of multiple legs that require the use of difference path following methods,

the path manager is necessary. The purpose of this block is to determine which leg of the complete

path the vehicle is currently on. It then communicates to the path follower the appropriate path

definitions necessary for the vector field path following methods. The path management algorithm

employed in this work for navigation along Dubins airplane paths is an extension of the path

manager described in [2]. It was extended for use in three dimensions. This modified algorithm

can be found in Appendix A.

The path follower implements the vector field path following methods that we have dis-

cussed in this chapter. It receives the path definition from the path manager, a flag that specifies

which vector field is to be used (e.g., circular helix, inclined line, or elliptical orbit) and the nec-

essary vehicle states. Depending on the method being employed, the outputs of the vector field

equations are either a desired velocity vector or a desired acceleration vector. These commands

are converted into the inertial frame and then converted into commands tractable by the low-level

control loops with which we assumed the UAV is equipped.
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This process of converting the resultant vector field commands into appropriate UAV com-

mands is different for the two vector field methods we have discussed in this chapter. For the

Lawrence method we will convert the acceleration commands into pitch rate, roll angle and air-

speed commands using a modified polar converting logic. The desired velocity commands pro-

duced by the Gonçalves method will be converted into course angle, flight path angle, and airspeed

commands. We now present two methods that produce the requisite vector field command conver-

sions.

2.4.1 UAV Velocity Vector Controller

For fixed-wing aircraft there are basic kinematic equations that relate inertial velocities,

the angles of travel in the horizontal and vertical directions, and what we define as ground speed.

The angle between the north direction and the direction of travel in the horizontal plane we define

as the course angle (χ). The angle between the magnitude of the vertical velocity and horizontal

velocity in the inertial frame is defined as the flight path angle (γ). This relationship is presented

mathematically as

Vg =


cos χ −sin χ 0

sin χ cos χ 0

0 0 1




cosγ 0 −sinγ

0 1 0

sinγ 0 cosγ




Vg

0

0

=Vg


cos χ cosγ

sin χ cosγ

−sinγ

=


ṗn

ṗe

ṗd


(2.10)

Using this relationship we can solve for equivalent ground speed, course angle and flight

path angle commands. These are calculated as

V d
g =

√
(ṗd

n)
2 +(ṗd

e )
2 +(ṗd

d)
2 (2.11)

γ
d = arcsin

(
−

ṗd
d

V d
g

)
(2.12)

χ
d = arctan2(ṗd

e , ṗd
n) (2.13)
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Figure 2.3: Flight path angle controller block diagram

Prior to this work the low cost MAV hardware that we employed did not have a flight

path angle hold loop. Rather, the previous control schemes relied primarily on altitude control for

vehicle navigation in the vertical direction. The flight path angle tracking scheme that we propose

implementing is a standard proportional, integrator, derivative (PID) loop where the control output

is a pitch angle command (θc). This flight path angle loop is wrapped around a pitch angle hold

loop.

To improve the tracking capabilities of the controller we make use of the relationship be-

tween the flight path angle (γ), pitch angle(θ ) and what is defined as the angle of attack (α). As

shown in [2], in the absence of wind, this relationship is given by

θ = γ +α. (2.14)

Since the angle of attack is not a constant angle and is difficult to estimate on a MAV, we

will use a steady-state approximation, α̂ss. Our feed-forward term then becomes

θ
c
ff = γ

d + α̂ss. (2.15)

Figure 2.3 provides a block diagram representation of the flight path angle hold loop implementa-

tion.
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2.4.2 UAV Acceleration Vector Controller - Modified Polar Converting Logic

Polar converting logic is a method of producing pitch rate and roll angle commands from

vehicle acceleration commands. The basic logic of this method is to align the vehicle lift force

with the combined desired lateral and longitudinal acceleration commands. Detailed descriptions

of polar converting logic can be found in [2] [11]. We begin by defining a number of air vehicle

reference frames.

The aircraft body frame has the the x-axis aligned out the vehicle nose, the y-axis out the

right wing, and the z-axis out the bottom of the plane. The origin is at the center of mass of the

vehicle. This frame is reached from the inertial frame with a 3-2-1 (yaw (ψ), pitch (θ ) then roll

(φ )) Euler rotation:

Rb
i (ψ,θ ,φ) =


1 0 0

0 cosψ sinψ

0 −sinψ cosψ




cosθ 0 −sinθ

0 1 0

sinθ 0 cosθ




cosψ sinψ 0

−sinψ cosψ 0

0 0 1

 (2.16)

The notation is such that the subscript of R refers to the frame of a vector prior to the transformation

and the superscript specifies the frame after the transformation.

The vehicle-2 frame is nearly the same as the body frame with the exception of the one

Euler rotation. It is reached using a 3-2 Euler rotation. The origin is also at the vehicle center

of mass. The effect is that the frame is yawed and pitched with the vehicle but not rolled. This

rotation can be represented as

Rv2
i (ψ,θ) =


cosθ 0 −sinθ

0 1 0

sinθ 0 cosθ




cosψ sinψ 0

−sinψ cosψ 0

0 0 1

 . (2.17)

Polar converting logic references the vehicle acceleration commands in the vehicle-2 frame.

We represent the desired acceleration commands in the inertial frame as
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¨̄rd =


ai

x

ai
y

ai
z

 . (2.18)

These commands can be converted into the vehicle-2 frame using the transformation presented in

(2.17). The result of this transformation is


av2

x

av2
y

av2
z

=Rv2
i


ai

x

ai
y

ai
z

 . (2.19)

This method of converting acceleration commands into a roll command and a pitch rate

was designed for bank-to-turn missile controllers. One of the limitations of polar converting logic

that makes it impractical for implementation for small UAVs is a discontinuity in the commanded

roll angle as the vertical component of desired acceleration vector changes sign. For vehicles with

relatively high roll rates, such as missiles, this may not be a limitation but is not practical for use

with small, UAVs as they are not capable of achieving relatively high roll rates. Another limitation

of this method is that it does not consider the effects of the gravity force. This is an assumption

that may be valid if the vehicle lift force is always much larger than the gravity force, but for small

UAVs this is generally not the case.

The standard polar converting algorithm is

φ
c = tan−1

(
av2

y

−av2
z

)
(2.20)

θ̇
c =−sign(av2

z )
√
(av2

y )2 +(av2
z )2 1

V d
g
. (2.21)

The modified algorithm we employed that used the absolute value function is
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φ
c = tan−1

(
av2

y

abs(av2
z )

)
(2.22)

θ̇
c =−sign(av2

z )
√
(av2

y )2 +(av2
z )2 1

V d
g
. (2.23)

This modification was motivated to make the polar converting logic scheme suitable for

use with fixed-wing UAVs by eliminating the command of overly aggressive maneuvers. The only

difference between the two algorithms is in the evaluation of the roll command, φ c. In the modified

(2.23), the sign of longitudinal acceleration term was ignored by evaluating the absolute value of

this term. This has the desirable effect of making the direction of the roll angle only dependent on

the sign of the desired lateral acceleration term.

The logic that motivated this modification is illustrated by considering a fixed-wing UAV

attempting to navigate along a clockwise, flat, circular orbit, with an achievable radius. For the

UAV to track such a path in near-steady-state conditions it seems intuitive that the vehicle would

be rolled to the right at a near-constant angle to produce the appropriate centripetal acceleration.

While maintaining this roll angle the vehicle would appropriately pitch up or down to maintain

the desired altitude. This is the type of vehicle commands that we attempted to mimic with the

modified polar converting logic scheme.

Considering the standard polar converting logic in the same scenario illustrates how it is not

appropriate for our application. When the vehicle is below the desired orbit altitude the longitudinal

acceleration command would be positive and the resultant roll and pitch commands would be

identical to the above situation. The problem arises when the vehicle is above the desired orbit

altitude causing a negative longitudinal acceleration commands. In this situation the vehicle would

reverse the sign of the commanded roll angle and pitch down. Thus, whenever the vehicle would

fluctuate above and below the desired altitude it would result in an aggressive UAV command

being produced and cause significant, undesirable dynamic effects. The consequence of such a

scheme would likely be to increase overall tracking error in comparison to a more conservative

control commands. Simulation results of the standard polar converting logic method lead to the

discovery of the algorithm infeasibility for use with a fixed-wing vehicle. These results also led to

the development of the modified polar converting logic algorithm.
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In this thesis, the modified polar converting logic algorithm is subsequently used only in

simulation results for tracking elliptical orbits in Chapter 3. The acceleration command based

vector field method presented in Section 2.1 was not selected for hardware implementation. As this

algorithm is not significant to the final conclusions presented in this thesis we provide no further

discussion of the modified algorithm. Nevertheless, if converting acceleration commands into

tractable UAV commands is of interest, further study and analysis of the modified polar converting

logic algorithm are recommend.

2.4.3 Feed-Forward Roll Command

One of the limitations of this Gonçalves based vector field path following methods is that

it does have an anticipatory vector field component when following curves paths. A method has

been proposed for producing feed-forward roll angle commands that based on the coordinated turn

assumption, should significantly reduce the steady-state error when tracking curved paths [13].

This is accomplished by computing a nominal roll angle command using this relationship:

φnom =
χ̇Vg

g
, (2.24)

where χ̇ is the appropriate course angle rate, Vg is the vehicle ground speed, and g is the accelera-

tion due to gravity. This nominal roll angle can be added to the roll angle command produced by

the course angle hold loop as depicted in Figure 2.4.

Calculating χ̇ varies based upon the curve being followed. In this paper we develop vector

fields for following two different paths using the Gonçalves methods: circular helices and elliptical

orbits.

We approximate the appropriate course rate angle of the circular helix by that of a flat

circular orbit. This can be calculated as

χ̇ =
Vg

ρ
, (2.25)
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Figure 2.4: Block diagram illustrating the method for implementing the feed-forward roll com-
mands.

where ρcirc is the radius of the circular helix and ρellipse is the effective radius of the elliptical orbit

that is to be followed. The effective radius of an elliptical orbit can be computed with the following

equation:

ρellipse =
(a2σ2 +b2σ2)

3
2

ab
(2.26)

where a and b are the ellipse major and minor radii and σ is the parametric variable used to

describe the angular position of the vehicle on the ellipse. This parametric relationship for an

ellipse is represented as

x = acosσ (2.27)

y = bsinσ (2.28)

and can be used to solve for σ give the vehicle position relative to the ellipse center.
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2.5 Conclusions

In this chapter we presented two vector field construction methods which we refered to as

the Lawrence method and the Gonçalves method. These methods can be used to produce path

following vector fields about arbitrary curves. The output of the Lawrence method was a vector

of inertial acceleration commands. The output of the Gonçalves method was a vector of inertial

velocity commands. We presented methods for converting the output from both of these vector

field equations into commands that can be tracked using lower-level control loops. We also pre-

sented low-level controllers that can be used to implement these path following methods onboard

a MAV. In Chapters 3 and 4 we use the path following methods that we presented in this chapter to

develop vector fields for following elliptical orbits and time-optimal Dubins airplane paths which

are defined in Chapter 4.
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CHAPTER 3. ELLIPTICAL ORBIT TRACKING

In this chapter we use the the Lawerence and Gonçalves vector field construction methods

presented in the previous chapter to produced vector fields for following an arbitrarily oriented

ellipse. Both of these elliptical orbit tracking methods are simulated. A comparison of the two

methods is provided. We also present a scheme for nondimensionalizing the Gonçalves based

vector field that allows a single set of vector field gains to be used much more generally. These

elliptical orbit path following methods make it possible to track the drogue after the MAV has been

inserted onto the drogue orbit.

The principle role of this research is to produce a method for inserting the MAV onto the

drogue orbit and then, while navigating along the drogue orbit, gradually decrease the distance

between the two vehicles to within 10 meters. The goal is to use the method presented in this

research to facilitate a final visual rendezvous. This chapter presents post-insertion, orbit tracking

methods. The vector field path following methods discussed in the previous chapter are well suited

for solving this problem. Using these methods we develop two elliptical orbit path following vector

fields and compare them in simulation. The methodology of the insertion scheme is presented in

Chapter 5.

To develop these drogue orbit following methods, estimates of the drogue orbit are needed.

As has been previously demonstrated in [1], when the mothership flies a circular orbit while towing

the drogue in steady-state flight, the drogue will adopt an interior orbit; in the presence of constant

wind this orbit will be roughly elliptical and rotated out of the horizontal plane. Prior research

developed a numerical method for approximating the elliptical drogue orbit using the drogue GPS

measurements [4]. This estimation method provides us with the necessary estimates of the drogue

elliptical orbit parameters for an elliptical orbit tracking scheme: the orbit center, the major and

minor radii, and the 3-1-3 Euler angles that relate the ellipse frame and the inertial frame.
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One factor that must be considered when using this method is that the accuracy is limited

primarily by the resolution of GPS, our primary positioning sensor. These GPS measurements do

not provide sufficient accuracy to directly facilitate a rendezvous between the two vehicles. For this

reason we have adopted the ellipse-following scheme as a mechanism for enabling a final visual

rendezvous and docking.

With the estimated elliptical orbit parameters it is possible to create a vector field path

following scheme that can be used to track the drogue. Before developing the two vector field

equations we begin with definitions common to both methods. We define the elliptical orbit vector

field frame with the x and y axes aligned with the major and minor ellipse axes respectively and

the z axis oriented perpendicular to the plane containing the ellipse. The origin of the ellipse frame

is located at the orbit center. The combined 3-1-3 Euler rotation matrix for converting a vector in

the north, east, down (NED) inertial frame to the ellipse frame is written as

Re
i =


cosψ2 sinψ2 0

−sinψ2 cosψ2 0

0 0 1




cosθ1 0 −sinθ1

0 1 0

sinθ1 0 cosθ1




cosψ1 sinψ1 0

−sinψ1 cosψ1 0

0 0 1

 , (3.1)

where the subscript i specifies that the rotation begins in the inertial frame and ends in the ellipse

frame, indicated by the superscript e. We define

c =


cn

ce

cd

 (3.2)

as the relative location of the ellipse center in the inertial frame expressed in NED coordinates.

With this definition we can present the complete transformation of an inertial position vector,
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p =


pn

pe

pd

 , (3.3)

in the inertial frame to the ellipse vector field frame where we denote the position vector as r̄ (see

vector field definitions in Chapter 2). This transformation is

r̄ =Re
i (p− c) . (3.4)

We will begin by constructing the vector field that produces an acceleration vector, as

described in Section 2.1, followed by a simpler method that yields velocity vector commands ( see

Section 2.2) and then we will compare the simulation results of the two.

3.1 Vector Field with Desired Acceleration Vector

A vector field path following scheme for tracking arbitrarily oriented elliptical orbits is

presented in this section. This method was developed by drawing upon the principles presented

by Lawrence, et al. in [7], which were covered in Chapter 2. We will refer to this vector field

method as the Lawrence method. Using these methods, a stable vector field for navigation along

arbitrary elliptical orbits can produced. For the sake of simplicity we have opted to use the notation

presented in [7] when constructing the elliptical orbit, acceleration command based vector field.

Three unit vectors are used to describe the ellipse frame axes. They are defined as n̂1 , n̂2 ,

and n̂3 where these vectors give the directions of the major axis, the minor axis, and the normal to

the ellipse plane as a right-handed frame, respectively.

From the equations

r1 = n̂T
1

r̄, r2 = n̂T
2

r̄, and r3 = n̂T
3

r̄ (3.5)

27



we produce the scalar values of r̄ in the directions of the ellipse frame axes. We define a scalar

potential function VF(r̄), to be used in (2.1) and (2.2), where C is the zero-level set of the otherwise

positive function as

VF(r̄) =
1
2

r2
3
+

1
2

((
r1

a

)2
+
(r2

b

)2

−1

)2

. (3.6)

In this equation, a and b are respectively the major and minor radii of the desired loiter

ellipse. From (3.6) we can derive:

∂VF

∂ r̄
= r3 n̂T

3
+2
((r1

a

)2
+
(r2

b

)2
−1
)(

r1 n̂T
1

a2 +
r2 n̂T

2

b2

)
. (3.7)

We then define a function T (r̄) that generates the unit tangent vector to an ellipse that is parallel to

the desired loiter ellipse at the vehicle location described by r̄:

T (r̄) =−
(

ar2

b

)
n̂1 +

(
br1

a

)
n̂2 . (3.8)

The Lyapunov vector field (2.2) is then obtained with the following definitions:

Γ(r̄, t) =
1

α(r̄, t)


g1 0 0

0 g2 0

0 0 g3

 (3.9)

and

S(r̄, t) = γ(t)
T (r̄)

α(r̄, t)
, (3.10)

where γ(t)> 0 and the speed normalization is given by:
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α(r̄, t) =
1
vd

(
n̂1

(
2g1r3

1
a4 +

2g1r1r2
2

a2b2 −
2g1r1

a2 +
γar2

b

)2

+n̂2

(
2g2r3

2
b4 +

2g2r2r2
1

a2b2 −
2g2r2

b2 +
γar1

b

)2

(3.11)

+n̂3 (g3r3)
2

) 1
2

.

Combining (2.2), (3.7), (3.8), (3.9), (3.10), and (3.11) yields the normalized vector field equation:

˙̄rd(r̄) =−vd h(r̄)
|h(r̄)|

, (3.12)

where

h(r̄) =n̂1

(
2g1r3

1
a4 +

2g1r1r2
2

a2b2 −
2g1r1

a2 +
γar2

b

)
+n̂2

(
2g2r3

2
a4 +

2g2r2
1r2

a2b2 −
2g2r2

b2 +
γbr1

a

)
(3.13)

+n̂3 (g3r3) .

The vector field is characterized by two terms: a circulation term and a contraction term.

These terms are described in Chapter 2 but for simplicity the vector field equation was combined

and simplified. The circulation term is represented by all of the terms in (3.13) that contain the

circulation gain γ . All of the other terms cause contraction toward the elliptical orbit. A single

gain, γ , controls the relative strengths of contraction toward the orbit and circulation about the

orbit. This vector field is undefined about the axis through the center of the ellipse but behaves

well everywhere else. An anisotropic Γ, as used in (3.9), can be used to vary the relative strengths

of the contraction terms in different directions. An example velocity command based vector field

produced using this method can be seen in Figure 3.1. For instance, one could use the ellipse

parameters to produce the rotation matrix between the ellipse frame and the inertial frame to then

29



−300 −200 −100 0 100 200 300
−300

−200

−100

0

100

200

300

Figure 3.1: An example velocity command based vector field for an elliptical orbit. This vector
field was developed using the Lawerence vector field construction method.

reduce the contraction term in the vertical direction to be within the climb rate performance pa-

rameters of the vehicle for which this scheme is being implemented.

An acceleration control law was derived from the Lyapunov vector field equation (see (2.5))

that produces an acceleration vector in the ellipse frame. As discussed in detail in Chapter 2, this

control law is made up of a proportional tracking term and a feed-forward term, ¨̄rd = −P+ ¨̄rff ,

where the proportional term was selected to be

P = β ( ˙̄rd− ˙̄r). (3.14)

Thus, the vector field equation for commanded acceleration can be written as

¨̄rd( ˙̄r, r̄) =−β ( ˙̄rd− ˙̄r)+ ¨̄rff . (3.15)
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Deriving the feed-forward term can be somewhat involved. Using the simplified vector

field equation (see (3.12)) makes this derivation less formidable. To produce the feed-forward

term in (2.7) we must take the time derivative of (3.12). Doing so produces

¨̄rff =−vd

(
|h| d

dt h−h d
dt |h|

|h|2

)
, (3.16)

where

d
dt

h =n̂1

(
6g1r2

1 ṙ1

a4 +
2g1r2

2 ṙ1

a2b2 +
4g1r1r2ṙ2

a2b2 − 2g1ṙ1

a2 +
γaṙ2

b

)
+n̂2

(
6g2r2

2 ṙ2

b4 +
2g2r2

1 ṙ2

a2b2 +
4g2r1r2ṙ1

a2b2 − 2g2ṙ2

b2 − γbṙ1

a

)
(3.17)

+n̂3 (g3ṙ3)

and

d
dt
|h|=

h · d
dt h
|h|

. (3.18)

The proportional term, which was defined in (3.14), produces accelerations that direct the

vehicle toward the desired velocity vector as specified by the Lyapunov vector field. The feed-

forward term, which is the derivative of the vector field equation, contributes acceleration com-

mands that anticipate the vector field turn rate. The intent of including feed-forward term is to

increase the ability of the controller to accurately track the elliptical orbit. The commands of this

control law are guaranteed to converge to the desired orbit in finite time. One of the limitations of

this controller is that it does not take into account aircraft flight constraints; due to the complexity

of the acceleration command control law, it is not obvious how one could constrain the relative

rates of acceleration.
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3.2 Vector Field with Desired Velocity Vector

The Gonçalves vector field construction method (see Section 2.2) is quite simple when

compared to the Lawrence method (Section 2.1). As has already been discussed, to construct

a vector field about a curve of interest using the Gonçalves method, the designer must select a

scalar potential function and define the path as a zero-level surface function. In Section 2.2 we

presented the potential function which we adopted for this work. As we already have presented

a suitable potential function, we only need to define the surface functions and evaluate the vector

field construction equation.

Our selection of the ellipse frame simplifies the zero-level surface functions needed to de-

fine the ellipse we wish to follow. We describe the ellipse of interest with the appropriate elliptical

cylinder and the plane containing the x and y axes. These zero-level surface functions can be

expressed as

α1(x,y,z) =
(x

a

)2
+
(y

b

)2
−1 (3.19)

α2(x,y,z) = z. (3.20)

To complete the vector field construction we must evaluate the explicit vector field equation

presented in (2.2). Substituting these surface functions into (2.9) and evaluating yields

˙̄rd =−G


2x
a2

(( x
a

)2
+
( y

b

)2−1
)

2y
b2

(( x
a

)2
+
( y

b

)2−1
)

z

+H


−2y

b2

2x
a2

0

 . (3.21)

This vector field equation provides a velocity vector command in the ellipse frame. Similar

to the case present in the previous section, the velocity command is made up of a circulation force

and a contraction force. These forces can be tuned with a single gain H which must be a strictly

positive or strictly negative diagonal matrix. The sign of H determines the direction of circulation

(e.g., clockwise or counterclockwise). The matrix G can be tuned to control the relative strengths
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of the contraction force in the directions of the ellipse frame or inertial frame axes, but it must

be a positive definite matrix. This matrix can be used to limit the commanded vertical velocity to

be within the MAV performance constraints. We found that using an isotropic H made tuning the

vector field to achieve the desired rate of convergence very intuitive.

3.3 Vector Field Nondimensionalization

When deriving these vector field path following equations it is intuitive to use an inertial

reference frame with units of meters, as derived above. One of the consequences of developing the

equations in this manner is that the relative strengths of the two zero-level surface functions are

dependent upon the ellipse radii, a and b. These surface functions, which are used to derive the

vector field (3.21), each add energy to the energy potential function in (2.8) based upon how far the

vehicle is from the zero-level curve. Consequently, the relative strength of the energy contributions

to the potential function from the two zero-level surface functions is dependent upon the curve

parameters mentioned above. This has the undesirable effect of causing appropriate vector field

gains to vary substantially based on the curve parameters. For example, a gain that was appropriate

for relatively small ellipse radii may perform very poorly for larger radii. Thus, it would be useful

to eliminate the vector field gain dependence on the curve parameters to eliminate the need for a

gain adaptation scheme.

We now present a simple method that can be used to mitigate this problem for each of the

vector field equations presented in this paper produced using the vector field construction method

of Goncavles, et al. The method entails eliminating the curve parameters from the vector field

equations. This can be accomplished by nondimensionalizing some of the variables in the vector

field equations. For the ellipse case where the vector field equations are developed in the right

handed ellipse frame, we now define a relative position vector which is measured relative to the

ellipse parameters a and b. The components of this vector are defined as follows:

xrel ,
x
a
, yrel ,

y
b
, zrel , z. (3.22)

Thus, for a constant elliptical orbit,
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ẋ = aẋrel, ẏ = bẏrel, ż = żrel. (3.23)

We use this result to produce a conversion from the relative vector field commands back to the

units of a and b:

˙̄rd =


a 0 0

0 b 0

0 0 1

 ˙̄rd
rel. (3.24)

Substituting these results of (3.23) into the ellipse zero-level surface functions from (3.20) and then

evaluating (2.9) yields the following non-dimensionalized field equation:

˙̄rd
rel =−G


2xrel(x2

rel + y2
rel−1)

2yrel(x2
rel + y2

rel−1)

zrel

+H


−2yrel

2xrel

0

 . (3.25)

Essentially we are converting the units of the x and y directions to be non-dimensionalized

and relative to the system parameters for use with the vector field equations. After producing the

vector field commands we convert back to the appropriate units. Using the vector field equations

we produce a desired velocity vector in these relative units. This provides the benefit of being able

to use a single set of gains for more than a single set of ellipse parameters.

We present a simple visual comparison of the standard and non-dimensionalized vector

field approaches to illustrate the benefits. The primary benefit can be easily visualized while ig-

noring the vertical dimension. As seen in Figure 3.2, for a well tuned vector field about a circular

orbit (major and minor radii are equal), the standard approach and non-dimensionalized approach

are identical if they have the same gains.

When we consider these two vector fields about an elongated ellipse, it is apparent that

the vector fields behave quite differently for the two methods. The non-dimensionalized vector

field appears to have the same desirable convergence properties as the circular orbit vector field.

On the other hand, the standard vector field approach is dominated by the vector field contraction

force in the direction of the ellipse minor axis. This is because the potential function is dependent

upon the ellipse parameters. The relationship is such that the convergence force will always be
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(c) Non-dimensionalized vector field: circular orbit (d) Non-dimensionalized vector field: elongated ellipse

Figure 3.2: Comparison of standard vector field and non-dimensionalized vector field approaches
with identical gains and orbit parameters.

dominated by the direction of the minor axis if the minor and major radii are unequal. This is also

evident in Figure 3.2. Consequently, the standard vector field causes rapid convergence toward the

major axis. The convergence properties of the standard vector field about the elongated ellipse are

also substantially more aggressive than the circular orbit case, which is undesirable. It would be

preferable to have similar convergence properties for a circular orbit and an elongated ellipse for a

single set of gains.

The effect of using the vector field nondimensionalization technique is that the convergence

properties are maintained for a given set of gains between distinct orbits. One of the limitations of
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this method is that using the same gains for orbits of significantly different size may not perform

well if the vector field integral curves violate the performance constraints of the vehicle.

To illustrate this point we compare two parallel ellipses (same ratio between the major and

minor radii). For a single set of gains, an ellipse with a= 100 and b= 50 will have exactly the same

non-dimensionalized vector field as an ellipse where a= 50 and b= 25. Thus, in the dimensionless

space they will perform identically. When viewing the integral curves of these vector fields in their

appropriate units their performance will be the same to a scaling factor.

We now consider the behavior of a vehicle with a minimum turn radius constraint. For a

given set of gains, the vehicle’s convergence characteristics toward the large ellipse may be quite

desirable in part because the minimum turn radius of the vector field integral curves does not

violate the vehicle’s minimum turn radius. If this vehicle were to attempt to navigate around the

smaller ellipse, this equivalent set of gains may not be appropriate because the integral curves will

have half the minimum turn radius compared to those of the larger ellipse.

Even though the aircraft may be dynamically capable of navigating along the ellipse, the

gains may be overly aggressive and result in undesirable oscillations back and forth over the desired

elliptical orbit. Thus, this nondimensionalization scheme is good for eliminating the dependence of

the vector field convergence properties on the ellipse parameters and not necessarily for preventing

tuning from being needed between ellipses of various sizes. There is still a need to prevent the

vector field properties from being overly aggressive for the dynamic constraints of the vehicle.

Nevertheless, the variation in ideal gains between ellipses of different sizes varies much less with

the dimensionless vector fields in comparison to the standard vector fields.

It is important when applying this technique to other types of paths that consideration is

given to whether the nondimensionalized parameters could be normalized to infinity. This would

occur for the ellipse case if either the major or minor radii were equal to zero. Even if the radii

were only near zero it could still introduce substantial numerical error. Because it is impossible for

a fixed-wing aircraft to navigate along an orbit with a radius of zero, for this specific case it is not

a concern but it may be for other types of paths.
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3.4 Simulation Results

Simulation results of both of the elliptical vector field path following methods and the

subsequent methods presented in this thesis were produced using a second-order, six-degree-of-

freedom, MAV model. This dynamic model uses realistic aerodynamic and propulsion models

as well as a the Dryden wind gust model [12]. These can be found in Appendix B. The Matlab,

Simulink simulation environment and the ode45 numerical differential equation solver were used to

accurately solve the aircraft dynamic equations for our simulation purposes. The aircraft dynamic

models and equations used were adopted from [2].

Low-level autopilot controllers were also developed in [2] which we adopted to use. These

consisted of an airspeed controller, pitch angle controller, and a course angle hold loop which relied

on inner roll angle loop controller. For the acceleration command method the low-level controllers

required were an airspeed controller, a roll angle controller and a pitch rate controller. The gains

for each of the loops were tuned according to the methodology presented in the above mentioned

work. These controllers make up the low-level autopilot.

Since an investigation of state estimation methods is not one of the primary objectives of

this work, we elected to use true state feedback with the vector field path following equations and

the low-level autopilot loops. State estimation techniques would certainly introduce errors and

system variability that would make analysis of the vector field path following methods presented

here significantly more complicated. Thus, the motivation of this decision was to increase the

visibility of the performance characteristics of the vector field path following methods.

As such, the simulation results we present are intended to demonstrate the general behavior

of these vector field path following methods. Experimental results collected from hardware imple-

mentations of these algorithms will be used to validate the results presented in this and subsequent

simulation results sections (see Chapter 6).

We used a reduced version of the system architecture model which was presented in Fig-

ure 2.2. The blocks used for the simulation presented in this section made use of the path fol-

lowing and autopilot blocks. The vector field path following equations were implemented in the

path following block. The inputs into the path following block were those specifying the ellipse

parameters. The low-level control loops that we used corresponded to those appropriate for the

particular vector field method being employed as presented in Sections 2.4.1 and 2.4.2.
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Table 3.1: Initial conditions and parameters used in the simulation
of the two ellipse following methods.

Vehicle Initial Conditions
pn (m) -205
pe (m) -125
h (m) 0
Airspeed (m/s) 14
Ellipse Parameters
n0 (m) 0
e0 (m) 0
h0 (m) 60
ψ1 (

◦) 20
θ (◦) 5
ψ2 (

◦) 0
a (m) 150
b (m) 100
Wind Initial Conditions
north (m/s) 1
east (m/s) -3
down (m/s) 0

Each of the elliptical vector field path following methods were simulated using the same

initial conditions, ellipse parameters, constant wind and wind gusts. These can be found in Table

3.4. The wind gusts were produced using the Dryden model with simulated white noise. Identical

white noise function seeds were used for the two simulations.

(a) Velocity method (b) Acceleration method

Figure 3.3: Plots of the actual 3D path flown for the two ellipse following simulations.
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Figure 3.4: Plots of the steady-state tracking error of the two ellipse following methods.
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Figure 3.5: Plots of the north-east-down wind components for the two ellipse following methods.

Plots of the north-east-down components of the simulation wind can be found in Figure

3.5. Since the wind gust model presents the gusts in the body frame of the vehicle rather than the

inertial frame, the wind magnitude plots are not identical. In these simulations the magnitude of

the wind was approximately 30% of the commanded airspeed. The presence of wind contributes to

the steady-state error of the tracking methods as the vehicles must respond to the wind by crabbing

at the appropriate angle to maintain the appropriate course angle.
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Table 3.2: Summary of performance characteristics of the two elliptical
orbit path following methods.

Gonçalves Method Lawrence Accleration Method
Max Steady-State Error (m) 0.273 0.161
Max γ (◦) 21.68 34.72
Min γ (◦) -4.68 -6.10
Max χ̇ (rad/s) 1.12 1.23
Min χ̇ (rad/s) -0.765 -0.338
Max θ̇ (rad/s) 1.54 0.662
Min θ̇ (rad/s) -0.559 -0.196
Min Turn Radius (m) 157.0 156.3

Review of the performance characteristics of the two methods, found in Table 3.4, shows

that the two vector field methods behaved similarly and within the dynamic limitations typical

of a comparable MAV; these realistic performance characteristics were only achieved for the ac-

celeration method after a significant amount of time was spent tuning the vector field gains and

artificially constraining them. The velocity based vector field method required minimal tuning of

the vector fields to produce the desirable convergence behavior presented here.

Inspection of Figure 3.3 shows that both methods effectively tracked the desired ellipse.

The only visible difference on the plots appear when the vehicles are converging towards the el-

lipse. Figure 3.4 displays the steady-state, ellipse tracking error of the two methods. It is apparent

that the acceleration method performed slightly better than the velocity method. We attribute this

reduction in the steady-state error to the the feed-forward term which produces the centripetal ac-

celeration commands necessary for the vehicle to maintain the appropriate turn rate. This steady-

state error is a function of the response time of the lower-level autopilot loops and is dependent

on the performance characteristics of these loops. These results show that there is some benefit to

using the acceleration method over the velocity method, but this potential benefit comes at the cost

of a large increase in system complexity.

The complexity difference between these two vector field methods is significant. We found

implementation of the velocity method to be relatively simple. Minimal time was spent tuning

gains since they produce intuitive results. With well tuned lower-level autopilot loops, we found

the vector field equation to be easily tuned using the gains G and H in the vector field equation,
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(see (3.21)). Each of these gains could be modified to increase the rate of convergence until the

commands became overly aggressive and detrimental oscillations began to occur. These gains were

then decreased slightly until an acceptable amount of oscillation occurred along the elliptical orbit.

Tuning the acceleration vector field gains was quite challenging. One of the challenges

was to prevent the feed-forward term from dominating the acceleration commands with highly

aggressive acceleration commands. Multiple constraints were needed to prevent the vehicle from

following impractical commands with the vector field equations as well as with the implementation

of polar converting logic. We feel that the results from the proceeding simulation of this method do

not provide justification for using this, the Lawrence method, over the Gonçalves velocity method.

Thus we will not discuss all of the tweaking and tuning of the vector field equations and the

polar converting logic function that went into making this method work for one particular set of

ellipse parameters. We will discuss some of the performance characteristics that make this method

difficult to implement.

One of the undesirable characteristics of the acceleration method is that it consistently pro-

duces unrealistic acceleration commands that violate the dynamic constraints of fixed-wing MAVs.

For instance, if the vehicle is oriented opposite the velocity commands from the proportional term

(see (3.15)) the general result of the acceleration commands is to decrease the vehicle velocity

to near zero and attempt a hairpin turn. There is no adequate method presented in [7] for con-

straining the acceleration method to produce airspeed commands that are reasonable for a MAV.

To overcome this, the airspeed commands produced by the acceleration commands were overrid-

den to get acceptable vehicle behavior. In most of the simulations we performed, the feed-forward

term was overly strong and resulted in the vehicle flying an orbit interior to the desired ellipse

path. Only when the acceleration commands are dominated by the proportional term are desirable

results obtained. Preventing un-achievable vehicle climb rates that resulted in poor path tracking

performance also required the artificial constraints to be placed on the vector field equations.

While the gains that we selected and used in simulation for following the ellipse were

acceptable, these gains do not perform well for other ellipses with a significant variation of ellipse

parameters. Our purpose in developing an elliptical orbit path following method is to be able to

follow ellipses in general and not a single ellipse with predetermined parameters. Thus, we have

selected the Gonçalves velocity based path following scheme for hardware implementation of the
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elliptical orbit following. We believe that the potential ellipse tracking error reduction offered by

the acceleration method does not compensate sufficiently for the substantial increase of complexity

in the design and implementation process. We have also adopted the velocity command based

vector field method to develop a scheme for following time-optimal Dubins airplane paths as found

in the next chapter.
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CHAPTER 4. TIME-OPTIMAL DUBINS AIRPLANE PATHS

In this chapter we define time-optimal Dubins airplane paths. The Gonçalves vector field

construction method, discussed in Chapter 2, is used to produce a vector field path following based

method for following these time-optimal paths. We present a scheme for nondimensionalizing

one of the resultant vector field equations which makes tuning of the vector field gains much

simpler. Simulation results for following these time-optimal Dubins airplane paths are presented

and analyzed. In Chapter 5 these time-optimal paths will be used to plan and follow interception

paths from the MAV to the drogue.

4.1 Path Definition

Various research has investigated the development of time-optimal paths for kinematic

models of interest. One notable contribution involved the development of time-optimal paths in

two dimensions for a kinematic model commonly described as a Dubins car [5]. The kinematics

of the model represent a first-order approximation of a vehicle traveling at a constant velocity with

a bounded turn rate. It can be written mathematically as follows:

ẋ = V cosθ

ẏ = V sinθ , V > 0

θ̇ = u, u : [a,∞).

This kinematic model has been used to describe time-optimal paths for various vehicles

that have a lower bound on their turn rate. One example of such a vehicle is a fixed-wing aircraft

that is flying at a constant altitude. While a fixed-wing aircraft is certainly not a first-order system,

when flying at a constant velocity and in near-level flight the vehicle has a minimum turn-rate.
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Figure 4.1: Four possible Dubins car path cases between an example start and end configuration
where “R” signifies a right or clockwise turn and “L” a left or counter-clockwise turn. [2]

The Dubins car model is a simple approximation that can be used to model all paths achievable

by the vehicle of interest. Furthermore, Dubins developed a closed-form solution for the time-

optimal path of such a vehicle between two points in the two dimensional plane that have an initial

and final heading constraint. Thus, from the work of Dubins we can plan time-optimal paths for a

fixed-wing aircraft that closely represent paths that such a vehicle can feasibly follow. The result of

this work is that one can solve for the time-optimal path of a fixed-wing aircraft between an initial

configuration, a position with a heading constraint, and a final configuration in two dimensional

space.

These time-optimal paths have been shown to consist of three unique legs. When the Eu-

clidean distance separating the initial and final point is greater than three minimum turn radii,

the time-optimal path always consists of an arc of minimum turn radius, followed by a straight

segment, and is concluded by another arc of minimum turn radius. There are four possible config-

urations of such a path depending on the direction of travel on the two arcs of minimum turn radius

(i.e., clockwise or counter-clockwise). An example of each of the four possible configurations is

seen in Figure 4.1. To determine which path is the time-optimal path, each of their lengths must

be calculated and the path of the shortest length is the time-optimal one.
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Since fixed-wing UAVs are not restricted to traveling in the horizontal plane it becomes

useful to investigate an extension of these time-optimal, two dimensional Dubins car paths to

three dimensions. Chitzas, et al. developed such an extension for a kinematic model, which they

referred to as a Dubins airplane [6]. The kinematic model of a Dubins airplane is nearly identical

to the Dubins car with the addition of an altitude velocity that has an upper and lower bound. The

kinematic model can be written as

ẋ = V cosθ

ẏ = V sinθ , V > 0

ż = v, v : [−b,b]

θ̇ = u, u : [a,∞).

The result of [6] showed that, for the Dubins airplane kinematic model, the time-optimal

path can be separated into three cases described as low goal altitude, medium goal altitude, and

high goal altitude. The low goal altitude case consists of scenarios where the difference in altitude

between the initial and final point is achievable while flying along the two dimensional, time-

optimal Dubins car path but with the appropriate altitude velocity. Thus, for the low-goal altitude,

if the time-optimal path were to be projected onto a horizontal plane it would be identical to the

two dimensional, time-optimal path of a Dubins car. In three dimensions this path consists of two

constant pitch, constant radii circular helices and an inclined straight line. The other cases are more

involved and will not be discussed here in detail. Nevertheless, the method that is being proposed

for following time-optimal, Dubins airplane paths is applicable to all three goal altitude cases.

To the best of our knowledge, there is no presently published work that presents a method for

following these Dubins airplane paths. Hereafter we present a method for following time-optimal,

Dubins airplane paths for the low-goal altitude case.
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4.2 Vector Field Construction

A number of schemes have been developed for following two dimensional Dubins paths [2]

[14]. Among these are vector field path following methods. The basic idea is that the fixed-wing

vehicle is commanded to fly at the altitude of the Dubins path while receiving course commands

from a vector field. The vector field approach is simply a function that, for every point in R2, a

velocity vector is produced from which we can solve for the course angle command. A gain is used

to tune the aggressiveness with which the vector field integral lines approach the desired path. To

use such a scheme a path following method must be developed for both the minimum turn-radius

arcs and the straight line segments. Using these two vector field methods in conjunction with what

we call a path manager, it becomes possible to follow these time-optimal, two dimensional Dubins

car paths. A path manager function, that is used to determine which leg of the path the vehicle

is on and switches between vector field methods at an appropriate time, was adopted from the

two dimensional approach in [2] and adapted for use with time-optimal Dubins airplane paths (see

Appendix A). We now propose a scheme for fixed-wing aircraft navigation along the time-optimal,

three dimensional paths of a Dubins airplane.

To produce the vector fields necessary for following the time-optimal Dubins airplane paths

we need to define the requisite surface functions. As was previously stated, the Dubins airplane

paths for the low-goal altitude case consist of constant radii, constant pitch circular helices, and

inclined straight lines. Using the parametric equation of a constant radius, constant pitch circular

helix we can derive two surface functions for the vector field construction. Using these equations

x(t) = ρ cos(t) (4.1)

y(t) = ρ sin(t) (4.2)

z(t) = β t (4.3)

we produce the zero-level surface functions
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α1(x,y,z) =

(
x
ρ

)2

+

(
y
ρ

)2

−1 (4.4)

α2(x,y,z) = β tan−1
(y

x

)
− z, (4.5)

which are depicted in Figure 4.2.

Figure 4.2: Plot of helical curve zero-level surface definitions

These two surface functions yield the following vector field equation:
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+1
))−1
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

+H


− 2y

ρ2

2x
ρ2

2β

ρ2

 (4.6)

where

ϕ = |mod(arctan2(y,x)+2πλ ,2πλ )|, λ ∈ {−1,1}. (4.7)

We define λ as the parameter that specifies the direction of circulation about the circular

helix, where values of λ = 1 and λ = −1 coincide when viewed from above with clockwise and

counter-clockwise orbits respectively. The intent of setting up the vector field this way is to make

the base height of the helix always occur at an angular position of zero radians and to prevent any

discontinuities in the helix height for either orbit direction. By constructing the vector field in this

way we found that development of a path management function was less complex in comparison

to other surface definitions or wrapping points.

The inclined straight line vector field frame was defined with a 3-2 Euler rotation that aligns

the x axis of the vector field frame with the inclined line of interest. A unit vector, q, that points in

the direction of desired travel was used to describe the direction of the line from its start point in

the inertial frame. This vector was used to solve for the angles necessary for the 3-2 Euler rotation.

The rotation matrixes can be described as
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R f
i =


cosθl 0 −sinθl

0 1 0

sinθl 0 cosθl




cosψl sinψl 0

−sinψl cosψ 0

0 0 1

 (4.8)

where

ψ1 = arctan2(q2,q1) (4.9)

and

θ1 = arcsin(q3/|q|). (4.10)

The surface functions that intersect along the inclined line in the vector field frame are

α1(x,y,z) = z (4.11)

α2(x,y,z) = y. (4.12)

The vector field equation is obtained by substituting (4.11) and (4.12) into (2.9) and evaluating to

produce

˙̄rd =−G


0

y

z

+H


1

0

0

 . (4.13)

4.3 Circular Helix Vector Field Nondimensionalization

The same gain normalization method presented for use with the elliptical orbit vector field,

as developed in Section 3.3, can be applied to the circular helix case. There is no need to perform

such a substitution for the inclined line vector field as the vector field frame for the line case was

intentionally defined to avoid this problem.
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The substitutions for the helical path case surface functions are

xrel ,
x
ρ
, yrel ,

y
ρ
, zrel ,

z
β
. (4.14)

These substitutions produce the following surface functions:

α1(xrel,yrel,zrel) = x2
rel + y2

rel−1 (4.15)

α2(xrel,yrel,zrel) = arctan2(yrel,xrel)− zrel. (4.16)

When the surface functions are substituted into (2.9) they yield the vector field equations

˙̄rd
rel =−G


2xrel(x2

rel + y2
rel−1)+ yrel(zrel−ϕ)(x2

rel + y2
rel)
−1

2yrel(x2
rel + y2

rel−1)− xrel(zrel−ϕ)(x2
rel + y2

rel)
−1

zrel−ϕ



+H


−2yrel

2xrel

2λ

 . (4.17)

Due to the way we have defined ϕ and the effects of the nondimensionalization, the inclu-

sion of λ in the circulation term is necessary to have the appropriate sign. The conversion back to

the units of ρ and β is accomplished by

˙̄rd =


ρ 0 0

0 ρ 0

0 0 β

 ˙̄rd
rel. (4.18)

One of the limitations of this method is that in some instances β will equal zero, or be very

near zero, and cause the vector field equation to go undefined. To prevent this from happening we

define a second set of substitutions which must be used when β is small (we selected a cutoff point

of β = 0.1).
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The small β substitutions for the helical path case surface functions are

xrel ,
x
ρ
, yrel ,

y
ρ
, zrel , z. (4.19)

These substitutions produce the following surface functions:

α1(xrel,yrel,zrel) = x2
rel + y2

rel−1 (4.20)

α2(xrel,yrel,zrel) = β arctan2(yrel,xrel)− zrel. (4.21)

When the small β surface functions are substituted into (2.9) they yield the vector field equations

˙̄rd
rel =−G


2xrel(x2

rel + y2
rel−1)+βyrel(zrel−βϕ)(x2

rel + y2
rel)
−1

2yrel(x2
rel + y2

rel−1)−βxrel(zrel−βϕ)(x2
rel + y2

rel)
−1

zrel−βϕ



+H


−2yrel

2xrel

2β

 . (4.22)

For the small β case, the conversion back to the units of ρ is then accomplished by

˙̄rd =


ρ 0 0

0 ρ 0

0 0 1

 ˙̄rd
rel. (4.23)

4.4 Implementation

To implement these Dubins airplane path following methods on a simulated or a physical

system, a supplementary function is needed. The purpose of this function is to manage a lower-

level path following function containing these two vector field path following methods. This path

management function needs to accomplish two primary tasks: determine which leg of the time-
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Table 4.1: Simulation gains for the line following and helix following
vector field path following methods.

Line Following
kXY = 0.1
kZ = 2.0
Helix Following
kXY = 1.5
kZ = 2.5

optimal Dubins airplane path the vehicle is on at an given time and send the appropriate parameters

that describe the paths of interest to the path following function.

An effective path management scheme for navigation along two dimensional Dubins car

paths has been presented by Beard and McLain [2]. We base our work on this path management

method and extend it for use with three dimensional Dubins airplane paths. Another lower-level

function is needed that can calculate the lengths of each of the four Dubins airplane path cases and

produce parameters that mathematically communicate the path that should be followed between

two points to the path following function. This path management scheme is laid out and described

in detail in Appendix A in addition to a function for calculating Dubins airplane path parameters.

We use this scheme for our Dubins airplane path following results, for the results of the interception

path planning scheme and for our hardware implementation of these methods.

4.5 Simulation Results

The same simulation environment was used for the Dubins airplane path tracking results as

was used for the elliptical orbit tracking methods (see Section 3.4). The MAV was commanded to

follow two Dubins airplane paths between two consecutive waypoints. As was done with elliptical

orbit simulation, a constant wind was commanded with the addition of the Dryden wind gust

model. The simulation employed the vector field path following equations (4.17), (4.22), and

(4.13) as well as the path management scheme presented in Appendix A.

We found it intuitive to formulate the gains such that a larger value always increased the

strength of the vector field convergence. We also defined the gains such that one gain controlled
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the strength of convergence in the XY plane of the vector field frame and the other in the direction

of the Z axis in the same frame. For the simulation, these gains we defined as

H ,
λ

kXY
(4.24)

and

G ,


1 0 0

0 1 0

0 0 kZ

 (4.25)

in (4.17) and (4.13). The gain values used in the simulation are shown in Table 4.1. In (4.24),

λ is a variable that defines the direction of circulation along the path of interest. For the circular

helix case, λ = 1 and λ = −1 coincide with a clockwise and counter-clockwise orbit direction

respectively. For the straight line path following, λ = 1 for all cases because of the way the vector

field was defined. A minimum turn radius of 40 meters was specified for the Dubins airplane path

construction. This minimum turn radius estimate was produced by commanding the vehicle to fly

with a constant roll angle of 30◦ in simulation.

The results of the simulation can be seen in Figure 4.3. Simulation tracking error was less

than 2.0 meters throughout the entire simulation and only surpassed 1.0 meter when transitioning

from straight paths to circular helix paths. The tracking error plot shows responses characteristic of

a second-order system. We see that the vector field method is effective at tracking the desired paths

within reasonable error tolerances. The plot displaying vehicle and wind heading data provides

insight as to what caused the approximately 2.0 meter deviation near 40 seconds in simulation time.

At that point in time the vehicle heading is nearly aligned with the wind vector which indicates that

the vehicle is flying with a tail wind. The magnitude of the wind was approximately 30% of the

commanded MAV airspeed (14 m/s). Generally speaking, tail winds increase the vehicle’s ground

speed and make it more difficult for the MAV to maneuver to follow a ground-referenced path.
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Figure 4.3: Path tracking error, corresponding wind magnitudes, and heading data of the wind and
MAV from the Dubins airplane path following simulation.

Still, in the presence of this significant wind we see that this path following method is effective at

rejecting the disturbance and converging to the desired path.

The results presented here are consistent with those we obtained by performing a variety

of Dubins airplane path following simulations. We observed that in this test there is a steady-state

error associated with the vector field path following method which is less than 0.5 meters. From

these results, we conclude that the vector field path following method presented in this chapter

provides a feasible method for vehicle navigation along Dubins airplane paths.
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Figure 4.4: Desired and actual path followed in the Dubins airplane path following simulation.
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CHAPTER 5. ORBIT INSERTION AND DROGUE INTERCEPTION ALONG TIME-
OPTIMAL, DUBINS AIRPLANE PATHS

5.1 Introduction

In this chapter we present a method for planning time-optimal, Dubins airplane interception

paths from the current MAV position to a future drogue position. This method depends on the

ability to plan and follow Dubins airplane paths, as presented in the previous chapter, as well as

the drogue orbit estimation scheme that was previously developed [4]. This orbit estimate allows

us to predict the future position of the drogue and is essential for the development of an estimated

time of arrival (ETA) of the drogue to any future position. An estimated time to arrival function is

also needed to predict how much time it will take the MAV to travel along a Dubins airplane path

to a proposed interception point. Methods needed to produce the time to arrival estimates for the

MAV and drogue are developed in this chapter. These include the development of an elliptical arc

length approximation function and an explicit solution of ground speed from the wind triangle (see

(2.10)). A robust root finding method is presented which can be used to plan time-optimal, Dubins

airplane interception paths between the MAV and the drogue. We also present an interception,

disturbance rejection airspeed controller and a post-orbit insertion airspeed controller which can be

used to achieve a desired separation distance between the MAV and drogue. Finally, we conclude

by simulating these methods and analyzing the results.

The intent of the methods presented in this chapter is to have the MAV intercept the drogue

on its elliptical orbit in a near time-optimal fashion. This is accomplished by planning a time-

optimal Dubins airplane path to a future drogue location that, based on the estimated time to

arrival (ETA) of the two vehicles to that point, will result in a coordinated arrival to the proposed

interception point. These interception paths effectively insert the MAV onto the drogue orbit and

make it simple to transition to following the drogue along the elliptical orbit. An example of such

an interception path is shown in Figure 5.1. If desired, the interception path can be planned such
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Figure 5.1: Top view plot of an example time-optimal Dubins airplane interception path. Develop-
ing the ability to plan such an interception path is the primary objective of this chapter.

that the vehicles will arrive with a specified separation distance. The purpose of these interception

paths is not to perform the physical rendezvous of the two vehicles, rather it is to facilitate a visual

rendezvous.

The elliptical orbit tracking method we developed and demonstrated in Chapter 3 provides

us with the ability to follow the drogue along its orbit and gradually close the distance between

the two vehicles until a visual rendezvous can occur. One of the limitations of this method is that

the vector field path following method does not provide us with the capability of manipulating the

MAV insertion point onto the drogue orbit. Rather, the insertion point is determined by the initial

position and orientation of the MAV and the relative strength of the vector field contraction and

circulation terms. Generally speaking, when the MAV is far from the ellipse it will head toward the

closest point on the ellipse while gradually making forward progression. Once the MAV is near the

ellipse, the desired velocity vector will be nearly tangent to the ellipse since it will be dominated by

the circulation term. Consequently, even if we were to change the vector field gains while the MAV

was approaching the ellipse, it would offer very limited control of the vehicle insertion point onto
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the ellipse by increasing or decreasing the amount of forward progression that the MAV makes

while converging toward the ellipse.

Our goal is to be able to insert the MAV onto the drogue orbit directly behind the drogue to

decrease the time required for the aerial recovery operation. When using the elliptical orbit tracking

method there is no guarantee that that the MAV will insert itself behind the drogue. Rather, the

entry point of the MAV onto the drogue ellipse will be somewhat random. In some instances the

MAV would insert itself on the side of the ellipse opposite from the drogue. In this situation it

could take a significant amount of time to close the distance between them sufficiently, especially

if their airspeeds were close in magnitude and the ellipse were relatively large. In fact, for an

ellipse with major and minor radii of 150 m and 125 m, with a drogue ground speed of 12 m/s, and

MAV ground speed of 18 m/s it would take over 72 seconds for the MAV to intercept the drogue.

This would be in addition to the time that the MAV needed to converge to the drogue ellipse. A

method that would decrease the time needed for an aerial recovery operation, compared to the less

ideal scenario, would be much more desirable.

We propose a MAV orbit insertion scheme for intercepting the drogue on its orbit that

decreases the overall time needed to initiate the visual rendezvous algorithms. To do this we

make use of the time-optimal Dubins airplane path following scheme presented in Chapter 4. We

present a drogue interception path planning algorithm that can be used to plan one of these time-

optimal Dubins airplane paths. The product of this algorithm is a time-optimal Dubins airplane

path that, based on the current airspeeds and positions of the two vehicles and the current wind

vector estimate, is estimated to coordinate the arrival of the MAV and the drogue by a specified

difference in arrival time upon completion of said path. This algorithm includes a number of

components that were developed for the interception path planner and are presented here as well.

To plan such an interception path we need estimates of the drogue and MAV time-to-arrival

to any point on the drogue orbit. These time to arrival functions for the MAV and drogue take the

wind vector estimate into consideration and offer improved accuracy over previously developed

estimates (presented in our previous work [15]) which neglected to account for the effects of wind.

To produce these time-to-arrival estimates in the presence of wind, we present an explicit solution

for calculating the ground speed of the two vehicles based on knowledge of their individual air-

speeds, course angle, flight path angle and the current wind vector estimate. This equation was
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developed from the standard wind triangle relationship presented in [2]. We also present an ellip-

tical arc length, polynomial approximation that is used to accurately approximate the arc length of

the drogue orbit for a given region on the ellipse. This elliptical arc length approximation prevents

the need to use the elliptical integral equations and is sufficiently accurate for our purposes.

An interception path planner is presented that makes use of the time to arrival estimation

techniques and can be used to plan an interception path for the MAV that inserts it onto the drogue

orbit, behind the drogue, and within a specified time-to-arrival difference tolerance. This intercep-

tion path planner poses the problem as four, one dimensional, nearly unconstrained optimization

problems. The false position root finding method is used to solve for interception paths. Lastly, a

function is presented that can be used to reject external disturbances and compensate for the minor

errors induced in the estimation functions by coordinating the MAV and drogue arrival by varying

the MAV airspeed.

5.2 Elliptical Arc Length Approximation

We begin by presenting an elliptical arc length approximation method that is numerically

inexpensive to compute and sufficiently accurate for our purposes. This approximation is prelimi-

nary to producing a time-to-arrival estimate of the drogue from an initial location on the ellipse to

any arbitrary point along the estimated ellipse orbit. The drogue time to arrival estimation method,

which is presented in the following section, requires a scheme for calculating the arc length be-

tween two points on an ellipse. For paths with arc length functions that have analytical solutions

this is not an issue, such as computing the angular position of a vehicle on a circular orbit given

an arc length. One feature of the interception path planning scheme presented in this section is

that it can be used to plan interception paths to any predefined vehicle path for which an accurate

time-to-arrival estimate can be calculated to any future point on that path.

To produce such a time-to-arrival estimate requires a method for calculating arc lengths

between any points on the path of interest. This may not be a problem in some cases which have

nice, analytically produced arc length equations, but this is not possible for all types of paths.

When planning an interception path, the path arc length function is used potentially hundreds or

thousands of times depending on the optimization algorithm parameters. So it would be undesir-

able to use relatively expensive numerical methods for solving the arc length integral equations.
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Various numerical integration methods are available for solving the arc length integral equations

that have no analytical solutions, but they are significantly more computationally expensive than

the method we present here.

To mitigate the computational expense of calculating elliptical arc lengths we present a

computationally inexpensive method that can be used for any flight path that can be represented

by a parametric function and whose arc length can be approximated sufficiently well with a least

squares polynomial approximation. In this thesis the method shown for reducing the real-time

computational expense of future vehicle location prediction was implemented for interception of a

vehicle along an elliptical orbit.

The arc length equation for a parametrically defined ellipse is

s =
∫

σ f

σ0

√
(−asinσ)2 +(bcosσ)2dσ , 0≤ σ < 2π, (5.1)

where a and b are the major and minor radii of the ellipse, respectively. There is no convenient

analytical solution to this equation. To find an interception path on such an orbit we use a numerical

approximation of the arc length function. This is needed for predicting the future location of the

target vehicle after receiving an estimated distance to interception. To decrease the computational

expense required to find an optimum interception path on an elliptical orbit, the elliptical arc length

function was approximated using an 8th order polynomial least squares approximation of the arc

length derivative function

ds
dσ

=
√

(−asinσ)2 +(bcosσ)2, 0≤ σ < 2π. (5.2)

One of the major advantages to this method is that the majority of the computations re-

quired to solve for the polynomial coefficients can be precomputed. Due to the ill-conditioned

nature of the general basis set for a polynomial least squares curve approximation, QR decompo-

sition in conjunction with back substitution was used to solve the least squares problem without

inverting the grammian matrix. The QR decomposition can be precomputed and used to solve for

the polynomial coefficients by matrix multiplication and back substitution.
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We defined the basis matrix as

A =


1 σ . . . σn

1 σ . . . σn

...
... . . . ...

1 σ . . . σn

 ,

where A is an m x (n+1) matrix, n is the polynomial order, and m is the number of sample points

used. The least squares solution is found by solving the equation

AT AC = AT y, (5.3)

where

y =
√

(−asinσ [k])2 +(bcosσ [k])2, σ [1] = 0,σ [2] = δ ,σ [3] = 2δ · · · ,σ [m] = π, (5.4)

and C is a vector containing the n+ 1 coefficients of the polynomial approximation. To avoid

inverting the poorly conditioned grammian matrix we used QR factorization. Such a factorization

of AT A yields QR= AT A, where Q is an orthogonal matrix and R is an upper triangular matrix [16].

The equation can then be rewritten as

RC = QT AT y. (5.5)

If the polynomial approximation order, n, and the number of samples, m, are predetermined

for a problem of interest then the QR factorization can be precomputed as can QT AT . Once the

ellipse parameters a and b are known, the entire right-hand side of (5.5) can be computed. The

computation then required to solve for the polynomial approximation coefficients, C, is an n+ 1

dimension back-substitution. We describe this approximation as

62



d̂s
dσ

= c1 + c2σ + c3σ
2 + · · ·+ cnσ

n−1 + cn+1σ
n. (5.6)

By integrating this polynomial approximation of (5.2) we have a polynomial approximation of the

elliptical arc length function which is found to be

ŝ = c1σ +
c2

2
σ

2 +
c3

3
σ

3 + · · ·+ cn

n
σ

n +
cn+1

n+1
σ

n+1. (5.7)
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Figure 5.2: Polynomial approximation of the elliptical arc length function derivative (a = 100,
b = 50) displaying discrete points of approximation along the true curve.

A plot of d̂s
dσ

and ds
dσ

is found in Figure 5.2. All polynomial approximations were found

using n = 8 and m = 200. Approximation error was measured by calculating the error at each

sample point and then integrating this error using the trapezoidal method. Elliptical arc length

derivative functions of ellipses with various eccentricities were approximated to demonstrate the

accuracy of this method (see Table 5.1).

In this thesis, the purpose of the arc length function is to provide elliptical arc length es-

timates which are used to estimate the time-of-arrival of the target vehicle to a interception point

candidate. Once the polynomial coefficients have been found, the only computations necessary to

calculate the arc length between two points are calculating the difference between two evaluations

of (5.7).
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Table 5.1: Elliptical arc length derivative function approximation error.

a b a
b |s− ŝ| ŝ(π) |s−ŝ|

ŝ(π)
100 25 4 5.65e-2 214.5 2.63e-4
100 50 2 3.48e-2 242.2 1.43e-4
100 75 1.33 9.82e-4 276.3 3.48e-6
100 100 1 3.75e-9 314.2 1.19e-11

In some situations it may be necessary to estimate where the vehicle will be along the path

after traveling a specified distance. This requires the use of a root finding method on the path arc

length function. Due to the fact that the polynomial approximation of the arc length has a known

derivative, and that for an ellipse there is only one root between 0 and π , it is well suited for use

with the Newton-Raphson root finding method. In all tested cases the Newton-Raphson method

was able to efficiently find the desired root. Simulation results showed that when π/2 was used

as the initial guess of root location, root convergence to within 1.00e-3 accuracy occurred in four

iterations or less.

5.3 Explicit Ground Speed Solution

One of the challenges associated with controlling air vehicles is the sensor measurements

that are available for state estimation. Standard sensor readings include a pitot tube based airspeed

measurement and GPS referenced course and flight path angle estimates.

The aerodynamic and propulsion forces that an air vehicle experiences are functions of the

relative motion of the vehicle to the body of air that it is traveling through. One of the effects of

this direct relationship is that the general practice in the aviation community is to command an air

referenced vehicle speed, appropriately referred to as airspeed.

Throughout this paper we have discussed the use of vector field path following methods

which seek to follow ground reference ellipses, inclined lines, and circular helices. We have also

defined the vehicle course angle, χ , and flight path angle, γ , in (2.10). For any point along a ground

reference path, a course angle and flight path angle corresponding to the direction of travel along

that path can be computed. Airspeed is easily controlled using feedback from the airspeed sensor.
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We have also presented a method for controlling flight path angle and assume that a course angle

controller is readily available.

When the MAV is navigating along a ground reference path the vector field path following

method provides course and flight path angle commands that result in convergence toward and

progression along the desired path. While navigating along these paths it is desirable to command

a constant airspeed. To estimate the time-to-arrival of a fixed-wing aircraft we need to determine

how fast the vehicle is traveling along the path. As has already been mentioned, vehicle airspeed

and ground speed are only equivalent in the absence of wind. If wind estimates are available,

the wind triangle presents a relationship between airspeed and ground speed, although it does not

provide us with an explicit relationship between the two. One method for estimating the wind

vector is presented in [2]; we assume that such an estimate is available.

The wind triangle relationship is an implicit expression that relates the vehicle ground

speed, airspeed, heading angle, ψ , air referenced flight path angle, γa, course angle, χ , flight path

angle, γ , and the wind vector. It is desirable to have an explicit solution for estimating ground

speed as a function of these variables. The inputs which are available to be used in such a function

are the desired course angle and flight path angle, an estimate of the wind vector, and the air-

speed measurement. With estimates of these variables, the vehicle ground speed can be calculated.

Manipulation of the wind triangle equation provides us with such a relationship.

We begin by presenting the standard wind triangle equation:

Vg cos χ cosγ =Va cosψ cosγa +wn (5.8)

Vg sin χ cosγ =Va sinψ cosγa +we (5.9)

−Vg sinγ =−Va sinγa +wd. (5.10)

Solving for γa in (5.10) yields

γa = sin−1
(

Vg sinγ +wd

Va

)
. (5.11)

65



Substituting (5.11) into (5.9) and solving for ψ produces

ψ = tan−1
(

Vg sin χ cosγ−we

Vg cos χ cosγ−wn

)
. (5.12)

Solving (5.8) for γa and setting it equal to (5.11) forms

sin−1
(
−
−Vg sinγ−wd

Va

)
= cos−1

(
Vg cos χ cosγ

Va cosψ

)
, (5.13)

which is equivalent to

(
1−
(
−Vg sinγ−wd

Va

)2
) 1

2

=
Vg cos χ cosγ−wn

Va cosψ
. (5.14)

We now substitute (5.12) into (5.13). With some manipulation we can produce the follow-

ing:

0 =V 2
g −2Vg(cos χ cosγwn + sin χ cosγwe− sinγwd)

+(w2
n +w2

e +w2
d−V 2

a ). (5.15)

Solving for the realistic root, which is associated with the larger, generally positive value, provides

the following equation for ground speed:

Vg =wn cos χ cosγ +we sin χ cosγ−wd sinγ

+
√
(wn cos χ cosγ +we sin χ cosγ−wd sinγ)2− (w2

n +w2
e +w2

d−V 2
a ). (5.16)
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The other root can be described by the situation where the vehicle is traveling in the op-

posite direction of which it is oriented. With the result of (5.16), we can now evaluate (5.12) and

(5.11).

5.4 Time to Arrival Estimation

The interception path planning scheme that we have developed searches for points on the

ellipse at which the estimated arrival time of the two vehicles is within a specified tolerance. Thus,

this scheme requires the use of time-to-arrival functions for the MAV along the Dubins airplane

paths as well as a similar function for estimating the drogue progression along its estimated el-

liptical orbit. For both of these methods we assume a constant airspeed and wind field as well as

ideal navigation along the desired paths (i.e., a Dubins airplane path or an ellipse path). The esti-

mated time-to-arrival functions we present are numerical approximations. These approximations

make use of the explicit ground speed solution presented in (5.16), which rely on the current wind

estimate. We assume that these wind estimates are valid in the vicinity of the mission theater.

The ETA algorithms we present are functions of the specified airspeed, wind vector, and

Dubins path parameters. Thus, these methods require use of the function that parameterizes the

Dubins airplane paths which can be found found in Appendix A. The approach taken for producing

this estimate is to solve for the vehicle ground speed at various points along the path. The arc length

between each of these ground speed estimates is also computed. Dividing the arc length from a

current point on the path to the subsequent point by the current ground speed estimate provides a

reasonable approximation of the time it will take to travel between these two points along the path

of interest. This process is repeated for a specified number of steps and the individual travel time

estimates are summed to provide an ETA between the start and end points of the complete path.

For the sake of clarity and simplicity we present these two time-to-arrival estimation meth-

ods in algorithm format.

5.4.1 MAV ETA

The MAV estimation algorithm fulfills two roles. It is used in the computation of the time-

optimal, Dubins airplane interception paths. This provides us an ETA for a proposed interception
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path. In this chapter we also present an airspeed controller that is used while the MAV is in the pro-

cess of following the interception path. It uses the MAV ETA function to vary the vehicle airspeed

while traveling along the path to maintain the appropriate arrival time at the interception point.

One of the inputs to this function is a flag that is sent from the path manager, which is presented

in Appendix A. This flag indicates which leg of the Dubins airplane path the vehicle is currently

following. The MAV ETA function also requires knowledge of the Dubins path parameters. A

function which produces these path parameters is also presented in Appendix A. Algorithm 1 is

used to calculate the ETA for the circular helix legs. This is accomplished by partitioning the cir-

cular helix into a specified number of segments. The MAV ground speed is calculated at the start

of each of these segments with (5.16). Based on the ground speed calculation the travel time along

each segment is calculated and these are summed to produce the total ETA for the circular helix.

The Calculate MAV Circular Leg ETA is used in Algorithm 2 which provides the total ETA

for the uncompleted legs of the total path. One of the inputs to this function specifies on which leg

of the Dubins airplane path the MAV is traveling. The Algorithm uses the current MAV location

and solves for the nearest point on the Dubins airplane path that the MAV is currently following.

The travel time along the circular helix portions of the path are calculated using Algorithm 1. The

ground speed along the straight portion of the path is calculated and used to provide the travel time

along that leg. These travel time estimates are summed to provide the total ETA for the path.

5.4.2 Drogue ETA

The Calculate Drogue ETA algorithm is similar to the Calculate MAV Circular Leg ETA

algorithm. It runs a specified number of iterations along the segment between the current drogue

position and the proposed interception point on the ellipse. For each iteration it estimates the

ground speed based upon estimates of the drogue course angle, flight path angle, and airspeed and

the wind vector estimate. Using the elliptical arc length approximation function from (5.7), an arc

length approximation is made for each iteration. This arc length approximation is the length of the

individual segment being analyzed. Dividing the arc length segment approximation by the segment

ground speed provides an ETA for the specific segment. The segment estimated times-to-arrival

are summed to provide the total ETA from the current drogue position to the interception point.

Algorithm 3 presents the Calculate Drogue ETA function in detail.
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Algorithm 1 Calculate MAV Circular Leg ETA:
tLEG = estimateMavEta(θs,θe,ρ,λ ,γ,Va,wn,we,wd,n)
Input: Start and end angular position θs, θe, Orbit radius ρ , Orbit direction λ , Orbit flight path

angle γ , Airspeed Va, Wind (wn,we,wd), Number of iterations n
1: θs←mod(θs +2πλ ,2πλ )
2: θe←mod(θe +2πλ ,2πλ )
3: if λθe > θ0 then
4: θtotal ← λ (θe− thetas)
5: else
6: θtotal ← 2π +λ (θe−θs)
7: end if
8: θ∆← θtotal

n
9: θi← θ0

10: for i = 1→ n do
11: θi+1←mod(θi + iλθ∆ +2πλ ,2πλ )
12: χ ← θi +λ

π

2
13: Vg: Compute ground speed using (5.16)
14: tLEG← tLEG + θ∆ρ

Vg cosγ

15: θi← θi+1
16: end for
17: return tLEG

5.5 Interception Path Planner

Further investigation of a previously proposed drogue interception path planner, presented

in our earlier work [15], showed that improvements could be made. We have developed an in-

terception path planner that is more efficient and robust to the discontinuities characteristic of the

system. The previous scheme that we proposed was similarly posed, but it was particularly sus-

ceptible to failure when it encountered discontinuities characteristic of the system.

When planning an interception path, we assume knowledge of the current drogue and MAV

positions and directions of travel, the drogue ellipse estimate, and the current wind vector estimate.

Simply stated, we want to find a point on the estimated drogue orbit to which the MAV can follow

a Dubins airplane, time-optimal path such that it arrives at the same moment as the drogue. It is

also a simple extension to plan an interception path in which the MAV is planned to arrive to the

intercept point at a specified distance behind the drogue.

The algorithm previously employed had significant limitations and was computationally

more expensive. To initialize the algorithm, we assumed that the interception point would be the

69



Algorithm 2 Calculate MAV ETA:
tMAV = estimateMavEta(,Va,state,wn,we,wd,p1,p2,c1,c2,ρ,w1,w2,γ,n)
Input: MAV position p = (pn, pe, pd)

T ), MAV airspeed Va, Current path leg (state), Wind
wn,we,wd , Start and end points p1 = (p1n, p1e, p1d)

T , p2 = (p2n, p2e, p2d)
T , Start orbit cen-

ter and direction (c1 = (c1n,c1e,c1d)
T ,λ1, End orbit center and direction, c2(c2n,c2e,c2d), λ2,

Orbit radius ρ , Line start and end points w1 = (w1n,w1e,w1d), w2 = (w2n,w2e),w2d , Path flight
path angle γ , Circular leg number of iterations n

1: tMAV ← 0
2: θ1s← arctan2(p1e− c1e, p1n− c1n)
3: θ1e← arctan2(w1e− c1e,w1n− c1n)
4: θ2s← arctan2(w2e− c2e,w2n− c2n)
5: θ2e← arctan2(p2e− c2e, p2n− c2n)
6: lineEnd← w2
7: if state = 1 OR state = 2 then
8: θ1s← arctan2(pe− c1e, pn− c1n)
9: lineStart← w1

10: startIndex← 1
11: else if state = 3 then
12: X1← w1
13: X2← w2
14: X0← p
15: σ ←− (X1−X0)T (X2−X1)

||X2−X1||2
16: lineStart← X1+(X2−X1)σ
17: startIndex← 2
18: else
19: θ2s← arctan2(pe− c2e, pn− c2n)
20: lineStart← w2
21: startIndex← 3
22: end if
23: if startIndex = 1 then
24: tMAV ← tMAV + circularLegETA(θ1s,θ1e,ρ,λ1,γ,Va,wn,we,wd)
25: end if
26: if startIndex≤ 2 then
27: χ ← arctan2(w2e−w1e,w2n−w1n)
28: Vg: Compute ground speed using (5.16)
29: tMAV ← tMAV + ||lineEnd−lineStart||

Vg

30: end if
31: if startIndex≤ 3 then
32: tMAV ← tMAV + circularLegETA(θ2s,θ2e,ρ,λ2,γ,Va,wn,we,wd)
33: end if
34: return tMAV
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Algorithm 3 Calculate Drogue ETA:
tdrogue = estimateMavEta(p,Va, p̄ f ,a,b,c,Re

i ,C,s 1
2
,λ ,wn,we,wd,n)

Input: Drogue position in inertial frame p = (pn, pe, pd)
T ), Drogue airspeed Va, Ellipse radii a,

b, Ellipse center in inertial frame c = (cn,ce,cd)
t , Inertial to ellipse frame rotation matrix Re

i ,
Arc length approximation coefficients C, Ellipse half perimeter s1/2, Drogue orbit direction λ ,
Wind wn,we,wd , Number of iterations n

1: tdrogue← 0
2: (x,y,z)T ←Re

i (p− c)
3: θs←mod(arctan2(y,x)+2π,2π)
4: (x f ,y f ,z f )

T ←Re
i (p f − c)

5: θ f ←mod(arctan2(y f ,x f )+2π,2π)
6: if λθ f > θs then
7: θtot ← λ (θ f −θs)
8: else
9: θtot ← 2π +λ (θ f −θs)

10: end if
11: θ∆← θtot

n
12: θi← θs
13: for i = 1→ n do
14: θi+1←mod(θi + iλθ∆ +2πλ ,2πλ )
15: (ẋ, ẏ, ż)T ←Re

i (−λasinθi,λbcosθi,0)T

16: χ ← arctan2(ẏ, ẋ)
17: γ ← arcsin(ż/||(ẋ, ẏ, ż)T ||)
18: Vg: Compute ground speed using (5.16)
19: si: Compute ellipse step arc length using (5.7)
20: tdrogue← tdrogue +

si
Vg

21: θi← θi+1
22: end for
23: return tdrogue

drogue’s current location. A path was planned from the MAV to this point. Once this path was

planned the MAV’s estimated time to arrival (ETA) could be calculated. Using the MAV’s ETA,

we solved the elliptical arc length approximation function to estimate the future location of the

drogue when the MAV arrived to the drogue’s previous location.

There were a number of significant limitations to this method. First, assuming that the

drogue’s current location is close to an actual interception point was generally not accurate. Sec-

ond, predicting where the drogue would end up after the MAV completed its path to the approxi-

mated interception point involved solving for the roots of the elliptical arc length approximations

that we developed. Third, a fixed-step solver was adopted to increment the proposed location of
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interception around the ellipse until an adequate interception point was found. This fixed-step

method was the first attempt at solving this problem and is numerically inefficient compared to

the method we have now adopted. Also the fixed-step solver would often fail due to the possible

discontinuities between consecutive MAV paths to subsequent estimated points of interception.

These are some of the problems with the initial solution we proposed to this problem, all of which

have been mitigated by developing a similar but superior scheme.

The new interception path planning scheme makes use of the assumption that the intercep-

tion point must lie along the current drogue elliptical orbit estimate. Because the domain contain-

ing the ellipse is limited enough to be rapidly searched in its entirety, we can effectively search the

entire range where the solutions may lie. That is to say that, for a parametrically defined ellipse,

the interception point must lie on the ellipse between σ = [0,2π). The key is to efficiently search

for all possible interception points on the ellipse. This can be accomplished by splitting the ellipse

into k regions of equal angular length θ , where θ = 2π

k .

We want to determine whether or not a potential interception point lies in each of these

regions. We begin by calculating the drogue ETA from its current configuration, θD0, to each of

the k boundary points of the search regions using Algorithm 3. One advantage of this search region

method compared to our previous approach is that it is numerically less expensive than estimating

where the drogue will be after a specified amount of time. Now that we know the drogue ETA to

the boundary points of the k ellipse segments, we need to determine the difference in arrival time

between the MAV and drogue to each of those points.

To intercept the drogue with the MAV in a near, time-optimal fashion, we use the time-

optimal Dubins airplane paths to navigate the MAV from an initial position to the interception

point. Using Algorithm 2 provides the ability to estimate the MAV ETA from any initial position

to any point on the ellipse for each of the four path cases.

The path planning algorithm is run essentially four times. Once for each of the path cases.

Each time the algorithm is run the best interception path that was found for the specific case is

returned. These are compared for the four path cases and the case with the shortest estimated time

to interception (ETI) is selected.

For each run of the path planning algorithm the MAV ETA to each of the ellipse segment

boundary points is calculated for the specific path case. Since the drogue ETA to the same points
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has already been calculated, we can now estimate the difference in arrival time at each of these

points.

Together the MAV and drogue ETA function provide us with the estimated difference in

time-to-arrival (EDTA) to any point on the ellipse. This is a powerful tool because interception

points are the roots of the EDTA function. We have constructed the drogue interception problem

such that it can be posed as a one dimensional root finding problem that is run four separate times.

5.5.1 False Position Root Finding

When selecting a root finding algorithm, it is important to understand some of the properties

of the function whose zeros we wish to find. Two plots of the EDTA function data for the four path

cases can be found in Figure 5.3. These data provide valuable insight into the EDTA function

characteristics and are representative of the function behavior we saw in all our simulations. It is

apparent in reviewing this figure that the each of the cases always contain at least one discontinuity.

This is to be expected because, at some point on the ellipse, the angular length of the final helix

of the MAV path will transition from being 2π radians to a angular length of 0 radians. The other

discontinuities are due to the combined effects of the MAV and drogue ETA functions.

It is important to note that not all cases have an interception path, such as with the Right-

Straight-Right Case of Figure 5.3 (a). We also notice that when the initial separation distance is

small there can be regions where there is is no feasible path for a given case. This is an attribute

of the Right-Straight-Left and Left-Straight-Right cases when the separation distance between the

path start and end point is less than three minimum turn radii apart. Other than the above mentioned

characteristics, the EDTA function appears to be well behaved. Also, over larger regions of the

function it progresses monotonically and nearly linearly. In all practical cases tested at least one

root was present in one of the four cases.

From this we conclude that if the ellipse segment size is sufficiently small there is a low

probability that it will contain a root and a discontinuity. It is important to avoid this situation

because many root finding methods cannot guarantee convergence if there is a discontinuity near

the root of interest.

We have selected the false position method for searching for interception paths on the

drogue ellipse. The false position method is a simple, root finding scheme that guarantees conver-
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Figure 5.3: Two sets of empirical EDTA data. One where the initial separation distance between
the MAV and the ellipse was relatively large when the path planner was run and the other when it
was relatively small.

gence if certain conditions are met. Two boundary points with opposite signs must be provided to

use the false position method. Convergence to a function root is conditional on the function being

continuous between the two boundary points. The false position method use a linear approxima-

tion from the boundary points and corresponding function values to estimate the location of the

root. The function value at that root estimate must then be evaluated. At this point, the current

boundary point with the same sign as the root estimate is replaced by the root estimate. In this

way, just like the bisection method, the algorithm keeps the root contained between the boundary

points. These boundary points continue to enclose the root using the linear approximation until the

user specifies that the algorithm should stop.

This function is well suited for root finding of the EDTA function because the function

behavior is somewhat linear and it is unlikely that a region containing a root will also contain a
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discontinuity. The probability of a region containing a root and a discontinuity is largely governed

by the ellipse angular segment size that is selected.

With the EDTA function evaluated at all boundary points of the k ellipse segments, deter-

mining which segments contain a root, or possibly a discontinuity, is simple. It is accomplished

by checking for a difference in sign of the EDTA function value between the two neighboring

boundary points. The segments which have boundary points with opposite signs, which we spec-

ify as root candidate segments, will generally contain only a root or a discontinuity, as long as the

segment size is sufficiently small.

In all of our tests, when the false position method is used on a root candidate segment that

actually contains a root, the algorithm converged rapidly. For an ellipse with major and minor radii

a = 150 and b = 100 with k = 100, the false position method converged within 0.01 s of the EDTA

root in a single iteration. That means that the interception path is estimated to have a difference in

arrival time of 0.01 s, which is more than adequately accurate for our purposes.

For the root candidate segments that actually contain a discontinuity, this discontinuity can

be effectively recognized by selecting an appropriate value for the maximum allowable difference

in EDTA values between the two boundary points. Thus, if the difference in EDTA values of

the boundary points is larger than typical for a segment that actually contains a root, it can be

assumed that this segment contains a discontinuity. Identifying the root candidate segments with

discontinuities prevents wasting computation resources in searching for a root in a region that

contains none.

The limitations of the proposed interception point, root finding method are relatively mini-

mal. If there is a discontinuity and a root contained in an ellipse segment, there is no guarantee that

this root will be found. This can be avoided by not using overly large segment sizes. It is also true

that if more than one root is contained in a region it will only find and return a single root. In these

situations, it is possible that a superior interception path exists that was not found, but the probabil-

ity of this occurring is low enough for our comfort. Again, increasing k decreases the probability

of either of these events occurring. The primary limitation is that it performs a one dimensional

search. More complicated methods could be used for a multi-dimensional search that varies the

airspeed and Dubins airplane path turn radius that takes vehicle constraints into consideration.
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5.6 Interception Disturbance Rejection Airspeed Controller

When tracking the MAV interception paths, there are a variety of disturbances that can

cause undesired changes in the difference in arrival time of the MAV and drogue. We propose

a scheme that can be used to modify the airspeed command of the MAV to maintain the EDTA

of the two vehicles. The way that Algorithm 2, the Calculate MAV ETA function, was written

makes it possible to use this function while the MAV is following an interception path. The Cal-

culate Drogue ETA function can also be used while the MAV is following an interception path to

update the drogue ETA to the interception point. Thus, while both vehicles are approaching the

interception point, the EDTA function is still valid.

The disturbance rejection strategy only differs from the interception path planning method

in the selection of the parameter to be varied. This method maintains the desired interception point

and updates the MAV airspeed command to maintain the desired EDTA. The false position root

finding method was employed to find the appropriate airspeed command. To use the false position

root finding method we must provide an upper and lower bound on airspeed for it to begin. This

can be done by selecting the upper and lower bound of airspeed over which the vehicle of interest

flies well. In our situation, the MAV we use for hardware testing is typically flown at 14 m/s, but

it performs relatively well from 10-18 m/s. Thus, we select the boundary conditions of the false

position method as 10 m/s and 18 m/s.

One of the nice attributes of using the airspeed as the design variable is that the correspond-

ing EDTA function is monotonic and continuous through the entire range of feasible airspeeds for

a fixed-wing aircraft. Thus, using this method is guaranteed to find the EDTA root as long as it is

within the specified boundaries. If it is not contained within these boundaries, then interception of

the drogue at the proposed interception point is no longer feasible along the current interception

path. One desirable attribute of this method is that it provides an indication of whether interception

along the current path is feasible. This can be used as an indicator that the interception path planner

should be run again.
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5.7 Post-Insertion Airspeed Controller

Once the MAV has completed following the Dubins airplane interception path, the MAV

has been effectively inserted the estimated drogue orbit. In the ideal situation, the interception path

has placed the MAV the desired distance behind the drogue such that that the drogue is in the field

of view (FOV) of the front facing camera on the MAV. For the MAV and camera lens the desired

following distance was 15 to 30 meters behind the drogue. The visual tracking method that was

being used has to be initiated by the user selecting the desired target, in our case the drogue, in the

video feed from the MAV that has been transmitted to the ground. Designating the desired target

takes a 5 to 15 seconds and is made less difficult if the drogue is maintaining a relatively stable

position in the camera FOV.

We used a simple controller to maintain the desired following distance between the two

vehicles. This controller calculates the error of the actual distance between the two vehicles com-

pared to the desired separation distance between them. Based upon The angular position of the

two vehicles on the estimated drogue orbit and the orbit direction we can determine if the MAV is

in front of or behind the the drogue. This indicates whether the MAV must speed up or slow down.

A proportional gain is used to select the aggressiveness of a correctional airspeed term which is

added to, a feed-forward airspeed term, the current drogue airspeed measurement. This controller

can be written as

V d
aMAV =VaDrogue + kp(||pMAV −pDrogue||−dsep), (5.17)

where kp is a proportional gain whose sign is determined by whether the MAV is in front of or

behind the drogue and dsep is the user specified, desired separation distance. Essentially we are

using a proportional controller around the following error to vary the desired airspeed of the MAV.

5.8 Simulation Results

The methods presented in this chapter were tested in the same type of simulation used for

the preceeding chapters but with the addition of a simulated drogue. The drogue dynamic model

used was a first-order integrator with a constant airspeed. To have the drogue follow the desired
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orbit, an elliptical orbit path following vector field was used as developed in Section 3.2. This vec-

tor field equation produced the desired velocity vector for the drogue. Based on the commanded

drogue airspeed, current wind vector, and desired velocity vector, the explicit ground speed equa-

tion, (5.16), was used to solve for the drogue ground speed. This ground speed was used as the

magnitude of the desired velocity vector which was then numerically integrated by the drogue

dynamics to produce the motion of the simulated drogue. The Dubins airplane path following

methods presented in the previous chapter were used to navigate the MAV along the desired inter-

ception path.

To demonstrate the effectiveness of the interception path following methods and the dis-

turbance rejection airspeed controllers, we present the results from two simulations. In the first,

the path planner was used to find an interception path and the MAV was commanded to fly with

the constant airspeed that was used in the EDTA calculations. Due to the fact that there is some

tracking error when following the Dubins airplane interception paths and due to the variation in

the simulated wind and other errors, we expect this method to have error in the separation distance

at the time of arrival.

The second simulation had the same initial conditions as the first and experienced the same

simulated wind. In this simulation, the interception, disturbance rejection airspeed controller, from

Section 5.6, was used to correct the commanded MAV airspeed to maintain the desired separation

distance between the MAV and drogue upon arrival at the proposed interception point. After the

MAV had completed navigation along the Dubins airplane interception path, it was commanded

to follow the ellipse using the Gonçalves based elliptical orbit path following vector field method

presented in Section 3.2. The post-insertion, airspeed controller was used to maintain the specified

following distance between the two vehicles.

Results from these two simulations can be seen in Figures 5.4 and 5.5. In both of these

simulations the desired separation between the MAV and drogue was specified to be zero meters.

Investigation of the two separation distance plots shows that both of the interception path plan-

ning and following schemes achieve the desired results. The results from the simulation with the

constant airspeed command show that the interception airspeed controllers are effective at compen-

sating for disturbances and maintaining the desired separation distance at the point of interception.

One important result is the measure of the MAV ground speed over the course of the interception

78



(a) Top View

(b) Side View

Figure 5.4: Plots of the three dimensional simulated MAV path, drogue path, and the desired MAV
path just prior to the drogue interception. Because these results are visually indistinguishable, we
present only a single set of these plots.

operation. It should be apparent when looking at the magnitude of the actual vehicle ground speed

that, if no compensation for wind was used when planning and following these interception paths,

the wind would introduce large errors in the ETAs of the two vehicles.

We see that even with variation in the simulated wind, the interception path planner was

effective at selecting interception paths that accounted for wind. This is made evident by the fact

that even with very significant deviations in vehicle ground speed, by commanding the MAV to fly
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(a) Constant Airspeed Command
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(b) Interception Airspeed Controller

Figure 5.5: Data results from simulated interception path planning and path following. These two
sets of data only differ in the use of the interception airspeed controller.

at a constant airspeed it was still able to close the distance between the two vehicles. The approx-

imately 3.5 meter miss distance in the first simulation is the result of two effects: the effect that

significant winds have on the vehicle while flying and an increase in airspeed resulting from the

transition between following the inclined Dubins airplane interception and a declined ellipse. We

have demonstrated that the interception path planner is effective even in the presence of significant

deviations in actual vehicle ground speed. While the MAV functioned relatively well when fol-
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lowing a constant airspeed command improved performance can be achieved by using the airspeed

distance rejection controller.

For both cases the MAV ETA to the proposed interception point was calculated to be 35.39

seconds. The miss distance of the constant airspeed command at the ETA to the proposed intercep-

tion point was 2.79 meters. For the case with the airspeed controllers it was 0.237 meters. This er-

ror is attributed to the transition to following the declined elliptical orbit after navigation along the

inclined interception orbit had been completed. Subsequent tracking using the post-orbit-insertion

airspeed controller reduced the separation distance between the two vehicles to 0.154 meters.

5.9 Conclusions

In this chapter, we have presented a number of tools that can be used to plan interception

paths with a second air vehicle that is following an elliptical orbit. These tools consist of an ellip-

tical arc length approximation method, an explicit equation for vehicle groundspeed, algorithms

for calculating the EDTA to a proposed interception point that account for wind, a disturbance

rejection airspeed controller, and a post-insertion airspeed controller. These methods for planning

interception paths and following were demonstrated in simulation and were shown effective at

completing a rendezvous with a desired separation distance within 0.237 meters in the presence

of realistic wind. The strategy for post-orbit insertion airspeed control while following the drogue

elliptical orbit was also shown to reduce the separation distance error between the two vehicles to

0.154 meters.

While there was variation in the results shown here compared to other simulations with

different initial conditions, the trends were the same. In all cases, we found the results of these

methods to perform satisfactorily in simulation. When the disturbance rejection airspeed controller

was employed, the separation distance was always less than 1 m in the presence of reasonable wind

and on elliptical orbits with an inclination angle no greater than 10 degrees.

One of the appealing characteristics of the interception path planning scheme presented

in this chapter is that it is not overly difficult to implement in simulation and on hardware. The

only complex mathematical function required for hardware implementation is a QR decomposition

which is needed to produce the elliptical arc length approximation function.
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CHAPTER 6. EXPERIMENTAL RESULTS

In this chapter we present and analyze experimental results obtained from implementation

of the methods developed in this paper. We also describe the hardware that was used to obtain

these results.

6.1 Hardware Platform

The main components of the hardware used for this project were two approximately one

meter wingspan UAVs. Both of these vehicles were outfitted with an onboard Procerus Tech-

nologies Kestrel Autopilot. The autopilots contain a small onboard inertial measurement unit

(IMU) which is used for the vehicle state estimation performed onboard. A GPS unit must be

connected to the autopilot to provide GPS data. Standard RC plane hobby servos and a motor

controller were used on the vehicles that were controlled by the autopilot. Various control loops

are implemented on the autopilot that allow it to autonomously takeoff, land, and navigate between

waypoints and circular orbits. The autopilot uses an antenna to communicate with a Procerus Tech-

nologies Commbox which is on the ground. This Commbox interfaces with a software package,

also produced by Procerus Technologies, that is referred to as Virtual Cockpit 3D. This software

was used to send high-level commands to the autopilot and VPU as well as receive realtime vehicle

telemetry and produce plots of the vehicle navigation data. For our tests, the high-level commands

allowed us to switch between tracking an estimated drogue orbit or a user specified ellipse and

planing and following interception paths. Disturbance rejection airspeed controllers could also be

turned on or off in the same fashion. A high-level block diagram of the system architecture can be

seen in Figure 6.1. Pictures of the UAV hardware used can be see in Figure 6.2.

One of the vehicles was outfitted with a vision processing unit (VPU) which Procerus

Technologies has developed for vision-based target prosecution. All of the algorithms discussed in

this paper were implemented onboard the VPU. It uses an ARM processor which is running ARM
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Figure 6.1: Block diagram depicting the system architecture of the hardware setup.

Linux. The VPU communicates with the Kestrel autopilot over a serial port. This allows the VPU

to receive autopilot telemetry packets and to send command packets to the autopilot at 30 Hz.

The VPU is capable of sending vehicle control surface and throttle commands to the autopilot,

high-level commands making use of the control loops on the Kestrel, or a combination of the two.

In our tests we used the autopilot pitch angle control loop, the airspeed control loop, and the roll

angle control loops. Thus, when implemented onboard the VPU, our drogue interception and orbit

tracking algorithms produced a desired roll angle, an airspeed, and a pitch angle commands which

were then sent to the autopilot.

To obtain the data necessary to estimate the orbit of the target vehicle, and to plan inter-

ception paths, a custom communication packet was developed by Procerus. This packet made it

possible for the Commbox to rebroadcast the telemetry of a target agent to the MAV autopilot.

The telemetry was then made available to the VPU for the orbit estimation and target interception

algorithms.

A digital camera was used in conjunction with the VPU. Visual tracking techniques have

been developed which make it possible to prosecute user selected air and ground targets. The video

feed is transmitted to the ground and displayed in Virtual Cockpit. The user can then select a target

in the video feed that MAV should attempt to prosecute. These visual tracking techniques require

preliminary methods that can be used to place and maintain the target in the field of view (FOV)

of the camera. The research that has been presented in this thesis is intended to fulfill this role and

efficiently place the drogue in the FOV of the VPU camera so a visual rendezvous between the two

vehicles can occur.

For the algorithms demonstrated in simulation to be implemented on board the VPU, it

was necessary to convert them from Matlab code to C++ code. A C++ matrix manipulation library
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(a) Procerus Technologies Kestrel Autopilot (b) Procerus Technologies VPU with Digital Camera

(c) Flight Test Target Vehicle (d) Flight Test MAV: Zagi Flying Wing

Figure 6.2: Pictures of hardware platforms used to obtain the experimental results presented in this
chapter.

called Eigen was adopted to make the conversion process less burdensome. The Eigen library has

a very convenient application programming interface (API) that resembles the syntax of Matlab

code. It also has functions for computing the singular value decomposition (SVD) and QR de-

composition. The SVD is needed when estimating the elliptical orbits of the drogue [4]. This

orbit estimation scheme was also converted from Matlab to C++ for implementation onboard the

VPU. QR decomposition was used in the computation of the elliptical arc length approximation

(see Section 5.2). All of this code was developed in an x86 Linux environment and cross compiled

for the VPU arm processor.
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Procerus has produced a method for hardware in the loop (HIL) testing of the VPU code.

This HIL simulation can be used to produce relatively high fidelity results of the code being tested.

To run an HIL test the Kestrel autopilot needs to be connected to the VPU and simultaneously com-

municating with Virtual Cockpit 3D. A MAV dynamics model is used to provide the autopilot with

simulated sensor inputs. The dynamics model is a separate application, which is called Aviones,

that communicates with the autopilot through Virtual Cockpit. While this HIL simulator was not

used to produce any of the results presented in this section, the simulator was used extensively to

debug the more than 3000 lines of code that were needed to implement our algorithms on the VPU;

the results presented in this chapter could not have been produced without it.

6.2 Flight Path Angle Estimation and Control

One of the challenges experienced in implementation of the vector field path following

controllers was being able to track flight path angle commands. To have closed loop control of the

flight path angle, a flight path angle estimate was required. This is not one of the state variables

estimated onboard the Kestrel autopilot, so it was necessary for us to produce such an estimate.

The method that was used to produce the flight path angle estimate relied on the GPS sensor

measurements. One of the measurements produced by the GPS sensor is of the inertial velocity

vector of the vehicle. Using this velocity vector, it is simple to compute the corresponding flight

path angle using (2.12). The primary limitations of this method are the relatively poor resolution of

the GPS in the vertical direction and the slow measurement update rate of approximately 2 Hz. This

results in some significant noise being present in the flight path angle estimate and a delay in the

production of the vehicle pitch command from the flight path angle controller (see Section 2.4.1).

Nevertheless, we found that this method worked in most situations. The results, and subsequent

analysis, we present in this chapter illustrate and discuss some of the weaknesses of the flight path

angle estimation and control scheme that we employed.

6.3 Flight Test Data

Due to the complexity of performing flight tests with three vehicles in the air simultane-

ously, particularly when one of these is a towed vehicle, we decided to demonstrate the interception
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path planning and following and the orbit tracking methods with two vehicles. We wish to demon-

strate that these methods are capable of planning and following Dubins airplane interception paths

from a MAV to a target vehicle. In many cases the drogue orbit is relatively circular and flat. Thus,

we feel that demonstration of our methods with an air vehicle flying an approximately circular path

is sufficient for demonstrating their effectiveness. One of the challenges with towing a drogue with

our current hardware is that the vehicle used to tow the drogue is relatively small. Consequently,

the effect of towing a drogue with this vehicle is a decrease in achievable flight time and a decrease

in the ability of the mothership to follow commanded orbits. For these reasons, we decided to

represent the drogue with another air vehicle which we will refer to in this chapter as the target

vehicle.

We performed two types of flight tests. The first had a MAV flying and implementing the

control algorithms while the MAV received data from an autopilot in a simulated flight mode. The

second had both vehicles simultaneously airborne. The MAV used the forwarded data from the

target vehicle in realtime to estimate the target vehicle orbit, to plan interception paths, and to

track the target vehicle.

Due to vehicle flight time constraints, we first tested these algorithms with a simulated

agent. This simulation method used a Kestrel autopilot that was operating with simulated sensor

data. The benefit of this method was that the Kestrel autopilot still communicates with Virtual

Cockpit in the same way as an autopilot that is actually being flown. Thus, the telemetry from the

simulated agent can be forwarded to the MAV in exactly the same way as true flight telemetry. This

provides the capability of testing the MAV interception and elliptical orbit tracking algorithms in

real flight, with realistic data, but without actually having a second vehicle in the air.

After these preliminary flight tests with a simulated agent, the algorithms were also tested

with both vehicles simultaneously airborne. In this chapter, we present results from both types of

flight tests. The benefit of obtaining results using the simulated agent is a decrease in the errors

introduced in our results by occasional erratic behavior of the target vehicle. Thus, using the

simulated agent helped make the characteristics of the interception algorithm performance more

visible.

For all of the results presented in this chapter, the data between the MAV and target vehicle

were synchronized using coordinated universal time (UTC) stamps. The MAV data was stored
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on the VPU at 30 Hz. The target vehicle data had to be transmitted to the ground through the

Commbox and saved in a data log via Virtual Cockpit. Depending on the level of packet loss and

bandwidth constraints in communication, these data points were available between 2-8 Hz.

6.3.1 Interception Path Planning and Following

In this section we will present the results for the interception path planner and path follower.

We performed a variety of tests and present two cases which illustrate the effectiveness of these

methods and also demonstrate some of the current weaknesses. In addition to the standard vehicle

telemetry, each time a path was planned the initial configuration of the vehicles, the current orbit,

and the Dubins airplane interception path parameters were saved to a text file on the VPU. Using

these data we were able to plot the desired path of the vehicle which begins at the interception path

start point and includes a portion of path following along the elliptical orbit.

6.3.2 Airborne Target Vehicle Interception

The first test results shown used two airborne vehicles. The target vehicle was commanded

to fly a circular orbit at an altitude of 175 meters. In this test, the MAV was initially flying a circular

orbit approximately 100 meters north of the commanded orbit of the target agent at an altitude of

125 meters. An interception path was planned which the MAV proceeded to follow. The data

shown starts at the point which the MAV began to follow the Dubins airplane interception path

and ends after the target vehicle has nearly completed one revolution. Over the course of the flight

the wind speed was roughly 2 m/s. During the interception path following operation the MAV was

commanded to fly at a constant airspeed of 14 m/s.

Various data plots that correspond to this flight and that we found insightful are included in

this section. Figure 6.3 shows a top view and side view of the actual paths of the two vehicles from

the vehicle GPS data as well as the desired interception path. Figure 6.4 displays the separation

distance between the two vehicles during the entire operation. Figure 6.5 (a) shows the error

between the vehicle and the desired path in various planes and (b) shows the realtime estimated

components of the wind. The wind estimation method onboard the Kestrel autopilot assumes that

there is no wind in the vertical direction, so we did not include this component of the wind in the
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Figure 6.3: Plots of the desired MAV interception path, the actual MAV path, and the target vehicle
path from GPS data.

plots. Lastly, Figure 6.6 shows the desired and measured values of the MAV airspeed, pitch, roll

and throttle which provide insight into the vehicle behavior over the flight test. We will refer to the

data in these figures during our analysis of the flight test.

Inspection of Figure 6.3 shows that while there was some deviation in the MAV flight path

from the desired interception path, the MAV followed the path in general. Following the Dubins
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Figure 6.4: Distance between the target vehicle and the MAV while the MAV follows the Dubins
airplane interception path and the elliptical orbit of the target vehicle.
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Figure 6.5: Plot of the path tracking error between the desired and actual MAV path and the
realtime wind estimates.

airplane interception path took the MAV approximately 26 seconds, at which point it transitioned

to following the estimated target vehicle orbit. Figure 6.5 shows that the interception path tracking

error was generally less than 5 meters in the vertical direction and less than 16 meters over all.

While decreasing this error would be desirable to improve the accuracy of the interception pro-
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Figure 6.6: Relevant data from the MAV over the course of the interception path following opera-
tion.

cedure, the error is low enough to adequately demonstrate the Dubins airplane, vector field path

following method.

The interception path tracking errors seen in Figure 6.4 are due to a number of effects. The

first is seen during a transition from a circular path leg to a straight path segment or vice versa.

Prior to following the interception path, the MAV had been following a flat circular orbit at a

constant altitude of 125 meters. The interception path began with a short, clockwise circular helix

path. As the MAV began to follow this path it transitioned well from constant altitude flight to the

appropriate climb rate. The transition from the first circular leg to the straight segment had some

characteristic overshoot, but, again, the MAV converged to the desired path. The second source of

tracking error, which can be seen during tracking of the second circular leg, is due in part to the

tail wind that the MAV experienced at this point.

After the MAV completed following the Dubins airplane interception path, it transitioned

to following the estimated target orbit. At this point there was an overshoot in altitude, partially

due to the headwind which was compensated for by a commanded decrease in pitch. Analysis of
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the flight test data suggests that the path tracking performance could be significantly improved by

increasing the horizontal vector field contraction gains and, potentially, the course angle hold loop

integrator gain.

As the MAV transitioned from completing the last leg of the interception path to the target

orbit it switched from a following a relatively tight orbit to a large orbit. There was some ex-

pected overshoot during this transition, but the MAV was slow to correct in the horizontal plane.

It is probable that the elliptical orbit, horizontal vector field gain and the course angle hold loop

integrator gain could be increased to improve the overall vehicle performance.

Based on the current hardware setup, tracking error plots can only be produced through

post processing. Thus, tuning the vector field and low-level controller gains can only be performed

visually from the vehicle GPS data plotted in Virtual Cockpit. One of the challenges experienced

when doing this testing was the inability to plot the interception paths in Virtual Cockpit. Con-

sequently, we cannot obtain any visual or numerical feedback that indicates how well the path

following methods were working until we post process the data. Currently, we are only capable of

plotting the desired interception paths after the fact. There is a possibility of adding such a plotting

capability to Virtual Cockpit. If this avenue were pursued, it would make tuning of the vector field

gains significantly easier and should improve the tracking performance of these methods.

The target vehicle interception performance was acceptable. After completing the inter-

ception path the separation distance between the two vehicles was approximately between 60 and

80 meters as seen in Figure 6.4. This equates to difference in arrival time of roughly 4 seconds. In

this test, the MAV was commanded to fly at a constant velocity of 14 m/s. The miss distance of

4 seconds was primarily due to the MAV not maintaining a constant airspeed of 14 m/s as evident

in Figure 6.6.

6.3.3 GPS Simulated Target Agent Interception and Post-Insertion Tracking

The test results we now present were produced using a simulated target vehicle that was

commanded to fly a constant altitude, circular orbit. In this test, the MAV was initially flying a

circular orbit approximately 100 meters north of the commanded orbit of the simulated drogue

agent. An interception path was planned which the MAV proceeded to follow. The data shown

starts at the point in time when the MAV began to follow the Dubins airplane interception path;
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It ends after the MAV has completed the interception path and followed the target vehicle along

the estimated orbit for nearly one revolution. Over the course of the flight, the wind speed was

roughly 3 m/s. During the interception path following operation, the MAV was commanded to fly

at a constant airspeed of 14 m/s. After the MAV had completed following the interception path,

the post-insertion airspeed controller was turned on. With this controller, the desired separation

distance between the two vehicles was specified to be 15 meters.
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Figure 6.7: Plots of the desired MAV interception path, the actual MAV path, and the target vehicle
path from GPS data.
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Figure 6.8: Distance between the target vehicle and the MAV while the MAV follows the Dubins
airplane interception path and the elliptical orbit of the target vehicle.
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Figure 6.9: Plot of the path tracking error between the desired and actual MAV path and the
realtime wind estimates.

Again, data plots similar to those shown for the previous flight test are presented for this

test. Figure 6.7 shows plots of the GPS data from the MAV, the simulated data from the target

agent, and the desired interception path. Figure 6.8 displays the separation distance between the

two vehicles during the entire operation. Figure 6.9 (a) shows the error between the vehicle and
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Figure 6.10: Relevant data from the MAV over the course of the interception path following oper-
ation.

the desired path in various directions, and (b) shows the estimated components of the wind. Lastly,

Figure 6.10 shows the desired and measured values of the MAV airspeed, pitch, roll, and throttle.

We will refer to the data in these figures during our analysis of the flight test.

We now provide a narrative of the second flight test. It is apparent that the MAV initially

followed the desired interception path with minimal error. The turn on the first leg of the intercep-

tion path, as expected, causes the MAV to lose some altitude. As the MAV transitions from the

first circular leg to the straight path there is some overshoot and it gradually climbs back to altitude

and converges toward the straight leg of the interception path. We see this in the path tracking

error shown in Figure 6.9. At about 10 seconds into the flight, the MAV deviates nearly 20 meters

from the interception path but then converges back to within 5 meters of the path, at which point it

transitions to the second circular leg of the path. It is helpful to point out that the general direction

of the wind during this flight is toward the northwest, which is toward the upper right corner of the

top view of the GPS data plot (see Figure 6.7).
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As the MAV begins to follow the second circular leg of the interception path, it has a

relatively strong tailwind that results in the MAV losing 20 meters in altitude and a similar deviation

in the horizontal direction. We see that the convergence back to the path in both the horizontal

and vertical direction is relatively slow, but the vehicle is indeed converging toward the desired

interception path. At approximately 40 seconds into the flight, the MAV effectively completes the

interception path and switches to the post-insertion, elliptical orbit tracking mode. Largely due to

the MAV having flown a path interior to the desired interception path, it arrived to the proposed

interception point approximately 30 meters ahead of the target vehicle (see Figure 6.8). Based on

the MAV airspeed, that equates to an error in arrival time of approximately 2 seconds.

After completing navigation of the interception path, the MAV transitions to tracking the

estimated ellipse. The post-insertion airspeed controller, as described in Section 5.7, was imple-

mented on this flight. This controller varies the commanded airspeed of the MAV in an attempt to

maintain a 15 meter separation distance between the two vehicles.

Due to the fact that the MAV arrived to the proposed interception point in front of the

target vehicle with a separation distance of approximately 30 meters, the post-insertion airspeed

controller reduced the commanded airspeed to 12 m/s (see Figure 6.10). This occurred about 40

seconds into the flight. The MAV had been converging toward the desired path until this change

in airspeed command. Rather than reducing the separation distance between the two vehicles, this

airspeed controller caused a large loss of altitude for the MAV.

These results demonstrate one of the weaknesses of the lower-level control scheme being

employed for these vector field path following methods which we now explain. When the reduced

airspeed command was received, the vehicle immediately reduced the throttle. This reduction in

throttle and resultant loss of airspeed caused the pitch angle of the vehicle to decrease. At this

point, the higher level vector field path following commands increased the pitch angle command to

the vehicle. This suggests that the path following methods were indeed providing good commands.

The effect of this decrease in pitch angle was that the vehicle began to lose altitude. To maintain the

airspeed command while losing altitude the throttle was decreased. The pitch controller attempted

to pull up the vehicle, which the resulted in the pitch, roll and airspeed controllers going unstable.

The instability is likely due to the coupling between the roll angle, pitch angle, and airspeed

combined with the rather slow rate of the flight path angle estimate from the GPS. This estimate
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is used in the flight path angle hold loop, which produces the pitch command. In the hardware

implementation of this code, the flight path angle controller runs at 2 Hz because that is the rate of

flight path angle estimation. As a result of this slow update rate, a significant amount of delay from

the flight path angle estimation is introduced into the pitch controller. We believe that largely due to

this lag, the airspeed and pitch controllers competed with each other and caused this approximately

50 meter loss of altitude over roughly 20 seconds (see Figure 6.9). After this period of altitude loss,

stability was again achieved, and the MAV proceeded to converge to within 5 meters of the desired

orbit at a distance of roughly 50 meters behind the target vehicle (see Figure 6.8).

This flight test makes it clear that in some scenarios the coupling between the pitch and

airspeed controllers can cause the system to go unstable and fail to track both the pitch and airspeed

controllers. We saw evidence of this effect in a number of flights. The controller instability tended

to occur when there was a large change in commanded airspeed. When this occurred, the airspeed

controller decreased the throttle. If the delay in the pitch controller prevented a sufficiently fast

response, the vehicle began to lose altitude which inherently increased the airspeed of the vehicle

and caused the throttle to be further decreased. We believe that, in this situation, the lag in the pitch

controller effectively caused the two controllers to fight each other and fail in tracking the pitch or

airspeed commands for a time.

Once the vehicle returned to the desired altitude and converged to the elliptical orbit, the

post-insertion airspeed controller was effective at closing the distance between the two vehicles.

At the closest point, the MAV was approximately 25 meters from the simulated target vehicle (see

Figure 6.4). We will provide further results from flights employing the post-orbit insertion method

and more detailed analysis later in this chapter.

These results are representative of the general performance and flight behavior we saw in

all flights. From these results we make a number of observations. While following the intercep-

tion paths, the maximum path tracking error was approximately 25 meters (see Figure 6.9). It is

probable that deviation was primarily due to the disturbance of a tail wind. When the MAV tran-

sitioned between the circular and straight path legs, deviations from the path occurred between 18

and 25 meters. From the Figure 6.9 it is evident that, after these spikes in path tracking error at

the transition points, the MAV converged back toward the interception path to within 5 or 10 me-
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ters. We believe that further tuning of the vector field gains, to increase the aggressiveness of the

convergence in both the vertical and horizontal directions, would reduce the path tracking error.

We conclude, from these results, that the time-optimal Dubins airplane path, vector field

path following method is effective at tracking these paths. These data also demonstrate that the

interception path planner can be used to plan interception paths to the target vehicle on a slightly

elliptical orbit. The separation distance between the two vehicles at the interception point is primar-

ily due to the error in tracking the desired interception path. Thus, a reduction of the interception

path tracking error would also result in a reduction of the separation between the two vehicles at

the proposed interception point.

Although it cannot be definitively concluded, we believe that the primary cause of the path

tracking error in this scenario resulted from the period of instability in lower-level control loops.

We believe this instability is due to a lag in the desired pitch angle commands, which is the result of

the current flight path angle estimation scheme. We propose an estimation technique to reduce the

flight path angle lag introduced by the relatively slow GPS measurement update rate. The flight

path angle is currently being estimated only when new GPS inertial velocity data is available,

which is at a rate of approximately 2 Hz.

This improved flight path angle estimation makes use of the accelerometer data available

from the autopilot IMU. When these accelerometer measurements are rotated into the inertial frame

and integrated, they provide the inertial velocity estimates. These estimates are inherently noisy,

but they can be used to supplement the GPS inertial velocity estimates. One of the primary benefits

of using these measurements is that they are available at 30 Hz rather than just 2 Hz. A low pass

filter can be applied to the accelerometer measurements before integrating them to produce the

updated inertial velocity estimates. When the filtered accelerometer data is integrated, it is added

directly to the current inertial velocity estimates.

The GPS inertial velocity estimate can be filtered into the previous inertial velocity estimate

using a low pass filter each time a new measurement is received. This scheme provides an inertial

velocity estimate which can be used to provide a flight path angle estimate at the same rate. This

increased rate of flight path angle estimation will allow the flight path angle controller to be run

at a faster rate and should reduce the lag in the resultant pitch angle command. If the lag in

the pitch command is in fact the cause of the MAV low-level loop instability then this strategy
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should mitigate the problem and potentially eliminate the situation in which instability occurs.

If the accelerometer integration technique described here is not adequate we recommend using a

Kalman filter to combine the sensor data to provide an improved estimate of the flight path angle.

It is possible that the lag is due to lag inherent in the inertial velocity estimation scheme

being employed on the GPS unit. To determine whether this is the problem, we recommend first

implementing the above mentioned GPS and accelerometer fusion scheme and performing further

tests to assess how this impacts the system instability.

6.3.4 Airborne Target Post-Insertion Tracking

In this test, we demonstrated the post-insertion airspeed controller. For the plots to clearly

depict the flight behavior, we decided to show these post-insertion tracking results separate from

the interception results. These flight test results were obtained with both the MAV and target

vehicles airborne.

The target vehicle was commanded to fly a flat 125 meter radius circular orbit at an altitude

of 150 meters. The figures containing the data that correspond to this flight test are Figures 6.11,

6.12, 6.13, and 6.14. These contain plots very similar to those shown with the flight test results

already presented in this chapter.

At the point in which the data from this flight begins, the MAV had just completed following

an interception path which inserted the MAV behind the target vehicle with a separation distance

of approximately 70 meters which (shown in Figure 6.12). At this point in time, the post-insertion

airspeed controller was turned on, which can be seen in the airspeed data plot in Figure 6.14. In the

data presented here, the MAV proceeded to follow the target vehicle for about one and a half orbit

revolutions. In this flight, the wind speed was approximately 2 m/s and directed to the northwest,

which is the upper left-hand corner of Figure 6.11.

The purpose of the post-insertion airspeed controller is to vary the commanded airspeed of

the MAV to maintain a desired following distance. In this flight, the desired following distance

was selected to be 15 meters. Similar to the results of the previous two tests there were significant

deviations when following the desired orbit with the MAV. These can be explained in a manner

similar to the previously discussed flight test results. In the presence of a tailwind, the MAV does

not track as well and the opposite effect occurs in the presence of the wind. To decrease these
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Figure 6.11: Plot of the estimated target vehicle orbit, the target vehicle path, and the actual MAV
path during post-insertion tracking.

tracking errors, we again recommend further tuning of the vector field gains and the course angle

controller integrator gain. Doing so should substantially reduce this error.

Figure 6.12 shows the separation distance between the two vehicles during this flight. These

results show that post-insertion airspeed controller decreased the separation distance between the

vehicles to between 15 and 30 meters for the more than 40 seconds depicted in that figure. This

desirable behavior indicates that this controller is effective at maintaining a following distance of

15 meters.

One of the issues that was made apparent when implementing this scheme was that this

controller can cause some undesired behavior when the MAV deviates significantly from the target

orbit. The objective of this airspeed controller was to maintain the target vehicle in the camera

FOV while following the target orbit. The weakness of this controller can be seen when viewing

the interception error plot in Figure 6.12 between 46 to 50 seconds in the flight. At this point in
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Figure 6.12: Distance between the target vehicle and the MAV during post-insertion tracking.
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Figure 6.13: Plot of the path tracking error between the estimate target vehicle orbit and the actual
MAV path in addition to the realtime wind estimates during post-insertion tracking.

time, the separation distance between the two vehicles in the horizontal plane dropped very close

to 0 meters, but the vertical error was approximately 15 meters. While it is true that the airspeed

controller achieved a separation of 15 meters, the MAV was positioned almost directly below the

target vehicle and out of the FOV of the front facing camera on the MAV. When the airspeed

controller has achieved the desired separation distance between the two vehicles, it commands the
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Figure 6.14: Relevant data from the MAV during the post-insertion tracking operation.

MAV to fly at the same airspeed as the target vehicle. Thus, in the case just discussed the controller

would attempt to maintain the position directly below the target vehicle. Since our objective was

to have the vehicle positioned 15 meters in front the MAV, and not in an arbitrary direction, we

recommend a modification to this scheme.

To overcome this weakness, we propose a new definition for the separation distance. Rather

than use the Euclidean distance between the vehicles to calculate the effective tracking error, we

wish to define and use the forward separation distance. The forward separation distance is the

projection of the Euclidean distance vector onto the vector that describes the current MAV direction

of travel. If the forward separation distance is used rather than the Euclidean distance, it should

mitigate the limitations of the current method.

In the scenario above, where the MAV was located almost directly below the target vehicle,

the forward separation distance airspeed controller should produce much more desirable results. In

that situation, the forward separation distance airspeed control would register a forward separation

distance between the two vehicles near zero. As a result, it would command the MAV to decrease

airspeed until the forward distance was 15 meters. With this modified airspeed controller, even if
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the altitude difference between the vehicles were still 15 meters, the MAV would have increased

the forward separation distance, and it is probable that the target vehicle would now be in the

camera FOV.

6.3.5 Interception Disturbance Rejection Airspeed Controller

Some results were obtained from the interception airspeed controller presented in Section

5.6, but, due to flight test time constraints, they were somewhat limited and we do not believe that

they merit a detailed analysis. The basic result was that, when the MAV was accurately tracking

the desired interception path, the airspeed controller worked well. The vehicle airspeed was varied

appropriately to maintain the desired difference in arrival time. This is the same result as shown in

simulation results of this controller in Section 5.8.

The current weakness of this controller is that, when there is a significant deviation from

the desired interception path, the controller compensates for this by increasing the commanded

airspeed. Due to the coupling between the appropriate airspeed, roll angle, and pitch angle com-

mands, any significant change in airspeed also requires changes to be made to the roll and pitch

commands. Thus, we typically see that significant changes in airspeed, changes of roughly 1 m/s

or more, cause an increase in the path tracking error until the roll and pitch controllers are able to

respond appropriately. This is particularly apparent when the airspeed increases. Consequently,

attempting to substantially increase the vehicle airspeed, to compensate for tracking errors, tends

to exacerbate the problem and further increase these path tracking errors.

To mitigate this problem, we suggest selecting a tracking error window within which the

interception, disturbance rejection airspeed controller is to be used. Thus, if the tracking error is

less than a user specified value, the airspeed command from the controller would be used. One

potential problem with this scheme is that it would introduce a discontinuity in the airspeed com-

mand when the vehicle transitions from using the constant airspeed command to the controller

based command. A possible solution to this would be to proportionally transition between the

two values. When the vehicle has zero tracking error, the commanded airspeed would be equal

to be the commanded airspeed produced by the controller. When the vehicle is at the boundary

of the selected tracking error window, or with a greater tracking error, the constant airspeed com-
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mand would be used. Anywhere between these two tracking error values, a proportional weighting

scheme, or some other variant, could be used to prevent discontinuities in the commanded airspeed.

6.4 Chapter Summary

In this chapter we presented experimentally obtained flight test results. These results il-

lustrated the methods and algorithms presented in this thesis. We analyzed the flight test data

to determine the strengths and weakness of target interception and tracking methods. Generally

speaking, we found that the methods presented in the paper are effective at achieving their objec-

tives. A number of weaknesses were discussed and schemes for mitigating the errors introduced

by the weaknesses were presented.

We believe that the experimental results we presented here adequately demonstrate the

aerial interception and orbit tracking methods. Nevertheless, we believe that these errors produced

in our results could be substantially reduced through subsequent flight tests if the vector field and

control loop gains were further tuned.
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CHAPTER 7. CONCLUSIONS

7.1 Conclusions

In this thesis, a method was produced for intercepting a target air vehicle flying a roughly

elliptical orbit with an autonomous MAV preparatory to a visual rendezvous. The algorithms nec-

essary to plan an interception path that accounts for the effects of wind were also developed and

presented. A scheme for following the Dubins airplane interception paths as well as elliptical orbits

was proposed. An airspeed controller was also developed that can be used to reject disturbances

and maintain a coordinated arrival time between the two vehicles to a proposed interception point.

After the vehicle has completed following an interception path, another airspeed controller was

proposed which can be used to maintain a desired following distance between the MAV and target

vehicle, which is necessary to facilitate a final visual rendezvous. These methods were demon-

strated in simulation and experimentally with actual flight tests. The contributions of this research

are summarized as follows:

• Vector field path following schemes, that have proven convergence properties, for following

time-optimal Dubins airplane paths and arbitrarily oriented elliptical orbits. These methods

were demonstrated with simulated and experimental results.

• A simple, robust solution for planning time-optimal Dubins airplane interception paths be-

tween a MAV and a target vehicle that accounts for the effects of wind. These interception

paths can be planned from an arbitrary set of initial conditions and result in the interception,

or coordinated arrival, of the MAV and a target vehicle. The current scheme is established

for a target vehicle following an elliptical orbit, but, in general, it is applicable to any type

of path for which an estimated time to arrival function can be produced for the target vehicle

between any two points on the vehicle path. This interception scheme was demonstrated in

simulation and with experimental results.
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• A conference paper which was presented at and published in the proceedings of the AIAA

Guidance, Navigation, and Controls Conference.

• It is anticipated that a journal paper that includes a significant portion of the work presented

in this thesis will be shortly submitted for publication.

The primary contributions of this research are dependent upon a number of lower-level

contributions. These contributions can be summarized as follows:

• Development of a simple flight path angle estimation scheme and a closed loop controller

that is needed to follow the commands produced by the vector field path following methods.

• A method for the nondimensionalization of the elliptical orbit and Dubins airplane path

following vector fields that allow much more general use of a given set of vector field gains.

• Development of a numerically inexpensive method that can be used to approximate elliptical

arc length functions. This method also has potential application for use with other functions

which can be expressed parametrically.

• An explicit solution for aircraft ground speed from the wind triangle. This result makes it

possible to estimate the future ground speed along a path based upon the wind estimate and

other readily available information.

• A method for producing disturbance rejection airspeed commands during an interception

operation that can be used to maintain the coordinated arrival of the MAV and target vehicle

to a proposed interception point.

• A post-orbit-insertion airspeed controller that can be used to maintain a desired separation

distance between the MAV and target vehicle. This controller facilitates the initialization of

the visual tracking and target prosecution algorithms.

7.2 Future Work

There are many areas of research from the thesis which could be further explored. Further

research in these areas would potentially offer improved performance of the drogue interception in
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addition to providing contributions to the research area in general. Some recommended areas of

further research and extensions to the methods presented in this thesis include:

• Modification of the post-orbit-insertion airspeed controller to use the forward separation

distance when computing the appropriate airspeed commands. This would prevent the con-

troller from being influenced unnecessarily by lateral and vertical tracking errors. See Sec-

tion 6.3.4.

• Developing an improved flight path angle estimation method that decreases the lag in the

MAV pitch angle commands. This could potentially be an implementation of the scheme

discussed in Section 6.3.3.

• Improving the feed-forward roll angle command with a model that does not assume horizon-

tal flight.

• Further tuning of the vector field gains would potentially offer improved tracking perfor-

mance.

• Developing a wind based time-optimal Dubins airplane paths. Such a result has been de-

veloped for horizontal flight in [17]. This could be extended for use with the time-optimal

Dubins airplane paths. The path following scheme developed in this paper could be applied

to follow these time-optimal paths that include the effects of wind. Development of a path

following scheme for these time-optimal paths which are valid in the presence of wind could

offer a significant performance improvement for the current drogue interception scheme.

• Currently, the time-optimal Dubins airplane path following scheme has only been imple-

mented for paths consisting of an arc, a straight segment, and concluded by another arc.

These are only guaranteed time-optimal when the initial and final point are separated by a

distance of at least three minimum turn radii. The other case consists of paths made up of

three minimum turn radius arcs. Developing the capability of following and planning inter-

ception paths with this type of Dubins airplane path would increase the functionality of the

drogue interception scheme.

107



• Developing a scheme that solves for a modified elliptical orbit that would maintain the

drogue in the FOV of the MAV camera even when the MAV has a significant crab angle

due to the presence of wind.
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APPENDIX A. DUBINS AIRPLANE PATH MANAGEMENT ALGORITHMS

In this section we present algorithms that were developed for use with the path planning

and path following of the time-optimal Dubins airplane paths which were presented in Chapter 4.

This is an extension of the algorithms presented in [2] from two dimensions to three dimensions.

A.1 Path Definition Parameters

We now present an algorithm, Algorithm 4, which can be used to produce the parameters

used to describe and implement the time-optimal Dubins airplane paths. This method relies the

following definitions:

〈ϑ〉, ϑ mod 2π, (A.1)

H12 =


1 0 0

0 1 0

0 0 0

 , (A.2)

and

H3 =


0 0 0

0 0 0

0 0 1

 . (A.3)
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In the following equations we use numbers in the subscripts of a vector to reference a single

element of the vector. The vector subscripts denote whether the helix is right (cr) or left (cl) orbit

and a start (cs) or end orbit (ce). For example,

crs ,


crs1

crs2

crs3

 . (A.4)

This notation was adopted for the sake of simplicity in the following equations. A number of

equations are needed to compute the lengths of the path segments. The equations for the right,

straight, right case are

θ2 = arctan2(cre2− crs2,cre1− crs1) (A.5)

L1c1 = R〈2π + 〈θ1−
π

2
〉−〈χs−

π

2
〉〉 (A.6)

L1d = ||cre− crs|| (A.7)

L1c2 = R〈2π + 〈χe−
π

2
〉−〈θ1−

π

2
〉〉 (A.8)

L1 = L1c1 +L1d +L1c2. (A.9)

The equations for the right, straight, left case are

`= ||H12(cle− crs)|| (A.10)

θ2 = arctan2(cle2− crs2,cle1− crs1) (A.11)

θ22 = θ2− cos−1 2R
`

(A.12)

L2c1 = R〈2π + 〈θ22〉−〈χs−
π

2
〉〉 (A.13)

L2d =
√
`2−4R2 (A.14)
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L2c2 = R〈2π + 〈θ22 +π〉−〈χe +
π

2
〉〉 (A.15)

L2 = L2c1 +L2d +L2c2. (A.16)

The equations for the left, straight, right case are

`= ||H12(cre− cls)|| (A.17)

θ3 = arctan2(cre2− cls2,cre1− cls1) (A.18)

θ32 = θ3− cos−1 2R
`

(A.19)

L3c1 = R〈2π + 〈χs +
π

2
〉−〈θ3 +θ32〉〉 (A.20)

L3d =
√
`2−4R2 (A.21)

L3c2 = R〈2π + 〈χe−
π

2
〉−〈θ3 +θ32−π〉〉 (A.22)

L3 = L3c1 +L3d +L3c2. (A.23)

The equations for the left, straight, left case are

θ4 = arctan2(cle2− cls2,cle1− cls1) (A.24)

L4c1 = R〈2π + 〈χs +
π

2
〉−〈θ4 +

π

2
〉〉 (A.25)

L4d = ||cle− cls|| (A.26)

L4c2 = R〈2π + 〈θ4 +
π

2
〉−〈χe +

π

2
〉〉 (A.27)

L1 = L1c1 +L1d +L1c2. (A.28)

With these equations and definitions we now present Algorithm 4 for calculating the Dubins air-

plane path parameters.
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Algorithm 4 Find Dubins Airplane Path Parameters:
(L,cs,λs,ce,λe,w1,q1,q13,w2,w3,q3) = f ind3dDubinsParameters(ps,χs,pe,χe,R)
Input: Start configuration (ps,χs), End configuration (pe,χe), Radius R)

1: H12 = diag(1,1,0),H3 = diag(0,0,1)
2: e1← (1,0,0)T ,e3← (0,0,1)T

3: crs← ps +RRz(
π

2 )(cos χs,sin χs,0)T ,cls← ps +RRz(−π

2 )(cos χs,sin χs,0)T

4: cre← pe +RRz(
π

2 )(cos χs,sin χs,0)T ,cls← pe +RRz(−π

2 )(cos χs,sin χs,0)T

5: Compute Equations (A.5) - (A.28)
6: if arg min{L1,L2,L3,L4} = 1 then
7: L← L1,cs← crs,λs←+1,ce← cre−q13Lc2e3,λe←+1
8: q1←

H12(ce−cs)
||H12(ce−cs)|| ,q13← (pe3−ps3

L ,w1← cs+RRz(−π

2 )q1+Lc1q13e3,w2← ce+RRz(−π

2 )q2

9: else if arg min{L1,L2,L3,L4} = 2 then
10: L← L2,cs← crs,λs←+1,ce← cle−Lc2q13e3,λe←−1
11: `← ||ce− cs||,ϑ ← angle(ce− cs), ϑ2← ϑ − π

2 + sin−1 2R
`

12: q1← Rz(ϑ2 +
π

2 )e1,q13← pe3−ps3
L ,w1← cs +RRz(ϑ2)e1 +Lc1q13e3,w2← cs +RRz(ϑ2 +

π)e1
13: else if arg min{L1,L2,L3,L4} = 3 then
14: L← L3,cs← cls,λs←−1,ce← cre−Lc2q13e3,λe← 1
15: `← ||ce− cs||,ϑ ← angle(ce− cs), ϑ2← cos−1 2R

`

16: q1 ← Rz(ϑ +ϑ2− π

2 )e1,q13 ← pe3−ps3
L ,w1 ← cs +RRz(ϑ +ϑ2)e1 + Lc1q13e3,w2 ← ce +

RRz(ϑ +ϑ2−π)e1,
17: else if arg min{L1,L2,L3,L4} = 4 then
18: L← L4,cs← cls,λs←−1,ce← cle−Lc2q13ee,λe←−1
19: q1← ce−cs

||ce−cs|| ,q13← pe3−ps3
L ,w1← cs +RRz(

π

2 )q1 +Lc1q13e3,w2← ce +RRz(
π

2 )q2
20: end if
21: w3← pe
22: q3← Rz(χe)e1

A.2 Path Manager

In this section we present the path manager in Algorithm A.2.1. This function determines

which leg of the Dubins airplane path the vehicle is currently on and sets the appropriate parameters

for use with the vector field path following functions. The vector field path following functions

which are called in this algorithm can be produced using (3.25), (4.17), and (4.13). Within the

path following functions the path parameters and position vector need to be converted into the

appropriate vector field frames.
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Algorithm A.2.1 Dubins Airplane Path Manager:
(V c

a ,χ
c,γc,φnom) = f ollowDubinsAirplanePath(ps,χs,pe,χe,p,R,a,b,λellipse,cellipse,ψ1,θ ,ψ2)

Input: Start configuration (ps,χs), End configuration (pe,χe), Radius R, Current position p
1: if New path configuration received then
2: Initialized state machine: state← 1
3: First time in state boolean: firstTimeInState← 1
4: end if
5: (L,cs,λs,w1,q1,q13,w2,w3, textb f q3)← f ind3dDubinsParameters(ps,χs,pe,χe,R)
6: if state = 1 then
7: c← cs,ρ ← R,λ ← λs
8: q← (Lq1 + e3(pe3− ps3))/||Lq1 + e3(pe3− ps3)||
9: if (p−w1)

T q1 ≥ 0 and firstTimeInState = 1 then
10: state← 2, firstTimeInState← 1
11: else if (p−w1)

T q1 ≥ 0 then
12: state← 3, firstTimeInState← 1
13: else
14: firstTimeInState← 0
15: end if
16: (V c

a ,χ
c,γc,φnom)← helixVectorFieldEquation(p,c,ρ,λ ,q)

17: else if state = 2 then
18: c← cs,ρ ← R,λ ← λs
19: q← (Lq1 + e3(pe3− ps3))/||Lq1 + e3(pe3− ps3)||
20: if (p−w1)

T q1 < 0 then
21: state← 1, firstTimeInState← 1
22: else
23: firstTimeInState← 0
24: end if
25: (V c

a ,χ
c,γc,φnom)← helixVectorFieldEquation(p,c,ρ,λ ,q)

26: else if state = 3 then
27: c← 0,r← w1,λ ← 1
28: q← (Lq1 + e3(pe3− ps3))/||Lq1 + e3(pe3− ps3)||
29: if (p−w2)

T q1 ≥ 0 then
30: state = 4, firstTimeinState← 1
31: else
32: firstTimeInState← 0
33: end if
34:
35: (V c

a ,χ
c,γc,φnom)← inclinedLineVectorFieldEquation(p,r,q,λ )

36: else if state = 4 then
37: c← ce,ρ ← R,λ ← λe
38: q← (Lq3 + e3(pe3− ps3))/||Lq1 + e3(pe3− ps3)||
39: if (p−w3)

T q3 ≥ 0 and firstTimeInState = 1 then
40: state← 5, firstTimeInState← 1
41: else if (p−w3)

T q3 ≥ 0 then
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42: state← 6, firstTimeInState← 1
43: else
44: firstTimeInState← 0
45: end if
46: (V c

a ,χ
c,γc,φnom)← helixVectorFieldEquation(p,c,ρ,λ ,q)

47: else if state = 5 then
48: c← ce,ρ ← R,λ ← λs
49: q← (Lq1 + e3(pe3− ps3))/||Lq1 + e3(pe3− ps3)||
50: if (p−w3)

T q3 < 0 then
51: state← 4, firstTimeInState← 1
52: else
53: firstTimeInState← 0
54: end if
55: (V c

a ,χ
c,γc,φnom)← helixVectorFieldEquation(p,c,ρ,λ ,q)

56: else if state = 6 then
57: (V c

a ,χ
c,γc,φnom)← ellipseVectorFieldEquation(p,a,b,ψ1,θ ,ψ2,cellipse,λellipse)

58: end if
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APPENDIX B. SIMULATION MODELS

The nonlinear equations of motions used to produce the simulation results in Chapters

3 and 4 were adopted from [2]. We do not discuss these equations in detail but provide them

to illustrate the models that were used to produce the simulation results. We also present the

simulation parameters that were used in conjunction with the equations of motion.

B.1 Summary of Nonlinear Equations of Motion

The six-degree-of-freedom, 12-state equations of motion with quasi-linear aerodynamic

and propulsion models are presented in this section. The drag terms were modeled as nonlinear

function of the angle of attack, and the propeller thrust was modeled as a nonlinear function of the

throttle command. Incorporating the aerodynamic and propulsion models described in [2] we get

the following equations of motion:

ṗn = (cosθ cosψ)u+(sinφ sinθ cosψ− cosφ sinψ)v+(cosφ sinθ cosψ + sinφ sinψ)w (B.1)

ṗe = (cosθ sinψ)u+(sinφ sinθ sinψ + cosφ cosψ)v+(cosφ sinθ sinψ− sinφ cosψ)w (B.2)

ḣ = usinθ − vsinφ cosθ −wcosφ cosθ (B.3)

u̇ = rv−qw−gsinθ +
ρV 2

a S
2m

[
CX(α)+CXq(α)

cq
2Va

+CXδe
(α)δe

]
+

ρSpropCprop

2m

[
(kmotorδt)

2−V 2
a

]
(B.4)

v̇ = pw− ru+gcosθ sinφ +
ρV 2

a S
2m

[
CY0 +CYβ

β +CYp

bp
2Va

+CYr

br
2Va

+CYδa
δa +CYδr

δr

]
(B.5)

ẇ = qu− pv+gcosθ cosφ +
ρV 2

a S
2m

[
CZ(α)+CZq(α)

cq
2Va

+CZδe
(α)δe

]
(B.6)
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φ̇ = p+qsinφ tanθ + r cosφ tanθ (B.7)

θ̇ = qcosφ − r sinφ (B.8)

ψ̇ = qsinφ secθ + r cosφ secθ (B.9)

ṗ = Γ1 pq−Γ2qr+
1
2

ρV 2
a Sb

[
Cp0 +Cpβ

β +Cpp

bp
2Va

+Cpr

br
2Va

+Cpδa
δa +Cpδr

δr

]
(B.10)

q̇ = Γ5 pr−Γ6(p2− r2)+
ρV 2

a Sc
2Jy

[
Cm0 +Cmα

α +Cmq

cq
2Va

+Cmδe
δe

]
(B.11)

ṙ = Γ7 pq−Γ1qr+
1
2

ρV 2
a Sb

[
Cr0 +Crβ

β +Crp

bp
2Va

+Crr

br
2Va

+Crδa
δa +Crδr

δr

]
, (B.12)

where the inertia parameters are specified by

Γ ,JxJz− J2
xz

Γ1 =
Jxz(Jx− Jy + Jz)

Γ

Γ2 =
Jz(Jz− Jy)+ J2

xz

Γ

Γ3 =
Jz

Γ

Γ4 =
Jxz

Γ
(B.13)

Γ5 =
Jz− Jx

Jy

Γ6 =
Jxz

Jy

Γ7 =
(Jx− Jy)Jx + J2

xz

Γ

Γ8 =
Jx

Γ
,
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where h =−pd is the altitude, and

Cp0 = Γ3Cl0 +Γ4Cn0

Cpβ
= Γ3Clβ +Γ4Cnβ

Cpp = Γ3Clp +Γ4Cnp

Cpr = Γ3Clr +Γ4Cnr

Cpδa
= Γ3Clδa

+Γ4Cnδa

Cpδr
= Γ3Clδr

+Γ4Cnδr

Cr0 = Γ4Cl0 +Γ8Cn0

Crβ
= Γ4Clβ +Γ8Cnβ

Crp = Γ4Clp +Γ8Cnp

Crr = Γ4Clr +Γ8Cnr

Crδa
= Γ4Clδa

+Γ8Cnδa

Crδr
= Γ4Clδr

+Γ8Cnδr
.

The aerodynamic force coefficients in the X and Z directions are nonlinear functions of the

angle of attack (α). They can be stated as

CX(α)
4
=−CD(α)cosα +CL(α)sinα

CXq(α)
4
=−CDq cosα +CLq sinα

CXδe
(α)

4
=−CDδe

cosα +CLδe
sinα

CZ(α)
4
=−CD(α)sinα−CL(α)cosα

CZq(α)
4
=−CDq sinα−CLq cosα

CZδe
(α)

4
=−CDδe

sinα−CLδe
cosα.
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The effects of stall into the lift coefficient were modeled as

CL(α) = (1−σ(α)) [CL0 +CLα
α]+σ(α)

[
2sign(α)sin2

α cosα
]
,

where

σ(α) =
1+ e−M(α−α0)+ eM(α+α0)(

1+ e−M(α−α0)
)(

1+ eM(α+α0)
) ,

and M and α0 are positive constants. Drag was modeled as a nonlinear quadratic function of lift as

CD(α) =CDp +
(CL0 +CLα

α)2

πeAR
,

where e is the Oswald efficiency factor and AR is the aspect ratio of the wing.

The equations provided in this section completely describe the dynamic behavior of a MAV

in response to inputs from the throttle and the aerodynamic control surfaces (ailerons, elevator, and

rudder). These equations are the core of the MAV simulation environment that was used to produce

the results of Chapters 3 and 4.

B.2 Zagi Flying Wing Simulation Vehicle Parameters

The vehicle parameters used in the simulation are presented in Table B.1. These parameters

were adopted from [2] and were developed to provide a reasonable model for the MAV zagi flying

wing that was used to produce the experimental results in Chapter 6.

120



Table B.1: Parameters for a Zagi flying wing.

Parameter Value Longitudinal Coef. Value Lateral Coef. Value
m 1.56 kg CL0 0.09167 CY0 0
Jx 0.1147 kg m2 CD0 0.01631 Cl0 0
Jy 0.0576 kg m2 Cm0 -0.02338 Cn0 0
Jz 0.1712 kg m2 CLα

3.5016 CYβ
-0.07359

Jxz 0.0015 kg m2 CDα
0.2108 Clβ -0.02854

S 0.2589 m2 Cmα
-0.5675 Cnβ

-0.00040
b 1.4224 m CLq 2.8932 CYp 0
c 0.3302 m CDq 0 Clp -0.3209

Sprop 0.0314 m2 Cmq -1.3990 Cnp -0.01297
ρ 1.2682 kg/m3 CLδe

0.2724 CYr 0
kmotor 20 CDδe

0.3045 Clr 0.03066
kTp 0 Cmδe

-0.3254 Cnr -0.00434
kΩ 0 Cprop 1.0 CYδa

0
e 0.9 M 50 Clδa

0.1682
α0 0.4712 Cnδa

-0.00328
ε 0.1592

CDp 0.0254
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