
Brigham Young University Brigham Young University

BYU ScholarsArchive BYU ScholarsArchive

Theses and Dissertations

2011-08-10

SMB-Interp: an N-Th Order Accurate, Distributed Interpolation SMB-Interp: an N-Th Order Accurate, Distributed Interpolation

Library Library

Stephen Mardson McQuay
Brigham Young University - Provo

Follow this and additional works at: https://scholarsarchive.byu.edu/etd

 Part of the Mechanical Engineering Commons

BYU ScholarsArchive Citation BYU ScholarsArchive Citation
McQuay, Stephen Mardson, "SMB-Interp: an N-Th Order Accurate, Distributed Interpolation Library" (2011).
Theses and Dissertations. 2837.
https://scholarsarchive.byu.edu/etd/2837

This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion
in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please
contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.

http://home.byu.edu/home/
http://home.byu.edu/home/
https://scholarsarchive.byu.edu/
https://scholarsarchive.byu.edu/etd
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F2837&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=scholarsarchive.byu.edu%2Fetd%2F2837&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/2837?utm_source=scholarsarchive.byu.edu%2Fetd%2F2837&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu,%20ellen_amatangelo@byu.edu

SMBInterp: an Nth-Order Accurate, Distributed Interpolation Library

Stephen M. McQuay

A thesis submitted to the faculty of
Brigham Young University

in partial fulfillment of the requirements for the degree of

Master of Science

Steven E. Gorrell, Chair
C. Greg Jensen

Scott L. Thomson

Department of Mechanical Engineering

Brigham Young University

December 2011

Copyright © 2011 Stephen M. McQuay

All Rights Reserved

ABSTRACT

SMBInterp: an Nth-Order Accurate, Distributed Interpolation Library

Stephen M. McQuay
Department of Mechanical Engineering, BYU

Master of Science

The research contained herein yielded an open source interpolation library implemented in
and designed for use with the Python programming language. This library, namedsmbinterp,
provides an interpolation to an arbitrary degree of accuracy. The library is parametric in that is can
take input from the user to adjust the underlying interpolation mechanism. The characteristics and
behavior of the library according to the adjustment of theseparameters is presented herein, as well
as the results of a mesh resolution study depicting the accuracy obtained by the library.

Thesmbinterp library was designed with parallel computing environmentsin mind. The
library includes modules that allow for its use in high-performance computing environments.
These modules were implemented using built-in Python modules to simplify deployment. This
implementation was found to scale linearly approximately 180 participating compute processes.

The smbinterp library was designed to be mesh agnostic. A plugin system wasimple-
mented that allows end users to conveniently and consistently present their numerical results to
the library for rapid prototyping and integration. Two plugins are provided as examples and for
documentation of the plugin mechanism.

Keywords: Stephen M. McQuay,smbinterp, N-th-order accurate general interpolation, distributed
calculation schemes, multiphysics simulation

ACKNOWLEDGMENTS

I would like to thank Dr. Steven E. Gorrell for his willingness to advise me, his patient

attitude, and understanding during the lengthy process of compiling this research. His kind moti-

vation and technical assistance during this time were both essential to the completion of this work,

and will never be forgotten.

I am also grateful for the friendly and crucial assistance provided by Marshall Galbraith

which helped clarify the complicated parts of the implementation of the numerical method used

herein. Also, I am grateful for Alex Esplin for his help explaining the more esoteric computer

science-related concepts, and Matthew Peet whose blog entry helped put an end to a long stretch

of debugging.

I am especially grateful to have performed this research during a time when information is

so freely shared and readily available; I am truly indebted to all of the contributors to the Python

and Scipy projects. I would also like to acknowledge the engineers in the aerospace group at Pratt

& Whitney for the contribution of the research topic and for the partial funding provided at the

beginning of this research.

I am particularly thankful for the incessant nagging, computer assistance, and editing help

provided in large helpings by my father, Dr. Mardson Q. McQuay, who, despite his abnormally

refined technical prowess, was surprised to find out that people these days still usevi and LATEX.

Lastly, no acknowledgment is complete without an unfairly terse and obscenely understated

thanks to the author’s wife; Vanessa, thank you.

TABLE OF CONTENTS

LIST OF TABLES .vi

LIST OF FIGURES .viii

NOMENCLATURE . x

Chapter 1 Introduction . 1

Chapter 2 Literature Review . 5
2.1 Interpolation 5

2.1.1 Polynomial Interpolation 6
2.1.2 Butterfly Interpolation .. . 10
2.1.3 Baker’s Interpolation Method 15

2.2 Spatial Data Structures and Distributed Algorithms 16
2.2.1 Spatial Tree Structures 17
2.2.2 Distribution of Workload 18

Chapter 3 Method .21
3.1 Baker Method . 21

3.1.1 Linear Interpolant .. . 22
3.1.2 Least Squares Approximation of Error Terms 26

3.2 Basis Function Pattern 27
3.3 Mesh Plugins .30

3.3.1 △RandSk Vertex Selection . 30
3.3.2 Plugin System Design .32
3.3.3 Provided Plugins .33
3.3.4 Benefits of the Plugin System .. 33

3.4 Parallel Execution Framework 34

Chapter 4 Results and Discussion of Results. 37
4.1 General Library Performance 37

4.1.1 Interpolation Improvement 39
4.1.2 Temporal Performance .. 47
4.1.3 Mesh Resolution Study .50

4.2 Parallelization Results 53

Chapter 5 Conclusions & Recommendations. 59

REFERENCES .61

Appendix A smbinterp Source Code .65
A.1 smbinterp library . 65

iv

A.2 smbinterp Plugin System . 74
A.3 Parallelization Scripts 87
A.4 Gmsh Mesh Generation Scripts 98
A.5 General-purpose Utilities 99
A.6 Unit Tests .101

v

LIST OF TABLES

2.1 O(cN) Scaling of Memory Demonstrated When Subdividing a Single Triangular
Face . 15

4.1 The Mesh Vertex and Element Counts Used in the Parametric Library Study 39

vi

vii

LIST OF FIGURES

2.1 Visualization of a One-Dimensional Data Set 6
2.2 Visualization of a Two-Dimensional Data Set 6
2.3 Example Data Set for Curvilinear Interpolation [12] 7
2.4 Control Polygon of a B́ezier Curve Calculated Using the Method of Undetermined

Coefficients [12] . 9
2.5 Stencil Used in the Original Butterfly Interpolation Scheme [20] 11
2.6 Modified Stencil Employed in Zorin’s Improved Butterfly Scheme (Left), Stencil

Used with Extraordinary Points (Right) [25] 12
2.7 Example of the Effect of Extraordinary Points on the Original Butterfly Scheme

(Left), Improvements Proposed by Zorin (Right) [25] 13
2.8 Example of the Improvement in Visual Appeal Provided by the Zorin Subdivision

Scheme [25] . 13
2.9 Stencil Used in the Improved Twin-butterfly Interpolation Scheme [20] 14
2.10 A Binary Search Tree Data Structure 17

3.1 A Planar Simplex as Required for Baker’s Interpolation Scheme 23
3.2 Flowchart of the Pattern Implementation 29
3.3 Graphical Representation of Point Selection Algorithms: Nearest-Neighbor Point

Selection (left), Connectivity-Based Point Selection [9] 31
3.4 Regular Grid With Extra Points That are Collinear with an Edge of the Simplex△R 31
3.5 Flowchart of the Parallelization Architecture 35

4.1 Plot of Equation 4.1 38
4.2 Plots of 2-D Meshes, Resolution 1 and 2 40
4.3 Plot of the RMS of Error and Improvement Ratio for Mesh 1 42
4.4 Plot of the RMS of Error and Improvement Ratio for Mesh 2 43
4.5 Plot of the RMS of Error and Improvement Ratio for Mesh 3 44
4.6 Plot of the RMS of Error and Improvement Ratio for Mesh 4 45
4.7 The Effects of the Variation ofSj , Interpolation Order, and Mesh Resolution on

Average Time Spent per Interpolation for 2-D Meshes 48
4.8 The Effects of the Variation ofSj , Interpolation Order, and Mesh Resolution on

Average Time Spent per Interpolation for 3-D Meshes 49
4.9 Scaling of RMS of Error vs. Mesh Spacing for 2-D Meshes 51
4.10 Scaling of RMS of Error vs. Mesh Spacing for 3-D Meshes 52
4.11 Speedup (Sp) of the Parallel Algorithm Employed bysmbinterp 54
4.12 Efficiency (Ep) of the Parallel Algorithm Employed bysmbinterp. 55
4.13 CPU Utilization of theserver.py Process . 56

viii

ix

NOMENCLATURE

n Total number of points in cloud
i Index for a point in cloud
V Set of all pointsP in the cloud of points from a destination mesh
Pi each point in V, the setP0,P1, . . . ,Pn

N spatial dimensionality (two-dimensinal space, or three-dimensional space)
ξi Spatial locations fori-th point inV
Ξ Spatial location to which interpolation is performed
(x,y,z) Spatial coordinates
φ j Barycentric coordinates, also linear interpolant, also basis functions
△R The simplex namedR
Rj A point in a simplex△R
A j Area j, triangular portion of the simplex△R
Sk A point in the neighborhood ofΞ not in△R
m Total number of points inS1,S2, . . . ,Sm

q Physical quantity of interest (e.g. temperature)
q(ξ) Value ofq at positionξ . May be exact or interpolated
q(Ξ) Interpolated value ofq at Ξ
qlinear The linear interpolant ofq(Ξ)
f (Ξ) Least Squares approximation of error terms
a,b,c Three unknowns in equationf (Ξ), calculated using a least squares method
A Transpose of(a,b,c)
B Matrix used in least squares approximation of error involving spatial locations of extra pointsSk

BTB Covariance matrix
w Vector used in least squares calculation, involving the values ofq(Sk)
ν Order of requested interpolation, quadratic,cubit,etc.
ε Error of an interpolation
µ Number of vertexes in a destination mesh

x

xi

CHAPTER 1. INTRODUCTION

As engineers attempt to find numeric solutions to large physical problems, simulations

involving multiple physical models or phenomena, called multiphysical simulation, must be em-

ployed. These multiphysical simulations involve the coupling of disparate computer codes [1].

When modeling physically different phenomena the numeric models used to find solutions to these

problems employ meshes of varying topology and density in their implementation. For example,

the unstructured/structured mesh interfaces seen in the combustor/turbo machinery interface [2], or

the coupling of Reynolds-Averaged Navier-Stokes and Large Eddy Simulation (RANS/LES) CFD

codes in Computational Fluid Dynamics (CFD) [3]. A similar situation with disparate meshes

arises in the analysis of helicopter blade wake and vortex interactions, as for example when using

the compressible flow code SUmb and the incompressible flow code CDP [4]. When this is the

case, and the mesh elements do not align, the engineer must perform interpolation in the direction

of the flow of information: from the upstream code to the downstream code, or bi-directionally.

The Center for Integrated Turbulence Simulation (CITS) at Stanford University has devel-

oped an integrated multi-code simulation framework calledCHIMPS. CHIMPS stands forCoupler

for High-performance Integrated Multi-Physics Simulations[5]. CHIMPS is a Fortran/Python Ap-

plication Programming Interface (API) that efficiently handles three-dimensional physical data

look-up and linear interpolation across compute nodes, or servers, containing parts of computa-

tional domains using the Message Passing Interface (MPI) library [6, 7]. This framework gives

engineers an interface for coupling High Performance Computing (HPC) codes of disparate types

that run on a distributed cluster.

According to the authors of CHIMPS, the implementation of frameworks of this variety

present two main obstacles: efficient, distributed data look-up, and accurate interpolation. They

provide an elegant solution that efficiently locates data ina distributed environment. However, they

acknowledge that “although linear (bi-linear, tri-linear) interpolation is relatively straightforward

1

to implement, it is unable to guarantee the accuracy, conservativeness, and stability of the coupled

solution except in the limit of an infinitely fine mesh” [5].

Researchers at Pratt & Whitney have suggested the use of a framework similar to CHIMPS

as a mechanism to assist with high-performance interpolation during multiphysics simulations. In

fact, the use of the CHIMPS API to combine two in-house CFD codeshas already been demon-

strated. However, there is a concern with the potential lossof accuracy with the linear interpolation

method provided by CHIMPS, specifically when dealing with twomeshes of differing types (struc-

tured/unstructured), or meshes with disparate mesh densities.

One way to improve the accuracy of the solution is to increasethe complexity of the inter-

polation used. There exist many higher-order interpolation methods, but most are not designed to

be used on grids with irregular topologies. These concepts are briefly explored in chapter 2.

In its latest implementation, the CHIMPS framework can provide the user with higher-order

interpolation results, but only if the end user provides theframework with gradient information [8].

This method is involved, and obtaining the higher-order terms may be prohibitive. A need exists for

an improved, automatic, and general solution for obtainingmore accurate interpolation, especially

when the required gradient information is not available a priori.

Work has been accomplished by Galbraith [9] in the development of a general interpolation

algorithm named AVUSINTERP (Air Vehicles Unstructured/Structured Interpolation Tool). The

method employed utilizes a generalized interpolation thatyields either linear or quadratic interpo-

lation using a least squares error correction of a linear interpolation as described by Baker [10].

AVUSINTERP provides the engineer with a more generic interpolation scheme, but it was not im-

plemented in a parallel fashion, nor does it allow for the engineer to arbitrarily choose the order of

the interpolation.

There exists the need for a tool that can perform interpolation to an arbitrary degree of

accuracy, and that can be parallelized to take take advantage of modern HPC architectures. The

research work described herein includes the development ofa method to provide engineers with

an interpolation library that is itself a union of the best parts of the aforementioned tools. Namely,

this research provides an API, namedsmbinterp, that implements the N-th order accurate inter-

polation of a physical value in both two- and three-dimensional space. Previous implementations

of similar interpolation schemes were only implemented to third order accuracy [9]. Interpolation

2

using the API described in this research can be performed to any order of accuracy, and in both

two and three spatial dimensions.

The library described herein was implemented with mesh generality in mind. The API has

been implemented in an abstract way, where plugins are developed that implement class methods as

defined by the API (see chapter 3 for details). As a consequence of this plugin-based architecture,

the API is capable of working with topologically varied meshes. This means that the library can be

used with structured or unstructured grids, and also on a cloud of points with no predefined mesh

topology. This research provides examples of the development and use of plugins that implement

this interface for an unstructured mesh produced by Gmsh [11], and clouds of points with no

predefined underlying mesh structure.

While the API can provide the end user with improved interpolation results, it is not de-

signed to function correctly without a good underlying mesh. Meshes for physical simulations are

typically designed after having an a priori understanding of the underlying equations being solved

by the physical models. The onus of mesh design lies typically upon the engineer responsible for a

given physical domain. It is assumed that the meshes being employed in a multiphysics simulation

appropriately capture changes in the underlying physical quantities. The design of these meshes is

outside of the scope of this research.

The API was intended to be used by engineers in situations where all that is known is

physical data (e.g. temperature) at two- or three-dimensional locations. If higher-order informa-

tion is known (e.g. gradient quantities), then an interpolation of the variety presented by Hahn [8]

could be utilized. However, this API can be used in situations where that information is expensive,

difficult, or impossible to acquire. As long as the mesh was designed to properly resolve the un-

derlying fluctuations in physical quantities, the API described here generally provides an improved

interpolation by comparison with simple linear interpolation.

In order to minimize the time it takes to perform all requisite interpolations for a given

simulation, the API described herein has been implemented in a way that takes advantage of high-

performance, parallel computers, and has been demonstrated to scale in a distributed environment.

While there are more elegant parallel implementations for the solution of data look-up, this re-

search was designed to perform well according to the hardware limitations of the day. When

CHIMPS was originally implemented, the average amount of ramper compute core was on the

3

order of hundreds of Megabytes per compute core [5]. Current HPC architecture currently yields

an order of magnitude more RAM per core (sometimes substantially more), and the library was de-

signed to take advantage of this fact. This research was implemented to utilize memory-intensive

spatial data structures that are now reasonable to be used onmodern HPC systems.

While benchmarks are presented, the scope of the research waslimited to the implementa-

tion and study of the proposed design.smbinterp is not intended to out perform other applications

or libraries, nor does it purport to have a direct impact on the overall speed of a multiphysics simu-

lation. Furthermore, thesmbinterp library is not intended to magically improve all interpolations.

One must provide the library with a mesh that is intended to capture relevant physical information.

As an example a well designed CFD mesh is typically more dense in areas where physical infor-

mation is changing rapidly in any spatial dimension, specifically near physical boundaries. This is

typically done to appropriately resolve boundary layer flowcharacteristics. If information of this

variety is correctly captured,smbinterp does provide a good interpolation.

Chapter 2 contains a review of background concepts and literature requisite to understand

the context of the problem. This includes information on interpolation and various interpolation

schemes, a discussion on various spatial data structures, and a high-level discussion of various

parallelization schemes. Afterward an explanation of the research method is presented in chapter

3. This includes an explanation of the main numerical methodused in thesmbinterp library and

rationale for design decisions, including detail of how theAPI implements the general interpola-

tion scheme, and how the plugin architecture and network queue were designed and implemented.

Next, in chapter 4 results and benchmarks of the implementation are presented, including a discus-

sion of these results. Finally, conclusions and recommendations are presented in chapter 5.

4

CHAPTER 2. LITERATURE REVIEW

This chapter comprises a review of relevant literature consulted during the course of this

research. Various methods of interpolation were reviewed and assessed, and an overview of the

benefits and shortcomings of each method is presented here. Next, a review of concepts relevant

to the selection of appropriate spatial data structures researched is presented, followed by a review

of literature pertaining to the distribution of interpolation workload.

2.1 Interpolation

When numerically solving a set of partial differential equations used to model a particular

physical phenomenon, engineers discretize the spatial domain into a mesh and solve for physical

properties of interest at discrete locations. Meshes of varied density and topology are used when

coupling meshes that are designed to solve two disparate physical models. At solution boundaries

and at mesh overlap, the coupled solution is dependent on information flowing from the upstream

domain to the downstream domain, vice versa, or in both directions. When the points of the two

domains do not overlap exactly, an approximation for the quantity of interest at locations in the

downstream mesh must be calculated. Interpolation is used to find values at spatial locations not

exactly resolved by the mesh, and thereby providing the required information at the interface.

Because the mechanisms employed in this research come from various fields which have

their own nomenclature and definitions, the meaning of one-,two-, and three-dimensional data

shall be explicitly defined for clarity. For the purposes of this research we are interested in the

value of a physical quantity at a specific spatial location. Therefore, when discussing a method that

works for one-dimensional data, it is meant one spatial dimension,x, and one variable representing

a physical quantity,q, typically visualized in a two-dimensional plot where the abscissa represents

the spatial location, and the ordinate represents the physical quantity, are shown in figure 2.1. By

extension, a two-dimensional data set consists of two spatial dimensions(x,y) plus one physical

5

q

x

Figure 2.1: Visualization of a One-Dimensional Data Set

q

x

Figure 2.2: Visualization of a Two-Dimensional Data Set

quantity variable (q) shown in figure 2.2, and so on for three-dimensional data. Data of higher

dimensionality are not investigated in this work.

2.1.1 Polynomial Interpolation

Three popular methods for fitting a curve of degreen through a set ofn+ 1 points, as

shown in figure 2.3, are presented here. All methods require apriori knowledge of two sets of

information. First, the location of a set of pointsP0,P1, . . . ,Pn. Secondly, parameter values of the

underlying curve at those points, denotedt0, t1, . . . , tn, which represent the location of the point

along the curve in the curve’sparameter space[t0, tn], typically 0≤ t ≤ 1.

6

Figure 2.3: Example Data Set for Curvilinear Interpolation [12]

The first curvilinear interpolation method investigated isknown as Lagrange interpolation.

The Lagrange interpolation curve is defined by

P(t) = P0Ln
0(t)+P1Ln

1(t)+ . . .+PnLn
n(t) (2.1)

Ln
i (t) =

n

∏
j=0

(t − t j)

(ti − t j)
, j 6= i, (2.2)

which has the property that the basis polynomials (Ln
i) are 1 at pointPn and exactly 0 at all other

points in the interpolation. This property assists in obtaining an intuitive understanding of this

interpolation method, in that, when evaluating the curve atpointPi, the other points in the interpo-

lation Pj , j 6= i have no weight or pull on the curve. It is also what allows the curve to interpolate

point Pi at ti [12]. When calculated explicitly from the above equations, Lagrange polynomials

haveO(N2) complexity, but Werner [13] provides an interesting reformulation of the method that

performs withO(N) complexity. The notationO(N), also known as Big O Notation, comes from

the field of algorithm analysis, and signifies that generally, for N inputs, an algorithm will scale

linearly in time. O(N2) describes an algorithm that scales quadratically,O(1) runs in constant

time, and so forth.

7

A similar curvilinear interpolation method uses Newton polynomials. The method is sim-

ilar to Lagrange interpolation in that it interpolates all points, but can be computed using a table

of divided differences, which is, after initial construction, computationally cheap (O(1)) since the

values of previous calculations are cached and reused [12].

Another method for fitting a curve to a set of points is known asthe method of Undeter-

mined Coefficients [12]. First the fundamental equation of the curve is expressed. As an example,

consider the curve in figure 2.3. In order to fit a curve of thirddegree to these data it could be as-

sumed that the underlying equation is a third-degree polynomial curve. Consider thex component

of the Bernstein polynomial form of a third-degree curve:

x= a0(1− t)3+3a1t(1− t)2+3a2t
2(1− t)+a3t

3. (2.3)

Using the known points and parameter values, this equation is evaluated yielding a system of linear

equations. Evaluating only thex component at the known points yields

x0 = a0(1− t0)
3+3a1t0(1− t0)

2+3a2t
2
0(1− t0)+a3t

3
0

x1 = a0(1− t1)
3+3a1t1(1− t1)

2+3a2t
2
1(1− t1)+a3t

3
1

x2 = a0(1− t2)
3+3a1t2(1− t2)

2+3a2t
2
2(1− t2)+a3t

3
2

x3 = a0(1− t3)
3+3a1t3(1− t3)

2+3a2t
2
3(1− t3)+a3t

3
3. (2.4)

Lastly, the unknown coefficientsa0,a1,a2 anda3 are obtained by solving this system of lin-

ear equations. Solving forai and performing a similar computation for they Bernstein polynomial

yields the B́ezier control polygon illustrated in figure 2.4.

These curvilinear interpolation methods suffer from shortcomings that make them inade-

quate for the general interpolation sought after in this research. If a dense collection of points that

follow a curve of a particular degree are to calculate the parameters of a curve of an even higher

degree, then the curve may exhibit the undesirable side effect of oscillatory artifacts known as

Runge’s phenomenon [14]. Runge’s phenomenon is also manifested when trying to interpolate a

high order curve with points that are equidistant. Berrut [15] discusses the benefits and implemen-

tation of Barycentric interpolation, which is a variant of Lagrange polynomial interpolation that

8

Figure 2.4: Control Polygon of a B́ezier Curve Calculated Using the Method of Undetermined
Coefficients [12]

yields fast and stable results and does not suffer from Runge’s phenomenon. Also, when it is pos-

sible to adjust the spacing of the points used during interpolation, Chebyshev spacing can be used

to mitigate oscillatory effects [16]. Therefore, the effects of Runge’s phenomenon in the Lagrange

method may be mitigated by adjusting the spacing of the points, by manipulating Lagrange polyno-

mials through barycentric interpolation, and by sampling the domain in a more degree-appropriate

fashion.

Another shortcoming of these methods is that both the curve’s parameter valuesti at each

of the pointsPi and the spatial locations ofPi must be known a priori. The interpolated value is

strongly dependent on the parameter values, and ift is chosen arbitrarily or inappropriately the

interpolation may be incorrect. Also, while these methods apply to curves in two- and three-spatial

dimensions, they are only applicable to curves, whereas thegeneral interpolation in this research

must apply to both surfaces and fields. Insight was sought by investigating these methods, but they

are not known to generalize to surfaces (two-dimensional data) or fields (three-dimensional data)

for meshes of irregular topologies.

Furthermore, the stencil of participating pointsPi is not compact. All pointsPi are required

to participate in every interpolation; curvature matchingis only guaranteed when using all points

in the space. Shukla [17] proposes a method that yields arbitrarily high-order compact polynomial

9

interpolations, however it is more difficult and rigorous toauthor a scheme that has a more compact

stencil, is less computationally expensive, and yet still matches curvature [18]. The following

section describes a method that overcomes a significant number of these shortcomings.

2.1.2 Butterfly Interpolation

In the field of computer graphics and animation there exist geometric surface control tech-

niques that allow artists to manipulate a relatively small number of control points which affect

the shape of a more complicated, smooth surface. While the control points of a NURBS (Non-

Uniform, Rational B-Spline) surface afford the artist an abstracted, high-level control mechanism,

they require that the control points of the surface exist topologically in two dimensions (typicallys

andt) [12,19]. The topological rigidity in surfaces of this variety limit the artist’s ability to create

models with complex topologies.

As a consequence of the need to provide artists with simple-to-use yet flexible surface

control mechanisms schemes have been designed to take a control net of elements, typically com-

posed of quadrilateral and triangular elements, and recursively subdivide the elements therein until

a smooth surface is formed. These schemes are categorized into two groups. Primal subdivi-

sion schemes retain the last iteration’s vertexes for use infuture subdivision [20]. Dual schemes

discard the previous iteration’s information. Primal schemes are then subdivided into two cate-

gories: approximation schemes, where the location of the original vertexes change, and interpolat-

ing schemes, where the resulting surface interpolates (passes through) the vertexes in the original

control mesh. Approximating schemes are in heavy use in the animation industry [21, 22], but,

as they do not interpolate the original mesh, are not directly applicable to this research. While

subdivision methods exist that combine schemes of multiplevarieties [23], primal schemes that

interpolate the control mesh are the most applicable to thisresearch since they can be used to fit

a cloud of points in a smooth manner, and, therefore, can be used to perform continuity-enforced

interpolation.

In order to understand the benefits and shortcomings of the original Butterfly scheme, a few

continuity-related terms must be defined. Curves and surfaces that meet at a common vertex have

C0, or coincidental continuity. Those that demonstrate tangential continuity with other curves and

surfaces are given the labelC1 continuous. Curves and surfaces that match curvature are labeled

10

Figure 2.5: Stencil Used in the Original Butterfly Interpolation Scheme [20]

C2 continuous [12]. Also, the number of edges that meet at a vertex determine the vertex’svalence.

Extraordinary pointsare points that have an undesirable valence.

The following surface interpolating subdivision schemes described in this review are in-

cremental improvements upon the original Butterfly interpolation scheme described by Dyn [24].

This scheme subdivides each triangle in a triangular mesh sothat at each recursive step all of the

vertexes, including the original vertexes, are interpolated. Each recursive subdivision yields four

new triangles per triangular patch. At each step, a new vertex λ (k+1)
e for the edgeλ k

0λ k
1 is created

using neighboring vertexesλ k
0 ,λ

k
1 , . . . ,λ

k
7 at thek-th recursion level, as illustrated in figure 2.5.

The geometric location of the new point is determined by the following formula:

λ (k+1)
e =

1
2
(λ k

0 +λ k
1)+

1
8
(λ k

2 +λ k
3)−

1
16

(λ k
4 +λ k

5 +λ k
6 +λ k

7). (2.5)

In the butterfly scheme, vertexes that do not have valence sixare extraordinary points.

Under conditions where no extraordinary points exist, the original Butterfly scheme yieldsC1

continuity. However, the original butterfly scheme yields undesirable effects around extraordinary

points. The effects of extraordinary points is shown in the left image of figure 2.7. Since each

vertex in a tetrahedron has valence three (not six), the original butterfly scheme yields sharp,C0

continuous points at each vertex.

11

Figure 2.6: Modified Stencil Employed in Zorin’s Improved Butterfly Scheme (Left), Stencil Used
with Extraordinary Points (Right) [25]

Zorin [25] provides an improvement to Dyn’s interpolation scheme that, while it does not

improve upon theC1 continuity of the scheme, it does yield an interpolation that is generally less

sharp and creased. If the edge being subdivided has two vertexes of valence six, the Zorin scheme

uses a stencil of ten vertexes as shown in figure 2.6. Three special rules exist for vertexes that do

not have valence six, and are treated in full by Zorin [25].

The visual effect of the larger stencil used in the Zorin interpolation is demonstrated in

the tetrahedron interpolation on the right of figure 2.7, where the interpolation is generally more

smooth around the extraordinary vertexes. The general effects of extraordinary points on the but-

terfly scheme is also shown in figure 2.8. The image on the left is the original mesh. The image in

the middle was produced using the original butterfly interpolation, and exhibits the visual artifacts

affected by the extraordinary points, which are manifest inthe creases and unnatural sharpness sur-

rounding these points. The smoothing effect of the modified method is demonstrated by the model

on the right, shown in figure 2.8. This image was produced by applying the modified butterfly

scheme to the mesh on the left.

Yang [20] developed a significantly improved extension of the Butterfly scheme, named

the Twin-Butterfly scheme. This interpolation scheme uses a much larger stencil, shown in figure

2.9. When mesh topology allows for the use of this larger stencil, the Twin-Butterfly scheme

yieldsC2 continuity. When unable to use the complete stencil, Yang proposes an algorithm that

attempts to subdivide each face with progressively less ideal algorithms, depending on the ability of

12

Figure 2.7: Example of the Effect of Extraordinary Points onthe Original Butterfly Scheme (Left),
Improvements Proposed by Zorin (Right) [25]

Figure 2.8: Example of the Improvement in Visual Appeal Provided by the Zorin Subdivision
Scheme [25]

being able to form particular stencils with the topologically adjacent vertexes. The first attempted

interpolation is theC2 Twin-butterfly scheme, followed by Zorin’sC1 ten-point stencil, Dyn’sC1

eight-point interpolation, and then two simpler interpolations introduced by Yang. The first is

called the Rhombus scheme, named for its use of the four topologically closest vertexes. The last

scheme attempted always works since it is simply the geometric average of the two points in the

edge being subdivided.

13

Figure 2.9: Stencil Used in the Improved Twin-butterfly Interpolation Scheme [20]

These subdivision interpolation schemes have definite advantages. First of all, they are

implemented using a compact stencil. Unlike the curvilinear interpolation methods that generally

needn+1 points to give a curve of ordern, the butterfly schemes use a localized set of vertexes

in each calculation. Another benefit to the Yang scheme is that, under the conditions of an ideal

mesh,C2 continuity can be obtained, degrading gracefully toC1 andC0 continuity.

One of the disadvantages of these methods is that at each subdivision, exponentially more

vertexes are created. This increases memory consumption and calculation times exponentially, so

there is a limit on how many subdivisions can be performed in areasonable amount of time. For

example, using the geometric modeling software package Blender [26], memory consumption of

the repeated subdivision of a single triangular element is shown in Table 2.1 which shows that the

scaling of memory is exponential. The use of a subdivision interpolation scheme would therefore

rely on using a small number of subdivisions and then performing a linear interpolation against a

triangular element that is “small enough“ to give accurate results.

Another disadvantage of the surface subdivision interpolation schemes is that while these

subdivision schemes hold promise for use in data interpolation whenN = 2, there exist no known

three-dimensional volumetric interpolatory subdivisionschemes that work on meshes with general

topologies. The schemes that do exist either volumetrically interpolate rigid mesh topologies, or

they they do not interpolate the original mesh. McDonnell [27] pointed out that “the original butter-

fly algorithm does not generalize directly to 3D,” but implemented an interpolatory scheme which

requires hexahedral meshes. Bajaj [28] implemented volumetric subdivision, also restricted to

hexahedral mesh elements, but the scheme was approximate, so it does not interpolate the original

mesh. Chang [29] implemented a scheme for volumetric subdivision with arbitrary topologies, but

14

Table 2.1:O(cN) Scaling of Memory Demonstrated When
Subdividing a Single Triangular Face

Subdivision Vertex Count Memory
0 3 5.03M
1 6 5.04M
2 15 5.04M
3 45 5.04M
4 153 5.06M
5 561 5.13M
6 2145 5.41M
7 8385 6.51M
8 33153 10.91M
9 131841 28.45M

10 525825 98.53M
11 2100225 378.68M

it was non-interpolatory. While Chang [30] later implementeda volumetric subdivision scheme for

arbitrary topologies, it does not guarantee “higher order continuity across extraordinary vertexes

and edges”.

2.1.3 Baker’s Interpolation Method

Baker [10] describes a method that works with either two-dimensional or three-dimensional

data, can be implemented in a way that allows an arbitrarily high order of approximation, and

places practically no limits on the underlying mesh topology. This method approximates a surface

fit to neighboring points of almost any mesh topology to an arbitrary degree. It would seem that it is

the correct method to employ for the mesh-agnostic, arbitrary order,N = 2,3 interpolation sought

after in this research. By solving a collection of reasonablysized linear systems of equations

(explained in detail in chapter 3) approximate error correction terms to any arbitrary order may be

obtained. Compared to other conventional techniques, the Baker interpolation method performs

relatively well, but it does suffer from some limitations.

First of all, interpolation situations arise which Baker termed “pathological situations” [10].

In all of these cases, the covariance matrix used to calculate the error approximation term is singu-

lar. While Baker states that the system of equations is consistent, and will therefore always have a

15

solution, “a non-singular covariance matrix ensures that the least squares solution is unique”. This

covariance matrix is singular when more thanm− 2 of them extra pointsS1,S2, . . . ,Sm lie on a

line that isC0 with any of the vertexes in the simplex△R, including any of the simplex’s edges

(C0 with any NRj), explained in more detail in chapter 3. While Baker states that “For a general

arrangement of points it is unlikely that these pathological situations will arise”, it assumes that an

engineer will never want to arrange points in a regular fashion, which is exactly how some meshes

are designed [31].

There are two approaches to solving this problem. The logic to protect against this situa-

tion could be implemented with a mesh plugin. More detail on this approach is found in chapter

3, section 3.3. The authored plugin would select the neighboring points according to an intelli-

gentSj selection algorithm designed to minimize the likelihood ofa singular covariance matrix.

Alternatively, as suggested by Galbraith [9], if the covariance matrix is singular the higher order

approximations for a particular interpolation may simply be ignored, and the interpolation remains

linear. However, if the singularity is due to the topology ofthe underlying mesh structure, e.g., the

mesh is regular, the implementation of an intelligent plugin would be a superior alternative.

Lastly, this method does not guarantee continuous derivatives across the entire domain

[10]. Specifically, whenever there is a change in stencil, there is potential for a discontinuity

in the interpolation. While this is true, Baker’s method has been shown to provide reasonable

interpolation results in practice using up to a quadratic approximation [9,10].

2.2 Spatial Data Structures and Distributed Algorithms

As stated in chapter 1, the implementation of a general purpose interpolation library presents

two main challenges: accuracy in interpolation and efficiency in spatial data querying. The use of

Baker’s interpolation method addresses the challenge of interpolation accuracy in that it provides a

mechanism that can be used to improve the interpolation. While the primary focus of this research

is on the implementation of a powerful interpolation library, spatial data structures and distributed

algorithms play an important role in the performance of saidlibrary. Both subjects are briefly

addressed in this section.

16

10

8

9 21

15

2

5

3

1

Figure 2.10: A Binary Search Tree Data Structure

2.2.1 Spatial Tree Structures

The selection of a good data structure is a key element to designing good computer soft-

ware. Algorithms that are otherwise well designed could be slowed down if an incorrect data

structure is used. As an example, consider searching through a list of randomly ordered, random

numbers

[3,1,9,15,21,8,5,10,2, . . . ,M].

The test for the inclusion of a number in this list is on average O(M). While it is possible that the

number may be found early in the list in general and on averageall M numbers must be inspected

to test for inclusion. The number may not be in the list at all,and still all members of the list are

inspected to verify this fact. However, if the numbers can bestored in order while being generated,

in a tree structure as shown in figure 2.10, the average performance becomesO(log2(M)). At each

step of a traversal, the search continues down the half of thetree likely to contain the number. The

time difference betweenO(log2(M)) andM can be significant, especially for largeM.

Similar tree data structures exist for use in spatial data indexing and searching. Recursively

subdividing a spatial domain is generally referred to as binary space partitioning [32]. There exist

many popular spatial partitioning trees [33–36]. Each specific variety of spatial partitioning data

structure has its own benefits. As an example the spatial database extension named PostGIS to the

open source database PostgreSQL, offers a column index implemented as one type of spatial data

structure called an R-tree. This index allows for rapid querying of spatial data points, but does not

provide mechanisms for querying nearest neighbors [37,38]. The parallel Alternating Digital Tree

17

(ADT) used in CHIMPS is heavily optimized for equally distributed data across a low-memory

system [5]; the implementation and benefits of an ADT are described by Bonet [39]. Other trees,

such as the kd-tree and the sr-tree are good at handling data with higher dimensionality [40].

Garth [41] provides an overview of the benefits and shortcomings of three structures: oc-

trees, kd-trees, and the celltree. In octrees, space is recursively subdivided into eight uniform

octants, which is not memory efficient in the case of spatially non-uniform vertex distributions.

Kd-trees, where space is subdivided at each point, “facilitates non-uniform subdivision, at the cost

of generally deeper trees and a storage overhead” [41]. The celltree, authored by Garth, has many

benefits. It works with unstructured grids, is numerically robust, can be used with both CPU and

GPU applications, and makes optimal and adjustable use of memory.

While adding new vertexes to a kd-tree can be computationallyexpensive [35], the mech-

anism implemented in this research is expected to work on a very specific set of vertexes between

long-running numeric computations. Therefore, the entiretree generally remains constant during

the interpolation phase of a single iteration. The Python libraries Numpy and Scipy offer scientific

data structures and algorithms for use in scientific computing [42]. NumPy provides users of the

Python language with high-performance multi-dimensionalarrays. Scipy is a collection of scien-

tific algorithms that make use of the fast arrays implementedby NumPy. The interpolation library

in this research makes use of these excellent tools. Scipy contains a kd-tree implementation [43],

which was found to be sufficiently performant, and is the datastructure selected for use in this

research.

2.2.2 Distribution of Workload

Embarrassingly parallel workload is workload “for which little or no effort is required to

separate the problem into a number of parallel tasks”, and which typically involves little or no

communication between the participating threads of execution [44]. As stated previously, the data

are generally constant during the transfer of interpolateddata between the upstream code and

downstream code. This being the case, if data can be inexpensively replicated, then the action

of interpolation can be posed in an embarrassingly parallelfashion. Each compute unit with ac-

cess to the data can divide and conquer a fraction of the totalworkload, and, after performing an

interpolation, report the result.

18

Two mechanisms were investigated for use in the parallelization of this library. First, the

problem was posed in a fashion that mirrors the architecturecommonly found in high-performance

web sites of the variety of Google.com or Amazon.com. These sites are designed to distribute the

task of responding to requests so an army of servers in order to handle many thousands of re-

quests per second. Devlin [45] presents an overview of commonly used terminology in this field,

and Cardellini [46] provides an overview of the state of the art, including various configurations

in modern use. The configuration investigated involved the proxying of requests to a farm of

servers designed to perform the interpolation being requested. Because the proxying of requests

is generally far less computationally expensive than the actual interpolation calculations, this is

a reasonable approach to parallelization, assuming the data can be properly replicated for each

compute unit. The replication of databases is an active areaof software development and im-

plementation. Three clustering solutions for the PostgreSQL database, Slony-I, PGCluster, and

Bucardo, were investigated and found to scale well with requests [47–49]. However, the only spa-

tial indexing scheme available, PostGIS, does not implement nearest neighbors queries in three

dimensions [38]. Therefore this form of data replication and proxy-based distribution of queries

was found not to be usable for this research.

The Python language has recently (since version 2.6) included a module designed to assist

in the implementation of parallel processing applications, namedmultiprocessing [50]. Because

it does not use threads,multiprocessing does not suffer from the shortcomings of Python’s

Global Interpreter Lock, or GIL. The GIL is a Python peculiarity that does not allow for more than

one thread to execute Python bytecode at any given time, which inhibits parallelism, but simplifies

the thread-safe implementation of Python’s built-in data structures [51]. Themultiprocessing

library circumvents this limitation by implementing a processes-based rather than thread-based

approach to concurrency, and provides a collection of classes and modules that perform in a truly

parallel fashion.

Themultiprocessing library contains aManager class, which is a mechanism for sharing

objects between processes of themultiprocessing module. These objects are accessible from

any network-connected computer, firewalls permitting. An object of theManager class can be

given stewardship over objects of theQueue class. This class implements a multi-producer, multi-

consumer First In First Out (FIFO) queue, to which multiple worker processes, or minions, can

19

connect. A simple message passing interface can be defined where a single producer of workload

can enqueue workload that all minions are capable of processing. When a minion has accomplished

a piece of workload, or in this case an interpolation, it enqueues the result into a results queue. The

ability for a centralized service to proxy requests to an army of workers, which was the most useful

mechanism in the previous architecture, is therefore preserved and implemented using primitives

found in the core libraries of the language.

The primary focus of this research was providing an API that generally and arbitrarily

solved the problem of interpolation to any degree of accuracy. However, other solutions to the

distribution of workload that utilize message queues exist, and were investigated. ØMQ, and it’s

python bindings pyzmq, are a concurrency framework that permits the terse authoring of compli-

cated networking concepts including message queueing [52,53]. ØMQ can be used in a similar

fashion to the MPI libraries, albeit ØMQ is significantly less complicated. Tatotek demonstrated

that implementing a network queue using zeromq instead of the multiprocessing Queue and Man-

ager objects is approximately seven times more productive [54]. Salt is an open source project that

provides a distributed execution framework built upon the ØMQ libraries [55]. Begun in February

of 2011, salt is still in very active development, and therefore not currently suitable for use. The

investigation of these nascent, performant, alternative libraries and frameworks may therefore be

recommended for future work.

Because nearest neighbor three-dimensional queries are notyet available to open source

databases, the route of implementation similar to distributed web applications was abandoned.

While higher performance versions of what is included in the Python standard library exist, the

built-in modules were selected due to their maturity and ubiquity.

Baker’s interpolation method was selected for use in the library provided in this research.

It was selected for use because it can be used with meshes of varying type and topology, or no

topology at all. Also, Baker’s method requires a very small stencil of points in order to perform

interpolation. Lastly, it can be used to calculate arbitrarily approximate interpolations. TheKDTree

structure found inscipy.spatial can be used to perform rapid nearest-neighbor queries in two-

and three-dimensions, and is used in the results of this research. The methods employed in the

authoring of thesmbinterp API are described in the following chapter.

20

CHAPTER 3. METHOD

The numerical method implemented by thesmbinterp API yields an interpolation library

with the characteristics described in the previous chapter. Namely, the library is general-purpose

and functions with few restrictions on mesh type or topology. The interpolation library yields an

interpolation that fits an approximating surface of any requested order to a relatively small stencil

of points from a larger cloud of points. This library was implemented to take advantage of parallel

computing environments to minimize execution time. This chapter contains an explanation of

the numerical methods used in the implementation of thesmbinterp interpolation library. First,

an explanation of the numerical method employed for interpolation is presented, including novel

and dynamic approaches to the implementation. Next, a description of the plugin architecture is

explained, which is the mechanism that provides an abstractinterface to the library and allows

the library to operate on a variety of meshes. An explanationof the parallelization mechanism

employed then follows.

3.1 Baker Method

The interpolation method proposed by Baker [10] exhibits thecharacteristics required to

implement a general, arbitrarily approximate, two- and three-dimensional interpolation required

of this research. Although there exist no general order (limited to quadratic interpolation) and

parallel implementations of Baker’s numerical method priorto smbinterp, an understanding of

this method would provide the reader with a basis so as to better understand the benefits and

limitations of the resultantsmbinterp API. The Baker method is thus explained in detail first.

Let V be defined as a set ofn randomly distributed pointsV = {P0,P1, . . . ,Pn}. Let N

represent the dimensionality of the space, such that each point hasN vector components,(x,y) in

two-dimensions, and(x,y,z) in three-dimensions. Letq represent a physical quantity of interest,

e.g. temperature. Each pointPi in V has a valueqi for eachn locations. Denoting eachlocationin V

21

with ξi, defineq(ξi) = {q0,q1, . . . ,qn}. Let Ξ be the location of the point to which an interpolation

is required. In Baker’s original derivation, the termsx andX are used to denote the spatial locations

in place ofξ andΞ; sincex andX specifically refer to one of the orthogonal spatial directions, it

is changed toξ andΞ herein for clarity.

Baker’s interpolation method comprises the adjustment of a linear interpolation by a least

squares estimate of the error of that interpolation calculated using a linear extrapolation to a stencil

of surrounding points. Therefore, the Baker interpolation of the value ofq to the pointΞ is defined

by:

q(Ξ) = qlinear(Ξ)+ f (Ξ), (3.1)

whereqlinear is the linear interpolation, andf (Ξ) is an estimation of the higher-order error terms.

The process of calculating the Baker interpolant therefore involves the calculation ofqlinear(Ξ) and

f (Ξ); the definition and derivation of these terms follows.

3.1.1 Linear Interpolant

There exists a clever and convenient way to linearly interpolate from the set of points in

a simplex to a position within the convex hull of that simplex. This section treats the calculation

of qlinear(Ξ) from equation 3.1. A simplex is defined as the “generalization of the notion of a

triangle or tetrahedron to arbitrary dimension” [56]. The term simplexhas a more rigorous and

broadly applicable mathematical definition [57], but the simple definition of a simplex is used for

the purposes of this research: namely a triangle in two-dimensions (N = 2), and a tetrahedron in

three-dimensions (N= 3). Note that a simplex always hasN+1 vertexes. Therefore let the simplex

defined byRj ,1≤ j ≤ N+1, or△R, denote the simplex composed ofN+1 points surrounding

Ξ, labeledR1,R2,R3. In order for the interpolation to succeed, it is required that the simplex△R

contain the pointΞ.

The other participating geometric entities are shown in figure 3.1. The red pointΞ is the

point to which an interpolation is required.R andSare points in the cloudV in the neighborhood

of Ξ. The blue pointsRj denote the vertexes in the simplex△R1R2R3, and the green pointsSk are

extra points in the neighborhood ofΞ, not already inRj . The three triangles formed by joiningΞ

with each vertex in△Rare denotedA1,A2, andA3, andAtotal = A1+A2+A3.

22

3

R

Ξ

1

R
2

R
3

A
1

A

A
2

S
1

S
3

S
2

S
...

S
m

Figure 3.1: A Planar Simplex as Required for Baker’s Interpolation Scheme

Barycentric coordinates are used to perform the linear interpolation; these coordinate are

also referred to as areal coordinates because they relate tothe area of the trianglesA1, . . . ,AN+1 of

a simplex [58]. In geometric terms, the barycentric coordinatesφ j(ξ) of a point in a simplex are

the values of the normalized areasA j/Atotal, opposite the vertexRj in the simplex△R. One way to

conceptualize the meaning of the barycentric coordinates is to visualize how the geometric areas

A1,A2, andA3 change asΞ changes withinRj . If Ξ is selected such thatΞ = R1, the ratios of the

areasA2/Atotal = A3/Atotal = 0, andA1/Atotal = 1.

The barycentric coordinates define the influence of each point’s value on the linear inter-

polation. In other words, the ratio ofA j/Atotal represents the influence from 0≤ φ ≤ 1 thatq(Rj)

has over the linear interpolant in the simplex. IfΞ = Rj , the value ofqlinear(Ξ) should then be

influenced entirely by the known value ofq(Rj). If Ξ is placed in such a way as to give

A1

Atotal
=

A2

Atotal
=

A3

Atotal
(3.2)

23

the valueq(Rj) at each pointRj contributes equally to the calculated value ofqlinear(Ξ). The linear

interpolant, which takes for inputs the simplex△RandΞ, is defined as

qlinear(△R,Ξ) =
N+1

∑
j=1

q(Rj)
A j

Atotal
. (3.3)

The linear basis functions for this scheme,φ j(Ξ), must be defined in such a way as to have

a value ofφ j(Ξ) = 1 when being evaluated at the simplex vertexRj = Ξ. All other basis functions

at all other points in△Rshould yieldφ(Rι) = 0, ι 6= j. Thus, defining the basis functions to be the

barycentric coordinates, the following is obtained:

φ j(Ξ) =
A j

Atotal
. (3.4)

Replacing terms in equation 3.3 using equation 3.4, the following expression is obtained forqlinear:

qlinear(△R,Ξ) =
N+1

∑
j=1

q(Rj)φ j(Ξ). (3.5)

Recall thatq(Rj) is given a priori, and is the known physical quantity of interest at the sim-

plex vertexes. Beginning with two-dimensional data, or planar space withN = 2, and expanding

equation 3.5 for eachRj in the simplex for this dimension yields:

qlinear(△R,Ξ) = q(R1)φ1(Ξx,Ξy)+q(R2)φ2(Ξx,Ξy)+q(R3)φ3(Ξx,Ξy). (3.6)

According to equation 3.6, if the pointΞ is atR1, φ(Ξ1) = 1,φ(Ξ2) = φ(Ξ3) = 0, and the value of

qlinear is determined solely from the valueq1, with no influence from the otherRj in the simplex.

This equation exhibits the desired interpolatory behavior.

The solution for the value of the basis functionsφ j(Ξ) in equation 3.5 is the only un-

known quantity required to calculate the linear interpolation. To solve forφ j(Ξ) a system of linear

equations will be defined involving the points in the simplexRj , Ξ, and equation 3.6. Ifq(Ξ) is

a constant,q1 = q2 = q3 = qlinear = qconstant, and equation 3.6 can be modified by dividing by

qconstant, that is:

φ1+φ2+φ3 = 1. (3.7)

24

Furthermore, the basis functions must be calculated so thatequation 3.6 also interpolates

geometric location of the pointΞ, hence

R1xφ1(Ξ)+R2xφ2(Ξ)+R3xφ3(Ξ) = Ξx (3.8)

R1yφ1(Ξ)+R2yφ2(Ξ)+R3yφ3(Ξ) = Ξy. (3.9)

The values of the basis functionsφ j(Ξ) can be found by solving the following system of linear

equations involving equations 3.7, 3.8, and 3.9:

1 1 1

R1x R2x R3x

R1y R2y R3y

φ1(Ξ)

φ2(Ξ)

φ3(Ξ)

=

1

Ξx

Ξy

. (3.10)

Extension of equation 3.5 toN= 3 is straight forward. The three-dimensional case requires

the use of a four point simplex (tetrahedron). Adding a fourth basis function expression associated

with the new point to equation 3.6 yields

qlinear(△R,Ξ) =q(R1)φ1(Ξx,Ξy,Ξz)+q(R2)φ2(Ξx,Ξy,Ξz)

+q(R3)φ3(Ξx,Ξy,Ξz)+q(R4)φ4(Ξx,Ξy,Ξz). (3.11)

Using similar logic as was used for the derivation of equations 3.7, 3.8, and 3.9,φ(Ξ j) can be

calculated from

1 1 1 1

R1x R2x R3x R4x

R1y R2y R3y R4y

R1z R2z R3z R4z

φ1(Ξ)

φ2(Ξ)

φ3(Ξ)

φ4(Ξ)

=

1

Ξx

Ξy

Ξz

. (3.12)

The process of calculatingqlinear(Ξ) is fairly straight forward. First, populate the matrix in

equation 3.10 for two-dimensional data or the matrix 3.12 for three-dimensional data. Then solve

the system of linear equations forφ , and then evaluate the dimension-appropriate equation for

qlinear(Ξ), i.e., either equation 3.6 or 3.11. The complete source codelisting of the implementation

of this method in thesmbinterp module can be found in appendix A.

25

3.1.2 Least Squares Approximation of Error Terms

Continuing with the explanation and derivation of Baker’s interpolation method [10], the

least squares approximation of error termsf (Ξ) of equation 3.1 for two-dimensional data is now

derived; the case whereN is 3 is explained in section 3.2. Ifq(Ξ) is evaluated at any of the points

Rj in the simplex, thenq(Rj) is exact, and there is no need for an error adjustment atRj , hence

f (Ξ) = 0. Similarly, if q(Ξ) is being evaluated along any of the opposite edges toRι of the simplex

△R, the error term should have no influence fromφι(Ξ), asAι = 0. This condition is satisfied when

expressing the error terms using the linear basis functionsas

f (Ξ) = aφ1(Ξ)φ2(Ξ)+bφ2(Ξ)φ3(Ξ)+cφ3(Ξ)φ1(Ξ). (3.13)

In equation 3.13 the three double products of basis functions are the set of distinct products

of basis functions that are quadratic in the two spatial dimensionsx andy, and zero when evaluated

at each of the vertexes in△R. This term represents a third-order accurate approximation for the

error up to and including the quadratic terms. This equationintroduces three unknowns whose

values must be solved, namelya,b, andc.

Recall thatSk,k= 1,2, . . . ,m is the set ofmpoints surroundingΞ that are not in the simplex

Rj . A least squares system of equations must be defined using thevalues of the basis functions at

these points, the values of a linear extrapolation for each of those points using the simplex△R, and

the values ofa,b, andc in equation 3.13. DefineA as(a,b,c)T . Applying least squares theory [59]

a, b, andc are found by inverting the following 3×3 matrix:

BTBA= BTw. (3.14)

The matrixB is defined using the identical basis function pattern as in equation 3.13. De-

noteφ j(Sk) as the value ofφ j evaluated using equation 3.6 using the data pointSk instead ofΞ.

26

The matrixB in equation 3.14 is thus defined:

B=

φ1(S1)φ2(S1) φ2(S1)φ3(S1) φ1(S1)φ3(S1)

φ1(S2)φ2(S2) φ2(S2)φ3(S2) φ1(S2)φ3(S2)
...

...
...

φ1(Sm)φ2(Sm) φ2(Sm)φ3(Sm) φ1(Sm)φ3(Sm)

. (3.15)

The value ofq(Sk) is known. The value ofqlinear(Sk) (the linear extrapolant) can also be

calculated using equation 3.5. Definew in equation 3.14 as

w=

q(S1)−qlinear(△R,S1)

q(S2)−qlinear(△R,S2)
...

q(Sm)−qlinear(△R,Sm)

. (3.16)

Equation 3.14 is populated with the information from each ofthe surrounding points inSk,

then the unknownA can be calculated. KnowingA, equation 3.13 is evaluated forf (Ξ). Subse-

quently the previously calculated value ofqlinear(Ξ) and the recently calculated value off (Ξ) are

used to solve equation 3.1 forq(Ξ). A full listing of the implementation of Baker’s method in the

smbinterp Python module can be found in appendix A.

3.2 Basis Function Pattern

The existing literature does not describe how the combination of basis functions in equa-

tions 3.13 and 3.15 generalizes to higher orders of approximations, or to higher spatial dimensions,

nor does it provide a mechanism by which these terms can be calculated [10]. The implementation

and explanation of this method constitutes a contribution of this research.

A pattern exists to define any error approximation functionf (Ξ) and covariance matrix

BTB parametrized by order of approximation and dimension. Define ν as the desired order of

interpolation. As defined above,N is the spatial dimension. The pattern for the combinations

of basis functions that are used to definef (Ξ) is the collection ofν-th ordered combinations of

N+1 basis functionsφ j that are unique and non-duplicate, triplicate, etc. As an example, when

27

ν = 2, f (Ξ) is composed of the double combinations ofφ products as shown in equation??. When

expressingf (Ξ) for the case of cubic approximation in two dimensions, whereν = 3 andN = 2

dimensions, the error approximation term is defined as:

f (Sk) = aφ1(Sk)φ1(Sk)φ2(Sk)+bφ1(Sk)φ2(Sk)φ2(Sk)

+cφ1(Sk)φ1(Sk)φ3(Sk)+dφ1(Sk)φ3(Sk)φ3(Sk)

+eφ2(Sk)φ3(Sk)φ3(Sk)+ f φ2(Sk)φ2(Sk)φ3(Sk)

+gφ1(Sk)φ2(Sk)φ3(Sk). (3.17)

The case whenN = 3 is a natural extension of the planar case. Forν = 2, the six double

products of basis functions are the set of distinct productsthat are quadratic in(x,y,z). For a

quadratic fit in three-dimensional space, there areN+1= 4 vertexes in the simplex and therefore

four basis functions, andf (Sk) is defined by combining the basis functions in quadratic, non-

duplicate combinations:

f (Sk) = aφ1(Sk)φ2(Sk)+bφ1(Sk)φ3(Sk)+cφ1(Sk)φ4(Sk)

+dφ2(Sk)φ3(Sk)+eφ2(Sk)φ4(Sk)+ f φ3(Sk)φ4(Sk). (3.18)

Implementation of this pattern is listed in full in appendixA. First the Cartesian product of

all integers from zero to the size of the simplex is computed.Next the products that only contain a

single number are removed, which enforces the requirement that the groups ofφ be non-duplicate,

non-triplicate, etc. If the current entry is not composed ofa single number, it is sorted, converted

into a Python tuple (an immutable sequential data structure), and appended to the list of all potential

entries. This list will not be a unique set of products, but ismade so by creating a Python set of the

sorted entries, which enforces uniqueness of the terms in the collection.

The dynamic calculation of the basis function pattern in this fashion is powerful, in that

it can be calculated for any arbitraryν , and for planar, volumetric, or higher dimension spaces

(although onlyN of 2 and 3 are dealt with herein). However, for each pointΞ the calculation of the

pattern must be performed once for the calculation off (Ξ) and once per extra pointSk participating

28

in the current interpolation for each row in theB matrix. There is only one valid pattern per

set of inputsN andν , which must both remain constant throughout a single interpolation. The

calculation of the pattern is a computationally intensive operation, and so a caching mechanism

has been implemented in thesmbinterp API that only calculates the pattern if it has not been

previously calculated. This concept is known as memoization, the implementation thereof is in

appendix A, and a flowchart of the algorithm is shown in figure 3.2.

Request

Pattern

Cache

has

result?

Return result

Calculate and

store new

result

Yes

No

Figure 3.2: Flowchart of the Pattern Implementation

The memoizing function forms a closure over a Python dict object named cache, i.e. the

same cache dict will be available and used by any future call to the memoized inner function. As

such, when the function that calculates thef (Ξ) pattern is called it first checks to see if the inputs

N andν have not yet been used. If the inputs have not yet been used, a pattern is calculated and

returned, otherwise the value in the cache dict matching theinput variables is returned.

This mechanism has a slightly higher memory footprint, but runs at a significantly lower

computational expense per call,O(1)with memoization, rather thanO(N)without. In thesmbinterp

API, the memoized pattern function is used to calculate the rows in theB matrix, and in the calcu-

lation of f (Ξ), and is listed in its entirety in appendix A.

29

3.3 Mesh Plugins

Multiphysics simulations are simulations involving multiple, disparate physical models.

The individual simulations that compose an encompassing multiphysical simulation generally em-

ploy varied mesh types and topologies to correctly solve thedisparate physical models involved in

the larger, overarching simulation. Thesmbinterp API developed in this research was designed

and implemented to function with different types of meshes and mesh topologies so as to not limit

the scope of applicability. In order to solve equations 3.5,3.13, 3.14, and eventually 3.1, two geo-

metric entities, and their associatedq quantities are required: the simplex△R and the extra points

Sk. The simplex△R that contains the pointΞ is required to calculate the linear interpolant. The

simplex△R and a collection ofSk of surrounding vertexes are used to calculate the error approxi-

mation term. In order to be used with the interpolation library, a given mesh structure must provide

the API with both△RandSk.

3.3.1 △Rand Sk Vertex Selection

While Baker’s method gives a reasonable interpolation solution for a general cloud of

points, it does not specifically address the question of how to select points from an existing mesh.

The method suggested by Baker consists of simply selecting the nearest points. This is the most

general vertex selection algorithm for the terms△R andSk. It consists specifically of collecting

the(N+1)+m closest vertexes to the destination pointΞ, using the nearestN+1 in the simplex,

and using the remaining points to composeSk. This selection algorithm does not always provide

the best vertexes for interpolation results as shown in figure 3.3. The images on either side of the

figure represent the same source donor mesh (red points) and destination pointΞ (blue). The black

triangle represents the selection for the simplex△R. The selection on the left was calculated us-

ing nearest-neighbor vertex selection. While it may seem that selecting the geometrically closest

points toΞ would yield the same containing simplex, the vertex six rowsabove the destination

point is closer than the vertex directly above the vertex directly to the left ofΞ. In this mesh, a

connectivity-based vertex selection would yield the simplex shown in the image on the right. The

mesh was designed to capture the gradient information, and therefore the mesh topology should

be respected. Simply selecting the closest points toΞ would therefore yield inferior results. By

30

Figure 3.3: Graphical Representation of Point Selection Algorithms: Nearest-Neighbor Point Se-
lection (left), Connectivity-Based Point Selection [9]

selecting the more topologically adjacent points the information intended to be captured in the

mesh’s design will be preserved.

Alternatively, consider the case with a regular grid as shown in figure 3.4. Again, the red

points are vertexes from the source mesh, the blue point is the destination pointΞ, and the black

triangle is the simplex△R. While the simplex selection represents the topology of the mesh , if

the selection of extra points is performed using a nearest-neighbor selection algorithm the nearest

points will all be collinear with an edge of the simplex. If the number of points inSk is small, there

is a high likelihood of selectingmpoints such that more thanm−2 of the extra points are on a line

that is coincident with two of the points in the simplex. Thiscondition is one of the pathological

cases described by Baker [10]. If this occurs, the covariancematrix BTB will be singular, the

solution will not be unique, and the error approximation will not generally aid in improving the

interpolation.

Figure 3.4: Regular Grid With Extra Points That are Collinear with an Edge of the Simplex△R

31

3.3.2 Plugin System Design

Rather than designing and implementing a mesh object for eachand every possible mesh

type and topology, thesmbinterp API contains a plugin system for integration with new mesh

types. This abstraction layer allows users of the API to rapidly develop the code required to

integrate results from their numerical analyses into the interpolation framework. By using the

plugin system, the engineer can precisely control how points are selected to avoid situations where

an unsophisticated vertex querying algorithm would provide inferior results. An overview of the

plugin system is provided here, but a complete listing is provided in its entirety in appendix A for

reference.

The base grid class for all possible mesh types, named the grid class, is defined in the

smbinterp’s grid module. The base grid class takes all the vertexes in the mesh and the values

of q(ξ) at those vertexes as parameters for object instantiation. Each instantiation of this class

contains a Python list whose values are the spatial locations of the known quantitiesq. The spatial

locations in this list are used to populate a kdtree for rapidnearest-neighbor querying. Also, the

grid base class contains a list containing the values ofq at the locations in the verts list.

The grid base class also contains two other data structures that assist in the discovery of

the simplex in an upstream mesh that contains the given vertex Ξ. The first is a key value mapping

that provides a mapping mechanism between a cell name and an actual cell object. Because not all

cell identifiers are generally known at object instantiation, a dict was chosen over a list forO(N)

insertion of new cells. The second internal structure in thebase grid class is a another mapping

which maps each vertex id to all cells that contain the vertexwith the key id. The cell objects that

populate these two structures consist of the connectivity information linking the aforementioned

geometric entities: a list of all vertexes that compose thatcell, as well as a list that contains refer-

ences to all neighboring cells. These data structures are populated so that each cell may be quickly

queried for information regarding either vertexes in that cell or information about topologically

adjacent, neighboring cells. This adjacency information is generally computed before a round of

interpolations, and is stored in the grid object.

Each plugin must provide the Baker’s method with two pieces ofinformation: the simplex

△R and surrounding points not already in the simplex,Sk. To determine the simplex△R, the

base grid class, and all classes derived therefrom, use a default algorithm for locating the simplex

32

that contains the pointΞ. In this simplex querying method the vertex nearest toΞ is found using

the kdtree structure. Next the cells that are adjacent to theclosest vertex are identified using the

internal mapping structures. These adjacent cells are visited in turn, and each cell is tested if it

contains the vertexΞ. Once all cells that are immediately adjacent to the nearestvertex toΞ are

visited, all adjacent cells to visited cells are recursively visited until an enclosing simplex is found,

or until a configurable limit is reached. The method employedin this research used to locate

the containing simplex in an upstream mesh is similar to whathas been previously described by

multiple authors [41,60,61]. First the spatial tree structure is used to find the location of the nearest

vertex to the point of interest, then other cells are visitedin topologically adjacent order. The

selection of the extra pointsSk is also implemented in the base grid class. This algorithm simply

queries the kdtree structure for(N+1)+m points and discards the points that are in the simplex

△R. This method could be overridden to provide a more complicatedSk selection algorithm.

3.3.3 Provided Plugins

Two plugins are provided by this research. One plugin for meshes calculated using Gmsh

(an open source meshing utility) is provided. Another plugin takes a cloud of points, and calculates

connectivity information based on a Delaunay triangulation of those points. Delaunay triangulation

comprises an algorithm to connect points into simplexes such that no vertex of any element in the

set of formed simplexes resides in the circumcircle of any ofthe other simplexes in the set [62].

The complete listing of these plugins is provided in appendix A for reference. The gmsh plugin

demonstrates the parsing of a file on disk, whereas the Delaunay plugin shows that the information

does not necessarily need to reside on disk to be used by the API.

3.3.4 Benefits of the Plugin System

The plugin architecture implemented insmbinterp provides two distinct features related

to computational flexibility. First, each plugin implements the mechanism for populating the struc-

tures used in the default simplex finding and extra-point-finding algorithms. A distinct plugin

should be developed for each type of mesh (structured, unstructured, etc.), and can be implemented

to enforce any form of mesh topology traversal. As an example, a plugin for a structuredi, j,k mesh

33

could be developed to verify that any additional points being added toSk are not collinear with any

of the lines in the simplex△Ralready selected for a pointΞ. A plugin of this variety would prevent

the pathological situation described above.

The second benefit comes from the ability to override functions in the base class. If an

alternative simplex location or extra point location algorithm is desired, the plugin can simply

override the base class methods that implement these algorithms. The ability to override and

enhance the default behavior of the default grid object as implemented bysmbinterp is what

enables this flexibility. It allow the end users of the API to use the interpolation engine by either

using an existing plugin, or by developing a relatively small piece of code that simply presents the

data to the API according to the interface as defined in the appendix A. This is what enables the

API to be used with practically any mesh type or topology.

3.4 Parallel Execution Framework

The calculation ofq(Ξ) generally involves the solution of two non-trivial linear systems

of equations per pointΞ. This computational expense is exacerbated by querying spatial data

structures multiple times for the discovery of appropriate△R andSk terms. Depending on the

number of vertexes in the downstream mesh, the calculation of all vertexes could take a substantial

amount of time. The problem is therefore bound primarily by the ability to perform the spatial

queries and calculations more than any other factor. Thesmbinterp API provides a mechanism by

which interpolation workload may be distributed amongst a set of participating parallel computers.

Due to the abundance of memory on modern HPC nodes, large gridobjects can be persis-

tently loaded in their entirely in ram, multiple times on multiple nodes, against which interpolations

can be performed in parallel by compute units. The compute units, namedminionsin smbinterp,

can perform multiple parallel queries against a persistentdata set; the interpolation of many spatial

locations therefore lends itself to being solved in a parallel fashion. It was found that the perfor-

mance issues could be addressed in a scalable fashion by composing an embarrassingly parallel

solution to the problem using libraries that are built into the Python language. Embarrassingly

parallel workloads are those “for which little or no effort is required to separate the problem into a

number of parallel tasks” [44].

34

The crux of the solution lies in providing the minions with a steady stream of work, and

a pipeline for the reporting of the resultant interpolations. If the minions could subscribe to a

collection of work to be done, and conversely report completed workload back to a centralized

location, the problem would be solved. TheQueue module in the Python standard library pro-

vides aQueue class which implements a multi-producer, multi-consumer First-In-First-Out (FIFO)

queue, to which multiple simultaneous minions on a single machine can connect. Furthermore, the

multiprocessing module provides amanager class, which enables the sharing ofQueue objects

over a distributed network. A reference implementation of the parallelization scheme implemented

in this research is shown in the flowchart in figure 3.5. What follows is a brief explanation of the

constituent parts; the source in its entirety is provided inappendix A.

server.py
smbinterp

API

master.py

End user

code

minion.py

minion.py

minion.py

minion.py

...

2

1

3

4

5

3

3

3

6

Figure 3.5: Flowchart of the Parallelization Architecture

The task of parallel interpolation begins with code, authored by the end user, submitting

interpolations to be performed. This can be done in two stepsas shown in the flowchart, or in one

35

step by themaster.py script, as demonstrated in appendix A. Themaster.py script is responsible

for orchestrating the submission of interpolations and events associated with starting and stopping

a set of interpolations. Once all of the interpolations havebeen submitted into theserver.py

script, themaster.py script then signifies to all participating minions that all workload is ready

for consumption. Each of the multipleminion.py scripts begins requesting workload from the

server.py script and calculating interpolations in rapid succession. When the interpolations are

calculated, they are fed back to theserver.py script, which then returns all collected interpo-

lations ether to themaster.py script or to end user code. Theminion.py scripts remain active

and ready to perform interpolations against a set of data until the master script sends a termination

message, at which point their service is finished, and resources are relinquished to the system.

The Python code required to share multipleQueue classes over a network as required to

implement theserver.py script is demonstrated in appendix A. In this code four queues are

made available to other scripts on the same network: a queue for tasks to be performed, a queue

for results, and two queue objects for orchestrating the control of a round of interpolations between

a master and a set of minions. Masters and Minions authenticate and connect to these four queues

to accomplish the tasks shown in the flowchart in figure 3.5.

Thesmbinterp API was designed to implement and enhance the numerical method pro-

posed by Baker. It does so by providing the first library that allows for arbitrary and dynamic

accuracy specification. Also, it was designed to allow for end users provide alternative point se-

lection algorithms via its plugin architecture. Lastly, the interpolation API is implemented in a

parallel fashion. Results of the implementation of thesmbinterp API a presented in the following

chapter.

36

CHAPTER 4. RESULTS AND DISCUSSION OF RESULTS

Thesmbinterp library was written to meet the needs stated in previous chapters. Namely,

the library should provide a mesh-agnostic interpolation library that can calculate interpolations to

an arbitrary degree of accuracy, and can be run in parallel. The library designed and implemented

in this work provides a generic, nth-order approximate interpolation that can take advantage of

parallel computing environments. This chapter contains the results of various benchmarks and tests

of thesmbinterp library intended to show that these research goals were met.Section 4.1 of this

chapter describes a study performed with the library that parametrically tests various configurations

and mesh resolutions for accuracy and temporal performance. In general the library took longer to

calculate more accurate results due to the use of higher-order settings. The second section, section

4.2, presents the results of a study on the efficacy of the parallelization algorithm implemented

in the smbinterp library, which was found to scale quasi-linearly to 180 participating minion

processes.

4.1 General Library Performance

A study of the effects of changing the parameters of thesmbinterp library for a given

mesh on temporal performance and accuracy is presented here. Both the temporal performance and

the accuracy of the library are primarily dependent upon twofactors, which are both parametric

inputs to the library. The order of the error approximation term is the first configurable input of

smbinterp. While the library provides quadratic error approximation by default, specifying an

alternative order is optional1 The size of the stencil of extra points (Sj) used to calculate the error

approximation term is the second input; it is equally configurable. These two parameters affect

both the accuracy and the duration of each interpolation.

1This interpolation library goes to eleven.

37

The exact equation used to benchmark the results of thesmbinterp library needed to be

chosen carefully. When interpolating a function that is constant or linear in the spatial dimensions

linear interpolation always provides an exact solution. A function that varied smoothly in the

domain was therefore required to calculate the value ofq(ξi) for all known points in the source

mesh in order to obtain meaningful results. Equations 4.1 and 4.2, which are slightly modified

versions of the equations used to validate the original numerical method [10], were used to validate

the performance of the library in two- and three-dimensions, respectively. A plot of the two-

dimensional equation is shown in figure 4.1.

q(x,y) = (sin(xπ)cos(yπ))2 (4.1)

q(x,y,z) =
(

sin
(xπ

2

)

sin
(yπ

2

)

sin
(zπ

2

))2
. (4.2)

 0
 0.2

 0.4
 0.6

 0.8
 1 0

 0.2
 0.4

 0.6
 0.8

 1

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9
 1

Figure 4.1: Plot of Equation 4.1

Equations 4.1 and 4.2 were also used to calculate the exact value of q at each pointΞ

when calculating the error of each interpolation. Mesh resolution was varied by creating meshes

38

of varying cell density using the open source tetrahedral meshing programgmsh [11]; the quantity

of vertexes and elements of each of the meshes is shown in table 4.1, and an example of the two

coarser two-dimensional meshes are show in in figure 4.2. Theorder of error approximation (ν)

was varied from quadratic (2) to quintic (5), inclusive. Thesize of the stencil of extra points (Sj)

was varied in an approximately exponential fashion as follows: 4, 6, 8, 12, 16, 20, 32, 48, 64,

96, 128, 192, and 256. A collection of 1000 random points within the domain (0 to 1 in each

orthogonal dimension) of each mesh was generated for the study, and the same set of generated

points was used during each parametric permutation. This collection of points represents points

that would be unknown in a destination mesh during a multiphysics simulation.

Table 4.1: The Mesh Vertex and Element Counts Used in the Parametric Library Study

Mesh ID Vertexes Elements
2D

1 529 1060
2 5083 10168
3 50354 100710
4 534608 1069218

3D
5 1915 10635
6 170297 1008870
7 1701554 10188506

4.1.1 Interpolation Improvement

The root mean square (RMS) of the errors (εi) was used to determine the accuracy of the

smbinterp library. Each errorεi was calculated as the difference between the actual value (from

equations 4.1 and 4.2) and calculated interpolations (at each point in the destination domain using

smbinterp), or εi(Ξ) = qexact(Ξ)−qcalculated(Ξ). RMS was calculated according to equation 4.3

for all µ points in the destination mesh.

εrms=

√

∑µ
i=1ε2

i

µ
(4.3)

39

0 0.25 0.5 0.75 1

0

0.25

0.5

0.75

1

0 0.25 0.5 0.75 1

0

0.25

0.5

0.75

1

Figure 4.2: Plots of 2-D Meshes, Resolution 1 and 2

The qualitative notion of result improvement was determined by comparing the ratio of in-

terpolations improved by using thesmbinterp library (by comparison with a linear interpolation)

to the total number of performed interpolations. A value of 1.0 indicates that every calculated in-

terpolation was an improvement over a linear interpolation; a value of 0.5 indicates that half of the

interpolations were less correct than the linear interpolation. The comparison provides a qualitative

benchmark for the library against other interpolation libraries which only provide linear interpola-

tion. A given interpolation was found to have provided a better result than linear interpolation by

meeting following inequality:

∣

∣qf inal(Ξ)−qexact(Ξ)
∣

∣≤ |qlinear(Ξ)−qexact(Ξ)| (4.4)

These two quantities (RMS of errors and percent improvement)were calculated for all

parameters in the study and the results for the two-dimensional meshes are shown in the plots of

figures 4.3-4.6. The top plot in each of these figures shows theRMS of errors of the interpolation

at all points in the destination mesh as they were found by varying order of interpolation and the

number of participating points in the stencilSk for a particular mesh density. The x-axis of these

plots represents the number of extra points in an interpolation, and the y-axis is the RMS of error

for all points in the destination mesh. Plots of the the improvement ratio are shown on the bottom

40

of these figures. These plots also show the number of extra points on the x-axis, and show the

fraction, from 0 to 1, of improved interpolations on the y-axis.

The plots in figure 4.3 plot the results obtained by using the most coarse mesh and by

varying the parameters of thesmbinterp library. The coarse mesh is shown on the right of figure

4.2. The RMS of errorεrms drops slightly for all orders of interpolation when the number of extra

points increases from 4 to 6. Thereafter, up to 256 extra points, the number of extra points has

little effect on the RMS of error for the three higher degrees of interpolation shown. The results

obtained using the coarse mesh show that generally the orderof interpolation has more influence

on the RMS of error than increasing the number of extra points.However, the RMS of error for the

quadratic interpolation (nuof 2) continues to increase until the RMS of error with 256 extra points

is higher than it was when just using 4 extra points, and approximately an order of magnitude higher

than it was at the very lowest, the value obtained with 8 extrapoints. The effect of this increase

in error can be seen in the bottom plot; the quadratic interpolation provides a worse interpolation

than linear for over 30 percent of all attempted interpolations. For higher-order interpolations this

effect is less substantial, and forν of 4 and 5 yield an improvement ratio of above 0.98.

For values ofSk between 12 and 256 the plots in figure 4.4 show similar trends to the plots

in figure 4.3; the RMS of error is however an order of magnitude lower. The plots in figure 4.4

were produced using the mesh on the right of figure 4.2. The most marked difference between the

two plots is that the error decreases significantly between 6and 12 extra points. After crossing this

threshold increasing the number of extra points does not change the number of successful interpo-

lations, except for the lower-order interpolations. A similar trend for the quadratic interpolation is

shown: increasing the number of extra pointsSk increases the number of failed interpolations to

20 percent at 256 extra points. Another more subtle difference is that the RMS of error creeps up

for all four orders of interpolation after crossing the threshold between 6-12 extra points, whereas

the RMS of error appeared to be more constant in figure 4.3.

The plots of the in figures 4.5 and 4.6 are very similar to thosein figure 4.4, and were

produced with the meshes with next more refined resolution, meshes 3 and 4. In these figures

there exists a similar sudden dip in RMS of error as that seen in4.4, the RMS of error is generally

an order of magnitude lower for each sequentially more refined mesh, and increasing the number

of extra points past the threshold increases the ratio of failed quadratic interpolations. The main

41

 1e-10

 1e-09

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 1 10 100 1000

R
M

S
 o

f t
ot

al
 e

rr
or

Number of Extra Points, Sk

ν = 2
ν = 3
ν = 4
ν = 5

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1 10 100 1000

P
er

ce
nt

 o
f I

m
pr

ov
ed

 In
te

rp
ol

at
io

ns

Number of Extra Points, Sk

ν = 2
ν = 3
ν = 4
ν = 5

Figure 4.3: Plot of the RMS of Error and Improvement Ratio for Mesh 1

42

 1e-10

 1e-09

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1 10 100 1000

R
M

S
 o

f t
ot

al
 e

rr
or

Number of Extra Points, Sk

ν = 2
ν = 3
ν = 4
ν = 5

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 10 100 1000

P
er

ce
nt

 o
f I

m
pr

ov
ed

 In
te

rp
ol

at
io

ns

Number of Extra Points, Sk

ν = 2
ν = 3
ν = 4
ν = 5

Figure 4.4: Plot of the RMS of Error and Improvement Ratio for Mesh 2

43

 1e-14

 1e-12

 1e-10

 1e-08

 1e-06

 0.0001

 0.01

 1

 1 10 100 1000

R
M

S
 o

f t
ot

al
 e

rr
or

Number of Extra Points, Sk

ν = 2
ν = 3
ν = 4
ν = 5

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 10 100 1000

P
er

ce
nt

 o
f I

m
pr

ov
ed

 In
te

rp
ol

at
io

ns

Number of Extra Points, Sk

ν = 2
ν = 3
ν = 4
ν = 5

Figure 4.5: Plot of the RMS of Error and Improvement Ratio for Mesh 3

44

 1e-16

 1e-14

 1e-12

 1e-10

 1e-08

 1e-06

 0.0001

 0.01

 1

 1 10 100 1000

R
M

S
 o

f t
ot

al
 e

rr
or

Number of Extra Points, Sk

ν = 2
ν = 3
ν = 4
ν = 5

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 10 100 1000

P
er

ce
nt

 o
f I

m
pr

ov
ed

 In
te

rp
ol

at
io

ns

Number of Extra Points, Sk

ν = 2
ν = 3
ν = 4
ν = 5

Figure 4.6: Plot of the RMS of Error and Improvement Ratio for Mesh 4

45

difference between the results in figures 4.5 and 4.6 and those shown in figure 4.4 is that the

sudden jump in RMS of total error occurs at a higher number of extra points as the mesh resolution

increases with the lowest point reached at 12, 20, and 32 extra points for each of the finer meshes,

respectively.

As the order of interpolation increases the RMS of the error generally decreases. Specif-

ically, for a given mesh density, the higher-order interpolation generally yielded more accurate

results. Also, as the mesh density increases, the accuracy also increases. This increase in accuracy

is what justifies the use of more computationally expensive settings such as a higher order error

approximation or a more resolved mesh. As the number of vertexes in the stencil is increased,

the RMS of the error generally undergoes a sharp decline, followed by a gradual increase. This

can significantly impact the accuracy of the library as shownin figures 4.3-4.6. When using a

very small stencil (less than 12 vertexes), a significant fraction of all interpolations (50-60 percent

on all but the coarsest mesh) were worse after the adjustmentby the error approximation term.

However, after passing the threshold of sharp error declinethe interpolations performed with the

smbinterp library improved for almost allΞ in the destination mesh. This generally occurs at a

value of 16≤ m≤ 32 As the mesh density increases, this jump requires a largerstencil, with the

worst case for two dimensions involving order 5 interpolation requiring 32 extra vertexes before

achieving minimum RMS error. It is noteworthy that this sudden jump in RMS of error occurs at

the same size of stencil for the three finer mesh cases. Also, interpolations performed after crossing

this threshold (using more than 32 extra points) on the finestmesh provided the lowest RMS of

error.

An increase in the quantity of extra vertexes for low-order approximations yielded slightly

counterintuitive results with respect to RMS of total error and improvement ratio. The quadratic

error approximation also exhibits the sudden decrease of RMSof error (at 10-12 extra vertexes),

however the RMS of error increases when increasing the size ofthe stencil past this point. This

effect is particularly noticeable in bottom plot of figure 4.3 which shows the fraction of all in-

terpolations that improved using the most coarse two-dimensional mesh. Using any more than 8

extra vertexes has a harmful effect on the RMS of error during interpolation; in the case of the

coarse mesh over 30 percent of the interpolations calculated using the error approximation term

(calculated using 256 extra vertexes) provided worse results than a linear interpolation alone.

46

This phenomenon is evidence of an artificial smoothing effect caused by using a low-order

approximation of error terms for an underlying equation of ahigher order. In this case it is recom-

mended to use a higher order interpolation or a finer mesh; even for the coarse mesh the fourth- and

fifth-order interpolations provided very good interpolations, with over 98 percent of all interpola-

tions improved by usingsmbinterp by comparison with a linear interpolation alone for stencil

sizes larger than 6.

As with all discrete numerical methods, care should be takento match the order of inter-

polation to the order of the underlying mathematical equations. While the use of thesmbinterp

library can provide the user with excellent interpolation results, it is not a silver bullet intended to

perform regardless of the underlying equations, or meshes used to present the requisite information

to the library.

As an example, the quadratic interpolation in figure 4.3 shows that if too many extra points

are used with a quadratic interpolation, the interpolationhas a smoothing effect that makes up to

30 percent of the interpolations worse for having used the library. Also, the mesh resolution should

resolve pertinent gradient information. While this is common of well designed meshes, the library

performs better when this is guaranteed. Furthermore, if information is known a priori about the

data, which could be used during the interpolation algorithm, the known information could be used

to intelligently select the order of interpolation and the number extra points used to calculate the

error estimation term. Investigation of the active adjustment of the interpolation parameters might

be suggested for future work.

4.1.2 Temporal Performance

Figures 4.7 and 4.8 show the results of the temporal performance study. The x-axis in these

figures represents the number of extra points used in calculating the error approximation term.

The y-axis shows the average time spent per interpolation. The order of approximation and the

mesh resolution was varied as explained in the previous section, and results for all permutations

for a particular spatial dimension are shown on a single plot. The plots in figure 4.7 shows results

for the timing of the two-dimensional test cases, and the plots in figure 4.8 show results for the

three-dimensional test cases.

47

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0 50 100 150 200 250 300

A
ve

ra
ge

 In
te

rp
ol

at
io

n
T

im
e

(s
)

Number of Extra Points, Sk

2-D ν = 2 Timing

Mesh 1
Mesh 2
Mesh 3
Mesh 4

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0 50 100 150 200 250 300

2-D ν = 5 Timing

Mesh 1
Mesh 2
Mesh 3
Mesh 4

Figure 4.7: The Effects of the Variation ofSj , Interpolation Order, and Mesh Resolution on Aver-
age Time Spent per Interpolation for 2-D Meshes

48

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0 50 100 150 200 250 300

A
ve

ra
ge

 In
te

rp
ol

at
io

n
T

im
e

(s
)

Number of Extra Points, Sk

3-D ν = 2 Timing

Mesh 1
Mesh 2
Mesh 3

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0 50 100 150 200 250 300
Number of Extra Points, Sk

3-D ν = 5 Timing

Mesh 1
Mesh 2
Mesh 3

Figure 4.8: The Effects of the Variation ofSj , Interpolation Order, and Mesh Resolution on Aver-
age Time Spent per Interpolation for 3-D Meshes

49

It was found that in general increasing the dimensionN, the mesh resolution, the order of

interpolationν , or Sk (extra points) caused an increase in interpolation time. The interpolation

time increased linearly with the number of extra points. Also, the rate of increase of time for

three-dimensional meshes is twice that of of two-dimensional meshes. The fastest of the three-

dimensional interpolations, quadratic interpolation on acoarse mesh, was slower than half of all

combinations of two-dimensional interpolations. Lastly,the interpolation for points against meshes

of higher element density generally took longer than those of coarser element density. In the most

extreme case, thesmbinterp library exhibits a ten times increase in time by using the maximum

density, dimension, number of extra points, and order of interpolation by comparison with the

minimum values of any given permutation of the input parameters.

When solving for the interpolated values at each pointΞ the linear portion of the interpolant

and the error approximation terms the numerical method require matrices of a larger rank for higher

spatial dimensions, and is therefore more computationallycostly. Furthermore, spatial querying

of a kdtree suffers from both increased complexity in higherdimensions (exponential scaling) and

more costly spatial queries when querying for a point amongst an increasingly large collection

vertexes (linear scaling). All three of these effects are manifest in both two- and three-dimensions

in figures 4.7 and 4.8, respectively.

4.1.3 Mesh Resolution Study

A mesh resolution study, similar in nature to those performed by Baker [10] and Gal-

braith [9], was performed using thesmbinterp library. The purpose of the study was to determine

how the accuracy of the interpolation library improved as the density of the underlying mesh was

increased. The results of this study are show in figure 4.9 and4.10. The main difference between

the study performed herein and the one performed by Baker is that in Baker’s study the destination

points were placed in a geometrically optimal location: precisely between the source points. Be-

cause real-world use use of the library will not generally provide the same ideal vertex positions

the results shown herein were generated using the same random destination points as were used in

the previous study described in section 4.1. It was hoped that this would provide results for a more

realistic use case.

50

 1e-09

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 0.01 0.1

R
M

S
 o

f e
rr

or

ν = 2
ν = 3
ν = 4
ν = 5

3 order
4 order
5 order
6 order

Figure 4.9: Scaling of RMS of Error vs. Mesh Spacing for 2-D Meshes

Another key difference between this and other studies is that the interpolations performed

against the regular meshes produced for the three-dimensional studies consistently yielded singular

covariance matrices. While this may be due to tolerances in the linear algebra libraries that are used

by smbinterp, the covariance matrix was found to be singular regardless of how the extra points

were selected and brings into question results obtained with a regular source mesh. While the

library detects this occurrence by catching a thrown Pythonexception and subsequently performing

the requisite calculations using a pseudo-inverse, the calculation of the covariance matrix using the

pseudo inverse has a detrimental influence on the accuracy ofthe method. As mentioned before, a

singular covariance matrix provides a non-unique solutionto the least squares problem. Therefore,

the same three-dimensional meshes as used in section 4.1 were used to calculate the RMS of error

in figure 4.10.

Figures 4.9 and 4.10 plot the relationship between mesh spacing and RMS of error of

all interpolations in the collection of destination vertexes for the two-dimensional and the three-

dimensional test meshes, respectively. The x-axis represents the average spacing between vertexes

51

 1e-12

 1e-11

 1e-10

 1e-09

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

R
M

S
 o

f e
rr

or

Mesh Spacing

ν = 2
ν = 3
ν = 4
ν = 5

3 order
4 order
5 order
6 order

Figure 4.10: Scaling of RMS of Error vs. Mesh Spacing for 3-D Meshes

in the three-dimensional test meshes, and the exact spacingbetween the regular mesh elements

in two dimensional test meshes. The y-axis was calculated asit was in section 4.1. Furthermore

the lines in each plot are representative of the slope that each collection of data should follow if

the underlying numerical method is truly accurate to that degree of accuracy. As an example, the

collection of points forν of 2 should be third-order accurate, and should follow a linewith slope

of 3; this is closely demonstrated in the plots.

Figure 4.9 shows the results of the resolution study for the two-dimensional meshes. As the

meshes were refined the error decreased. The fourth- and sixth-order results (ν of 3 and 5) matched

the slope lines almost exactly, whereas the third- and fifth-order results were slightly lower than

expected for that level of accuracy.

Figure 4.10 shows the results of the resolution study for thethree-dimensional meshes.

Similar to the two-dimensional mesh resolution test, the RMSof error decreased as the mesh

resolution increased. The three-dimensional test cases donot have the same banded effect as the

52

two-dimensional test cases, but the error was slightly above the expected slope lines at the finest

resolution forν = 3,4,5.

As mesh element size decreased, the RMS of error decreased as well for both dimensions.

The RMS of error for the highestν decreased more than that of the lowestν . The RMS of error of

the most coarse mesh ranges within a single order of magnitude, whereas the RMS of errors at the

most fine spacing span four orders of magnitude for the two-dimensional meshes. The four lines

are evenly spaced for the three-dimensional test case, whereas the results for two-dimensional

meshes exhibit a slight banding, or unevenness between eachorder. Also, the data very closely

matches the plotted lines of slope, indicating that the order of accuracy is indeed provided using

this numerical method.

The rate at which error decreases as the average mesh elementsize decreases in figures 4.9

and 4.10 is indicative of the accuracy of the numerical method implemented insmbinterp. There

is slight banding for the two-dimensional meshes between quadratic and cubic interpolation, and

again for quartic an quintic interpolation. While this indicates that the method does not perfectly

interpolate to those orders of accuracy, in general increasing theν parameter of thesmbinterp

library provides a more accurate interpolation. Furthermore, the cases where the points diverge

from the slope of appropriate order, the divergence occurs in a favorable direction. Also, the fine

meshes experience a more significant decrease in RMS of error than the coarse meshes while

increasing the order of approximation,ν . While this is an intuitive result, it emphasizes the notion

that mesh density should be chosen to best match the underlying physical systems and to provide

as accurate of results as possible.

4.2 Parallelization Results

The parallel algorithm employed bysmbinterp, described in detail in section 3.4, was

found to scale quasi-linearly to approximately 180 participatingminion processes as shown in

figure 4.11. The plot in figure 4.11 is a plot ofspeedupfor the parallelization algorithm. Speedup

is defined as the ratio of time to execute an algorithm sequentially (T1) divided by the time to

53

execute the algorithm withp processors [63], or:

Sp =
T1

Tp
. (4.5)

A parallel algorithm is considered to have ideal speedup ifSp = p. The x-axis in the figure rep-

resents the number of participating minion processes, and the y-axis is the speedup. As shown in

figure 4.11,Sp is equal top up to approximately 128 participating minions. While the trend shown

in figure 4.11 seems favorable up to 200 points, the actual efficiency of performance is not perfect,

and this particular visualization of performance can therefore be misleading.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 100 200 300 400 500 600

S
pe

ed
up

 (
S

p)

Number of Participating Minions

Figure 4.11: Speedup (Sp) of the Parallel Algorithm Employed bysmbinterp

A more meaningful parameter for instrumenting the performance of a parallel algorithm is

known as the efficiency of the algorithm, denotedEp. Efficiency of a parallel algorithm is defined

54

as the speedup divided by the number of participating processors, or:

Ep =
Tp

p
. (4.6)

The efficiency of an algorithm ranges from 0 to 1, and is shown for smbinterp in the left plot

in figure 4.12. If an algorithm does not have an efficiency of 1,it is usually indicative of com-

munication overhead or bottlenecks of some form. The parallelization algorithm employed by the

smbinterp library has near-linear speedup up to approximately 128 participating minions. It has

an efficiency above 90 percent up to 181 participating nodes,but the efficiency drops substantially

when using more minions.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600

E
ffi

ci
en

cy
 (

E
p)

Number of Participating Minions

Figure 4.12: Efficiency (Ep) of the Parallel Algorithm Employed bysmbinterp.

As shown in figure 3.5 all network traffic from themaster.py process to each of the

minion.py processes and back must pass through a single point: theserver.py process. The

processor load that this process consumes is shown in figure 4.13. The processor load scales lin-

55

early up to 180 participatingminion.py processes, but levels off at two full processors worth of

load (200 percent CPU utilization) after this point. Themanager class of themultiprocessing

Python module is implemented in a parallel fashion, which was observed by the existence of multi-

ple threads of execution in the output of thehtop Linux command, and by the fact that the process

utilized more than one CPU (more than 100 percent). While the implementation of themanager

class in themultiprocessing module seems to be heavily parallel, it can only consume two

processors at any given time. Theserver.py process is a serial bottleneck.

 0

 50

 100

 150

 200

 0 100 200 300 400 500 600

A
pp

ro
xi

m
at

e
C

P
U

 u
til

iz
at

io
n

(%
 C

P
U

)

Number of Participating Minions

Figure 4.13: CPU Utilization of theserver.py Process

The implementation of themanager class is the current bottleneck for thesmbinterp

library. While this scales approximately 180 times better than any other current high-order in-

terpolation engine of this variety (all other known implementations are serial), there are a few

avenues of research that might be suggested for future work.There exist many open source, high-

performance message queuing systems. ØMQ was mentioned in chapter 2, and is a popular library

amongst those who use python for high-performance scientific computing [53–55]. According to

56

benchmarks performed by Knox [54], replacing the default, native Python queuing mechanism

used bysmbinterp should yield a seven time speedup. Furthermore, implementing the task distri-

bution after a divide and conquer paradigm where minions aregrouped under multipleserver.py

processes may allow the library to scale past 180 minions. The investigation of higher-complexity

distribution schemes might be suggested for future work.

The implementation of thesmbinterp library accomplished the main goals of this re-

search. That is, to provide the scientific community with an open source library that implemented

an n-th order accurate, distributed interpolation library. Tests were performed that showed that

varying theν parameter did increase the accuracy of the method. The library was implemented

using distributed network task queues, and was found to scale to approximately 180 participating

minions.

57

58

CHAPTER 5. CONCLUSIONS & RECOMMENDATIONS

The meshes used in multiphysics simulations are typically meshes of disparate topology

and resolution. While these simulations represent the cutting edge of numerical simulations, linear

interpolation is the method of interpolation generally employed when the spatial location of the

source and destination meshes are not perfectly coincidental. Other limited solutions to this prob-

lem exist, but impose restrictions such as the requirement to collect and present higher-order terms

at each point, limitations in how high of an order of interpolation can be requested, or the solution

only being implemented in a serial fashion. The research contained herein yielded an interpolation

library that provides interpolation to an arbitrary degreeof accuracy, that is mesh agnostic, that

only requires that the values (not derivatives) be acquiredat the spatial locations of the points of

interest, and that can be used in a parallel fashion in a high-performance computing environment.

The library, namedsmbinterp, provides an interpolation for a cloud of points to an ar-

bitrary order of accuracy. It was shown, via a mesh resolution study, that the algorithm (and

implementation thereof) provides the the end user with the expected level of accuracy, i.e. when

performing cubic interpolation, the results are fourth-order accurate, quartic is fifth-order accurate,

etc.

These higher-order results are obtained with a minor temporal penalty. Timing results were

also published and showed at most a ten-fold increase of timerequired per interpolation using the

most complicated settings (quintic interpolation on a fine three dimensional mesh using 256 extra

points) by comparison with the least computationally intensive settings (quadratic interpolation on

a coarse two-dimensional mesh using four extra points).

While the general results show that the library provides accurate interpolation care must

be taken to wield it in an appropriate manner. Attempting to use the library with an order of

interpolation that does not match the order of the underlying mathematical equations will yield

unsatisfactory interpolation results. The underlying mathematical equations attempting to be fit

59

should be understood, and an appropriate order of accuracy should be used. Furthermore, the

underlying mesh should be designed according to good mesh construction practices; most impor-

tantly they should appropriately capture gradient information. This assumption was presumed safe

as the most probable use of the library will be to interpolatedata from one physical simulation to

another where the onus of mesh design is on the designers of the meshes used in the simulations.

The second design goal of thesmbinterp library was to make the interpolation algorithm

that it implements easily usable with any mesh type or topology. Thesmbinterp library provides

a convenient plugin infrastructure to provide this mesh agnosticism. Two example plugins are

provided for reference in appendix A, and new plugins may be implemented with a relatively

small effort. The two plugins are approximately 75 lines of code a piece, and implement plugins

for meshes generated using the open source Gmsh meshing utility and for a general cloud of points.

Thirdly, smbinterp was implemented to take advantage of parallel computing environ-

ments. A parallel framework was implemented in thesmbinterp library using built-in Python

modules. This implementation was found to scale linearly approximately 180 participating com-

pute processes.

Finally, smbinterp is available under a liberal license, and plans are in place to add it

to the popular, open source scientific Python library named scipy [42]. Other future work may be

suggested in two areas. First, the parallelization scheme,while it performs well, could be enhanced

by using a faster queuing library and a more advanced participant partitioning scheme. Also, an

algorithm to actively select parameters for the library based on the general shape of the solution

may provide a temporally and computationally optimal choice of settings during a multiphysics

simulation.

60

REFERENCES

[1] Wikipedia, 2011.http://en.wikipedia.org/wiki/Multiphysics, June.

[2] Shankaran, S., Shankaran, S., Alonso, J. J., Liou, M., and Liu, N., 2001. “A Multi-Code-
Coupling Interface for Combustor/Turbomachinery Simulations” AIAA paper 2001-974, 39th
AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, January.

[3] Medic, G., Kalitzin, G., You, D., Herrmann, M., Ham, F., van der Weide, E., Pitsch, H., and
Alonso, J., 2006. “Integrated RANS/LES computations of turbulent flow through a turbofan
jet engine” Center for Turbulence Research Annual Research Briefs, Stanford, CA.

[4] Hahn, S., Duraisamy, K., Iaccarino, G., Nagarajan, S., Sitaraman, J., Wu, X., Alonso, J. J.,
Baeder, J. D., Lle, S. K., Moin, P., and Schmitz, F., 2006. “Coupled High-Fidelity URANS
Simulation for Helicopter Applications” Center for Turbulence Research Annual Research
Briefs, Stanford, CA.

[5] Alonso, J., Hahn, S., Ham, F., Herrmann, M., Iaccarino, G., Kalitzin, G., LeGresley, P.,
Mattsson, K., Medic, G., Moin, P., Pitsch, H., Schlter, J., Svard, M., der Weide, E. V., You,
D., and Wu, X., 2006. “CHIMPS: A High-Performance Scalable Module for Multi-Physics
Simulations”AIAA paper5274, 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference
& Exhibit, Sacramento, CA, July.

[6] Wikipedia, 2011. http://en.wikipedia.org/wiki/Message_Passing_Interface,
June.

[7] Wikipedia, 2011.http://en.wikipedia.org/wiki/API, June.

[8] Hahn, S., Iaccarino, G., Ananthan, S., and Baeder, J. D., 2009. “Extension of CHIMPS
for unstructured overset simulation and higher-order interpolation” Center for Turbulence
Research Annual Research Briefs, Stanford, CA.

[9] Galbraith, M. C., and Miller, J. H., 2006. “Development and Application of a General Inter-
polation Algorithm”AIAA paper 2006-3854, 24th AIAA Applied Aerodynamics Conference,
San Francisco, CA, June.

[10] Baker, T. J., 2003. “Interpolation from a cloud of points.” International Meshing
Roundtable(12), September, pp. 55–63.

[11] Geuzaine, C., and Remacle, J.-F., 2009. “Gmsh: A 3-d finiteelement mesh generator with
built-in pre- and post-processing facilities.”International Journal for Numerical Methods in
Engineering,79(11), pp. 1309–1331.

[12] Sederberg, T. W., 2008. Computer aided geometric designCS557 Class Website, December
http://cagd.cs.byu.edu/~557/text/cagd.pdf.

61

http://en.wikipedia.org/wiki/Multiphysics
http://en.wikipedia.org/wiki/Message_Passing_Interface
http://en.wikipedia.org/wiki/API
http://cagd.cs.byu.edu/~557/text/cagd.pdf

[13] Werner, W., 1984. “Polynomial interpolation: Lagrange versus newton.”Mathematics of
Computation,43(167), pp. 205–217.

[14] Runge, C., 1901. “̈Uber empirische funktionen und die interpolation zwischenäquidistanten
ordinaten.”Zeitschrift fr Mathematik und Physik,46, pp. 224–243.

[15] Berrut, J.-P., and Trefethen, L. N. “Barycentric lagrange interpolation.” SIAM Rev,46,
pp. 501–517.

[16] Fornberg, B., and Zuev, J., 2007. “The runge phenomenon and spatially variable shape
parameters in rbf interpolation.”Computers & Mathematics with Applications,54(3), pp. 379
– 398.

[17] Shukla, R. K., and Zhong, X., 2005. “Derivation of high-order compact finite difference
schemes for non-uniform grid using polynomial interpolation.” Journal of Computational
Physics,204(2), pp. 404 – 429.

[18] Dyn, N., Gregory, J. A., and Levin, D., 1991. “Analysis of uniform binary subdivision
schemes for curve design.”Constructive Approximation,7, pp. 127–147.

[19] Piegl, L., and Tiller, W., 1997.The NURBS Book., 2 ed. Springer-Verlag, New York.

[20] Yang, Y., and Lian, J., 2010. “Making 3d object surfacessmoother.”Computing in Science
Engineering,12(3), May-June, pp. 44 –51.

[21] DeRose, T., Kass, M., and Truong, T., 1998. “Subdivisionsurfaces in character animation.” In
Proceedings of the 25th annual conference on Computer graphics and interactive techniques,
SIGGRAPH ’98, ACM, pp. 85–94.

[22] Catmull, E., and Clark, J., 1978. “Recursively generated b-spline surfaces on arbitrary topo-
logical meshes.”Computer-Aided Design,10(6), pp. 350 – 355.

[23] Oswald, P., and Schrder, P., 2003. “Composite primal/dual -subdivision schemes.”Computer
Aided Geometric Design,20(3), pp. 135 – 164.

[24] Dyn, N., Levine, D., and Gregory, J. A., 1990. “A butterfly subdivision scheme for surface
interpolation with tension control.”ACM Trans. Graph.,9, April, pp. 160–169.

[25] Zorin, D., Schr̈oder, P., and Sweldens, W., 1996. “Interpolating subdivision for meshes with
arbitrary topology.” InProceedings of the 23rd annual conference on Computer graphics and
interactive techniques, SIGGRAPH ’96, ACM, pp. 189–192.

[26] Blender, 2011.http://blender.org, June.

[27] McDonnell, K. T., Chang, Y.-S., and Qin, H., 2004. “Interpolatory, solid subdivision of
unstructured hexahedral meshes.”The Visual Computer,20, pp. 418–436.

[28] Bajaj, C., Schaefer, S., Warren, J., and Xu, G., 2002. “A subdivision scheme for hexahedral
meshes.”The Visual Computer,18, pp. 343–356.

62

http://blender.org

[29] Chang, Y.-S., McDonnell, K. T., and Qin, H., 2002. “A new solid subdivision scheme based
on box splines.” InProceedings of the seventh ACM symposium on Solid modeling and
applications, SMA ’02, ACM, pp. 226–233.

[30] Chang, Y.-S., McDonnell, K. T., and Qin, H., 2003. “An interpolatory subdivision for vol-
umetric models over simplicial complexes.” InProceedings of the Shape Modeling Interna-
tional 2003, IEEE Computer Society.

[31] Szymczak, A., Rossignac, J., and King, D., 2002. “Piecewise regular meshes: Construction
and compression.”Graphical Models,64(3-4), pp. 183 – 198.

[32] Wikipedia, 2011.http://en.wikipedia.org/wiki/BSP_tree, June.

[33] Wikipedia, 2011.http://en.wikipedia.org/wiki/B-tree, June.

[34] Wikipedia, 2011.http://en.wikipedia.org/wiki/R-tree, June.

[35] Wikipedia, 2011.http://en.wikipedia.org/wiki/Kd-tree, June.

[36] Wikipedia, 2011.http://en.wikipedia.org/wiki/Octree, June.

[37] PostgreSQL – The World’s Most Advanced Open Source Database, 2011.
http://postgresql.org, June.

[38] PostGIS Documentation, 2011.http://postgis.refractions.net/documentation,
June.

[39] Bonet, J., and Peraire, J., 1991. “An alternating digital tree (adt) algorithm for 3d geomet-
ric searching and intersection problems.”International Journal for Numerical Methods in
Engineering,31(1), pp. 1–17.

[40] Katayama, N., and Satoh, S., 1997. “The sr-tree: an index structure for high-dimensional
nearest neighbor queries.”SIGMOD Rec.,26, June, pp. 369–380.

[41] Garth, C., and Joy, K. I., 2010. “Fast, memory-efficient cell location in unstructured grids for
visualization.” IEEE Transactions on Visualization and Computer Graphics,16, November,
pp. 1541–1550.

[42] Scientific Tools for Python, 2011.http://scipy.org, June.

[43] Spatial algorithms and data structures (scipy.spatial), 2011.
http://docs.scipy.org/doc/scipy/reference/spatial.html, June.

[44] Wikipedia, 2011.http://en.wikipedia.org/wiki/Embarrassingly_parallel, June.

[45] Devlin, B., Gray, J., Laing, B., and Spix, G., 1999. “Scalability terminology: Farms, clones,
partitions, packs, racs and raps.”Computing Research Repository.

[46] Cardellini, V., Casalicchio, E., Colajanni, M., and Yu, P.S., 2002. “The state of the art in
locally distributed web-server systems.”ACM Comput. Surv.,34, June, pp. 263–311.

[47] Slony – Enterprise-Level Replication System for PostgreSQL, 2011.http://slony.info/,
Feb.

63

http://en.wikipedia.org/wiki/BSP_tree
http://en.wikipedia.org/wiki/B-tree
http://en.wikipedia.org/wiki/R-tree
http://en.wikipedia.org/wiki/Kd-tree
http://en.wikipedia.org/wiki/Octree
http://postgresql.org
http://postgis.refractions.net/documentation
http://scipy.org
http://docs.scipy.org/doc/scipy/reference/spatial.html
http://en.wikipedia.org/wiki/Embarrassingly_parallel
http://slony.info/

[48] The Multi-Master and Synchronous Replication System for PostgreSQL, 2011.
http://pgcluster.projects.postgresql.org/, Feb.

[49] Bucardo, 2011.http://bucardo.org, Feb.

[50] Pythonmultiprocessing, 2011.http://docs.python.org/library/multiprocessing.html,
June.

[51] Python Global Interpreter Lock, 2011.http://docs.python.org/glossary.html, June.

[52] ØMQ, 2011.http://www.zeromq.org, June.

[53] pyzmq, 2011.http://www.zeromq.org/bindings:python, June.

[54] Knox, B., 2011.http://taotetek.wordpress.com/2011/02/03/python, June.

[55] Salt, 2011.https://github.com/thatch45/salt, June.

[56] Wikipedia, 2011.http://en.wikipedia.org/wiki/Simplex, June.

[57] Rudin, W., 1976.Principles of Mathematical Analysis., 3 ed. McGraw-Hill.

[58] Coxeter, H., 2969.Introduction to Geometry., 2 ed. Wiley.

[59] Chapra, S. C., 2006.Numerical Methods for Engineers., 5 ed. McGraw-Hill.

[60] Khoshniat, M., Stuhne, G., and Steinman, D., 2003. “Relative performance of geometric
search algorithms for interpolating unstructured mesh data.” In Medical Image Computing
and Computer-Assisted Intervention - MICCAI 2003, R. Ellis and T. Peters, eds., Vol. 2879
of Lecture Notes in Computer Science. Springer Berlin / Heidelberg, pp. 391–398.

[61] Bercovier, M., Pironneau, O., and Sastri, V., 1983. “Finite elements and characteristics for
some parabolic-hyperbolic problems.”Applied Mathematical Modelling,7(2), pp. 89 – 96.

[62] Wikipedia, 2011.http://en.wikipedia.org/wiki/Delaunay_triangulation, June.

[63] Wikipedia, 2011.http://en.wikipedia.org/wiki/Speedup, June.

64

http://pgcluster.projects.postgresql.org/
http://bucardo.org
http://docs.python.org/library/multiprocessing.html
http://docs.python.org/glossary.html
http://www.zeromq.org
http://www.zeromq.org/bindings:python
http://taotetek.wordpress.com/2011/02/03/python
https://github.com/thatch45/salt
http://en.wikipedia.org/wiki/Simplex
http://en.wikipedia.org/wiki/Delaunay_triangulation
http://en.wikipedia.org/wiki/Speedup

APPENDIX A. smbinterp SOURCE CODE

A.1 smbinterp library

1 from s e t u p t o o l s import se tup , f i n d p a c k a g e s

2 from i n t e r p import v e r s i o n

3

4 s e t u p (

5 name = ’ s m b i n t e r p ’ ,

6 v e r s i o n = v e r s i o n ,

7 packages = f i n dp a c k a g e s () ,

8

9 i n s t a l l r e q u i r e s = [

10 ’ p r o g r e s s b a r ’ ,

11 ’ s c i p y ’ ,

12 ’numpy ’ ,

13] ,

14

15

16 a u t h o r = ” Stephen M. McQuay” ,

17 a u t h o r e m a i l = ” stephen@mcquay . me” ,

18 u r l = ” h t t p s : / / mcquay . me / hg / r e s e a r c h ” ,

19 l i c e n s e = ”GPL” ,

20)

: ../research/setup.py

1 import sys

2

3 import numpy as np

4

5 from f u n c t o o l s import wraps

65

6 import i t e r t o o l s

7

8 import i n t e r p

9 import l o g g i n g

10 log = l o g g i n g . ge tLogger (’ i n t e r p ’)

11

12 AGGRESSIVEERRORSOLVE = True

13 RAISEPATHOLOGICAL EXCEPTION = F a l s e

14

15 def g e t p h i s (X, R) :

16 ”””

17 The g e t p h i s f u n c t i o n i s used t o g e t b a r y c e n t r i c c o o r d o n i t e s f o r a

18 p o i n t on a t r i a n g l e or t e t r a h e d r o n . Th i s i s e q u a t i o n3.3

19

20 i n 2D:

21

22 X − t h e d e s t i n a t i o n p o i n t (2D)

23 X = [0 , 0]

24 R − t h e t h r e e p o i n t s t h a t make up t h e 2−D t r i a n g u l a r s i m p l e x

25 R = [[−1 , −1] , [0 , 2] , [1 , −1]]

26

27 t h i s w i l l r e t u r n [0 . 3 3 3 , 0 .333 , 0 .333]

28

29

30 i n 3D:

31

32 X − t h e d e s t i n a t i o n p o i n t (3D)

33 X = [0 , 0 , 0]

34 R − t h e f o u r p o i n t s t h a t make up t h e 3−D s i m p l e x (t e t r a h e d r o n)

35 R = [

36 [0 .0000 , 0 .0000 , 1 . 0 0 0 0] ,

37 [0 .9428 , 0 .0000 , −0.3333] ,

38 [−0.4714 , 0 .8165 , −0.3333] ,

39 [−0.4714 , −0.8165 , −0.3333] ,

40]

41

66

42 t h i s w i l l r e t u r n [0 . 2 5 , 0 . 2 5 , 0 . 2 5 , 0 . 2 5]

43 ”””

44

45 # e q u a t i o n s 3.12 and 3.10

46 i f l e n (X) == 2 :

47 log . debug (” runn ing 2D”)

48 A = np . a r r a y ([

49 [1 , 1 , 1] ,

50 [R [0] [0] , R [1] [0] , R [2] [0]] ,

51 [R [0] [1] , R [1] [1] , R [2] [1]] ,

52])

53 b = np . a r r a y ([1 ,

54 X[0] ,

55 X[1]

56])

57 e l i f l e n (X) == 3 :

58 log . debug (” runn ing 3D”)

59 A = np . a r r a y ([

60 [1 , 1 , 1 , 1] ,

61 [R [0] [0] , R [1] [0] , R [2] [0] , R [3] [0]] ,

62 [R [0] [1] , R [1] [1] , R [2] [1] , R [3] [1]] ,

63 [R [0] [2] , R [1] [2] , R [2] [2] , R [3] [2]] ,

64])

65 b = np . a r r a y ([1 ,

66 X[0] ,

67 X[1] ,

68 X[2]

69])

70 e l s e:

71 r a i s e Excep t i on (” i n a p r o p r i a t e demension on X”)

72

73 t r y :

74 ph i = np . l i n a l g . s o l v e (A, b)

75 excep t np . l i n a l g . L inA lgEr ro r as e :

76 msg = ” c a l c u l a t i o n o f p h i s y i e l d e d a l i n e a r l y dependan t sys tem (%s) ” % e

77 log . e r r o r (msg)

67

78 # r a i s e E x c e p t i o n (msg)

79 ph i = np . do t (np . l i n a l g . p inv (A) , b)

80

81 log . debug (” ph i : %s ” , ph i)

82

83 re turn ph i

84

85 def q l i n e a r (X, R) :

86 ”””

87 t h i s c a l c u l a t e s t h e l i n e a r p o r t i o n o f q from R t o X

88

89 Th i s i s e q u a t i o n 3.5

90

91 X = d e s t i n a t i o n p o i n t

92 R = a i n t e r . g r i d o b j e c t ; must have R . p o i n t s and R . q

93 ”””

94

95 p h i s = g e t p h i s (X, R . v e r t s)

96 q l i n = np . sum ([q i * p h i i f o r q i , p h i i i n z i p (R . q , p h i s)])

97

98 log . debug (” p h i s : %s ” , p h i s)

99 log . debug (” q l i n : %s ” , q l i n)

100

101 re turn ph is , q l i n

102

103 def g e t e r r o r (phi , R , S , o r d e r = 2) :

104 ”””

105 C a l c u l a t e t h e e r r o r app rox ima t i on terms , r e t u r n i n g t h e unknowns

106 a , b , and c i n e q u a t i o n3.13.

107 ”””

108 B = [] # e q u a t i o n (3.15

109 w = [] # e q u a t i o n (3.16

110

111 c u r p a t t e r n = p a t t e r n (l e n (ph i) , o r d e r)

112 log . i n f o (” p a t t e r n : %s ” % c u rp a t t e r n)

113

68

114 f o r (s , q) i n z i p (S . v e r t s , S . q) :

115 c u r p h i , c u r q l i n = q l i n e a r (s , R)

116 l = []

117 f o r i i n c u r p a t t e r n :

118 cur sum = c u r p h i [i [0]]

119 f o r j i n i [1 :] :

120 cur sum * = c u r p h i [j]

121 l . append (cursum)

122

123 B . append (l)

124 w. append (q− c u r q l i n)

125

126 log . i n f o (”B : %s ” % B)

127 log . i n f o (”w: %s ” % w)

128

129

130 B = np . a r r a y (B)

131 w = np . a r r a y (w)

132

133 A = np . do t (B . T , B)

134 b = np . do t (B . T , w)

135

136 t r y :

137 abc = np . l i n a l g . s o l v e (A, b)

138 excep t np . l i n a l g . L inA lgEr ro r as e :

139 log . e r r o r (” l i n e a r c a l c u l a t i o n went bad , r e s o r t i n g t o np . l i n a l g . p inv : %s ” %

e)

140 i f not AGGRESSIVEERRORSOLVE :

141 re turn None , None

142 abc = np . do t (np . l i n a l g . p inv (A) , b)

143

144 e r r o r t e r m = 0 .0

145 f o r (a , i) i n z i p (abc , c u r p a t t e r n) :

146 cur sum = a

147 f o r j i n i :

148 cur sum * = ph i [j]

69

149 e r r o r t e r m += cur sum

150

151 log . debug (” e r r o rt e r m : %s ” % e r r o r t e r m)

152 re turn e r r o r t e r m , abc

153

154 def r u n b a k e r (X, R , S , o r d e r =2) :

155 ”””

156 Th i s i s t h e main f u n c t i o n t o c a l l t o g e t an i n t e r p o l a t i o n t o X from t h e

157 i n p u t meshes

158

159 X −− t h e d e s t i n a t i o n p o i n t

160

161 R = Simp lex

162 S = e x t r a p o i n t s

163 ”””

164 log . debug (” o r d e r = %d” % o r d e r)

165 log . debug (” e x t r a p o i n t s = %d” % l e n (S . v e r t s))

166

167 answer ={

168 ’ q l i n ’ : None ,

169 ’ e r r o r ’ : None ,

170 ’ f i n a l ’ : None ,

171 }

172 # c a l c u l a t e v a l u e s on l y f o r t h e s i m p l e x t r i a n g l e

173 phi , q l i n = q l i n e a r (X, R)

174

175 i f o r d e r == 1 :

176 answer [’ q l i n ’] = q l i n

177 answer [’ f i n a l ’] = q l i n

178 re turn answer

179 e l i f o r d e r i n x range (2 , 1 1) :

180 e r r o r t e r m , abc = g e te r r o r (phi , R , S , o r d e r)

181

182 # i f a p a t h o l o g i c a l v e r t e x c o n f i g u r a t i o n was encoun te red and

183 # AGGRESSIVEERRORSOLVE i s False , g e te r r o r w i l l r e t u r n (None , None)

184 # i n d i c a t i n g t h a t on l y l i n e a r i n t e r p o l a t i o n shou ld be per formed

70

185 i f (e r r o r t e r m i s None) and (abc i s None) :

186 i f RAISE PATHOLOGICAL EXCEPTION :

187 r a i s e np . l i n a l g . L inA lgEr ro r (” P a t h o l o g i c a l Ver tex C o n f i g u r a ti o n

De tec ted ”)

188 answer [’ q l i n ’] = q l i n

189 answer [’ f i n a l ’] = q l i n

190 re turn answer

191 e l s e:

192 r a i s e Excep t i on (’ unsuppo r t ed o r d e r ”%d” f o r baker method ’ % o r d er)

193

194 q f i n a l = q l i n + e r r o r t e r m

195

196 answer [’ q l i n ’] = q l i n

197 answer [’ e r r o r ’] = e r r o r t e r m

198 answer [’ f i n a l ’] = q f i n a l

199 answer [’ abc ’] = abc

200

201 log . debug (answer)

202

203 re turn answer

204

205

206 def memoize (f) :

207 ”””

208 f o r more i n f o r m a t i o n on what I ’m do ing here , p l e a s e read :

209 h t t p : / / en . w i k i p e d i a . org / w i k i / Memoize

210 ”””

211 cache ={}

212 @wraps (f)

213 def memf (s i m p l e x s i z e , nu) :

214 x = (s i m p l e x s i z e , nu)

215 i f x not in cache :

216 log . debug (” add ing t o cache : %s ” , x)

217 cache [x] = f (s i m p l e xs i z e , nu)

218 re turn cache [x]

219 re turn memf

71

220

221

222 @memoize

223 def p a t t e r n (s i m p l e xs i z e , nu) :

224 ”””

225 Th i s f u n c t i o n r e t u r n s t h e p a t t e r n r e q u i s i t e t o compose t h e er r o r

226 app rox ima t i on f u n c t i o n , and t h e m a t r i x B .

227 ”””

228 log . debug (” p a t t e r n : s imp lex : %d , o r d e r : %d” % (s i m p l e xs i z e , nu))

229

230 r = []

231 f o r i i n i t e r t o o l s . p r o d u c t (x range (s i m p l e xs i z e) , r e p e a t = nu) :

232 i f l e n (s e t (i)) ! = 1 :

233 r . append (t u p l e (s o r t e d (i)))

234 u n i q u e r = l i s t (s e t (r))

235 re turn u n i q u e r

: ../research/interp/baker/init .py

1 import os

2

3 import numpy as np

4

5 import l o g g i n g

6 log = l o g g i n g . ge tLogger (” i n t e r p ”)

7

8 def rms (e r r o r s) :

9 ”””

10 r o o t mean square c a l c u l a t i o n

11 ”””

12

13 # s low pure py thon way f o r r e f e r e n c e :

14 # r = 0 .0

15 # f o r i i n e r r o r s :

16 # r += np . power (i , 2)

17 # r = np . s q r t (r / l e n (e r r o r s))

18 # r e t u r n r

72

19

20 re turn np . s q r t ((e r r o r s** 2) . mean ())

21

22 def b a k e r e x a c t 2 D (X) :

23 ”””

24 t h e e x a c t f u n c t i o n (2D) used from baker ’ s a r t i c l e (f o r t e s t in g , s l i g h t l y

25 m o d i f i e d)

26 ”””

27 x , y = X

28

29 answer = np . power ((np . s i n (x* np . p i) * np . cos (y * np . p i)) , 2)

30 log . debug (answer)

31 re turn answer

32

33 def f r i e n d l y e x a c t 2 D (X) :

34 ”””

35 A f r i e n d l i e r 2D func

36 ”””

37 x , y = X

38 answer = 1 .0 + x* x + y* y

39 log . debug (answer)

40 re turn answer

41

42 def b a k e r e x a c t 3 D (X) :

43 ”””

44 t h e e x a c t f u n c t i o n (3D) used from baker ’ s a r t i c l e (f o r t e s t in g)

45 ”””

46 x = X[0]

47 y = X[1]

48 z = X[2]

49 answer = np . power ((np . s i n (x* np . p i / 2 . 0) * np . s i n (y * np . p i / 2 . 0) * np .

s i n (z * np . p i / 2 . 0)) , 2)

50 log . debug (answer)

51 re turn answer

52

53 def f r i e n d l y e x a c t 3 D (X) :

73

54 x , y , z = X

55 re turn 1 + x* x + y* y + z* z

56

57 def s c i p y e x a c t 2 D (X) :

58 x , y = X

59 re turn x* (1−x) * np . cos (4* np . p i* x) * np . s i n (4* np . p i* y ** 2) ** 2

60

61 def improved answer (answer , e x a c t) :

62 i f not answer [’ e r r o r ’] :

63 # was probab ly j u s t a l i n e a r i n t e r p o l a t i o n

64 re turn F a l s e

65

66 log . debug (’ q l i n : %s ’ % answer [’ q l i n ’])

67 log . debug (’ e r r o r : %s ’ % answer [’ e r r o r ’])

68 log . debug (’ f i n a l : %s ’ % answer [’ f i n a l ’])

69 log . debug (’ e x a c t : %s ’ % e x a c t)

70

71 i f np . abs (answer [’ f i n a l ’]− e x a c t) <= np . abs (answer [’ q l i n ’]− e x a c t) :

72 log . debug (” :) improved r e s u l t ”)

73 re turn True

74 e l s e:

75 log . debug (” : (damaged r e s u l t ”)

76 re turn F a l s e

77

78 def improved (q l i n , e r r , f i n a l , e x a c t) :

79 i f np . abs (f i n a l − e x a c t) <= np . abs (q l i n − e x a c t) :

80 re turn True

81 e l s e:

82 re turn F a l s e

: ../research/interp/tools.py

A.2 smbinterp Plugin System

1 import sys

2 from c o l l e c t i o n s import d e f a u l t d i c t

74

3 import p i c k l e

4

5 from xml . dom . minidom import Document

6

7 import numpy as np

8 from s c i p y . s p a t i a l import KDTree

9

10 from i n t e r p . bake r import r u n b a k e r

11 from i n t e r p . bake r import g e t p h i s

12

13 import l o g g i n g

14 log = l o g g i n g . ge tLogger (” i n t e r p ”)

15

16 MAX SEARCHCOUNT = 256

17

18 c l a s s g r i d (o b j e c t) :

19 def i n i t (s e l f , v e r t s = None , q = None) :

20 ”””

21 v e r t s = a r ray o f a r r a y s (i f passed in , w i l l c o n v e r t t o numpy . ar ray)

22 [

23 [x0 , y0 <, z0>] ,

24 [x1 , y1 <, z1>] ,

25 . . .

26]

27

28 q = ar ray (1D) o f p h y s i c a l v a l u e s

29 ”””

30

31 i f v e r t s != None :

32 s e l f . v e r t s = np . a r r a y (v e r t s)

33 s e l f . t r e e = KDTree (s e l f . v e r t s)

34

35 i f q != None :

36 s e l f . q = np . a r r a y (q)

37

38 s e l f . c e l l s = {}

75

39 s e l f . c e l l s f o r v e r t = d e f a u l t d i c t (l i s t)

40

41 def g e t c o n t a i n i n g s i m p l e x (s e l f , X) :

42 i f not s e l f . c e l l s :

43 r a i s e Excep t i on (” c e l l c o n n e c t i v i t y i s no t s e t up ”)

44

45 # g e t c l o s e s t p o i n t

46 (d i s t , i n d i c i e s) = s e l f . t r e e . query (X, 2)

47 c l o s e s t p o i n t = i n d i c i e s [0]

48

49 log . debug (’X: %s ’ % X)

50 log . debug (’ p o i n t i ndex : %d ’ % c l o s e s tp o i n t)

51 log . debug (’ a c t u a l p o i n t %s ’ % s e l f . v e r t s [c l o s e s tp o i n t])

52 log . debug (’ d i s t a n c e = %0.4 f ’ % d i s t [0])

53

54 s imp lex = None

55 c h e c k e dc e l l s = []

56 c e l l s t o c h e c k = l i s t (s e l f . c e l l s f o r v e r t [c l o s e s t p o i n t])

57

58 a t t e m p t s = 0

59 whi le not s imp lex and c e l l s t o c h e c k :

60 a t t e m p t s += 1

61

62 i f a t t e m p t s> MAX SEARCHCOUNT:

63 r a i s e Excep t i on (” I s t h e s e a r c h becoming e x h a u s t i v e ? (%d a t t e m p ts) ” %

a t t e m p t s)

64

65 c u r c e l l = c e l l s t o c h e c k . pop (0)

66 c h e c k e dc e l l s . append (c u rc e l l)

67

68 i f c u r c e l l . c o n t a i n s (X, s e l f) :

69 s imp lex = c u r c e l l

70 con t inue

71

72 f o r ne ighbo r i n c u r c e l l . n e i g h b o r s :

76

73 i f (ne i ghbo r not in c h e c k e d c e l l s) and (ne i ghbo r not in c e l l s t o c h e c k

) :

74 c e l l s t o c h e c k . append (ne ighbo r)

75

76 i f not s imp lex :

77 r a i s e Excep t i on (’ no c o n t a i n i n g s imp lex found ’)

78

79 log . debug (” s imp lex v e r t i n d i c i e s : %s ” % s imp lex . v e r t s)

80 R = s e l f . c r e a t em e s h (s imp lex . v e r t s)

81 log . debug (”R:\ n%s ” , R)

82

83 log . debug (’ t o t a l a t t e m p t s b e f o r e f i n d i n g s imp lex : %d ’ %a t t e m p t s)

84 re turn R

85

86 def c r e a t e m e s h (s e l f , i n d i c i e s) :

87 ”””

88 t h i s f u n c t i o n t a k e s a l i s t o f i n d i c i e s , and then c r e a t e s and re t u r n s a

89 g r i d o b j e c t (c o l l e c t i o n o f v e r t s and q) .

90

91 no te : t h e i n p u t i s i n d i c i e s , t h e g r i d c o n t a i n s v e r t s

92 ”””

93

94 re turn g r i d (s e l f . v e r t s [i n d i c i e s] , s e l f . q [i n d i c i e s])

95

96 def g e t s i m p l e x a n d n e a r e s t p o i n t s (s e l f , X, e x t r a p o i n t s = 3) :

97 ”””

98 t h i s r e t u r n s two g r i d o b j e c t s : R and S .

99

100 R i s a g r i d o b j e c t t h a t i s a c o n t a i n i n g s i m p l e x around p o i n t X

101

102 S : some v e r t s from a l l p o i n t s t h a t are no t t h e s i m p l e x

103 ”””

104 s i m p l e x s i z e = s e l f . dim + 1

105 log . debug (” e x t r a v e r t s : %d” % e x t r ap o i n t s)

106 log . debug (” s imp lex s i z e : %d” % s i m p l e xs i z e)

107

77

108 r mesh = s e l f . g e tc o n t a i n i n g s i m p l e x (X)

109

110 # and some UNIQUE e x t r a v e r t s

111 (d i s t , i n d i c i e s) = s e l f . t r e e . query (X, s i m p l e xs i z e + e x t r a p o i n t s)

112 log . debug (” e x t r a i n d i c i e s : %s ” % i n d i c i e s)

113

114 u n i q u e i n d i c i e s = []

115 f o r i ndex i n i n d i c i e s :

116 c l o s e p o i n t i n R = F a l s e

117 f o r r v e r t i n r mesh . v e r t s :

118 i f a l l (r v e r t == s e l f . v e r t s [i ndex]) :

119 c l o s e p o i n t i n R = True

120 break

121

122 i f not c l o s e p o i n t i n R :

123 u n i q u e i n d i c i e s . append (index)

124 e l s e:

125 log . debug (’ t h row ing ou t %s : %s ’ % (index , s e l f . v e r t s [index]))

126

127 log . debug (” i n d i c i e s : %s ” % i n d i c i e s)

128 log . debug (” un ique i n d i c i e s : %s ” % u n i q u ei n d i c i e s)

129 s mesh = s e l f . c r e a t em e s h (u n i q u ei n d i c i e s)

130

131 re turn (r mesh , smesh)

132

133 def r u n b a k e r (s e l f , X, o r d e r = 2 , e x t r ap o i n t s = 3) :

134 (R , S) = s e l f . g e ts i m p l e x a n d n e a r e s t p o i n t s (X, e x t r a p o i n t s)

135 answer = r u nb a k e r (X, R , S , o r d e r)

136 re turn answer

137

138 def f o r q h u l l g e n e r a t o r (s e l f) :

139 ”””

140 t h i s r e t u r n s a g e n e r a t o r t h a t shou ld be f e d i n t o qde launay

141 ”””

142

143 y i e l d s t r (l e n (s e l f . v e r t s [0])) ;

78

144 y i e l d ’%d ’ % l e n (s e l f . v e r t s)

145

146 f o r p i n s e l f . v e r t s :

147 y i e l d ”%f %f %f ” % t u p l e (p)

148

149 def f o r q h u l l (s e l f) :

150 ”””

151 t h i s r e t u r n s a s i n g l e s t r i n g t h a t shou ld be f e d i n t o qde launay

152 ”””

153 r = ’%d\n ’ % l e n (s e l f . v e r t s [0])

154 r += ’%d\n ’ % l e n (s e l f . v e r t s)

155 f o r p i n s e l f . v e r t s :

156 # r += ”%f %f %f \n” % t u p l e (p)

157 r += ”%s\n” % ” ” . j o i n (”%f ” % i f o r i i n p)

158 re turn r

159

160 def s t r (s e l f) :

161 r = ’ ’

162 a s s e r t (l e n (s e l f . v e r t s) == l e n (s e l f . q))

163 f o r c , i i n enumera te (z i p (s e l f . v e r t s , s e l f . q)) :

164 r += ”%d v e r t (%s) : q (%0.4 f) ” % (c , i [0] , i [1])

165 c e l l s t r = ” , ” . j o i n ([s t r (f . name) f o r f i n s e l f . c e l l s f o r v e r t [c]])

166 r += ” c e l l s : [%s] ” % c e l l s t r

167 r += ”\n”

168 i f s e l f . c e l l s :

169 f o r v i n s e l f . c e l l s . i t e r v a l u e s () :

170 r += ”%s\n” % v

171 re turn r

172

173 def n o r m a l i z e q (s e l f , newmax = 0 . 1) :

174 l a r g e s t n u m b e r = np . max (np . abs (s e l f . q))

175 s e l f . q * = new max / l a r g e s t n u m b e r

176

177

178 def d u m p t o b l e n d e r f i l e s (s e l f , p f i l e = ’ / tmp / p o i n t s . p ’ , c f i l e = ’ / tmp / c e l l s

. p ’) :

79

179 i f l e n (s e l f . v e r t s [0]) == 2 :

180 p i c k l e . dump ([(p [0] , p [1] , 0 . 0) f o r p i n s e l f . v e r t s] , open (p f i l e , ’w ’))

181 e l s e:

182 p i c k l e . dump ([(p [0] , p [1] , p [2]) f o r p i n s e l f . v e r t s] , open (p f i l e , ’w ’))

183

184 p i c k l e . dump ([f . v e r t s f o r f i n s e l f . c e l l s . i t e r v a l u e s ()] , open (c f i l e , ’w ’))

185

186 def ge t xm l (s e l f) :

187 doc = Document ()

188 ps = doc . c r e a t e E l e m e n t (” p o i n t s ”)

189 doc . appendCh i ld (ps)

190 f o r i i n z i p (s e l f . v e r t s , s e l f . q) :

191 p = doc . c r e a t e E l e m e n t (” p o i n t ”)

192

193 p . s e t A t t r i b u t e (”x ” , s t r (i [0] [0]))

194 p . s e t A t t r i b u t e (’ y ’ , s t r (i [0] [1]))

195 p . s e t A t t r i b u t e (’ z ’ , s t r (i [0] [2]))

196 p . s e t A t t r i b u t e (’ q ’ , s t r (i [1]))

197 ps . appendCh i ld (p)

198

199 re turn doc

200

201 def toxml (s e l f) :

202 re turn s e l f . ge t xm l () . toxml ()

203 def t o p r e t t y x m l (s e l f) :

204 re turn s e l f . ge t xm l () . t o p r e t t y x m l ()

205

206

207 c l a s s c e l l (o b j e c t) :

208 def i n i t (s e l f , name) :

209 s e l f . name = name

210 s e l f . v e r t s = []

211 s e l f . n e i g h b o r s = []

212

213 def a d d v e r t (s e l f , v) :

214 ”””

80

215 v shou ld be an i ndex i n t o g r i d . v e r t s

216 ”””

217 s e l f . v e r t s . append (v)

218

219 def a d d n e i g h b o r (s e l f , n) :

220 ”””

221 r e f e r e n c e t o ano the r c e l l o b j e c t

222 ”””

223 s e l f . n e i g h b o r s . append (n)

224

225 def c o n t a i n s (s e l f , X, G) :

226 ”””

227 X = p o i n t o f i n t e r e s t

228 G = co r renspond ing g r i d o b j e c t (G. v e r t s)

229

230 because o f t h e way i ’m s t o r i n g t h i n g s , a c e l l s i m p l y s t o r e s i nd i c i e s ,

231 and so one must pass i n a r e f e r e n c e t o t h e g r i d o b j e c t c o n t a i n in g r e a l

232 v e r t s .

233

234 t h i s s i m p l y c a l l s g r i d . s i m p l e x . c o n t a i n s

235 ”””

236 re turn c o n t a i n s (X, [G. v e r t s [i] f o r i i n s e l f . v e r t s])

237

238 def s t r (s e l f) :

239 # n e i g h b o r s = [s t r (i . name) f o r i i n s e l f . n e i g h b o r s]

240 re turn ’<c e l l %s : v e r t s : %s ne ighbo r coun t : %s> ’ %\

241 (

242 s e l f . name ,

243 s e l f . v e r t s ,

244 l e n (s e l f . n e i g h b o r s) ,

245 # ” , ” . j o i n (n e i g h b o r s)

246)

247

248 r e p r = s t r

249

250

81

251 TOL = 1e−8

252

253 def c o n t a i n s (X, R) :

254 ”””

255 t e s t s i f X (p o i n t) i s i n R

256

257 R i s a s imp lex , r e p r e s e n t e d by a l i s t o f n−degree c o o r d i n a t e s

258 ”””

259 p h i s = g e t p h i s (X, R)

260

261 r = True

262 i f [i f o r i i n p h i s i f i < 0 .0 − TOL] :

263 r = F a l s e

264 re turn r

: ../research/interp/grid/init .py

1 import p i c k l e

2

3 from i t e r t o o l s import com b i na t i ons

4 from c o l l e c t i o n s import d e f a u l t d i c t

5

6 import numpy as np

7 from s c i p y . s p a t i a l import KDTree

8

9 from i n t e r p . g r i d import g r i d

10 from i n t e r p . g r i d import c e l l

11

12 import l o g g i n g

13 log = l o g g i n g . ge tLogger (’ i n t e r p ’)

14

15

16

17 THREENODE TRIANGLE = 2

18 FOURNODE TET = 4

19

20 EDGESFOR FACE CONNECTIVITY = 2

82

21 EDGESFOR VOLUME CONNECTIVITY = 3

22

23

24

25 c l a s s g g r i d (g r i d) :

26

27 def i n i t (s e l f , f i l ename , d imens ion = 3) :

28 ”””

29 c o n s t r u c t an i n t e r p . g r i d . g r id−c o m p l i a n t g r i d

30 o b j e c t ou t o f a {2 ,3}D gmsh f i l e

31 ”””

32 s e l f . dim = d imens ion

33 log . debug (” d imens ion : %d” , s e l f . dim)

34

35 g m s h f i l e = open (f i l ename , ’ r ’)

36

37

38 g m s h f i l e . r e a d l i n e () # $MeshFormat

39 fmat = g m s h f i l e . r e a d l i n e ()

40 g m s h f i l e . r e a d l i n e () # $EndMeshFormat

41

42 g m s h f i l e . r e a d l i n e () # $Nodes

43

44 node coun t = i n t (g m s h f i l e . r e a d l i n e ())

45

46 s e l f . v e r t s = np . empty ((nodecount , d imens ion))

47 s e l f . q = np . empty (nodecoun t)

48

49 f o r i i n x range (nodecoun t) :

50 c u r l i n e = g m s h f i l e . r e a d l i n e ()

51 (index , x , y , z) = c u r l i n e . s p l i t ()

52 index = i n t (i ndex)− 1

53

54 s e l f . v e r t s [i] [0] = f l o a t (x)

55 s e l f . v e r t s [i] [1] = f l o a t (y)

56

83

57 i f s e l f . dim == 3 :

58 s e l f . v e r t s [i] [2] = f l o a t (z)

59

60

61 s e l f . t r e e = KDTree (s e l f . v e r t s)

62

63 # i n i t i a l i z e r e s t o f s t r u c t u r e s about t o be p o p u l a t e d (c e l l s,

64 # c e l l s f o r v e r t)

65 g r i d . i n i t (s e l f)

66

67 g m s h f i l e . r e a d l i n e () # $EndNodes

68 g m s h f i l e . r e a d l i n e () # $Elements

69

70 # temporary d i c t used t o compute c e l l c o n n e c t i v i t y

71 n e i g h b o r s ={}

72

73 e l e m e n t c o u n t = i n t (g m s h f i l e . r e a d l i n e ())

74 f o r i i n x range (e l e m e n tc o u n t) :

75 c u r l i n e = g m s h f i l e . r e a d l i n e ()

76 c u r l i n e = c u r l i n e . s p l i t ()

77 c u r c e l l i n d e x , node type , r e s t = (i n t (c u r l i n e [0]) ,

78 i n t (c u r l i n e [1]) ,

79 [i n t (j) f o r j i n c u r l i n e [2 :]])

80

81 i f (node t ype == THREENODE TRIANGLE and s e l f . dim == 2) \

82 or (node t ype == FOURNODE TET and s e l f . dim == 3) :

83 p o i n t s f o r c u r c e l l = [i −1 f o r i i n r e s t [r e s t [0] + 1 :]]

84

85 c u r c e l l = c e l l (c u r c e l l i n d e x)

86

87 f o r c u r p o i n t i n p o i n t s f o r c u r c e l l :

88 s e l f . c e l l s f o r v e r t [c u r p o i n t] . append (c u rc e l l)

89

90 c u r c e l l . v e r t s = p o i n t s f o r c u r c e l l

91

92 s e l f . c e l l s [c u r c e l l i n d e x] = c u r c e l l

84

93 edges = [t u p l e (s o r t e d (i))f o r i i n com b i na t i ons (p o i n t sf o r c u r c e l l ,

s e l f . dim)]

94

95 f o r edge i n edges :

96 i f edge i n n e i g h b o r s :

97 n e i g h b o r s [edge] . append (c u rc e l l i n d e x)

98 e l s e:

99 n e i g h b o r s [edge] = [c u rc e l l i n d e x]

100

101 f o r k , v i n n e i g h b o r s . i t e r i t e m s () :

102 i f l e n (v) > 1 :

103 s e l f . c e l l s [v [0]] . a d dn e i g h b o r (s e l f . c e l l s [v [1]])

104 s e l f . c e l l s [v [1]] . a d dn e i g h b o r (s e l f . c e l l s [v [0]])

: ../research/interp/grid/gmsh.py

1 import r e

2 import l o g g i n g

3

4 log = l o g g i n g . ge tLogger (” i n t e r p ”)

5

6 from i n t e r p . g r i d import g r i d as b a s e g r i d , c e l l

7

8 from s u b p r o c e s s import Popen , PIPE

9

10 def ge t qde launaydump (g) :

11 ”””

12 pass i n i n t e r p . g r i d g , and g e t back l i n e s from a q h u l l t r i a n g ul a t i o n :

13

14 qde launay Qt f

15 ”””

16 cmd = ’ qde launay Qt f ’

17 p = Popen (cmd . s p l i t () , b u f s i z e =1 , s t d i n =PIPE , s t d o u t =PIPE)

18 so , se = p . communicate (g . f o rq h u l l ())

19 f o r i i n so . s p l i t l i n e s () :

20 y i e l d i

21

85

22 def g e t q d e l a u n a y d u m p s t r (g) :

23 re turn ” \n” . j o i n (ge t qde launaydump (g))

24

25 def g e t i n d e x o n l y (g) :

26 cmd = ’ qde launay Qt i ’

27 p = Popen (cmd . s p l i t () , b u f s i z e =1 , s t d i n =PIPE , s t d o u t =PIPE)

28 so , se = p . communicate (g . f o rq h u l l ())

29 f o r i i n so . s p l i t l i n e s () :

30 y i e l d i

31

32 def g e t i n d e x o n l y s t r (g) :

33 re turn ” \n” . j o i n (g e t i n d e x o n l y (g))

34

35 c l a s s d g r i d (b a s e g r i d) :

36 c e l l r e = r e . compi le (r’ ’ ’

37 −\s +(?P<c e l l>f \d+) . * ?

38 v e r t i c e s :\ s (?P<v e r t s> .* ?)\n .* ?

39 n e i g h b o r i n g\ s f a c e t s :\ s +(?P<neigh>[\ s f\d] *)

40 ’ ’ ’ , r e . S| r e .X)

41

42 v e r t r e = r e . compi le (r’ ’ ’

43 (p\d+)

44 ’ ’ ’ , r e . S| r e .X)

45

46 def i n i t (s e l f , v e r t s , q = None) :

47 s e l f . dim = l e n (v e r t s [0])

48 b a s e g r i d . i n i t (s e l f , v e r t s , q)

49 s e l f . c o n s t r u c tc o n n e c t i v i t y ()

50

51 def c o n s t r u c t c o n n e c t i v i t y (s e l f) :

52 ”””

53 a c a l l t o t h i s method p repa res t h e i n t e r n a l c o n n e c t i v i t y s t ru c t u r e .

54 ”””

55 log . i n f o (’ s t a r t ’)

56 q d e l a u n a ys t r i n g = g e t q d e l a u n a y d u m p s t r (s e l f)

57

86

58 wi th open (’ / tmp / qde l . ou t ’ , ’w ’) as o f :

59 o f . w r i t e (q d e l a u n a ys t r i n g)

60

61 c e l l t o c e l l s = []

62 f o r matcher i n d g r i d . c e l l r e . f i n d i t e r (q d e l a u n a ys t r i n g) :

63 d = matcher . g r o u p d i c t ()

64

65 c e l l n a m e = d [’ c e l l ’]

66 v e r t i c i e s = d [’ v e r t s ’]

67 n e i g h b o r i n g c e l l s = d [’ ne igh ’]

68

69 c u r c e l l = c e l l (c e l l n a m e)

70 s e l f . c e l l s [c e l l n a m e] = c u r c e l l

71

72 f o r v i n d g r i d . v e r t r e . f i n d a l l (v e r t i c i e s) :

73 v e r t e x i n d e x = i n t (v [1 :])

74 c u r c e l l . a d d v e r t (v e r t e x i n d e x)

75 s e l f . c e l l s f o r v e r t [v e r t e x i n d e x] . append (c u rc e l l)

76

77 nghbrs = [(ce l l name , i) f o r i i n n e i g h b o r i n g c e l l s . s p l i t ()]

78 c e l l t o c e l l s . ex tend (nghbrs)

79 log . debug (c e l l t o c e l l s)

80

81 f o r r e l i n c e l l t o c e l l s :

82 i f r e l [1] i n s e l f . c e l l s :

83 s e l f . c e l l s [r e l [0]] . a d dn e i g h b o r (s e l f . c e l l s [r e l [1]])

84

85 log . debug (s e l f . c e l l s)

86 log . i n f o (’ end ’)

: ../research/interp/grid/delaunay.py

A.3 Parallelization Scripts

1 from m u l t i p r o c e s s i n g . managersimport BaseManager

2 import Queue

87

3

4 t a s k s q = Queue . Queue ()

5 r e s u l t s q = Queue . Queue ()

6 m in ions q = Queue . Queue ()

7 m a s t e r q = Queue . Queue ()

8

9 c l a s s QueueManager (BaseManager) :

10 ”””

11 One QueueManager t o r u l e a l l ne twork Queues

12 ”””

13 pass

14

15 QueueManager . r e g i s t e r (’ g e tt a s k s q ’ , c a l l a b l e =lambda : t a s k s q)

16 QueueManager . r e g i s t e r (’ g e tr e s u l t s q ’ , c a l l a b l e =lambda : r e s u l t s q)

17 QueueManager . r e g i s t e r (’ g e tm i n i o n s q ’ , c a l l a b l e =lambda : m in ions q)

18 QueueManager . r e g i s t e r (’ g e tm a s t e r q ’ , c a l l a b l e =lambda : m a s t e r q)

19

20 def g e t q s (qm) :

21 ”””

22 pass i n a QueueManager , and t h i s f u n c t i o n r e t u r n s a l l r e l e v an t

23 queues a t t a c h e d t o t h a t QueueManager .

24 ”””

25 re turn (qm . g e t t a s k s q () ,

26 qm . g e t r e s u l t s q () ,

27 qm . g e t m a s t e r q () ,

28 qm . g e t m i n i o n s q ())

: ../research/interp/cluster/init .py

1 # ! / us r / b in / env py thon

2

3 import sys

4 import os

5

6 import t ime

7 import s h e l v e

8 from c o l l e c t i o n s import d e f a u l t d i c t

88

9 from o p t p a r s e import O p t i o n P a r s e r

10

11 import l o g g i n g

12 log = l o g g i n g . ge tLogger (” i n t e r p ”)

13

14 import numpy as np

15

16 from i n t e r p . c l u s t e r import QueueManager , g e tq s

17

18 from p r o g r e s s b a r import *

19

20 i f name == ’ m a i n ’ :

21 p a r s e r = O p t i o n P a r s e r (usage = ” usage : %s [o p t i o n s]<s e r v e r> < i n t e r p count>”)

22

23 p a r s e r . a d do p t i o n (”− l ” , ”−− l a s t−t ime ” ,

24 a c t i o n =” s t o r e t r u e ” , d e s t =” l a s t ” , d e f a u l t = Fa lse ,

25 he lp =”when f i n i s h e d , send shutdown s i g n a l t o connec ted nodes (d e f a u l t : %

d e f a u l t) ”)

26

27 p a r s e r . a d do p t i o n (’−n ’ , ’−−node−coun t ’ ,

28 t ype =” i n t ” , d e s t =” p a r t i c i p a n t s ” , d e f a u l t =None ,

29 he lp =” s p e c i f y how many p a r t i c i p a n t s we shou ld wa i t f o r (de f a u l t : %d e f a u l t)

”)

30

31 p a r s e r . a d do p t i o n (’−p ’ , ’−−p o r t ’ ,

32 t ype =” i n t ” , d e s t =” p o r t ” , d e f a u l t =6666 ,

33 he lp =” s p e c i f y t h e p o r t t o use on t h e s e r v e r (d e f a u l t : %d e fa u l t) ”)

34

35 p a r s e r . a d do p t i o n (”−o” , ”−−o r d e r ” ,

36 t ype =” i n t ” , d e s t =” o r d e r ” , d e f a u l t =2 ,

37 he lp =” o r d e r o f i n t e r p o l a t i o n (d e f a u l t : %d e f a u l t) ”)

38

39 p a r s e r . a d do p t i o n (”−e ” , ”−−e x t r a−p o i n t s ” ,

40 t ype =” i n t ” , d e s t =” e x t r a ” , d e f a u l t =3 ,

41 he lp =” number o f e x t r a p o i n t s (d e f a u l t : %d e f a u l t) ”)

42

89

43 p a r s e r . a d do p t i o n (’−s ’ , ’−−s h e l v e ’ ,

44 t ype =” s t r ” , d e s t =” she lvename ” , d e f a u l t =os . pa th . expanduse r (’ ˜ / i n t e r p . s h e l v e

’) ,

45 he lp =” s h e l v e o u t p u t f i l e (d e f a u l t : %d e f a u l t) ”)

46

47 (op t i ons , a r g s) = p a r s e r . p a r s ea r g s ()

48 i f l e n (a r g s) != 2 :

49 p a r s e r . p r i n tu s a g e ()

50 sys . e x i t (1)

51

52 s e r v e r = a r g s [0]

53 coun t = i n t (f l o a t (a r g s [1]))

54

55 m = QueueManager (a d d r e s s =(s e r v e r , o p t i o n s . p o r t) , au thkey = ’ a s d f ’)

56 m. connec t ()

57

58 tasksq , r e s u l t s q , masterq , min ionsq = g e tq s (m)

59

60 workers = []

61

62 i f not o p t i o n s . p a r t i c i p a n t s :

63 p r i n t ” wa i t on a l l announced p a r t i c i p a n t s ”

64 p a r t i c i p a n t s = 0

65 whi le not maste rq . empty () :

66 p a r t i c i p a n t s += 1

67 worker = mas te rq . g e t ()

68 workers . append (worker)

69 p r i n t ”%d : %s i s ready ” % (p a r t i c i p a n t s , worker)

70 i f p a r t i c i p a n t s == 0 :

71 p r i n t ” nobody found ”

72 sys . e x i t (1)

73 e l s e:

74 p a r t i c i p a n t s = o p t i o n s . p a r t i c i p a n t s

75 p r i n t ” wa i t on %d p a r t i c i p a n t s ” % p a r t i c i p a n t s

76 f o r i i n x range (p a r t i c i p a n t s) :

77 worker = mas te rq . g e t ()

90

78 workers . append (worker)

79 p r i n t ”%d of %d : %s i s ready ” % (i +1 , p a r t i c i p a n t s , worker)

80

81 i f l e n (s e t (workers)) != l e n (workers) :

82 f o r i i n workers :

83 min ionsq . pu t (” s l a y ”)

84 r a i s e Excep t i on (” d u p l i c a t e workers r e p o r t e d ”)

85

86 r e s u l t s = []

87

88 w idge t s = [’ submi t j o b s : ’ , P e r c e n t a g e () , ’ ’ , Bar () , ’ ’ , ETA ()]

89 pbar = P r o g r e s s B a r (w idge t s = widgets , maxval = coun t)

90 pbar . s t a r t ()

91 s u b m i t s t a r t = t ime . t ime ()

92 f o r i i n x range (coun t) :

93 X = np . random . random ((1 , 3)) [0]

94 t a s k s q . pu t ((i , o p t i o n s . o rder , o p t i o n s . e x t r a , X))

95 pbar . upda te (i +1)

96 submi t end = t ime . t ime ()

97 pbar . f i n i s h ()

98

99 f o r i i n x range (p a r t i c i p a n t s) :

100 p r i n t ” send ing worker %d s t a r t message ” % (i +1 ,)

101 min ionsq . pu t (” s t a r t ”)

102

103 r e c e i v e s t a r t = t ime . t ime ()

104 w idge t s = [’ i n t e r p o l a t e : ’ , P e r c e n t a g e () , ’ ’ , Bar () , ’ ’, ETA ()]

105 pbar = P r o g r e s s B a r (w idge t s = widgets , maxval = coun t)

106 pbar . s t a r t ()

107 f o r i i n x range (coun t) :

108 c u r r e s u l t = r e s u l t s q . g e t ()

109 r e s u l t s . append (c u rr e s u l t)

110 pbar . upda te (i +1)

111 r e c e i v e e n d = t ime . t ime ()

112 pbar . f i n i s h ()

113

91

114 submi t = submi tend − s u b m i t s t a r t

115 r e c e i v e = r e c e i v ee n d − r e c e i v e s t a r t

116

117 # s h u t down a l l p a r t i c i p a n t s

118 f o r i i n x range (p a r t i c i p a n t s) :

119 i f o p t i o n s . l a s t :

120 min ionsq . pu t (” teardown ”)

121

122 # p o s t p r o c e s s i n g

123 s t a t s = {}

124 s t a t s [’ submi t ’] = f l o a t (submi t)

125 s t a t s [’ r e c e i v e ’] = f l o a t (r e c e i v e)

126 s t a t s [’ coun t ’] = coun t

127 s t a t s [’ p a r t i c i p a n t s ’] = p a r t i c i p a n t s

128 s t a t s [’ e x t r a ’] = o p t i o n s . e x t r a

129 s t a t s [’ o r d e r ’] = o p t i o n s . o r d e r

130

131 p r i n t ”%s ” % s t a t s

132 log . e r r o r (” s t a t s : %s ” , s t a t s)

133

134 t a s k s a c c o m p l i s h e db y = d e f a u l t d i c t (i n t)

135 f o r i i n r e s u l t s :

136 t a s k s a c c o m p l i s h e db y [i [1]] += 1

137 s t a t s [’ t a s k s ’] = t a s k sa c c o m p l i s h e db y

138

139 # n p r e s u l t s = np . a r ray ([(i [0] , i [2] , i [3] , i [4] , i [5]) f o r i i n r e s u l t s])

140

141 n = s t r (t ime . t ime ())

142 s = s h e l v e . open (o p t i o n s . she lvename)

143 s [n] = {

144 ’ s t a t s ’ : s t a t s ,

145 # ’ r e s u l t s ’ : n p r e s u l t s ,

146 }

147 s . c l o s e ()

: ../research/bin/master.py

92

1 # ! / us r / b in / env py thon

2

3 import sys

4 import os

5 import t ime

6

7 from m u l t i p r o c e s s i n g . managersimport BaseManager

8

9 from o p t p a r s e import O p t i o n P a r s e r

10 import d a t e t i m e

11

12 import numpy as np

13

14 from i n t e r p . g r i d . gmsh import g g r i d

15 from i n t e r p . t o o l s import b a k e r e x a c t 3 D as e x a c t

16

17 from i n t e r p . c l u s t e r import QueueManager , g e tq s

18

19 i f name == ’ m a i n ’ :

20 p a r s e r = O p t i o n P a r s e r (usage = ” usage : %s [o p t i o n s]<s e r v e r> <gmsh f i l e>”)

21

22 p a r s e r . a d do p t i o n (”−v ” , ”−−ve rbose ” ,

23 a c t i o n =” s t o r e t r u e ” , d e s t =” ve rbose ” , d e f a u l t = Fa lse ,

24 he lp =” ve rbose f l a g (d e f a u l t : %d e f a u l t) ”)

25

26 p a r s e r . a d do p t i o n (’−p ’ , ’−−p o r t ’ ,

27 t ype =” i n t ” , d e s t =” p o r t ” , d e f a u l t =6666 ,

28 he lp =” s p e c i f y t h e p o r t t o use on t h e s e r v e r (d e f a u l t : %d e fa u l t) ”)

29

30 (op t i ons , a r g s) = p a r s e r . p a r s ea r g s ()

31

32 i f l e n (a r g s) != 2 :

33 p a r s e r . p r i n tu s a g e ()

34 sys . e x i t (1)

35

93

36 s e r v e r , i n p u t f i l e = a r g s

37

38 myname = ”%s−%d” % (os . uname () [1] , os . g e t p i d ())

39 i f o p t i o n s . ve rbose :

40 p r i n t ”%s : s t a r t e d ” % myname

41

42

43 m = QueueManager (a d d r e s s =(s e r v e r , o p t i o n s . p o r t) , au thkey = ’ a s d f ’)

44 m. connec t ()

45

46 tasksq , r e s u l t s q , masterq , min ionsq = g e tq s (m)

47

48 i f o p t i o n s . ve rbose :

49 p r i n t ”%s : s t a r t i n g p a r s e i n p u t f i l e ” % myname

50 g = g g r i d (i n p u t f i l e)

51 g . q = np . a r r a y ([e x a c t (x)f o r x i n g . v e r t s])

52 i f o p t i o n s . ve rbose :

53 p r i n t ”%s : done p a r s i n g i n p u t f i l e ” % myname

54

55

56 whi le True :

57 i f o p t i o n s . ve rbose :

58 p r i n t ”%s : l e t t i n g mas te r know t h a t I am ready ” % myname

59 mas te rq . pu t (myname)

60

61 i f o p t i o n s . ve rbose :

62 p r i n t ”%s : w a i t i n g f o r mas te r t o t e l l me t o s t a r t ” % myname

63 a c t i o n = min ionsq . g e t ()

64 i f o p t i o n s . ve rbose :

65 p r i n t ”%s : mas te r s a i d go ! ! ” % myname

66

67 i f a c t i o n i n (’ teardown ’ , ’ s l a y ’) :

68 break

69

70 whi le not t a s k s q . empty () :

71 i , o , e , X = t a s k s q . g e t ()

94

72 t r y :

73 a = g . r u n b a k e r (X, o r d e r = o , e x t r ap o i n t s = e)

74 r e s u l t s q . pu t ((i , myname , a [’ q l i n ’] , a [’ e r r o r ’] , a [’ f in a l ’] , e x a c t (X)))

75 excep t Excep t i on as e :

76 p r i n t X, e

77 r e s u l t s q . pu t ((i , myname , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0))

78

79 i f o p t i o n s . ve rbose :

80 p r i n t ”%s : e x i t i n g ” % myname

: ../research/bin/minion.py

1 # ! / us r / b in / env py thon

2

3 import sys

4 import t ime

5

6 from i n t e r p . c l u s t e r import QueueManager , g e tq s

7 from o p t p a r s e import O p t i o n P a r s e r

8

9 i f name == ’ m a i n ’ :

10 p a r s e r = O p t i o n P a r s e r (usage = ” usage : %s [o p t i o n s]<s t a t u s| watch| add| f r e s u l t

| s l a y | c l e a r | c l e a r a l l | c l e a r r e s u l t s>”)

11

12 p a r s e r . a d do p t i o n (’−p ’ , ’−−p o r t ’ ,

13 t ype =” i n t ” , d e s t =” p o r t ” , d e f a u l t =6666 ,

14 he lp =” s p e c i f y t h e p o r t t o use on t h e s e r v e r (d e f a u l t : %d e fa u l t) ”)

15

16 p a r s e r . a d do p t i o n (’−a ’ , ’−−auth−key ’ ,

17 t ype =” s t r ” , d e s t =” au thkey ” , d e f a u l t = ’ a s d f ’ ,

18 he lp =” au thkey (d e f a u l t : %d e f a u l t) ”)

19

20 (op t i ons , a r g s) = p a r s e r . p a r s ea r g s ()

21

22 i f l e n (a r g s) == 0 :

23 cmd = ’ s t a t u s ’

24 e l s e:

95

25 cmd = a r g s [0]

26

27 m = QueueManager (a d d r e s s =(’ ’ , o p t i o n s . p o r t) , au thkey =o p t i o n s . au thkey)

28 m. connec t ()

29

30 tq , rq , mq , sq = g e tq s (m)

31

32 i f cmd . s t a r t s w i t h (” s t ”) :

33 p r i n t ” i n t e r p queue s t a t u s : ”

34 p r i n t ” t a s k s q : %d” % t q . q s i z e ()

35 p r i n t ” r e s u l t s q : %d” % rq . q s i z e ()

36 p r i n t ” mas te rq : %d” % mq . q s i z e ()

37 p r i n t ” min ionsq : %d” % sq . q s i z e ()

38

39 i f cmd . s t a r t s w i t h (”wa”) :

40 i f l e n (a r g s) == 2 :

41 s l e e p t i m e = f l o a t (a r g s [1])

42 e l s e:

43 s l e e p t i m e = 1

44

45 i = 0

46 whi le True :

47 t ime . s l e e p (s l e e p t i m e)

48 i f i % 20 == 0 :

49 p r i n t ” t a s k s q r e s u l t s q mas te rq min ionsq ”

50 p r i n t ”%d %d %d %d” % \

51 (t q . q s i z e () ,

52 rq . q s i z e () ,

53 mq . q s i z e () ,

54 sq . q s i z e () ,)

55 i += 1

56

57 i f cmd == ’ add ’ :

58 f o r i i n x range (i n t (a r g s [1])) :

59 mq . pu t (’ j a n e%d ’ % i)

60

96

61 i f cmd == ’ f r e s u l t ’ :

62 f o r i i n x range (i n t (a r g s [1])) :

63 rq . pu t (’ f ake .%d ’ % i)

64

65 i f cmd == ’ s l a y ’ :

66 i f l e n (a r g s) == 1 :

67 f o r i i n x range (mq . q s i z e ()) :

68 p r i n t i , ” k i l l i n g ” , mq . g e t ()

69 sq . pu t (” s l a y ”)

70 e l i f l e n (a r g s) == 2 :

71 f o r i i n x range (i n t (a r g s [1])) :

72 p r i n t i , ” k i l l i n g ” , mq . g e t ()

73 sq . pu t (” s l a y ”)

74

75

76 i f cmd == ’ c l e a r ’ :

77 f o r i i n x range (t q . q s i z e ()) : p r i n t t q . g e t ()

78 f o r i i n x range (rq . q s i z e ()) : p r i n t rq . g e t ()

79

80 i f cmd == ’ c l e a r a l l ’ :

81 f o r i i n x range (t q . q s i z e ()) : p r i n t t q . g e t ()

82 f o r i i n x range (rq . q s i z e ()) : p r i n t rq . g e t ()

83 f o r i i n x range (mq . q s i z e ()) : p r i n t mq . g e t ()

84 f o r i i n x range (sq . q s i z e ()) :p r i n t sq . g e t ()

85

86 i f cmd == ’ c l e a r r e s u l t s ’ :

87 f o r i i n x range (rq . q s i z e ()) : p r i n t rq . g e t ()

: ../research/bin/iqmgr.py

1 # ! / us r / b in / env py thon

2

3 from i n t e r p . c l u s t e r import QueueManager

4 from o p t p a r s e import O p t i o n P a r s e r

5

6 i f name == ’ m a i n ’ :

7 p a r s e r = O p t i o n P a r s e r (usage = ” usage : %s [o p t i o n s]<s e r v e r> < i n t e r p count>”)

97

8

9 p a r s e r . a d do p t i o n (’−p ’ , ’−−p o r t ’ ,

10 t ype =” i n t ” , d e s t =” p o r t ” , d e f a u l t =6666 ,

11 he lp =” s p e c i f y t h e p o r t t o use on t h e s e r v e r (d e f a u l t : %d e fa u l t) ”)

12

13 p a r s e r . a d do p t i o n (’−a ’ , ’−−auth−key ’ ,

14 t ype =” s t r ” , d e s t =” au thkey ” , d e f a u l t = ’ a s d f ’ ,

15 he lp =” au thkey (d e f a u l t : %d e f a u l t) ”)

16

17 (op t i ons , a r g s) = p a r s e r . p a r s ea r g s ()

18

19 m = QueueManager (a d d r e s s =(’ ’ , o p t i o n s . p o r t) , au thkey =o p t i o n s . au thkey)

20 s = m. g e t s e r v e r ()

21 s . s e r v e f o r e v e r ()

: ../research/bin/server.py

A.4 Gmsh Mesh Generation Scripts

1 a = 0 . 0 0 4 9 ;

2 P o i n t (0) = {0 , 0 , 0 , a} ;

3 P o i n t (1) = {1 , 0 , 0 , a} ;

4 P o i n t (2) = {1 , 1 , 0 , a} ;

5 P o i n t (3) = {0 , 1 , 0 , a} ;

6 L ine (1) = {0 , 1} ;

7 L ine (2) = {1 , 2} ;

8 L ine (3) = {2 , 3} ;

9 L ine (4) = {3 , 0} ;

10 L ine Loop (6) = {3 , 4 , 1 , 2} ;

11 P lane S u r f a c e (6) ={6} ;

: ../research/gmsh/gmsh.2D.geo

1 a = 0 . 8 8 5 ;

2 P o i n t (0) = {0 , 0 , 0 , a} ;

3 P o i n t (1) = {1 , 0 , 0 , a} ;

4 P o i n t (2) = {1 , 1 , 0 , a} ;

98

5 P o i n t (3) = {0 , 1 , 0 , a} ;

6 L ine (1) = {0 , 1} ;

7 L ine (2) = {1 , 2} ;

8 L ine (3) = {2 , 3} ;

9 L ine (4) = {3 , 0} ;

10 L ine Loop (6) = {3 , 4 , 1 , 2} ;

11 P lane S u r f a c e (6) ={6} ;

12 Ex t rude {0 , 0 , 1} {

13 S u r f a c e{6} ;

14 }

: ../research/gmsh/gmsh.3D.geo

A.5 General-purpose Utilities

1 from i n t e r p import c o n f i g

2 import sys

3 sys . pa th . append (c o n f i g [’ pypa th ’])

4

5 import bpy

6

7 import p i c k l e

8 p o i n t s = p i c k l e . l oad (open (’ / tmp / p o i n t s . p ’ , ’ r ’))

9 f a c e s = p i c k l e . l oad (open (’ / tmp / c e l l s . p ’ , ’ r ’))

10 # f a c e s = [f a c e s [i] f o r i i n f a c e s]

11 me = bpy . d a t a . meshes . new (’ p o i n t s ’)

12 me . v e r t s . ex tend (p o i n t s)

13 me . f a c e s . ex tend (f a c e s)

14 scn = bpy . d a t a . s c e n e s . a c t i v e

15 ob = scn . o b j e c t s . new (me , ’ p o i n t so b j ’)

: ../research/tools/blender/plot.py

1 # ! / b in / bash

2

99

3 expor t LD LIBRARY PATH=/ u s r / mpi / f s l o p e n m p i g c c −1 . 4 . 2 / l i b : / op t / i n t e l / mkl

/ 1 0 . 2 . 5 . 0 3 5 / l i b / em64t : / op t / i n t e l / Compi ler / 1 1 . 1 / 0 7 2 /l i b / i n t e l 6 4 : / op t / i n t e l /

Compi ler / 1 1 . 1 / 0 7 2 / ipp / em64t / s h a r e d l i b : / op t / i n t e l / Compi ler / 1 1 . 1 / 0 7 2 / tbb /

i n t e l 6 4 / cc4 . 1 . 0 l i b c 2 . 4 k e r n e l 2 . 6 . 1 6 . 2 1 / l i b : / op t / i n t e l / Compi ler / 1 1 . 1 / 0 7 2 /

l i b / i n t e l 6 4 : / op t / i n t e l / Compi ler / 1 1 . 1 / 0 7 2 / ipp / em64t /s h a r e d l i b : / op t / i n t e l /

Compi ler / 1 1 . 1 / 0 7 2 / tbb / i n t e l 6 4 / cc4 . 1 . 0l i b c 2 . 4 k e r n e l 2 . 6 . 1 6 . 2 1 / l i b : / u s r /

l o c a l / cuda / l i b 6 4

4

5 PYTHON=/ fs lhome / smm58 / r e s e a r c h / b in / py thon

6 SCRIPT =/ fs lhome / smm58 / s r c / r e s e a r c h / b in / min ion . py

7 OPTIONS= ’ ’

8 SERVER=bigmemssh . f s l . byu . edu

9

10 # a p p r o x i m a t e l y 1e6 t e t s i s gmsh . 3D . 2 . msh

11 INPUT=/ fs lhome / smm58 / compute / gmsh / gmsh . 3D . 2 . msh

12

13 $PYTHON $SCRIPT $OPTIONS $SERVER $INPUT

: ../research/bin/minion.sh

1 # ! / b in / bash

2

3 #PBS− l p rocs =512 ,pmem=2gb , w a l l t i m e =00:40:00 , f e a t u r e = ’! harper town ’

4 #PBS−N s c a l a b i l i t y−512

5 #PBS−m bea

6 #PBS−M stephen@mcquay . me

7

8 # , qos= t e s t

9

10 # f o r p a r a l l e l s u b m i s s i o n :

11 / u s r / b in / pbsdsh / fs lhome / smm58 / s r c / r e s e a r c h / b in / min ion . sh

12

13 # s e r i a l :

14 # / f s l home / smm58 / b in / s l a v e . sh

15

16 e x i t 0

100

: ../research/bin/submit.sh

A.6 Unit Tests

1 # ! / us r / b in / env py thon

2

3 import u n i t t e s t

4

5 import b a k e r 2 d o r d e r

6 import baker2d

7 import baker3d

8 import cub ic2d

9 import p a t t e r n

10 import q h u l l

11 import q u a d r a t i c 2 d

12

13

14 i f name == ’ m a i n ’ :

15 t e s t s = [

16 u n i t t e s t . Tes tLoader () . l oadTes tsF romTes tCase (b a k e r2 d o r d e r . Tes t) ,

17 u n i t t e s t . Tes tLoader () . l oadTes tsF romTes tCase (baker2d . Tes t) ,

18 u n i t t e s t . Tes tLoader () . l oadTes tsF romTes tCase (baker3d . Tes t) ,

19 u n i t t e s t . Tes tLoader () . l oadTes tsF romTes tCase (cub ic2d . Tes t) ,

20 u n i t t e s t . Tes tLoader () . l oadTes tsF romTes tCase (p a t t er n . Tes t) ,

21 u n i t t e s t . Tes tLoader () . l oadTes tsF romTes tCase (q h u l l. Tes t) ,

22 u n i t t e s t . Tes tLoader () . l oadTes tsF romTes tCase (q u a d ra t i c 2 d . Tes t) ,

23]

24

25 f o r t e s t i n t e s t s :

26 u n i t t e s t . Tex tTes tRunner (v e r b o s i t y =3) . run (t e s t)

: ../research/test/all.py

1 # ! / us r / b in / env py thon

2

101

3 import u n i t t e s t

4

5 from i n t e r p import baker

6 from i n t e r p . g r i d import g r i d

7 import numpy as np

8

9 from i n t e r p . g r i d import c o n t a i n s

10

11 def e x a c t f u n c (p o i n t) :

12 x = p o i n t [0]

13 y = p o i n t [1]

14 re turn 0 .5 + x* x + y

15

16 def c a l c u l a t e e r r o r t e r m (s e l f , a , b , c , d , e , f) :

17 B = np . a r r a y ([

18 s e l f . p1 [a] * s e l f . p1 [b] , s e l f . p1 [c] * s e l f . p1 [d] , s e l f . p1 [e] * s e l f .

p1 [f] ,

19 s e l f . p2 [a] * s e l f . p2 [b] , s e l f . p2 [c] * s e l f . p2 [d] , s e l f . p2 [e] * s e l f .

p2 [f] ,

20 s e l f . p3 [a] * s e l f . p3 [b] , s e l f . p3 [c] * s e l f . p3 [d] , s e l f . p3 [e] * s e l f .

p3 [f] ,

21 s e l f . p4 [a] * s e l f . p4 [b] , s e l f . p4 [c] * s e l f . p4 [d] , s e l f . p4 [e] * s e l f .

p4 [f] ,

22])

23 B . shape = (4 , 3)

24

25 A = np . do t (B . T , B)

26 r h s = np . do t (B . T , s e l f .w)

27 abc = np . l i n a l g . s o l v e (A, r h s)

28

29 e r r = \

30 abc [0] * s e l f . p h i s [a] * s e l f . p h i s [b] + \

31 abc [1] * s e l f . p h i s [c] * s e l f . p h i s [d] + \

32 abc [2] * s e l f . p h i s [e] * s e l f . p h i s [f]

33 re turn e r r

34

102

35 c l a s s Tes t (u n i t t e s t . Tes tCase) :

36 def setUp (s e l f) :

37 s e l f . v e r t s = [

38 [2 , 3] , # 0

39 [7 , 4] , # 1

40 [4 , 8] , # 2

41 [0 , 7] , # 3 , 1

42 [5 , 0] , # 4 , 2

43 [10 , 5] , # 5 , 3

44 [8 , 9] , # 6 , 4

45]

46

47

48 s e l f . q = [e x a c t f u n c (v) f o r v i n s e l f . v e r t s]

49

50 s e l f . g = g r i d (s e l f . v e r t s , s e l f . q)

51 s e l f . R = g r i d (s e l f . v e r t s [: 3] , s e l f . q [: 3])

52 s e l f . S = g r i d (s e l f . v e r t s [3 :] , s e l f . q [3 :])

53

54 s e l f . p1 , s e l f . q l1 = baker . q l i n e a r (s e l f . v e r t s [3] , s e l f. R)

55 s e l f . p2 , s e l f . q l2 = baker . q l i n e a r (s e l f . v e r t s [4] , s e l f. R)

56 s e l f . p3 , s e l f . q l3 = baker . q l i n e a r (s e l f . v e r t s [5] , s e l f. R)

57 s e l f . p4 , s e l f . q l4 = baker . q l i n e a r (s e l f . v e r t s [6] , s e l f. R)

58

59 s e l f . q1 = e x a c tf u n c (s e l f . v e r t s [3])

60 s e l f . q2 = e x a c tf u n c (s e l f . v e r t s [4])

61 s e l f . q3 = e x a c tf u n c (s e l f . v e r t s [5])

62 s e l f . q4 = e x a c tf u n c (s e l f . v e r t s [6])

63

64

65 s e l f .w = np . a r r a y ([

66 s e l f . q1− s e l f . q l1 ,

67 s e l f . q2− s e l f . q l2 ,

68 s e l f . q3− s e l f . q l3 ,

69 s e l f . q4− s e l f . q l4 ,

70])

103

71

72 s e l f .X = [4 , 5]

73

74 s e l f . g = g r i d (s e l f . v e r t s , s e l f . q)

75

76 s e l f . ph is , s e l f . q l i n = baker . q l i n e a r (s e l f .X, s e l f . R)

77 s e l f . e x a c t = e x a c tf u n c (s e l f .X)

78 s e l f . answer = baker . r u nb a k e r (s e l f .X, s e l f . R , s e l f . S)

79

80

81 def t e s t R c o n t a i n s X (s e l f) :

82 s e l f . a s s e r t T r u e (c o n t a i n s (s e l f .X, s e l f . R . v e r t s))

83

84 def t e s t 1 (s e l f) :

85 a , b , c , d , e , f = (0 , 1 , 1 ,2 , 2 ,0)

86 e r r = c a l c u l a t ee r r o r t e r m (s e l f , a , b , c , d , e , f)

87 s e l f . a s s e r t A l m o s t E q u a l (e r r , s e l f . answer [’ e r r o r ’])

88 def t e s t s w a p f i r s t e l e m e n t s (s e l f) :

89 a , b , c , d , e , f = (1 , 0 , 1 ,2 , 2 ,0)

90 e r r = c a l c u l a t ee r r o r t e r m (s e l f , a , b , c , d , e , f)

91 s e l f . a s s e r t A l m o s t E q u a l (e r r , s e l f . answer [’ e r r o r ’])

92 def t e s t s w a p t w o p a i r s (s e l f) :

93 a , b , c , d , e , f = (1 , 2 , 0 ,1 , 2 ,0)

94 e r r = c a l c u l a t ee r r o r t e r m (s e l f , a , b , c , d , e , f)

95 s e l f . a s s e r t A l m o s t E q u a l (e r r , s e l f . answer [’ e r r o r ’])

96 def t e s t s w a p a l l p a i r s (s e l f) :

97 a , b , c , d , e , f = (0 , 2 , 0 ,1 , 2 ,1)

98 e r r = c a l c u l a t ee r r o r t e r m (s e l f , a , b , c , d , e , f)

99 s e l f . a s s e r t A l m o s t E q u a l (e r r , s e l f . answer [’ e r r o r ’])

100

101

102 i f name == ’ m a i n ’ :

103 s u i t e = u n i t t e s t . Tes tLoader () . l oadTes tsF romTes tCase (Tes t)

104 u n i t t e s t . Tex tTes tRunner (v e r b o s i t y =3) . run (s u i t e)

: ../research/test/baker2dorder.py

104

1 # ! / us r / b in / env py thon

2

3 import u n i t t e s t

4

5 from i n t e r p import baker

6 from i n t e r p import g r i d

7

8 import numpy as np

9 import s c i p y . s p a t i a l

10

11 c l a s s Tes t (u n i t t e s t . Tes tCase) :

12 def setUp (s e l f) :

13 s e l f . l = [[−1 , 1] , [−1 , 0] , [−1 , 1] , [0 , −1] , [0 , 0] , [0 , 1] , [1 , −1] , [1 ,

0] , [1 , 1]]

14 s e l f . a l l p o i n t s = [

15 [0 , 0] , # 0

16 [1 , 0] , # 1

17 [1 , 1] , # 2

18 [0 , 1] , # 3

19 [1 ,−1] , # 4

20 [0 ,−1] , # 5

21 [−1 , 1] , # 6

22 [−1 , 0] , # 7

23 [−1 ,−1] , # 8

24]

25 s e l f . q = [1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0]

26 s e l f .X = [0 . 5 , 0 . 2 5]

27 s e l f . accu racy = 8

28

29 def t e s t I m p o r t s (s e l f) :

30 import numpy

31 import s c i p y

32 import i n t e r p . g r i d

33 import i n t e r p . bake r

34

105

35 def t e s t G e t P h i s (s e l f) :

36

37 X = [0 , 0]

38 r = [[−1 , −1] , [0 , 2] , [1 , −1]]

39

40 r e s u l t = baker . g e tp h i s (X, r)

41

42 r i g h t a n s w e r = [1 / 3 . 0 , 1 / 3 . 0 , 1 / 3 . 0]

43

44 f o r a , b i n z i p (r e s u l t , r i g h t a n s w e r) :

45 s e l f . a s s e r t A l m o s t E q u a l (a , b)

46

47 def t e s t G e t P h i s 2 (s e l f) :

48

49 X = [0 . 5 , 0 . 2 5]

50 r = [[0 , 0] , [1 , 0] , [1 , 1]]

51

52 r e s u l t = baker . g e tp h i s (X, r)

53

54 r i g h t a n s w e r = [0 . 5 , 0 . 2 5 , 0 . 2 5]

55

56 f o r a , b i n z i p (r e s u l t , r i g h t a n s w e r) :

57 s e l f . a s s e r t E q u a l (a , b)

58

59 def t e s t Q l i n e a r (s e l f) :

60 X = [0 . 5 , 0 . 2 5]

61 r = [[0 , 0] , [1 , 0] , [1 , 1]]

62 q = [1 , 0 , 0]

63

64 phi , r e s u l t = baker . q l i n e a r (X, g r i d . g r i d (r , q))

65

66 r i g h t a n s w e r = 0 .5

67

68 s e l f . a s s e r t A l m o s t E q u a l (r e s u l t , r i g h ta n s w e r)

69

70 def t e s t R u n B a k e r1 (s e l f) :

106

71 s i z e o f s i m p l e x = 3

72 e x t r a p o i n t s = 3

73

74 R = g r i d . g r i d (s e l f . a l l p o i n t s [: s i z e o f s i m p l e x] ,

75 s e l f . q [: s i z e o f s i m p l e x])

76

77 S = g r i d . g r i d (s e l f . a l l p o i n t s [s i z e o f s i m p l e x : s i z e o f s i m p l e x +

e x t r a p o i n t s] ,

78 s e l f . q [s i z e o f s i m p l e x : s i z e o f s i m p l e x +

e x t r a p o i n t s])

79

80

81 answer = baker . r u nb a k e r (s e l f .X, R , S)

82

83 a = answer [’ abc ’] [0]

84 b = answer [’ abc ’] [1]

85 c = answer [’ abc ’] [2]

86

87 s e l f . a s s e r t E q u a l (s o r t e d ((a , b , c)) , s o r t e d ((0 , 0 . 0 , 1 /3 .)))

88

89 def t e s t R u n B a k e r2 (s e l f) :

90 s i z e o f s i m p l e x = 3

91 e x t r a p o i n t s = 4

92

93 R = g r i d . g r i d (s e l f . a l l p o i n t s [: s i z e o f s i m p l e x] ,

94 s e l f . q [: s i z e o f s i m p l e x])

95

96 S = g r i d . g r i d (s e l f . a l l p o i n t s [s i z e o f s i m p l e x : s i z e o f s i m p l e x +

e x t r a p o i n t s] ,

97 s e l f . q [s i z e o f s i m p l e x : s i z e o f s i m p l e x +

e x t r a p o i n t s])

98

99 answer = baker . r u nb a k e r (s e l f .X, R , S)

100

101 a , b , c = s o r t e d (answer [’ abc ’])

102 aa , bb , cc = s o r t e d ((2 / 3 . 0 , 2 / 3 . 0 , 1 / 3 . 0))

107

103

104 s e l f . a s s e r t A l m o s t E q u a l (a , aa)

105 s e l f . a s s e r t A l m o s t E q u a l (b , bb)

106 s e l f . a s s e r t A l m o s t E q u a l (c , cc)

107

108 def t e s t R u n B a k e r3 (s e l f) :

109 s i z e o f s i m p l e x = 3

110 e x t r a p o i n t s = 5

111

112 R = g r i d . g r i d (s e l f . a l l p o i n t s [: s i z e o f s i m p l e x] ,

113 s e l f . q [: s i z e o f s i m p l e x])

114

115 S = g r i d . g r i d (s e l f . a l l p o i n t s [s i z e o f s i m p l e x : s i z e o f s i m p l e x +

e x t r a p o i n t s] ,

116 s e l f . q [s i z e o f s i m p l e x : s i z e o f s i m p l e x +

e x t r a p o i n t s])

117

118 answer = baker . r u nb a k e r (s e l f .X, R , S)

119

120 a = answer [’ abc ’] [0]

121 b = answer [’ abc ’] [1]

122 c = answer [’ abc ’] [2]

123

124 a , b , c = s o r t e d ((a , b , c))

125 aa , bb , cc = s o r t e d ((1 3 / 1 4 . , 2 / 7 . , 1 5 / 1 4 .))

126

127 s e l f . a s s e r t A l m o s t E q u a l (a , aa)

128 s e l f . a s s e r t A l m o s t E q u a l (b , bb)

129 s e l f . a s s e r t A l m o s t E q u a l (c , cc)

130

131 def t e s t R u n B a k e r4 (s e l f) :

132 s i z e o f s i m p l e x = 3

133 e x t r a p o i n t s = 6

134

135 R = g r i d . g r i d (s e l f . a l l p o i n t s [: s i z e o f s i m p l e x] ,

136 s e l f . q [: s i z e o f s i m p l e x])

108

137

138 S = g r i d . g r i d (s e l f . a l l p o i n t s [s i z e o f s i m p l e x : s i z e o f s i m p l e x +

e x t r a p o i n t s] ,

139 s e l f . q [s i z e o f s i m p l e x : s i z e o f s i m p l e x +

e x t r a p o i n t s])

140

141 answer = baker . r u nb a k e r (s e l f .X, R , S)

142 a = answer [’ abc ’] [0]

143 b = answer [’ abc ’] [1]

144 c = answer [’ abc ’] [2]

145

146 a , b , c = s o r t e d ((a , b , c))

147 aa , bb , cc = s o r t e d ((4 8 / 5 3 . 0 , 1 5 / 5 3 . 0 , 5 4 / 5 3 . 0))

148

149 s e l f . a s s e r t A l m o s t E q u a l (a , aa)

150 s e l f . a s s e r t A l m o s t E q u a l (b , bb)

151 s e l f . a s s e r t A l m o s t E q u a l (c , cc)

152

153 i f name == ’ m a i n ’ :

154 s u i t e = u n i t t e s t . Tes tLoader () . l oadTes tsF romTes tCase (Tes t)

155 u n i t t e s t . Tex tTes tRunner (v e r b o s i t y =3) . run (s u i t e)

: ../research/test/baker2d.py

1 # ! / us r / b in / env py thon

2

3 import u n i t t e s t

4 from i n t e r p . bake r import g e t p h i s , q l i n e a r

5 from i n t e r p . g r i d import g r i d

6

7 import numpy as np

8 import s c i p y . s p a t i a l

9

10 c l a s s Tes t (u n i t t e s t . Tes tCase) :

11 def setUp (s e l f) :

12 s e l f .X = [0 . 0 , 0 . 0 , 0 . 0]

13 s e l f . r = [

109

14 [0 . 0 , 0 . 0 , 1 . 0] ,

15 [0 .94280904333606508 , 0 . 0 ,−0.3333333283722672] ,

16 [−0.47140452166803232 , 0.81649658244673617 ,

−0.3333333283722672] ,

17 [−0.47140452166803298 ,−0.81649658244673584 ,

−0.3333333283722672] ,

18]

19 s e l f . q = [0 . 0 , 0 . 0 , 0 . 0 , 4]

20

21

22 def t e s t G e t P h i s (s e l f) :

23 r e s u l t = g e t p h i s (s e l f .X, s e l f . r)

24 r i g h t a n s w e r = [0 . 2 5 , 0 . 2 5 , 0 . 2 5 , 0 . 2 5]

25

26 f o r a , b i n z i p (r e s u l t , r i g h t a n s w e r) :

27 s e l f . a s s e r t A l m o s t E q u a l (a , b)

28

29

30 def t e s t Q l i n e a r (s e l f) :

31 phi , r e s u l t = q l i n e a r (s e l f .X, g r i d (s e l f . r , s e l f . q))

32 r e s u l t = r e s u l t

33 r i g h t a n s w e r = 1 .0

34 s e l f . a s s e r t A l m o s t E q u a l (r e s u l t , r i g h ta n s w e r)

35

36

37 i f name == ’ m a i n ’ :

38 s u i t e = u n i t t e s t . Tes tLoader () . l oadTes tsF romTes tCase(Tes t)

39 u n i t t e s t . Tex tTes tRunner (v e r b o s i t y =2) . run (s u i t e)

: ../research/test/baker3d.py

1 # ! / us r / b in / env py thon

2

3 import u n i t t e s t

4

5 from i n t e r p . bake r import r u n b a k e r

6

110

7 from i n t e r p . g r i d import g r i d

8 from i n t e r p . g r i d import c o n t a i n s

9

10 def e x a c t f u n c (X) :

11 x = X[0]

12 y = X[0]

13 re turn 1 + x + y

14

15 c l a s s Tes t (u n i t t e s t . Tes tCase) :

16 def setUp (s e l f) :

17 s e l f . v e r t s = [

18 [0 . 2 5 , 0 . 4 0] , # 0

19 [0 . 6 0 , 0 . 8 0] , # 1

20 [0 . 6 5 , 0 . 2 8] , # 2

21 [0 . 2 8 , 0 . 6 5] , # 3

22 [1 . 0 0 , 0 . 7 5] , # 4

23 [0 . 3 0 , 0 . 9 5] , # 5

24 [0 . 8 0 , 0 . 5 0] , # 6

25 [0 . 3 5 , 0 . 1 5] , # 7

26]

27 s e l f . q = [e x a c t f u n c (p) f o r p i n s e l f . v e r t s]

28

29 s e l f .X = [0 . 5 5 , 0 . 4 5]

30

31 s e l f . g = g r i d (s e l f . v e r t s , s e l f . q)

32 # s e l f . g . c o n s t r u c tc o n n e c t i v i t y ()

33 s e l f . R = s e l f . g . c r e a t em e s h (range (3))

34

35 s e l f . e x a c t = e x a c tf u n c (s e l f .X)

36

37

38 def t e s t R c o n t a i n s X (s e l f) :

39 s e l f . a s s e r t T r u e (c o n t a i n s (s e l f .X, s e l f . R . v e r t s))

40

41 def t e s t R u n B a k e r 1 e x t r a p o i n t (s e l f , e x t r a =1) :

42 S = s e l f . g . c r e a t em e s h (range (3 , 3 + e x t r a))

111

43 answer = r u nb a k e r (s e l f .X, s e l f . R , S , o r d e r =3)

44 l i n e r r = abs (s e l f . e x a c t− answer [’ q l i n ’])

45 f i n a l e r r = abs (s e l f . e x a c t− answer [’ f i n a l ’])

46 s e l f . a s s e r t T r u e (l i ne r r >= f i n a l e r r)

47 def t e s t R u n B a k e r 2 e x t r a p o i n t (s e l f , e x t r a =2) :

48 S = s e l f . g . c r e a t em e s h (range (3 , 3 + e x t r a))

49 answer = r u nb a k e r (s e l f .X, s e l f . R , S , o r d e r =3)

50 l i n e r r = abs (s e l f . e x a c t− answer [’ q l i n ’])

51 f i n a l e r r = abs (s e l f . e x a c t− answer [’ f i n a l ’])

52 s e l f . a s s e r t T r u e (l i ne r r >= f i n a l e r r)

53 def t e s t R u n B a k e r 3 e x t r a p o i n t (s e l f , e x t r a =3) :

54 S = s e l f . g . c r e a t em e s h (range (3 , 3 + e x t r a))

55 answer = r u nb a k e r (s e l f .X, s e l f . R , S , o r d e r =3)

56 l i n e r r = abs (s e l f . e x a c t− answer [’ q l i n ’])

57 f i n a l e r r = abs (s e l f . e x a c t− answer [’ f i n a l ’])

58 s e l f . a s s e r t T r u e (l i ne r r >= f i n a l e r r)

59 def t e s t R u n B a k e r 4 e x t r a p o i n t (s e l f , e x t r a =4) :

60 S = s e l f . g . c r e a t em e s h (range (3 , 3 + e x t r a))

61 answer = r u nb a k e r (s e l f .X, s e l f . R , S , o r d e r =3)

62 l i n e r r = abs (s e l f . e x a c t− answer [’ q l i n ’])

63 f i n a l e r r = abs (s e l f . e x a c t− answer [’ f i n a l ’])

64 s e l f . a s s e r t T r u e (l i ne r r >= f i n a l e r r)

65 def t e s t R u n B a k e r 5 e x t r a p o i n t (s e l f , e x t r a =5) :

66 S = s e l f . g . c r e a t em e s h (range (3 , 3 + e x t r a))

67 answer = r u nb a k e r (s e l f .X, s e l f . R , S , o r d e r =3)

68 l i n e r r = abs (s e l f . e x a c t− answer [’ q l i n ’])

69 f i n a l e r r = abs (s e l f . e x a c t− answer [’ f i n a l ’])

70 s e l f . a s s e r t T r u e (l i ne r r >= f i n a l e r r)

71

72 i f name == ’ m a i n ’ :

73 s u i t e = u n i t t e s t . Tes tLoader () . l oadTes tsF romTes tCase(Tes t)

74 u n i t t e s t . Tex tTes tRunner (v e r b o s i t y =3) . run (s u i t e)

: ../research/test/cubic2d.py

1 # ! / us r / b in / env py thon

2

112

3 import u n i t t e s t

4 from i n t e r p . bake r import p a t t e r n

5

6

7

8 c l a s s Tes t (u n i t t e s t . Tes tCase) :

9 def setUp (s e l f) :

10 pass

11

12 def t e s t I m p o r t s (s e l f) :

13 from i n t e r p . bake r import p a t t e r n

14

15 def t e s t b a k e r e q 8 (s e l f) :

16 b = s o r t e d ([t u p l e (s o r t e d (i))f o r i i n ((0 , 1) , (1 , 2) , (2 , 0))])

17 p = s o r t e d (p a t t e r n (3 , 2))

18 s e l f . a s s e r t E q u a l (b , p)

19

20 def t e s t b a k e r e q 1 7 (s e l f) :

21 b = s o r t e d ([t u p l e (s o r t e d (i))f o r i i n ((0 , 1 , 1) , (0 , 2 , 2) , (1 , 0 , 0) , (1 , 2 , 2) ,

(2 , 0 , 0) , (2 , 1 , 1) , (0 , 1 , 2))])

22 p = s o r t e d (p a t t e r n (3 , 3))

23 s e l f . a s s e r t E q u a l (b , p)

24

25 def t e s t b a k e r e q 1 5 (s e l f) :

26 b = s o r t e d ([t u p l e (s o r t e d (i))f o r i i n (

27 (0 , 1) , (0 , 2) , (0 , 3) ,

28 (1 , 2) , (1 , 3) , (2 , 3))])

29

30 p = s o r t e d (p a t t e r n (4 , 2))

31

32 s e l f . a s s e r t E q u a l (b , p)

33

34 def t e s t s m c q u a y (s e l f) :

35 b = s o r t e d ([t u p l e (s o r t e d (i))f o r i i n (

36 (0 , 1 , 2) , (1 , 2 , 3) , (0 , 1 , 3) , (0 , 2 , 3) ,

37 (0 , 0 , 1) , (0 , 1 , 1) ,

113

38 (1 , 2 , 2) , (1 , 1 , 2) ,

39 (0 , 2 , 2) , (0 , 0 , 2) ,

40 (1 , 3 , 3) , (1 , 1 , 3) ,

41 (2 , 2 , 3) , (2 , 3 , 3) ,

42 (0 , 3 , 3) , (0 , 0 , 3))])

43

44 p = s o r t e d (p a t t e r n (4 , 3))

45 s e l f . a s s e r t E q u a l (b , p)

46

47

48

49

50 i f name == ’ m a i n ’ :

51 s u i t e = u n i t t e s t . Tes tLoader () . l oadTes tsF romTes tCase(Tes t)

52 u n i t t e s t . Tex tTes tRunner (v e r b o s i t y =3) . run (s u i t e)

: ../research/test/pattern.py

1 # ! / us r / b in / env py thon

2

3 import u n i t t e s t

4

5 c l a s s Tes t (u n i t t e s t . Tes tCase) :

6 def setUp (s e l f) :

7 s e l f . l = [[−1 , 1] , [−1 , 0] , [−1 , 1] , [0 , −1] , [0 , 0] , [0 , 1] , [1 , −1] , [1 ,

0] , [1 , 1]]

8

9

10 def t e s t Q h u l l (s e l f) :

11 import de launay

12 d t = de launay . T r i a n g u l a t i o n (s e l f . l)

13 answer = [

14 [4 , 1 , 3] ,

15 [1 , 5 , 0] ,

16 [5 , 1 , 4] ,

17 [7 , 3 , 6] ,

18 [7 , 4 , 3] ,

114

19 [7 , 5 , 4] ,

20 [5 , 7 , 8] ,

21]

22

23 s e l f . a s s e r t E q u a l (d t . i n d i c e s , answer)

24

25 i f name == ’ m a i n ’ :

26 s u i t e = u n i t t e s t . Tes tLoader () . l oadTes tsF romTes tCase(Tes t)

27 u n i t t e s t . Tex tTes tRunner (v e r b o s i t y =5) . run (s u i t e)

: ../research/test/qhull.py

1 # ! / us r / b in / env py thon

2

3 import u n i t t e s t

4

5 from i n t e r p . bake r import r u n b a k e r

6

7 from i n t e r p . g r i d import g r i d

8 from i n t e r p . g r i d import c o n t a i n s

9

10 def e x a c t f u n c (X) :

11 x = X[0]

12 y = X[0]

13 re turn 1 − x* x + y* y

14

15 c l a s s Tes t (u n i t t e s t . Tes tCase) :

16 def setUp (s e l f) :

17 s e l f . p o i n t s = [

18 [0 . 2 5 , 0 . 4 0] , # 0

19 [0 . 6 0 , 0 . 8 0] , # 1

20 [0 . 6 5 , 0 . 2 8] , # 2

21 [0 . 2 8 , 0 . 6 5] , # 3

22 [1 . 0 0 , 0 . 7 5] , # 4

23 [0 . 3 0 , 0 . 9 5] , # 5

24 [0 . 8 0 , 0 . 5 0] , # 6

25 [0 . 3 5 , 0 . 1 5] , # 7

115

26]

27 s e l f . q = [e x a c t f u n c (p) f o r p i n s e l f . p o i n t s]

28

29 s e l f .X = [0 . 2 5 , 0 . 4 0 0 1]

30 s e l f .X = [0 . 5 5 , 0 . 4 5]

31

32 s e l f . g = g r i d (s e l f . p o i n t s , s e l f . q)

33 s e l f . R = s e l f . g . c r e a t em e s h (range (3))

34

35 s e l f . e x a c t = e x a c tf u n c (s e l f .X)

36

37

38 s e l f . accu racy = 8

39

40 def t e s t R c o n t a i n s X (s e l f) :

41 s e l f . a s s e r t T r u e (c o n t a i n s (s e l f .X, s e l f . R . v e r t s))

42

43 def t e s t R u n B a k e r 1 e x t r a p o i n t (s e l f , e x t r a =1) :

44 S = s e l f . g . c r e a t em e s h (range (3 , 3 + e x t r a))

45 answer = r u nb a k e r (s e l f .X, s e l f . R , S)

46 l i n e r r = abs (s e l f . e x a c t− answer [’ q l i n ’])

47 f i n a l e r r = abs (s e l f . e x a c t− answer [’ f i n a l ’])

48

49 # I e x p e c t t h i s one t o be bad :

50 # s e l f . a s s e r t T r u e (l i ne r r >= f i n a l e r r)

51

52 def t e s t R u n B a k e r 2 e x t r a p o i n t (s e l f , e x t r a =2) :

53 S = s e l f . g . c r e a t em e s h (range (3 , 3 + e x t r a))

54 answer = r u nb a k e r (s e l f .X, s e l f . R , S)

55 l i n e r r = abs (s e l f . e x a c t− answer [’ q l i n ’])

56 f i n a l e r r = abs (s e l f . e x a c t− answer [’ f i n a l ’])

57 s e l f . a s s e r t T r u e (l i ne r r >= f i n a l e r r)

58 def t e s t R u n B a k e r 3 e x t r a p o i n t (s e l f , e x t r a =3) :

59 S = s e l f . g . c r e a t em e s h (range (3 , 3 + e x t r a))

60 answer = r u nb a k e r (s e l f .X, s e l f . R , S)

61 l i n e r r = abs (s e l f . e x a c t− answer [’ q l i n ’])

116

62 f i n a l e r r = abs (s e l f . e x a c t− answer [’ f i n a l ’])

63 s e l f . a s s e r t T r u e (l i ne r r >= f i n a l e r r)

64 def t e s t R u n B a k e r 4 e x t r a p o i n t (s e l f , e x t r a =4) :

65 S = s e l f . g . c r e a t em e s h (range (3 , 3 + e x t r a))

66 answer = r u nb a k e r (s e l f .X, s e l f . R , S)

67 l i n e r r = abs (s e l f . e x a c t− answer [’ q l i n ’])

68 f i n a l e r r = abs (s e l f . e x a c t− answer [’ f i n a l ’])

69 s e l f . a s s e r t T r u e (l i ne r r >= f i n a l e r r)

70 def t e s t R u n B a k e r 5 e x t r a p o i n t (s e l f , e x t r a =5) :

71 S = s e l f . g . c r e a t em e s h (range (3 , 3 + e x t r a))

72 answer = r u nb a k e r (s e l f .X, s e l f . R , S)

73 l i n e r r = abs (s e l f . e x a c t− answer [’ q l i n ’])

74 f i n a l e r r = abs (s e l f . e x a c t− answer [’ f i n a l ’])

75 s e l f . a s s e r t T r u e (l i ne r r >= f i n a l e r r)

76

77 i f name == ’ m a i n ’ :

78 s u i t e = u n i t t e s t . Tes tLoader () . l oadTes tsF romTes tCase(Tes t)

79 u n i t t e s t . Tex tTes tRunner (v e r b o s i t y =3) . run (s u i t e)

: ../research/test/quadratic2d.py

117

	SMB-Interp: an N-Th Order Accurate, Distributed Interpolation Library
	BYU ScholarsArchive Citation

	Title Page
	Abstract
	Table of Contents
	LIST OF TABLES
	LIST OF FIGURES
	NOMENCLATURE
	Chapter 1 Introduction
	Chapter 2 Literature Review
	2.1 Interpolation
	2.1.1 Polynomial Interpolation
	2.1.2 Butterfly Interpolation
	2.1.3 Baker's Interpolation Method

	2.2 Spatial Data Structures and Distributed Algorithms
	2.2.1 Spatial Tree Structures
	2.2.2 Distribution of Workload

	Chapter 3 Method
	3.1 Baker Method
	3.1.1 Linear Interpolant
	3.1.2 Least Squares Approximation of Error Terms

	3.2 Basis Function Pattern
	3.3 Mesh Plugins
	3.3.1 R and Sk Vertex Selection
	3.3.2 Plugin System Design
	3.3.3 Provided Plugins
	3.3.4 Benefits of the Plugin System

	3.4 Parallel Execution Framework

	Chapter 4 Results and Discussion of Results
	4.1 General Library Performance
	4.1.1 Interpolation Improvement
	4.1.2 Temporal Performance
	4.1.3 Mesh Resolution Study

	4.2 Parallelization Results

	Chapter 5 Conclusions & Recommendations
	References
	Appendix A smbinterp Source Code
	A.1 smbinterp library
	A.2 smbinterp Plugin System
	A.3 Parallelization Scripts
	A.4 Gmsh Mesh Generation Scripts
	A.5 General-purpose Utilities
	A.6 Unit Tests

