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ABSTRACT
SMBinterp: an Nth-Order Accurate, Distributed Interpadatiibrary

Stephen M. McQuay
Department of Mechanical Engineering, BYU
Master of Science

The research contained herein yielded an open source aéigm library implemented in
and designed for use with the Python programming languages library, namedmbinterp,
provides an interpolation to an arbitrary degree of acgur@lse library is parametric in that is can
take input from the user to adjust the underlying interpotatmechanism. The characteristics and
behavior of the library according to the adjustment of them@meters is presented herein, as well
as the results of a mesh resolution study depicting the acgwbtained by the library.

The smbinterp library was designed with parallel computing environmentsiind. The
library includes modules that allow for its use in high-peniance computing environments.
These modules were implemented using built-in Python rmesdtd simplify deployment. This
implementation was found to scale linearly approximaté participating compute processes.

The smbinterp library was designed to be mesh agnostic. A plugin systemimpke-
mented that allows end users to conveniently and condligtprasent their numerical results to
the library for rapid prototyping and integration. Two ping are provided as examples and for
documentation of the plugin mechanism.

Keywords: Stephen M. McQuaymbinterp, N-th-order accurate general interpolation, distributed
calculation schemes, multiphysics simulation
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NOMENCLATURE

Total number of points in cloud

Index for a point in cloud

Set of all points? in the cloud of points from a destination mesh

each pointinV, the sé®,Py,..., P,

spatial dimensionality (two-dimensinal space, or threeeshsional space)
Spatial locations foi-th point inV

Spatial location to which interpolation is performed

(x,y,z)  Spatial coordinates

Mmzo< =S

(0] Barycentric coordinates, also linear interpolant, alsoddasctions
AR The simplex name®&

R; A point in a simplexAR

Aj Area j, triangular portion of the simplexR

S A point in the neighborhood dE not in AR

m Total number of points it%, S, ..., Sn

q Physical quantity of interest (e.g. temperature)

q(é) Value ofq at positioné. May be exact or interpolated
q(=) Interpolated value of at=

Qiinear The linear interpolant odj(=)

f(2) Least Squares approximation of error terms

a,b,c Three unknowns in equatioi(=), calculated using a least squares method

A Transpose ofa, b, c)

B Matrix used in least squares approximation of error invagvspatial locations of extra poing
B'B Covariance matrix

w Vector used in least squares calculation, involving theeslofq(S;)

v Order of requested interpolation, quadratic,cubit,etc.

€ Error of an interpolation

u Number of vertexes in a destination mesh
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CHAPTER 1. INTRODUCTION

As engineers attempt to find numeric solutions to large maygroblems, simulations
involving multiple physical models or phenomena, calledtiphysical simulation, must be em-
ployed. These multiphysical simulations involve the cauplof disparate computer codes [1].
When modeling physically different phenomena the numeridef®used to find solutions to these
problems employ meshes of varying topology and densityeir iilmplementation. For example,
the unstructured/structured mesh interfaces seen in thbustor/turbo machinery interface [2], or
the coupling of Reynolds-Averaged Navier-Stokes and LadgyESimulation (RANS/LES) CFD
codes in Computational Fluid Dynamics (CFD) [3]. A similamusition with disparate meshes
arises in the analysis of helicopter blade wake and vortexawtions, as for example when using
the compressible flow code SUmb and the incompressible flale €DP [4]. When this is the
case, and the mesh elements do not align, the engineer mitwihpénterpolation in the direction
of the flow of information: from the upstream code to the doingesm code, or bi-directionally.

The Center for Integrated Turbulence Simulation (CITS) ahfeta University has devel-
oped an integrated multi-code simulation framework callédMPS. CHIMPS stands faCoupler
for High-performance Integrated Multi-Physics Simulat§s]. CHIMPS is a Fortran/Python Ap-
plication Programming Interface (API) that efficiently lies three-dimensional physical data
look-up and linear interpolation across compute nodesenress, containing parts of computa-
tional domains using the Message Passing Interface (MBrly [6, 7]. This framework gives
engineers an interface for coupling High Performance Comg@HPC) codes of disparate types
that run on a distributed cluster.

According to the authors of CHIMPS, the implementation ofrfeavorks of this variety
present two main obstacles: efficient, distributed dat&-lgw, and accurate interpolation. They
provide an elegant solution that efficiently locates datadiistributed environment. However, they

acknowledge that “although linear (bi-linear, tri-lingarterpolation is relatively straightforward



to implement, it is unable to guarantee the accuracy, ceaseeness, and stability of the coupled
solution except in the limit of an infinitely fine mesh” [5].

Researchers at Pratt & Whitney have suggested the use of afcakngimilar to CHIMPS
as a mechanism to assist with high-performance interpolaturing multiphysics simulations. In
fact, the use of the CHIMPS API to combine two in-house CFD cddessalready been demon-
strated. However, there is a concern with the potentialddbascuracy with the linear interpolation
method provided by CHIMPS, specifically when dealing with tweshes of differing types (struc-
tured/unstructured), or meshes with disparate mesh desit

One way to improve the accuracy of the solution is to incrélaseomplexity of the inter-
polation used. There exist many higher-order interpatatieethods, but most are not designed to
be used on grids with irregular topologies. These conceptbréefly explored in chapter 2.

In its latest implementation, the CHIMPS framework can pdeuhe user with higher-order
interpolation results, but only if the end user providesftamework with gradient information [8].
This method is involved, and obtaining the higher-ordentemay be prohibitive. A need exists for
an improved, automatic, and general solution for obtainmoge accurate interpolation, especially
when the required gradient information is not availableiarpr

Work has been accomplished by Galbraith [9] in the developmoEa general interpolation
algorithm named AVUSINTERP (Air Vehicles Unstructurediftiured Interpolation Tool). The
method employed utilizes a generalized interpolation yiedts either linear or quadratic interpo-
lation using a least squares error correction of a linearpaiation as described by Baker [10].
AVUSINTERP provides the engineer with a more generic intljan scheme, but it was not im-
plemented in a parallel fashion, nor does it allow for theieegr to arbitrarily choose the order of
the interpolation.

There exists the need for a tool that can perform interpmiatd an arbitrary degree of
accuracy, and that can be parallelized to take take advamfagnodern HPC architectures. The
research work described herein includes the developmemthaéthod to provide engineers with
an interpolation library that is itself a union of the besttpaf the aforementioned tools. Namely,
this research provides an API, nam&tbinterp, that implements the N-th order accurate inter-
polation of a physical value in both two- and three-dimenalspace. Previous implementations

of similar interpolation schemes were only implementechtaitorder accuracy [9]. Interpolation



using the API described in this research can be performedy@ader of accuracy, and in both
two and three spatial dimensions.

The library described herein was implemented with meshmgditein mind. The API has
been implemented in an abstract way, where plugins arealgsethat implement class methods as
defined by the API (see chapter 3 for details). As a conseguefihis plugin-based architecture,
the API is capable of working with topologically varied meshThis means that the library can be
used with structured or unstructured grids, and also onwadabd points with no predefined mesh
topology. This research provides examples of the developarad use of plugins that implement
this interface for an unstructured mesh produced by Gmsh Hrid clouds of points with no
predefined underlying mesh structure.

While the API can provide the end user with improved interpotaresults, it is not de-
signed to function correctly without a good underlying meagleshes for physical simulations are
typically designed after having an a priori understandihthe underlying equations being solved
by the physical models. The onus of mesh design lies tygicgibn the engineer responsible for a
given physical domain. Itis assumed that the meshes beiptpged in a multiphysics simulation
appropriately capture changes in the underlying physigahtjties. The design of these meshes is
outside of the scope of this research.

The API was intended to be used by engineers in situationgenddé that is known is
physical data (e.g. temperature) at two- or three-dimexdilmcations. If higher-order informa-
tion is known (e.g. gradient quantities), then an interpofaof the variety presented by Hahn [8]
could be utilized. However, this API can be used in situaiahere that information is expensive,
difficult, or impossible to acquire. As long as the mesh wasigieed to properly resolve the un-
derlying fluctuations in physical quantities, the API désed here generally provides an improved
interpolation by comparison with simple linear interpaat

In order to minimize the time it takes to perform all requasitterpolations for a given
simulation, the API described herein has been implementadiay that takes advantage of high-
performance, parallel computers, and has been demorksteaseale in a distributed environment.
While there are more elegant parallel implementations fergiblution of data look-up, this re-
search was designed to perform well according to the haellaitations of the day. When

CHIMPS was originally implemented, the average amount of p@mcompute core was on the



order of hundreds of Megabytes per compute core [5]. Curr®@ ldrchitecture currently yields
an order of magnitude more RAM per core (sometimes subslignhare), and the library was de-
signed to take advantage of this fact. This research wasimgted to utilize memory-intensive
spatial data structures that are now reasonable to be usedaern HPC systems.

While benchmarks are presented, the scope of the researdimitad to the implementa-
tion and study of the proposed desigabinterp is not intended to out perform other applications
or libraries, nor does it purport to have a direct impact @ndberall speed of a multiphysics simu-
lation. Furthermore, thembinterp library is not intended to magically improve all interpadats.
One must provide the library with a mesh that is intended pawa relevant physical information.
As an example a well designed CFD mesh is typically more denaeeias where physical infor-
mation is changing rapidly in any spatial dimension, speailfy near physical boundaries. This is
typically done to appropriately resolve boundary layer fldvaracteristics. If information of this
variety is correctly capture@dmbinterp does provide a good interpolation.

Chapter 2 contains a review of background concepts andtlireraequisite to understand
the context of the problem. This includes information orerpblation and various interpolation
schemes, a discussion on various spatial data structurdsa &igh-level discussion of various
parallelization schemes. Afterward an explanation of #search method is presented in chapter
3. This includes an explanation of the main numerical meths®t in thesmbinterp library and
rationale for design decisions, including detail of how Afél implements the general interpola-
tion scheme, and how the plugin architecture and networkeuesre designed and implemented.
Next, in chapter 4 results and benchmarks of the implementate presented, including a discus-

sion of these results. Finally, conclusions and recomntentaare presented in chapter 5.



CHAPTER 2. LITERATURE REVIEW

This chapter comprises a review of relevant literature olied during the course of this
research. Various methods of interpolation were reviewetassessed, and an overview of the
benefits and shortcomings of each method is presented hewd, &review of concepts relevant
to the selection of appropriate spatial data structure=arebed is presented, followed by a review

of literature pertaining to the distribution of interpotat workload.

2.1 Interpolation

When numerically solving a set of partial differential eqoas used to model a particular
physical phenomenon, engineers discretize the spatiahohoimo a mesh and solve for physical
properties of interest at discrete locations. Meshes aégatensity and topology are used when
coupling meshes that are designed to solve two disparatqgatiynodels. At solution boundaries
and at mesh overlap, the coupled solution is dependent ormiation flowing from the upstream
domain to the downstream domain, vice versa, or in both times. When the points of the two
domains do not overlap exactly, an approximation for thengjtyaof interest at locations in the
downstream mesh must be calculated. Interpolation is wsédd values at spatial locations not
exactly resolved by the mesh, and thereby providing theiredunformation at the interface.

Because the mechanisms employed in this research come froonwéelds which have
their own nomenclature and definitions, the meaning of otvés;, and three-dimensional data
shall be explicitly defined for clarity. For the purposes lostresearch we are interested in the
value of a physical quantity at a specific spatial locatiomergfore, when discussing a method that
works for one-dimensional data, it is meant one spatial dsiwa,x, and one variable representing
a physical quantityg, typically visualized in a two-dimensional plot where thiseissa represents
the spatial location, and the ordinate represents the gdiyguantity, are shown in figure 2.1. By

extension, a two-dimensional data set consists of two apdithensiongx,y) plus one physical
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Figure 2.1: Visualization of a One-Dimensional Data Set

Figure 2.2: Visualization of a Two-Dimensional Data Set

guantity variable ) shown in figure 2.2, and so on for three-dimensional datata B&higher

dimensionality are not investigated in this work.

2.1.1 Polynomial Interpolation

Three popular methods for fitting a curve of degrethrough a set oh+ 1 points, as
shown in figure 2.3, are presented here. All methods requpeoa knowledge of two sets of
information. First, the location of a set of poirs Py, ..., R,. Secondly, parameter values of the
underlying curve at those points, denoteds,...,t,, which represent the location of the point

along the curve in the curvefsarameter spacéy,ty), typically 0<t < 1.



(2,4)
t=1
©, 3)

t=3/4
(2,2)

t=1/4

(0,0)
t=0

Figure 2.3: Example Data Set for Curvilinear Interpolatidg][

The first curvilinear interpolation method investigate@m®wn as Lagrange interpolation.

The Lagrange interpolation curve is defined by

P(t) = POLB(I) + Png(t) +...+ PnLR(t) (2.1)
n L (t_tj) Ny

Li'(t) = , , 2.2
0= o7 22)

which has the property that the basis polynomi&[§ é@re 1 at poin®, and exactly 0 at all other
points in the interpolation. This property assists in atitag an intuitive understanding of this
interpolation method, in that, when evaluating the curvecit R, the other points in the interpo-
lation Pj, j # i have no weight or pull on the curve. It is also what allows theve to interpolate
point B att; [12]. When calculated explicitly from the above equationagtange polynomials
haveO(N?) complexity, but Werner [13] provides an interesting refafation of the method that
performs withO(N) complexity. The notatio®(N), also known as Big O Notation, comes from
the field of algorithm analysis, and signifies that geneyrdtly N inputs, an algorithm will scale
linearly in time. O(N?) describes an algorithm that scales quadratic&) runs in constant

time, and so forth.



A similar curvilinear interpolation method uses Newtonypmmials. The method is sim-
ilar to Lagrange interpolation in that it interpolates alimts, but can be computed using a table
of divided differenceswhich is, after initial construction, computationallyedp ©(1)) since the
values of previous calculations are cached and reused [12].

Another method for fitting a curve to a set of points is knowrnhesmethod of Undeter-
mined Coefficients [12]. First the fundamental equation efctrve is expressed. As an example,
consider the curve in figure 2.3. In order to fit a curve of tliegjree to these data it could be as-
sumed that the underlying equation is a third-degree pohyalcurve. Consider thecomponent

of the Bernstein polynomial form of a third-degree curve:
x=ap(1—t)3+3ast(1—1t)?+ 3apt?(1—t) + agt®. (2.3)

Using the known points and parameter values, this equatievaluated yielding a system of linear

equations. Evaluating only thecomponent at the known points yields

S+ 3ayto(1—tg)-+ 3821:0 (1—to) + agtg

)?
+3a1t1 1- tl) + 3aot
+38.1t2 1- tz)

)?

( )
( 21-ty) +agt?
( +3apt5(1—1t2)
( (1—t3) +aat5. (2.4)

34 3aytz(1—t3)°+ 3a2t3 1-1t3

Lastly, the unknown coefficientg), a;, a» andas are obtained by solving this system of lin-
ear equations. Solving f@ and performing a similar computation for th@&ernstein polynomial
yields the Eezier control polygon illustrated in figure 2.4.

These curvilinear interpolation methods suffer from stammiings that make them inade-
guate for the general interpolation sought after in thieaesh. If a dense collection of points that
follow a curve of a particular degree are to calculate theup@ters of a curve of an even higher
degree, then the curve may exhibit the undesirable sideteffeoscillatory artifacts known as
Runge’s phenomenon [14]. Runge’s phenomenon is also mastfegdien trying to interpolate a
high order curve with points that are equidistant. Berrui fiScusses the benefits and implemen-

tation of Barycentric interpolation, which is a variant ofdrange polynomial interpolation that



P=(2,4) P=(6,4)

_—

P, = (-4, 16/9)

P= (0, 0)

Figure 2.4: Control Polygon of a&ier Curve Calculated Using the Method of Undetermined
Coefficients [12]

yields fast and stable results and does not suffer from Renqenomenon. Also, when it is pos-
sible to adjust the spacing of the points used during intatfpm, Chebyshev spacing can be used
to mitigate oscillatory effects [16]. Therefore, the effeof Runge’s phenomenon in the Lagrange
method may be mitigated by adjusting the spacing of the pdytmanipulating Lagrange polyno-
mials through barycentric interpolation, and by samplimgdomain in a more degree-appropriate
fashion.

Another shortcoming of these methods is that both the csipa@’ameter valudsat each
of the pointsP, and the spatial locations & must be known a priori. The interpolated value is
strongly dependent on the parameter values, ahdsifchosen arbitrarily or inappropriately the
interpolation may be incorrect. Also, while these methqgagsato curves in two- and three-spatial
dimensions, they are only applicable to curves, whereageheral interpolation in this research
must apply to both surfaces and fields. Insight was soughtmstigating these methods, but they
are not known to generalize to surfaces (two-dimensionia)da fields (three-dimensional data)
for meshes of irregular topologies.

Furthermore, the stencil of participating poiftss not compact. All point§ are required
to participate in every interpolation; curvature matchimgnly guaranteed when using all points

in the space. Shukla [17] proposes a method that yieldsaritythigh-order compact polynomial



interpolations, however it is more difficult and rigoroustethor a scheme that has a more compact
stencil, is less computationally expensive, and yet stdtehes curvature [18]. The following

section describes a method that overcomes a significanteuohthese shortcomings.

2.1.2 Butterfly Interpolation

In the field of computer graphics and animation there exietgric surface control tech-
niques that allow artists to manipulate a relatively smaiinber of control points which affect
the shape of a more complicated, smooth surface. While thieat@oints of a NURBS (Non-
Uniform, Rational B-Spline) surface afford the artist an edosted, high-level control mechanism,
they require that the control points of the surface exisvlogically in two dimensions (typicallg
andt) [12,19]. The topological rigidity in surfaces of this vaty limit the artist’s ability to create
models with complex topologies.

As a consequence of the need to provide artists with singplesé yet flexible surface
control mechanisms schemes have been designed to takeral catiof elements, typically com-
posed of quadrilateral and triangular elements, and re@lysubdivide the elements therein until
a smooth surface is formed. These schemes are categorizetivim groups. Primal subdivi-
sion schemes retain the last iteration’s vertexes for ugeture subdivision [20]. Dual schemes
discard the previous iteration’s information. Primal stles are then subdivided into two cate-
gories: approximation schemes, where the location of tiggnal vertexes change, and interpolat-
ing schemes, where the resulting surface interpolatesépakrough) the vertexes in the original
control mesh. Approximating schemes are in heavy use intimaation industry [21, 22], but,
as they do not interpolate the original mesh, are not diyexgdplicable to this research. While
subdivision methods exist that combine schemes of multiptesties [23], primal schemes that
interpolate the control mesh are the most applicable tordssarch since they can be used to fit
a cloud of points in a smooth manner, and, therefore, can & tasperform continuity-enforced
interpolation.

In order to understand the benefits and shortcomings of tmal Butterfly scheme, a few
continuity-related terms must be defined. Curves and sigftet meet at a common vertex have
CO, or coincidental continuity. Those that demonstrate tatigecontinuity with other curves and

surfaces are given the lab@} continuous. Curves and surfaces that match curvature astethb
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Figure 2.5: Stencil Used in the Original Butterfly InterpadatScheme [20]

C? continuous [12]. Also, the number of edges that meet at @xei¢termine the vertexisalence
Extraordinary pointsare points that have an undesirable valence.

The following surface interpolating subdivision schemesatibed in this review are in-
cremental improvements upon the original Butterfly inteation scheme described by Dyn [24].
This scheme subdivides each triangle in a triangular meshatat each recursive step all of the
vertexes, including the original vertexes, are intergaatEach recursive subdivision yields four
new triangles per triangular patch. At each step, a newndélé”) for the edgew is created
using neighboring vertexeks, AKX ..., AX at thek-th recursion level, as illustrated in figure 2.5.

The geometric location of the new point is determined by tilewing formula:

A = %(A(‘§+)\f) + %(A§+A§) - 1—16(AX+ASK+A§+A7K). (2.5)
In the butterfly scheme, vertexes that do not have valencarsixextraordinary points.
Under conditions where no extraordinary points exist, thgimal Butterfly scheme yield€!
continuity. However, the original butterfly scheme yieldslasirable effects around extraordinary
points. The effects of extraordinary points is shown in i iimage of figure 2.7. Since each
vertex in a tetrahedron has valence three (not six), theénaiigputterfly scheme yields shar@?

continuous points at each vertex.
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Figure 2.6: Modified Stencil Employed in Zorin’s Improved Baufly Scheme (Left), Stencil Used
with Extraordinary Points (Right) [25]

Zorin [25] provides an improvement to Dyn’s interpolatiasheme that, while it does not
improve upon the&! continuity of the scheme, it does yield an interpolatiort isagyenerally less
sharp and creased. If the edge being subdivided has twogsrté valence six, the Zorin scheme
uses a stencil of ten vertexes as shown in figure 2.6. Thre@atpeles exist for vertexes that do
not have valence six, and are treated in full by Zorin [25].

The visual effect of the larger stencil used in the Zorin iptdation is demonstrated in
the tetrahedron interpolation on the right of figure 2.7, vehie interpolation is generally more
smooth around the extraordinary vertexes. The generaltsefté extraordinary points on the but-
terfly scheme is also shown in figure 2.8. The image on thedefte original mesh. The image in
the middle was produced using the original butterfly intéxpon, and exhibits the visual artifacts
affected by the extraordinary points, which are manifegiécreases and unnatural sharpness sur-
rounding these points. The smoothing effect of the modifiethwd is demonstrated by the model
on the right, shown in figure 2.8. This image was produced ptyapy the modified butterfly
scheme to the mesh on the left.

Yang [20] developed a significantly improved extension & Butterfly scheme, named
the Twin-Butterfly scheme. This interpolation scheme usesiehntarger stencil, shown in figure
2.9. When mesh topology allows for the use of this larger stetiee Twin-Butterfly scheme
yields C? continuity. When unable to use the complete stencil, Yang@ses an algorithm that

attempts to subdivide each face with progressively lesd mlgorithms, depending on the ability of
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Figure 2.7: Example of the Effect of Extraordinary Pointglos Original Butterfly Scheme (Left),
Improvements Proposed by Zorin (Right) [25]

Figure 2.8: Example of the Improvement in Visual Appeal Ried by the Zorin Subdivision
Scheme [25]

being able to form particular stencils with the topologigadjacent vertexes. The first attempted
interpolation is theC? Twin-butterfly scheme, followed by Zorin8?! ten-point stencil, Dyn’?
eight-point interpolation, and then two simpler intergimas introduced by Yang. The first is
called the Rhombus scheme, named for its use of the four tgpallly closest vertexes. The last
scheme attempted always works since it is simply the gedrraterage of the two points in the

edge being subdivided.
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Figure 2.9: Stencil Used in the Improved Twin-butterfly hpiglation Scheme [20]

These subdivision interpolation schemes have definiterdadgas. First of all, they are
implemented using a compact stencil. Unlike the curvilmagerpolation methods that generally
needn+ 1 points to give a curve of order, the butterfly schemes use a localized set of vertexes
in each calculation. Another benefit to the Yang scheme is timler the conditions of an ideal
mesh C? continuity can be obtained, degrading gracefullCtoandCP continuity.

One of the disadvantages of these methods is that at eaclvisidrd exponentially more
vertexes are created. This increases memory consumptiboadeulation times exponentially, so
there is a limit on how many subdivisions can be performedr@agsonable amount of time. For
example, using the geometric modeling software packagedBl€26], memory consumption of
the repeated subdivision of a single triangular elemertigsva in Table 2.1 which shows that the
scaling of memory is exponential. The use of a subdivisiderpolation scheme would therefore
rely on using a small number of subdivisions and then pernfagra linear interpolation against a
triangular element that is “small enough“ to give accurasaiits.

Another disadvantage of the surface subdivision intetiaschemes is that while these
subdivision schemes hold promise for use in data interjpolathenN = 2, there exist no known
three-dimensional volumetric interpolatory subdivisgmmemes that work on meshes with general
topologies. The schemes that do exist either volumetyicaterpolate rigid mesh topologies, or
they they do not interpolate the original mesh. McDonnéll jinted out that “the original butter-
fly algorithm does not generalize directly to 3D,” but impkemted an interpolatory scheme which
requires hexahedral meshes. Bajaj [28] implemented voluenedbdivision, also restricted to
hexahedral mesh elements, but the scheme was approximdtepgs not interpolate the original

mesh. Chang [29] implemented a scheme for volumetric sudidiviwith arbitrary topologies, but
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Table 2.1:0(cN) Scaling of Memory Demonstrated When
Subdividing a Single Triangular Face

Subdivision Vertex Count Memory

0 3 5.03M
1 6 5.04M
2 15 5.04M
3 45 5.04M
4 153 5.06M
5 561 5.13M
6 2145 5.41M
7 8385 6.51M
8 33153 10.91M
9 131841  28.45M
10 525825 98.53M
11 2100225 378.68M

it was non-interpolatory. While Chang [30] later implemergedlumetric subdivision scheme for

arbitrary topologies, it does not guarantee “higher oraettiauity across extraordinary vertexes
and edges”.

2.1.3 Baker’s Interpolation Method

Baker [10] describes a method that works with either two-disngnal or three-dimensional
data, can be implemented in a way that allows an arbitraigy lorder of approximation, and
places practically no limits on the underlying mesh topgldithis method approximates a surface
fit to neighboring points of almost any mesh topology to anteaty degree. It would seem that it is
the correct method to employ for the mesh-agnostic, argiveder,N = 2, 3 interpolation sought
after in this research. By solving a collection of reasonatifed linear systems of equations
(explained in detail in chapter 3) approximate error cdroecterms to any arbitrary order may be
obtained. Compared to other conventional techniques, therBaterpolation method performs
relatively well, but it does suffer from some limitations.

First of all, interpolation situations arise which Bakemntexd “pathological situations” [10].
In all of these cases, the covariance matrix used to ca&cthaterror approximation term is singu-

lar. While Baker states that the system of equations is camjsind will therefore always have a
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solution, “a non-singular covariance matrix ensures th@iéast squares solution is unique”. This
covariance matrix is singular when more than- 2 of them extra pointsS;, S, ..., Sy lie on a
line that isC® with any of the vertexes in the simpleXR, including any of the simplex’s edges
(CO with any N R;), explained in more detail in chapter 3. While Baker statet“fhar a general
arrangement of points it is unlikely that these patholdgdaations will arise”, it assumes that an
engineer will never want to arrange points in a regular fashivhich is exactly how some meshes
are designed [31].

There are two approaches to solving this problem. The lagmrotect against this situa-
tion could be implemented with a mesh plugin. More detaillis ipproach is found in chapter
3, section 3.3. The authored plugin would select the neighbgoints according to an intelli-
gentS; selection algorithm designed to minimize the likelihoodadadingular covariance matrix.
Alternatively, as suggested by Galbraith [9], if the cosade matrix is singular the higher order
approximations for a particular interpolation may simpéyignored, and the interpolation remains
linear. However, if the singularity is due to the topologytleé underlying mesh structure, e.g., the
mesh is regular, the implementation of an intelligent plugould be a superior alternative.

Lastly, this method does not guarantee continuous derasiacross the entire domain
[10]. Specifically, whenever there is a change in stenceérehs potential for a discontinuity
in the interpolation. While this is true, Baker's method hasrbshown to provide reasonable

interpolation results in practice using up to a quadratragmation [9, 10].

2.2 Spatial Data Structures and Distributed Algorithms

As stated in chapter 1, the implementation of a general marpaerpolation library presents
two main challenges: accuracy in interpolation and efficyen spatial data querying. The use of
Baker’s interpolation method addresses the challenge@fdatation accuracy in that it provides a
mechanism that can be used to improve the interpolation.aXthd primary focus of this research
is on the implementation of a powerful interpolation lity;agpatial data structures and distributed
algorithms play an important role in the performance of dadcary. Both subjects are briefly

addressed in this section.
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Figure 2.10: A Binary Search Tree Data Structure

2.2.1 Spatial Tree Structures

The selection of a good data structure is a key element tgiegi good computer soft-
ware. Algorithms that are otherwise well designed could Ibevesd down if an incorrect data
structure is used. As an example, consider searching thrauigt of randomly ordered, random
numbers

3,1,9,1521,8,5,10,2,...,M].

The test for the inclusion of a number in this list is on aver@jM). While it is possible that the
number may be found early in the list in general and on avealidé numbers must be inspected
to test for inclusion. The number may not be in the list ataig still all members of the list are
inspected to verify this fact. However, if the numbers castoeed in order while being generated,
in a tree structure as shown in figure 2.10, the average peaftice becomed(logz(M)). At each
step of a traversal, the search continues down the half dféledikely to contain the number. The
time difference betwee®(log;(M)) andM can be significant, especially for laryé

Similar tree data structures exist for use in spatial datexing and searching. Recursively
subdividing a spatial domain is generally referred to asuyirspace partitioning [32]. There exist
many popular spatial partitioning trees [33—-36]. Each sjgeeariety of spatial partitioning data
structure has its own benefits. As an example the spatidbasgeextension named PostGIS to the
open source database PostgreSQL, offers a column indernmeplted as one type of spatial data
structure called an R-tree. This index allows for rapid qirgryyf spatial data points, but does not

provide mechanisms for querying nearest neighbors [37,138} parallel Alternating Digital Tree
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(ADT) used in CHIMPS is heavily optimized for equally disuied data across a low-memory
system [5]; the implementation and benefits of an ADT arerilesd by Bonet [39]. Other trees,
such as the kd-tree and the sr-tree are good at handling dathigher dimensionality [40].

Garth [41] provides an overview of the benefits and shortogsiof three structures: oc-
trees, kd-trees, and the celltree. In octrees, space issieely subdivided into eight uniform
octants, which is not memory efficient in the case of spatiatin-uniform vertex distributions.
Kd-trees, where space is subdivided at each point, “fatég non-uniform subdivision, at the cost
of generally deeper trees and a storage overhead” [41]. @lltece, authored by Garth, has many
benefits. It works with unstructured grids, is numericatipuist, can be used with both CPU and
GPU applications, and makes optimal and adjustable use iwiomye

While adding new vertexes to a kd-tree can be computatioeahensive [35], the mech-
anism implemented in this research is expected to work omyasgecific set of vertexes between
long-running numeric computations. Therefore, the entge generally remains constant during
the interpolation phase of a single iteration. The Pythbralies Numpy and Scipy offer scientific
data structures and algorithms for use in scientific comgui#2]. NumPy provides users of the
Python language with high-performance multi-dimensiarahys. Scipy is a collection of scien-
tific algorithms that make use of the fast arrays implemehieNumPy. The interpolation library
in this research makes use of these excellent tools. Scipyaics a kd-tree implementation [43],
which was found to be sufficiently performant, and is the dditacture selected for use in this

research.

2.2.2 Distribution of Workload

Embarrassingly parallel workload is workload “for whicktle or no effort is required to
separate the problem into a number of parallel tasks”, andhmypically involves little or no
communication between the participating threads of exacy44]. As stated previously, the data
are generally constant during the transfer of interpolatath between the upstream code and
downstream code. This being the case, if data can be inexpgngeplicated, then the action
of interpolation can be posed in an embarrassingly par&@#ion. Each compute unit with ac-
cess to the data can divide and conquer a fraction of thewatekload, and, after performing an

interpolation, report the result.
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Two mechanisms were investigated for use in the paralt@izaf this library. First, the
problem was posed in a fashion that mirrors the architectmm@monly found in high-performance
web sites of the variety of Google.com or Amazon.com. Théss are designed to distribute the
task of responding to requests so an army of servers in oodeandle many thousands of re-
guests per second. Devlin [45] presents an overview of camhymeed terminology in this field,
and Cardellini [46] provides an overview of the state of the iacluding various configurations
in modern use. The configuration investigated involved trexying of requests to a farm of
servers designed to perform the interpolation being regdeBecause the proxying of requests
is generally far less computationally expensive than thaahenterpolation calculations, this is
a reasonable approach to parallelization, assuming tleeadat be properly replicated for each
compute unit. The replication of databases is an active aefesaftware development and im-
plementation. Three clustering solutions for the Post@le8atabase, Slony-I, PGCluster, and
Bucardo, were investigated and found to scale well with retsu@d7—-49]. However, the only spa-
tial indexing scheme available, PostGIS, does not implémearest neighbors queries in three
dimensions [38]. Therefore this form of data replicationl gmoxy-based distribution of queries
was found not to be usable for this research.

The Python language has recently (since version 2.6) ied@dmodule designed to assist
in the implementation of parallel processing applicatjor@nednultiprocessing [50]. Because
it does not use threadapltiprocessing does not suffer from the shortcomings of Python’s
Global Interpreter Lock, or GIL. The GIL is a Python peculathat does not allow for more than
one thread to execute Python bytecode at any given time hviilicbits parallelism, but simplifies
the thread-safe implementation of Python’s built-in datactures [51]. Thenultiprocessing
library circumvents this limitation by implementing a pesses-based rather than thread-based
approach to concurrency, and provides a collection of elasd modules that perform in a truly
parallel fashion.

Themultiprocessing library contains &lanager class, which is a mechanism for sharing
objects between processes of thd tiprocessing module. These objects are accessible from
any network-connected computer, firewalls permitting. Aujeot of theManager class can be
given stewardship over objects of theeue class. This class implements a multi-producer, multi-

consumer First In First Out (FIFO) queue, to which multiplerker processes, or minions, can
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connect. A simple message passing interface can be define@ \atsingle producer of workload
can enqueue workload that all minions are capable of prowgs#/hen a minion has accomplished
a piece of workload, or in this case an interpolation, it enggs the result into a results queue. The
ability for a centralized service to proxy requests to anyaofrworkers, which was the most useful
mechanism in the previous architecture, is therefore predeand implemented using primitives
found in the core libraries of the language.

The primary focus of this research was providing an API thextggally and arbitrarily
solved the problem of interpolation to any degree of acgurdtowever, other solutions to the
distribution of workload that utilize message queues existl were investigated. IMQ, and it's
python bindings pyzmgq, are a concurrency framework thanferthe terse authoring of compli-
cated networking concepts including message queueind2JIMQ can be used in a similar
fashion to the MPI libraries, albeit @MQ is significantly $esomplicated. Tatotek demonstrated
that implementing a network queue using zeromq insteadeofrthltiprocessing Queue and Man-
ager objects is approximately seven times more produdi#k Balt is an open source project that
provides a distributed execution framework built upon tid@libraries [55]. Begun in February
of 2011, salt is still in very active development, and therefnot currently suitable for use. The
investigation of these nascent, performant, alternaiivatdies and frameworks may therefore be
recommended for future work.

Because nearest neighbor three-dimensional queries asgeenavailable to open source
databases, the route of implementation similar to distedweb applications was abandoned.
While higher performance versions of what is included in tgghen standard library exist, the
built-in modules were selected due to their maturity andjuiy.

Baker’s interpolation method was selected for use in thatipprovided in this research.
It was selected for use because it can be used with meshesywigzéype and topology, or no
topology at all. Also, Baker’'s method requires a very smahstl of points in order to perform
interpolation. Lastly, it can be used to calculate arbityapproximate interpolations. Th®Tree
structure found irscipy.spatial can be used to perform rapid nearest-neighbor queries in two
and three-dimensions, and is used in the results of thiarelse The methods employed in the

authoring of thesmbinterp API are described in the following chapter.
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CHAPTER 3. METHOD

The numerical method implemented by théinterp API yields an interpolation library
with the characteristics described in the previous chaamely, the library is general-purpose
and functions with few restrictions on mesh type or topologlge interpolation library yields an
interpolation that fits an approximating surface of any exged order to a relatively small stencil
of points from a larger cloud of points. This library was implented to take advantage of parallel
computing environments to minimize execution time. Thiamtler contains an explanation of
the numerical methods used in the implementation ofstiteinterp interpolation library. First,
an explanation of the numerical method employed for intixtpmn is presented, including novel
and dynamic approaches to the implementation. Next, a igéscr of the plugin architecture is
explained, which is the mechanism that provides an absigatace to the library and allows
the library to operate on a variety of meshes. An explanatiothe parallelization mechanism

employed then follows.

3.1 Baker Method

The interpolation method proposed by Baker [10] exhibitsaharacteristics required to
implement a general, arbitrarily approximate, two- aneéé&xdimensional interpolation required
of this research. Although there exist no general orderitgithto quadratic interpolation) and
parallel implementations of Baker's numerical method pt@smbinterp, an understanding of
this method would provide the reader with a basis so as tetatiderstand the benefits and
limitations of the resultandmbinterp API. The Baker method is thus explained in detail first.

Let V be defined as a set of randomly distributed point¥ = {Py,Py,...,P}. LetN
represent the dimensionality of the space, such that eaohhmsN vector componentgx,y) in
two-dimensions, angx,y, z) in three-dimensions. Lejrepresent a physical quantity of interest,

e.g. temperature. Each polRtnV has a valugj for eachnlocations. Denoting eadbcationinV

21



with &, defineq(&i) = {qo,1,---,0n}. Let = be the location of the point to which an interpolation
is required. In Baker’s original derivation, the termandX are used to denote the spatial locations
in place ofé and=; sincex andX specifically refer to one of the orthogonal spatial direxsioit

is changed t& and= herein for clarity.

Baker’s interpolation method comprises the adjustment ofeal interpolation by a least
squares estimate of the error of that interpolation catedlasing a linear extrapolation to a stencil
of surrounding points. Therefore, the Baker interpolatibthe value ofq to the point= is defined
by:

d(Z) = inear(Z) + f(2), (3.1)

whereqjineqr iS the linear interpolation, anti(=) is an estimation of the higher-order error terms.
The process of calculating the Baker interpolant thereforelves the calculation @fjinear(=) and

f(=Z); the definition and derivation of these terms follows.

3.1.1 Linear Interpolant

There exists a clever and convenient way to linearly intetgofrom the set of points in
a simplex to a position within the convex hull of that simplé&his section treats the calculation
of Qinear(=) from equation 3.1. A simplex is defined as the “generaliratb the notion of a
triangle or tetrahedron to arbitrary dimension” [56]. Tleent simplexhas a more rigorous and
broadly applicable mathematical definition [57], but th@gie definition of a simplex is used for
the purposes of this research: namely a triangle in two-dsiwas \ = 2), and a tetrahedron in
three-dimensiondN = 3). Note that a simplex always hbist- 1 vertexes. Therefore let the simplex
defined byRj,1 < j <N+ 1, or AR, denote the simplex composedMf+ 1 points surrounding
=, labeledRy, Ry, Rs. In order for the interpolation to succeed, it is requiredlttine simplexAR
contain the poinkE.

The other participating geometric entities are shown inréddil. The red poinE is the
point to which an interpolation is requireBandSare points in the cloutl in the neighborhood
of =. The blue pointRR; denote the vertexes in the simplé&R;R>R3, and the green point are
extra points in the neighborhood &f not already irR;. The three triangles formed by joinirig

with each vertex iIM\R are denoted\;, Ay, andAsz, andAigra = A1 + Ao + As.
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R @S,

Figure 3.1: A Planar Simplex as Required for Baker’s InterfataScheme

Barycentric coordinates are used to perform the linearpolation; these coordinate are
also referred to as areal coordinates because they reltite &wea of the triangle, ..., Ay Of
a simplex [58]. In geometric terms, the barycentric cocatise; (&) of a point in a simplex are
the values of the normalized are®s Aiotal, OPpPOSite the vertel; in the simplexAR. One way to
conceptualize the meaning of the barycentric coordinatés visualize how the geometric areas
Aq, Az, andAz change ag changes withirR;. If = is selected such tha = Ry, the ratios of the
areashy /Aotal = Az/Arotal = 0, andAy /Aotal = 1.

The barycentric coordinates define the influence of eacht’paialue on the linear inter-
polation. In other words, the ratio @fj/Aiota represents the influence fromOg < 1 thatq(R;)
has over the linear interpolant in the simplex.=l= R;, the value ofgjinear(=) should then be

influenced entirely by the known value gfR;). If = is placed in such a way as to give

Al A A
Atotal Atotal Atotal

(3.2)
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the valueg(R;) at each poinR; contributes equally to the calculated valuagfear(=). The linear

interpolant, which takes for inputs the simplé&R and=, is defined as

N+1
Qiinear(AR, = Z qR

3.3
Atotal ( )
The linear basis functions for this schenpg,=), must be defined in such a way as to have
a value ofg; (=) = 1 when being evaluated at the simplex verfgx= =. All other basis functions
at all other points imMAR should yieldp(R,) = 0,1 # . Thus, defining the basis functions to be the
barycentric coordinates, the following is obtained:
Aj

(Pj (E) B Atotal. (3.4)

Replacing terms in equation 3.3 using equation 3.4, theitig expression is obtained fQfinear:

N-+1
CIIinear(ARaE) = Z CKRj)qoj(E)' (3-5)
=1

Recall thai(R;) is given a priori, and is the known physical quantity of iestrat the sim-
plex vertexes. Beginning with two-dimensional data, or pfespace witiN = 2, and expanding

equation 3.5 for eacR; in the simplex for this dimension yields:

iinear(AR, =) = q(R1) @1(=x, Zy) + A(Rz) 2(=x, Zy) + A(Rs) ¢3(=x, Zy).- (3.6)

According to equation 3.6, if the poitis atRy, ¢(=1) = 1, ¢(=2) = ¢(=3) = 0, and the value of
Qiinear IS determined solely from the valug, with no influence from the otheR; in the simplex.
This equation exhibits the desired interpolatory behavior

The solution for the value of the basis functiopg=) in equation 3.5 is the only un-
known quantity required to calculate the linear interpolat To solve forg; (=) a system of linear
equations will be defined involving the points in the simpRyx =, and equation 3.6. I§j(Z) is
a constantg; = 02 = g3 = iinear = Qeonstani @nd equation 3.6 can be modified by dividing by
Qconstant that is:

O+@p+@=1 (3.7)
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Furthermore, the basis functions must be calculated seethstion 3.6 also interpolates

geometric location of the poird, hence

Rix®1(Z) + Rox@(Z) + Ray@3(=) =
Riy@1(Z) + Roy@(Z) + Rey (=) =

X (3.8)

. (3.9)

The values of the basis functiogg(=) can be found by solving the following system of linear

equations involving equations 3.7, 3.8, and 3.9:

1 1 1||@@E 1
Rix Rox Rsx| |@®(2)| = | =] - (3.10)
Rly F\)Zy R3y %(E) Ey

Extension of equation 3.5 td = 3 is straight forward. The three-dimensional case requires
the use of a four point simplex (tetrahedron). Adding a fotdsis function expression associated

with the new point to equation 3.6 yields

c1Iinear(ARa E) :CI(Rl)(Pl(Ex, Eya EZ) + Q(RZ)@(Exv Eya :Z)
+0(Rs) #3(=x: 2y, =2) + d(Ra) @u(=x, =y, =2). (3.11)

Using similar logic as was used for the derivation of equwti8.7, 3.8, and 3.9(=j) can be

calculated from

1 1 1 1| |@©®

Rix Rex Rex Rax| |@(3)| _ |3 (3.12)
Ry Ry Rsy Ray| |@(3)

Ri; Rz Rs; Raz| |@(3)

The process of calculatirginear (=) is fairly straight forward. First, populate the matrix in
equation 3.10 for two-dimensional data or the matrix 3.I2Hoee-dimensional data. Then solve
the system of linear equations fgr and then evaluate the dimension-appropriate equation for
Qinear(Z), i.€., either equation 3.6 or 3.11. The complete source kistiteg of the implementation

of this method in thembinterp module can be found in appendix A.
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3.1.2 Least Squares Approximation of Error Terms

Continuing with the explanation and derivation of Baker'smpblation method [10], the
least squares approximation of error terfi{s) of equation 3.1 for two-dimensional data is now
derived; the case whef¢is 3 is explained in section 3.2. ¢f( =) is evaluated at any of the points
Rj in the simplex, them|(R;) is exact, and there is no need for an error adjustmeRyj atence
f(=) =0. Similarly, if g(=) is being evaluated along any of the opposite edg&$ tf the simplex
AR, the error term should have no influence frgni=), asA, = 0. This condition is satisfied when

expressing the error terms using the linear basis funcasns

f(2) =am(2)@(Z) +b@(Z)®,:(Z) +cm(=)@u(=). (3.13)

In equation 3.13 the three double products of basis funstiwa the set of distinct products
of basis functions that are quadratic in the two spatial disi@nsx andy, and zero when evaluated
at each of the vertexes NR. This term represents a third-order accurate approximdtothe
error up to and including the quadratic terms. This equatrduces three unknowns whose
values must be solved, namelyb, andc.

RecallthatS,k=1,2,...,mis the set ompoints surroundin@ that are not in the simplex
R;. A least squares system of equations must be defined usingliies of the basis functions at
these points, the values of a linear extrapolation for e&tinose points using the simplexR, and
the values of, b, andc in equation 3.13. Defind as(a,b,c)". Applying least squares theory [59]

a, b, andc are found by inverting the following 8 3 matrix:
B'BA=B'w. (3.14)

The matrixB is defined using the identical basis function pattern as uaggn 3.13. De-

note ¢;(S¢) as the value ofp; evaluated using equation 3.6 using the data p8jrihstead of=.
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The matrixB in equation 3.14 is thus defined:

B= | _ . (3.15)

The value ofg(S) is known. The value ofjinear(S) (the linear extrapolant) can also be

calculated using equation 3.5. Defwen equation 3.14 as

A(S1) — Qiinear(AR, Sp)
W AS) - QIinfear(AR, S) ' (3.16)

d(Sm) — diinear(AR, Sn)

Equation 3.14 is populated with the information from eacthefsurrounding points i§;,
then the unknowr\ can be calculated. Knowing, equation 3.13 is evaluated fé(=). Subse-
quently the previously calculated value@f,car(=) and the recently calculated value if=) are
used to solve equation 3.1 fqf=). A full listing of the implementation of Baker's method in the

smbinterp Python module can be found in appendix A.

3.2 Basis Function Pattern

The existing literature does not describe how the comlonatf basis functions in equa-
tions 3.13 and 3.15 generalizes to higher orders of appatioms, or to higher spatial dimensions,
nor does it provide a mechanism by which these terms can belatdd [10]. The implementation
and explanation of this method constitutes a contributicthis research.

A pattern exists to define any error approximation functfd&) and covariance matrix
BTB parametrized by order of approximation and dimension. Refiras the desired order of
interpolation. As defined abové) is the spatial dimension. The pattern for the combinations
of basis functions that are used to defif(&) is the collection ofv-th ordered combinations of

N + 1 basis functiongg; that are unique and non-duplicate, triplicate, etc. As angple, when
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v =2, f(Z) is composed of the double combinationgpgroducts as shown in equati@R. When
expressingf (=) for the case of cubic approximation in two dimensions, where 3 andN = 2

dimensions, the error approximation term is defined as:

f(S) = a@L(S) (S @(S0) + ben(S) #2(So) @
+C01(S0) (S0 @3(Sc) + dn (So) ¢3(S) 93(Se)

+e@ (S0 @3S0 P3(Sc) + T (S (S @s(
+001(S) (S @3(S)- (3.17)

The case whelN = 3 is a natural extension of the planar case. Vet 2, the six double
products of basis functions are the set of distinct prodti@s are quadratic infx,y,z). For a
quaderatic fit in three-dimensional space, thereNirel = 4 vertexes in the simplex and therefore
four basis functions, and(S;) is defined by combining the basis functions in quadratic,-non

duplicate combinations:

f(S) = a@u(S) @ (S) +bou(S) @3(S) + e (Sq) (&)
+d @ (S 03(S) + e(S) m(S) + Fos(So) (). (3.18)

Implementation of this pattern is listed in full in appendixFirst the Cartesian product of
all integers from zero to the size of the simplex is compubéekt the products that only contain a
single number are removed, which enforces the requirerhanthe groups of be non-duplicate,
non-triplicate, etc. If the current entry is not compose@ aingle number, it is sorted, converted
into a Python tuple (an immutable sequential data strugtanel appended to the list of all potential
entries. This list will not be a unique set of products, buh&de so by creating a Python set of the
sorted entries, which enforces uniqueness of the term®indlection.

The dynamic calculation of the basis function pattern is fiashion is powerful, in that
it can be calculated for any arbitrary, and for planar, volumetric, or higher dimension spaces
(although onlyN of 2 and 3 are dealt with herein). However, for each paittie calculation of the

pattern must be performed once for the calculatioh(&) and once per extra poif§ participating
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in the current interpolation for each row in tli®ematrix. There is only one valid pattern per
set of inputsN and v, which must both remain constant throughout a single iolatpn. The
calculation of the pattern is a computationally intensipemtion, and so a caching mechanism
has been implemented in tk@binterp API that only calculates the pattern if it has not been
previously calculated. This concept is known as memoinatibe implementation thereof is in

appendix A, and a flowchart of the algorithm is shown in figuiz 3

Request Cache
> has No
Pattern
result?

Yes

Calculate and

< store new
result

Return result

Figure 3.2: Flowchart of the Pattern Implementation

The memoizing function forms a closure over a Python dicedbpamed cache, i.e. the
same cache dict will be available and used by any future calié memoized inner function. As
such, when the function that calculates fH{&) pattern is called it first checks to see if the inputs
N andv have not yet been used. If the inputs have not yet been usedtearpis calculated and
returned, otherwise the value in the cache dict matchingnhet variables is returned.

This mechanism has a slightly higher memory footprint, loumsrat a significantly lower
computational expense per c&l(1) with memoization, rather tha@(N) without. In thesmbinterp
API, the memoized pattern function is used to calculate dhesiin theB matrix, and in the calcu-

lation of f(=), and is listed in its entirety in appendix A.
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3.3 Mesh Plugins

Multiphysics simulations are simulations involving mple, disparate physical models.
The individual simulations that compose an encompassirtphysical simulation generally em-
ploy varied mesh types and topologies to correctly solvaliggarate physical models involved in
the larger, overarching simulation. Te@binterp API developed in this research was designed
and implemented to function with different types of mesha$mesh topologies so as to not limit
the scope of applicability. In order to solve equations 3.%3, 3.14, and eventually 3.1, two geo-
metric entities, and their associatgduantities are required: the simpl&R and the extra points
S. The simplexAR that contains the poir¥ is required to calculate the linear interpolant. The
simplexAR and a collection of of surrounding vertexes are used to calculate the errooappr
mation term. In order to be used with the interpolation lifgra given mesh structure must provide
the API with bothAR andS.

3.3.1 ARand S Vertex Selection

While Baker's method gives a reasonable interpolation swiufor a general cloud of
points, it does not specifically address the question of lwosetect points from an existing mesh.
The method suggested by Baker consists of simply selectmgehrest points. This is the most
general vertex selection algorithm for the terth® and ;. It consists specifically of collecting
the (N + 1) + mclosest vertexes to the destination patnusing the neare®l + 1 in the simplex,
and using the remaining points to comp&e This selection algorithm does not always provide
the best vertexes for interpolation results as shown inéi@8. The images on either side of the
figure represent the same source donor mesh (red pointskatidation poinkE (blue). The black
triangle represents the selection for the simpleR. The selection on the left was calculated us-
ing nearest-neighbor vertex selection. While it may seerdéiecting the geometrically closest
points to= would yield the same containing simplex, the vertex six rasve the destination
point is closer than the vertex directly above the verterally to the left of=. In this mesh, a
connectivity-based vertex selection would yield the semghown in the image on the right. The
mesh was designed to capture the gradient information, leeréfore the mesh topology should

be respected. Simply selecting the closest points would therefore yield inferior results. By

30



< ==

ya 2

/
il . el
A Point = ~ S
F:\ 7 ~¢- -
y | e Vs yal i
y ~— v T~
| ~ 7 e~ ¢
e e ———

Figure 3.3: Graphical Representation of Point SelectioroAlgms: Nearest-Neighbor Point Se-
lection (left), Connectivity-Based Point Selection [9]

selecting the more topologically adjacent points the imm@tion intended to be captured in the
mesh’s design will be preserved.

Alternatively, consider the case with a regular grid as showfigure 3.4. Again, the red
points are vertexes from the source mesh, the blue poineigdéstination poinE, and the black
triangle is the simplexXAR. While the simplex selection represents the topology of teshm if
the selection of extra points is performed using a neareigfabor selection algorithm the nearest
points will all be collinear with an edge of the simplex. Iethumber of points i is small, there
is a high likelihood of selectingi points such that more than— 2 of the extra points are on a line
that is coincident with two of the points in the simplex. Thandition is one of the pathological
cases described by Baker [10]. If this occurs, the covarianatix BTB will be singular, the
solution will not be unique, and the error approximationlwibt generally aid in improving the

interpolation.

7

Figure 3.4: Regular Grid With Extra Points That are Collinedahwan Edge of the Simplex R
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3.3.2 Plugin System Design

Rather than designing and implementing a mesh object for @adlevery possible mesh
type and topology, thembinterp API contains a plugin system for integration with new mesh
types. This abstraction layer allows users of the API todigpdevelop the code required to
integrate results from their numerical analyses into therpolation framework. By using the
plugin system, the engineer can precisely control how pare selected to avoid situations where
an unsophisticated vertex querying algorithm would previtferior results. An overview of the
plugin system is provided here, but a complete listing isvjoled in its entirety in appendix A for
reference.

The base grid class for all possible mesh types, named thectass, is defined in the
smbinterp’s grid module. The base grid class takes all the vertexeBamtesh and the values
of q(&) at those vertexes as parameters for object instantiati@ech Ehstantiation of this class
contains a Python list whose values are the spatial locabbthe known quantitieg. The spatial
locations in this list are used to populate a kdtree for rag@drest-neighbor querying. Also, the
grid base class contains a list containing the valuesaifthe locations in the verts list.

The grid base class also contains two other data structna¢sssist in the discovery of
the simplex in an upstream mesh that contains the givenwert€&he first is a key value mapping
that provides a mapping mechanism between a cell name arduai eell object. Because not all
cell identifiers are generally known at object instantiatia dict was chosen over a list fo(N)
insertion of new cells. The second internal structure inlthge grid class is a another mapping
which maps each vertex id to all cells that contain the ventigx the key id. The cell objects that
populate these two structures consist of the connectimftyrination linking the aforementioned
geometric entities: a list of all vertexes that compose tledlt as well as a list that contains refer-
ences to all neighboring cells. These data structures gnag@ted so that each cell may be quickly
queried for information regarding either vertexes in thalt or information about topologically
adjacent, neighboring cells. This adjacency informatggenerally computed before a round of
interpolations, and is stored in the grid object.

Each plugin must provide the Baker’'s method with two piecasfoirmation: the simplex
AR and surrounding points not already in the simpl&x, To determine the simpleX\R, the

base grid class, and all classes derived therefrom, useaaltialgorithm for locating the simplex
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that contains the poir. In this simplex querying method the vertex nearest s found using
the kdtree structure. Next the cells that are adjacent taltsest vertex are identified using the
internal mapping structures. These adjacent cells areedlign turn, and each cell is tested if it
contains the verte¥. Once all cells that are immediately adjacent to the neaesstx to= are
visited, all adjacent cells to visited cells are recursiwasited until an enclosing simplex is found,
or until a configurable limit is reached. The method employethis research used to locate
the containing simplex in an upstream mesh is similar to vilaatbeen previously described by
multiple authors [41,60,61]. First the spatial tree stnoeis used to find the location of the nearest
vertex to the point of interest, then other cells are visitedopologically adjacent order. The
selection of the extra point§ is also implemented in the base grid class. This algorithmpki
queries the kdtree structure fa¥ + 1) + m points and discards the points that are in the simplex

AR. This method could be overridden to provide a more comm@it§t selection algorithm.

3.3.3 Provided Plugins

Two plugins are provided by this research. One plugin formesalculated using Gmsh
(an open source meshing utility) is provided. Another phigkes a cloud of points, and calculates
connectivity information based on a Delaunay triangulatibthose points. Delaunay triangulation
comprises an algorithm to connect points into simplexek @t no vertex of any element in the
set of formed simplexes resides in the circumcircle of anthefother simplexes in the set [62].
The complete listing of these plugins is provided in appedior reference. The gmsh plugin
demonstrates the parsing of a file on disk, whereas the D&yaulngin shows that the information

does not necessarily need to reside on disk to be used by the AP

3.3.4 Benefits of the Plugin System

The plugin architecture implementedsabinterp provides two distinct features related
to computational flexibility. First, each plugin implemsiihe mechanism for populating the struc-
tures used in the default simplex finding and extra-poirdifig algorithms. A distinct plugin
should be developed for each type of mesh (structured,uatated, etc.), and can be implemented

to enforce any form of mesh topology traversal. As an exanagbéugin for a structured j, k mesh
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could be developed to verify that any additional points geidded td, are not collinear with any
of the lines in the simpleX\R already selected for a poiat A plugin of this variety would prevent
the pathological situation described above.

The second benefit comes from the ability to override fumstim the base class. If an
alternative simplex location or extra point location aijon is desired, the plugin can simply
override the base class methods that implement these thigsti The ability to override and
enhance the default behavior of the default grid object gdemented bysmbinterp is what
enables this flexibility. It allow the end users of the API &etthe interpolation engine by either
using an existing plugin, or by developing a relatively dmace of code that simply presents the
data to the API according to the interface as defined in themglig A. This is what enables the

API to be used with practically any mesh type or topology.

3.4 Parallel Execution Framework

The calculation ofj(=) generally involves the solution of two non-trivial linearssems
of equations per poinE. This computational expense is exacerbated by queryingaspkata
structures multiple times for the discovery of appropriatR and S terms. Depending on the
number of vertexes in the downstream mesh, the calculafiathertexes could take a substantial
amount of time. The problem is therefore bound primarily bg ability to perform the spatial
gueries and calculations more than any other factor.sibénterp API provides a mechanism by
which interpolation workload may be distributed amongsttzo$ participating parallel computers.

Due to the abundance of memory on modern HPC nodes, largelgedts can be persis-
tently loaded in their entirely in ram, multiple times on tiplle nodes, against which interpolations
can be performed in parallel by compute units. The compuits,uramedminionsin smbinterp,
can perform multiple parallel queries against a persistatd set; the interpolation of many spatial
locations therefore lends itself to being solved in a patdishion. It was found that the perfor-
mance issues could be addressed in a scalable fashion byosmg@mn embarrassingly parallel
solution to the problem using libraries that are built inte Python language. Embarrassingly
parallel workloads are those “for which little or no effostrequired to separate the problem into a

number of parallel tasks” [44].
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The crux of the solution lies in providing the minions withteady stream of work, and
a pipeline for the reporting of the resultant interpolasiorif the minions could subscribe to a
collection of work to be done, and conversely report congaletorkload back to a centralized
location, the problem would be solved. Theeue module in the Python standard library pro-
vides aQueue class which implements a multi-producer, multi-consumestin-First-Out (FIFO)
gueue, to which multiple simultaneous minions on a singlehiree can connect. Furthermore, the
multiprocessing module provides aanager class, which enables the sharinqdakue objects
over a distributed network. A reference implementatiorhefparallelization scheme implemented
in this research is shown in the flowchart in figure 3.5. WhdoWws is a brief explanation of the

constituent parts; the source in its entirety is providedppendix A.

rsmbinterp )
API [ server.py ]
2114

\ 3( .. )

[ master.py ]5 minion.py
1 3 4 . A

N—e———| minion.py

3 minion.py
Enduser |& ) L )

code

3 4 A

\—| minion.py

Figure 3.5: Flowchart of the Parallelization Architecture

The task of parallel interpolation begins with code, autldobby the end user, submitting

interpolations to be performed. This can be done in two sasEhown in the flowchart, or in one
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step by thenaster . py script, as demonstrated in appendix A. Tagter . py scriptis responsible
for orchestrating the submission of interpolations andessassociated with starting and stopping
a set of interpolations. Once all of the interpolations hbgen submitted into theerver.py
script, themaster . py script then signifies to all participating minions that atbnkioad is ready
for consumption. Each of the multipkeinion. py scripts begins requesting workload from the
server.py Script and calculating interpolations in rapid success\ien the interpolations are
calculated, they are fed back to therver.py script, which then returns all collected interpo-
lations ether to th@aster.py script or to end user code. Thgnion.py Scripts remain active
and ready to perform interpolations against a set of datatbatmaster script sends a termination
message, at which point their service is finished, and ressuare relinquished to the system.

The Python code required to share multiplesue classes over a network as required to
implement theserver.py script is demonstrated in appendix A. In this code four gsemre
made available to other scripts on the same network: a queuadks to be performed, a queue
for results, and two queue objects for orchestrating thérobof a round of interpolations between
a master and a set of minions. Masters and Minions authéa@ral connect to these four queues
to accomplish the tasks shown in the flowchart in figure 3.5.

The smbinterp API was designed to implement and enhance the numericalochgiio-
posed by Baker. It does so by providing the first library thé&dved for arbitrary and dynamic
accuracy specification. Also, it was designed to allow fat @sers provide alternative point se-
lection algorithms via its plugin architecture. Lastlyetimterpolation API is implemented in a
parallel fashion. Results of the implementation of sheinterp APl a presented in the following

chapter.
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CHAPTER 4. RESULTS AND DISCUSSION OF RESULTS

Thesmbinterp library was written to meet the needs stated in previoustengapNamely,
the library should provide a mesh-agnostic interpolatibraty that can calculate interpolations to
an arbitrary degree of accuracy, and can be run in paralle.library designed and implemented
in this work provides a generic, nth-order approximaterpdéation that can take advantage of
parallel computing environments. This chapter contaiaséisults of various benchmarks and tests
of thesmbinterp library intended to show that these research goals were®eetion 4.1 of this
chapter describes a study performed with the library thetrpatrically tests various configurations
and mesh resolutions for accuracy and temporal performdngeneral the library took longer to
calculate more accurate results due to the use of higher-ealdtings. The second section, section
4.2, presents the results of a study on the efficacy of thdlekzation algorithm implemented
in the smbinterp library, which was found to scale quasi-linearly to 180 fggsating minion

processes.

4.1 General Library Performance

A study of the effects of changing the parameters ofdfeinterp library for a given
mesh on temporal performance and accuracy is presentedBwhethe temporal performance and
the accuracy of the library are primarily dependent upon faedors, which are both parametric
inputs to the library. The order of the error approximatiemt is the first configurable input of
smbinterp. While the library provides quadratic error approximatigndefault, specifying an
alternative order is optiondlThe size of the stencil of extra point§;f used to calculate the error
approximation term is the second input; it is equally confaple. These two parameters affect

both the accuracy and the duration of each interpolation.

1This interpolation library goes to eleven.
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The exact equation used to benchmark the results ofidbhénterp library needed to be
chosen carefully. When interpolating a function that is ¢antsor linear in the spatial dimensions
linear interpolation always provides an exact solution. uiidtion that varied smoothly in the
domain was therefore required to calculate the valug(é&f) for all known points in the source
mesh in order to obtain meaningful results. Equations 4dL4f, which are slightly modified
versions of the equations used to validate the original micalemethod [10], were used to validate
the performance of the library in two- and three-dimensiarspectively. A plot of the two-

dimensional equation is shown in figure 4.1.

q(x,y) = (sin(xm) cos(ym))? (4.1)
q(x,y,z) = <sin(x—2n> sin (%T) sin(%))z. (4.2)
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Figure 4.1: Plot of Equation 4.1

Equations 4.1 and 4.2 were also used to calculate the exhet v&qg at each poinE

when calculating the error of each interpolation. Mesh Itggm was varied by creating meshes
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of varying cell density using the open source tetrahedralmg prograngmsh [11]; the quantity

of vertexes and elements of each of the meshes is shown &4ahland an example of the two
coarser two-dimensional meshes are show in in figure 4.2.ofther of error approximatiorv)
was varied from quadratic (2) to quintic (5), inclusive. Tsiee of the stencil of extra point§)
was varied in an approximately exponential fashion aswWalo4, 6, 8, 12, 16, 20, 32, 48, 64,
96, 128, 192, and 256. A collection of 1000 random points withe domain (0 to 1 in each
orthogonal dimension) of each mesh was generated for tlg,stnd the same set of generated
points was used during each parametric permutation. THhisction of points represents points

that would be unknown in a destination mesh during a mulspdsysimulation.

Table 4.1: The Mesh Vertex and Element Counts Used in the Rdriarhibrary Study

Mesh ID Vertexes Elements
2D
1 529 1060
2 5083 10168
50354 100710
534608 1069218

1915 10635
170297 1008870

3
4
3D
5
6
7 1701554 10188506

4.1.1 Interpolation Improvement

The root mean square (RMS) of the errogg (vas used to determine the accuracy of the
smbinterp library. Each errokg; was calculated as the difference between the actual vaiom (f
equations 4.1 and 4.2) and calculated interpolations it paint in the destination domain using

smbinterp), Of & (=) = Qexacf =) — Qcalculated =) RMS was calculated according to equation 4.3

for all u points in the destination mesh.

[l .2
&ms = ZI_TlgI (4.3)
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Figure 4.2: Plots of 2-D Meshes, Resolution 1 and 2

The qualitative notion of result improvement was determibg comparing the ratio of in-
terpolations improved by using tk@binterp library (by comparison with a linear interpolation)
to the total number of performed interpolations. A value @ ihdicates that every calculated in-
terpolation was an improvement over a linear interpolatéovalue of 0.5 indicates that half of the
interpolations were less correct than the linear intetpmia The comparison provides a qualitative
benchmark for the library against other interpolationditoies which only provide linear interpola-
tion. A given interpolation was found to have provided a d&etésult than linear interpolation by

meeting following inequality:

‘innal (2)— Qexacl(z)‘ < |Giinear(=) — Cexact(=)| (4.4)

These two quantities (RMS of errors and percent improvemaate calculated for all
parameters in the study and the results for the two-dimeasimeshes are shown in the plots of
figures 4.3-4.6. The top plot in each of these figures showRMS of errors of the interpolation
at all points in the destination mesh as they were found byingrorder of interpolation and the
number of participating points in the steng§l for a particular mesh density. The x-axis of these
plots represents the number of extra points in an interfoolaand the y-axis is the RMS of error

for all points in the destination mesh. Plots of the the improent ratio are shown on the bottom
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of these figures. These plots also show the number of extraspon the x-axis, and show the
fraction, from O to 1, of improved interpolations on the yisax

The plots in figure 4.3 plot the results obtained by using tlestncoarse mesh and by
varying the parameters of te@binterp library. The coarse mesh is shown on the right of figure
4.2. The RMS of errogms drops slightly for all orders of interpolation when the nuenf extra
points increases from 4 to 6. Thereafter, up to 256 extratpothe number of extra points has
little effect on the RMS of error for the three higher degreemterpolation shown. The results
obtained using the coarse mesh show that generally the ofd&erpolation has more influence
on the RMS of error than increasing the number of extra pokitsvever, the RMS of error for the
guadratic interpolatiomu of 2) continues to increase until the RMS of error with 256 &xtoints
is higher than it was when just using 4 extra points, and apprately an order of magnitude higher
than it was at the very lowest, the value obtained with 8 eptiiats. The effect of this increase
in error can be seen in the bottom plot; the quadratic intatm provides a worse interpolation
than linear for over 30 percent of all attempted interpolagi For higher-order interpolations this
effect is less substantial, and ferof 4 and 5 yield an improvement ratio of above 0.98.

For values of5, between 12 and 256 the plots in figure 4.4 show similar tremdse plots
in figure 4.3; the RMS of error is however an order of magnitumkeer. The plots in figure 4.4
were produced using the mesh on the right of figure 4.2. The¢ masked difference between the
two plots is that the error decreases significantly betwesmdél2 extra points. After crossing this
threshold increasing the number of extra points does natgghthe number of successful interpo-
lations, except for the lower-order interpolations. A $antrend for the quadratic interpolation is
shown: increasing the number of extra poi§fancreases the number of failed interpolations to
20 percent at 256 extra points. Another more subtle difiezas that the RMS of error creeps up
for all four orders of interpolation after crossing the gfreld between 6-12 extra points, whereas
the RMS of error appeared to be more constant in figure 4.3.

The plots of the in figures 4.5 and 4.6 are very similar to thiaskgure 4.4, and were
produced with the meshes with next more refined resoluticgsh®s 3 and 4. In these figures
there exists a similar sudden dip in RMS of error as that sedidirthe RMS of error is generally
an order of magnitude lower for each sequentially more rdfmesh, and increasing the number

of extra points past the threshold increases the ratio tHdajuadratic interpolations. The main
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difference between the results in figures 4.5 and 4.6 andetebewn in figure 4.4 is that the

sudden jump in RMS of total error occurs at a higher number wagoints as the mesh resolution
increases with the lowest point reached at 12, 20, and 32 pgints for each of the finer meshes,
respectively.

As the order of interpolation increases the RMS of the erroegaly decreases. Specif-
ically, for a given mesh density, the higher-order integpioin generally yielded more accurate
results. Also, as the mesh density increases, the accusarinareases. This increase in accuracy
is what justifies the use of more computationally expensatérgys such as a higher order error
approximation or a more resolved mesh. As the number of xesten the stencil is increased,
the RMS of the error generally undergoes a sharp declin@welll by a gradual increase. This
can significantly impact the accuracy of the library as shawfigures 4.3-4.6. When using a
very small stencil (less than 12 vertexes), a significarttioa of all interpolations (50-60 percent
on all but the coarsest mesh) were worse after the adjustbyetite error approximation term.
However, after passing the threshold of sharp error detfiaenterpolations performed with the
smbinterp library improved for almost alE in the destination mesh. This generally occurs at a
value of 16< m < 32 As the mesh density increases, this jump requires a latgecil, with the
worst case for two dimensions involving order 5 interpalatrequiring 32 extra vertexes before
achieving minimum RMS error. It is noteworthy that this sudglemp in RMS of error occurs at
the same size of stencil for the three finer mesh cases. Alsopolations performed after crossing
this threshold (using more than 32 extra points) on the fimesth provided the lowest RMS of
error.

An increase in the quantity of extra vertexes for low-ordgraximations yielded slightly
counterintuitive results with respect to RMS of total erradamprovement ratio. The quadratic
error approximation also exhibits the sudden decrease of BIM®or (at 10-12 extra vertexes),
however the RMS of error increases when increasing the siigeaftencil past this point. This
effect is particularly noticeable in bottom plot of figuré84vhich shows the fraction of all in-
terpolations that improved using the most coarse two-dgioeral mesh. Using any more than 8
extra vertexes has a harmful effect on the RMS of error dunigrpolation; in the case of the
coarse mesh over 30 percent of the interpolations calculaang the error approximation term

(calculated using 256 extra vertexes) provided worse teHun a linear interpolation alone.
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This phenomenon is evidence of an artificial smoothing effaased by using a low-order
approximation of error terms for an underlying equation bfgher order. In this case it is recom-
mended to use a higher order interpolation or a finer mesim;fevéhe coarse mesh the fourth- and
fifth-order interpolations provided very good interpabeus, with over 98 percent of all interpola-
tions improved by usingmbinterp by comparison with a linear interpolation alone for stencil
sizes larger than 6.

As with all discrete numerical methods, care should be takenatch the order of inter-
polation to the order of the underlying mathematical equesti While the use of thembinterp
library can provide the user with excellent interpolatiesults, it is not a silver bullet intended to
perform regardless of the underlying equations, or meséed to present the requisite information
to the library.

As an example, the quadratic interpolation in figure 4.3 shihat if too many extra points
are used with a quadratic interpolation, the interpolatias a smoothing effect that makes up to
30 percent of the interpolations worse for having used tivaty. Also, the mesh resolution should
resolve pertinent gradient information. While this is conmod well designed meshes, the library
performs better when this is guaranteed. Furthermorefafmmation is known a priori about the
data, which could be used during the interpolation algorjttihe known information could be used
to intelligently select the order of interpolation and thenber extra points used to calculate the
error estimation term. Investigation of the active adjustbof the interpolation parameters might

be suggested for future work.

4.1.2 Temporal Performance

Figures 4.7 and 4.8 show the results of the temporal perfocmatudy. The x-axis in these
figures represents the number of extra points used in céloglthe error approximation term.
The y-axis shows the average time spent per interpolatidre drder of approximation and the
mesh resolution was varied as explained in the previousose@nd results for all permutations
for a particular spatial dimension are shown on a single gdibe plots in figure 4.7 shows results
for the timing of the two-dimensional test cases, and thésplofigure 4.8 show results for the

three-dimensional test cases.
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It was found that in general increasing the dimendiprihe mesh resolution, the order of
interpolationv, or S (extra points) caused an increase in interpolation timee ifkerpolation
time increased linearly with the number of extra points. cAlthe rate of increase of time for
three-dimensional meshes is twice that of of two-dimeraioneshes. The fastest of the three-
dimensional interpolations, quadratic interpolation otparse mesh, was slower than half of all
combinations of two-dimensional interpolations. Ladtig interpolation for points against meshes
of higher element density generally took longer than thdsmarser element density. In the most
extreme case, thenbinterp library exhibits a ten times increase in time by using the imaxn
density, dimension, number of extra points, and order adrpulation by comparison with the
minimum values of any given permutation of the input pararset

When solving for the interpolated values at each paitite linear portion of the interpolant
and the error approximation terms the numerical methodrequatrices of a larger rank for higher
spatial dimensions, and is therefore more computatiorzastly. Furthermore, spatial querying
of a kdtree suffers from both increased complexity in higlierensions (exponential scaling) and
more costly spatial queries when querying for a point ambagsincreasingly large collection
vertexes (linear scaling). All three of these effects araifeat in both two- and three-dimensions

in figures 4.7 and 4.8, respectively.

4.1.3 Mesh Resolution Study

A mesh resolution study, similar in nature to those perfatirbg Baker [10] and Gal-
braith [9], was performed using te@binterp library. The purpose of the study was to determine
how the accuracy of the interpolation library improved asdensity of the underlying mesh was
increased. The results of this study are show in figure 4.%4at@l The main difference between
the study performed herein and the one performed by BakeaisitiBaker’s study the destination
points were placed in a geometrically optimal location:cmely between the source points. Be-
cause real-world use use of the library will not generallgvinle the same ideal vertex positions
the results shown herein were generated using the samemashekiination points as were used in
the previous study described in section 4.1. It was hopddhisawould provide results for a more

realistic use case.
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Another key difference between this and other studies isthigainterpolations performed
against the regular meshes produced for the three-dimeaistudies consistently yielded singular
covariance matrices. While this may be due to toleranceitirtbar algebra libraries that are used
by smbinterp, the covariance matrix was found to be singular regardlebsw the extra points
were selected and brings into question results obtainedl avitegular source mesh. While the
library detects this occurrence by catching a thrown Pythaeption and subsequently performing
the requisite calculations using a pseudo-inverse, tloailzdion of the covariance matrix using the
pseudo inverse has a detrimental influence on the accurdbg ofiethod. As mentioned before, a
singular covariance matrix provides a non-unique solutbahe least squares problem. Therefore,
the same three-dimensional meshes as used in section £ Llgext to calculate the RMS of error
in figure 4.10.

Figures 4.9 and 4.10 plot the relationship between meshirgpand RMS of error of
all interpolations in the collection of destination vesexor the two-dimensional and the three-

dimensional test meshes, respectively. The x-axis reptefige average spacing between vertexes
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in the three-dimensional test meshes, and the exact spbeimgeen the regular mesh elements
in two dimensional test meshes. The y-axis was calculatevess in section 4.1. Furthermore
the lines in each plot are representative of the slope ttdt eallection of data should follow if
the underlying numerical method is truly accurate to thatree of accuracy. As an example, the
collection of points forv of 2 should be third-order accurate, and should follow a Vi slope

of 3; this is closely demonstrated in the plots.

Figure 4.9 shows the results of the resolution study fontleedimensional meshes. As the
meshes were refined the error decreased. The fourth- ahemitéer resultsy of 3 and 5) matched
the slope lines almost exactly, whereas the third- and éiftrer results were slightly lower than
expected for that level of accuracy.

Figure 4.10 shows the results of the resolution study forttinee-dimensional meshes.
Similar to the two-dimensional mesh resolution test, the RMi®rror decreased as the mesh

resolution increased. The three-dimensional test casestleave the same banded effect as the
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two-dimensional test cases, but the error was slightly altbe expected slope lines at the finest
resolution forv = 3,4,5.

As mesh element size decreased, the RMS of error decreasel &srnhboth dimensions.
The RMS of error for the highestdecreased more than that of the lowesThe RMS of error of
the most coarse mesh ranges within a single order of magniwdgereas the RMS of errors at the
most fine spacing span four orders of magnitude for the twmedsional meshes. The four lines
are evenly spaced for the three-dimensional test case,eaté¢he results for two-dimensional
meshes exhibit a slight banding, or unevenness betweenoedeh Also, the data very closely
matches the plotted lines of slope, indicating that the mofl@ccuracy is indeed provided using
this numerical method.

The rate at which error decreases as the average mesh eldreedécreases in figures 4.9
and 4.10 is indicative of the accuracy of the numerical mgihgplemented iksmbinterp. There
is slight banding for the two-dimensional meshes betweemiqiic and cubic interpolation, and
again for quartic an quintic interpolation. While this inglies that the method does not perfectly
interpolate to those orders of accuracy, in general inargabe v parameter of thembinterp
library provides a more accurate interpolation. Furtheenthe cases where the points diverge
from the slope of appropriate order, the divergence occussfavorable direction. Also, the fine
meshes experience a more significant decrease in RMS of éaorthe coarse meshes while
increasing the order of approximation, While this is an intuitive result, it emphasizes the notion
that mesh density should be chosen to best match the unagphiysical systems and to provide

as accurate of results as possible.

4.2 Parallelization Results

The parallel algorithm employed bymbinterp, described in detail in section 3.4, was
found to scale quasi-linearly to approximately 180 pgpatingminion processes as shown in
figure 4.11. The plot in figure 4.11 is a plot fheedugor the parallelization algorithm. Speedup

is defined as the ratio of time to execute an algorithm se@algn{T,) divided by the time to
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execute the algorithm witp processors [63], or:

A parallel algorithm is considered to have ideal speedu i= p. The x-axis in the figure rep-
resents the number of participating minion processes, laag-txis is the speedup. As shown in
figure 4.115; is equal top up to approximately 128 participating minions. While theattshown

in figure 4.11 seems favorable up to 200 points, the actualeifty of performance is not perfect,
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and this particular visualization of performance can tfaeeebe misleading.
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A more meaningful parameter for instrumenting the perforoeeof a parallel algorithm is
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as the speedup divided by the number of participating psmeesor:

Ep= 2. (4.6)

The efficiency of an algorithm ranges from 0 to 1, and is shomrshbinterp in the left plot
in figure 4.12. If an algorithm does not have an efficiency oit is usually indicative of com-
munication overhead or bottlenecks of some form. The pizdition algorithm employed by the
smbinterp library has near-linear speedup up to approximately 128qgaating minions. It has
an efficiency above 90 percent up to 181 participating ndaleshe efficiency drops substantially

when using more minions.
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Figure 4.12: EfficiencyKp) of the Parallel Algorithm Employed bymbinterp.

As shown in figure 3.5 all network traffic from theaster.py process to each of the
minion.py processes and back must pass through a single pointethesr . py process. The

processor load that this process consumes is shown in figli8e #he processor load scales lin-
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early up to 180 participatinginion.py processes, but levels off at two full processors worth of
load (200 percent CPU utilization) after this point. Thenager class of thenultiprocessing
Python module is implemented in a parallel fashion, whick wolaserved by the existence of multi-
ple threads of execution in the output of tixp Linux command, and by the fact that the process
utilized more than one CPU (more than 100 percent). While th@eémentation of th@anager
class in themultiprocessing module seems to be heavily parallel, it can only consume two

processors at any given time. Therver . py process is a serial bottleneck.
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Figure 4.13: CPU Utilization of theerver.py Process

The implementation of theanager class is the current bottleneck for tkebinterp
library. While this scales approximately 180 times bett@mtlany other current high-order in-
terpolation engine of this variety (all other known implentegions are serial), there are a few
avenues of research that might be suggested for future Wbwke exist many open source, high-
performance message queuing systems. @MQ was mentionkdpiec 2, and is a popular library

amongst those who use python for high-performance sciectinputing [53-55]. According to
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benchmarks performed by Knox [54], replacing the defawdtjve Python queuing mechanism
used bysmbinterp should yield a seven time speedup. Furthermore, implemgtie task distri-
bution after a divide and conquer paradigm where miniongereped under multipleerver . py
processes may allow the library to scale past 180 minions.ifirestigation of higher-complexity
distribution schemes might be suggested for future work.

The implementation of thembinterp library accomplished the main goals of this re-
search. That is, to provide the scientific community with perosource library that implemented
an n-th order accurate, distributed interpolation librafgsts were performed that showed that
varying thev parameter did increase the accuracy of the method. Theilras implemented
using distributed network task queues, and was found t@ soapproximately 180 participating

minions.
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CHAPTERS5. CONCLUSIONS & RECOMMENDATIONS

The meshes used in multiphysics simulations are typicaltghmes of disparate topology
and resolution. While these simulations represent thenguétilge of numerical simulations, linear
interpolation is the method of interpolation generally éogpd when the spatial location of the
source and destination meshes are not perfectly coin@tlegdther limited solutions to this prob-
lem exist, but impose restrictions such as the requirenoerttltect and present higher-order terms
at each point, limitations in how high of an order of inteigt@n can be requested, or the solution
only being implemented in a serial fashion. The researchkatoed herein yielded an interpolation
library that provides interpolation to an arbitrary degoéeaccuracy, that is mesh agnostic, that
only requires that the values (not derivatives) be acquatdtie spatial locations of the points of
interest, and that can be used in a parallel fashion in a pggfermance computing environment.

The library, namedmnbinterp, provides an interpolation for a cloud of points to an ar-
bitrary order of accuracy. It was shown, via a mesh resalusitudy, that the algorithm (and
implementation thereof) provides the the end user with #peeeted level of accuracy, i.e. when
performing cubic interpolation, the results are fourtdearaccurate, quartic is fifth-order accurate,
etc.

These higher-order results are obtained with a minor teadp@nalty. Timing results were
also published and showed at most a ten-fold increase ofréougired per interpolation using the
most complicated settings (quintic interpolation on a fime¢ dimensional mesh using 256 extra
points) by comparison with the least computationally istea settings (quadratic interpolation on
a coarse two-dimensional mesh using four extra points).

While the general results show that the library provides eteunterpolation care must
be taken to wield it in an appropriate manner. Attempting $e the library with an order of
interpolation that does not match the order of the undeglyimathematical equations will yield

unsatisfactory interpolation results. The underlying meatatical equations attempting to be fit
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should be understood, and an appropriate order of accutamyldsbe used. Furthermore, the
underlying mesh should be designed according to good mestraction practices; most impor-
tantly they should appropriately capture gradient infdiora This assumption was presumed safe
as the most probable use of the library will be to interpotigea from one physical simulation to
another where the onus of mesh design is on the designers ofdbhes used in the simulations.

The second design goal of teebinterp library was to make the interpolation algorithm
that it implements easily usable with any mesh type or togppld@ hesmbinterp library provides
a convenient plugin infrastructure to provide this meshosginism. Two example plugins are
provided for reference in appendix A, and new plugins mayrbplemented with a relatively
small effort. The two plugins are approximately 75 lines ofle a piece, and implement plugins
for meshes generated using the open source Gmsh meshitygauttil for a general cloud of points.

Thirdly, smbinterp was implemented to take advantage of parallel computing@mnv
ments. A parallel framework was implemented in interp library using built-in Python
modules. This implementation was found to scale linearjyraximately 180 participating com-
pute processes.

Finally, smbinterp is available under a liberal license, and plans are in placadd it
to the popular, open source scientific Python library nanogayq442]. Other future work may be
suggested in two areas. First, the parallelization schesmie it performs well, could be enhanced
by using a faster queuing library and a more advanced paatitipartitioning scheme. Also, an
algorithm to actively select parameters for the librarydaben the general shape of the solution
may provide a temporally and computationally optimal ckait settings during a multiphysics

simulation.
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APPENDIX A.

A.l1 smbinterp library

smbinterp SOURCE CODE

from setuptoolsimport setup, findpackages
from interp import __version._
setup (
name = 'smbinterp’,
version = __version._,
packages = findpackages (),
install_-requires = |
"progressbar’,
'scipy’,
‘numpy’,
1,
author = "Stephen M. McQuay”,
authoremail = "stephen@mcquay.me”,
url = "https ://mcquay.me/hg/research”,
license = "GPL",

. ..Iresearch/setup.py

import sys

import numpy as np

from functools import wraps
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import itertools

import interp
import logging
log = logging.getLogger('interp’)

AGGRESSIVEERRORSOLVE = True
RAISEPATHOLOGICAL_EXCEPTION = False

def get.phis (X, R):

The getphis function is used to get barycentric coordonites for a

point on a triangle or tetrahedron. This is equatio®3
in 2D:
X — the destination point (2D)
X = [0,0]
R — the three points that make up the-R triangular simplex

R=([-1, —-1], [0, 2], [1, —1]]

this will return [0.333, 0.333, 0.333]

in 3D:

X — the destination point (3D)

X = [0,0,0]
R — the four points that make up the-B simplex (tetrahedron)
R =]

[ 0.0000, 0.0000, 1.0000],
[ 0.9428, 0.0000, —0.3333],
[-0.4714, 0.8165,-0.3333],
[-0.4714, —0.8165, —0.3333],
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77

this will return [0.25, 0.25, 0.25, 0.25]

# equations3.12 and 3.10
if len(X) ==
log.debug("running 2D")
A = np.array (]
[ 1, 1, 1],
[R[O][O], R[1][0], R[2][O]],
[R[O][1], R[1][1], R[2][1]],
1
b = np.array ([ 1,
X[0],
X[1]
)
elif len(X) ==
log.debug("running 3D")
A = np.array ([
[ 1, 1, 1, 117,
[R[O][O], R[1][0], R[2][0], R[3][O]],
[R[O][1], R[1][1], R[2][1], RI3][1]],
[R[O][2], R[1][2], R[2][2], R[3][2]],
1
b = np.array ([ 1,
X[0],
X[1],
X[2]
1)
else:

raise Exception("inapropriate demension on X")

try :
phi = np.linalg.solve(A,b)

except np.linalg.LinAlgError as e:

msg = "calculation of phis yielded a linearly dependantstgm (%s)” % e

log.error(msg)
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78 # raise Exception(msg)

79 phi = np.dot(np.linalg.pinv(A), b)
80

81 log.debug("phi: %s”, phi)

82

83 return phi

84

85|def qglinear (X, R):

86| "

87 this calculates the linear portion of g from R to X
88

89 This is equation3.5

90

91 X = destination point

92 R
93| ™
94
95 phis = getphis (X, R.verts)

a inter.grid object; must have R.points and R.q

96 glin = np.sum([qi = phi.i for q.i, phi_.i in zip(R.q, phis)])
97
98 log.debug (”"phis: %s”, phis)
99 log.debug("qglin: %s”, qlin)

100

101 return phis, qlin

102

103 | def get.error(phi, R, S, order = 2):

104

105 Calculate the error approximation terms, returning the uwokvns
106 a,b, and ¢ in equation3.13.

107

108 B =[] # equation .15

109 w = [] # equation @.16

110

111 cur.pattern = pattern(len(phi), order)
112 log.info (" pattern: %s” % curpattern)
113
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115
116
117
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125
126
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128
129
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134
135
136
137
138
139

140
141
142
143
144
145
146
147
148

for (s,q) in zip(S.verts, S.q):
curphi, cur_glin = glinear(s, R)
=1
for i in cur_pattern:

cursum = curphi[i[O]]
for j in i[1:]:
cursum = cur_phi[j]

| .append(cursum)

B.append ()
w.append(g- cur_qglin)

log.info("B: %s” % B)

log.info("w: %s” % w)

B = np.array(B)

w = np.array (w)

A = np.dot(B.T, B)
b = np.dot(B.T, w)

try :
abc = np.linalg.solve(A,b)
except np.linalg.LinAlgError as e:
log.error(”linear calculation went bad,
e)
if not AGGRESSIVEERRORSOLVE:
return None, None

abc = np.dot(np.linalg.pinv(A), b)

errorterm = 0.0

for (a, i) in zip(abc, curpattern):
cursum = a
for j in i:

cursum = phi[j]
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149 errorterm += cursum
150
151 log.debug(”errorterm: %s” % errorterm)

152 return error_.term, abc

153

154 | def run_baker (X, R, S, order=2):
155

156 This is the main function to call to get an interpolation to Xofm the
157 input meshes

158

159 X — the destination point
160

161 R = Simplex

162 S = extra points

163| ™

164 log.debug("order = %d” % order)
165 log.debug(”"extra points = %d” % len(S.verts))

166

167 answer ={

168 "glin’: None,
169 "error’: None,
170 "final’: None,
171 }

172 # calculate values only for the simplex triangle
173 phi, qglin = glinear (X, R)

174

175 if order == 1:

176 answer[’'qglin’] = glin
177 answer['final’'] = qglin
178 return answer

179 elif order in xrange(2,11):

180 errorterm , abc = geterror(phi, R, S, order)

181

182 # if a pathological vertex configuration was encountereddan

183 # AGGRESSIVEERRORSOLVE is False, geterror will return (None, None)
184 # indicating that only linear interpolation should be penrfoed
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185 if (error_.term is None) and (abc is None):

186 if RAISE.PATHOLOGICAL EXCEPTION:

187 raise np.linalg.LinAlgError(”Pathological Vertex Configuradn
Detected”)

188 answer[’'qglin’] = qlin

189 answer[’'final’] = qglin

190 return answer

191 else:

192 raise Exception(’unsupported order "%d” for baker method’ % orde

193

194 g-final = glin + error_term

195

196 answer['qglin’ ] = qlin

197 answer[’error’] = errorterm

198 answer['final’] = qfinal

199 answer['abc’ ] = abc

200

201 log.debug(answer)

202

203 return answer

204

205

206 | def memoize(f):

207

208 for more information on what I'm doing here, please read:

209 http ://en.wikipedia.org/wiki/Memoize

210

211 cache ={}
212 @wraps (f)

213 def memf(simplexsize , nu):

214 X = (simplexsize, nu)

215 if x not in cache:

216 log.debug(”"adding to cache: %s”, X)
217 cache[x] = f(simplexsize , nu)

218 return cache[x]

219 return memf
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@memoize

def pattern(simplexsize, nu):
This function returns the pattern requisite to compose theroe
approximation function, and the matrix B.

"

log.debug(”"pattern: simplex: %d, order: %d” % (simplsxze, nu))

r=1I
for i in itertools.product(xrange(simplesize), repeat = nu):
if len(set(i)) '=1:
r.append(tuple(sorted(i)))

uniquer = list(set(r))

return unique.r

. ..Iresearch/interp/bakeriit__.py

import os

import numpy as np

import logging
log = logging.getLogger("interp™)

def rms(errors):

root mean square calculation

LEEEL)

# slow pure python way for reference:
#r =0.0

# for i in errors:

# r += np.power (i, 2)

# r = np.sqrt(r / len(errors))

# return r
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53

return np.sqrt((errors+2).mean())

def bakerexact2D (X):

the exact function (2D) used from baker’s article (for

modified)

X ,y =X

answer = np.power((np.sin(x np.pi) » np.cos(y* np.pi)), 2)

log.debug(answer)

return answer

def friendly_exact2D (X):

"

A friendlier 2D func

X ,¥y =X
answer = 1.0 + XX + y*y
log .debug(answer)

return answer

def bakerexact3D (X):

the exact function (3D) used from baker’'s article (for

"

X = X[0]
y = X[1]
= X[2]

answer = np.power((np.sin(x np.pi
sin(z * np.pi / 2.0)), 2)
log.debug(answer)

return answer

def friendly_exact3D (X):

[/ 2.0) » np.sin(y * np.pi

73
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82

1

X,¥,z =X

return 1 + XxX + yxy + zxz

def scipy_exact2D (X):
X,y =X
return xx(1—x)*np.cos(4np.pixx) * np.sin(4&np.pixysx 2)*x 2

def improvedanswer(answer, exact):
if not answer[’error’]:
# was probably just a linear interpolation

return False

log.debug('qlin: %s’ % answer['qlin’])
log.debug(’error: %s’ % answer[’error’])
log.debug(’'final: %s’ % answer[’'final’])

log.debug(’exact: %s’ % exact)

if np.abs(answer[’'final’']— exact) <= np.abs(answer[’'qlin’]— exact):
log.debug(”:) improved result”)
return True

else:
log.debug(”:( damaged result”)

return False

def improved(qglin, err, final, exact):
if np.abs(final— exact) <= np.abs(qglin— exact):
return True

else:

return False

. ..Iresearch/interp/tools.py

A.2 smbinterp Plugin System

import sys

2 | from collections import defaultdict
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import pickle

from xml.dom.minidom import Document

import numpy as np

from scipy.spatial import KDTree

from interp.bakerimport run_baker

from interp.bakerimport get.phis

import logging
log = logging.getLogger(”interp”)

MAX_SEARCHCOUNT = 256

class grid(object):

def __init__(self, verts = None,

q

None) :

verts = array of arrays (if passed in,

[
[x0,y0 <, z0>],
[x1,yl <, z1>],

q = array (1D) of physical

"

if verts != None:

self.verts

self.tree

if g != None:

self.q = np.array(q)

self.cells ={}

np.array(verts)
KDTree(self.verts)
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self.cellsfor_vert = defaultdict(list)

def get.containingsimplex(self, X):

if not

self.cells:

raise Exception("cell connectivity is not set up”)

# get closest point
(dist, indicies) = self.tree.query(X, 2)
closestpoint = indicies[0]

log.debug ('X: %s’ % X)

log.debug(’'point index: %d’ % closespoint)

log.debug(’actual point %s’ % self.verts[closepbint])

log.debug(’'distance = %0.4f" % dist[0])

simplex = None

checkedcells = []

cells.to_check = list(self.cellsfor_vert[closestpoint])

attempts = 0

while not simplex and cells_to_check:

atte

mpts += 1

if attempts> MAX_SEARCHCOUNT:

ra

cur_

ise Exception(”ls the search becoming exhaustive? (%d attes)pt%

attempts)

cell = cells.to_check.pop(0)

checkedcells.append(curcell)

if cur_cell.contains (X, self):

simplex = curcell

continue

for

neighbor in cur_cell.neighbors:
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73 if (neighbor not in checkedcells) and (neighbor not in cells_.to_check

):
74 cells.to_check .append(neighbor)
75
76 if not simplex:
77 raise Exception(’'no containing simplex found’)
78
79 log.debug(”simplex vert indicies: %s” % simplex.verts)
80 R = self.createmesh(simplex.verts)
81 log.debug ("R\n%s”, R)
82
83 log.debug(’'total attempts before finding simplex: %d’ &tempts)
84 return R
85
86 def createmesh(self, indicies):
87
88 this function takes a list of indicies, and then creates andturns a
89 grid object (collection of verts and q).
90
91 note: the input is indicies, the grid contains verts
92
93
94 return grid(self.verts[indicies], self.q[indicies])
95

96 def get.simplex_and_.nearestpoints(self, X, extrapoints = 3):
97

98 this returns two grid objects: R and S.

99

100 R is a grid object that is a containing simplex around point X
101

102 S : some verts from all points that are not the simplex

103

104 simplexsize = self.dim + 1

105 log.debug("extra verts: %d” % extrpoints)

106 log.debug(”"simplex size: %d” % simplegize)

107
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rrmesh = self.getcontainingsimplex (X)

# and some UNIQUE extra verts
(dist, indicies) = self.tree.query(X, simplexize + extrapoints)

log.debug("extra indicies: %s” % indicies)

uniqueindicies = []
for index in indicies:
closepoint.in_.R = False
for rvert in r_mesh.verts:
if all(rvert == self.verts[index]):
closepoint.in_.R = True

break

if not closepoint.in_R:
uniqueindicies.append(index)
else:

log.debug(’'throwing out %s: %s’ % (index, self.vertsidiex]))

log.debug(”indicies: %s” % indicies)
log.debug ("unique indicies: %s” % uniquindicies)

smesh = self.creatanesh(uniqueindicies)

return (r_mesh, smesh)

def run_baker(self, X, order = 2, extrgpoints = 3):
(R, S) = self.getsimplex_and_nearestpoints (X, extrapoints)
answer = runbaker (X, R, S, order)

return answer
def for_ghull_generator(self):

this returns a generator that should be fed into gdelaunay

"

yield str(len(self.verts[0]));
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178

yield '%d’ % len(self.verts)

for p in self.verts:
yield "%f %f %f” % tuple (p)

def for_ghull(self):

nnn

this returns a single string that should be fed into qgdelayna
r = "%d\n’ % len(self.verts[0])
r += '%d\n’ % len(self.verts)
for p in self.verts:

# r += "%f %f %f \n" % tuple(p)

r+= "%s\n” % ” ".join ("%f” % i for i in p)

return r

def __str__(self):

1

r =

assert( len(self.verts) == len(self.q) )
for ¢, i in enumerate(zip(self.verts, self.q)):
r += "%d vert(%s): q(%0.4f)” % (c,i[0], i[1])
cellLstr =7, ".join([str(f.name) for f in self.cells.for_vert[c]])
r += 7 cells: [%s]” % cellLstr
r += "\n”

if self.cells:
for v in self.cells.itervalues():
r += "%s\n” % v

return r

def normalizeq(self, newmax = 0.1):
largestnumber = np.max(np.abs(self.q))

self.g+*= new.max/largestnumber

def dump_to_blenderfiles(self, pfile = "/tmp/points.p’, cfile = "/tmp/cells

.p’):
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214

if len(self.verts[0]) == 2:
pickle .dump ([(p[O0], p[1], 0.0) for p in self.verts],
else:

pickle .dump ([(p[O0], p[1], p[2]) for p in self.verts],
pickle .dump([f.vertsfor f in self.cells.itervalues ()],

def getxml(self):
doc = Document()
ps = doc.createElement(”points”)
doc.appendChild (ps)
for i in zip(self.verts, self.q):

p = doc.createElement("point”)

p.setAttribute ("x”, str(i[0][0]))
p.setAttribute ('y’, str(i[0][1]))
p.setAttribute(’z’, str(i[0][2]))
p.setAttribute ('q’, str(i[1] ))
ps.appendChild (p)

return doc

def toxml(self):
return self.getxml () .toxml()
def toprettyxml(self):

return self.getxml().toprettyxml ()

class cell(object):

def __init__(self, name):
self.name = name
self.verts = ]

self.neighbors = []

def add.vert(self, v):

80
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v should be an index into grid.verts

"

self.verts.append(v)

def add.neighbor(self, n):

EEIRL)

reference to another cell object

N

self.neighbors.append(n)

def contains(self, X, G):
X
G

point of interest

corrensponding grid object (G.verts)

because of the way i'm storing things, a cell simply storesdimies ,
and so one must pass in a reference to the grid object contagnireal

verts.

this simply calls grid.simplex.contains

nnn

return contains (X, [G.verts[i]for i in self.verts])

def __str__(self):
# neighbors = [str(i.name) for i in self.neighbors]
return ’'<cell %s: verts: %s neighbor count: %5 %\
(
self.name,
self.verts,
len(self.neighbors),

# 7, ".join(neighbors)

__repr._ = __str__
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251| TOL = 1e-8
252
253 | def contains (X, R):

254

255 tests if X (point) is in R
256
257 R is a simplex, represented by a list of-thegree coordinates
258 "™

259 phis = getphis (X, R)

260
261 r = True

262 if [i for i in phis if i < 0.0 — TOL]:
263 r = False

264 return r

. ..Iresearch/interp/gridinit__.py

1|import pickle

2

3| from itertools import combinations
4 |from collections import defaultdict
5

6 |import numpy as np

7 | from scipy.spatial import KDTree

8

9 | from interp.grid import grid
10 | from interp.grid import cell
11

12 |import logging

13| log = logging.getLogger(’interp’)

14

15

16

17 | THREENODE TRIANGLE =

18 | FOURNODE.TET =4

19

20 | EDGESFOR FACE_CONNECTIVITY =2
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21 | EDGESFORVOLUME _CONNECTIVITY = 3

22

23

24

25| class ggrid(grid):

26

27 def __init__(self, filename, dimension = 3):
28

29 construct an interp.grid.gridccompliant grid
30 object out of a{2,3}D gmsh file

31

32 self.dim = dimension

33 log.debug(”"dimension: %d”, self.dim)
34

35 gmshfile = open(filename, 'r’")

36

37

38 gmshfile.readline () # $MeshFormat

39 fmat = gmshfile.readline ()

40 gmshfile.readline () # $EndMeshFormat
41

42 gmshfile.readline () # $Nodes

43

44 nodecount = int(gmshfile.readline ())
45

46 self.verts = np.empty((nodeount, dimension))
47 self.q = np.empty(nodeount)

48

49 for i in xrange(nodecount):

50 cur_line = gmshfile.readline ()

51 (index, x,y,z) = curline.split ()

52 index = int(index)— 1

53

54 self.verts[i][0] = float(x)

55 self.verts[i][1l] = float(y)

56
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if

self.dim ==
self.verts[i][2] = float(z)

self.tree = KDTree(self.verts)

# initialize

# cells_for_vert)

grid.__init__(self)

gmshfile.readline () # $EndNodes

gmshfile.readline () # $Elements

# temporary dict used to compute cell connectivity

neighbors ={}

elementcount = int(gmshfile.readline ())

for

i in xrange(elementcount):

cur_line = gmshfile.readline ()

cur_line = cur_line.split()

cur_cell_.index , nodetype, rest = (int(curline[0]),

if

int(cur_line [1]),

[int(j) for j in cur_line[2:]])

(node.type == THREENODETRIANGLE and self.dim ==
or (nodetype == FOURNODETET and self.dim ==
pointsfor_cur_cell = [i—1 for i in rest[rest[0]+1:]]
cur_cell = cell(cur_cell_.index)

for cur_point in points_for_cur_cell:

self.cellsfor_vert[cur_point].append(curcell)

cur_cell.verts = pointsfor_cur_cell

self.cells[curcell_index] = cur_cell

84

rest of structures about to be populated (cells

2) \
3):



93

94
95
96
97
98
99
100
101
102
103
104

© 00 N o 0o~ W N P

N N B R R R R R R R R R
P O © © N o O M W N B O

edges = [tuple(sorted(i)Xor i in combinations(pointsfor_cur_cell,
self.dim)]

for edge in edges:
if edge in neighbors:
neighbors[edge]. append(cuaell_index)
else:

neighbors[edge] = [curell_index]

for k,v in neighbors.iteritems():

if len(v) > 1:
self.cells[v[0]]. addneighbor(self.cells[v[1]])
self.cells[v[1]].addneighbor(self.cells[v[0]])

. ..Iresearch/interp/grid/gmsh.py

import re

import logging
log = logging.getLogger(”interp”)
from interp.grid import grid as basegrid, cell
from subprocessimport Popen, PIPE
def get.gdelaunaydump(g):
pass in interp.grid g, and get back lines from a qghull trianlgdion:
gdelaunay Qt f
cmd = 'qdelaunay Qt f’
p = Popen(cmd. split(), bufsize=1, stdin=PIPE, stdoultR®)
so, se = p.communicate(g. foghull ())

for i in so.splitlines ():

yield i
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def get.gdelaunaydump.str(g):

return "\n”.join(get.gdelaunaydump(g))

def get.index_only (g)

cmd = 'qdelaunay Qt i’

p = Popen(cmd. split(), bufsize=1, stdin=PIPE,

so, se = p.communicate(g. fogqhull ())

for i in so.splitlines ():

yield i

def get.index_only_str(g):

return "\n”.join(get.index.only(g))

class dgrid(basegrid):

cell.re = re.compile(r"’

—\s+(?P<cell>f\d+).%?
vertices \s(?Rverts>.*
neighboring\s facets\s
", re.Sre.X)

vertre = re.compile(r’’

def __init__(self,

(p\d+)
re.Sjre.X)

verts, q = None):

self.dim = len(verts[0])

basegrid __init__(self, verts ,q)

self.constructconnectivity ()

def constructconnectivity (self):

FEEERL)

a call to this method prepares the internal

log.info('start’)

gdelaunaystring

getgdelaunaydump_str(self)

86
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58 with open(’'/tmp/qgdel.out’, 'w') as of:

59 of .write (gdelaunaystring)

60

61 cell_.to_cells = ]

62 for matcher in dgrid.cell.re.finditer(gdelaunaystring):
63 d = matcher.groupdict ()

64

65 cell_name = d[’'cell’]

66 verticies = d['verts’]

67 neighboringcells = d['neigh’]

68

69 cur_cell = cell(cell.Lname)

70 self.cells[cellname] = curcell

71

72 for v in dgrid.vertre.findall(verticies):

73 vertexindex = int(v[1:])

74 cur_cell.addvert(vertexindex)

75 self.cellsfor_vert[vertexindex].append(curcell)
76

77 nghbrs = [(cellname, i) for i in neighboringcells.split()]
78 cell_.to_cells.extend(nghbrs)

79 log.debug(cellto_cells)

80

81 for rel in cell_to_cells:

82 if rel[l] in self.cells:

83 self.cells[rel[0]]. addneighbor(self.cells[rel[1]])
84

85 log.debug(self.cells)

86 log.info('end’)

. ..Iresearch/interp/grid/delaunay.py

A.3 Parallelization Scripts

1|from multiprocessing.managersmport BaseManager

2 |import Queue
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tasksq = Queue.Queue ()
resultsg = Queue.Queue ()
minions.q = Queue.Queue ()
masterq = Queue.Queue()

class QueueManager(BaseManager):

One QueueManager to rule all network Queues
pass
QueueManager.register ('getasks.q’ , callabledambda:tasks.q )
QueueManager.register(’'gertesults.q’, callabledambda:resultsq )

QueueManager.register ('gahinions.q’, callabledambda: minions.q )

QueueManager.register ('geahasterq’ , callabledambda: masterq )

def get.gs(gm):
pass in a QueueManager, and this function returns all relata
queues attached to that QueueManager.
return (gm.gettasksq (),
gm.getresults.q (),

gm.getmasterq (),

gm.getminions_q())

. ..Iresearch/interp/clusterinit__.py

#1/usr/bin/env python

import sys

import os

import time
import shelve

from collections import defaultdict
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from optparse import OptionParser

import logging

log = logging.getLogger(”"interp™)

import numpy as np

from interp.clusterimport QueueManager, gets

from progressbarimport =

if

__name_ == '__main__":
parser = OptionParser(usage = "usage: %s [optiorskerver> <interp count")
parser.addoption("I", "—Ilast—time”,

action="storetrue”, dest="last”, default=False,
help="when finished , send shutdown signal to connecteades (default: %
default)”)

parser.addoption('-n’, '—node-count’,
type="int”, dest="participants”, default=None,

help="specify how many participants we should wait for gfault: %default)

")

parser.addoption('—-p’, '—port’,
type="int”, dest="port”, default=6666,

help="specify the port to use on the server (default: %adelt)”)

parser.addoption("-0”, "—order”,
type="int”, dest="order”, default=2,

help="order of interpolation (default: %default)”)
parser.addoption("-e”, "—extra—points”,

type="int”, dest="extra”, default=3,

help="number of extra points (default: %default)”)
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64
65
66

parser.addoption('-s’', '—shelve’,

type="str”, dest="shelvename”, default=0s.path.erpaser(’'"/interp.shelv

help="shelve output file (default: %default)”)
(options, args) = parser.parsags ()
len(args)

parser.printusage ()

sys.exit(l)

int(float(args[1]))
m = QueueManager(address=(server, options.port), leyk asdf’)
m.connect ()

resultsq , masterq,

if not options. participants:
"wait on all announced participants”
participants

while not masterq.empty():

participants += 1
worker = masterq.get()
workers.append(worker)
print "%d: %s is ready” % (participants , worker)
if participants ==
print "nobody found”
sys.exit(1)
else:
participants = options.participants
print "wait on %d participants” % participants
for i in xrange(participants):

worker = masterq.get ()
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78 workers.append(worker)

79 print "%d of %d: %s is ready” % (i+1, participants , worker)
80

81 if len(set(workers)) != len(workers):

82 for i in workers:

83 minionsq. put(”slay”)

84 raise Exception("duplicate workers reported”)

85

86 results = ]

87

88 widgets = [’'submit jobs: ', Percentage(), ' ', Bar(), ' ',TB(Q)]
89 pbar = ProgressBar(widgets = widgets, maxval = count)

90 pbar.start ()

91 submitstart = time.time ()

92 for i in xrange(count):

93 X = np.random.random ((1,3))[0]

94 tasksq.put((i, options.order, options.extra, X))
95 pbar.update (i+1)

96 submitend = time.time ()
97 pbar. finish ()

98

99 for i in xrange(participants):

100 print "sending worker %d start message” % (i+1,)

101 minionsq . put(”start”)

102

103 receivestart = time.time ()

104 widgets = [’interpolate: ', Percentage (), ' ', Bar(), ', ETA()]
105 pbar = ProgressBar(widgets = widgets, maxval = count)

106 pbar.start ()

107 for i in xrange(count):

108 curresult = resultsqg.get()
109 results .append(curesult)
110 pbar.update (i+1)

111 receiveend = time.time ()
112 pbar. finish ()
113
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submit = submitend — submit.start

receive = receiveend — receive.start

# shut down all

participants

for i in xrange(participants):

if options.last:

minionsq. put(”"teardown”)

# post processing

stats ={}

stats['submit’

stats[’'receive’

stats[’count’

= float(submit)

]
] = float(receive)
]

= count

stats[’'participants’] = participants

stats[’'extra’

stats['order’

]:
]:

print "%s” % stats

log.error("stats: %s”,

options . extra

options.order

stats)

tasksaccomplishedby = defaultdict(int)

for i in results:

tasksaccomplishedby[i[1]] += 1

stats[’'tasks’]

# npresults =

n = str(time.t
S =
s[n] ={

"stats’

# 'results’

}

s.close ()

= tasksaccomplishedby

np.array ([(i

ime ())

stats ,

npresults ,

[0],i[2],i[3],i[4], i[5]) for

shelve .open(options.shelvename)

. ..Iresearch/bin/master.py
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#!/usr/bin/env python

import sys
import os

import time

from multiprocessing . managersmport BaseManager

from optparseimport OptionParser

import datetime

import numpy as np

from interp.grid.gmshimport ggrid

from interp.tools import bakerexact3D as exact

from interp.clusterimport QueueManager, gets

if __name_ == '__main__":
parser = OptionParser(usage = "usage: %s [optiorskrver> <gmsh file>")

parser.addoption("-v", "—verbose”,
action="storetrue”, dest="verbose”, default=False ,

help="verbose flag (default: %default)”)
parser.addoption('—-p’, '—port’,

type="int”, dest="port”, default=6666,

help="specify the port to use on the server (default: %adelt)”)
(options, args) = parser.parsargs ()
if len(args) = 2:

parser.printusage ()

sys.exit(1)
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inputfile
myname = "%s%d” % (os.uname()[1l], os.getpid())
if options.verbose:

started” % myname

m = QueueManager(address=(server, options.port), keyk’'asdf’)

m.connect ()
resultsq , masterq,
options .verbose:
starting parse input file” % myname
ggrid(inputfile)

np.array ([exact(x)for x in g.verts])
options.verbose:

done parsing input file” % myname

while True:
if options.verbose:
print "%s: letting master know that | am ready” % myname

masterq . put (myname)

if options.verbose:

print "%s: waiting for master to tell me to start” % myname
action = minionsqg.get()
if options.verbose:

print "%s: master said go!!” % myname

if action in ('teardown’, ’'slay’):

break

while not tasksqg.empty():
i, o, e, X = tasksqg.get()
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try :

a = g.runbaker (X, order = o, extrapoints = e)

resultsqg.put((i, myname, a[’'qlin’], a[’error’], a['fnal’], exact(X)))
except Exception as e:

print X, e

resultsqg.put((i, myname, 0.0, 0.0, 0.0, 0.0))

if options.verbose:

print "%s: exiting” % myname

. ..[research/bin/minion.py

#!/usr/bin/env python

import sys

import time

from interp.cluster import QueueManager, geys
from optparse import OptionParser
if __name_ == '__main__":
parser = OptionParser(usage = "usage: %s [optiorssftatus|watch|add|fresult

#|slay|clear| clearall|clearresults")

parser.addoption('—p’', '—port’,
type="int”, dest="port”, default=6666,

help="specify the port to use on the server (default: %adelft)”)

parser.addoption('-a’, '—auth—key’,
type="str”, dest="authkey”, default="asdf’,
help="authkey (default: %default)”)

(options , args) parser.parsargs ()

if len(args) == 0:
cmd = ’'status’
else:
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cmd = args|[0]

m = QueueManager(address=('", options.port),

m.connect ()

tqg,rq.mq,sq = gefys(m)

if ecmd. startswith("st”):
print "interp queue status:”
print " tasksq :%d” % tq.qsize ()
print " resultsqg : %d” % rq.qsize ()
print " masterq : %d” % mq.qsize ()
print minionsq : %d” % sqg.qsize ()
if cmd. startswith ("wa”):

if len(args) ==

sleeptime = float(args|[1])
else:

sleeptime =1
i =0

while True:
time.sleep (sleeptime)
if 1 % 20 == 0:

print "tasksq resultsq masterqg minionsq”

print "%d %d %d %d” % \
(tg.qgsize (),
rq.qsize (),
mq. qsize (),
sq.gsize () ,)

i +=1
if cmd == ’'add’:

for i in xrange(int(args[1])):

mqg. put(’jane%d’ % i)
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if cmd "fresult’:

for i

rq.put(’'fake.%d’ % i)

if cmd == 'slay’:
if len(args) == 1:
for i
print i,
sq.put(”"slay”)
elif len(args) == 2:
for i
print i,

sq.put(”"slay”)

if emd == ’'clear’:
xrange (tq.

xrange (rq.

"clearall ’:
xrange (tq.
xrange(rq.
xrange (mg.

xrange (sq.

"clearresults ’:

gsize ()):print
gsize ()):print

gsize ()):print
gsize ()):print
gsize ()):print
gsize ()) :print

xrange (rg.qsize()):print

in xrange(int(args[1])):

in xrange(mg.qgsize()):

"killing”, mq.get()

in xrange(int(args[1])):
"Killing”, mqg.get ()

.get()
get()

tq
rq.

.get()
.get()
get()
.get()

tq
rq
mq.

sq

rq.get()

. ..Iresearch/bin/igmgr.py

#!/usr/bin/env python

from interp.cluster import

from optparse import

if __name._ ' __main__":

parser =

QueueManager

OptionParser

OptionParser(usage = "usage: %s [optiorslerver> <interp count")
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parser.addoption('—p’', '—port’,
type="int”, dest="port”, default=6666,

help="specify the port to use on the server (default: %dadelt)”)
parser.addoption('—-a’, '—auth—key’,
type="str”, dest="authkey”, default="asdf’,

help="authkey (default: %default)”)

(options , args) = parser.parsargs|()

m QueueManager(address=('"', options.port), authkegptHons.authkey)

S m. getserver ()

s.serveforever ()

. ..Iresearch/bin/server.py

A.4  Gmsh Mesh Generation Scripts

a = 0.0049;

Point(0) ={0, 0, O, a;
Point(1) ={1, 0, 0, &;
Point(2) ={1, 1, 0, a};
Point(3) ={0, 1, 0, a;
Line(1) = {0, 1};
Line(2) = {1, 2};
Line(3) = {2, 3};
Line(4) = {3, 0};

Line Loop(6) ={3, 4, 1, 2;
Plane Surface (6) ={6};

. ..Iresearch/gmsh/gmsh.2D.geo

a = 0.885;

Point(0) ={0, 0, 0, &;
Point(1) ={1, 0, 0, &a;
Point(2) ={1, 1, 0, a;
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Point(3) = {0, 1, 0, a};
Line(1) = {0, 1};

Line(2) = {1, 2};

Line(3) = {2, 3};

Line(4) = {3, 0};

10| Line Loop(6) ={3, 4, 1, 2;
11| Plane Surface (6) =6};

12| Extrude {0, 0, 1} {

13 Surface(6};

© 00 N o O

. ..Iresearch/gmsh/gmsh.3D.geo

A.5 General-purpose Utilities

1|from interp import config

2 |import sys

3| sys.path.append(config[ 'pypath’])

4

5| import bpy

6

7 |import pickle

8| points = pickle.load (open(’'/tmp/points.p’, 'r’))
9| faces = pickle.load(open(’'/tmp/cells.p’, 'r’))
10|# faces = [faces[i] for i in faces]

11| me = bpy.data.meshes.new(’'points’)

12| me.verts.extend(points)

13| me. faces.extend(faces)

14| scn = bpy.data.scenes. active

15|ob = scn.objects.new(me, ’'pointsbj’)

. ..Iresearch/tools/blender/plot.py

1|#!/bin/bash
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export LD _LIBRARY PATH=/usr/mpi/fsLopenmpigcc—1.4.2/1lib:/opt/intel/mkl
/10.2.5.035/lib/em64t:/opt/intel/Compiler/11.1/078b/intel64 :/opt/intel/
Compiler/11.1/072/ipp/em64t/sharedlib :/opt/intel/@piler/11.1/072/tbb/
intel64/cc4.1.01ibc2.4 _kernel2.6.16.21/1lib:/opt/intel/Compiler/11.1/072/
lib/intel64 :/opt/intel/Compiler/11.1/072/ipp/em64sharedlib:/opt/intel/
Compiler/11.1/072/tbb/intel64/cc4.1.0ibc2 .4 _kernel2.6.16.21/1lib:/usr/
local/cuda/lib64

PYTHON=/fslhome /smm58/research/bin/python
SCRIPT=/fslhome/smm58/src/research/bin/minion. py
OPTIONS=""

SERVER=bigmemssh. fsl| .byu. edu

# approximately 1e6 tets is gmsh.3D.2.msh
INPUT=/fslhome /smm58/compute/gmsh/gmsh.3D.2.msh

$PYTHON $SCRIPT $OPTIONS $SERVER $INPUT

. ..Iresearch/bin/minion.sh

#!1/ bin/bash

#PBS —| procs=512,pmem=2gb, walltime=00:40:00, feature ="'hpertown'’
#PBS —N scalability—512

#PBS —m bea

#PBS M stephen@mcquay . me

# ,qos=test

# for parallel submission:

/usr/bin/pbsdsh /fslhome/smm58/src/research/binfiom.sh

# serial:

# /fslhome/smm58/bin/slave.sh

exit O
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. ..Iresearch/bin/submit.sh

A.6  Unit Tests

unittest
unittest
unittest
unittest
unittest

unittest

for test in tests:

#!/usr/bin/env python
import unittest
import baker2dorder
import baker2d
import baker3d
import cubic2d
import pattern
import ghull
import quadratic2d
if __name_ == '__main__":
tests = |
unittest. TestLoader ().

.TestLoader () .
.TestLoader () .
.TestLoader ().
.TestLoader () .
.TestLoader () .
.TestLoader ().

loadTestsFromTestCase (bakerder. Test),
loadTestsFromTestCase (ba#efest),
loadTestsFromTestCase (ba#eilest),
loadTestsFromTestCase (cRbicTest),
loadTestsFromTestCase (pattdest),
loadTestsFromTestCase (qhuUHst) ,
loadTestsFromTestCase (gqaaidR2d . Test) ,

unittest.TextTestRunner(verbosity=3).run(test)

. ..Iresearch/test/all.py

#!/usr/bin/env python
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10
11
12
13
14
15
16
17
18

19

20

21

22
23
24
25
26
27
28
29
30
31
32
33
34

import unittest

from interp imp

from interp.gri

ort baker

d import grid

import numpy as np

from interp.gri

def exactfunc(
X = point[0]
y = point[1]

return 0.5 +

def calculatee

d import contains

point):

XcX + Yy

rror_.term(self, a,b,c,d,e,f):

B = np.array ([

self.

plla]* self.pl[b], self.plc]~*

p1[f],

self.

p2[a] » self.p2[b], self.p2[c]~

p2[f],

self.

p3[a] » self.p3[b], self.p3[c]~*

p3[f],

self.

pd[a]~ self.p4[b], self.pd[c]~

pa[f],

D
B.shape =

(4.3)

A = np.dot(B.T, B)
rhs = np.dot(B.T, self.w)

abc = np.li

err =\
abc[0]
abc[1l]
abc[2]

return err

nalg .solve (A, rhs)

self.phis[a] = self.phis[b] +\
self.phis[c] » self.phis[d] +\
self.phis[e] * self.phis[f]
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self.

self

self.

self.

pl[d],

.p2[d],

p3[d],

p4[d],

self.

self

self.

self.

plle]

.p2[e]~

p3[e]*

pafe]

self.

self.

self.

self.



35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70

class Test(unittest.TestCase):

def setUp

(self):

self.verts = |

self.q

self.g
self.R
self.S

self.pl
self.p2
self.p3

self.p4,

self.ql
self.q2
self.q3
self.q4

2, 3],
7, 4],
4, 8],
0, 7],
5, 0],
0, 5],
8, 9],

H OH OHF OH OH OH OH
o o M W N BB O

A W N P

= [exactfunc(v) for v in self.verts]

= grid(self.verts,

= grid(self.verts|

, self.qll = baker.
, self.ql2 = baker.
, self.ql3 = baker.

= exactfunc(self.

exactfunc(self.

exactfunc (self.

exactfunc (self.

self.w = np.array (]

self.
self.
self.

self.

)]

gl— self.ql1,
g2— self.ql2,
g3— self.ql3,
g4 — self.qgl4d,

:3],
= grid(self.verts[3:],

self.ql4 = baker.

self.q)

verts [3])
verts [4])
verts [5])
verts[6])

103

glinear(self.
glinear(self.
glinear(self.

glinear (self.

self.q[:3])
self.q[3:])

verts[3],
verts[4],
verts|[5],

verts[6],

selR)
seR)
selR)
selR)



71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104

self.X = [4,5]

self.g = grid(self.verts, self.q)

self.phis, self.qlin = baker.qglinear(self.X, self.R)

self.exact = exacfunc(self.X)

self.answer = baker.rubmaker(self.X, self.R,self.S)
def testR_containsX (self):

self.assertTrue (contains(self.X, self.R.verts))
def test 1 (self):

a,b,c,d,e,f = (0,1, 1,2, 2,0)

err = calculateerror_.term(self, a,b,c,d,e,f)

self.assertAlmostEqual (err, self.answer[’error’])
def test.swap.first_elements(self):

a,b,c,d,e,f = (1,0, 1,2, 2,0)

err = calculateerror_term(self, a,b,c,d,e,f)

self.assertAlmostEqual(err, self.answer[’error’])
def testswap.two_pairs(self):

a,b,c,d,e,f = (1,2, 0,1, 2,0)

err = calculateerror_.term(self, a,b,c,d,e,f)

self.assertAlmostEqual (err, self.answer[’error’])
def test swap.all_pairs(self):

a,b,c,d,e,f = (0,2, 0,1, 2,1)

err = calculateerror_.term(self, a,b,c,d,e,f)

self.assertAlmostEqual (err, self.answer[’error’])

if __name_ == ’'__main__":

suite = unittest.TestLoader().loadTestsFromTest(@sest)
unittest.TextTestRunner(verbosity=3).run(suite)

. ..Iresearch/test/baker2dorder.py
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#!/usr/bin/env python

import unittest

from interp import baker

from interp import grid

import numpy as np

© 00 N o o B~ WN P

import scipy.spatial

[EEY
o

11| class Test(unittest.TestCase):
12 def setUp(self):

13 self.l = [[-1, 1], [-1%, O], [-1, 1], [O, -1], [0, O], [O, 1], [1, —-1], [1,
0], [1, 1]]

14 self.allLpoints = [

15 [ 0, O], # O

16 [ 1, 0], #1

17 [ 1, 1], # 2

18 [ 0, 1], # 3

19 [ 1,-1], # 4

20 [ 0,-1], # 5

21 [-1, 1], # 6

22 [-1, O], # 7

23 [-1,-1], # 8

24 ]

25 self.q = [1, O, O, O, O, O, O, O, O]

26 self.X = [0.5, 0.25]

27 self.accuracy = 8

28

29 def testimports(self):

30 import numpy

31 import scipy

32 import interp.grid

33 import interp.baker

34
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def testGetPhis(self):

X
1

[0.0]
[[_1! _1]1 [01 2]1 [1! _1]]

_.=
1

result = baker.getphis (X, r)

right.answer = [1/3.0, 1/3.0, 1/3.0]

for a,b in zip(result, rightanswer):

self.assertAlmostEqual(a,b)

def testGetPhis2(self):

>
1

[0.5,0.25]
(fo, oj, [1, o], [1, 1]]

_.‘
1

result = baker.gefphis (X, r)

right.tanswer = [0.5, 0.25, 0.25]

for a,b in zip(result, rightanswer):

self.assertEqual(a,b)

def testQlinear(self):

X [0.5, 0.25]
((6, o], [1, o], [1, 1]]
qg=1[1, 0, 0]

r

phi, result = baker.qglinear (X, grid.grid(r,q))

right.answer = 0.5

self.assertAlmostEqual(result, righinswer)

def testRunBakerl(self):
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71 sizeof_simplex = 3

72 extrapoints =3

73

74 R = grid.grid(self.allpoints[:sizeof_simplex],

75 self.q[:sizeof_simplex])

76

77 S = grid.grid(self.allpoints[sizeof_simplex:sizeof_simplex +

extra_points],
78 self.q[sizeof_simplex:sizeof_simplex +

extra_points])

79

80

81 answer = baker.rurbaker(self.X, R, S)

82

83 a = answer['abc’][0]

84 = answer['abc’'][1]

85 c = answer[’abc’][2]

86

87 self.assertEqual(sorted((a,b,c)), sorted ((0,0.03,2))
88

89 def testRunBaker2 (self):

90 sizeof_simplex = 3

91 extrapoints =4

92

93 R = grid.grid(self.allpoints[:sizeof_simplex],

94 self.q[:sizeof_simplex])

95

96 S = grid.grid(self.allpoints[sizeof_simplex:sizeof_simplex +

extra_points],
97 self.q[sizeof_simplex:sizeof_simplex +

extra_points])

98

99 answer = baker.rumaker(self.X, R, S)
100

101 a, b, ¢ = sorted(answer[’abc’])

102 aa,bb,cc = sorted ((2/3.0, 2/3.0, 1/3.0))

107



103

104 self.assertAlmostEqual(a,aa)
105 self.assertAlmostEqual (b, bb)
106 self.assertAlmostEqual(c,cc)
107

108 def testRunBaker3(self):

109 sizeof_simplex = 3

110 extrapoints =5

111

112 R = grid.grid(self.allpoints|[:sizeof_simplex],

113 self.q[:sizeof_simplex])

114

115 S = grid.grid(self.allpoints[sizeof_simplex:sizeof_simplex +

extra_points],
116 self.gq[sizeof_simplex:sizeof_simplex +

extra_points])

117

118 answer = baker.rumaker(self.X, R, S)

119

120 a = answer['abc’][0]

121 = answer|[’abc’][1]

122 c = answer[’'abc’][2]

123

124 a,b,c = sorted((a,b,c))

125 aa, bb, cc = sorted ((13/14., 2/7., 15/14.))
126

127 self.assertAlmostEqual(a,aa)

128 self.assertAlmostEqual (b, bb)

129 self.assertAlmostEqual(c,cc)

130

131 def testRunBakerd (self):

132 sizeof_simplex = 3

133 extrapoints =6

134

135 R = grid.grid(self.allpoints|[:sizeof_simplex],
136 self.q[:sizeof_simplex])
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138

139

140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
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S = grid.grid(self.allpoints[sizeof_simplex:sizeof_simplex +
extra_points],
self.q[sizeof_simplex:sizeof_simplex +
extra_points])
answer = baker.rumaker(self.X, R, S)
a = answer['abc’][0]
b = answer['abc’][1]
c = answer['abc’][2]
a,b,c = sorted((a,b,c))
aa,bb,cc = sorted ((48/53.0, 15/53.0, 54/53.0))
self.assertAlmostEqual (a, aa)

self.assertAlmostEqual (b, bb)
self.assertAlmostEqual(c, cc)
if __name_ == '__main__":

suite =

unittest.TestLoader () .loadTestsFromTest(@sest)

unittest.TextTestRunner(verbosity=3).run(suite)

. ..Iresearch/test/baker2d.py

#!/usr/bin/env python

import unittest
from interp.bakerimport get.phis,
from interp.grid import grid

import numpy as np
import scipy.spatial
class Test(unittest.TestCase):
def setUp(self):
self.X [0.0,

[

0.0, 0.0]

self.r

glinear
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[0.0, 0.0, 1.0],
[0.94280904333606508, 0.0;0.3333333283722672],
[-0.47140452166803232, 0.81649658244673617,
—0.3333333283722672],
[-0.47140452166803298,-0.81649658244673584,
—0.3333333283722672],
]
self.qg = [0.0, 0.0, 0.0, 4]
def testGetPhis(self):
result = getphis(self.X, self.r)
right.answer = [0.25, 0.25, 0.25, 0.25]
for a,b in zip(result, rightanswer):
self.assertAlmostEqual(a,b)
def testQlinear(self):
phi, result = qglinear(self.X, grid(self.r, self.q))
result = result
right_.answer = 1.0
self.assertAlmostEqual(result, rightnswer)
if __name_ == '__main__":
suite = unittest.TestLoader().loadTestsFromTestQdssest)
unittest.TextTestRunner(verbosity=2).run(suite)

. ..Iresearch/test/baker3d.py

#!/usr/bin/env python

import unittest

from interp.bakerimport run_baker
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from interp.grid import grid

from interp.grid import contains

def exactfunc (X):
x = X[0]
y = X[0]

return 1 + x +y

class Test(unittest.TestCase):
def setUp(self):

self.verts = |

[ 0.25, 0.40],# O
[ 0.60, 0.80],# 1
[ 0.65, 0.28],# 2
[ 0.28, 0.65],# 3
[ 1.00, 0.75],# 4
[ 0.30, 0.95],# 5
[ 0.80, 0.50],# 6
[ 0.35, 0.15],# 7

]

self.q = [exactfunc(p) for p in self.verts]

self .X = [0.55, 0.45]

self.g grid(self.verts, self.q)
# self.g.constructconnectivity ()

self.R

self.g.createmesh (range (3))

self.exact = exacfunc(self.X)

def testR_containsX (self):

self.assertTrue (contains(self.X, self.R.verts))

def test RunBakerl_extrapoint(self, extra=1):

S = self.g.creatamesh(range (3, 3 + extra))
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44
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if

answer = runbaker(self.X, self.R, S, order=3)
lin_err = abs(self.exact answer[’qlin’])
final_err = abs(self.exact- answer[’'final’])

self.assertTrue(linerr >= final_err)

def test RunBaker2_extrapoint(self, extra=2):

S = self.g.creatamesh(range (3, 3 + extra))
answer = runbaker(self.X, self.R, S, order=3)
lin_err = abs(self.exact answer['qglin’])
final_err = abs(self.exact answer['final’])

self.assertTrue (linerr >= final_err)

def test RunBaker3_extrapoint(self, extra=3):

S = self.g.creatamesh(range (3, 3 + extra))
answer = runbaker(self.X, self.R, S, order=3)

lin_err = abs(self.exact answer['qlin’])

final_err abs(self.exact- answer[’final’])

self.assertTrue (linerr >= final_err)

def test RunBaker4_extrapoint(self, extra=4):

S = self.g.creatamnesh(range (3, 3 + extra))
answer = runbaker(self.X, self.R, S, order=3)
lin_err = abs(self.exact answer[’qlin’])
final_err = abs(self.exact answer[’final’])

self.assertTrue (linerr >= final_err)

def test RunBaker5_extrapoint(self, extra=5):

S = self.g.creatamesh(range (3, 3 + extra))

answer = runbaker(self.X, self.R, S, order=3)

lin_err abs(self.exact answer[’'qglin’])

final_err abs(self.exact answer[’final’])

self.assertTrue (linerr >= final_err)

__name_ == '__main__":

suite = unittest.TestLoader().loadTestsFromTestQdssst)

unittest.TextTestRunner(verbosity=3).run(suite)

. ..Iresearch/test/cubic2d.py

1|#!/usr/bin/env python

2
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import unittest

from interp.bakerimport pattern

class Test(unittest.TestCase):

© 00 N oo o0 b~ W

10
11
12
13
14
15
16
17
18
19
20

def setUp(self):

def testimports(self):

interp.bakerimport

def testbakereq.8(self):
sorted ([tuple (sorted (i) )for
sorted (pattern(3,2))

in ((0,1),(1,2),(2,0))])

self.assertEqual (b,p)

def testbaker.eq.17(self):
b = sorted([tuple(sorted(i))or i in ((0,1,1), (0,2,2), (1,0,0), (1,2,2)
(2,0,0), (2,1,1), (0,1,2))D

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

p = sorted(pattern(3,3))
self.assertEqual(b,p)

def testbaker.eq.15(self):
b = sorted ([tuple(sorted (i) )for

p = sorted(pattern(4,2))

self.assertEqual (b,p)

def testsmcquay (self):

sorted ([tuple (sorted (i) )for
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39
40
41
42
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44
45
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48
49
50
51
52
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(0]

10
11
12
13
14
15
16
17
18

(1,2,2), (1,1,2),
(0,2,2), (0,0,2),
(1,3,3), (1,1,3),
(2,2,3), (2,3,3),
(0,3,3), (0,0,3))])

p = sorted(pattern(4,3))
self.assertEqual(b,p)

if __name_ == '__main__":

suite = unittest.TestLoader().loadTestsFromTestQassst)

unittest.TextTestRunner(verbosity=3).run(suite)

. ..Iresearch/test/pattern.py

#1/usr/bin/env python

import unittest

class Test(unittest.TestCase):
def setUp(self):
self.l = [[-1, 1], [-1, O], [-1, 1], [O, -1], [O, O], [O, 1], [1, -1], [1,
0], [1, 1]]

def testQhull(self):
import delaunay
dt = delaunay. Triangulation (self.l)
answer = |
[4,1,3],
[1,5,0],
[5.,1,4],
[7,3,6],
[7.,4,3],
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[71514]1
[5,7,8],
]
self.assertEqual (dt.indices, answer)
if __name_ == '__main__":
suite = unittest.TestLoader().loadTestsFromTestQassst)
unittest.TextTestRunner(verbosity=5).run(suite)

. ..Iresearch/test/ghull.py

#1/usr/bin/env python
import unittest
from interp.bakerimport run_baker
from interp.grid import grid
from interp.grid import contains
def exactfunc (X):
x = X[0]
y = X[0]
return 1 — x*xX + y=*y
class Test(unittest.TestCase):
def setUp(self):
self.points = [
[ 0.25, 0.40],# O
[ 0.60, 0.80],# 1
[ 0.65, 0.28],# 2
[ 0.28, 0.65],# 3
[ 1.00, 0.75],# 4
[ 0.30, 0.95],# 5
[ 0.80, 0.50],# 6
[ 0.35, 0.15],# 7
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]

self.q = [exactfunc(p) for p in self.points]
self.X = [0.25, 0.4001]

self.X = [0.55, 0.45]

self.g = grid(self.points, self.q)

self .R = self.g.creatanesh(range(3))

self.exact = exacfunc(self.X)

self.accuracy = 8

def test R_contains X (self):

self.assertTrue (contains(self.X, self.R.verts))

def test RunBakerl_extrapoint(self, extra=1):
S = self.g.creatanesh(range (3, 3 + extra))
answer = runbaker(self.X, self.R, S)
lin_err = abs(self.exact answer[’'qlin’])

final_err = abs(self.exact answer['final’])

# | expect this one to be bad:

# self.assertTrue (linerr >= final_err)

def test RunBaker2_extra_point(self, extra=2):
S = self.g.createmesh(range (3, 3 + extra))

answer = runbaker(self.X, self.R, S)

lin_err abs(self.exact answer[’'qglin’])
final_err = abs(self.exact answer['final’])
self.assertTrue(linerr >= final_err)

def test RunBaker3_extrapoint(self, extra=3):
S = self.g.creatamesh(range (3, 3 + extra))
answer = runbaker(self.X, self.R, S)

lin_err = abs(self.exact- answer['qlin’])
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if

final_err = abs(self.exact answer['final’])

self.assertTrue (linerr >= final_err)

def test RunBaker4_extrapoint(self, extra=4):

S = self.g.creatamesh(range (3, 3 + extra))
answer = runbaker(self.X, self.R, S)

lin_err = abs(self.exact answer[’qlin’])
final_err = abs(self.exact- answer[’'final’])

self.assertTrue (linerr >= final_err)

def test RunBaker5_extrapoint(self, extra=5):

S = self.g.createmesh(range (3, 3 + extra))
answer = runbaker(self.X, self.R, S)

lin_err = abs(self.exact answer['glin’])
final_err = abs(self.exact answer['final’])

self.assertTrue (linerr >= final_err)

__name_. == '__main__":

suite = unittest.TestLoader().loadTestsFromTestQqdssst)

unittest.TextTestRunner(verbosity=3).run(suite)

. ..Iresearch/test/quadratic2d.py
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