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Abstract

Crouzeix’s Conjecture and the GMRES Algorithm

Sarah M. Luo

Department of Mathematics

Master of Science

This thesis explores the connection between Crouzeix’s conjecture and the convergence
of the GMRES algorithm. GMRES is a popular iterative method for solving linear systems
and is one of the many Krylov methods. Despite its popularity, the convergence of GMRES
is not completely understood. While the spectrum can in some cases be a good indicator
of convergence, it has been shown that in general, the spectrum does not provide sufficient
information to fully explain the behavior of GMRES iterations. Other sets associated with
a matrix that can also help predict convergence are the pseudospectrum and the numerical
range. This work focuses on convergence bounds obtained by considering the latter. In
particular, it focuses on the application of Crouzeix’s conjecture, which relates the norm of
a matrix polynomial to the size of that polynomial over the numerical range, to describing
GMRES convergence.

Keywords: GMRES, Michel Crouzeix, Faber Polynomials, Complex Approximation, Krylov
Subspace, Convergence, Iterative Methods, Linear Systems
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Chapter 1. Introduction

A popular strategy for solving systems of linear equations is to implement an iterative

method. While there are many such methods, one that has received particular attention

is the GMRES algorithm. GMRES stands for “generalized minimal residuals” and is favor-

able due to its ability to handle non-Hermitian and/or indefinite linear systems. Predecessors

to GMRES, such as the conjugate gradient method or MINRES, are restricted to Hermitian

problems, or problems where the Hermitian part is positive definite. Regardless of the type

of problem a particular method is suited for, in all cases a prevailing question is how long will

the method take to converge? A particular method may give excellent approximations, but

if it takes an inordinate amount of time to produce that approximation, then for all intents

and purposes it is useless to us. What is needed is a way to predict how many iterations

will be necessary in order for the method to produce the desired result. While occasionally

it is useful to consider the right hand side b, usually it is the properties of the matrix A

that determine the behavior of the iterative method. An appreciable amount of research

has been done in this area, leading to convergence bounds in terms of the spectrum, the

psuedospectrum, and the numerical range of A. In this work, we focus on the latter.

Given a linear system Ax = b, and an initial guess x0, GMRES works by producing

approximations which lie in the affine Krylov subspace given by

x0 +Kn(A, r0) = x0 + Span{r0, Ar0, A
2r0, ..., A

n−1r0},

where r0 = b− Ax0 is the initial residual. As will be shown below, the kth residual satisfies

the equation

||rk|| = ||p(A)r0||,
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where p(z) is a kth degree polynomial with complex coefficients, satisfying p(0) = 1 and || · ||

denotes the 2-norm. Note that this implies

||rk||
||r0||

≤ ||p(A)||.

Thus the task of approximating the rate of convergence can be undertaken by considering

the quantity ||p(A)||. As will be shown in Chapter 4, if we assume that A is diagonalizable,

then we have the classical result

||p(A)|| ≤ κ(V ) sup
λ∈σ(A)

|p(λ)|, (1.0.1)

where σ(A) denotes the spectrum of A, V is a matrix of eigenvectors of A, and κ(V ) is the

condition number of V . This relation allows us to restate our matrix approximation problem

as a scalar approximation problem. However, in the language of Trefethen [47], there is a

constant “gap” between these two problems, namely κ(V ). In the case of normal matrices,

this bound is sharp [21] and in the case that A is not normal, but V is well-conditioned,

then (1.0.1) can still provide good bounds. However, many matrices that arise in practice

do not have well-conditioned eigenvector matrices and, as is shown in [24], the convergence

of GMRES in general depends on more than just the spectrum. Getting around these issues

is where the Crouzeix conjecture comes into play.

Crouzeix’s conjecture relates the size of a polynomial of a matrix to the size of that

polynomial over the numerical range of the matrix. The numerical range of a matrix is a

convex subset of the complex plane, consisting of all Rayleigh quotients

W (A) =

{
x∗Ax

x∗x
| x 6= 0, x ∈ Cn

}
.

2



Crouzeix’s conjecture can then be concisely stated as follows

||p(A)|| ≤ 2 sup
z∈W (A)

|p(z)|. (1.0.2)

While this conjecture itself is somewhat new, similar inequalities have a history dating back

many decades. The first was perhaps von-Neumann’s inequality

||p(A)|| ≤ sup
z∈D||A||

|p(z)|,

where D||A|| is the disk centered at 0 of radius ||A||. Later came the following result of Badea

[7], which is based on a result established by Ando in 1973 [1]:

||p(A)|| ≤ 2 sup
z∈Dw(A)

|p(z)|,

where Dw(A) is a disk centered at 0 of with radius equal to the numerical radius (see Section

2.4). As for results more directly related to the Crouzeix conjecture, there is the result of

Delyon and Delyon [12] which states that for any bounded, open, convex set K ⊂ C, there

exists a finite constant C(K), depending only on the set K such that

||p(A)|| ≤ C(K) sup
z∈K
|p(z)|. (1.0.3)

Letting C(K) denote the best constant such that this equation holds, Crouzeix and his

collaborators have derived approximations to C(K) for particular sets K, including sectors,

disks, and parabolic domains; see [2] and the references therein. Of particular interest is the

result that for W (A) ⊂ K, C(K) = 2 for the case of a 2×2 matrix [2] and that (1.0.3) holds

with 11.08 in place of C(K) for general matrices A [8].

The Crouzeix conjecture can be of help in the analysis of GMRES in the following way:

3



simply replace the constant κ(V ) in (1.0.1) by 2, and the set σ(A) by W (A) (which, as we will

see below, contains the spectrum of A). The advantages of this are three-fold. First, we have

rid ourselves of the quantity κ(V ) and by so doing, have eliminated any need for our matrix

to be near normal. Second, rather than restricting ourselves to the spectrum, which we

know is insufficient in general, we are now considering the numerical range, which has many

nice properties including convexity and compactness1. Furthermore, the numerical range

has applications in many areas including operator theory, dilation theory, C∗-algebras, and

factorization of matrix polynomials (to name a few), and thus is a promising set to consider

when seeking information about a matrix. Lastly, to obtain a good bound, all we need to do

now is answer the question of how big can |p(z)| be over the numerical range. In other words,

we now have a problem which falls into the category of approximation theory, a field where

substantial work has been done. To answer this question, there are a number of paths we

could consider, including Pick-Nevanlinna interpolation, interpolation in Fejér points, least

squares approximation and orthogonal polynomials, and estimates via Faber polynomials.

Here, we investigate some recent results obtained by considering the Faber polynomials. To

our knowledge, these results are the best given so far in the context of GMRES analysis.

Chapter 2. Numerical Range

In this chapter, we define the numerical range of a matrix operator and give some of its key

properties used in this thesis. See the references for a more comprehensive treatment. Let

Mn denote the set of n × n matrices over the complex numbers. The numerical range of a

matrix A ∈Mn is defined as follows:

1It should be noted that compactness does not hold in general when A is an infinite dimensional operator.
However, in this work, we only consider finite dimensional n × n matrices, and so we will always assume
W (A) is compact.
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Definition 2.0.1. The numerical range of A ∈Mn, is the subset W (A) ⊂ C, given by

W (A) = {〈Ax, x〉 | x ∈ Cn, ||x|| = 1}, (2.0.1)

where || · || denotes the 2-norm.

Note that W (A) is the continuous image of a compact set, and is thus itself a compact set

in C. As we will show, the numerical range of a linear operator is a convex set. This is a

consequence of the Toeplitz-Hausdorff Theorem. We first review some basic properties of the

numerical range.

2.1 Basic Properties

We start with some results on the invariance of W (A).

Proposition 2.1.1. Let A ∈Mn. Then the following properties hold.

(i) For any α, β ∈ C, we have that W (αA+ βI) = αW (A) + β.

(ii) W (U∗AU) = W (A) for any unitary U ∈Mn.

(iii) If k ∈ {1, ..., n − 1} and X ∈ Cn×k satisfies X∗X = Ik, where Ik denotes the k × k

identity matrix, then W (X∗AX) ⊂ W (A).

Proof. To show (i), we calculate

W (αA+ βI) = {x∗(αA+ βI)x | x ∈ Cn, ||x|| = 1}

= {αx∗Ax+ βx∗x | x ∈ Cn, ||x|| = 1}

= {αx∗Ax+ β | x ∈ Cn, ||x|| = 1}

= α{x∗Ax | x ∈ Cn, ||x|| = 1}+ β

= αW (A) + β.

5



To show (ii), let λ ∈ W (U∗AU). Then there exists a unit vector x ∈ Cn such that

〈U∗AUx, x〉 = λ. Since U is self-adjoint, we can write 〈AUx,Ux〉 = λ. Now let y = Ux.

Since multiplying by a unitary matrix preserves norm, that is, ||y||2 = y∗y = x∗U∗Ux =

x∗x = ||x||2, we have that y ∈ Cn is also a unit vector. Thus 〈Ay, y〉 = λ so λ ∈ W (A).

To show the reverse inclusion, note that W (A) = W (UU∗AUU∗) ⊂ W (U∗AU) by what was

just shown. Thus W (A) = W (U∗AU).

For (iii), let λ ∈ W (X∗AX). Then there exists a unit vector y ∈ Ck such that 〈X∗AXy, y〉 =

λ. Note that ||Xy||2 = y∗X∗Xy = y∗y = 1. Thus setting v = Xy yields v∗Av = 〈Av, v〉 = λ.

Hence W (X∗AX) ⊂ W (A).

The following example illustrates point (i) of Proposition 2.1.1.

Example 2.1.2. Let A ∈M3 be defined as

A =


1 3 6

2 8 9

−4 8 −1

 .

The numerical range of this matrix is in Figure 2.1(a). Now let a = .5 and b = 10 + 8i.

The numerical range of aA+ bI is in Figure 2.1(b) along with the numerical range of A for

comparison. The smaller egg-shaped region is the numerical range of aA + bI. Notice that

W (aA+bI) is indeed the same as aW (A)+b and that the numerical ranges of A and aA+bI

have the same basic shape and geometric properties.

Next we show two important properties of W (A).

Proposition 2.1.3. Let A,B ∈Mn. Then

(i) W (A∗) = {λ | λ ∈ W (A)} = W (A).

(ii) (Subadditivity) W (B + A) ⊂ W (B) +W (A).

6



(a) The numerical range of A as in Example 2.1.2

(b) The numerical ranges of A and aA + bI as in Example 2.1.2

Figure 2.1: Example of Scalar and Translational Invariance
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Proof. For (i), we have the following:

W (A∗) = {〈A∗x, x〉 | ||x|| = 1} = {〈x,Ax〉 | ||x|| = 1}

= {〈Ax, x〉 | ||x|| = 1} = W (A)

For (ii), let γ ∈ W (B + A) with unit vector x satisfying x∗(B + A)x = γ. Let γB = x∗Bx

and γA = x∗Ax. Then γB ∈ W (B) and γA ∈ W (A) and γ = x∗(B + A)x = x∗Bx +

x∗Ax = γB + γA. So γ is the sum of an element in W (B) and an element in W (A), thus

γ ∈ W (B) +W (A).

The next two results will be very useful in showing how to sketch the numerical range as

well as proving its convexity, but first we need the following lemma:

Lemma 2.1.4. Let A ∈Mn. If 〈Ax, x〉 = 0 for all x ∈ Cn, then A = 0.

Proof. First suppose that A is Hermitian. Then for any x, y ∈ Cn, we have that 〈x,Ay〉 =

〈Ax, y〉. By the hypothesis, we also have that 〈A(x+ y), x+ y〉 = 0. Therefore,

0 = 〈Ax, x〉+ 〈Ay, x〉+ 〈Ax, y〉+ 〈Ay, y〉 = 〈Ax, y〉+ 〈y, Ax〉 .

Letting y = Ax then yields 0 = 2||Ax||2, which implies Ax = 0 for all x ∈ Cn. Thus A = 0.

Now let A ∈Mn be arbitrary. If we let

H =
A+ A∗

2
and K =

A− A∗

2i
,

then A = H + iK with H and K both Hermitian (we call H the Hermitian part of A and

iK the skew-Hermitian part of A). Thus, if 〈Ax, x〉 = x∗Ax = 0 for all x ∈ Cn, then since

8



(x∗Ax)∗ = x∗A∗x = 0 also, we have

x∗Ax = x∗Hx+ ix∗Kx = 0, and

x∗A∗x = x∗Hx− ix∗Kx = 0,

for all x ∈ Cn. Adding these two equations gives us that 2x∗Hx = 0 for all x ∈ Cn and so

by the result above, H = 0. Similarly, K = 0 and so A = 0.

Proposition 2.1.5. The numerical range of a Hermitian matrix A ∈ Cn is an interval

[λ1, λn] ⊂ R where λ1 is the smallest eigenvalue of A and λn is the largest eigenvalue of

A. Moreover, the set LA(λn) = {x ∈ Cn : ||x|| = 1, x∗Ax = λn} is the set of all unit

eigenvectors of A corresponding to λn and similarly for λ1. We also have that if W (A) ⊂ R,

then A is Hermitian.

Proof. Let A ∈ Mn be Hermitian. Then there exists a set of n orthonormal eigenvectors of

A, denoted {x1, ..., xn}, with corresponding eigenvalues λ1, ..., λn, which are arranged so that

λ1 ≤ λ2 ≤ · · · ≤ λn. Let x = c1x1+· · ·+cnxn be a unit vector in Cn (so |c1|2+· · ·+|cn|2 = 1).

Using the fact that eigenvalues of A are all real, we have that

x∗Ax = λ1|c1|2 + λ2|c2|2 + · · ·+ λn|cn|2

≤ λn(|c1|2 + |c2|2 + · · ·+ |cn|2) = λn.

The first line of this equation implies that x∗Ax ∈ R for all unit vectors x ∈ Cn and hence

W (A) ⊂ R. Furthermore, it also shows that for all z ∈ W (A), z ≤ λn. Similarly, we can

show that x∗Ax ≥ λ1 for all unit vectors x ∈ Cn, and thus W (A) ⊂ [λ1, λn]. We still need

to show that W (A) = [λ1, λn], i.e. for all c ∈ [λ1, λn], there exists a unit vector x ∈ Cn such

that x∗Ax = c. To do this let xs =
√
sx1 +

√
1− sxn for 0 ≤ s ≤ 1. Then ||xs|| = 1 and

x∗sAxs = sλ1 + (1 − s)λn. So given any c ∈ [λ1, λn], we can find a unit vector xs such that

x∗sAxs = c by choosing an appropriate s. Thus W (A) = [λ1, λn].

9



For the second assertion, we claim that x∗Ax = λn if and only if x is a unit eigenvector

of A corresponding to λn. The reverse implication is clear. For the forward direction, we

prove the contrapositive. Suppose x is not an eigenvector of A corresponding to λn. Then x

cannot be a linear combination of eigenvectors corresponding to λn either (for such a vector

is, in fact, an eigenvector corresponding to λn), so in the representation x = c1x1 + · · · cnxn,

we must have that cj 6= 0 for some j where λj 6= λn. Since λn is the maximum eigenvalue,

this means that λj < λn so in this case, the inequality above is strict, i.e. x∗Ax < λn. This

proves the second assertion for λn. The proof for λ1 is similar.

Finally, to show the last statement, let A ∈ Mn, not necessarily Hermitian, and suppose

x∗Ax ∈ R for all unit vectors x ∈ Cn. Then x∗Ax = x∗Ax = x∗A∗x for all unit vectors

x ∈ Cn. Rearranging the terms we get

x∗Ax− x∗A∗x = 0 =⇒ x∗(A− A∗)x = 0 for all unit vectors x ∈ Cn.

By Lemma 2.1.4, A− A∗ = 0 and hence A = A∗.

Figure 2.2 is a plot of the numerical range for the Hermitian matrix H = A∗A, where A is

as in Example 2.1.2. The stars indicate the location of the eigenvalues of H.

Proposition 2.1.6. For all A ∈ Mn, let H(A) = (A + A∗)/2 and iK(A) = (A − A∗)/2

denote the Hermitian and skew-Hermitian parts of A, respectively. Then

Re (W (A)) = W (H(A)) and Im (W (A)) = W (K(A)),

where

Re (W (A)) = {Re z | z ∈ W (A)} and Im (W (A)) = {Im z | z ∈ W (A)}.

10



Figure 2.2: The numerical range of a Hermitian matrix

Proof. For all unit vectors x ∈ Cn, we have that

x∗H(A)x = x∗
1

2
(A+ A∗)x =

1

2
(x∗Ax+ x∗A∗x)

1

2
(x∗Ax+ (x∗Ax)∗) =

1

2
(x∗Ax+ x∗Ax) = Re (x∗Ax).

So every point of W (H(A)) is of the form Re z for some z ∈ W (A) and conversely.

Similarly, for K(A), we have that for all unit vectors x ∈ Cn,

x∗K(A)x = x∗
1

2i
(A− A∗)x =

1

2i
(x∗Ax− x∗A∗x)

1

2i
(x∗Ax− (x∗Ax)∗) =

1

2i
(x∗Ax− x∗Ax)

=
1

2i
(2i Im (x∗Ax)) = Im (x∗Ax).
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2.2 Convexity

One of the most significant properties of the numerical range is the fact that for any A ∈Mn,

the numerical range of A is convex. This fact was proved by Toeplitz and Hausdorff. Toeplitz

showed that the boundary of the numerical range is a convex curve and later, Hausdorff

showed that the numerical range is itself convex (see [44] and [28]). Thus this theorem

has been named the Toeplitz-Hausdorff Theorem. There are various different proofs of this

theorem. We present two of the more common ones below.

Theorem 2.2.1. (Toeplitz-Hausdorff) Let A ∈Mn. Then W (A) ⊂ C is convex.

For the first proof, we need the preliminary result stating that for a 2 × 2 matrix, the

numerical range is an elliptical disk whose foci are the eigenvalues of the matrix. There are

several different ways of proving this fact ([26] contains two different proofs). We present

here the proof provided in [32].

2.2.1 The Numerical Range of a 2× 2 Matrix. We will need the following lemma:

Lemma 2.2.2. Given any A ∈ M2, there exists a unitary U ∈ M2 such that the two main

diagonal entries of U∗AU are equal.

Proof. Without loss of generality, we can suppose that tr A = 0. To see why, simply replace

A with A− 1
2
(tr A)I = A−αI. Suppose there exists a unitary matrix U ∈M2 such that the

two main diagonal entries of U∗(A − αI)U are equal. Then if the (1,1) entry and the (2,2)

entry of U∗AU are a′11 and a′22, respectively, we would have that a′11 − α = a′22 − α and so

a′11 = a′22. Thus we can suppose that tr A = 0, and our task is reduced to finding a unitary

matrix U ∈M2 such that the two main diagonal entries of U∗AU are zero.

In order to do this, it suffices to show that there exists a nonzero w ∈ C2 such that w∗Aw = 0.

This is because if we normalize w and set it as the first column of a unitary matrix W , we
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will have

W ∗AW =

0 ×

× ×

 ,
and since tr (W ∗AW ) = tr A = 0, it must follow that the (2,2) entry is zero also.

To construct the vector w, first note that since tr A = 0, it is easily verified that the

eigenvalues of A are ±λ, for some λ ∈ C. Let x and y be the normalized eigenvectors for

−λ and λ, respectively. If λ = 0, note that we can simply take w = x. Otherwise, let

w = eiθx+ y. Since x and y are independent, w is nonzero for all θ ∈ R, and

w∗Aw = (e−iθx∗ + y∗)A(eiθx+ y) = (e−iθx∗ + y∗)(−eiθλx+ λy)

= λ(e−iθx∗y − eiθy∗x) = 2iλIm (e−iθx∗y).

The result then follows by picking θ so that e−iθx∗y is real.

Continuing along the same vein, let A ∈M2 and set α = (−1/2)tr A. By Proposition 2.1.1,

it suffices to consider W (A+αI). Further, tr (A+ αI) = 0 and by the preceding lemma, we

can suppose that the two main diagonal entries are both zero. At this point, we have shown

that we only need to consider matrices of the form

0 c

d 0

, where c, d ∈ C. However, we

can simplify this further by noting that

1 0

0 e−iθ


0 c

d 0


1 0

0 eiθ

 =

 0 ceiθ

de−iθ 0

 .
Now, if c = |c|eiθ1 and d = |d|eiθ2 , let θ = (1/2)(θ2 − θ1). Then the above matrix product

equals

eiφ

 0 |c|

|d| 0

 , φ =
1

2
(θ1 + θ2).
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So by unitary and scalar invariance we only need to consider matrices of the form

0 a

b 0

 , a, b ≥ 0. (2.2.1)

We are now ready to prove

Lemma 2.2.3. Let A ∈M2. Then W (A) is an elliptical disk whose foci are the eigenvalues

of A.

Proof. By the above results, we can assume that A is of the form (2.2.1). Without loss of

generality, suppose a ≥ b ≥ 0. Let z ∈ C2 be an arbitrary unit vector. The goal is to show

that all numbers of the form z∗Az form an elliptical disk with the desired properties. Note

that (eiθz)∗A(eiθz) = z∗Az for all θ ∈ R and so given any unit vector z ∈ C2, we can suppose

that the first component of z is real and nonnegative. Since z is a unit vector, this means

that z, with the first component real and nonnegative, has the form z = (t, eiθ(1− t2)1/2)T ,

where t ∈ [0, 1] and θ ∈ [0, 2π]. Therefore,

z∗Az = (t, e−iθ
√

1− t2)

0 a

b 0


 t

eiθ
√

1− t2

 = (t, e−iθ
√

1− t2)

aeiθ√1− t2

bt


= taeiθ

√
1− t2 + tbe−iθ

√
1− t2 = t

√
1− t2((a+ b) cos(θ) + i(a− b) sin(θ)).

Letting θ vary from 0 to 2π, the point (a + b) cos(θ) + i(a − b) sin(θ) traces out an ellipse

E with center (0, 0). (Note that the ellipse could be degenerate, as would be the case if A

were Hermitian.) As t varies from 0 to 1, the term t
√

1− t2 varies from 0 to 1/2 and back

to 0. This shows that every point in the interior of (1/2)E is attained for some z. Lastly, by

considering the angles θ = 0 and θ = π/2, we see that the major axis of the ellipse extends

from −(a+ b)/2 to (a+ b)/2 along the real axis and the minor axis extends from i(b− a)/2

to i(a− b)/2 along the imaginary axis. Thus in Cartesian coordinates, the ellipse E can be
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represented by the equation 4x2

(a+b)2
+ 4y2

(a−b)2 = 1. So the distance from the center to the foci

is [(1/4)(a+ b)2 − (1/4)(a− b)2]1/2 =
√
ab, which means the foci are given by ±

√
ab, which

are precisely the eigenvalues of A.

Figure 2.2.1 provides an example of W (A) for the 2 by 2 matrix A =

4 + 2i 1

3i 7

.

Figure 2.3: The numerical range of a 2 by 2 matrix

2.2.2 Convexity of W (A) for a general A ∈Mn.

Proof 1 of Theorem 2.2.1. Since we know the result is true in the 2×2 case, suppose A ∈Mn,

where n > 2. Let γ, µ ∈ W (A). We need to show that the line segment connecting γ and

µ, denoted [γ, µ], is contained in W (A). Let x, y ∈ Cn be unit vectors such that γ = x∗Ax

and µ = y∗Ay. Let X ∈ Cn×2 be such that the column space of X contains x and y and

X∗X = I2. Then there exists unit vectors v, w ∈ C2 such that Xv = x and Xw = y. Thus

γ = x∗Ax = v∗X∗AXv and µ = y∗Ay = w∗XAXw which means that γ, µ ∈ W (X∗AX).
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Note that X∗AX is a 2 by 2 matrix, thus by Lemma 2.2.3, W (X∗AX) is an ellipse. Since an

ellipse is convex, we have that [γ, µ] ⊂ W (X∗AX). But W (X∗AX) ⊂ W (A) by Proposition

2.1.1. Thus W (A) contains [γ, µ] which shows that W (A) is convex.

For the second proof, we also begin with a lemma. This lemma as well as the proof following

it are both due to [40].

Lemma 2.2.4. Let H ∈ Mn be a Hermitian matrix and let γ ∈ W (H). Then the set

LH(γ) = {x ∈ Cn | ||x|| = 1, x∗Hx = γ} is path connected.

Proof. Recall that any Hermitian matrix H is unitarily similar to a diagonal matrix with the

eigenvalues of H along the diagonal. By Proposition 2.1.1 we can then assume without loss

of generality that H is a real diagonal matrix and we can also assume that γ = 0. Denote

the eigenvalues of H by λi, i = 1, ..., n. Then, the numerical range of H has the following

form

W (H) =

{
n∑
j=1

λj|xj|2 : x1, ..., xn ∈ C,
n∑
j=1

|xj|2 = 1

}
.

Suppose that the vectors x and y are in LH(0). We need to show that there is a continuous

path in LH(0) connecting x and y. Note that for any z ∈ LH(0), each entry of z is a complex

number, and so we can write

z =

(
r1e

iθ1 r2e
iθ2 · · · rne

iθn

)T
,

where rj ≥ 0 and θj ∈ [0, 2π), j = 1, 2, ..., n. We can connect any such z to the real vector

(r1 r2 · · · rn)T by the continuous curve

z(t) =

(
r1e

iθ1(1−t) r2e
iθ2(1−t) · · · rne

iθn(1−t)

)T
t ∈ [0, 1].
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This curve is also in LH(0) since z ∈ LH(0) implies

z(t)∗Hz(t) =
n∑
j=1

λj|rjeiθj(1−t)|2 =
n∑
j=1

λj|rj|2 = 0.

Therefore, we can assume that x and y are both real with nonnegative entries. Now consider

the continuous curve

u(t) = (uj(t)) =
(√

(1− t)x2
j + ty2

j

)
t ∈ [0, 1].

This curve satisfies u(0) = x and u(1) = y. Also, u(t) ∈ LH(0) ∩Rn since all the entries are

real and

u(t)∗Hu(t) =
n∑
j=1

λj((1− t)x2
j + ty2

j ) = (1− t)
n∑
j=1

λjx
2
j + t

n∑
j=1

λjy
2
j = 0.

The last equality follows from the fact that both x and y are in LH(0). This completes the

proof.

Proof 2 of Theorem 2.2.1. Let γ, µ be two distinct points in W (A). Again by Proposition

2.1.1, we can assume that γ = 0 and µ = 1. Let x, y ∈ Cn be two unit vectors such that

0 = x∗Ax and 1 = y∗Ay. Let A = H+ iK where H = (A+A∗)/2 is the Hermitian part of A

and iK = (A−A∗)/2 is the skew-Hermitian part of A. Thus K = (A−A∗)/2i is Hermitian.

Since K = K∗, by Lemma 2.2.4, the set LK(0) is path connected. Note that since x∗Ax and

y∗Ay have zero imaginary part, x and y are both in LK(0) (see Proposition 2.1.6). Thus

there is a continuous vector function z(t) : [0, 1]→ LK(0) such that z(0) = x and z(1) = y.

Therefore, the function

z(t)∗Az(t) = z(t)∗Hz(t) + z(t)∗Kz(t) = z(t)∗Hz(t)
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is real and continuous with respect to t. We also have that z(0)∗Az(0) = x∗Ax = 0 and

z(1)∗Az(1) = y∗Ay = 1. So z(t)∗Az(t) takes on every value in [0, 1] and so [0, 1] ⊂ W (A)

which shows that W (A) is convex.

The next proposition shows one of the applications of the Toeplitz-Hausdorff theorem.

Proposition 2.2.5. For any matrix A ∈ Mn, W (A) contains the convex hull of the eigen-

values of A, denoted co(σ(A)). Moreover, if A is normal, then W (A) = co(σ(A)).

Proof. Assume Ax = λx with λ ∈ σ(A) and ||x|| = 1. Thus x∗Ax = λx∗x = λ. So

σ(A) ⊂ W (A). The fact that the convex hull of σ(A) is contained in W (A) then follows

from Theorem 2.2.1.

To show the second assertion, suppose A is normal. Then A is unitarily diagonalizable,

i.e. A = U∗DU for some unitary matrix U and D = diag(λ1, ..., λn) where (λi)
n
i=1 are the

eigenvalues of A. By the unitary invariance property shown in Proposition 2.1.1, we have

that W (A) = W (D). Now let x ∈ Cn be a unit vector. Then

x∗Dx =
n∑
i=1

λi|xi|2.

Since x is a unit vector,
∑n

i=1 |xi|2 = 1. So we see that W (D) is the set of all convex

combinations of the eigenvalues of A. Thus W (A) = W (D) = co(σ(A)).

Note that by Proposition 2.1.3 and Proposition 2.2.5 we have for any two A, S ∈ Mn, that

σ(A+ S) ⊂ W (A+ S) ⊂ W (A) +W (S). So while in general, σ(A+ S) is unrelated to σ(A)

and σ(S), we can use the numerical range to say something about where the eigenvalues of

A+ S are located in the complex plane.

Figure 2.4 shows the numerical ranges of the matrix of Example 2.1.2 and of the normal
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matrix given by

N =


1 1 + i 0

0 1 1 + i

1 + i 0 1

 .
Note that in both cases, the numerical range contains the convex hull of the eigenvalues and

in the normal case, the numerical range equals the convex hull of the eigenvalues.

One of the consequences of knowing the numerical range is convex is the advantage it provides

in sketching it. Since we know it is convex, we only need to determine the boundary of W (A)

and then just shade in the interior. This idea provides a nice segue into the next section,

which deals with the boundary of the numerical range. We pick up the issue of sketching

the numerical range in Section 2.5.

2.3 Numerical Boundary

For any matrix A ∈ Mn, W (A) is a compact subset of C. Thus it natural to want to know

what can be said about the boundary of W (A). We will denote the boundary of the numerical

range by ∂W (A). The following is a result dealing with the case where W (A) has empty

interior.

Proposition 2.3.1. Let A ∈Mn. Then

(i) W (A) = {µ} for some µ ∈ C if and only if A = µI.

(ii) W (A) has empty interior (meaning W (A) = ∂W (A) is a line segment) if and only if

1
n

tr A ∈ ∂W (A).

Proof. (i) Suppose that W (A) = {µ} for some µ ∈ C. Thus for all unit vectors x ∈ Cn we
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(a) The numerical range of A as defined in Example 2.1.2 with eigenvalues

(b) The numerical range of a normal matrix

Figure 2.4: Example of Spectral Inclusion for a Non-normal and Normal matrix
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have that x∗Ax = µ. Therefore,

x∗Ax = µx∗x⇒ x∗Ax− µx∗x = 0⇒ x∗(A− µI)x = 0.

Since this holds for all unit vectors x ∈ Cn, by Lemma 2.1.4 we must have that A− µI = 0

and so A = µI.

Conversely, If A = µI for some µ ∈ C, then for all unit vectors x ∈ Cn, we have

x∗Ax = x∗µIx = µx∗x = µ.

Thus W (A) = {µ}.

(ii) For the second assertion, suppose that W (A) has empty interior. Then, since W (A)

is convex, W (A) = ∂W (A) is a line segment. So W (A) = r(t) = c1t + (1 − t)c2 for

some c1, c2 ∈ C, t ∈ [0, 1]. By Proposition 2.1.1, we can without loss of generality assume

that c1 = 1 and c2 = 0 so W (A) = [0, 1]. By Proposition 2.1.5, we can conclude that

A is Hermitian. Then A is unitarily similar to a diagonal matrix D = diag(λ1, ..., λn)

where λi, i = 1, ..., n are the eigenvalues of A. So again by Proposition 2.1.1, we have that

W (A) = W (D). Let x ∈ Cn and x = ( 1√
n
· · · 1√

n
)T . Then ||x|| = 1 and

x∗Dx =
n∑
i=1

1

n
λi =

1

n
tr D =

1

n
tr A.

Therefore, 1
n
tr A ∈ W (A) = ∂W (A).

For the reverse direction, let ζ = 1
n
tr A and suppose 1

n
tr A ∈ ∂W (A). Let B = A − ζI.

Then a direct calculation shows that 1
n
tr B = 0 and so 0 ∈ W (B). By the hypothesis, and

Proposition 2.1.1 we can further say that 0 ∈ ∂W (B). Since W (B) is convex, there exists

θ ∈ R such that W (eiθB) is contained in the closed upper half plane, UHP = {z ∈ C |
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Im z ≥ 0}. Let C = eiθB. At this point, we have the following:

W (C) ⊂ UHP, 0 ∈ ∂W (C), and
1

n
tr C = 0.

Note that cii ∈ W (C) and Im cii ≥ 0 for 1 ≤ i ≤ n. But we must have that 1
n

∑
Im cii = 0

and so each cii ∈ R. Let i, j ∈ {1, ..., n} be arbitrary indices and let Γij denote the 2 × 2

principal submatrix lying in the rows and columns of C indexed by i, j. Let λ1, λ2 denote

the eigenvalues of Γij. By Proposition 2.1.1, W (Γij) ⊂ W (C) ⊂ UHP . Therefore, λ1, λ2 ∈

UHP . But Im (λ1) + Im(λ2) = Im(λ1 + λ2) = Im(trΓij) = 0. Therefore, λ1, λ2 are real.

Since W (Γij) is an ellipse with foci λ1, λ2 and has the real axis as its major axis, we must

have that W (Γij) ⊂ R. By Proposition 2.1.5, we see that Γij is Hermitian. Since i, j were

arbitrary, it follows that C is also Hermitian and so W (C) is an interval in the real line and

thus has empty interior. By the invariance properties of the numerical range, this implies

that W (A) has empty interior.

The proof of (ii) in the above proposition was adapted from a proof in [32], Section 1.6,

where an equivalent, yet more general result is presented.

We now turn our attention to the corners of the numerical range. In order to talk about the

corners, we need the following definition.

Definition 2.3.2. A point µ ∈ W (A) is called a corner of W (A) if there exist angles θ1

and θ2 satisfying 0 ≤ θ1 < θ2 < 2π such that Re eiθµ = max{Re β | β ∈ W (eiθA)} for all

θ ∈ (θ1, θ2).

We have the following result concerning the corners of the numerical range.

Proposition 2.3.3. For any A ∈Mn, if µ is a corner of W (A), then µ is an eigenvalue of

A.
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Proof. Let µ be a corner of W (A). There then exists θ1 and θ2 as in the definition such that

Re eiθµ = max{Re β | β ∈ W (eiθA)} for all θ ∈ (θ1, θ2).

By Proposition 2.1.5 and Proposition 2.1.6, we have that this quantity is the same as the

largest eigenvalue of the Hermitian part of eiθA, θ ∈ (θ1, θ2). Thus for all such θ there exists

a unit vector xθ, such that x∗θAxθ = µ and

x∗θH(eiθA)xθ = λn(H(eiθA)) = Re eiθµ.

In fact, we have that the same vector xθ works for all θ in the interval (θ1, θ2). To see why,

suppose θ′ ∈ (θ1, θ2) is different from θ. Note that

x∗θH(eiθ
′
A)xθ =

x∗θe
iθ′Axθ + x∗θe

−iθ′A∗xθ
2

=
1

2
(eiθ

′
x∗θAxθ + eiθ′x∗θAxθ)

= Re x∗θe
iθ′Axθ = Re eiθ

′
µ = λn(H(eiθ

′
A)),

where the last equality follows from the fact that θ′ ∈ (θ1, θ2). From this, we can conclude

by Proposition 2.1.5 that H(eiθ
′
A)xθ = λn(H(eiθ

′
A))xθ = Re eiθ

′
µxθ. So from now on, we

will simply write x instead of xθ.

Now let λθ = Re eiθµ. Since x is independent of θ, we can take the derivative of the

eigenvector equation H(eiθA)x = λθx with respect to θ to obtain

H(ieiθA)x = λ′θx,

It is easily verified that this is the same as

iK(eiθA)x = −iλ′θx.
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Now if we add this last equation to the eigenvector equation H(eiθA)x = λθx, we get

eiθAx = (λθ − iλ′θ)x or Ax = e−iθ(λθ − iλ′θ)x.

Thus e−iθ(λθ − iλ′θ) is an eigenvalue of A. But

x∗Ax = e−iθ(λθ − iλ′θ),

which must equal µ since these last two equations hold for all θ ∈ (θ1, θ2). Thus µ is an

eigenvalue of A.

2.4 Numerical Radius

Recall that the spectral radius of a matrix A is given by r(A) = sup{|λ| : λ ∈ σ(A)}. Similar

to the spectral radius is the numerical radius, which has the following definition.

Definition 2.4.1. The numerical radius of an operator A ∈Mn, is given by

w(A) = sup{|λ| | λ ∈ W (A)}.

Remark 2.4.2. This definition immediately implies that w(A) ≥ 0, where equality holds if

and only if W (A) = {0} which, by Proposition 2.3.1, is true if and only if A = 0. So the

numerical radius satisfies one of the requirements for a norm on Mn. Next, we also have that

w(zA) = sup{| 〈zAx, x〉 | : x ∈ Cn, ||x|| = 1} = |z|{| 〈Ax, x〉 | : x ∈ Cn, ||x|| = 1} = |z|w(A),

and Proposition 2.1.3 shows that the numerical radius also satisfies the triangle inequality.

Thus the numerical radius is a norm on Mn. By Proposition 2.2.5, we also have that r(A) ≤
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w(A) for all A ∈Mn.

Next, we introduce some basic results on the numerical radius. Since all norms on finite

dimensional vector spaces are equivalent, we have that the numerical radius is equivalent to

the matrix 2-norm of A. This next result states this more precisely.

Theorem 2.4.3. Let || · || denote the matrix 2-norm of an operator A ∈Mn. Then w(A) ≤

||A|| ≤ 2w(A).

Proof. Let µ = 〈Ax, x〉 where ||x|| = 1. Then by the Cauchy-Schwarz inequality, we have

|µ| = | 〈Ax, x〉 | ≤ ||Ax|| ≤ ||A||.

Since this is true for all µ ∈ W (A), we have that w(A) ≤ ||A||.

For the other inequality, first note that for any nonzero x ∈ Cn, we have that

〈Ax, x〉 =

〈
Ax

||x||
,
x

||x||

〉
||x||2 ≤ w(A)||x||2. (2.4.1)

We will also make use of the following polarization identity:

4 〈Ax, y〉 = 〈A(x+ y), x+ y〉 − 〈A(x− y), x− y〉

+ i 〈A(x+ iy), x+ iy〉 − i 〈A(x− iy), x− iy〉 .
(2.4.2)

Now applying (2.4.1) to (2.4.2), we get that

4| 〈Ax, y〉 | ≤ w(A)
[
||x+ y||2 + ||x− y||2 + ||x+ iy||2 + ||x− iy||2

]
=
[
||x||2 + 〈y, x〉+ 〈x, y〉+ ||y||2 + ||x||2 − 〈x, y〉 − 〈y, x〉+ ||y||2

+ ||x||2 + i 〈y, x〉 − i 〈x, y〉+ ||y||2 + ||x||2 − i 〈y, x〉+ i 〈x, y〉+ ||y||2
]

= 4w(A)
[
||x||2 + ||y||2

]
.
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Since x and y were arbitrary, we can pick ||x|| = ||y|| = 1 so that

| 〈Ax, y〉 | ≤ 2w(A).

Now let y = Ax/||Ax||. Then

| 〈Ax,Ax〉 |
||Ax||

≤ 2w(A).

Hence ||Ax|| ≤ 2w(A). Taking the supremum over all x ∈ Cn, with ||x|| = 1 implies

||A|| ≤ 2w(A).

The following result deals with one of the extreme cases of Theorem 2.4.3, namely when the

numerical radius equals the norm of A.

Theorem 2.4.4. If w(A) = ||A||, then r(A) = ||A||.

Proof. Since w(A) = ||A||, we can write

sup
||x||=1

| 〈Ax, x〉 | = ||A||.

SinceW (A) is compact, there exists a unit vector x ∈ Cn such that this supremum is attained,

that is, | 〈Ax, x〉 | = ||A|| for this particular x. But, by the Cauchy-Schwarz inequality,

||A|| = | 〈Ax, x〉 | ≤ ||Ax|| ≤ ||A||.

So we must have equalities throughout which implies Ax = λx for some λ ∈ C. Thus

λ ∈ σ(A) and so r(A) ≥ |λ| = | 〈Ax, x〉 | = ||A||. But since in general, r(A) ≤ w(A) ≤ ||A||,

this implies that r(A) = ||A||.

This next theorem deals with the other extreme case of Theorem 2.4.3, which is w(A) =

1
2
||A||. First, let R(A) = {Ax | x ∈ Cn} denote the range of a matrix A and N(A) = {x ∈
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Cn | Ax = 0} denote the nullspace of A. Then we have the following:

Theorem 2.4.5. If R(A) ⊥ R(A∗), then w(A) = 1
2
||A||.

Proof. Let x be a unit vector in Cn. We can write x as x1 + x2 where x1 ∈ N(A) and

x2 ∈ R(A∗), since R(A∗) = N(A)⊥ by the fundamental theorem of linear algebra. So

Ax1 = 0 and since R(A) ⊥ R(A∗), we also have that 〈Ax2, x2〉 = 0. Therefore,

〈Ax, x〉 = 〈A(x1 + x2), x1 + x2〉

= 〈Ax1, x1〉+ 〈Ax1, x2〉+ 〈Ax2, x1〉+ 〈Ax2, x2〉

= 〈Ax2, x1〉 .

This implies that

| 〈Ax, x〉 | ≤ ||A|| ||x2|| ||x1|| ≤
||A||

2
(||x1||2 + ||x2||2) =

||A||
2
,

where the second inequality follows from Young’s inequality, or the fact that (a− b)2 ≥ 0 for

any a, b ∈ R.

Now since x is arbitrary, we can take the supremum on the left hand side, which yields

w(A) ≤ ||A||
2
,

and since ||A||
2
≤ w(A) by Theorem 2.4.3, we get that w(A) = 1

2
||A||.

Remark 2.4.6. As far as we are aware, there is no result indicating whether or not the

converse of Theorem 2.4.5 is true.

Example 2.4.7. This example illustrates the result of Theorem 2.4.5. Consider the follow-
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ing:

A =

 0 1

0 0

 , A∗ =

 0 0

1 0

 .
Then

R(A) = span

{ 1

0

} and R(A∗) = span

{ 0

1

},
so R(A) ⊥ R(A∗). Note that ||A|| = 1. To determine w(A), let (x1, x2)T be a unit vector in

C2. Then

|x∗Ax| = |x1x2| = |x1||x2|.

By Young’s inequality, we have |x1|2 + |x2|2 = 1 ≥ 2|x1||x2|, so 1
2
≥ |x1||x2|. Since this bound

is attained when (x1, x2)T = ( 1√
2
, 1√

2
)T , we have w(A) = 1

2
. Hence w(A) = 1

2
||A||.

The last result we show here is the well-known power inequality.

Theorem 2.4.8. Let A ∈ Mn. Then for any positive integer m, we have that w(Am) ≤

w(A)m.

Before proving this theorem, we prove the following lemmata.

Lemma 2.4.9. If w(A) ≤ 1 implies w(Am) ≤ 1 for all m ∈ N, then w(Am) ≤ w(A)m for

all A ∈Mn.

Proof. Let w(A) = c, for some c ≥ 0. If c = 0, then A = 0 and the result holds trivially,

so suppose c > 0. Then 1
c
w(A) = w

(
1
c
A
)

by Remark 2.4.2. Letting B = 1
c
A, we have by

hypothesis that w(B) ≤ 1 and so w(Bm) ≤ 1. Therefore, w
(

1
cm
Am
)

= 1
cm
w(Am) ≤ 1 which

implies w(Am) ≤ cm = w(A)m.

Lemma 2.4.10. Let A ∈Mn and z ∈ C with |z| < 1. Then the following are equivalent:

(i) w(A) ≤ 1.
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(ii) Re 〈(I − zA)x, x〉 ≥ 0 for all x ∈ Cn.

(iii) Re 〈(I − zA)−1y, y〉 ≥ 0 for all y ∈ Cn, provided I − zA is invertible.

Proof. (i) ⇔ (ii) Suppose that w(A) ≤ 1. Recall that | 〈Ax, x〉 | ≤ w(A)||x||2 for all x ∈ Cn

(see (2.4.1)) and Re z ≤ |z| for all z ∈ C. Now let z be any number in C with |z| < 1. Then,

Re 〈(I − zA)x, x〉 = ||x||2 − Re 〈zAx, x〉 ≥ ||x||2 − |z|| 〈Ax, x〉 |

≥ ||x||2 − |z|w(A)||x||2 ≥ ||x||2(1− |z|) ≥ 0,

where the penultimate inequality follows from w(A) ≤ 1. Conversely, we suppose that

Re 〈(I − zA)x, x〉 ≥ 0 for all |z| < 1. Simplifying, we have that ||x||2 ≥ Re 〈zAx, x〉.

Writing z = teiθ and letting t→ 1, we get

Re
〈
eiθAx, x

〉
≤ ||x||2.

This implies that w(A) ≤ 1. To see why, suppose that µ ∈ W (A). Then µ = re−iθ, where

r > 0 and 0 ≤ θ < 2π. Also, µ = 〈Ay, y〉 for some unit vector y ∈ Cn. So we have that

|µ| = r and re−iθ = 〈Ay, y〉. Thus r = eiθ 〈Ay, y〉 ∈ R so r = Re eiθ 〈Ay, y〉 ≤ ||y||2 ≤ 1, by

the above equation. Since r = |µ|, and µ ∈ W (A) was arbitrary, we have that w(A) ≤ 1.

(ii) ⇔ (iii) Suppose z ∈ C, |z| < 1 is such that I − zA is invertible. Then x = (I − zA)−1y

for some y ∈ Cn. Therefore, by plugging in (I − zA)−1y for x, we get

Re 〈(I − zA)x, x〉 ≥ 0 for all x ∈ Cn,

⇔ Re
〈
y, (I − zA)−1y

〉
≥ 0 for all y ∈ Cn,

⇔ Re
〈
(I − zA)−1y, y

〉
≥ 0 for all y ∈ Cn.

(2.4.3)

This completes the proof.
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Proof of Theorem 2.4.8. Assume w(A) ≤ 1. By Lemma 2.4.9, it suffices to show that this

implies w(Am) ≤ 1 for all m ∈ N. To do this, we use Lemma 2.4.10 (iii). The invertibility

of I − zA for |z| < 1 follows from the fact that r(A) ≤ w(A) ≤ 1. Furthermore, r(A) ≤ 1

implies r(Am) ≤ 1 for all m ∈ N, so by similar reasoning, I − zmAm is invertible.

So to prove the theorem, it is sufficient to show that for all x ∈ Cn

Re
〈
(I − zmAm)−1x, x

〉
≥ 0 where z ∈ C, |z| < 1,

since this condition will imply that w(Am) ≤ 1. To do this, we use the following identity:

(I − zmAm)−1 =
1

m

m−1∑
k=0

(I − ωkzA)−1, (2.4.4)

where ω is a primitive mth root of unity1. Note that for 0 ≤ k ≤ m−1, |ωk| = 1 so |ωkz| < 1

and since w(A) ≤ 1, we have, by Lemma 2.4.10, that

Re
〈
(I − ωkzA)−1x, x

〉
≥ 0 for all x ∈ Cn, |z| < 1, k = 0, ...,m− 1.

Therefore,

Re
〈
(I − zmAm)−1x, x

〉
= Re

〈
1

m

m−1∑
k=0

(I − ωkzA)−1x, x

〉

=
1

m

m−1∑
k=1

Re
〈
(I − ωkzA)x, x

〉
≥ 0 for all x ∈ Cn, |z| < 1.

By Lemma 2.4.10, this implies that w(Am) ≤ 1. Thus w(Am) ≤ w(A)m by Lemma 2.4.9.

1For an explanation of (2.4.4), see the solution to Problem 176 in [27].
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2.5 Sketching the Numerical Range

Many of the ideas and results of this section are taken from [6]. The following lemma will

be of aid in showing how to sketch the numerical range. It deals with the situation where

the numerical range lies on or to left of a line Re z = µ. But first we need the following

terminology:

Definition 2.5.1. Let A ∈ Mn. Then A can be written as A = H + iK where H is the

Hermitian part of A and iK is the skew-Hermitian part of A. Let µ be an eigenvalue of H.

Let Eµ = {u ∈ Cn | Hu = µu} be the eigenspace of H corresponding to the eigenvalue µ.

Let P denote the orthogonal projection of Cn onto Eµ and consider the linear transformation

PKP . Now suppose {q1, ..., qj}, 1 ≤ j ≤ n is an orthonormal basis for Eµ. If Q is the matrix

whose columns are q1, ..., qj, then the j × j matrix Q∗KQ is the restriction of PKP to Eµ

with respect to the columns q1, ..., qj.

Lemma 2.5.2. Let A ∈ Mn and write A = H + iK where H = H∗ = (A + A∗)/2 and

K = K∗ = (A−A∗)/2i. If µ is a real number such that Re 〈Ax, x〉 ≤ µ for every unit vector

x ∈ Cn, then only one of the following situations holds:

(i) W (A) does not intersect the line Re z = µ.

(ii) W (A) ∩ {z | Re z = µ} = µ + iW (Q∗KQ) where Q∗KQ is defined as in Definition

2.5.1. Moreover, the set µ+ iW (Q∗KQ) is a point or a line segment.

Proof. If W (A) does not intersect Re z = µ, then there is nothing to show. So suppose the

intersection is not empty. By Proposition 2.1.6, we have that if γ ∈ W (A), then Re γ ∈

W (H) and Im γ ∈ W (K). Thus since µ is the maximum of Re W (A), we have that µ is

the maximum value of W (H). By Proposition 2.1.5, this means that µ = λn, the largest

eigenvalue of H. Furthermore, we also showed in Proposition 2.1.5 that if x ∈ Cn is a unit
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vector that satisfies µ = Re 〈Ax, x〉 = 〈Hx, x〉, then Hx = µx. In other words,

W (A) ∩ {z | Re z = µ} = {µ+ i 〈Kx, x〉 | Hx = µx, ||x|| = 1}.

Now note that if x is such that Hx = µx, then x ∈ Eµ, where Eµ is defined as in Definition

2.5.1. Further, if dim(Eµ) = j, then let {q1, ..., qj} be an orthonormal basis for Eµ and let Q

be defined as in Definition 2.5.1. Then x = Qu for some u ∈ Cj and 〈Kx, x〉 = 〈KQu,Qu〉 =

〈Q∗KQu, u〉. Thus any x ∈ Eµ yields a point in W (Q∗KQ). Conversely, if z ∈ W (Q∗KQ),

then z = 〈Q∗KQu, u〉 for some u ∈ Cj. But 〈Q∗KQu, u〉 = 〈KQu,Qu〉 = 〈Kx, x〉, where

x = Qu. It follows that x ∈ span{q1, ..., qj} = Eµ and so 〈Ax, x〉 = µ + i 〈Kx, x〉. Finally,

note that Q∗KQ is Hermitian, and therefore its numerical range is a point or a line segment

by Proposition 2.1.5

The following remark will be useful in determining which points of W (A) lie on the boundary.

Remark 2.5.3. Consider e−itW (A) and recall that this is the same as W (e−itA) by Propo-

sition 2.1.1. Now compute the matrices Ht and Kt such that e−itA = Ht + iKt and let µt be

the maximum eigenvalue of Ht. If xt is a unit eigenvector of Ht corresponding to µt, then

the line {a+ bi : a, b ∈ R, a = µt} is a supporting line of W (e−itA) at the point x∗t (e
−itA)xt.

Then, we have that the line

eit{a+ bi : a, b ∈ R, a = µt} = {c+ di : c, d ∈ R, c = µt cos t− b sin t}.

is a supporting line of W (A) at the point x∗tAxt. So we can conclude that x∗tAxt is in the

boundary of W (A).

Using the above ideas, we can outline an algorithm to sketch W (A). Let t ∈ [0, 2π) and

consider e−itA = Ht + iKt. Let µt be the maximum eigenvalue of Ht, with corresponding
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eigenspace Eµt . Let {q1, .., qj} be an orthonormal basis for Eµt and let Qt be the matrix

whose columns are the vectors {q1, ..., qj}. If dim Eµt = 1, then W (Q∗KQ) is a point

and we can simply take q∗1Aq1 as the point in the boundary of W (A) for this value of t.

If j > 1, the next step is to form the matrix Q∗tKtQt and compute W (Q∗tKtQt). Then

by Lemma 2.5.2, the set µt + W (Q∗tKtQt) is a line segment. By Remark 2.5.3, the line

segment eit(µt + W (Q∗tKtQt)) makes up the part of the boundary of W (A) that intersects

the supporting line eit{a + bi : a, b ∈ R, a = µt}. If we do this for sufficiently many values

of t, we can get a good approximation to the boundary of the numerical range. By the

convexity of the numerical range, the last step is to just fill in the region described by the

boundary. The following theorem describes this process in more detail.

Theorem 2.5.4. Let A ∈ Mn. For 0 ≤ t < 2π, let Ht and Kt be Hermitian matrices so

that e−itA = Ht + iKt and let Pt be the orthogonal projection of Cn onto the eigenspace of

Ht corresponding to µt, the largest eigenvalue of Ht. Denote this eigenspace by Eµt. Let

Qt = [q1| · · · |qj] where dim(Eµt) = j, 1 ≤ j ≤ n and {q1, ..., qj} is an orthonormal basis for

Eµt. Let v+
t and v−t be unit eigenvectors of Q∗tKtQt corresponding to the greatest and least

eigenvalues of Q∗tKtQt. Then

(i) Qtv
+
t = x+

t and Qtv
−
t = x−t are eigenvectors of Ht corresponding to µt.

(ii) The numbers
〈
Ax+

t , x
+
t

〉
and

〈
Ax−t , x

−
t

〉
are in the boundary of W (A) and W (A) is the

convex hull of these numbers.

Proof. Note that for any v ∈ Cj, the vector Qtv is a linear combination of the columns of Qt

and thus is in Eµt . So in particular, Qv+
t and Qv−t are in Eµt and therefore are eigenvectors of

Ht corresponding to µt. This proves (i). Next, Lemma 2.5.2 shows that for each t ∈ [0, 2π),

Re
( 〈
e−itAx, x

〉 )
≤ µt

33



for all x ∈ Cn, ||x|| = 1. Now let xt be a eigenvector of Ht corresponding to µt. Then

Re 〈e−itAxt, xt〉 = µt, which implies that 〈Axt, xt〉 must be on the boundary of the numerical

range, by Remark 2.5.3. Note that since x+
t = Qv+

t and x−t = Qv−t are both in Eµt , that this

result also holds for
〈
Ax+

t , x
+
t

〉
and

〈
Ax−t , x

−
t

〉
.

Since the numerical range is convex, and each number of the form
〈
Ax+

t , x
+
t

〉
or
〈
Ax−t , x

−
t

〉
as described above is in the numerical range, then the convex hull of these numbers is in

W (A). Denote this convex hull by C. Now if γ ∈ W (A) is not in C then there is a line,

denote it by L, separating γ from C. Let θ be so that e−iθL is vertical and so that C lies

to the left of e−iθL. But then γ must be so that Re e−iθγ > µθ which is a contradiction.

Moreover, if γ ∈ W (A) has real part equal to µθ, then by Lemma 2.5.2, the imaginary part

of γ must be in W (Q∗θKθQθ). In other words, such a γ is on the line segment connecting〈
Ax+

θ , x
+
θ

〉
and

〈
Ax−θ , x

−
θ

〉
. This shows that W (A) is indeed equal to C.

Code implementing this algorithm can be found in Appendix A. The following example

provides some insight into how this algorithm works.

Example 2.5.5. Let the matrix A be given by

A =


−5 0 i

−4i −5− 3i 0

i 4i −5

 .

The numerical range of this matrix is plotted in Figure 2.5. We will sketch out the process

of determining the structure of the boundary of W (A) by tracing out the algorithm for

one particular value of t from the range [0, 2π). Let t = π/2 and consider At = e−itA. The

numerical range W (At) = W (e−itA) = e−itW (A) and thus W (At) is just a clockwise rotation

of W (A) through an angle of π/2 about the origin (see Figure 2.5(b)).

The next step is to calculate the matrix Ht, such that At = Ht + iKt, and consider its
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maximum eigenvalue with corresponding eigenvector. Ht is given by

Ht =


0 −2 1

−2 −3 2

1 2 0


with eigenvalues 1,1,-5. So the maximum eigenvalue of Ht is 1 (with algebraic multiplicity

2). Let xt be any one of the corresponding eigenvectors. According to the above results, this

means that the line L = {1 + bi | b ∈ R} should be a supporting line of W (At) at the point

xtAtxt. This can be seen in Figure 2.5(c). Now since the eigenspace of Ht corresponding to 1

is two dimensional, this means that the set 1 +W (Q∗tKtQt) is a line segment and moreover,

by the above remarks, we can conclude that the part of W (At) that intersects L is given

by the segment connecting the points 1 + λ−i and 1 + λ+i where λ− and λ+ are the least

and greatest eigenvalues of Q∗tKtQt, respectively. Calculating these numbers, we see that

L ∩W (At) is the line segment connecting the points 1 + 3.3670i and 1 + 6.6330i. Denote

this line segment by `. This can be seen in Figure 2.5(d) At this point we have completely

determined the part of the boundary of W (At) that intersects the supporting line L. By

Remark 2.5.3, this means that e(iπ/2)` lies on the boundary of W (A). This can be seen in

Figure 2.6.

The preceding example dealt with the case where the eigenspace Eµt was two dimensional.

Most of the time, however, Eµt is one dimensional. In this case the supporting line L

intersects W (At) at a single point, given by x∗tAtxt, where xt is the eigenvector corresponding

to µt. In this case, there is no need to calculate the matrix Q∗tKtQt and we can simply note

that the point eitx∗tAtxt lies in the boundary of W (A).

2.5.1 Accuracy. While the process described above can be a good way to compute the

numerical range, it does not provide any measure of accuracy. We can introduce such a
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(a) W (A) (b) W (At)

(c) Supporting line of W (At) (d) Highlighted section of W (At)

Figure 2.5: Figures for Example 2.5.5

measure by considering interior and exterior approximating polygons. An interior polygon

Q is formed by connecting the points in the boundary of W (A), which are given by eitxtAtxt.

An exterior polygon P is obtained by taking the points of intersection of the supporting lines

at these points. See Figure 2.7. The boundary of W (A) is the solid line and the vertices of the

interior and exterior approximating polygons are marked by dots and squares, respectively.

Now, the vertices {pk}nk=1 of P can be determined as follows: Let {θk}nk=1 denote the rotation

angles used to compute the points in the boundary of W (A), in increasing order. Given two
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Figure 2.6: A section of the boundary of W (A)

consecutive angles θj, and θj+1, we have two supporting lines of ∂W (A), given by

eiθj{a+ bi | a, b ∈ R, a = µθj} and eiθj+1{c+ di | c, d ∈ R, c = µθj+1
},

where µθk equals the maximum eigenvalue of the Hermitian part of e−iθkA, k = 1, 2, ..., n.

We find the point of intersection of these two lines by equating their real and imaginary

parts. The result is

pj = eiθj

(
µθj +

µθj cos(θj+1 − θj)− µθj+1

sin(θj+1 − θj)

)

Given a polygon with vertices pk = {xk + iyk}nk=1 in counter-clockwise order, the area of this

polygon can be computed by the following formula:

1

2
Im

n∑
k=1

p̄kpk+1,
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where pn+1 = p1. If the vertices are given in clockwise order, then the result of this equation

will be negative, but correct in absolute value. Thus, if the exterior polygon P has vertices

{pk}nk=1 and the interior polygon Q has vertices {qk}nk=1, then the difference in area is

1

2
Im

[
n∑
k=1

p̄kpk+1 − q̄kqk+1

]
.

By specifying this quantity to be small, we can therefore have a measure of how accurate

our numerical approximation to W (A) is. Code computing the numerical range to within a

specified tolerance can be found in Appendix B. This code is based on a method by Higham

[31].

Figure 2.7: Interior and Exterior Approximating Polygons
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Chapter 3. QR Factorization, Arnoldi, and GMRES

We now introduce the GMRES method. The acronym stands for for “generalized minimal

residuals” and the method was introduced by Saad and Schultz in 1985 [41]. GMRES is

notable for its ability to effectively solve systems where the coefficient matrix is not Hermi-

tian. It is one of a family of iterative methods known as Krylov methods. These methods,

including GMRES, are used to solve the following linear system of equations

Ax = b, A ∈Mn, b ∈ Cn, (3.0.1)

where we assume the coefficient matrix A is nonsingular. Since Krylov methods are iterative,

they must begin with an initial guess, x0, which is often taken to be 0. At step m of the

iteration, a Krylov method will produce an approximate solution xm, which lies in the affine

Krylov subspace generated by the initial residual r0 = b − Ax0. This affine subspace is

written as

x0 +Km(A, r0) = span{r0, Ar0, A
2r0, ..., A

m−1r0}.

We will abbreviate Km(A, r0) as Km when there is no confusion. Also, let Km denote the

Krylov matrix, which is given by

Km =

[
r0

∣∣∣∣∣ Ar0

∣∣∣∣∣ · · ·
∣∣∣∣∣ Am−1r0

]

Krylov methods can be very powerful and useful. For instance, if the matrix in question is

quite large, it is impractical to solve (3.0.1) via Gaussian elimination or by some factorization

method due to the computational complexity. In some cases, we may not even have direct

access to the matrix, that is, it only exists as a “black box” routine, which when given a
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vector x, returns Ax. In these cases, Krylov methods are the tool of choice.

A natural question at this point is why do we search for a solution within a Krylov

subspace? To answer this question, let A ∈ Mn, with A invertible, and let pA(t) =

cnt
n + · · · c1t + c0, denote the characteristic polynomial of A (note that the invertibility

of A guarantees that c0 6= 0). By the Cayley-Hamilton theorem, pA(A) = 0. Therefore,

cnA
n + cn−1A

n−1 + · · ·+ c1A+ c0I = 0.

Multiplying both sides by A−1 and solving for A−1, we get

A−1 =
−cnAn−1 − cn−1A

n−2 − · · · − c1I

c0

,

and so

A−1r0 = −cn
c0

An−1r0 −
cn−1

c0

An−2r0 − · · · −
c1

c0

r0 ∈ Kn. (3.0.2)

Since

x = x0 + A−1r0 = x0 + A−1(b− Ax0) = A−1b,

we see that the solution x of (3.0.1) can be written as a vector in the affine Krylov subspace

x0 +Kn. So it makes sense to search for a solution within this space.

We should note the above results do not apply to singular systems. For a discussion on

how Krylov methods apply in this case, see [33].

Returning to the topic of GMRES, we first begin with a review of the QR factorization.

This provides an introduction to the Arnoldi iteration which is the basis for GMRES.
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3.1 QR Factorization

Let A ∈ Mm,n where m ≥ n and A full rank. The goal of QR factorization is compute an

m × n matrix Q̂ with orthonormal columns and an n × n upper triangular matrix R̂ such

that A = Q̂R̂. If m > n, then Q̂ is not a square matrix, and this is called the reduced

QR factorization of A. To get what is known as the full QR factorization, we append an

additional m− n orthonormal columns to Q̂ and m− n rows of zeros to R̂, so that A = QR

where Q is an m×m unitary matrix and R is an m× n upper triangular matrix. If m = n,

then it follows that the reduced and full QR factorizations coincide. Whenever m ≥ n, it

can be shown that every A ∈Mm,n with full rank has a unique QR factorization. For further

details on these ideas, see [48, Chapter 7]. Thus we can simplify the following discussion by

assuming that A is a square n× n matrix. The matrix formula A = QR can be written

[
a1 a2 · · · an

]
=

[
q1

∣∣∣∣∣q2

∣∣∣∣∣ · · ·
∣∣∣∣∣qn
]


r11 r12 · · · r1n

r22
...

. . .
...

rnn


. (3.1.1)

Note that this implies that each column of A can be written as a linear combination of

the columns of Q, i.e.

a1 = r11q1,

a2 = r12q1 + r22q2,

a3 = r13q3 + r23q2 + r33q3,

...

an = r1nq1 + r2nq2 + · · ·+ rnnqn.

(3.1.2)

The vectors {qj} and coefficients rij are determined via Gram-Schmidt orthogonalization.
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We begin by setting q1 = a1/||a1|| and r11 = ||a1||. Then for j = 2, ..., n, we have

pj = aj −
j−1∑
i=1

rijqi, where rij = q∗i aj,

qj = pj/rjj, where rjj = ||pj||.

(3.1.3)

The QR algorithm can be stated concisely as follows:

1: for j = 1 to n do

2: vj = aj

3: for i = 1 to j − 1 do

4: rij = q∗i aj

5: vj = vj − rijqi

6: end for

7: rjj = ||vj||2

8: qj = vj/rjj

9: end for

However, due to rounding errors in the computer, this algorithm typically yields vectors

q1, q2, ..., qn that are not quite orthogonal. Thus, in this form, the Gram-Schmidt algo-

rithm is numerically unstable. Fortunately, a small modification will ensure stability; the

resulting algorithm is called the modified Gram-Schmidt algorithm. The difference in the

modified version is that each time we form the scalar rij, we take the inner product of qi

and the newly modified vector vj instead of using aj each time (see line 4 in the above

listing). In other words, rather than subtracting out the components of aj in the direc-

tion of q1, ..., qj−1 all at once (as is done in (3.1.3)), they are subtracted out one at a

time. This amounts to replacing the inner loop of the above algorithm with the follow-

ing:
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for i = 1 to j − 1 do

rij = q∗i vj

vj = vj − rijqi

end for

These two methods are mathematically equivalent, yet the latter turns out to be numerically

stable. Lastly, if A is rank deficient, then for some j we will get that vj = 0. In this case, we

can simply pick qj to be any vector orthogonal to the previous q1, ..., qj−1 and keep going.

For example, if v3 = 0, then this means that a3 is a linear combination of q1 and q2. Thus

we can take q3 to be an arbitrary unit vector orthogonal to Span{q1, q2}. To ensure that the

relation A = QR is still valid, simply set r33 = 0.

Next we will see how QR factorization can be used to form an iterative method to

compute a reduction A = QHQ∗ where Q is an n × n unitary matrix and H is an n × n

upper Hessenberg matrix.

3.2 Arnoldi Iteration

An upper Hessenberg matrix is a matrix where all entries below the first subdiagonal are

zero. For example, the matrix 

a11 a12 a13 a14

a21 a22 a23 a24

0 a32 a33 a34

0 0 a43 a44

0 0 0 a54


is an upper Hessenberg matrix. Note that this class of matrices includes square and non-

square matrices. Upper Hessenberg matrices have applications in eigenvalue algorithms

and solving systems of equations (see [48, Chapters 25, 26, 33, and 35]). Given a matrix
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A ∈ Mn, we can reduce the entire matrix to one that is in upper Hessenberg form via a

series of Householder reflections, yielding the relation Q∗AQ = H, where Q is unitary, and

H upper Hessenberg (one could also use Givens rotations, but this method requires more

work than applying Householder reflections, see [48, Exercise 10.4]). However, in many

applications, n is large or infinite and it is not practical (or even needed) to compute a full

upper Hessenberg reduction. Furthermore, to obtain the matrix Q, the reduction must be

carried to completion. What is advantageous about Arnoldi iteration is that we obtain the

columns of Q and H one at a time. This way, we can stop the iteration whenever we please

with a partial Hessenberg reduction. This is useful in the context of an iterative algorithm

to solve (3.0.1), since these algorithms are typically never run to completion.

To get an idea of how the reduction Q∗AQ = H is obtained, we consider the first m

columns of AQ = QH. Let Qm = [q1|q2| · · · |qm] be the matrix whose columns are the first

m columns of Q. Due to the Hessenburg structure of H, it is clear that the jth column of

AQm requires a linear combination of the first j + 1 columns of Q, with coefficients from H.

So we have that

AQm = Qm+1Hm+1,m, (3.2.1)

where Hm+1,m is the (m+ 1)×m upper-left section of H, which is also an upper Hessenburg

matrix:

Hm+1,m =



h11 h12 · · · h1m

h21 h22
...

. . . . . .

hm,m−1 hmm

hm+1,m


.
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Now, the mth column of (3.2.1) is given by

Aqm = h1mq1 + · · ·+ hmmqm + hm+1,mqm+1. (3.2.2)

Rearranging the above equation yields

qm+1 =
Aqm − h1mq1 − · · · − hmmqm

hm+1,m

,

assuming that hm+1,m is not 0. Thus at each step in the Arnoldi process, we obtain a column

of Qm as well as a column of Hm. Since we require the {qi} to be orthonormal, the hij are

determined by using modified Gram-Schmidt orthogonalization.

Like many iterative algorithms, we need to supply a starting point for the Arnoldi itera-

tion, so let y ∈ Cn be arbitrary. We then have the following. Note that the inner loop is the

same as in the modified QR algorithm.

1: y = arbitrary, q1 = y/||y||

2: for i = 1, 2, 3, ... do

3: v = Aqi

4: for j = 1 to i do

5: hji = q∗j v

6: v = v − hjiqj

7: end for

8: hi+1,i = ||v||

9: qi+1 = v/hi+1,i

10: end for

By examining this algorithm carefully, it is evident that the {qi} span the successive Krylov

subspaces. Thus one interpretation of the Arnoldi iteration is that it produces orthonormal
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bases of these spaces. In other words,

Km = Span{y, Ay, ..., Am−1y} = Span{q1, q2, ...., qm} ⊂ Cn. (3.2.3)

This idea will be important later in understanding how GMRES works.

The only issue we have not addressed is what if hi+1,i = 0? Physically, this means that

Aqi ∈ 〈q1, ..., qi〉. In this case, as in the QR factorization, we simply pick qi+1 to be any

vector orthogonal to {q1, ..., qi}, set hi+1,i = 0, and keep going. However, in the context of

GMRES, this is the indication that the solution has been found. We will return to this idea

below.

3.3 GMRES

To see how Arnoldi iteration is used to solve the system Ax = b, denote the true solution to

this problem by x̂. Recall from the discussion above that x̂ can be written as a linear com-

bination of Krylov vectors, plus a shift, as in (3.0.2). The idea of GMRES is to approximate

the true solution x̂ by the vector xm ∈ x0 + Km that minimizes the 2-norm of the residual

rm = b − Axm. The vector x0 is the initial guess, which can be nonzero, but in most cases

is taken to be 0. Since the goal is to minimize ||rm||, we see that at the heart of GMRES,

we have an ordinary least squares problem. Further, note that since xm ∈ x0 +Km, we can

write xm = x0 +Kmc for some c ∈ Cm. Then our least squares problem has the form

min
xm
||Axm − b|| = min

c
||A(x0 +Kmc)− b|| = min

c
||AKmc− r0|| (3.3.1)
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There are many ways we could solve this least squares problem. A naive approach would be

to solve the normal equations:

(AKm)∗(AKm)c = (AKm)∗r0.

We could also solve (3.3.1) by directly applying QR or SVD factorizations. Each of these

methods is summarized in Chapter 11 of [48]. There it is shown that each of these require

O(n3) operations, which is the same amount of work used in solving the system directly via

Gaussian elimination. In practical applications, this is too expensive. So instead, we use

the Arnoldi iteration and exploit the Hessenburg form of the matrix Hm+1,m. At each step

m, we construct a matrix Qm whose columns are orthonormal and span Km. So we write

x0 +Qmy = xm instead of x0 +Kmc = xm and (3.3.1) becomes

min
y
||AQmy − r0||.

Now, at the mth step of the Arnoldi iteration, we have the the relation (3.2.1). Therefore,

min
y
||AQmy − r0|| = min

y
||Qm+1Hm+1,my − r0||

= min
y
||Hm+1,my −Q∗m+1r0|| = min

y
|| Hm+1,my − ||r0||e1 ||,

where e1 denotes the first unit m + 1 vector. The penultimate equality holds since both

Qm+1Hmy and r0 are in the column space of Qm+1 (since we take q1 = r0/||r0||). So multi-

plying by Q∗m+1 does not change the norm1. The last equality holds since r0 = ||r0||q1.

Once y is found, the approximate solution is then given by xm = x0+Qmy. The following

is a listing of the GMRES algorithm.

1: Choose x0, r0 = b− Ax0, Initialize q1 = r0/||r0||, Q1 = q1.

1If x = Qm+1c, then it is easily verified that ||x|| = ||c||. Also, Q∗
m+1x = c and so ||Q∗

m+1x|| = ||c|| = ||x||.
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2: for j = 1, 2, 3, ... do

3: Orthogonalize Aqj against the previous qi, form Hj+1,j and set Qj+1 = [Qj|qj+1].

4: Solve miny || Hjy − ||r0||e1 ||, call the solution yj.

5: Set xj = x0 +Qjyj.

6: end for

At line 4, note that we still have to solve a least squares problem. However, due to the

Hessenburg structure of Hj, this can be done in much shorter time than the original problem

would require, see [23, Section 2.4] for details.

As mentioned above, GMRES has found the solution to the system Ax = b when the

vector v in the Arnoldi iteration equals zero. If it so happens that r0 = 0, then Q1 = 0 and

it follows that x0 is the solution. Now suppose ||r0|| > 0 and for some j > 0 we have that

v = 0. In this case, the last row of Hj+1,j is zero. Let Hj be Hj+1,j without its last row and

note that Hj is n× n. Then (3.2.1) simplifies to

AQj = QjHj. (3.3.2)

This equation implies that Aqj ∈ Span{q1, q2, ..., qj}, which means that Aqj ∈ Kj by (3.2.3).

From this we can infer that AKj ⊂ Kj, that is, Kj is an invariant subspace of A. It follows

that any eigenvalue of Hj is an eigenvalue of A. Since A is nonsingular, we get that Hj is

also nonsingular, so the least squares problem in line 4 now reduces to a nonsingular linear

system Hjy = ||r0||e1. Denote the solution by yj. Then by (3.3.2), we get

A(x0 +Qjyj) = Ax0 +QjHjyj = Ax0 + ||r0||Qje1 = Ax0 + r0 = b

and so xj = x0 +Qjyj is the solution.

The above explanation assumed that GMRES is run to completion. In practice, however,
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the process is stopped as soon as an iterate satisfies whatever convergence criterion is set by

the user.

Remark 3.3.1. The mth iterate in GMRES, xm, is taken from the affine Krylov subspace

x0 +Km(A, r0), and thus we have

xm = x0 + c0r0 + c1Ar0 + c2A
2r0 + · · ·+ cm−1A

m−1r0.

If we let qm(z) = c0 + c1z + c2z
2 + · · ·+ cm−1z

m−1, then we can write

xm = x0 + qm(A)r0.

The corresponding residual is given by

rm = b− Axm = r0 − Aqm(A)r0 = (I − Aqm(A))r0 = pm(A)r0,

where pm(z) = 1− zqm(z). Let Pm denote the space of all polynomials with degree less than

or equal to m and normalized to equal 1 at the origin. Since at each step m = 1, 2, 3, ...,

GMRES minimizes the norm of the residual, rm, we have

||rm|| = min
pm∈Pm

||pm(A)r0||. (3.3.3)

In other words, GMRES chooses the coefficients c0, ..., cm−1 so that the quantity ||pm(A)r0||

is minimized over the Krylov subspace Km(A, r0).
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Chapter 4. Convergence Bounds for GMRES

There is no lack of existing research in the analysis of GMRES convergence and the conver-

gence of related methods, such as CG and Orthomin [4, 5, 16, 17, 20, 41]. Recall from the

above discussion GMRES solves the following approximation problem

||rk|| = min
pk∈Pk

||pk(A)r0||,

where Pk is the set of all polynomials of degree k or less over C satisfying p(0) = 1. The

initial residual can complicate the analysis, so we remove it via the bound

||rk|| = min
pk∈Pk

||pk(A)r0|| ≤ min
pk∈Pk

||pk(A)|| ||r0||. (4.0.1)

So now the task of approximating the kth relative residual can be stated in terms of the

following matrix approximation problem:

||rk||
||r0||

≤ min
pk∈Pk

||pk(A)||. (4.0.2)

It may seem that we have taken a big jump in employing this bound. Perhaps there is no r0

such that equality is attained in (4.0.1). Indeed, in [46], it is shown that for some nonnormal

problems, this is precisely the case. However, such problems are thought to be rare in

practice [45]. Thus we are content with considering ||pk(A)||, and estimating this quantity

is the typical strategy in determining the size of the kth relative residual. Greenbaum and

Trefethen have named this problem the Ideal GMRES problem [25]. In this chapter, we

briefly review some previous results done in approximating the right-hand side of (4.0.2),

and then introduce how we feel the Crouzeix conjecture could be used to obtain new, and
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hopefully better, convergence bounds.

4.1 Previous Results

If we assume A is normal, i.e. A = UDU∗, then we have

min
pk∈Pk

||pk(A)|| = min
pk∈Pk

||Upk(D)U∗|| = min
pk∈Pk

max
λ∈σ(A)

|pk(λ)|.

This equation can also be applied to non-normal matrices. By the spectral mapping theorem,

for any p ∈ Pk, p(σ(A)) = σ(p(A)). Therefore,

max
λ∈σ(A)

|pk(λ)| = r(pk(A)) ≤ ||pk(A)||.

So we obtain a lower bound for the Ideal GMRES problem. On the other hand, for a general

A ∈ Mn, if we suppose that A is diagonalizable, i.e. A = V DV −1, then we have the upper

bound

||rk||
||r0||

= min
pk∈Pk

||V pk(D)V −1|| ≤ κ(V ) min
pk∈Pk

||pk(D)||,

where κ(V ) = ||V ||||V −1|| denotes the condition number of V . Therefore,

||rk||
||r0||

≤ κ(V ) min
pk∈Pk

max
i=1,...,n

|pk(λi)|. (4.1.1)

If A is normal, then κ(V ) = 1, and the lower and upper bounds for Ideal GMRES are

equal. In this case, this bound is sharp, meaning that for each k, there exists a pk ∈ Pk

and an i ∈ {1, ..., n} such that the inequality is an equality [21]. Furthermore, this also

shows that for normal matrices, the question of GMRES convergence can be answered by

only considering the spectrum. Now, all that we need to be concerned with is how small

can the remaining quantity on the right hand side of (4.1.1) be? For a normal matrix A, if
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the eigenvalues are tightly clustered about some nonzero point c ∈ C, then we can consider

the polynomial pk(z) = (1− z/c)k. Note that the norm of this polynomial is small at points

close to c, and so this implies that GMRES will converge quickly in this case. On the

other hand, if the eigenvalues are spread all around the origin, then we have a worst case

scenario. This is because we cannot have a polynomial p(z) which satisfies p(0) = 1 and

|p(z)| < 1 on some curve surrounding the origin (this follows from the maximum principle).

This implies that the residual will not be reduced until step n, which is when the iteration

has run to completion. If A is not normal, but V is well-conditioned, then (4.1.1) can still

give a fairly good estimate on the size of the relative residual, and the intuition just given

concerning eigenvalue distribution can still be a good indicator of the convergence behavior

of GMRES. However, for general matrices, the convergence rate of GMRES does not depend

on eigenvalues alone. In the paper by Greenbaum, Pták, and Strakoš [24] it is shown that

given any non-increasing curve, there is a problem whose GMRES residuals plotted against

the iterations is given by that curve. Furthermore, that problem can be chosen to have any

eigenvalues. This means that, in general, we need to consider more than merely the spectrum

of A.

Another method of estimating ||p(A)|| has been introduced by Trefethen [47, 49] and

involves using the pseudospectrum of A. Given ε > 0, the ε-pseudospectrum of A is defined

to be the set

Λε = {z ∈ C | ||(zI − A)−1|| ≥ 1/ε}.

The points z ∈ C for which ||(zI−A)−1|| = 1/εmake up the boundary of the ε-pseudospectrum.

A bound on ||p(A)|| can be obtained as follows. For any polynomial p, we can write

p(A) =
1

2πi

∫
γ

p(z)(zI − A)−1dz,

where γ is some simple closed curve containing the spectrum of A in its interior. Let L(γ)
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denote the length of γ. Then by taking norms, we have

||p(A)|| ≤ L(γ)

2π
sup
z∈γ
||p(z)(zI − A)−1||.

Now, if we replace γ with the boundary of the ε-pseudospectrum, denoted γε, for some ε > 0,

then this last inequality now becomes

||p(A)|| ≤ L(γε)

2πε
sup
z∈γε
|p(z)|.

Thus for GMRES, we have

||rk||
||r0||

≤ L(γε)

2πε
sup
z∈γε
|p(z)|.

Psuedospectral bounds are dealt with in more detail in [49]. Note that this psuedospectral

bound can be adjusted by varying the parameter ε. A large ε yields a small L(γε)/2πε, but

the approximation of the quantity |p(z)| is over a large domain, which may include the origin.

This can be problematic, since p(0) = 1. Thus the maximum on the boundary must be larger

than 1 and can potentially be much larger. A small ε will lead to a large constant L(γε)/2πε,

but with the approximation over a small domain. This feature of the psuedospectral bound

can be used to describe different phases of GMRES convergence. In his book, [49], Trefethen

describes that for nonnormal GMRES problems, one often observes initial stagnation followed

by more rapid convergence later. Thus, large values of the parameter ε can be descriptive for

the early stage, and small values of ε can be descriptive of the later stage. However, these

bounds fail to describe the intermittent convergence behavior, and sometimes can fail to be

very descriptive at all [18, 22]. Thus we hope to gain greater insight by deriving bounds

obtained by considering the numerical range.

Some work preceding Crouzeix’s conjecture in the area of GMRES analysis involving the

numerical range includes the papers by Eiermann [14, 15]. For a simple example, consider
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the case 0 /∈ W (A) and W (A) ⊂ D = {z ∈ C | |z − c| ≤ s}, where D also does not contain

zero. Again, let pk(z) = (1− z/c)k. By Proposition 2.1.1, we have

W (I − (1/c)A) = 1− (1/c)W (A) ⊂ {z ∈ C | |z| ≤ s/|c|}.

From this, we have that the numerical radius w(I − (1/c)A) is bounded by s/|c|. Then, by

the power inequality (Theorem 2.4.8),

w(pk(A)) = w((I − (1/c)A)k) ≤ w(I − (1/c)A)k ≤ (s/|c|)k,

and using Theorem 2.4.3, we have

||pk(A)|| ≤ 2w(pk(A)) = 2w((I − (1/c)A)k) ≤ 2(s/|c|)k.

So for GMRES, we have the inequality

||rk||
||r0||

≤ 2(s/|c|)k.

What this tells us is that if 0 /∈ W (A), and if W (A) is small and positioned far away from

the origin, then we can expect GMRES to converge quickly. So while this can be a good

bound, it has some severe restrictions. For instance, if s ≥ |c|, then this bound will be a gross

overestimate of the actual norm of the relative residual. Also it requires that 0 /∈ W (A),

which we cannot guarantee for all nonsingular matrices.

Crouzeix’s conjecture offers a possible alternative method for using the numerical range

for GMRES analysis.
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4.2 Crouzeix’s Conjecture Applied to GMRES

Recall that by Proposition 2.2.5 the numerical range of A contains the spectrum of A, i.e.

σ(A) ⊂ W (A). Therefore, for diagonalizable A,

||rk||
||r0||

≤ min
pk∈Pk

||pk(A)|| = κ(V ) min
pk∈Pk

max
λ∈σ(A)

|p(λ)| ≤ κ(V ) min
pk∈Pk

sup
z∈W (A)

|p(z)|,

Now, if the Crouzeix conjecture (1.0.2) is true, we will have

||rk||
||r0||

≤ min
pk∈Pk

||p(A)|| ≤ 2 min
pk∈Pk

sup
z∈W (A)

|p(z)|. (4.2.1)

One obvious advantage here is that we no longer have to worry about the condition number

κ(V ), which varies for each matrix. Furthermore, this bound can be applied to any matrix,

not just those with well-conditioned eigenvector matrices. Also, we are now considering

the size of |p(z)| over the numerical range rather than the spectrum, which we know is

insufficient in general. The only issue now is to estimate the minimal supremum norm of a

k degree polynomial over the numerical range. In some cases, the solution of this problem

is well-known. These include symmetric (positive definite and indefinite) and some certain

nonsymmetric problems, see [47] and the references therein. The challenge lies in estimating

this quantity for general problems. There are several avenues to explore along this vein.

These include minimum norm Pick-Nevanlinna interpolation, least squares approximation,

orthogonal polynomials, and interpolation in Fejér points. In this work, we examine bounds

obtained by considering the Faber polynomials, which will be introduced in the next chapter.
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Chapter 5. Conformal Maps and Faber Polynomials

The purpose of this chapter is to give the necessary background in conformal maps and Faber

polynomials to facilitate the discussion on convergence bounds for GMRES. Conformal maps

have many applications in areas such as numerical analysis, mesh generation, electrostatics,

and fluid mechanics. The interested reader may consult [13] for more information on the

applications of these maps. Faber polynomials were introduced in 1903 by Faber [19] to

solve the problem of approximating a function, analytic in a given region, by polynomials

which do not depend on the function to be approximated. We will start with a brief review

of Laurent series.

5.1 Laurent Series

In this section, we will provide some basic results and notation that will be of use in the

following sections. We assume the reader is already familiar with these results and refer to

other sources for some of the proofs.

Theorem 5.1.1. Let f be analytic in the annulus r < |z−z0| < R. Then f can be expressed

as the sum of two series

f(z) =
∞∑
j=0

aj(z − z0)j +
∞∑
j=1

a−j(z − z0)−j (5.1.1)

both series converging absolutely in the annulus, and converging uniformly in any closed

subannulus. The coefficients aj are given by

aj =
1

2πi

∫
C

f(ζ)

(ζ − z0)j+1
dζ, j = 0,±1,±2, ...
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where C is any positively-oriented simple closed contour lying in the annulus and containing

z0 in its interior. The result also holds for r = 0, R =∞, or both.

The representation (5.1.1) is called the Laurent series, or Laurent expansion, of f about

z0. It turns out that any pointwise convergent expansion of this form equals the Laurent

expansion, i.e., the Laurent expansion is unique. A proof of this along with Theorem 5.1.1

can be found in [38].

If f is analytic on a region that contains the punctured disk 0 < |z − z0| < R, then the

point z0 is called an isolated singularity. In this case, Theorem 5.1.1 is valid on 0 < |z−z0| <

R and in particular, we can write

f(z) =
∞∑

j=−∞

aj(z − z0)j, 0 < |z − z0| < R. (5.1.2)

One of the advantages of the Laurent expansion is that we can use it to classify the singu-

larities of the function it represents. Recall the following definition:

Definition 5.1.2. Let f be analytic in a region A that contains a deleted neighborhood of

the point z0, so that z0 is an isolated singularity. Let the Laurent expansion of f be given

by (5.1.2).

(i) If aj = 0 for all integers j < 0, we say that z0 is a removable singularity of f .

(ii) If all but a finite number of the aj, j < 0, are zero, then z0 is called a pole of f . If k is

the largest integer such that a−k 6= 0, then we say that z0 is a pole of order k. If k = 1,

we say that z0 is a simple pole.

(iii) If an infinite number of the aj, j < 0, are nonzero, then z0 is called an essential

singularity of f .

(iv) The coefficient a−1 is the residue of f at z0.
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Now let Ĉ = C∪ {∞} denote the extended complex plane, that is, the complex plane C

along with the point at infinity. When dealing with the extended complex plane, we define

1/0 =∞ and 1/∞ = 0. It turns out that for a function analytic in a neighborhood of infinity

we can also define a Laurent expansion at infinity, with a result analogous to Theorem 5.1.1.

First, let

D(∞, r) = {z | z ∈ C, |z| > r} and D′(∞, r) = D(∞, r) ∪ {∞}

be the punctured disk with center at infinity and the disk centered at infinity, respectively.

Similarly, define D(0, 1) to be the open unit disk centered at 0. We define a neighborhood of

infinity to be O ∪ {∞} where O is open set containing D(∞, r) for some r > 0.

Theorem 5.1.3. Let O be a neighborhood of infinity containing D(∞, R), R ≥ 0 and let

f : O\{∞} → C be analytic on O\{∞}. Then there exists a series representation of f ,

given by

f(z) =
∞∑
k=0

bkz
−k +

∞∑
k=1

ckz
k, (5.1.3)

where both series converge absolutely on D(∞, R) and uniformly on any compact subset of

D(∞, R). The coefficients are given by

bk =
1

2πi

∫
γρ

f(z)zk−1dz, k = 0, 1, 2, ...

ck =
1

2πi

∫
γρ

f(z)

zk+1
dz, k = 1, 2, ...

where γρ is any positively-oriented circle centered at zero with radius ρ > R.

A similar uniqueness result as in Theorem 5.1.1 also holds in this case. A proof can be

found in [11].

Since the map w := 1/z maps the point at infinity to 0, we can use the composite
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function g(w) := f(1/w) to classify the singularities of f at infinity.

(i) f(z) has a removable singularity at ∞ if f(1/w) has a removable singularity at w = 0.

(ii) f(z) has a pole of order k at ∞ if f(1/w) has a pole of order k at w = 0.

(iii) f(z) has an essential singularity at ∞ if f(1/w) has an essential singularity at w = 0.

The final result we need is Cauchy’s coefficient estimate. This provides a bound on the

coefficients of a convergent power series.

Proposition 5.1.4. Let f be analytic on a region E containing the disk {z | |z−z0| < ρ(f)}

with a power series representation

f(z) =
∞∑
k=0

ak(z − z0)k,

with radius of convergence ρ(f). Then for any 0 ≤ ρ < ρ(f), we have

|ak| ≤
sup|z|=ρ |f(z)|

ρk
.

Proof. If ρ = 0, then |ak| ≤ ∞ and there is nothing to show. Let γ be a circle of radius

0 < ρ < ρ(f) centered at z0. Recall from Cauchy’s integral formula that

f (k)(z0) =
k!

2πi

∫
γ

f(z)

(z − z0)k+1
dz.

Also, since f is analytic on and inside γ, it is continuous there and so for some M > 0 we

have

sup
{z | |z−z0|≤ρ}

|f(z)| ≤M

Therefore,

|f (k)(z0)| ≤ k!

2π

∫
γ

∣∣∣∣∣ f(z)

(z − z0)k+1

∣∣∣∣∣dz ≤ k!

2π

M

ρk+1
2πρ =

k!M

ρk
,
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since the length of γ is 2πρ. But from the power series representation for f , we have

f (k)(z0) = k!ak,

Thus

|ak| ≤
M

ρk
.

Corollary 5.1.5. Let f be analytic on a neighborhood of infinity O with Laurent expansion

at infinity given by

f(z) =
∞∑
k=0

akz
−k,

converging on D(∞, R(f)) ⊂ O, where R(f) > 0. Then for any σ > 0 satisfying 0 < 1/σ <

1/R(f), we have

|ak| ≤ σk sup
|z|=σ
|f(z)|

Proof. Let

g(w) = f(1/w) =
∞∑
k=0

akw
k.

This is a Laurent expansion about 0, convergent for all |w| < 1/R(f). By Proposition 5.1.4,

for any σ satisfying 0 < 1/σ < 1/R(f), we have

|ak| ≤
sup|w|=1/σ |g(w)|

(1/σ)k
.

But w = 1/z, so

|ak| ≤ σk sup
|z|=σ
|f(z)|

Example 5.1.6. Let O be a neighborhood of ∞ containing D(∞, R) for some R > 0, and
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let f be analytic on O\{∞} and have a simple pole at ∞. By Theorem 5.1.3, we can write

f in the form of (5.1.3). Since f has a simple pole at infinity, it follows that f(1/w) has a

simple pole at zero, so in particular, we have that

f(z) =
∞∑
k=0

bkz
−k + c1z, z ∈ D(∞, R).

Since f converges almost uniformly on D(∞, R), we can differentiate term-by-term to obtain

f ′(z) =
∞∑
k=0

−kbkz−k−1 + c1, z ∈ D(∞, R).

Thus f ′(z) has a removable singularity at∞. To determine c1, we again use the reciprocation

z = 1/w. First, we have

f ′(1/w) =
∞∑
k=0

−kbkwk+1 + c1.

Also,

f(1/w)

1/w
=
∞∑
k=0

bkw
k+1 + c1.

Both of these series are clearly continuous and uniformly convergent in any closed subdisk

of D(0, 1/R). Therefore,

lim
w→0

f ′(1/w) = lim
w→0

f(1/w)

1/w
= c1 = lim

z→∞

f(z)

z
= lim

z→∞
f ′(z).

Thus we can define f ′(∞) = c1, which is finite. So the Laurent expansion at infinity for f

can be written

f = f ′(∞)z + b0 + b1z
−1 + b2z

−2 + · · · , z ∈ D(∞, R) (5.1.4)
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5.2 Conformal Maps

Faber polynomials are generated from specific analytic functions, which are conformal map-

pings. It turns out that any analytic function is conformal at a point where its derivative

is nonzero, but the ones from which the Faber polynomials are derived have specific series

representations and it is helpful to see how these forms arise.

Definition 5.2.1. A map f : E → C is conformal at z0 if there exists a θ ∈ [0, 2π) and

an r > 0 such that for any curve γ(t) ∈ E that is differentiable at t = t0, γ(t0) = z0, and

γ′(t0) 6= 0, the curve σ(t) = f(γ(t)) is differentiable at t = t0 and, setting u = σ′(t0) and

v = γ′(t0), we have |u| = r|v| and arg u = (arg v + θ)mod 2π. A map is called conformal if

it conformal at every point.

What this definition says is that a conformal map stretches and rotates tangent vectors

to curves. Therefore, such a map will also preserve angles between curves.

Example 5.2.2. Let z0 = 1 + i be fixed and consider the curves γ1(t) =
√

2eit and γ2(t) =

1 + it2. Let f(z) = z2. We will show that the angles between the tangents to γ1 and γ2 at

z0 are preserved under this map. First, note that γ1(π/4) = 1 + i and γ2(1) = 1 + i. Also,

γ′1(t) =
√

2ieit and γ′2(t) = 1 + 2it,

so

γ′1(π/4) = i− 1 and γ′2(1) = 1 + 2i.

These latter values specify the direction of the tangent vectors, i.e. if T1 and T2 are the

tangents to γ1 and γ2 at z0 = 1 + i respectively, then

T1(t) = 1 + i+ (i− 1)t and T2(t) = 1 + i+ (1 + 2i)t,

where arg T1 = 3π/4 and arg T2 = tan−1(2) ≈ 1.107. The angle between the two vectors is
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given by the difference of these two arguments and is approximately 1.249 radians.

Now consider the images of γ1 and γ2 under f(z) = z2. We have

µ1(t) = f(γ1(t)) = 2e2it and µ2(t) = f(γ2(t)) = (t+ it2)2.

Using the chain rule, we obtain

µ′1(t) = 4ie2it and µ′2(t) = 2(t+ it2)(1 + 2it),

and so

µ′1(π/4) = −4 and µ′2(1) = −2 + 6i.

Therefore, if S1 and S2 are the tangents to µ1 and µ2 at f(z0) = 2i, respectively, then arg

S1 = π and arg S2 = tan−1(−3) + π. The difference between these angles is − tan−1(−3) ≈

1.249 radians. So we see that the angle between these two tangents has been preserved under

the map f .

We mentioned above that any analytic function with a nonzero derivative at a point z0

is conformal at z0. Here is that claim stated as a proposition with proof.

Proposition 5.2.3. An analytic function f is conformal at every point z0 for which f ′(z0) 6=

0.

Proof. Using the notation of Definition 5.2.1, we have

u = σ′(0) = f ′(γ(0))γ′(0) = f ′(z0)v.

Therefore

arg u = (arg v + arg f ′(z0))mod 2π and |u| = |f ′(z0)||v|.

So taking θ = arg f ′(z0) and r = |f ′(z0)| in Definition 5.2.1 gives the result.
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Note that this result implies, by the Inverse Function Theorem, that any map that

is conformal at a point z0 is also one-to-one in a neighborhood of z0. When speaking of

functions of a complex variable, we often say that a one-to-one function is univalent.

Example 5.2.4. The function f(z) = z4 has derivative f ′(z) = 4z3 and so by Proposition

5.2.3 it is conformal at every point in C except for the origin. Let R = {z ∈ C | Re z ≥

1 and Im z ≥ 1}. Figure 5.1(a) contains a picture of the region R, with grid lines that meet

at right angles. Figure 5.1(b) is the image of this region under the map f(z) = z4. A close

up of the origin is shown in Figure 5.1(c). It can be seen in these figures that the right angles

have been preserved.

Example 5.2.5. The function f(z) = 1
2
(z + (1/z)) is known as the Joukowski Map (Add

citation). It maps a circle with radius larger than 1 conformally onto an ellipse [39]. In

Figure 5.2, we have shown a portion of the exterior of the unit disk, namely the region

C = {z ∈ C | 0.1 ≤ |z| ≤ 2}, and its image under the Joukowski Map.

The next theorem is the famous Riemann Mapping Theorem.

Theorem 5.2.6. Let E be a simply connected, open, and proper subset of C. Then there

exists a one-to-one conformal map f which maps E onto the open unit disk. For a fixed

point z0 ∈ E, we can also require that f(z0) = 0 and f ′(z0) > 0. Under these additional

specifications, the mapping f is unique.

The proof is quite involved and can be found in [11]. The Riemann mapping theorem

can be used to prove the existence of conformal mappings between certain regions other than

those specified in the statement of the theorem. The case we are concerned with is stated in

the following theorem.

Theorem 5.2.7. Let E ⊂ C be a compact, simply connected set containing more than

one point, so that Ec = Ĉ\E is connected in Ĉ. There exists a unique conformal map

ψ : D′(∞, 1)→ Ĉ which has the following properties:
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(a) The region R with grid lines

(b) The image of R of Example 5.2.4 under the map
f(z) = z4

(c) Close up of the origin

Figure 5.1: Example of a Conformal Map
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(a) A portion of the exterior of the unit disk

(b) The image of the region C of example Example 5.2.5 under the Joukowski
Map

Figure 5.2: Example of the Joukowski Map
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(i) ψ is univalent on D′(∞, 1) and analytic on D(∞, 1).

(ii) ψ has a simple pole at ∞ with ψ′(∞) > 0.

(iii) ψ maps D(∞, 1) onto Ec\{∞}.

Furthermore, the inverse function φ = ψ−1 also has a simple pole at ∞ with φ′(∞) =

1/ψ′(∞) > 0.

Proof. Let a ∈ E and consider the mapping ζ = h(z) = 1/(z − a). This map takes z = ∞

to ζ = 0 and z = a to ζ = ∞. Under this definition, this map is a homeomorphism of Ĉ

onto Ĉ with inverse z = h−1(ζ) = a + 1/ζ. Define B to be the image of Ec under the map

h. Thus 0 ∈ B, but ∞ /∈ B, since a /∈ Ec. Since the inverse is continuous, and Ec is open

and connected, it follows that B itself is open and connected. Furthermore, the preimage of

Ĉ\B under h is the connected set E and so Ĉ/B is connected. This shows that B is in fact

simply connected, so the Riemann Mapping Theorem applies.

Let η = f(ζ) be the unique conformal mapping guaranteed by Theorem 5.2.6, which

maps B onto D(0, 1), with f(0) = 0 and f ′(0) > 0. The inverse function f−1 : D(0, 1)→ B

is also a conformal mapping with f−1(0) = 0 and f
′−1(0) = 1/f ′(0) > 0. Note that this

implies the zero of f−1 at η = 0 is a simple zero.

Now define the function z = X(η) = a + [1/f−1(η)]. By the properties of f−1, X(η) is

analytic and univalent on D(0, 1)\{0} (the punctured unit disk), and has a simple pole at

η = 0. Also, by comparing the form of X with that of h−1 above, we have that X maps

D(0, 1) onto Ec. In particular, η = 0 maps to z = ∞. Now let w = 1/η. The resulting

function, given by z = ψ(w) = X(1/w), is analytic and univalent in D(∞, 1) and has a

simple pole at w =∞. By Example 5.1.6, we can compute ψ′(∞) as follows:

ψ′(∞) = lim
w→∞

ψ(w)

w
= lim

η→0
ηX(η) = lim

η→0
[ηa+ (η/f−1(η))] = f ′(0) > 0,
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where the last equality follows from an application of L’Hospital’s rule. Let w = φ(z) =

ψ−1(z). Since ψ′(∞) > 0, we can conclude that for large enough R > 0, φ(z) is analytic in

D(∞, R). The same also holds for φ(z)/z and so

lim
z→∞

φ(z)

z
= lim

w→∞

w

ψ(w)
= 1/ψ′(∞).

This implies that φ has a simple pole at ∞ (see [11, Proposition 10.7.3]). So again by

Example 5.1.6, we have that φ′(∞) = 1/ψ′(∞).

The last issue that needs addressing is that of uniqueness. Since a ∈ E was chosen

arbitrarily, we need to show that the resulting function ψ does not depend upon the choice

of a. So let ψ1 be another function, analytic on D(∞, 1) and univalent on D′(∞, 1), with

range Ec, and having a simple pole at ∞ with ψ′1(∞) > 0. Let φ1 = ψ−1
1 , and consider the

function

η = F (ζ) =
1

φ1(ψ(1/ζ))
, ζ ∈ D(0, 1).

The function φ1(ψ(1/ζ)) is analytic in D(0, 1) and has modulus which becomes arbitrarily

large as ζ approaches zero, hence F is bounded and analytic on D(0, 1) and so ζ = 0 is

a removable singularity of this function. Defining F (0) = 0 yields a function analytic and

univalent on D(0, 1) and maps D(0, 1) onto itself. So by Proposition 9.8.1 in [11], F (ζ) = eiαζ

in D(0, 1) for some α ∈ R. It follows that φ1(ψ(1/ζ)) = e−iα/ζ and so ψ(1/ζ) = ψ1(e−iα/ζ),

for ζ ∈ D(0, 1). Now if we let w = 1/ζ, we have ψ(w) = ψ1(e−iαw) where |w| > 1. Appealing

one more time to Example 5.1.6, we have

ψ′(∞) = lim
w→∞

ψ(w)

w
= lim

w→∞

ψ1(e−iαw)

e−iαw
e−iα = ψ′1(∞)e−iα.

But both ψ′(∞) and ψ′1(∞) are real and positive, and since |e−iα| = 1, it follows that e−iα = 1

and so ψ(w) = ψ1(w), |w| > 1.
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In the following chapters, we will have need to extend the mapping of Theorem 5.2.7

continuously to the boundary of E, in the case where E is also convex. In order to do this,

we need the Osgood-Caratheodory theorem, which is stated here. The proof can be found

in [29].

Theorem 5.2.8. Let A1 and A2 be two bounded, open, and simply connected subsets of the

complex plane whose boundaries ∂A1 and ∂A2 are simple, continuous closed curves. Then

any conformal map from A1 to A2 can be extended to a continuous map of A1 ∪ ∂A1 one-to-

one and onto A2 ∪ ∂A2.

Corollary 5.2.9. Using the same hypotheses and notation of Theorem 5.2.7, we can extend

the map φ : Ec → D(∞, 1) continuously to the boundary of E so that φ : Ec∪∂E → D(∞, 1)

is continuous, one-to-one, and onto.

Proof. First note that there exists an a ∈ C such that 0 ∈ E+ a (if 0 ∈ E, then take a = 0).

For z ∈ Ec, map z to w via the map w = 1/(z + a). Thus w ∈ Ω, where Ω is a bounded,

simply connected, open set and by the convexity of E we have that the boundary of Ω is a

simple closed, continuous curve. Define F (w) = 1/(φ( 1
w
− a)). Then it follows that F (w) is

a conformal map from Ω one-to-one and onto D(0, 1). Thus by the Osgood-Caratheodory

theorem, we can extend F to a continuous map from Ω ∪ ∂Ω one-to-one and onto D(0, 1).

Since the boundary of E corresponds to the boundary of Ω under the map z 7→ 1/(z+a), for

each w ∈ ∂Ω, we have that F (w) = 1/φ( 1
w
−a) = 1/φ(z) ∈ ∂D(0, 1), where z ∈ ∂E. Finally,

if 1/φ(z) ∈ ∂D(0, 1), then |1/φ(z)| = 1 and so |φ(z)| = 1, which implies φ(z) ∈ ∂D(0, 1) as

well. Thus the mapping φ of Theorem 5.2.7 can be continuously extended to the boundary

of E.
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5.3 Faber Polynomials

We are now ready to derive the Faber polynomials. As mentioned above, the discovery of

these polynomials was motivated by the desire to express an analytic function in the form∑∞
n=0 anpn(z), on a given region where the coefficients an depend on f , but the polynomials

only depend on the region in question. Thus we see that the theory of Faber polynomials

extends that of Laurent series to regions more general than just a disk or an annulus.

This discussion follows the treatment given in [10]. For an alternative derivation, see

[29]. Let E ⊂ C be compact and such that Ec is simply connected in Ĉ. By Theorem 5.2.7,

there exists a ψ which maps the exterior of the closed unit disk conformally onto Ec and is

analytic and univalent on D(∞, 1). By Example 5.1.6, we can write

ψ(w) = bw + b0 +
b1

w
+
b2

w2
+ · · · , |w| > 1, (5.3.1)

where b = ψ′(∞) > 0. The inverse map φ : Ec → D(∞, 1) exists and also by Theorem 5.2.7

and Example 5.1.6, we can conclude that

φ(z) =
z

b
+ c0 +

c1

z
+
c2

z2
+ · · · , (5.3.2)

for z outside a sufficiently large circle. Then the nth Faber polynomial associated with ψ

(or E) is defined to be the polynomial part of the Laurent expansion at infinity of [φ(z)]n

(from here on, we will simply write φ(z)n to keep the notation uncluttered). By (5.3.2), it is

evident that this is a polynomial of degree n with leading term (z/b)n. The following result

is of central importance in showing how the Faber polynomials are used in analytic function

approximation.

Proposition 5.3.1. Let R > 1 and let CR = {z | z = ψ(s), |s| = R}. Then if pn(z),
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n = 0, 1, 2, ..., are the Faber polynomials for ψ, then

sψ′(s)

ψ(s)− z
=
∞∑
n=0

pn(z)

sn

where z ∈ Int CR and the series converges absolutely and uniformly for all |s| ≥ R.

Proof. The current situation is illustrated by Figure 5.3.

Figure 5.3: Figure for Proposition 5.3.1

Consider the following integral

1

2πi

∫
CR

φ(t)n

t− z
dt.

We can deform CR into a circle C∗, of radius large enough so that the Laurent expansion

at infinity of φ(z) (and thus also φ(z)n) converges uniformly for z outside C∗. Then we can

integrate term-by-term and obtain

1

2πi

∫
CR

φ(t)n

t− z
dt =

1

2πi

∫
C∗

φ(t)n

t− z
dt =

1

2πi

∫
C∗

1

t− z
(pn(t) +O(1/t))dt

=
1

2πi

∫
C∗

pn(t)

t− z
dt+

1

2πi

∫
C∗

O(1/t)

t− z
dt,

(5.3.3)
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where pn(t) is a polynomial in t of degree n. Since pn(t) is analytic on and in the interior of

C∗, we have that the first integral equals pn(z) by the Cauchy integral formula. We claim

that the second integral equals zero. To see this, first note that the highest degree term in

the numerator of this integral is 1/t. So each term making up the second integral is of the

form

1

2πi

∫
C∗

1/tk

t− z
dt, k ≥ 1,

up to a multiplicative constant. Second, since z ∈ Int CR, we also have that z ∈ Int C∗, and

so |t| > |z|. Therefore, we can rewrite this last equation as

1

2πi

∫
C∗

1

tk+1

1

1− z
t

dt =
1

2πi

∫
C∗

1

tk+1

∞∑
n=0

(z
t

)n
dt.

The highest order term is 1/t2 since k ≥ 1 and so each of these terms must vanish. Therefore,

the second integral in the last member of (5.3.3) is indeed equal to zero. At this point we

have established the relation

pn(z) =
1

2πi

∫
CR

φ(t)n

t− z
dt, n = 1, 2, 3, ..., z ∈ Int CR, (5.3.4)

where pn(z) is a polynomial of degree n. Now if we let t = ψ(s), we get

pn(z) =
1

2πi

∫
|s|=R

snψ′(s)

ψ(s)− z
ds, n = 1, 2, 3, ..., z ∈ Int CR. (5.3.5)

Now, since z ∈ Int CR, it follows that ψ(s) − z does not vanish for any |s| = R and so the

function sψ′(s)/(ψ(s) − z) is analytic for all such s. Also, the fact that z ∈ Int CR implies

that we can find a positive constant R′ < R such that z ∈ Int CR′ and so Theorem 5.1.3

gives us that the Laurent expansion at infinity of this function is not only valid for |s| ≥ R,

but that it converges absolutely for all such s. Uniform convergence for |s| ≥ R also follows
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from Theorem 5.1.3 and will be shown explicitly Section 5.3.1. Furthermore, by L’Hospital’s

Rule, this function has value 1 at s = ∞ and therefore the Laurent expansion is of the

following form:

sψ′(s)

ψ(s)− z
= 1 +

p1

s
+
p2

s2
+ · · · , |s| ≥ R, z ∈ Int CR. (5.3.6)

By Cauchy’s integral formula, the coefficients pn in the above expression can be obtained by

multiplying both sides by sn−1 and integrating on |s| = R. But this yields the same result

as in (5.3.5), and so the coefficients pn in (5.3.6) must be the Faber polynomials associated

with ψ.

The expression on the left hand side of (5.3.6) is regarded as a generating function for

the Faber polynomials and its uses will be seen below. Another useful result is obtained by

letting z = ψ(w) and considering pn(ψ(w)) = Fn(w). First choose R1 so that 0 < R1 < R

and R1 < |w| < R. This implies the image ψ(w) lies in the region bounded by CR and CR1 ,

see Figure 5.4.

Figure 5.4: The point z with pre-image w

Denote the closed region bounded by the circles with radii R and R1 by Ω. The integrand
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of (5.3.5) can now be written as

snψ′(s)

ψ(s)− ψ(w)
.

This function, regarded as a function of s, is analytic on Ω except for an isolated singularity

at s = w. Since the highest positive power in the expansion (5.3.1) is 1, it is easily verified

that this singularity is a simple pole. The residue at this singularity is given by

lim
s→w

(s− w)
snψ′(s)

ψ(s)− ψ(w)
= lim

s→w

(s− w)

ψ(s)− ψ(w)
snψ′(s) =

1

ψ′(w)
wnψ′(w) = wn.

We now wish to use the residue theorem to evaluate the integral in (5.3.5). First, note that

this integral is equal to the expression

pn(ψ(w)) =
1

2πi

∫
|s|=R

snψ′(s)

ψ(s)− ψ(w)
ds

− 1

2πi

∫
|s|=R1

snψ′(s)

ψ(s)− ψ(w)
ds+

1

2πi

∫
|s|=R1

snψ′(s)

ψ(s)− ψ(w)
ds.

The first two integrals are integrals over the outer and inner boundaries of the annulus

formed by the circles with radii R and R1, respectively. We can continuously deform this

annulus into a circle centered at the singularity of the integrand, namely w, as in Figure 5.5.

Figure 5.5: Deformation of ∂Ω into a circle about w

So the first two integrals are equal to the residue at the point w, which was calculated
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above. Therefore,

Fn(w) = wn +
1

2πi

∫
|s|=R1

snψ′(s)

ψ(s)− ψ(w)
ds.

Since s is restricted to have modulus R1, the integral in the above equation is an analytic

function of w for |w| > R1. Also, it maps w = ∞ to w = 0. Therefore, by Theorem 5.1.3,

we have that this integral has a Laurent expansion at infinity which converges for at least

all |w| > R (since R > R1) and is of the form

Fn(w) = wn +
∞∑
k=1

ankw
−k. (5.3.7)

It turns out we can be more precise about the convergence properties of this series. Since

R and R1, satisfying R > R1 > 1, were chosen arbitrarily, we can further conclude that

this series converges for all |w| > 1. Furthermore, since the series has no positive powers, if

we let w = 1/z we obtain a series valid for all |z| < 1, given by
∑∞

k=1 ankz
k. The function

represented by this series is analytic in the whole unit disk, including zero, and thus is

uniformly convergent on any closed subdisk. Thus the infinite series in (5.3.7) is uniformly

convergent for |w| > R1 > 1 (since |w| must always be greater than R1). Since R1 can be

chosen arbitrarily close to 1, what this tells us is that for |w| > 1, the Faber polynomials,

regarded as functions of w, can be written Fn(w) = wn +O(1/w).

The coefficients ank are called the Faber coefficients of E. It turns out that they also

have an associated generating function. Choose the variables t and w so that |t| > |w| > 1.

Then

∂

∂t
ln
ψ(t)− ψ(w)

b(t− w)
=

ψ′(t)

ψ(t)− ψ(w)
− 1

t− w

=
1

t
+ F1(w)

1

t2
+ F2(w)

1

t3
+ · · · − 1

t
− w

t2
− w2

t3
− · · ·

=
∞∑
n=1

(Fn(w)− wn)t−n−1 =
∞∑
n=1

(
∞∑
k=1

ankw
−k

)
t−(n+1)

(5.3.8)
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The second equality follows from (5.3.6) and the expansion of 1/(t−w) in a geometric series.

The third and fourth equalities come from combining like terms and using (5.3.7). Note the

the series in the parentheses is the same as the series appearing in (5.3.7) and thus converges

for all |w| > 1. Fixing such a w, we see that the final series in (5.3.8) is a power series in

t which converges as long as |t| > |w| > 1. Now choosing a positive constant B > 1, this

power series will converge uniformly for |t| ≥ B > |w|. Thus as long as |t| > B, we can

integrate and differentiate this series term-by-term. In particular,

−
∞∑
n=1

n−1

(
∞∑
k=1

ankw
−k

)
t−n

is an antiderivative of the last member of (5.3.8) and hence is analytic in t, convergent for

|t| > |w| > 1, and uniformly convergent for |t| ≥ B > |w|. By (5.3.8), this series is equal to

ln((ψ(t) − ψ(w))/d(t − w) up to a constant, which depends on w since we integrated with

respect to t. However, if we choose a branch of the natural log such that ln 1 = 0, we can

show that the constant must be zero. We have that

ln
ψ(t)− ψ(w)

d(t− w)
+ C(w) = −

∞∑
n=1

n−1

(
∞∑
k=1

ankw
−k

)
t−n,

where C(w) denotes the arbitrary constant. Now if we let t approach infinity, the natural

log term vanishes (apply L’Hospital’s rule and (5.3.1)), as does the right hand side since all

the powers of t are negative. Hence, C(w) = 0. Therefore,

ln
ψ(t)− ψ(w)

d(t− w)
= −

∞∑
n=1

n−1

(
∞∑
k=1

ankw
−k

)
t−n, (5.3.9)

Since ψ(w) is univalent for |w| > 1, the expression (ψ(t) − ψ(w))/(t − w) can never vanish

in the domain M = {t | |t| > 1} × {w | |w| > 1}. For the case where t = w, L’Hosptial’s
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Rule gives us that this expression equals ψ′(w) there, which is also nonzero for all |w| > 1 by

conformality. Thus (ψ(t)−ψ(w))/(t−w) is an analytic function of two complex variables in

M , with a nonzero derivative for |w| > 1. So taking the log of this function is also analytic

for |w| > 1 and therefore, the series on the right hand side of (5.3.9) must be its power series

expansion about (∞,∞), valid for |t| > 1 and |w| > 1. This also implies we can ignore the

restriction |t| > |w| used in deriving this relation when using (5.3.9).

Example 5.3.2. Let E be the closed disk defined by {z | |z − a| ≤ d}. Then determining

the conformal maps and the Faber polynomials is rather straightforward. The map ψ :

D(0, 1)c → Ec is obtained by a magnification and then a translation. We have

ψ(w) = dw + a and ψ−1(z) = φ(z) = (z − a)/d.

Then φ(z)n is itself a polynomial and so the Faber polynomials are simply

pn(z) = [(z − a)/d]n and Fn(w) = pn(ψ(w)) = wn.

Example 5.3.3. Let E = [−1, 1]. Here we will revisit the Joukowski map (see Example

5.2.5). Recall this map is given by

z = ψ(w) =
1

2
(w + w−1).

If we solve for w in terms of z, we obtain

w = φ(z) = z ±
√
z2 − 1.

This means that each z has two pre-images under this map. Since we are interested in

mappings between the exterior of the unit disk to the exterior of [−1, 1], we choose the
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solution w = z +
√
z2 − 1, which always has modulus greater than or equal to 1. The Faber

polynomials could be obtained by computing the polynomial part of

φ(z)n = (z +
√
z2 − 1)n.

However, this can be done more simply by recalling that

Tn(z) = Tn

(
1

2
(w + w−1)

)
=

1

2
(wn + w−n),

where Tn(z) is the nth Chebyshev polynomial of the first kind (see [39] for details). We also

had the result

wn − Fn(w) = O(1/w).

Therefore,

2Tn(z) = (wn + w−n) = wn +O(1/w) = Fn(w).

Thus the Faber polynomials are twice the Chebyshev polynomials of the first kind.

Example 5.3.4. Let E be the closed region bounded by the ellipse given by (Re z/a)2 +

(Im z/b)2 = 1, where a > b > 0. The conformal map from D(0, 1)c to Ec is given by

ψ(w) =
a+ b

2
w +

a− b
2w

= cPw +
c

Pw
,

where c =
√

(a2 − b2)/2 and P = [(a + b)/(a − b)]1/2. Writing the mapping using these

variables will help in the derivation of the Faber polynomials. Note that P > 1 and ψ′(1/P ) =

0, so ψ is conformal (in particular, analytic and univalent) for |w| > 1/P . To determine the

Faber polynomials, pn(z), we use the generating function given in (5.3.8). By plugging in
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ψ(w) = cPw + c/Pw into the left hand side and simplifying, one obtains the expression

1

P 2t2w(1− (1/P 2tw))
=

1

P 2t2w

∞∑
n=0

P−2nw−nt−n =
∞∑
n=1

P−2nw−nt−n−1.

This means that the coefficient of t−n−1 in the right hand side of (5.3.8) is simply P−2nw−n.

Thus Fn(w) = wn + P−2nw−n. Finally, if we solve z = ψ(w) for w in terms of z and plug in

for w, we obtain

pn(z) = 2

n/2∑
k=0

(
n

2k

)
zn−2k(z2 − 4c2)k, n = 1, 2, ...

5.3.1 The Faber Series. The motivation that led to the discovery of the Faber poly-

nomials was finding a way to approximate functions analytic in a given region by a series of

polynomials. Let E be a simply connected, compact set in C and let D denote the closed

unit disk. Let h be analytic in some open set containing E, and let φ be the conformal map

guaranteed by Theorem 5.2.7 which maps Ec onto Dc, with φ(∞) =∞ and φ′(∞) > 0. As

shown above, φ has a Laurent expansion of the form

φ(z) = a1z + z0 + a−1z
−1 + a−2z

−2 + · · · ,

where φ′(∞) = a1. Denote the inverse of φ by ψ, which has a Laurent expansion of the same

form, i.e.

ψ(w) = b1w + b0 + b−1w
−1 + b−2w

−2 + · · ·

where b1 = a−1
1 .

Now let ρ > 1 and recall that ρeit is a circle of radius ρ surrounding D. It follows that

z = ψ(ρeit) is a curve surrounding E. Denote this curve by Γρ. Since h is analytic in some

open set containing E, by taking ρ sufficiently close to 1, we have that h is analytic inside
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and on Γρ and thus Cauchy’s formula holds for z ∈ E, i.e.

h(z) =
1

2πi

∫
Γρ

h(t)

t− z
dt.

If we substitute t = ψ(w), where |w| = ρ, we get

h(z) =
1

2πi

∫
|w|=ρ

h(ψ(w))ψ′(w)

ψ(w)− z
dw. (5.3.10)

For each z ∈ E, ψ(w) 6= z for all w ∈ Dc, so the function w 7→ ψ′(w)
ψ(w)−z is analytic for |w| > 1.

From Proposition 5.3.1, we have that

ψ′(w)

ψ(w)− z
=
∞∑
n=0

pn(z)w−n−1, |w| > 1 (5.3.11)

where the pn(z) are the Faber polynomials for E. We now want to show that this series

converges uniformly for all z ∈ E and |w| ≥ ρ > 1. If we choose σ > 0 such that 1/σ < 1,

then by Corollary 5.1.5, we have

|pn(z)| ≤ σn+1 sup
|w|=σ

∣∣∣∣∣ ψ′(w)

ψ(w)− z

∣∣∣∣∣ =
µ(σ)

δ(σ)
σn+1, z ∈ E.

where µ(σ) = sup|w|=σ |ψ′(w)| and δ(σ) is the distance from Γσ to E. Thus we have a bound

for the pn(z), which depends only on the set E and σ. Now, given ρ as introduced above, if

we also require 1/ρ < 1/σ, then 1 < σ < ρ and so

∞∑
n=0

|pn(z)w−n−1| ≤
∞∑
n=0

|pn(z)|ρ−n−1 ≤
∞∑
n=0

µ(σ)

δ(σ)

(σ
ρ

)n+1

<∞

Thus (5.3.11) converges uniformly for z ∈ E, and |w| ≥ ρ, as desired. Now if we substitute
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(5.3.11) into (5.3.10), we can integrate term by term, obtaining the following:

h(z) =
1

2πi

∫
|w|=ρ

h(ψ(w))ψ′(w)

ψ(w)− z
dw =

1

2πi

∫
|w|=ρ

h(ψ(w))
∞∑
n=0

pn(z)w−n−1dw.

=
1

2πi

∞∑
n=0

pn(z)

∫
|w|=ρ

h(ψ(w))w−n−1dw =
∞∑
n=0

cnpn(z)

where cn = 1
2πi

∫
|w|=ρ h(ψ(w))w−n−1dw. We have proven the following theorem:

Theorem 5.3.5. Let h be analytic on a simply connected, compact set E and let {pn(z)}

be the Faber polynomials associated with E. Let ψ be the conformal map which maps the

complement of the closed unit disk onto the complement of E and let

cn =
1

2πi

∫
|w|=ρ

h(ψ(w))w−n−1dw, n = 0, 1, 2, ...

where ρ > 1 is such that h is continuous on and analytic inside the image of |w| = ρ under

ψ. Then the representation

h(z) =
∞∑
n=0

cnpn(z)

holds uniformly for z ∈ E.

Next we will see how Faber polynomials are used, along with Crouzeix’s results, in

establishing convergence bounds on the convergence of GMRES.

Chapter 6. Crouzeix’s Conjecture and GMRES

Here we focus on the work presented in the paper by Beckermann, et. al. [4]. This paper

presents a result that improves upon the estimate given in the Ph.D. thesis by H.C. Elman

[17]. In his thesis, for a matrix A with a positive definite Hermitian part M , Elman presented

the following bound for the kth relative residual of the generalized conjugate residual method
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(see [17, Theorem 5.4]).

||rk||
||r0||

≤ sink(β), where cos(β) :=
λmin(M)

||A||
, where β ∈ [0, π/2). (6.0.1)

The conjugate residual method (also known as MINRES) is an algorithm for Hermitian

indefinite matrices which minimizes the 2-norm of the residual over the associated Krylov

subspace. Generalized conjugate residual extends this method to non-symmetric matrices

with positive definite Hermitian part. It gives the same result as the GMRES method for

this subclass of matrices, and thus any bound shown for this method is also valid for GMRES

applied to these matrices. See Chapter 5 in [17] for more details. Returning to (6.0.1), note

that since M is positive definite, its numerical range is positive real, and by Proposition

2.1.5 and Proposition 2.1.6, the smallest eigenvalue of M bounds the real part of W (A) from

below. Also, note that by Theorem 2.4.3, W (A) is contained in the disk of radius ||A||. So

the angle β can be visualized as the angle between the line connecting the origin and λmin(M)

and a line of length ||A||, see Figure 6.1. Note that β also provides a way of assessing how

close W (A) is to 0. If β is close to π/2, then W (A) is close to 0, and if β is small, then W (A)

is far away from the origin. Thus a small β is desirable, since when the numerical range is

far from 0, GMRES converges quickly, as indicated by (6.0.1).

We can extend the result in (6.0.1) to any matrix with 0 /∈ W (A). Since W (A) is convex,

there exists a t ∈ R such that dist(0,W (A)) = λmin((eitA + (eitA)∗)/2). Since the norm of

the kth relative residual is unaffected by multiplying A by a number of modulus 1, (6.0.1)

now becomes

||rk||
||r0||

≤ sink(β), where cos(β) :=
dist(0,W (A))

||A||
. (6.0.2)

for all matrices with 0 /∈ W (A). We will use this version of Elman’s estimate to compare

with the results given in [4].
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Figure 6.1: The angle β of (6.0.1)

6.1 Beckermann, et. al.’s Convergence Bound for GMRES

The main result of Beckermann, et. al. is given in the following theorem.

Theorem 6.1.1. Let A be a square matrix with 0 /∈ W (A) and define β ∈ [0, π/2) as in

(6.0.2). Then for the kth relative residual of GMRES, we have

||rk||
||r0||

≤ (2 + 2/
√

3)(2 + γβ)γkβ , k = 1, 2, 3, ... (6.1.1)

where

γβ = 2 sin

(
β

4− 2β/π

)
< sin(β). (6.1.2)

We will prove this theorem by breaking the bulk of the work into smaller results. First,

we introduce some needed notation. For a compact set K ⊂ C, let

Ek(K) = min{||p||K | p a polynomial with degree ≤ k, p(0) = 1},
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where || · ||K denotes the maximum norm on K. Next, let α ∈ [0, π] and define

Sα = {z ∈ C | arg z ∈ [0, α]}.

The set Sα is called a sector. Crouzeix showed in [9] that

||p(A)|| ≤ (2 + 2/
√

3) sup
z∈Sα

W (A)⊂Sα

|p(z)|. (6.1.3)

To prepare for the following lemma, recall by the remarks above, that the kth relative

residual of GMRES is unchanged when multiplying A by a complex number of modulus

1. So without loss of generality, we can suppose that the point of W (A) closest to 0 is

real positive. Then, by (6.0.2), we have that W (A) ⊂ {z | Re z ≥ ||A|| cos(β)}. Define

Kβ to be the intersection between the half plane {z | Re z ≥ cos(β)} and the closed unit

disk. Since W (A) is also contained in the closed disk with radius ||A||, we then have that

W (A) ⊂ ||A||Kβ; see Figure 6.2. The importance of this is that now we have a convex,

compact set which contains W (A) and is easy to work with in the sense that we can explicitly

construct a conformal map involving this region, as will be seen below. Using these ideas,

we have the following estimate for the quantity Ek(Kβ).

Lemma 6.1.2. Let k ≥ 1 and β ∈ [0, π/2). Then

γkβ < Ek(Kβ) ≤ min

{
2 + γβ,

2

1− γk+1
β

}
γkβ , (6.1.4)

where γβ is as in (6.1.2).

Proof. Let K be a convex, compact set containing more than one point, with 0 /∈ K. We

will first prove a similar result for this set and then extend it to prove (6.1.4). Let φ denote

the conformal map from the exterior of K to the exterior of the closed unit disk with the
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(a) The set Kβ (b) The set ||A||Kβ containing W (A)

Figure 6.2: The sets Kβ and ||A||Kβ

properties φ(∞) =∞ and φ′(∞) > 0 (see Theorem 5.2.7). We will show that for k ≥ 1,

γk ≤ Ek(K) ≤ min

{
2 + γ,

2

1− γk+1

}
γk, where γ = 1/|φ(0)|. (6.1.5)

First we show the left hand inequality. Let p be an arbitrary polynomial of degree less than

or equal to k satisfying p(0) = 1. Recall that by Corollary 5.2.9, we can continuously extend

φ to the boundary of K, and by the definition of φ, we have |φ(z)| = 1 for all z ∈ ∂K. Next,

consider the function p/φk. We want to argue that the modulus of this function on Ĉ/K is

bounded by its modulus on ∂K. To do so, we will map Ĉ\K conformally onto a bounded

set, Ω. Since 0 /∈ K, there exists a scalar a 6= 0 such that 0 ∈ K + a. So let the map be
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defined by z 7→ w, where w = 1/(z+a). Now note that if φ(z) = bz+ b0 +
∑∞

n=1 bnz
−n, then

φ
( 1

w
− a
)

= b
( 1

w
− a
)

+ b0 +
∞∑
n=1

bn
wn

(1− aw)n

=
1

w

(
b′w + b+ w

∞∑
n=1

bn
wn

(1− aw)n

)
,

where b′ = (b0 − ab). Using this, we have the following result for all z ∈ Ĉ\K,

p(z)

φ(z)k
=

(1/wk)q(w)

φ( 1
w
− a)k

=
(1/wk)q(w)

(1/wk)(b′w + b+ w
∑∞

n=1 bn
wn

(1−aw)n
)k

=
q(w)

(b′w + b+ w
∑∞

n=1 bn
wn

(1−aw)n
)k
,

where q is a polynomial of degree less than or equal to k. Furthermore, the denominator

never vanishes since φ maps to the exterior of the closed unit disk. Thus the right hand

side of the last equation is an analytic function of w on the bounded set Ω and thus attains

its maximum modulus on ∂Ω. Since the boundary of Ω corresponds to the boundary of K

under the map z 7→ w, we can conclude that p/φk does indeed attain its maximum modulus

on ∂K. We then have the following.

γk =
|p(0)|
|φ(0)|k

≤ ||p||∂K
||φ||k∂K

= ||p||∂K = ||p||K . (6.1.6)

Since ||φ||k∂K = 1. Since p was arbitrary, this shows the left hand side of (6.1.5). An equality

is attained if and only if φk is a polynomial equal to p. A result in [37] shows that φk is a

polynomial if and only if K is a lemniscate, which is not the case for Kβ, so we take the

inequality to be strict in (6.1.4).

For the second inequality in (6.1.5), the goal is to find a polynomial whose maximum

norm over K can be bounded by something of the form of the right hand side in this
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equation. We will use the Faber polynomial of degree k, denoted Fk. Recall that this is the

polynomial part of the Laurent expansion at infinity for φk. We will use the result of Kovari

and Pommerenke given in [35], which states that

δk := ||Fk − φk||∂K ≤ 1 (6.1.7)

for general convex sets K. Consider the function φFk−φk+1. If we perform the same mapping

as above, i.e. z 7→ w = 1/(z + a), we get, after some simplification,

φ(z)Fk(z)− φ(z)k+1

=
(b′w + b+ w

∑∞
n=1 bn

wn

(1−aw)n
)Gk(w)− (b′w + b+ w

∑∞
n=1 bn

wn

(1−aw)n
)k+1

wk+1
=
f(w)

g(w)
,

where Gk(w) = wkFk((1/w)− a). We want to show this expression is analytic for all w ∈ Ω.

The only point of concern is w = 0. Since Gk(0) = b, we have that f(0) = 0 and since

the degree of the numerator is k + 1, it can be shown that the first k + 1 derivatives of

f(w) are zero also. By applying L’Hospital’s rule, we see that this function is analytic at 0.

Hence, |f(w)/g(w)| attains its maximum on ∂Ω, which implies |φ(z)Fk(z)− φk+1(z)| has its

maximum on ∂K. Therefore,

|φ(0)||Fk(0)− φ(0)k| ≤ ||φFk − φk+1||∂K ≤ ||φ||∂K ||Fk − φk||∂K = δk, (6.1.8)

since ||φ||∂K = 1, as before.

Now let v ∈ [0, 1] and define

pv(z) = Fk(z) + v(φ(0)k − Fk(0)).
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Then

|pv(0)| = |Fk(0) + v(φ(0)k − Fk(0))| = |Fk(0)− φ(0)k + φ(0)k + v(φ(0)k − Fk(0))|

≥ |φ(0)|k − |Fk(0)− φ(0)k − v(Fk(0)− φ(0)k)| = |φ(0)|k − (1− v)|Fk(0)− φ(0)k|

≥ |φ(0)|k − (1− v)
δk
|φ(0)|

.

Also,

||pv||K = ||pv||∂K ≤ ||φk||∂K + ||φk − Fk||∂K + v|φ(0)k − Fk(0)|

≤ 1 + δk + v
δk
|φ(0)|

.

These latter two equations both follow from (6.1.7) and (6.1.8). Therefore,

Ek(K) ≤ min
v∈[0,1]

||pv||K
pv(0)

≤ min
v∈[0,1]

1 + δk + v(δk/|φ(0)|)
|φ(0)|k − (1− v)(δk/|φ(0)|)

=
1 + δk(1 + vγ)

1− (1− v)δkγk+1
γk.

To determine the minimum of the right hand side over v ∈ [0, 1], we can simply take the

derivative with respect to v and determine the critical points. It turns out that given

expression has no critical points in the unit interval, and thus the minimum must occur at

either v = 0 or v = 1. Since plugging in v = 0 yields 2
1−γk+1γ

k and v = 1 yields (2 + γ)γk,

we have

Ek(K) ≤ min

{
2 + γ,

2

1− γk+1

}
γk.

This proves (6.1.5).

To extend this result to Kβ, we only need to show that the conformal map for Kβ

satisfies 1/|φ(0)| = γβ. It turns out that we can verify this directly by noting in this case
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that φ = T3 ◦ T2 ◦ T1 where

T1(z) =
z − eiβ

z − e−iβ
, T2(z) = (ei(π−β)z)π/(2π−β), T3(z) =

z − T2(1)

z − T2(1)
. (6.1.9)

By direct substitution, we have

1

|φ(0)|
=

∣∣∣∣∣ exp
(
iπ π+β

2π−β

)
− exp

(
iπ π−β

2π−β

)
exp
(
iπ π+β

2π−β

)
− exp

(
− iπ π−β

2π−β

)∣∣∣∣∣
We can factor the terms exp

(
iπ2

2π−β

)
and exp

(
iπβ

2π/β

)
out of the numerator and and denomi-

nator respectively. The moduli of these numbers are both 1, so we now have

1

|φ(0)|
=

∣∣∣∣∣exp
(
i βπ

2π−β

)
− exp

(
− i βπ

2π−β

)
exp
(
i π2

2π−β

)
− exp

(
− i π2

2π−β

)∣∣∣∣∣ =
sin
(

βπ
2π−β

)
sin
(

π2

2π−β

)
=

sin
(

2β
4−2β/π

)
sin
(

4π2

2(4π−2β)

) =
sin
(

2β
4−2β/π

)
sin
(
π
2

+ β
4−2β/π

) ,
where the last equality comes from adding and subtracting 2βπ in the numerator of the sine

argument in the denominator and simplifying. Now if we let u = β/(4− 2β/π), we have

1

|φ(0)|
=

sin(2u)

cos(u)
=

2 sin(u) cos(u)

cos(u)
= 2 sin(u) = γβ.

This completes the proof.

We now want to compare the asymptotic convergence factor provided by Elman in (6.0.1)

with the one just derived. Since γkβ < Ek(Kβ) by the left hand inequality of (6.1.4), we can
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do this by considering this inequality for k = 1. Note that

E1(Kβ) = min
a∈C

sup
z∈Kβ

|az + 1| = min
a∈C
|a| sup

z∈Kβ
|z + (1/a)| = min

b∈C

1

|b|
sup
z∈Kβ

|z + b|,

where b = 1/a, a 6= 0. First consider the problem of finding the supremum of |z + b| on Kβ.

Since the function z+b is analytic, and Kβ is compact, it follows from the maximum modulus

principle that this supremum is attained on the boundary of Kβ. Now if arg b ∈ [−β, β],

then the maximum modulus will be attained at the point z on the unit disk that satisfies

arg z = arg b. This follows from the fact that at no point on the unit circle is the curvature

zero. Also note that a shift such as this will push Kβ away from the origin, and so the minimal

supremum norm cannot be attained if arg b ∈ [−β, β]. So now let arg b ∈ (β,−β+2π). Now

note that the part of the boundary of Kβ that has real part equal to cos(β) is a straight

line segment so if the maximum modulus occurs on the line segment, it must occur at the

endpoints. Thus, the maximum modulus must be attained at a point of the form eiθ, where

θ ∈ [−β, β]. Writing b = reiφ, where r > 0 and φ ∈ (β,−β + 2π), we have

sup
z∈Kβ

|z + b|2 = sup
θ∈[−β,β]

|eiθ + reiφ|2 = sup
θ∈[−β,β]

1 + r2 + 2r cos(θ − φ).

Taking the derivative with respect to θ and setting it equal to zero, we see that there is a

critical point whenever θ = φ or when θ−φ = cπ, c ∈ Z. The former case cannot happen since

θ ∈ [−β, β] and φ ∈ (β,−β+ 2π). In the latter case, by examining the sign of the derivative

on either side of the point θ = cπ+φ, we see that such a point is a local minimum point. So

the maximum must occur on the endpoints of the interval, namely θ = ±β. To determine

arg b, note that since we have already deduced that the supremum norm is attained at e±βi,

it follows from geometric considerations that this supremum norm is minimized only when

arg b = π. Now we need to determine the optimal value of r so that the supremum norm is
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minimized. By symmetry, it suffices to consider the case where θ = β. We have

min
b∈C

1

|b|
|b+ eiβ|2 = min

r>0
|1 +

eiβ

reiπ
|2 = min

r>0
|1− eiβ/r|2 = min

r>0
1 +

1

r2
− e−iβ

r
− eiβ

r
.

Taking the derivative with respect to r and setting it equal to zero, we get a critical point

when r = 1/ cos(β). The second derivative test confirms this is a global maximum, and so

b = −1/ cos(β). Thus a = − cos(β).

The next step is to evaluate |az + 1| for a = − cos(β) and z = e−iβ. We have

|az + 1| = | − cos(β)(eiβ) + 1| =

∣∣∣∣∣−eiβ − e−iβ2
eiβ + 1

∣∣∣∣∣ =

∣∣∣∣∣ei2β + 1

2
− 1

∣∣∣∣∣
=

∣∣∣∣∣eiβ eiβ − e−iβ2

∣∣∣∣∣ = | sin(β)| = sin(β),

where the last equality follows from the fact that β ∈ [0, π/2).

By this last argument, we have that the asymptotic convergence factor sin(β) provided

by Elman in (6.0.1) is equal to E1(Kβ). By Lemma 6.1.2, the asymptotic convergence factor

γβ of Theorem 6.1.1 is strictly less than this, thus we have obtained an result asymptotically

sharper than (6.0.1).

Next, we have

Lemma 6.1.3. Let β ∈ [0, π/2) be as in (6.0.2). Then for any nonzero polynomial p, we

have

||p(A)|| ≤ (2 + 2/
√

3)||p||K , where K = ||A||Kβ. (6.1.10)

Proof. Choose an angle α ∈ (β, π/2). We will use the linear fractional transformation given

by

r(z) =
||A||eiα − z
z − ||A||e−iα

. (6.1.11)

This map satisfies r(||A||Kα) = Sα. Let f = p ◦ r−1. Note that r−1(z) = (z||A||e−iα +
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||A||eiα)(1 + z), and so the only poles of f are at z = −1 which is not in Sα. Note that if

W (r(A)) ⊂ Sα, then we can apply (6.1.3) as follows:

||p(A)|| = ||f(r(A))|| ≤ (2 + 2/
√

3)||f ||Sα = (2 + 2/
√

3)||p ◦ r−1||Sα = (2 + 2
√

3)||p||K

So we need only show the relation W (r(A)) ⊂ Sα. Let y be a nonzero vector, and for

convenience, define ỹ = (A− ||A||e−iαI)−1y, which is also nonzero. Then

d :=
(r(A)y, y)

(ỹ, ỹ)
=

((||A||eiαI − A)ỹ, (A− ||A||e−iαI)ỹ)

(ỹ, ỹ)
=

((A− ||A||e−iαI)∗(||A||eiα − A)ỹ, ỹ)

(ỹ, ỹ)

= ||A||eiα (A∗ỹ, ỹ)

(ỹ, ỹ)
− (A∗Aỹ, ỹ)

(ỹ, ỹ)
− ||A||2e2iα + ||A||eiα (Aỹ, ỹ)

(ỹ, ỹ)

= −||A||2e2iα − ||Aỹ||
2

||ỹ||2
+ 2||A||eiαRe

((Aỹ, ỹ)

(ỹ, ỹ)

)
Next, we have two key observations. The first is that

Im (d) = −||A||2 sin(2α)+2||A||Re
((Aỹ, ỹ)

(ỹ, ỹ)

)
sin(α) ≥ 2||A||2 sin(α)(− cos(α)+cos(β)) > 0.

The first inequality follows from the expression on the right hand side of (6.0.1), since

λmin(M) bounds the real part of W (A) from below. The second inequality holds since

α > β. Next, we also have that

Im (e−iαd) = −||A||2 sin(α) +
||Aỹ||2

||ỹ||2
sin(α) = sin(α)

(
− ||A||2 +

||Aỹ||2

||ỹ||2
)
< 0

What these two equations tell us is that the imaginary part of d is positive, but a clockwise

rotation of d through the angle α results in a number with a negative imaginary part. This

implies that d ∈ Sα, see Figure 6.3

Lastly, recall that d = (r(A)y, y)/(ỹ, ỹ), and therefore ||ỹ||
2

||y||2d is a point in W (r(A)). Since

a real positive scaling of any point in Sα is also in Sα, we have that W (r(A)) ⊂ Sα.
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Figure 6.3: The point d in the set Sα

Now to apply this result to the set Kβ, we need to show that the quantity Ek(K)

is invariant under a scaling of the set K. Let p(z) be an arbitrary polynomial of degree

less than or equal to k, p(0) = 1 and let q(z) = p(cz) for some constant c ∈ C. Then

deg q = deg p, p(0) = q(0) = 1 and ||q||K = ||p||cK . Therefore, Ek(cK) = Ek(K). Then,

from Lemma 6.1.3, we have the following:

min{||p(A)|| | deg p ≤ k, p(0) = 1} ≤ (2 + 2/
√

3)Ek(||A||Kβ) = (2 + 2/
√

3)Ek(Kβ).

Applying Lemma 6.1.2, we then have

||rk||
||r0||

≤ min{||p(A)|| | deg p ≤ k, p(0) = 1} ≤ (2 + 2/
√

3)Ek(Kβ)

≤ (2 + 2/
√

3) min

{
2 + γβ,

2

1− γk+1
β

}
γkβ ≤ (2 + 2/

√
3)(2 + γβ)γkβ .

Since γβ < 1, we have that 2/(1 − γk+1
β ) ≤ 2 + γβ for large k, which explains the choice of

2 + γβ in the above equation. The shrewd reader will have noted that the proof of (6.1.5)
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does not depend on the particular shape of K. Thus we can state the following more general

result:

Corollary 6.1.4. Let K ⊂ C be a compact, convex set not containing 0. Let A be a matrix

satisfying W (A) ⊂ ||A||K. Then for the kth relative residual of GMRES, we have

||rk||
||r0||

≤ (2 + γ)C(K)γk < (2 + γ)C(K)Ek(K),

where C(K) is as in (1.0.3) and γ = 1/|φ(0)|, where φ is the conformal map from Ĉ\K to

Ĉ\D(0, 1) satisfying φ(∞) =∞, φ′(∞) > 0.

The second inequality in the statement of the corollary follows from the first inequality

in (6.1.4).

6.2 Beckermann’s Improvements

Not long after the above results were established, Beckermann independently published an

improvement [3]. As we will see, his new bound is sharper than that given in Theorem

6.1.1, and does not use the Crouzeix conjecture. We do not imply that this undermines

the importance of the Crouzeix conjecture, only that the best GMRES bounds obtained via

Faber polynomials (that we are aware of) are not dependent on it. Despite this, we still

present these results here as the method of proof closely resembles the strategy employed by

Crouzeix in some of his papers [2, 8].

Theorem 6.2.1. Let A ∈ Mn, and let E ⊂ C be convex, compact, and satisfy W (A) ⊂ E.

Let FE
n be the associated Faber polynomial. Then

||FE
n (A)|| ≤ 2, n ≥ 1.
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Proof. Let φ be the conformal map from Ec to D(0, 1)
c
, with φ(∞) = ∞, φ′(∞) > 0. By

the definition of FE
n , we have that φn − FE

n and 1/φn are analytic in C\E and vanish at

infinity. Combining this fact with (5.3.4) we have

1

2πi

∫
|φ(z)|=r

φ(z)n

z − ζ
dz =


FE
n (ζ), n ≥ 0

0, n < 0.

where r > 1 and ζ is some point in the interior of the curve defined by |φ(z)| = r. Since

σ(A) ⊂ W (A) ⊂ E, we can write

1

2πi

∫
|φ(z)|=r

φ(z)n(zI − A)−1dz =


FE
n (A), n ≥ 0

0, n < 0.

(6.2.1)

Since we can make r arbitrarily close to 1, we have, for n ≥ 1,

0 =
1

2πi

∫
∂E

φ(z)−n(zI − A)−1dz =
1

2πi

∫
∂E

φ(z)
n
(zI − A)−1dz. (6.2.2)

Now note that since E is convex, the outward unit normal exists almost everywhere for

z ∈ ∂E. Thus, if the boundary of E has a parameterization z(t) = a(t) + ib(t), then the

outward normal is given by b′(t)− ia′(t) = 1
i
(a′(t) + ib′(t)). In terms of differentials, we can

write ν(z) = 1
i
dz
|dz| for the outward unit normal. Then, combining (6.2.1) and the adjoint of

(6.2.2), we have

FE
n (A) =

1

2πi

∫
∂E

φ(z)n(zI − A)−1dz − i

2π

∫
∂E

φ(z)n(zI − A∗)−1dz

=
1

2π

∫
∂E

φ(z)nν(z)(zI − A)−1|dz|+ 1

2π
φ(z)nν(z)(zI − A∗)−1|dz|

=

∫
∂E

φ(z)nµ(z, A)|dz|,
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where

µ(z, A) =
1

2π
(ν(z)(zI − A)−1 + ν(z)(zI − A∗)−1).

It is shown in Lemma 6.2.2 that

∫
∂E

µ(z, A)|dz| = 2I.

Therefore,

||FE
n (A)|| ≤ max

ζ∈∂E
|φ(ζ)n| sup

y∈Cn,||y||=1

∫
∂E

(µ(z, A)y, y)|dz| = 2.

Since φ has norm 1 on the boundary of E by definition.

Lemma 6.2.2. Let A ∈ Mn, E ⊂ C be a convex, compact, and positively oriented set

satisfying W (A) ⊂ E. Then ∫
∂E

µ(σ,A)ds = 2I,

where σ = σ(s) is a function of arclength which represents a point in ∂E and

µ(σ, z) =
1

2π
(
ν(σ)

σ − z
− ν(σ)

σ̄ − z̄
),

and µ(σ,A) =
1

2π
(ν(σ)(σI − A)−1 − ν(σ)(σ̄I − A∗)−1),

where ν(σ) = 1
i
dσ
ds

is the outward normal to E at the point σ ∈ ∂E.

Proof. We have that

∫
∂E

µ(σ,A)ds =
1

2π

∫
∂E

ν(σ)(σI − A)−1ds+
1

2π

∫
∂E

ν(σ)(σI − A∗)−1ds. (6.2.3)

We first consider the first integral. Let ζ = σ(s). Then dζ = σ′(s)ds = iνds. So this integral

becomes

1

2πi

∫
∂E

(ζ − A)−1dζ.
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We can evaluate this integral as long as ζ is in the resolvent set of A. Otherwise, ζ ∈ σ(A).

However, the spectrum of A is a set of measure zero and therefore these points do not affect

the value of the integral. So by the Cauchy formula, we get

1

2πi

∫
∂E

(ζI − A)−1dζ = I.

To evaluate the second integral, again let ζ = σ̄(s). Then dζ = σ̄′(s)ds = ν̄
i
ds. So we get

1

2π

∫
∂E

ν(σ)(σI − A∗)−1ds =
i

2π

∫
∂E

(ζI − A∗)−1dζ = − 1

2πi

∫
∂E

(ζI − A∗)−1dζ.

Note that ∂E is negatively oriented, so we have

− 1

2πi

∫
∂E

(ζI − A∗)−1dζ = −(−I) = I.

Plugging these values into (6.2.3), we obtain

∫
∂E

µ(σ,A)ds = 2I.

The next result is a general application to the convergence analysis of GMRES.

Theorem 6.2.3. Let E be a convex, compact subset of the complex plane that does not

contain zero, and satisfies W (A) ⊂ E. Then for the kth relative residual of GMRES, we

have

||rk||
||r0||

≤ min

{
2 + γE,

2

1− γk+1
E

}
γkE, (6.2.4)

where γE = 1/|φ(0)|, φ being the conformal map as in Theorem 6.2.1.
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Proof. The proof of this theorem is similar to the proof of Lemma 6.1.2. We will show that

min

{
||p(A)||
|p(0)|

| deg p ≤ k

}
≤ 2

|FE
k (0)|

≤ 2

1− γk+1
E

γkE. (6.2.5)

The first inequality follows directly from Theorem 6.2.1. To get an estimate for |FE
k (0)|, we

use the maximum principle applied to φ(φk − FE
k ) as before. We have

|φ(0)||FE
k (0)| ≥ |φ(0)|k+1 − |φ(0)(φ(0)k − FE

k (0)|

≥ |φ(0)|k+1 −max
z∈∂E
|φ(z)(φ(z)k − FE

k (z)|

= |φ(0)|k+1 −max
z∈∂E
|φ(z)k − FE

k (z)| ≥ |φ(0)|k+1 − 1.

The first inequality comes from adding and subtracting φ(0)k and the last inequality follows

from (6.1.7). From this we have

1

Fk(0)
≤ 1

γE(γk+1
E − 1)

=
γkE

1− γk+1
E

.

This gives us one of the bounds in (6.2.4). The other follows from the fact that min{1, 2γkE
1−γk+1

E

} ≤

(2 + γE)γkE.

This final corollary is an application of Theorem 6.2.3 to a specific E.

Corollary 6.2.4. Let 0 /∈ W (A). Then for the kth relative residual of GMRES we have

||rk||
||r0||

≤ (2 + γ)γk, where γ = 2 sin(
β′

4− 2β′/π
) < sin(β′),

where β′ ∈ (0, π/2) is defined by cos(β′) = dist(0,W (A))/w(A).

Proof. The proof is relatively simple. By multiplying A by some complex number of modulus

1, we have that the element of W (A) closest to 0 is real positive and the GMRES residual
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is the same. Define E to be the set {z | Re z ≥ dist(0,W (A)), |z| ≤ w(A)}. Then the result

follows from Theorem 6.2.3 where the conformal map φ is taken to be the same as the one

utilized in Lemma 6.1.2.

In comparing the result of Theorem 6.2.3 with that of Theorem 6.1.1, we note two

improvements. One is that we no longer have the constant 2 + 2/
√

3, and the other is that

the angle β′ is now slightly smaller than before, due to the fact that w(A) ≤ ||A|| (compare

the definition of β in (6.0.2) to the β′ in Corollary 6.2.4). The first of these changes is quite

significant as any scaling factor greater than 1 will only dull the accuracy of any GMRES

bound. The second change makes this new bound asymptotically sharper, as it results in a

change in the asymptotic convergence factor.

Chapter 7. Numerical Experiments

Here we present some numerical experiments comparing the bounds derived above. The

first bound is the one derived by Beckermann, et. al. [4] stated in Theorem 6.1.1. The

second is Beckermann’s improvement of Theorem 6.2.3 [3]. The third bound we compute is

a bound where the asymptotic convergence factor γ is taken to be γ = 1/|φ(0)|, where φ is

the conformal map of the exterior of an approximating polygon to W (A) to the exterior of

the unit disk. This value is computed using the Schwarz-Christoffel toolbox [43]. Lastly, we

also included Elman’s orginal bound given in (6.0.1). We do this because the asymptotic

convergence factor of Theorem 6.1.1 is only asymptotically sharper than Elman’s, and thus

Elman’s bound can be more descriptive for the earlier iterations.

We should note that for the figures of this section, the numerical range was computed

using a modified version of the m-file fv.m, which is found in the Matrix Computation

Toolbox by Higham [31]. See Appendix B.
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Iteration Residual Beckermann, et. al Improved Beckermann Conf. Map Elman

1 0.191504 3.433643 1.088396 0.438420 0.707213
2 0.040493 1.528442 0.484476 0.087395 0.500150
3 0.006804 0.680366 0.215654 0.017421 0.353712
4 0.001220 0.302856 0.095994 0.003473 0.250150
5 0.000216 0.134813 0.042729 0.000692 0.176909
6 0.000039 0.060010 0.019020 0.000138 0.125112

Table 7.1: Numerical Results for the Shifted Toeplitz Matrix

β 45.008570
β′ 45.007772
γB 0.445137
γimp 0.445128
γC 0.199341
γE 0.707213

Table 7.2: Asymptotic Convergence Factors for the Shifted Toeplitz Matrix

The first example is a 500× 500 Toeplitz matrix, shifted so that 0 /∈ W (A). The entries

used to form the matrix were taken from the uniform distribution on the interval [−1, 1].

The right hand side was similarly generated. Figure 7.1(a) contains a plot of the numerical

range with outer approximating polygon and conformal map lines computed by the Schwarz-

Christoffel toolbox. The ‘x’s’ indicate the location of the eigenvalues. Figure 7.1(b) is a plot

of the various bounds along with the actual convergence curve of GMRES. Actual numerical

values are recorded in Table 7.1.

Let γB, γimp, γC , and γE denote the asymptotic convergence factors for Beckermann, et.

al., improved Beckermann, the one obtained via a conformal map, and Elman’s, respectively.

Table 7.2 lists the various convergence factors (denoted by γ) for each bound, as well as the

angles β and β′ for the Beckermann, et. al. bound and the improved Beckermann bound,

respectively.

We see that the angles β and β′ do not differ much, neither do the two Beckermann
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(a) Numerical Range and Outer Approximating Polygon

(b) GMRES Convergence Curves

Figure 7.1: Numerical Experiment with a Shifted Toeplitz Matrix
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β 89.046713
β′ 89.041155
γB 0.987210
γimp 0.987136
γC 0.969270
γE 0.999862

Table 7.3: Asymptotic Convergence Factors for the Convection-Diffusion Matrix

convergence factors. However, as indicated in Figure 7.1(b), Beckermann’s improved bound

greatly outperforms his original bound. This is due to the factor of (2 + 2/
√

3) which

was eliminated in his improvement. The bound generated by the conformal map is quite

promising, and seems to imply that if we can get an accurate enough approximation to the

boundary of W (A), and if we can compute the conformal map of the resulting polygon, then

perhaps we can get descriptive estimates on the residuals.

Now we turn to an example, where all of these bounds do not give descriptive results.

This example is derived from using a matrix which arises in the solution of the convection-

diffusion problem, as described in [36]. The matrix generated was 169×169 and the righthand

side vector was randomly generated as in the case for the Toeplitz matrix. Figure 7.2 contains

the results.

This problem required 16 iterations and so we omit a table analogous to Table 7.1. By

looking at Table 7.3, we see that the angles β and β′ are both close to 90 degrees, which

as mentioned earlier, indicates that W (A) is close to the origin. This partially explains

why this problem took longer to converge than the previous one. Also note that all of the

convergence factors are close to 1, which is why none of them accurately describe the actual

convergence behavior. This example shows that there are cases where bounds obtained

from the numerical range can fail to be helpful. The take-away is that in order to fully

understand GMRES, we may have to consider other characteristics of the matrix such as the

spectrum and psuedospectrum together with the numerical range. A detailed work which
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(a) Numerical Range and Outer Approximating Polygon

(b) GMRES Convergence Curves

Figure 7.2: Numerical Experiment with a Matrix Resulting from a Discretization of the
Convection-Diffusion Equation
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Matrix Order Maximum Constant Matrix Order Maximum Constant
3 1.271 12 1.117
4 1.390 13 1.076
5 1.285 14 1.097
6 1.11 15 1.029
7 1.095 16 1.047
8 1.135 17 1.043
9 1.096 18 1.018
10 1.117 19 1.051
11 1.078 20 1.021

Table 7.4: Tests for the Crouzeix Constant

contains several examples comparing bounds obtained via the spectrum, pseudospectrum

and numerical range can be found in [18].

No one has yet succeeded in proving or disproving Crouzeix’s conjecture. The best

constant found so far is 11.08 [8]. However, numerical experiments seem to confirm that the

best constant is indeed 2. By considering the 2× 2 matrix A =

0 2

0 0

 and the polynomial

p(z) = z, we see that the best constant cannot be any less than 2. This is because the

numerical range of A is the unit disk and ||A|| = 2. Table 7.4 lists some Crouzeix constants

for matrices of orders 3 through 20. This experiment was done by randomly generating 20

matrices of each order and for each degree 1 through 10, computing ||p(A)||/ supz∈W (A) |p(z)|

for 20 randomly generated polynomials. The denominator was computed by taking the

maximum of |p(z)| over an approximation to the boundary of W (A). The maximum Crouzeix

constant for each matrix order is listed in Table 7.4.

Some interesting observations from these numbers are the fact that the maximum Crouzeix

constant seems to decrease as the matrix order increases. Also, the maximum Crouzeix con-

stant was, in most cases, obtained for a 1 or 2 degree polynomial. This would seem to

indicate that if a counterexample is to be found, it probably lies in considering a matrix of

small dimension with a low degree polynomial.
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Chapter 8. Conclusion

Considering the existing research done in the area of GMRES convergence, the Crouzeix

conjecture offers an attractive way to quantify the behavior of these iterations. Despite the

improvements made by Beckermann that do not use the conjecture, the numerical experi-

ments show there is still much room for improvement in finding a truly descriptive bound.

Trefethen’s work on psuedospectral bounds shows that there are different phases of GMRES

convergence, which may lead some to think that a combination of bounds obtained from the

spectrum, psuedospectrum, and numerical range are necessary to truly accurately describe

GMRES convergence. However, we feel that there is much investigation to be done in the

area of numerical range bounds itself. One major obstacle is that these bounds require the

computation of the numerical range, which for large matrices (such as those larger than

1000 × 1000), can take some time to compute. An efficient algorithm for computing the

numerical range of a matrix is thus in order. Secondly, as mentioned in Chapter 4, there are

many ways we can seek to bound the quantity supz∈W (A) |p(z)|. As far as we know, there

is no major work focused on this effort in the context of GMRES analysis. Perhaps looking

into these possibilities will provide further insight. On the other hand, if 0 ∈ W (A), then the

Crouzeix conjecture will not be helpful, since by previous remarks, any polynomial satisfying

p(0) = 1 at the origin must also satisfy |p(z)| ≥ 1 on the boundary of W (A). This suggests

that it is also insufficient to solely consider bounds obtained from the numerical range.

However, regardless of how well we can approximate supz∈W (A) |p(z)|, the question of

whether or not Crouzeix’s conjecture is true still remains to be answered. Numerical experi-

ments seem to indicate that it is true, but we must careful in drawing conclusions from such

experiments. By only considering randomly generated matrices, we are quite possibly ex-

cluding certain matrices with special structures that may provide a counterexample. Be that
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as it may, we currently have little intuition about what type matrices could possibly prove

Crouzeix’s conjecture wrong. Thus this still remains an area which holds many research

possibilities and opportunities for greater understanding.

106



Bibliography

[1] T. Ando. Structure of operators with numerical radius one. Acta Sci. Math. (Szeged),
34:11–15, 1973.

[2] Catalin Badea, Michel Crouzeix, and Bernard Delyon. Convex domains and K-spectral
sets. Math. Z., 252(2):345–365, 2006.

[3] B. Beckermann. Image numerique, GMRES et polynomes de faber. C. R. Acad. Sci.
Paris, Ser. I, 340:855–860, 2005.

[4] B. Beckermann, S. A. Goreinov, and E. E. Tyrtyshnikov. Some remarks on the Elman
estimate for GMRES. SIAM J. Matrix Anal. Appl., 27(3):772–778 (electronic), 2005.

[5] S. L. Campbell, I. C. F. Ipsen, C. T. Kelley, and C. D. Meyer. GMRES and the minimal
polynomial. BIT, 36(4):664–675, 1996.

[6] C. Cowen and E. Harel. An Effective Algorithm for Computing the Numerical Range.
August 1995.

[7] Michel Crouzeix. Bounds for analytical functions of matrices. Integral Equations Oper-
ator Theory, 48(4):461–477, 2004.

[8] Michel Crouzeix. Numerical range and functional calculus in Hilbert space. J. Funct.
Anal., 244(2):668–690, 2007.

[9] Michel Crouzeix and Bernard Delyon. Some estimates for analytic functions of strip or
sectorial operators. Arch. Math. (Basel), 81(5):559–566, 2003.

[10] J. H. Curtiss. Faber polynomials and the Faber series. Amer. Math. Monthly, 78:577–
596, 1971.

[11] John Hamilton Curtiss. Introduction to functions of a complex variable, volume 44 of
Monographs and Textbooks in Pure and Applied Math. Marcel Dekker Inc., New York,
1978. With a foreword by E. F. Beckenbach.

[12] Bernard Delyon and François Delyon. Generalization of von Neumann’s spectral sets
and integral representation of operators. Bull. Soc. Math. France, 127(1):25–41, 1999.

[13] Tobin A. Driscoll and Lloyd N. Trefethen. Schwarz-Christoffel mapping, volume 8 of
Cambridge Monographs on Applied and Computational Mathematics. Cambridge Uni-
versity Press, Cambridge, 2002.

[14] Michael Eiermann. On semiiterative methods generated by Faber polynomials. Numer.
Math., 56(2-3):139–156, 1989.

107



[15] Michael Eiermann. Fields of values and iterative methods. Linear Algebra Appl.,
180:167–197, 1993.

[16] Stanley C. Eisenstat, Howard C. Elman, and Martin H. Schultz. Variational itera-
tive methods for nonsymmetric systems of linear equations. SIAM J. Numer. Anal.,
20(2):345–357, 1983.

[17] H.C. Elman. Iterative Methods for Large, Sparse, Nonsymmetric Systems of Linear
Equations. PhD thesis, Yale University, 1982.

[18] Mark Embree. How Descriptive are GMRES Convergence Bounds? Technical report,
1999.
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Appendix A. Cowen’s Numerical Range Code

This is code used to produce the figures in Chapter 2.

%

% This script finds the numerical range of an n x n matrix by

% finding the real and imaginary parts of rotates of the matrix

% and finding the associated boundary point of that rotate by

% finding the largest eigenvalue of the real part and using the

% corresponding eigenvector?s contribution to the numerical range.

% Multiplicity of the largest eigenvalue, as occurs in a normal

% matrix, is handled by plotting the end points of the corresponding

% segment in the boundary of the numerical range.

%

function w = getNumRange(A,plotrange,ploteigvals)

close all;

nm=ceil(norm(full(A)));

th= 0:.01:6.29;

k=1;

w=zeros(1,length(th));

for j=1:length(th)

Ath=(exp(1i*(-th(j))))*A;

Hth=(Ath+Ath’)/2;

[r e]=eigs(Hth);

e=real(diag(e));
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%e=round(e);

m=max(e);

s=find(e==m);

if size(s,1)==1

w(k)=r(:,s)’*A*r(:,s);

%

% This is the point of the numerical range contributed by

% v_t=r(:,s) when the eigenspace of Hth (H_t) is one dimensional.

%

else

Kth=1i*(Hth-Ath);

pKp=r(:,s)’*Kth*r(:,s);

%

% The matrix Q described above is r(:,s)

%

[rr ee]=eig(pKp);

ee=real(diag(ee));

mm=min(ee);

sm=find(ee==mm);

w(k)=rr(:,sm(1,:))’*r(:,s)’*A*r(:,s)*rr(:,sm(1,:));

%

% This is the point of the numerical range contributed by

% v_t^- = r(:,s)*rr(:,sm(:,1))

%

k=k+1;
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mM=max(ee);

sM=find(ee==mM);

w(k)=rr(:,sM(1,:))’*r(:,s)’*A*r(:,s)*rr(:,sM(1,:));

%

% This is the point of the numerical range contributed by v_t^+

%

end

k=k+1;

end

if(plotrange)

figure

H = fill(real(w),imag(w),’y’);

set(H, ’LineWidth’, 2);

if ploteigvals

hold on

eigvals = eigs(A);

plot(real(eigvals),imag(eigvals),’r*’);

end

axis([-nm,nm,-nm,nm]);

axis(’equal’);

end

end
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Appendix B. Higham’s Numerical Range Code

This code was used to produce the figures in Chapter 7.

function [f, e,vertices] = fvpolyarea(B, tol,plotme)

%FV Field of values (or numerical range).

% FV(A, NK, THMAX) evaluates and plots the field of values of the

% NK largest leading principal submatrices of A, using THMAX

% equally spaced angles in the complex plane.

% The defaults are NK = 1 and THMAX = 16.

% (For a ‘publication quality’ picture, set THMAX higher, say 32.)

% The eigenvalues of A are displayed as ‘x’.

% Alternative usage: [F, E] = FV(A, NK, THMAX, 1) suppresses the

% plot and returns the field of values plot data in F, with A’s

% eigenvalues in E. Note that NORM(F,INF) approximates the

% numerical radius,

% max {abs(z): z is in the field of values of A}.

% Theory:

% Field of values FV(A) = set of all Rayleigh quotients. FV(A) is a

% convex set containing the eigenvalues of A. When A is normal FV(A) is

% the convex hull of the eigenvalues of A (but not vice versa).

% z = x’Ax/(x’x), z’ = x’A’x/(x’x)

% => REAL(z) = x’Hx/(x’x), H = (A+A’)/2

% so MIN(EIG(H)) <= REAL(z) <= MAX(EIG(H)),
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% with equality for x = corresponding eigenvectors of H. For these x,

% RQ(A,x) is on the boundary of FV(A).

%

% Based on an original routine by A. Ruhe.

%

% References:

% R. A. Horn and C. R. Johnson, Topics in Matrix Analysis, Cambridge

% University Press, 1991; sec. 1.5.

% A. S. Householder, The Theory of Matrices in Numerical Analysis,

% Blaisdell, New York, 1964; sec. 3.3.

% C. R. Johnson, Numerical determination of the field of values of a

% general complex matrix, SIAM J. Numer. Anal., 15 (1978),

% pp. 595-602.

%close all

%figure

%hold on

%if nargin < 2 | isempty(nk), nk = 1; end

%if nargin < 3 | isempty(thmax), thmax = 16; end

thmax = 2;

areaDiff = tol*3;

while areaDiff > tol

thmax = 2*thmax;

thmax = thmax - 1; % Because code below uses thmax + 1 angles.
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iu = sqrt(-1);

[n, p] = size(B);

if n ~= p, error(’Matrix must be square.’), end

f = [];

z = zeros(2*thmax+1,1);

evals = zeros(2*thmax+1,1);

vertices = zeros(2*thmax,1);

inc = pi/thmax;

e = eig(B);

% Filter out cases where B is Hermitian or skew-Hermitian, for efficiency.

if isequal(B,B’)

f = [min(e) max(e)];

elseif isequal(B,-B’)

e = imag(e);

f = [min(e) max(e)];

e = iu*e; f = iu*f;

else

%for m = 1:nk

% ns = n+1-m;
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%A = B(1:ns, 1:ns);

A=B;

for i = 0:thmax

th = i/thmax*pi;

Ath = exp(iu*th)*A; % Rotate A through angle th.

H = 0.5*(Ath + Ath’); % Hermitian part of rotated A.

[X, D] = eig(H);

[lmbh, k] = sort(real(diag(D)));

evals(1+i) = lmbh(1);

evals(1+i+thmax) = lmbh(end);

z(1+i) = rq(A,X(:,k(1))); % RQ’s of A corr. to eigenvalues of H

z(1+i+thmax) = rq(A,X(:,k(n))); % with smallest/largest real part.

if i >= 1 % we can start to compute vertices

theta1 = (i-1)/thmax*pi;

v = (evals(i)*cos(inc) - evals(i+1))/sin(inc);

vertices(i) = exp(-1i*theta1)*(evals(i) + 1i*v);

theta2 = (i-1)/thmax*pi;

v = (evals(i+thmax)*cos(inc) - evals(i+1+thmax))/sin(inc);

vertices(i+thmax) = exp(-1i*theta2)*(evals(i+thmax) + 1i*v);

end

end

% now calculate difference in the area of the polygons

p=vertices;
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p = [p; p(1,:)];

q = [z(1:end-1,:); z(1,:)];

s1=0;

s2=0;

for k=1:length(p)-1

s1=s1+q(k)’*q(k+1);

s2=s2+p(k)’*p(k+1);

end

areaDiff=0.5*imag(s1-s2);

end % end while

if plotme

figure, plot(real(q),imag(q),’r*’);

hold on

plot(real(vertices),imag(vertices),’b*’);

end

f = [f; z];

% Next line ensures boundary is ‘joined up’ (needed for orthogonal matrices).

%f = [f; f(1,:)];

f(end,:) = f(1,:);

end

if thmax == 0; f = e; end
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if plotme

ax = cpltaxes(f);

plot(real(f), imag(f)) % Plot the field of values

axis(ax);

axis(’square’);

hold on

plot(real(e), imag(e), ’x’) % Plot the eigenvalues too.

hold off

end

function z = rq(A,x)

%RQ Rayleigh quotient.

% RQ(A,x) is the Rayleigh quotient of A and x, x’*A*x/(x’*x).

z = x’*A*x/(x’*x);
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