
Brigham Young University Brigham Young University

BYU ScholarsArchive BYU ScholarsArchive

Theses and Dissertations

2011-07-13

3D Image Reconstruction and Level Set Methods 3D Image Reconstruction and Level Set Methods

Spencer R. Patty
Brigham Young University - Provo

Follow this and additional works at: https://scholarsarchive.byu.edu/etd

 Part of the Mathematics Commons

BYU ScholarsArchive Citation BYU ScholarsArchive Citation
Patty, Spencer R., "3D Image Reconstruction and Level Set Methods" (2011). Theses and Dissertations.
2812.
https://scholarsarchive.byu.edu/etd/2812

This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion
in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please
contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.

http://home.byu.edu/home/
http://home.byu.edu/home/
https://scholarsarchive.byu.edu/
https://scholarsarchive.byu.edu/etd
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F2812&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=scholarsarchive.byu.edu%2Fetd%2F2812&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/2812?utm_source=scholarsarchive.byu.edu%2Fetd%2F2812&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu,%20ellen_amatangelo@byu.edu

3D Image Reconstruction and Level Set Methods

Spencer Patty

A thesis submitted to the faculty of
Brigham Young University

in partial fulfillment of the requirements for the degree of

Master of Science

Jeffrey Humpherys, Chair
Shue-Sum Chow

Christopher Grant

Department of Mathematics

Brigham Young University

August 2011

Copyright c© 2011 Spencer Patty

All Rights Reserved

Abstract

3D Image Reconstruction and Level Set Methods

Spencer Patty

Department of Mathematics

Master of Science

We give a concise explication of the theory of level set methods for modeling motion of
an interface as well as the numerical implementation of these methods. We then introduce
the geometry of a camera and the mathematical models for 3D reconstruction with a few
examples both simulated and from a real camera. We finally describe the model for 3D
surface reconstruction from n-camera views using level set methods.

Keywords: Level Set Method, PDE, Differential Geometry, Computer Vision, 3D Recon-
struction

Acknowledgments

Thanks to my wife, I love you so much! Thanks to my parents and grandparents for teaching

me the value of hard work and learning. Thanks to my advisor for encouraging me to seek

out and pursue something I could find passion in.

Contents

1 The Level Set Method 1

1.1 Introduction . 1

1.2 Derivation of Model . 2

1.3 Curvature of Curves and Surfaces . 5

1.4 Signed Distance Functions . 11

1.5 The Choice of Forcing Function . 13

2 Numerical Schemes for Solving the Level Set Equation 16

2.1 The Unit Normal . 16

2.2 Mean Curvature . 18

2.3 The Normed Gradient . 19

2.4 Combinations of Simple Motions . 20

2.5 The Re-initialization Equation . 21

2.6 Efficient Schemes for Level Set Methods . 22

3 The Language and Geometry of Cameras. 24

3.1 Introduction . 24

3.2 Homogeneous Coordinates or Projective Coordinates 24

3.3 Camera Coordinate Transform . 27

3.4 The Geometry of a Camera . 30

3.5 Epipolar Geometry or The Geometry of Two Cameras 35

3.6 Traditional Reconstruction Techniques . 43

3.7 Some Examples of Reconstruction from Simulated and Actual Images 55

4 Image Reconstruction with the Level Set Method 59

iv

5 Elements of Level Set Method Stereo Problem 64

5.1 The measure of error, ϕ(S,N) . 66

5.2 Formal Definitions of the derivatives of ϕ . 69

5.3 Derivatives of the correlation integral . 70

5.4 Extending β from the surface, S, to R3 . 71

A An Introduction to Finite Differences for Numerical Analysis 73

A.1 What is a Finite Difference? . 73

A.2 Finite Difference Schemes . 78

A.3 Burger’s Wave Equation solved with Crank-Nicolson scheme. 91

A.4 Hyperbolic Equations using Techniques from Computational Fluid Dynamics 96

B Triangulation Formulation and Geometry 101

B.1 The Triangulation Problem . 101

B.2 The Geometry of the Parameterizations of the Optimization Variables 106

v

List of Figures

1.1 Examples of topological changes of an interface 1

1.2 Level sets handle topological changes. 3

1.3 Radius of curvature . 6

1.4 signed distance function for snake contour 12

1.5 Evolution of snake contour . 14

2.1 The skeleton occurs where surface is not differentiable. 17

3.1 Railroad tracks demonstrate the point at infinity 27

3.2 The ideal camera model . 31

3.3 The modified ideal camera model . 32

3.4 A camera calibration board. 36

3.5 Epipolar geometry . 38

3.6 Epipolar geometry with measurement error and `2 50

3.7 Epipolar geometry with measurement error 51

3.8 Parameterization of ` in camera 2 coordinates 52

3.9 Simulated Rubik’s cube in cameras. 56

3.10 Simulated 3D reconstruction of Rubik’s cube. 57

3.11 3D reconstruction from two views of a bookshelf 58

4.1 Window projected off tangent space at surface 61

A.1 Forwards Euler scheme solution of an ODE 80

A.2 Backwards Euler scheme solution of an ODE 81

A.3 Explicit (FTCS) stencil . 82

A.4 Explicit solution to heat equation . 85

vi

A.5 Implicit (BTCS) stencil . 86

A.6 Implicit solution to heat equation . 88

A.7 Crank-Nicolson stencil . 89

A.8 Crank-Nicolson solution to heat equation . 90

A.9 Comparison of solutions to the heat equation 91

A.10 Solution to wave equation . 96

B.1 Epipolar geometry under noisy data . 102

B.2 Triangulation Problem to find x(`2). 106

B.3 Geometry of x(`) . 107

B.4 Geometry of the image plane . 108

vii

Chapter 1. The Level Set Method

We give an introduction and derivation of the level set methods that will be used. While

there are many papers and books on this subject, we have found that clear and concise

introductions to the matter are in short supply, and so we proceed in an attempt to give the

reader a clear entrance to the language and theory used in this subject.

1.1 Introduction

The level set method is concerned with the tracking of interfaces as they move according to

some physical or theoretical phenomena. These interfaces are typically assumed to be closed,

meaning there is an inside and an outside. While there are applications that don’t require

this, we will focus on those that do. This could be anything from tracking the edge of a forest

fire to image segmentation or even the sloshing of water. The key difference between this set

of models and other marker based models is that the level sets allow for simple topological

changes in the object being studied, whereas the marker models have a very difficult time

when a splicing or merging happens. For instance in a fire, there are often times when,

(a) Pinching Interface (b) Splitting Interface

Figure 1.1: These are a few of the topological changes that an interface may experience
as it evolves. Figure 1.1(a) shows a pinching or merging of two sides with each other and
Figure 1.1(b) shows the breaking apart or splitting of the interface. With marker methods
these are nearly impossible to model, but the level set method handles any topological change
naturally.

because of wind, the edge of the fire ends up enclosing a segment of the forest and we get

1

an island of unburnt trees in the middle of the fire. With the level set methods this merger

and enclosure can be described easily whereas with the standard markers it is unclear how

one should separate and create two sets of connected markers. A marker method typically

involves a parameterization along the edge of the interface and evenly spaced points along

the parameterization, called markers, that are moved according to the phenomena being

described. When one of these merging or splicing instances occur, it is rarely obvious how

to join or split the two parameterizations into one. Hence it is difficult to deal with these

topological changes with marker based methods. This is easily done, however, using level

sets as seen in Figure 1.2.

The level set methods also scale with size and dimension of the objects. The method

works the same with two dimensional objects as objects in 4 or 5 dimensions. So once an

algorithm is developed, it is straight forward to adapt it to higher dimensions of objects.

Thus whether we are dealing with images as a 2D object or as projections of a 3D object

we can consider them in similar manners and the algorithms will be easily adapted for each

desired result. We now proceed to give a derivation of the level set equations and model.

The numerical solution of these equations will be discussed in Chapter 2.

1.2 Derivation of Model

Given an initial closed n−1 dimensional hyper-surface Γ, we want to evolve it over time Γ(t)

as it propagates along its normal direction according to a speed function F . We thus embed

Γ as the zero level set of a higher dimensional function φ. Let φ(~x, t = 0) , for ~x ∈ Rn, be

defined by

φ(~x, t = 0) = ±d

where d is the distance from ~x to Γ(t = 0), and the plus sign is chosen for ~x outside the

initial hyper-surface and the minus sign for ~x inside the initial hyper-surface. We call this

2

X

Y

10 8 6 4 2 0 2 4 6 8 10
10

8

6

4

2

0

2

4

6

8

10

(a) initial interface

10 5 0 5 1010

0

10
0.2

0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

X
Y

(b) initial surface

X

Y

10 8 6 4 2 0 2 4 6 8 10
10

8

6

4

2

0

2

4

6

8

10

(c) splitting interface

10 5 0 5 1010

0

10
0.3

0.2

0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

X
Y

(d) surface shifting down

X

Y

10 8 6 4 2 0 2 4 6 8 10
10

8

6

4

2

0

2

4

6

8

10

(e) split interface

10 5 0 5 1010

0

10
0.4

0.3

0.2

0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

X
Y

(f) final surface

Figure 1.2: The ease of using level sets to describe the splitting of a contour. We simulate
the contour splitting by simply moving our surface up or down. For each step, we take
the zero level set contour as our interface. Since our interface moving is only based on our
surface moving, there is no difficulty with these types of topological changes in the level set
method. As a side note, the surfaces represented here are not signed distance functions (the
class of surfaces used in the level set method) but they do demonstrate the concept and ease
of dealing with these types of topological changes with level sets.

3

a signed distance function and the benefits of choosing such a function will be discussed in

Section 1.4. Thus we have a function φ(~x, t = 0) : Rn → R such that

Γ(t = 0) = {~x | φ(~x, t = 0) = 0}

and we want to produce an equation for evolving the function φ(~x, t) which will always

contain Γ(t) as the level set φ = 0. In addition, we want the speed of motion in the normal

direction to be F or in other words, for each ~x(t) ∈ Γ(t),

~xt · ~n = F (~x(t))

where ~n is normal to the front at ~x(t) and F (~x(t)) is the speed function for that point.

We want the zero level set of φ to match our propagating hyper-surface, so we have the

condition

φ(~x(t), t) = 0, ∀ ~x(t) ∈ Γ(t)

Thus

d

dt
φ(~x(t), t) = 0

so by chain rule,

φt +∇φ(~x(t), t) · ~xt(t) = 0.

Now since ~n = ∇φ/|∇φ|, we have that ∇φ = ~n|∇φ|, so

φt + ~n · ~xt(t)|∇φ| = 0

or in other words

φt + F |∇φ| = 0,

which is our level set evolution equation as derived in [19] and [17].

4

1.3 Curvature of Curves and Surfaces

Before we continue, we must introduce the idea of the curvature of curves and surfaces as

studied in differential geometry. There are many different metrics of curvature for different

size spaces but since we are only concerned with two and three dimensional spaces, we

will introduce the concepts of curvature κ of a curve in 2D, Gaussian curvature κG of a

surface in 3D (often denoted K), and mean curvature κM of a surface in 3D (often denoted

H). As a note, while we mention κG, it is not prevalent in our applications so we will focus

most of our attention on the other two curvatures.

The idea of curvature is essentially to describe how much a curve or surface deviates from

its tangent plane or how sensitive the tangent line is as we move along the curve or surface.

Thus if the curve or surface is flat, we say the curvature is zero. Essentially, the higher the

magnitude of the curvature at a point, the more quickly the curve or surface changes as you

move away from that point.

1.3.1 Curvature in 2D. Curvature κ of a curve is most simply described as the inverse

of the radius of curvature at that point, i.e. κ = 1/R, where the radius of curvature, R, is

the radius of the best fitting circle (called the osculating circle) to the curve at that point.

This is theoretically done as the limit of the radius of the circle that goes through the point

of interest and one on either side as they slide towards the point where we are measuring

the curvature. Hence it is the circle that best fits the curve at that point.

The curvature of a curve, φ(x, y) = c, in 2D is calculated to be

κ =
φxxφ

2
y − 2φxφyφxy + φyyφ

2
x

(φ2
x + φ2

y)
3/2

5

R

φ(x, y)

Figure 1.3: Curvature, κ = 1/R, is the inverse of the radius of the osculating circle at the
point on the curve.

which has the simple representation of being the divergence of the unit normal vector,

κ = ∇ ·
(∇φ
|∇φ|

)

Example 1.1. The curvature of any straight line φ(x, y) = 0 where φ(x, y) = y−mx− b is

calculated by first finding the unit normal vector of φ(x, y).

∇φ
|∇φ| =

 −m/√1 +m2

1/
√

1 +m2

 .
Then the curvature is the divergence of this constant vector and so

κ = ∇ · ∇φ|∇φ| = 0.

This is exactly what we would expect since the line does not deviate from its tangent line at

all.

Example 1.2. As a more interesting example, we find the curvature of the unit circle

6

φ(x, y) = 0 where φ(x, y) = x2 + y2 − 1. The unit normal is given by

∇φ
|∇φ| =

 2x/
√

4x2 + 4y2

2y/
√

4x2 + 4y2

 =

 x/
√
x2 + y2

y/
√
x2 + y2

 .
Thus we calculate the curvature as the divergence of this vector

κ = ∇ ·

 x/
√
x2 + y2

y/
√
x2 + y2

 =
x2 + y2

(x2 + y2)3/2
=

1

(x2 + y2)1/2
= 1,

since x2 + y2 = 1. So the unit circle has constant curvature κ = 1. In fact for a circle of any

radius, it is it’s own osculating circle, hence the curvature is just the inverse of its radius. We

see that smaller radius circles bend more quickly and so have higher curvature than larger

radius circles.

1.3.2 Curvature in 3D. For surfaces embedded in 3D, there are two forms of curvature

that arise. We briefly explain the idea of principal curvatures of a surface and then introduce

the two forms of curvature. At any point on the surface, there are an infinite number of

curves that pass through that point along the surface. The principal curvatures, κ1 and κ2,

are respectively the maximal and minimal curvatures of the 2D curves passing through that

point. See [2] for details.

Gaussian curvature κG gives us an idea of how locally convex (positive value) or

locally saddle (negative value) the surface is at that point. It is calculated as the product of

the principal curvatures, κG = κ1κ2. Gaussian curvature is more theoretically appealing to

differential geometers since it is always the same value for a surface no matter what space the

surface is embedded in, but is not as useful to us as the mean curvature is. Some applications

using level set methods call for the use of Gaussian curvature, however most call for use of

mean curvature. The Gaussian curvature of a surface, φ(x, y, z) = c, embedded in 3D space

7

is somewhat tedious to obtain and does not have a simple representation and so we give it

as derived in [20]

κG =


φ2
x(φyyφzz − φ2

yz) + φ2
y(φxxφzz − φ2

xz)+

φ2
z(φxxφyy − φ2

xy) + 2[φxφy(φxxφyz − φxyφzz)+

φyφz(φxyφxz − φyzφxx) + φxφz(φxyφyz − φxzφyy)]


(φ2

x + φ2
y + φ2

z)
2

.

Mean curvature, κM , is defined as the average of the two principal curvatures, κM =

(κ1 + κ2)/2. Minimality is defined on surfaces that have either a boundary at infinity or a

closed boundary in 3D space (like a bent hanger). We say a surface is minimal if every other

surface on that same boundary has more surface area than our surface. Mean curvature gives

us an idea of how ”close” to a minimal surface we are: meaning the smaller the magnitude

of curvature, the more like a minimal surface our surface is.

Example 1.3. Some geometers play with soap film because the surfaces made by the soap

film, for instance when beginning the process of making bubbles on a bent coat hanger,

are minimal surfaces and have the property that mean curvature is zero. When you blow

through the hanger on the film the curvature becomes nonzero but still constant. When the

pressure becomes big enough, the film releases from the hanger and often a bubble is formed

which has nonzero constant mean curvature.

We lastly note that mean curvature does depend on what space we are embedded in

which is why it is not as theoretically appealing to geometers, but that very reason is why

they will work so well in many applications for us seeing as we often want our interface to be

a sort of minimal surface on our data. We caution that these next formulae are only valid

when our surface is embedded in 3D space. Mean curvature of a surface φ(x, y, z) = c in 3D

8

is calculated to be

κM =

φ2
xφyy − 2φxφyφxy + φ2

yφxx + φ2
xφxz−

2φxφzφxz + φ2
zφxx + φ2

yφzz − 2φyφzφyz + φ2
zφyy


(φ2

x + φ2
y + φ2

z)
3/2

,

which again is most easily represented as the divergence of our unit normal vector,

κm = ∇ ·
(∇φ
|∇φ|

)
.

Example 1.4. Given the conic surface
√
x2 + y2 − 1 = z, we calculate the mean and Gaus-

sian curvatures. We note that this surface is not differentiable at the origin and so curvature

does not exist there, but everywhere else it does. As a note, this is not a problem for us as

it is undefined on a zero measure set which will not affect our using the curvature calculated

for any subsequent analysis. We simply give it an arbitrary value of zero and move on.

We mention this because in Section 2.1 we will see that these areas of non differentiability,

called the skeleton of the surface, occur frequently but do not affect any of our results if

they occur on sets of measure zero. To proceed with calculating our mean curvature, we let

φ(x, y, z) =
√
x2 + y2 − 1− z = 0, from which we calculate the unit normal vector to be

∇φ
|∇φ| =


x/
√

2
√
x2 + y2

y/
√

2
√
x2 + y2

−1/
√

2

 .

9

Then our mean curvature is half the divergence of this vector and so

κm = ∇ ·
(∇φ
|∇φ|

)
=

1

21/2

(
1√

x2 + y2
− x

2
(
√
x2 + y2)−3/2(2x) +

1√
x2 + y2

− y

2
(
√
x2 + y2)−3/2(2y)

)

=
1

21/2

(
2√

x2 + y2
− x2 + y2

(x2 + y2)3/2

)
=

1

21/2
√
x2 + y2

To calculate the Gaussian curvature, we use the same φ(x, y, z) but must calculate all the

first and second derivatives. Since φxz = φyz = φzz = 0 the formula reduces to

κG =
(φxxφyy − φ2

xy)

φ2
z|∇φ|4

which evaluates to be equal to 0. So the cone is a surface with zero Gaussian curvature.

Example 1.5. As another example, we calculate the curvatures for the sphere. We would

expect this to have constant Gaussian curvature and mean curvature. The surface is given

by φ(x, y, z) = x2 + y2 + z2 − a2 = 0. The unit normal is

∇φ
|∇φ| =


x/
√
x2 + y2 + z2

y/
√
x2 + y2 + z2

z/
√
x2 + y2 + z2

 .

Hence our mean curvature is the divergence of the unit normal

κM = ∇ ·
(∇φ
|∇φ|

)
=

x2 + y2 + z2

(x2 + y2 + z2)3/2
=

1√
(a2)

=
1

a
.

10

Our Gaussian curvature is calculated to be

κG =
(2x)2(4− 0) + (2y)2(4− 0) + (2z)2(4− 0) + 0

((2x)2 + (2y)2 + (2z)2)2

=
42(x2 + y2 + z2)

42(x2 + y2 + z2)2

=
1

x2 + y2 + z2

=
1

a2

since x2 + y2 + z2 = a2.

1.4 Signed Distance Functions

The reader will notice that in Section 1.2 we have embedded our desired interface into a

one dimensional higher surface called a signed distance function as the zero level set. We

will often give names to the inside, outside and boundary of the interface Γ. We typically

call the boundary or interface ∂Ω the region inside or enclosed by our interface Ω− and the

region outside our interface Ω+. Then our surface is described as

φ(x) =


−d(x) x ∈ Γ−

0 x ∈ ∂Γ

d(x) x ∈ Γ+

Doing so allows us to immediately know whether we are inside or outside of the interface

by the sign of the function. If the value on our surface is negative, then we are inside the

interface, otherwise we are outside of it. For example, we show the signed distance function

of a coiled up snake contour in Figure 1.4. Note that the scale shows where it is inside

(negative) and outside (positive) of the contour.

11

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(a) side view of signed distance function

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(b) top view of signed distance function (c) snake contour interface

Figure 1.4: The signed distance function and zero level set for the snake contour interface.
Note that negative values on the surface are inside the contour and positive values are outside.
The height of the surface represents the minimal distance to an edge of the contour.

The height of the surface gives us the minimal distance from that point in space to the

edge of our interface. Hence to find the point on the interface, xI , which is closest to our

current position, x, we travel from our current location in the normal direction to the surface

the distance of our height

xI = x− φ(x)~n.

12

Now, since we have the condition that |∇φ| = 1,

~n =
∇φ
|∇φ| =

∇φ
1

= ∇φ.

Hence on our signed distance function, the closest point on the interface is given by

xI = x− φ(x)∇φ.

Likewise, on our signed distance function, mean curvature is simplified greatly to be just the

Laplacian of the surface

κM = ∇ ·
(∇φ
|∇φ|

)
= ∇ ·

(∇φ
1

)
= ∇ · ∇φ = ∆φ.

As a final note about signed distance functions. If we have two signed distance functions

φ1 and φ2 for two distinct interfaces, it is simple to create the signed distance function for

the union or intersection of those two interfaces.

φ(x) = min(φ1(x), φ2(x)) represents the distance function for the union Γ−1 ∪ Γ−2 .

φ(x) = max(φ1(x), φ2(x)) represents the distance function for the intersection Γ−1 ∩ Γ−2 .

φ(x) = max(φ1(x),−φ2(x)) represents the distance function for the set subtraction

Γ−1 \Γ−2 .

1.5 The Choice of Forcing Function

Now we return to finish the discussion of the use of level set models. As can be seen,

the derivation and set of definitions is rather small and concise. The real innovation and

challenge in using this model is coming up with a function F , which will cause the surface

or interface to evolve in the desired manner. Often this is given by the physics of the system

13

under observation, but many times especially with the applications in image processing, it

is not clear what the forcing function should be. There have been many applications for

smoothing that suggest the use of mean curvature based functions. For instance, if we wish

the interface to move normal to itself relative to its curvature, we might use the function,

F (x) = 1− εκM(x).

where ε > 0 is a scaling constant for how fast to move by curvature. Common values are

ε = .1, .01, and .001. For the snake interface, Figure 1.4, evolution under the above function

will cause the interface to unwind itself and form into a circle (a shape of constant mean

curvature) which then will continue to decrease in size until it disappears entirely as seen in

Figure 1.5.

t=0

1 0 1

0.5

0

0.5

1
t = 300

1 0 1

0.5

0

0.5

1
t = 600

1 0 1

0.5

0

0.5

1
t = 900

1 0 1

0.5

0

0.5

1

t = 1200

1 0 1
1

0.5

0

0.5

1
t = 1500

1 0 1
1

0.5

0

0.5

t = 1800

1 0 1
1

0.5

0

0.5

t = 2100

1 0 1
1

0.5

0

0.5

t = 2400

1 0 1
1

0.5

0

0.5

t = 2700

1 0 1
1

0.5

0

0.5

t = 3000

1 0 1
1

0.5

0

0.5

t = 3300

1 0 1
1

0.5

0

0.5

Figure 1.5: The evolution of the snake contour, Figure 1.4, under mean curvature, F (x) =
1− εκM(x), where ε > 0 is a small scaling constant.

14

Many other papers have used variational or energy minimization techniques. Sethian’s

book [20] discusses the techniques for the fast construction of extension velocities where

the forcing function is only given or really defined on the interface. In Chapter 4, we will

introduce a forcing function that will cause our surface to evolve for 3D surface reconstruction

from multiple camera views of a scene.

15

Chapter 2. Numerical Schemes for Solving the Level Set

Equation

When solving the level set equation, we often deal with a moving front that behaves like a

wave. Hence, we use many techniques that were developed for hyperbolic equations. We

make the choice of using upwind methods whenever there is a motion that behaves like

propagating waves. We will first define the unit normal vector and then will develop a

scheme for the gradient and mean curvature. Finally we will combine everything into a

scheme that represents the general motions of advection, motion in normal direction and

motion by curvature

φt + U · ∇φ+ F0|∇φ| = εκ|∇φ|,

where ε > 0 is a proportionality constant, U = (u, v, w) is the advection vector field and F0

is the speed of motion in the outer normal direction.

2.1 The Unit Normal

To begin with, we note that our φ at any time could have places where the gradient is not

even technically defined. This can develop on the skeleton from using the choice of signed

distance function where a point is equidistant from two or more places on the initial front.

The unit normal is defined as

~n =
∇φ
|∇φ| .

so we must come up with a standard logical way to deal with this possible nonexistence. Now

in reality, these kinks smooth themselves out over time just by doing finite differencing, but

we still need our unit normal to handle any possible problems. In two dimensions, we will

16

10

5

0

5

10

10

5

0

5

10

2

0

2

4

6

8

(a) the skeleton is where the surface is not differentiable

10 5 0 5 10
10

8

6

4

2

0

2

4

6

8

10
interface
skeleton

(b) skeleton with the interface.

Figure 2.1: A skeleton is formed when a point is equidistant from more than one location on
the interface. The surface is continuous but not differentiable. This is a small zero measure
set and does not affect our numerical stability at all.

17

take the unit normal to be in the direction of the average of the four one-sided derivatives

in x and y

~n∗ =
(D+

x , D
+
y)(

(D+
x)2 + (D+

y)2
)0.5 +

(D−x , D
+
y)(

(D−x)2 + (D+
y)2
)0.5 +

(D+
x , D

−
y)(

(D+
x)2 + (D−y)2

)0.5 +
(D−x , D

−
y)(

(D−x)2 + (D−y)2
)0.5 ,

which we then normalize,

~n =
~n∗

|~n∗| .

Likewise in 3 dimensions, it is the average of the 8 one sided derivatives in x, y and z. This

has the property that it always points where we would think to place it if we had to fill it in.

This choice of unit normal deals well with the kinks and gives us the correct result where φ

is actually differentiable.

2.2 Mean Curvature

We recall that mean curvature is the divergence of the unit normal vector

κM = ∇ ·
(∇φ
|∇φ|

)
,

and notice that mean curvature is a nonlinear diffusion process and so information propagates

in all directions. This is not a hyperbolic motion but instead a diffusive motion. Hence, we

can use a centered difference for all the first order partial derivatives instead of needing an

upwind scheme when calculating curvature. Thus, motion by mean curvature which looks

like

φt = εκ|∇φ|

is approximated by

φn+1
ijk − φnijk

∆t
= εKijk

(
(Dox

ijk)
2 + (Doy

ijk)
2 + (Doz

ijk)
2
)1/2

,

18

where Kijk is the centered difference approximation to mean curvature at φ(xi, yj, zk) and

the derivative operators are as defined in subsection A.4.1. This leads to a simple scheme

φn+1
ijk = φnijk −∆t

(
εKijk

(
(Dox

ijk)
2 + (Doy

ijk)
2 + (Doz

ijk)
2
)1/2
)
.

2.3 The Normed Gradient

We implement an upwind scheme when numerically solving for the norm of the gradient.

When we are dealing with the motion in the normal direction, we want the gradient to reflect

information flowing from upstream. We will use the max and min switches as discussed in

subsection A.4.1. We define the normed gradients to be

∇+ = [max(D−xikj , 0)2 + min(D+x
ijk , 0)2

max(D−yikj, 0)2 + min(D+y
ijk, 0)2

max(D−zikj, 0)2 + min(D+z
ijk, 0)2]1/2,

∇− = [max(D+x
ikj , 0)2 + min(D−xijk , 0)2

max(D+y
ikj, 0)2 + min(D−yijk, 0)2

max(D+z
ikj, 0)2 + min(D−zijk, 0)2]1/2,

then to make a pass at simple motion in normal direction, φt = −F |∇φ|, we approximate

with a forward difference in time and use the switch

φn+1
ijk − φnijk

∆t
= − [max(Fijk, 0)∇+ + min(Fijk, 0)∇−]

19

which yields a simple first order approximation

φn+1
ijk = φnijk −∆t

[
max(Fijk, 0)∇+ + min(Fijk, 0)∇−] ,

2.4 Combinations of Simple Motions

We have now discussed the different types of motions that could occur and we want to put

them all together using a forcing function

F = Fprop + Fcurv + Fadv,

where

Fprop = F0 is the propagation expansion speed in the outer normal direction

Fcurv = −εκ is the dependence of speed in normal direction on curvature

Fadv = ~U(~x, t) · ~n is the advection speed and ~U(~x, t) is the vector field.

Then with this forcing function F , we get

φt + F |∇φ| = 0

which simplifies to

φt + F0|∇φ|+ ~U · ∇φ = bκ|∇φ|,

20

and we use (in 2D) the scheme

φn+1
ij = φnij + ∆t



− [max((F0)ij, 0)∇+ + min((F0)ij, 0)∇−]

−

 max(unij, 0)D−xij + min(unij, 0)D+x
ij

+ max(vnij, 0)D−yij + min(vnij, 0)D+y
ij


+ εKn

ij

(
(Dox

ij)2 + (Doy
ij)2
)1/2


,

where ~U = (u, v) and Kn
ij is the centered difference approximated curvature at φnij.

2.5 The Re-initialization Equation

We have talked about the evolution of the equation by level set method, but despite our

best efforts the surface φ often drifts away from being a signed distance function. There are

a number of fixes to this including reinitializing the surface or designing a forcing function,

which keeps the level curves a constant distance from each other off the important zero level

set. We will discuss here the technique for reinitializing the surface φ to be a signed distance

function. This technique can be done every couple steps of standard evolution to reset the

shape of the surface around the current zero level set, however in practice doing this can

lead to a shifting of the actual front. Also if we reinitialize too often, we can bring in other

errors and slow down our program too much. Hence a balance should be struck between

actual evolution and reinitialization of the surface shape.

With this in mind, we observe that the signed distance function is the steady state

solution (τ →∞) of the initial value problem:

IVP


∂ψ
∂τ

+ sign(φ)(|∇ψ| − 1) = 0

ψ(~x, 0) = φ(~x, t)

, (2.1)

21

where

sign(φ) =


1 in Ω+

0 on ∂Ω

−1 in Ω−

(2.2)

The equation

φt + sign(φo)(|∇φ| − 1) = 0,

where φ = φo to begin with, is called the re-initialization equation. The number of

iterations that it is run dictates how far from the surface it is reinitialized. Each iteration

corrects another |∆x| distance from the boundary to be the distance function with the sign

for inside and outside. This technique is described in full generality in [16].

A practical rule says that accuracy is required only near the initial font itself. A discrete

value based on grid distances can suffice far away from the boundary. We caution that

overuse of the re-initialization technique can cause the interface boundary itself to shift to

nearby grid points. Likewise it takes a great deal of time to reshape the entire surface. It

can be a valuable tool especially for creating our initial signed distance function but it can

be overused.

2.6 Efficient Schemes for Level Set Methods

The above scheme is the most simple approximation of the general level set equation. For

different applications, it might be necessary to increase the accuracy of each finite differ-

ence, or you could change from a forward time derivative to using a Runge-Kutta scheme.

Likewise, many other methods of solving this equation have been explored and published

which are much more efficient and accurate. However the understanding that comes from

the above analysis and model is invaluable and the other schemes are in most cases just more

complicated versions of the choices we made above. Sethian formulates a finite element tri-

22

angulated version of the above in his book Level Set Methods and Fast Marching Methods

[20]. The Fast Marching method is likewise implemented and then made efficient using

an upwind scheme combined with a heap sort algorithm. The actual implementation of a

fast efficient level set method is beyond the scope of this paper, but the ideas follow the

same patterns as described above. With the scheme that was displayed above, we can con-

struct a simple level set equation solver which handles easily basic cases, but the adoption

of professional software is required for many applications if we want to be more accurate

and more efficient. In fact, in many applications we only care about what is happening near

our interface and so there have been some great advances in data structures that save time

and space. The narrow band level set method utilizes the min-heap sort data structure

and only calculates the signed distance function on a narrow band around the edge of the

interface. Sethian describes this narrow band in full in Chapter 8 of [20] as an efficient im-

plementation. Another data structure of note is the octree introduced by Strain in [21]. It

is an adaptive method which allows for quick accurate calculations of interface movements.

In C++, one of the best libraries goes by the name of DT-Grids and is introduced in [13].

Ian Mitchell at the University of British Colombia has developed a matlab toolbox for

level set methods which is very usable and is set up in a general framework so as to be able

to implement different applications easily. There are likewise many C++ software libraries

which implement different data structures specifically designed and optimized for use in level

set frameworks. These can be rather useful and when implementing a specific application,

it is a good idea to start with one of these toolboxes or libraries and then add the necessary

methods to the already optimized software.

23

Chapter 3. The Language and Geometry of Cameras.

3.1 Introduction

We will first introduce the mathematical models that simulate the actions of a camera. Once

we understand how a camera can be represented, we will proceed to discuss the traditional

techniques of combining multiple views of a stationary scene through various cameras and

reproducing the 3D scene. This is often called 3D reconstruction from multiple images.

To begin with, we must introduce the mathematical structures that will allow us to model

cameras.

3.2 Homogeneous Coordinates or Projective Coordinates

The first idea to be introduced is how we will represent points in space. There are many

coordinate systems that could be used. When we talk about a point in space, we typically

think of its (x, y, z) coordinates. The set of such points is called Euclidean space. Geometry

as taught in high school holds here as we can discuss distances between things, angles between

intersecting lines and so forth. However, this is not the only way nor always the best way

to represent the location of our points in space for our class of problems. In fact because of

the type of operations we will be using to describe a camera, we will subsequently introduce

what is called the projective coordinate system or homogeneous coordinate system

as a better representation of our points in space.

Many of our operations are called rigid body transformations which essentially pre-

serve all the relative geometries of the object or scene being acted upon. For instance if

there is a wooden block on the table and we pick it up and toss it around and then set it

down on a chair, we have done a rigid body transformation to the block. It has been moved

24

and maybe rotated but the corners are still the same distance apart and the block has not

changed shape at all. Hence the name rigid body. This type of transformation occurs when

modeling cameras and in Euclidean space does not have a linear (matrix) representation.

However in our projective coordinate system it does have a linear (matrix) representation.

We choose the projective coordinate system because many of our operations which are non-

linear in Euclidean space have linear representations in the projective space and so make life

easier. We introduce a few of these operations in full detail.

An affine transformation is any operation that involves a scaling, rotation, and/or

translation of the object being operated on. For a given vector x ∈ Rn, the rotational and

scaling part is described by a matrix R ∈ Mn×n(R) where the scaling in each dimension is

given by the norm of each column of R and the translational part is a vector T ∈ Rn. Then

the transformation is typically written as g = (R, T) where g(x) = Rx + T .

The class of rigid body transformations is a subset of affine transformations charac-

terized by det(R) = 1 and R being orthonormal, RTR = I. In other words, there is no scaling

and the geometry of any given scene under the transformation is preserved. These trans-

formations are sometimes called special Euclidean transformations or simply SE(3)

.

In order to represent these transformations as linear operators, we choose to represent a

vector x ∈ Rn as a n+1 dimensional vector in the space known as Pn or the n-dimensional

projective space.

3.2.1 The Projection Coordinate System. Our projective space, Pn, is characterized

as being Rn+1\ ~{0} with the equivalence relation for X,Y ∈ Pn, X ' Y if X = µY for some

µ ∈ R. So we choose the class representative to be normalized in the n+ 1th element of X.

Thus a point x ∈ Rn has projective coordinate X = [xT , 1]T . This class representative is

also in many cases called the homogeneous coordinate of x. Thus given a point X ∈ Pn,

we can recover the equivalent point in Rn to be [x1

xn+1
, . . . , xn

xn+1
]T . There are many reasons

25

why this space is where we choose to work. We have already mentioned that it allows us to

represent affine transformations as linear since for X ∈ Rn,

g(x) = Rx + T =

 R T

0 1


 x

1

 .
So let

g =

 R T

0 1

 ∈ R(n+1)×(n+1),

then for X ∈ Pn

g(X) = gX =

 R T

0 1

X.

Note that for a rotational matrix, R−1 = RT , so our inverse transformation g−1 exists

and is given by

g−1 =

 R T

0 1


−1

=

 RT −RTT

0 1

 .
Another property which becomes very useful is that in Pn, points at infinity have a

representation just like any other point. As an example, if you have ever stood on a set of

railroad tracks that were straight as can be, you would notice that the parallel lines of the

tracks actually converge together in our view. The point that they converge to would be

the point at infinity in the direction of those parallel lines. The points [x, 0] do not have an

equivalent representation in Rn but we can think of them as the limit of [x, t] with t → 0.

Thus our equivalence class representative [x, 0] is the the limit of [x/t, 1] as t → 0 or in

other words is the limit point at infinity in the direction of x. Thus a point at infinity

is just another point in Pn. In projective space, lines are thus considered parallel if their

intersection is at infinity.

26

Figure 3.1: The point at infinity in the direction of the railroad tracks is where the parallel
lines intersect in the picture. Photo taken by William Vann, used with permissions.

3.3 Camera Coordinate Transform

We want to simulate a rigid body transformation, gcw = (R, T), consisting of a rotation, R,

and a translation, T , that can move us from world (w) to camera coordinates (c) and its

inverse gwc which moves back that will have the z-axis in the camera coordinates pointing

toward the origin of the world coordinate system.

Having such a transform will prepare us for doing the projective transformations in the

camera coordinates. To create this transform, we first pick a location, denote it C ∈ R3, for

the camera’s origin in the world coordinates. This is our translation component. Then we

need a vector w of rotation and an angle, t to rotate about that vector that will give us a

rotation matrix,

R = eŵt,

where the hat operator (̂·), moves the vector to it’s cross product form

ŵ =


0 −w3 w2

w3 0 −w1

−w2 w1 0

 .

27

that is, the cross product is turned into matrix multiplication

u× v = ûv.

Note that it is only a purely rotational matrix if w was normalized in the first place. So all

formulas hereafter assume we have a unit vector w around which we are rotating.

The exponentiation above can be greatly simplified for skew symmetric matrices. Ro-

drigues’ Formula gives, as proved in [11], that for any skew symmetric matrix like ŵ,

eŵt = I + sin(t)ŵ + (1− cos(t))ŵ2. (3.1)

To go backwards from R to (ω, t) is given by the following theorem.

Theorem 3.1. Given a rotation matrix R ∈ R3×3, there is some unit vector w ∈ R3 and

t ∈ R such that

R = eŵt

called the logarithm of R, given by the following: If R = I, then t = 0 and w can be any

vector. If R 6= I,

t = cos−1

(
trace(R)− 1

2

)
and

w =
1

2 sin(t)


R32 −R23

R13 −R31

R21 −R12

 .
Proof. This is fairly easily seen by using the Rodrigues’ formula, equation 3.1, and noticing

that ŵ2 = wwT − I.

Now, our rotation matrix must take the z-axis and rotate it down to the normalized

−C/‖C‖. In particular the subspace perpendicular to the z-axis and −C/‖C‖ must be

28

invariant under this transformation. In fact the vector

w =


0

0

1

×− C

‖C‖ =


C2/‖C‖
−C1/‖C‖

0


is our very candidate after it is normalized. Now the angle of rotation t is the angle between

the z-axis and −C/‖C‖ so,

cos t =


0

0

1

 · − C

‖C‖ = − C3

‖C‖

and hence,

t = arccos(− C3

‖C‖)

is our angle of rotation. Thus our rotation matrix from camera to world coordinates is

Rwc = e
ŵ
‖w‖ t,

where t and w are defined above.

The complete rigid body transformation from homogeneous camera coordinates, Xc, to

homogeneous world coordinates, Xw, is given by

Xw = gwc(Xc) =

 Rwc C

0 1

Xc.

Likewise, the transform from world to camera in homogeneous coordinates can be represented

29

as

Xc = gcw(Xw) =

 RT
wc −RT

wc
~C

0 1

Xw.

3.4 The Geometry of a Camera

In this section we will introduce the mathematical models used to describe a single camera.

We start with 3D coordinates which are already transformed into the camera coordinate

frame. The camera can be thought of as a projection operator onto an image plane. While

this projection is inherently nonlinear, by using the homogeneous coordinate system this

becomes essentially a linear operation with a free scaling parameter. We start with the basic

geometry and then introduce the notation we will be using to represent the camera. There

are many excellent references which go into great detail about this form of representing the

camera and give some bells and whistles for a very many different types of cameras and

projections. A few of note are [11] and [4].

3.4.1 An Ideal Camera. In modeling cameras, we typically will make some assumptions

about the lens of the camera. Standard assumptions are that the lens is a thin lens meaning

it is nearly flat and therefore has little to no distortion of the image. While we know this is

a false assumption, there are many algorithms which can undo the distortion using varying

forms of interpolation and curve fitting, so it is a fairly simple preconditioning process to

get our data into a form that matches this assumption. The most basic model called the

ideal camera is the limit of the thin lens model. Sometimes it is also called a pinhole

camera. We assume simply that the lens is condensed down to a pin hole through which

light passes without distortion. We typically place the center of the lens in the origin of

the camera coordinate frame. We then place the image frame which represents the film or

digital receptors a distance of f units away from the origin along the camera Z axis. Another

30

X = (X, Y, Z)T

X

Z (optical axis)

Y

x = (x, y)T = (−f X
Z ,−f Y

Z)T

O

x

y

Image Plane

Camera Frame

f

Figure 3.2: The ideal camera model. The point X = (X, Y, Z)T is given in coordinates of
the camera frame. Note that the image plane is located behind the camera lens. This is the
true form of model but it inverts the image and the coordinates on the image plane involve
a negative sign: x = (−f X

Z
,−f Y

Z
)T .

simplifying assumption is that the Z axis of the camera frame is the same as the optical

axis of the camera. In other words, distances of objects directly in front of the camera are

given by the Z coordinate in the camera frame. Then using geometry of similar triangles,

it is easy to deduce that the coordinates of the point X = (X, Y, Z)T on the image plane is

x = (x, y)T = (−f X
Z
,−f Y

Z
)T .

We will often suppose that the image plane is instead located in front of the lens. By

doing this, the view on the image plane is oriented the way we would expect and the negative

signs are removed in the formula. The coordinates are given by x = (x, y)T = (f X
Z
, f Y

Z
)T .

We say the camera projects the point in space onto the image plane through the pinhole

at the origin of the camera frame.

31

X = (X, Y, Z)T

X

Z (optical axis)

Y

O

Camera Frame

x = (x, y)T = (f X
Z , f Y

Z)T x

y

Image Plane

f

Figure 3.3: The ideal camera model. The point X = (X, Y, Z)T is given in coordinates of
the camera frame. By changing the location of the image plane to be in front of the lens,
the coordinates on the image plane become x = (f X

Z
, f Y

Z
)T .

3.4.2 Camera Projection. In projective coordinates, the camera becomes a linear op-

erator because of our equivalency class from scalar multiplication. Since


x

y

1

 ' λ


x

y

1

 =


Zx

Zy

Z

 = P



X

Y

Z

1


,

where P is a general 3 × 4 projection matrix. As a side note, we will often replace the Z

factor by a λ to remind us that it is really a free parameter in the projective space. We

will discuss the interpretation of λ and when it is possible to recover the original Z in our

reconstruction methods in section 3.6.

We will break this projection matrix P down into a product of matrices that have meaning

32

for our specific camera. As can be seen, the most simple projection matrix would be

P0 =


1 0 0 0

0 1 0 0

0 0 1 0


the identity projector onto R3. Our projector matrix will also include information about how

the camera turns the coordinates into pixels. In other words, the final output of a camera is

not just in coordinates on the image plane but is in pixels on a finite focal plane with the

origin being typically in the upper left corner if we were looking through the camera out.

Before finishing the projector matrix, we need to introduce some more terminology. The

principal point of the image plane is the origin of the image plane coordinate frame. The

rest of the parameters are called intrinsic parameters for the camera.

Intrinsic Parameters of the Camera

f focal length, the distance from O to image plane along the optical axis

(u, v) axes of focal plane in pixels

θ skew of pixel axes u and v. Typically θ = π
2

ku scale of units in x direction of pixel, x = kuu

kv scale of units in y direction of pixel, kvv = x cos(θ)− y sin(θ)

(u0, v0) coordinate of the principal point in pixels

Then the matrix

K =


fku −fku cot(θ) u0

0 fkv
sin(θ)

v0

0 0 1


represents the transformation from the image plane to the pixel focal plane. Notice that

f is always multiplied by ku or kv. This is the source of our scale ambiguity and so we

typically assume unless otherwise known that f = 1. We also note that while we will do 3D

33

reconstructions, our solution will not necessarily be the correct scale but will be accurate in

its relative scale. Hence we can simplify many future problems by using this scale ambiguity

to normalize various mathematical objects in those problems.

We already have introduced gcw = (R, T) which will transform our 3D point from the

world coordinate frame to the camera coordinate frame. So, our entire transform from world

coordinates to the pixel focal plane is given by

~x =


u

v

1

 = KP0X = KP0gcwX0

=


fku −fku cot(θ) u0

0 fkv
sin(θ)

v0

0 0 1




1 0 0 0

0 1 0 0

0 0 1 0


 R T

0 1




X0

Y0

Z0

1


.

3.4.3 Other Aspects of the Single Camera and some Mathematical Notation.

We say a camera is calibrated , if we know the intrinsic parameters, ie. the K matrix,

corresponding to that camera. For calibrated cameras, we often think of K as being the

identity since we can always premultiply everything by K−1. Hence in our representations

for a calibrated camera, we often leave the scaling depth parameter λ in front (to remind us

that it is a free parameter for moving back to the Euclidean space) and can write the model

as

λ~x = P0X

A homography is any linear invertible transformation of Pn. It can be described by an

34

(n+ 1)× (n+ 1) nonsingular matrix H. Hence we write our homography as,

x′ = Hx

3.5 Epipolar Geometry or The Geometry of Two Cameras

Epipolar geometry is the geometry corresponding to two camera views of the same object.

With multiple views, we begin to be able to talk about the 3D structure of our scene.

Under a single camera view, depth is not a concept that can be discussed, however once a

second view is added, we can use the fairly simple geometry and a little linear algebra to

do reconstructions of the scene up to a scale factor and a linear transformation (sometimes

called a homography or a projective transformation in the literature) on the projective or

homogeneous coordinates. In fact when we are completely calibrated in both cameras and

have a notion of scale in the image, we can determine the linear transformation and remove

it, giving us the correct idea of proportions and angles as well as the right scale. This

typically takes some sort of calibration board which has been designed for obtaining scale

measurements such as in Figure 3.5. However even without an idea of scale and distances in

our image, the relative distances and measurements are correct.

Since our camera projection model is nonlinear in Euclidean space, we would expect

figuring out the projector and undoing the projection to be a nonlinear problem as well.

This is true and many models have been built which attempt to do this reconstruction

using nonlinear techniques. However there are linear models as well which are much simpler

and accomplish almost the same result. We will introduce one of those models called the

Eight-Point Algorithm and then discuss some nonlinear modifications that can be given to

enhance the result. When all is said and done, all these techniques reduce to a triangulation

minimization problem under some metric that is linear or nonlinear.

35

Figure 3.4: A calibration board to be used for discovering the internal parameters of a camera
often looks like a chessboard because of the simple detection of contrasting squares and the
size of each square is easily measured.

3.5.1 The Epipolar Constraint. Before we can get to the techniques for 3D recon-

struction, we must introduce the language and geometry associated with two views. We will

let the origin of camera 1 be o1 and likewise o2 for camera 2. Since each camera is represented

by a projection onto an image plane, there is a rotation and translation [R, T] that moves

the coordinates from image 1 to image 2. It really does not matter which camera is labeled

1 or 2 (or later N) but once we have designated them, we will stick to them and all of the

following notation will be associated with that specific designation of camera 1 and camera

2.

Now, given a point X0 in our 3D space, if P1 is the projection corresponding to camera 1

and P2 to camera 2, then λ1x1 = P1X0 and λ2x2 = P2X0. And since we have a relationship

between our two cameras given by [R, T] we get that

λ2x2 = Rλ1x1 + T.

Now we wish to remove our parameters λ1 and λ2 and obtain a relationship between x1

36

and x2 directly. To do so, we will premultiply our equation above by T̂ to get

λ2T̂x2 = λ1T̂Rx1 + T̂ T,

but since T̂ T = T × T = 0, we have

λ2T̂x2 = λ1T̂Rx1.

Finally, we premultiply both sides by xT2 and since T̂ x2 = T × x2 is perpendicular to x2, we

have xT2 T̂x2 = 0. So

0 = λ1x
T
2 T̂Rx1,

or in other words we have what is called the epipolar constraint

xT2 T̂Rx1 = 0.

We define E = T̂R which is called the essential matrix. Then the epipolar constraint is

given by

xT2Ex1 = 0.

More details will be given about the set of essential matrices characterized by being the

product of a skew symmetric matrix and a rotation matrix in Section 3.5.3.

The geometric interpretation of this epipolar constraint as pointed out in Chapter 5 of

[11] is as follows. We consider the triangle formed from the points X, and the two camera

origins o1 and o2 as seen in Figure 3.5. The three vectors of the triangle are on a single

plane and so their triple product (the area of parallelepiped formed by them) is zero. The

epipolar constraint is just this same triple product written in terms of the second camera

frame since Rx1 is the direction of vector from o1 to X and T is the direction from o1 to o2.

37

X

o1 o2

x1

x2

e2e1

`1
`2

[R, T]

Figure 3.5: Epipolar geometry shows the projection of point X onto each camera plane
together with the epipoles and epipolar lines corresponding to each image plane.

So xT2 T̂Rx1 = x2 · (T ×Rx1) = 0.

From this epipolar constraint we obtain a few other geometric objects which have use in

our discussion. The projection of the origin of camera 2 onto the image plane of camera 1 is

called an epipole, denoted e1, likewise on image plane 2, the projection of camera 1’s origin

is e2. The projection of the line passing through X and o2 on camera 1’s image plane is called

the epipolar line of X, denoted `1, likewise the projection of the line passing through X

and o1 onto image plane 2 is given by `2. We define the epipolar plane to be the plane

passing through X, o1 and o2. The epipolar lines can also be thought of as the intersection

of the epipolar plane with each image plane respectively. Now since the vector Rx1 is the

same direction as the vector o1 to X in image plane 2, then T × Rx1 define the coefficients

38

up to scale of the line `2. Thus we obtain

`2 ' Ex1, `1 ' ETx2,

where we remember that ' is equality up to multiplication by a scalar. Combining these

with the epipolar constraint, we get that

`Ti xi = 0 for i = 1, 2.

Likewise we recognize that e2 ' T and e1 ' RTT so

eT2E = 0, Ee1 = 0,

and since each epipole lies on the epipolar line corresponding to it’s image plane,

`Ti ei = 0 for i = 1, 2.

3.5.2 Planar Homography. Now, if all our points are on a plane, then we will use

a planar homography instead of our epipolar constraint in reconstruction. We construct a

planar homography using the normal vector, N , of the plane on which every point is

located. We let d be the distance from camera 1 to the plane given by

d = NTX1.

Then since we have

X2 = RX1 + T,

39

we get

X2 = RX1 + T

= RX1 + T
NTX1

d

=

(
R +

TNT

d

)
X1

= KX1.

Then our planar homography is given by

K = R +
TNT

d
∈ R3×3

and so for any X1 on our plane, the corresponding X2 in camera 2 coordinates is given by

X2 = KX1.

We can now project each coordinate onto its respective image plane to get

x2 ' Kx1.

Thus our planar homography takes the place of the epipolar constraint when all points are

on a single plane. Reconstruction techniques for the planar homography can be found in

Section 5.3.2 of [11].

3.5.3 The Essential Matrix. We give a few useful theorems and characterizations

about the essential matrices, in the essential space, ε = {E = T̂R ∈ R3×3 | R ∈ SO(3) and T ∈
R3}.

Proposition 3.2. Each essential matrix, E ∈ ε ⊂ R3×3 has rank 2.

40

Proof. We let E = T̂R. Then since R is a rotation matrix, it is invertible and so rankR = 3.

Now it can be easily proved that rank T̂ = 2 since it is a 3×3 skew symmetric matrix. Hence

rankE = 2.

Theorem 3.3. Given a real n × n matrix E where rank(E) = n − 1, we can obtain the

singular value decomposition, E = UΣV T , where U and V are in SO(n), meaning they are

orthonormal and have determinant = 1. (Note that the traditional SVD decomposition only

guarantees orthonormality and determinant = ±1.) and Σ = diag([σ1, σ2, . . . , σn−1, 0]).

Proof. Take our standard SVD decomposition of E = UΣV T . Since U and V are already

guaranteed to be orthogonal, we must show that we can write E = ŨΣṼ T such that det Ũ = 1

and det Ṽ = 1.

Now since rank(E) = n− 1, we know that σn = 0 hence we write E as

E = σ1 ∗ u1v
T
1 + σ2 ∗ u2v

T
2 + · · ·+ σn−1 ∗ un−1v

T
n−1 + 0 ∗ unvTn ,

where the ui (respectively vi) are the column vectors of U (respectively V). We now consider

some cases where modification might be required:

If det(U) or det(V) = 1 then we let Ũ = U or Ṽ = V .

If det(U) = −1, then let Ũ = [u1, u2, . . . , un−1,−un] = U∗diag([1, 1, . . . , 1,−1]).

If det(V) = −1, then let Ṽ = [v1, v2, . . . , vn−1,−vn] = V ∗diag([1, 1, . . . , 1,−1]).

Thus det(Ũ) = det(Ṽ) = 1 and,

ŨΣṼ T = σ1 ∗ ũ1ṽ
T
1 + · · ·+ σn−1 ∗ ũn−1ṽ

T
n−1 + 0 ∗ ũnṽTn

= σ1 ∗ u1v
T
1 + · · ·+ σn−1 ∗ un−1v

T
n−1 + 0 ∗ unvTn

= UΣV T

= E.

41

The next theorem is a useful characterization of essential matrices proved by Huang and

Faugeras in [7].

Theorem 3.4. A nonzero matrix, E ∈ R3×3, is an essential matrix if and only if it has

singular value decomposition

E = U diag{σ, σ, 0}V T ,

where σ > 0 and U, V ∈ SO(3).

Proof. (⇒) By definition, E = T̂R where R ∈ SO(3) and T ∈ R3. Then there is some

orthogonal matrix R0 ∈ R3×3 such that

T̂ = RT
0


0 ‖T‖ 0

−‖T‖ 0 0

0 0 0

R0.

Then

ETE = RT T̂ T T̂R = (R0R)T


‖T‖2 0 0

0 ‖T‖2 0

0 0 0

 (R0R),

where we note that R0R is also orthogonal and so the singular values of E are ‖T‖,
‖T‖, and 0. Then for the singular value decomposition E = UΣV T , by theorem 3.3,

our matrices U and V , for are in SO(3).

(⇐) Assume we have the singular value decomposition of E = UΣV T where Σ = diag{σ, σ, 0}
and U and V are in SO(3). Now let Rz(θ) be the matrix that represents a rotation of

42

θ radians around the z-axis. Then for e3 = [0, 0, 1]T ,

Rz

(
+
π

2

)
= eê3

π
2 =


0 −1 0

1 0 0

0 0 1

 ,

and Rz

(−π
2

)
= Rz

(
+π

2

)T
. Then let

(T̂1, R1) = (URz

(
+
π

2

)
ΣUT , URT

z

(
+
π

2

)
V T) (3.2)

(T̂2, R2) = (URz

(
−π

2

)
ΣUT , URT

z

(
−π

2

)
V T). (3.3)

It is easily verified that T̂1 and T̂2 are skew symmetric and R1, R2 ∈ SO(3) since each

are the product of matrices in SO(3). Likewise E = T̂1R1 = T̂2R2.

Theorem 3.5. Now given an essential matrix, E, there are exactly two unique decomposi-

tions E = T̂1R1 = T̂2R2 given by Equations 3.2 and 3.3.

Proof. The proof can be found on in Theorem 5.7 on page 116 of [11]. It is not difficult

but is rather tedious and offers no additional insight. Hence we refer the reader to their

proof.

3.6 Traditional Reconstruction Techniques

We first introduce, in Section 3.6.1, the most simple yet effective linear technique for finding

the essential matrix, E ∈ {T̂R | R ∈ SO(3), T ∈ R3}, from two sets of correlated points

x1 and x2 and decompose E it into the product of a rotation, R, and a translation, T .

This allows us to calculate the depth of the points and thus effect a 3D reconstruction of

our points. This algorithm is called the eight point algorithm and is excellent for data

43

points which have no error in them. It was introduced in 1981 by Longuet-Higgins in [10]

and has been used by practitioners since then. It is a linear algorithm and fairly simple to

implement but rather effective in getting close to the true solution R and T and is often used

to get an initial guess for other nonlinear methods. We then give a nonlinear refinement, in

Section 3.6.2, which works well to enhance the accuracy of the solution under measurement

error in the data. This triangulation algorithm will give back the optimal R and T as well as

the data points with the error removed. It performs fairly well under small to moderate error

but very poorly under high levels of noise due to the nonlinearity. It is recommended on the

basis of many empirical tests in [12] that under high levels of noise, the linear method be

used as it consistently obtained a close answer and the others performed much more poorly.

3.6.1 The 8-Point Algorithm. We will solve for the essential matrix, E, in the essential

space ε = {E ∈ R3×3 | E = T̂R where T ∈ R3 and R ∈ SO(3)} that satisfies the epipolar

constraint xjT2 Exj1 = 0 for all correlated data points x1 = {xj1}nj=1 and x2 = {xj2}nj=1. We

will then obtain a decomposition of E into R ∈ SO(3) and T ∈ R3 such that E = T̂R.

To begin, we write our epipolar constraint xjT2 Exj1 = 0 as a linear system. We vectorize

our essential matrix

E =


e1 e2 e3

e4 e5 e6

e7 e8 e9


to be

Ev =

[
e1 e2 e3 e4 e5 e6 e7 e8 e9

]T
∈ R9.

Then let our data points be formed into a matrix A = [x1
1 ⊗ x1

2 . . . xn1 ⊗ xn2] ∈ R9×n where

44

⊗ is the Kronecker product. In other words if x1 = [x1
1, x

2
1, x

3
1]T , then

x1 ⊗ x2 =


x1

1x2

x2
1x2

x3
1x2

 ∈ R9.

Then our epipolar constraint for all n data points can be written as the linear equation

ATEv = 0. (3.4)

We can now solve the least squares problem for a unique nontrivial vector Ev of this

equation granted that A has the property

rankA ≥ 8.

This will always happen provided that there are 8 correlated sets of points, that is we have

correlated points xi1 and xi2 for i = 1, . . . , n and n ≥ 8. A requirement on those points is that

they are in what is called a general position which essentially means that no four points

are collinear or that they do not lie on the same plane. When all the points lie on a plane in

space, the epipolar constraint is not sufficient to solve for their positions and an additional

assumption must be made since the epipolar matrix actually becomes a planar homography

and multiple nontrivial solutions to equation 3.4 exist. This case is treated thoroughly in

Section 5.3.2 of the book [11] by Ma et al.

Now it is fairly simple to prove that the eigenvector, v, corresponding to the smallest

nonzero eigenvalue ofATA gives the minimum nontrivial solution to the least squares problem

min
v∈R9
‖ATv‖2

2.

45

Now, if the points are in general position then this is the last column vector, v9, of the matrix

V = [v1, . . . , v9] in the singular value decomposition of A

A = UΣV T

and if the points have no measurement error, it will correspond to a vector which exactly

solves the problem

ATE = 0.

Otherwise it will be the least squares minimum of ‖ATE‖2
2. We note that it may not attain a

value of zero because the measured data points may not exactly satisfy the epipolar constraint

due to the measurement error in them.

Now, we let Ev = v9 and then reshape it back to it’s 3× 3 matrix form, E. This matrix

satisfies our epipolar constraint, xT2Ex1 = 0, but E may not necessarily be in our essential

space ε. We will thus project it onto the essential space using the Frobenius norm as our

metric.

Theorem 3.6. The essential matrix E0 ∈ ε that minimizes the Frobenius norm ‖E −E0‖F
for a matrix E ∈ R3×3 is given by

E0 = U diag{λ, λ, 0}V T ,

where E has the singular value decomposition E = U diag{λ1, λ2, λ3}V T and λ = (λ1 +λ2)/2.

Remark. Now typically we will use the essential matrix E0 ∈ ε that has norm 1 which is

equivalent to letting E0 = U diag{1, 1, 0}V T . This works since there is a scale ambiguity

already inherent in our problem so we can assume a normalized translation vector T in our

reconstructions. Then since ‖R‖ = 1, and ‖T‖ = 1 we get that ‖E‖ = ‖T̂R‖ = 1 as well.

We note as well that while E0 is the solution with the minimal Frobenius norm, it may

46

not be the optimal solution to our original problem of finding an essential matrix, E ∈ ε,
that gives

xjT2 Exj1 = 0,

for j = 1, . . . , n.

Now, given our matrix E0, we decompose it into its two possible T and R such that

E0 = T̂1R1 = T̂2R2 following the decomposition given in equations 3.2 and 3.3. We also

note that the sign of E was also arbitrary and so we follow the same procedure to project

−E onto the essential space and decompose it into T̂3R3 and T̂4R4. Hence, we have four

possible solutions for our rotation R and translation T . It has been shown in [11] that one

of these four solutions will always give rise to a 3D reconstruction that has positive depth.

The method recommended for determining which of these to use is by checking the sign of

the depth of the 3D points. The one with the most positive depths is the solution to be

used. A simple way to check the sign of the depth is as follows. The 3D point has positive

depth if (T̂ xj1)T (x̂j1R
Txj2) > 0.

47

Summary of the 8-Point Algorithm

Step 1. Create matrix of data points A ∈ R9×n with columns xj1 ⊗ xj2 for j = 1, . . . , n.

We solve the linear system AEs = 0 corresponding to the epipolar constraint, by

letting Es = v9 be the last column vector of the matrix V from the singular value

decomposition of A = UΣV T . Unstack the vector Es ∈ R9×1 into the matrix

E ∈ R3×3. We note that E is not necessarily in our essential space but is the least

squares minimum of the system xjT2 Exj1 for j = 1, . . . , n.

Step 2. Project the solution E onto the essential space under the Frobenius norm. Let

E = U diag{σ1, σ2, σ3}V T be the singular value decomposition. Then the matrix, E0,

given by E0 = U diag{1, 1, 0}V T is the normalized essential matrix which minimizes

the Frobenius norm ‖E − E0‖F .

Step 3. Decompose E0 = UΣV T into the the 2 pairs of translation and rotation parts as

defined in Theorem 3.4

(T̂1, R1) = (URz

(
+
π

2

)
ΣUT , URT

z

(
+
π

2

)
V T),

(T̂2, R2) = (URz

(
−π

2

)
ΣUT , URT

z

(
−π

2

)
V T),

Likewise decompose −E via Step 2. and 3. to get a total of 4 possible pairs of

translation and rotations, (Ti, Ri) for i = 1 . . . 4.

Step 4. Choose the solution E0 = T̂R from one of the four decompositions, (Ti, Ri) for

i = 1, . . . , 4, which yields positive depth solutions in the 3D reconstruction. The

sign of the depth is positive if

(T̂ xj1)T (x̂j1R
Txj2) > 0.

We note that this solution E0 = T̂R is not necessarily the true solution but instead

is our best least squares approximation to it. So we recommend to choose the

decomposition which yields the most positive depths of the four.

48

3.6.2 Refinement of Solution via Triangulation. Since the 8-point algorithm makes

the assumption that there is no error in the data, and all real images have a bit of error, we

need a way to refine our solution, X, R and T , to be optimal where we use the term optimal

in the sense of minimal under least squares. Hence the method of triangulation is optimal

for our purposes. In [12], Ma et al demonstrate the equivalence of many existing techniques

that were being used in industry to the general triangulation method under the epipolar

constraint. The following discussion of refinements follows the ideas set forth by them to

improve the estimates of R and T and to get estimates of the true data x from measured

data points with error in them, x̃. We proceed as follows.

Given n measured and correlated data points x̃1 = {x̃j1}nj=1 and x̃2 = {x̃j2}nj=1 for each

camera, we want to find the set of points x1 and x2 that minimize

φ(x1,x2, R, T) =
n∑
j=1

‖x̃j1 − xj1‖2 + ‖x̃j2 − xj2‖2,

subject to ∀j ∈ {1, . . . , n},

xjT2 T̂Rxj1 = 0

xjT1 e3 = 1

xjT2 e3 = 1,

where e3 = [0, 0, 1]T is the 3rd unit vector in R3. Using the method of Lagrange multipliers,

we reduce this constrained optimization problem to an unconstrained one, as shown in Ap-

pendix B.1. In actuality we give two equivalent formulations of the reduced problem which

were arrived at separately in Appendix B.1.

49

min
{x1,x2,R,T}

φ(x1,x2, R, T) =
n∑
j=1

(
xjT2 T̂Rx̃j1 + x̃jT2 T̂Rxj1

)2

∥∥∥xjT2 T̂RêT3

∥∥∥2

+
∥∥∥ê3T̂Rxj1

∥∥∥2 (3.5)

=
n∑
j=1

(
xjT2 T̂Rx̃j1

)2

∥∥∥xjT2 T̂RêT3

∥∥∥2 +

(
x̃jT2 T̂Rxj1

)2

∥∥∥ê3T̂Rxj1

∥∥∥2 . (3.6)

Now, again following the discussion in [11],[12] and [18], we proceed to simplify our

problem by reducing considerably the parameter space. This is done by exploiting the

geometry and using it to simplify our search for optimal x1 and x2 to be a search over a

single one dimensional variable, θ. We proceed as follows:

X

o1 o2

x1

x2

e2e1

x̃1

x̃2 N2

N1
`2

Figure 3.6: Given the epipolar plane with `2 as it’s normal vector, we can calculate the
nearest xi on plane to x̃i which satisfies the epipolar constraint.

We show in Appendix B.2 that for any measured data point, x̃, on the image plane and

epipolar line, we can explicitly compute the closest point to x̃ on that given epipolar line in

the following manner. Let ` be the unit normal vector to the epipolar plane corresponding

50

to our desired epipolar line as seen in Figure 3.6, (ie. ` = e×x
‖e×x‖ where e is the epipole and

x is any other point on the epipolar line). Then x(`), the closest point to x̃ on the epipolar

line is characterized by

x(`) =
ê3``

T êT3 x̃ + ˆ̀T ˆ̀e3

eT3
ˆ̀T ˆ̀e3

, (3.7)

where e3 = [0, 0, 1]T . Hence ` ' x × e and so if we are in the second image coordinates,

`2 = x2 × e2 and hence we can easily calculate the same vector in the first image plane to

be `1 = RT `2.

o

−e3 × `
`×(e3×`)
‖e3×`‖2

e

x(`)

x̃

e3
Proj e3×`

‖e3×`‖
x̃

`

Figure 3.7: The closest point to x̃ on the given epipolar line is given by Equation 3.7 where
` is the unit vector normal to the epipolar plane through the points o, e, and x(`)).

Thus we have

x1(`1) =
ê3`1`

T
1 ê

T
3 x̃1 + ˆ̀T

1
ˆ̀
1e3

eT3
ˆ̀T
1

ˆ̀
1e3

(3.8)

51

and

x2(`2) =
ê3`2`

T
1 ê

T
3 x̃2 + ˆ̀T

2
ˆ̀
2e3

eT3
ˆ̀T
2

ˆ̀
2e3

. (3.9)

Now using these explicit forms, we can write our minimization distance ‖x̃− x(`)‖2 as

‖x̃− x(`)‖2 = ‖x̃‖2 +
`T
(
I + 2ˆ̃xê3 − êT3 x̃x̃T ê3

)
`

`T (êT3 ê3) `

= ‖x̃‖2 +
`TA(x̃)`

`TB`
,

where A(x̃) = I+2ˆ̃xê3− êT3 x̃x̃T ê3 and B = êT3 ê3. Thus we have our function to be optimized

as a function of `j2

φ(`2, R, T) = ‖x̃j2 − xj2(`j2)‖2 + ‖x̃j1 − xj1(RT `j2)‖2 (3.10)

=
n∑
j=1

‖x̃j2‖2 +
`jT2 A(x̃j2)`j2
`jT2 B`j2

+ ‖x̃j1‖2 +
`jT2 RA(x̃j1)RT `j2

`jT2 RBRT `j2
. (3.11)

N1

N2
`2

θ

Figure 3.8: We parameterize `2 = cos(θ)N1 +sin(θ)N2 where N1 and N2 are orthogonal basis
elements for R3 along with the epipole, e2 (' T), in the second camera’s reference frame.

Now, this can be further simplified by remembering that `2 is the unit normal vector to

the epipolar plane given by o2, x2 and e2. Hence if we create a set of orthonormal basis

elements with e2 as one of the directions and N1 and N2 the other two basis elements, then

52

`2 is actually found in the plane perpendicular to e2. The gemoetry is demonstrated in

Figure 3.6. Hence `2 is a unit vector in the plane given by the vectors (N1, N2) and so

we can parameterize `2 by its angle formed with N1. Hence `2 = cos(θ)N1 + sin(θ)N2 and

we can use θ as our variable of optimization instead of `2. As a simple note, we can also

restrict T to be in S2 since scale is still arbitrary so we can think of T as being a direction

on the boundary of the unit sphere. In [12], Ma, et al, point out that this all becomes an

optimization on the manifold (R, T, θ) ∈ SO(3) × S2 × Rn since there are n different data

points in each camera and so n θ values to be optimized. In addition, they point out that

we are searching for the optimal θ in a bounded region since geometry dictates it will be

between the θ1 and θ2 where `1(θ1) and `2(θ2) are the normal unit vectors of the epipolar

planes through (̃x)1 and x̃2 respectively.

They recommend an alternating minimization scheme to find the minimum.

Alternating Scheme for Nonlinear Refinement

Step 1. Initialize R, T to be the solutions of the eight-point algorithm with the measured

data, x̃1 and x̃2. Minimize equation 3.5 or 3.6 in R and T . Use the explicit charac-

terizations of each, (w, t) ∈ R3 × R where R = exp(ŵt) as described in Section 3.3

and T ∈ S2, to do avoid doing the optimization on a manifold.

Step 2. Given the new R and T , minimize equation 3.11 with respect to `2.

Step 3. Go back to Step 1. if φ(x1,x2, R, T) is not below some predetermined error limit.

Remark. A final point of caution before we proceed. When error becomes very large, bifur-

cations can happen in our minimization function which will cause our nonlinear optimization

to find a solution much worse even than the linear eight point algorithm. This is described

in great detail in the paper [12] by Ma et al. They make a recommendation to help alleviate

this effect by adjusting the linear eight point algorithm slightly to use the eigenvectors cor-

53

responding to the smallest and second smallest eigenvalues of XTX to construct E. They

recommend to construct E for each eigenvector and then choose the solution which gives the

most positive depths in the reconstruction. This can be done without explicitly computing

the depth by checking the sign of the depth. Thus it is positive if

(T̂ xj1)T (x̂j1R
Txj2) > 0.

It is recommended to do so because as error gets high, the last two eigenvalues get closer and

closer and the corresponding eigenvectors can switch roles. Now while this is a good practice,

it does not always prevent the nonlinear effect from falling into a worse approximation. In

fact after doing some empirical tests they recommend it is best to simply abandon the

nonlinear adjustment under extremely high amounts of noise and solely use the eight point

linear approximation.

54

3.7 Some Examples of Reconstruction from Simulated and Ac-

tual Images

We give a few examples of the results from using the eight point algorithm and the nonlinear

adjustment for reconstruction.

3.7.1 Rubik’s Cube Simulation. We started by creating a virtual Rubik’s Cube in

MATLAB and simulating two camera projections. We then add noise to the data and run

it through our reconstruction algorithm. The two camera images are shown in Figure 3.7.1

and the 3D reconstruction is shown in Figure 3.7.1.

3.7.2 An Example with an Actual Camera. We next take two pictures of the book-

shelf in my office using the camera on my computer. We use a feature finding and tracking

algorithm, as described in Chapter 4 and 11 of [11], to identify 49 likely corresponding sets

of points. We then run those points through our linear 8 point algorithm and and nonlinear

adjustment algorithms to obtain the 3D reconstruction seen in Figure 3.7.2.

55

0 50 100 150 200 250
0

50

100

150

200

250

(a) Rubiks cube camera view 1

0 50 100 150 200 250 300
0

50

100

150

200

250

(b) Rubiks cube camera view 2

0 50 100 150 200 250
0

50

100

150

200

250

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

Estimate
Actual

(c) Rubiks cube reconstruction view 1

0 50 100 150 200 250
0

50

100

150

200

250

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20
21

22

23

24

25

26
27

Estimate
Actual

(d) Rubiks cube reconstruction view 2

Figure 3.9: The simulated reconstruction of three faces of a Rubik’s cube from two camera
views. The points are reconstructed in 3D then reprojected onto the image plane and overlaid
on the originals. It is possible to find deviations in the re-projection from the original but
they are very close.

56

2
1

0
1

1.5

1

0.5

0

0.5

1

1.5

3.5

4

4.5

5

5.5

(a) Rubiks cube 3D reconstruction

2

1

0

1

1
0

1

3.5

4

4.5

5

5.5

(b) Rubiks cube 3D reconstruction from different view

Figure 3.10: The 3D structure of the points on the Rubik’s cube is apparent. We see that the
three sides have points that are parallel and the shape is what we would expect. These views
are different from the locations that the cameras took. Once the 3D structure is known, we
can simulate the camera view from a unique position.

57

100 200 300 400 500 600

50

100

150

200

250

300

350

400

450

(a) Camera 1 view of bookshelf

100 200 300 400 500 600

50

100

150

200

250

300

350

400

450

(b) Camera 2 view of bookshelf

1.5

1

0.5

0

0.5

1

1.5
1

0
1

0

2

4

X

Z

Y

(c) 3D reconstruction view 1

1 0 1
101

1

0

1

2

3

4

5

YX

Z

(d) 3D reconstruction view 2

Figure 3.11: We use a camera to obtain two views of a bookshelf as seen in Figures 3.11(a)
and 3.11(b). The points are identified, tracked and correlated then are passed through our
reconstruction algorithm to obtain the 3D structure as seen in Figures 3.11(c) and 3.11(d).
The axes represent the orientation of each camera.

58

Chapter 4. Image Reconstruction with the Level Set Method

We give a short but complete description of a dense stereo reconstruction model that leads

to a partial differential equation with motion in the normal direction, which can be solved

using level set methods. This model was introduced by Olivier Faugeras and Renaud Keriven

in [3] and later enhanced in Chapter 18 of [15] which was written by Faugeras, Gomes, and

Keriven.

We suppose that objects in our scene are given by a smooth C2 surface, Ŝ in R3. The

goal is to derive a partial differential equation that will start with an initial surface S0 and

evolve the surface in time toward Ŝ according to

St = βN

where S is a point on the surface and N the inner unit normal. Essentially we must come

up with a β which will cause our initial surface to evolve in the normal direction which has

the surface Ŝ as the steady state.

We let Ii(m) represent the image intensity of pixel m in camera i. Intensity refers to the

color or greyscale value of the image pixel. So Ii represents the view of camera i of the scene.

We define an functional which will serve as an error measure for our approximation to

the surface. We wish to find a surface which will minimize it and so the calculus of variations

tells us that it’s Euler Lagrange equation must be satisfied. As we will see shortly the Euler-

Lagrange equation gives us a partial differential equation which is characterized by motion in

the normal direction of the surface. Hence, it can be solved using the level set method. This

Euler-Lagrange equation will thus give us the forcing function, β, for our level set equation.

59

We let our error measure functional be

C(S,N) =

∫
S

ϕ(S,N)dσ

where ϕ measures the error made in the 3D reconstruction of assuming there is an object

at point S with normal N. The integration is taken over the entire surface. We use the

normalized cross correlation as our error measure which will be explained hereafter. This

compares small windows around each point to see how similar they are and returns a value

between -1 and 1. A value of 1 is strong correlation and will correspond to a good surface

reconstruction while the small correlation or negative values will signify big changes needed

in the surface location. We allow for multiple cameras and the fact that not every camera

can see every point, called occlusion in the literature. Thus the correlation between camera

i and camera j at a point § which has coordinate mi in camera i image plane is given by

ρij =
〈Ii, Ij, 〉
|Ii||Ij| (S,N,mi)

where cross correlation is essentially integration over windows of size (2p + 1) × (2q + 1)

pixels around a point mi and its corresponding pixel mj in the other camera. We make some

modifications to the second window which correspond to it being the reflection of the first

window off the tangent plane at the point on the surface into the second image plane. We

will formally describe it in Chapter 5.

〈Ii, Ij〉(S,N) =
1

4pq

∫ p

−p

∫ q

−q

[
Ii(mi +m)− Īi(mi)

] [
Ij(mj + Am)− Ī∗j (mj)

]
dm

and

|Ii| =
√
〈Ii, Ii〉

60

a

b

c

d

a

b

c

d

mi

mj

S

TS

Figure 4.1: The window of size (2p+ 1)× (2q+ 1) pixels around the point mi projected from
camera i under the planar homography, K, is no longer necessarily rectangular in camera j
around mj.

61

Now to model occlusion, we let Γ be the set of cameras which can see the point S on

the surface, then we let ϕ take into account the average of all the correlations of cameras

which can see S. Finally in order to have ϕ stay positive which causes us to have a stable

evolution, we let g be any decreasing function that maps our correlation to positive values,

ie. g : [−1, 1]→ R+. Then

ϕ(S,N) = g(
1

|Γ|(|Γ| − 1)

∑
i,j∈Γ,i 6=j

ρij)

For practical purposes, this is a symmetric error criterion which takes into account oc-

clusion and visibility that works for multiple cameras. We will typically let g(x) = 1−x but

any decreasing function g that satisfies the above will work.

Now, the Euler Lagrange equations for this model lead to a partial differential equation

with movement solely in the normal direction and a magnitude of

β = 2Hϕ− (ϕS + 2HϕN) ·N− Trace ((ϕSN)TS + ∂N ◦ (ϕNN)Ts)

where everything is evaluated at the point S with normal N of the surface. TS denotes the

tangent plane to the surface at S and dN denotes the differential of the Gauss map of the

surface. Finally H is the mean curvature of the surface and ϕSN, ϕNN are the second order

derivatives of ϕ with (ϕSN)TS and (ϕNN)TS being their restrictions to the tangent space TS.

The proof of this result can be found in the Appendix B of [3].

Now for our level set implementation, we embed the surface S as the zero level set of a

function u(X, t) where X ∈ R3. Then our surface at time t is given by

S(t) = {X ∈ R3 | u(X, t) = 0}

62

and evolves according to the level set equation

ut(X, t) = β(X, t)|∇u(X, t)|.

With this embedding, we have that the inward normal is given by

N = − ∇u|∇u|

and

2H = div

(∇u
|∇u|

)
.

So our forcing function β is given by

β = ϕ div

(∇u
|∇u|

)
+

(
ϕS + ϕN div

(∇u
|∇u|

))
· ∇u|∇u| − Trace ((ϕSN)TS + ∂N ◦ (ϕNN)Ts)

Hence we only need to calculate ϕS, ϕN, ϕSN, and ϕNN which will be given in Section 5.2.

We also note that β is only truly defined on the surface and so we need to extend it to all

other points in R3 which will be explained in Section 5.4.

63

Chapter 5. Elements of Level Set Method Stereo Problem

We give the specifics of our level set model for stereo surface reconstruction from n camera

views taken simultaneously of a scene. The following will work for a general number of camera

shots of the scene and as such we will give the general formula and then do the specifics in

terms of two cameras. We assume our object will be constructed in the coordinate system

of camera 1. Thus

P1 = [I3, 0] ∈ R3×4

and we assume we know the Euclidean transformation from camera 1 to camera 2 given by

P2 = [R, T] ∈ Rs×4.

We make the simplifying assumption that the tangent plane at S well approximates the

surface nearby and so there is a planar homography, K ∈ R3×3, that maps from coordinate

mi on the focal plane of camera i to mj on camera j. Where we typically will normalize by

the third component of mi or mj to get the 2D coordinate on the plane

mi = [xi, yi, 1]T ' [xi, yi]
T .

64

Then for a general 3-D point, M1, on a surface in camera 1 coordinates, the corresponding

M2 in camera 2 coordinates is given by

M2 = RM1 + T

= RM1 + T

(
NTM1

d

)
=

(
R +

TNT

d

)
M1

= KM1

where N is the unit normal vector to the surface at M1 in the first camera’s coordinate

system. Therefore we let d = NTM1 be the distance from the origin to the tangent plane to

the surface at M1. We say K is the planar homography corresponding to M1 and M2. As

a side note, the same could be done for the normalized points mi and mj and the result is

that in their respective focal planes,

m2 ' Km1.

Finally, our error functional, C(S) =
∫
S
ϕ(S,N)dσ, gives us Euler-Lagrange equations

characterized by motion in the normal direction. We can represent the system in the level

set equation

ut = β|∇u|

with u(X, 0) = S0 given by some initial surface like a cylinder and magnitude of the forcing

function given by

β =


2Hϕ regularization term

−(ϕS + 2HϕN) ·N first order data term

−Trace ((ϕSN)TS + ∂N ◦ (ϕNN)Ts) higher order terms

65

where each is evaluated at point S with normal N of the surface. TS is the tangent plane to

the surface at S. H is the mean curvature, and dN is the derivative of the Gauss Map. As

a side note, the authors of this model recommend that the initial surface completely enclose

the desired final result to give optimal convergence under this pde. Also, the authors point

out in [15] that simulations with the higher order terms in β were not significantly different

from simulations without them. We may, in cases where speed is an issue, neglect to compute

the higher order terms and our result will not be noticeably different that otherwise.

5.1 The measure of error, ϕ(S,N)

Let ϕ(S,N) be the functional defined by

ϕ(S,N) = g

(
1

|Γ||Γ− 1|
∑

ij∈Γ,i 6=j

〈Ii, Ij〉
|Ii||Ij| (S,N)

)

where g(x) = 1− x, Γ is the set of cameras which can see the point S and,

〈Ii, Ij〉(S,N) =
1

4pq

∫ p

−p

∫ q

−q

[
Ii(mi +m)− Īi(mi)

] [
Ij(mj + Am)− Ī∗j (mj)

]
dm

We note that mi = PiS and where we denote the integral over the box around mi or mj, by

∫ ∗
=

1

4pq

∫ p

−p

∫ q

−q

and the bar denotes the averages

Īi(mi) =

∫ ∗
Ii(mi +m)dm

Īj(mj) =

∫ ∗
Ij(mj +m)dm

Ī∗j (mj) =

∫ ∗
Ij(K(mi +m))dm

66

We simplify our later calculations by approximating K by an affine transformation

K(mi +m) = mj + Am+ higher order terms, where if the row vectors of K are

K =


−k1−
−k2−
−k3−

 ∈ R3×3

then since m = [x, y, 0]T we get the first order approximation to K

A =
1

k3mi

 k1 − xjk3

k2 − yjk3

 ∈ R2×3

Finally we remove the last column and write m = [x, y]T to have A ∈ R2×2. We will also need

the derivatives of K and A in the tangential and normal directions so since K = dR+TNT ,

the derivative with respect to Ni, each element of N is

KNi = dNiR− TNT
Ni

= SiR + T · [0, 1, 0]

where the 1 is in the i-th spot of the last vector. Thus we can calculate (Am)Ni which will be

given by its product with the vector m = [x, y]T and the rows of KNi = [(k1)Ni ; (k2)Ni ; (k3)Ni].

(Am)Ni = −(k3)Nimi

ksmi

Am+
1

k3mi

 (k1)Ni − xj(k3)Ni

(k2)Ni − yj(k3)Ni

m ∈ R2×1

Then

(Am)N = [(Am)N1 , (Am)N2 , (Am)N3] ∈ R2×3.

Similarly, we get the derivative with respect to Si in S.

KSi = dSiR = NiR

67

and

(Am)Si = −(k3)Simi

ksmi

Am+
1

k3mi

 (k1)Si − xj(k3)Si

(k2)Si − yj(k3)Si

m ∈ R2×1

So

(Am)S = [(Am)S1 , (Am)S2 , (Am)S3] ∈ R2×3

Now we will solve this system using the level set methods so the surface is given by

{X ∈ R3 | u(X, t) = 0}. So our level set equation is given by

ut(X, t) = β(X, t)|∇u(X, t)|

Now, the normal to the surface at any point is given by

N = − ∇u|∇u|

On the surface of the object, the parameterization of the point can be given by S(v, w) =

(v, w, −vux−wuy
uz

+ c), where c is a constant, so we have

Sv = (1, 0,−ux
uz

)T

Sw = (0, 1,−uy
uz

)T

We can likewise calculate the unnormalized vectors

Nv = − ∂

∂x

∇u
|∇u|

Nw = − ∂

∂y

∇u
|∇u|

68

Thus we can calculate the differential of the Gaussian Map, ∂N

∂N =

 e
E

f
h

f
h

g
G


where

e = −Nv · Sv, E = Sv · Sv
f = −Nw · Sv, F = Sv · Sw
g = −Nw · Sw, G = Sw · Sw
h = Sv × Sw

5.2 Formal Definitions of the derivatives of ϕ

Finally, we will need ϕS, ϕN , ϕSN and ϕNN to calculate everything that goes into our forcing

function, β.

ϕS =
∂g

∂x

∑
i,j∈Γ,i 6=j

〈Ii, Ij〉S
|Ii||Ij| −

〈Ii, Ij〉
|Ii|2|Ij|2 (|Ii||Ij|)S

ϕN =
∂g

∂x

∑
i,j∈Γ,i 6=j

〈Ii, Ij〉N
|Ii||Ij|

ϕSN =
∂g

∂x

∑
i,j∈Γ,i 6=j

〈Ii, Ij〉SN
|Ii||Ij| −

〈Ii, Ij〉TN
|Ii|2|Ij|2 (|Ii||Ij|)S

ϕNN =
∂g

∂x

∑
i,j∈Γ,i 6=j

〈Ii, Ij〉NN
|Ii||Ij|

Now in order to calculate each of these quantities, we will ned the derivatives of our corre-

lation measure. For a point on the surface S = (S1, S2, S3), we give the notation

〈∇ITi , I∗j 〉
∂mi

∂S
=

∫ ∗
∇Ii(mi +m)T

∂mi

∂S

[
Ij(mj + Am)− Ī∗j (mj)

]
dm

69

So likewise,

〈Ii,∇I∗Tj 〉
∂mj

∂S
=

∫ ∗ [
Ii(mj +m)− Īi(mi)

]∇Ij(mj + Am)T
∂mj

∂S
dm.

We let Rk denote the k-th row of our rotation matrix R and Rj
k the j-th element of the k-th

row. Likewise we let T = [T1, T2, T3]T . Then for mi = S/S(3) and mj = RS+T
R3S+T3

, we get

∂mi

∂S
=

 1/S(3) 0 − S(1)
S(3)2

0 1/S(3) − S(2)
S(3)2

 ∈ R2×3

∂mj

∂S
=

1

(R3S + T3)2

 R1(R3S + T3)−R3(R1S + T1)

R2(R3S + T3)−R3(R2S + T2)

 ∈ R2×3

and ∇Ii ∈ R3×1 (R2×1).

5.3 Derivatives of the correlation integral

Then the derivative 〈Ii, Ij〉S ∈ R1×3 is given by

〈Ii, Ij〉S = 〈∇ITi , I∗j 〉
∂mi

∂S
+ 〈Ii,∇I∗Tj 〉

(
∂mj

∂S
+ (Am)S

)

The derivative 〈Ii, Ij〉N ∈ R1×3 is given by

〈Ii, Ij〉N = 〈ITi ,∇I∗Tj 〉(Am)N

=

∫ ∗ [
Ii(mi +m)− Īi(mi)

]∇Ij(m2 + Am)T (Am)Ndm

Now we define the norm to be

|Ii|2 = 〈Ii, Ii〉 =

∫ ∗ [
Ii(mi +m)− Īi(mi)

] [
Ii(mi +m)− Īi(mi)

]
dm

70

and

|Ij|2 = 〈I∗j , I∗j 〉 =

∫ ∗ [
Ij(mj + Am)− Ī∗j (mj)

] [
Ij(mj + Am)− Ī∗j (mj)

]
dm

thus the derivatives |Ii|S and |Ij|S ∈ R1×3 are

|Ii|S =
1

|Ii|
[
〈∇ITi , Ii〉

∂mi

∂S

]
|Ij|S =

1

|Ij|
[
〈∇I∗Tj , I∗j 〉

∂mj

∂S
+ 〈I∗j ,∇I∗Tj 〉(Am)S

]

For the higher order terms, we need 〈Ii, Ij〉SN ∈ R3×3 which is given by

〈Ii, Ij〉SN =

∫ ∗ ∂mi

∂S

T

∇Ii(mi +m)∇I2(mj + Am)T (Am)Ndm

−∂Ī
T
i

∂S
(mi)

∫ ∗
∇Ij(mj + Am)T (Am)Ndm

+

∫ ∗ [
Ii(mi +m)− Īi(mi)

] [
(Am)TSHIj(Am)N +∇ITj (Am)SN

]
dm

where

∂Īi
∂S

=

∫ ∗
∇ITi (mi +m)dm

∂mi

∂S

and HIj is the Hessian of Ij(S,N).

Finally, we need the 3× 3 matrix,

〈Ii, Ij〉NN =

∫ ∗
(Ii(mi+m)− Īi(mi))

[
(Am)TNHIj(Am)N +∇ITj ANNm

]
dm

With all of these terms, we can calculate the desired quantities of ϕ and it’s derivatives.

5.4 Extending β from the surface, S, to R3

To preserve the distance functions and speed up our final result as well as extend our β

to all of R3 we follow the suggestion of Gomes and Faugeras in [5] to rewrite our level set

71

equation so that the distance function is preserved over time. Their solution is to have

the forcing function be defined on the zero level set and to let the extension be such that

along characteristic lines, the magnitude is the same. With these assumptions, our level set

equation becomes

ut = β(X − u∇u)

where X − u∇u = y such that u(y) = 0. This works well because for our specific problem,

β is really only defined on the zero level set in the first place. Hence this extension fits well

into our application. It is implemented using the narrow banded level set method which

speeds up our calculations considerably.

72

Appendix A. An Introduction to Finite Differences for

Numerical Analysis

A.1 What is a Finite Difference?

Consider the differential equation y′ = f(y) with initial condition y(a) = y0 defined on some

interval I = [a, b]. We desire to find a solution y(x). Many such problems have no closed

form solution and must be approximated numerically. Thus we let {x0 = a, x1, . . . , xn+1 = b}
be a partition of I and we define ∆xi = xi − xi−1. Note that

yi+1 − yi
∆xi+1

≈ f(yi),

so that yi+1 ≈ yi + f(yi)∆xi+1. In general, we approximate f (n)(xi) using a linear combi-

nation of {f(xj)}n+1
j=0 . A finite difference approximation for f (n)(xi) is a linear combination∑n+1

j=0 ajf(xj). A finite difference method creates a particular discretized system using finite

differences which approximate the differential equation we wish to solve. We hope that this

discretized system will accurately approximate the solution of the differential equation. For

the purposes of our discussion here, we will deal with functions f(x, t) of time and one di-

mension of space. We note that finite difference methods in multiple spatial dimensions are

treated similarly.

Given a point xi in a grid of points where xi+1− xi = h for all i, (sometimes we use h to

represent the grid size, and other times we will explicitly say ∆x or ∆t, especially if the sizes

are different) we will use the Taylor series of f(x) for points in neighborhood of xi around

xi. As an example, say we wish to approximate f ′(xi) using a forward difference, meaning

73

we will use the points xi and xi+1, then the Taylor series of f(xi+1) around xi is

f(xi+1) = f(xi + h) = f(xi) + f ′(xi)(h) + f ′′(xi)
(h)2

2
+O(h3),

so if we subtract over f(xi) and solve for f ′(xi) to get

f ′(xi) =
f(xi+1)− f(xi)

h
+ f ′′(xi)

(h)

2
+O(h2),

so we get our forward difference approximation of the first derivative at xi

f ′(xi) =
f(xi+1)− f(xi)

h
+O(h).

We note that this is a first order approximation to the first derivative. We say a finite

difference approximating an n-th derivative is of order m if we can write it as a function of

its neighbors, f (n)(xi) =
∑n+1

j=0 ajf(xj) +O(hm).

Likewise, we could do a backward difference (using xi and xi−1)

f(xi−1) = f(xi − h) = f(xi) + f ′(xi)(−h) + f ′′(xi)
(−h)2

2
+O(h3)

so isolating f ′(xi), we get our first order backward difference scheme for f ′,

f ′(xi) =
f(xi)− f(xi−1)

h
+O(h).

We can do this in general for any set of grid points in a neighborhood of xi, for example

we have a second order centered difference (using an balanced amount of points on either

side of xi like for instance using xi+1, xi, and xi−1) approximation to the first derivative We

74

use the taylor series

f(xi+1) = f(xi) + f ′(xi)(h) + f ′′(xi)
(h)2

2
+ f ′′′(xi)

(h)3

6
+O(h4)

f(xi−1) = f(xi) + f ′(xi)(−h) + f ′′(xi)
(−h)2

2
+ f ′′′(xi)

(−h)3

6
+O(h4),

so subtract the second from the first to get

f(xi+1)− f(xi−1) = 2f ′(xi)(h) +O(h3).

So we get

f ′(xi) =
f(xi+1)− f(xi−1)

2h
+O(h2).

Notice that the h2 terms in the Taylor series cancel each other out giving us, after dividing

by h, a second order centered difference approximation to the first derivative. Likewise, we

can solve for a centered difference approximation to the second derivative. Add the two

above taylor series and subtract 2f(xi) to get

f(xi+1)− 2f(xi) + f(xi−1) = f ′′(xi)(h)2 +O(h4)

so we have

f ′′(xi) =
f(xi+1)− 2f(xi) + f(xi−1)

h2
+O(h2).

Sometimes when we are dealing with the edges of our grid, we may need to create a

higher order finite difference approximation which is one sided. For instance, to create a

second order approximation at a point xi using xi−1 and xi−2, we first write out our Taylor

75

series

f(xi−1) = f(xi)− f ′(xi)h+ f ′′(xi)
h2

2
− f ′′′(xi)h

3

6
+ f (4)(xi)

h4

12
+O(h5),

f(xi−2) = f(xi)− 2f ′(xi)h+ 2f ′′(xi)h
2 − 4

3
f ′′′(xi)h

3 +
4

3
f (4)(xi)h

4 +O(h5).

We want to remove the h2 terms when we add them so we add −4 copies of the first equation

to the second to get

−4fi−1 + fi = −4fi + fi + 4hf ′i − 2hf ′i +
2

3
h3f ′′′i −

4

3
h′′′i +O(h4)

and solving for f ′i we get the scheme

f ′i =
3fi − 4fi−1 + fi−2

2h
+O(h2).

A.1.1 General Method to Find Finite Difference Scheme. In order to find the

combination of neighbor points that will yield an approximation to any derivative desired,

we first give a general form of the Taylor series about a point xi. For any number j, the

Taylor series of f(xi+j) around xi is

f(xi+j) = f(xi + jh) = f(xi) + f ′(xi)(jh) + f ′′(xi)
(jh)2

2
+ f ′′′(xi)

(jh)3

3!
+ . . .

We denote the set of points which will be used in our scheme around xi by J =

[j1 j2 . . . jn] where for example jl = 2 refers to xi+2 or jl = −1 refers to xi−1. Then

using the general Taylor series form above, we can write our set of Taylor series for each

76

j ∈ J into a system of linear equations as



1 j1h
(j1h)2

2!
. . . (j1h)n−1

(n−1)!

1 j2h
(j2h)2

2!
. . . (j2h)n−1

(n−1)!

...
...

...
...

1 jnh
(jnh)2

2!
. . . (jnh)n−1

(n−1)!





f(xi)

f ′(xi)

...

f (n−1)(xi)


=



f(xi + j1h)

f(xi + j2h)

...

f(xi + jnh)


+O(hn).

If we denote this matrix as A, the vectors of derivatives of f(xi) as F ′, and the vector of

f(xi+j) for j ∈ J , as FJ , then we have

AF ′ = FJ +O(hn),

We note that this matrix A is a vandermonde matrix and is known to be ill-conditioned

in numerical linear algebra, but luckily we will not be creating matrices of larger size than

probably even 6×6 or 7×7 and usually smaller so this shouldn’t cause us much problem.

If we define C = A−1, then the ith row of C contains the coefficients for the (i − 1)th

derivative of f(xi) for a scheme of order O(hn−i+1). In other words we then have

F ′ = CFJ +



O(hn)

O(hn−1)

...

O(h1)


,

or if we denote Ci to be the ith row of C, then

f (i−1)(xi) = Ci



f(xi + j1h)

f(xi + j2h)

...

f(xi + jnh)


+O(hn−i+1) = CiFJ +O(hn−i+1).

77

A.2 Finite Difference Schemes

Now, when we have a time dependent ODE or PDE, we can combine our finite difference

approximations to form two kind of schemes which approximate our differential equation

which are explicit schemes and implicit schemes. (Later on we will study combinations

of explicit and implicit sometimes called hybrid schemes. In particular we will study the

Crank-Nicolson method which is a powerful hybrid which will be used extensively for

nonlinear wave equations).

An explicit scheme is one which calculates the state of the system at a future time

from the state at the current time. In other words, we let a superscript, fn denote the state

of f at time n in our grid, then for a linear system we have some matrix operator A which

gives us the change from time n to n+ 1 as

Afn + b = fn+1

for some b. And if our system is nonlinear, then we have some operator G such that

G(fn) = fn+1.

An implicit scheme finds a solution for the future time step by solving a system of

equations involving future and current time steps. In other words, for a linear system we

have some matrix operator B that gives us

Bfn+1 + d = fn

for some vector d, and for a nonlinear system, we have some operator H such that

H(fn+1) = fn.

78

A hybrid scheme uses a combination of explicit and implicit schemes in an effort to

obtain higher order convergence and maintain the stability of the implicit schemes. The

most famous of these hybrid schemes is the Crank-Nicolson scheme which is accomplished

by considering ourselves standing at the t + 1/2 time step and then using an average of

implicit and explicit schemes in time. We will discuss the details of this below along with

two examples: the linear heat equation and the nonlinear burger’s wave equation.

A.2.1 Finite Difference Schemes for ODE. We will give examples of explicit and

implicit schemes as we attempt to solve the equation

dy

dt
= sy, s > 0,

with initial condition y(0) = y0 which has analytic solution y(t) = y0e
st.

For our explicit scheme, we will use the forwards Euler’s method. We call it forward

because we use a forward difference in time. Then we have

yn+1 − yn
∆t

= syn +O(∆t),

so we get

yn+1 − yn = s∆tyn,

or

yn+1 = (1 + s∆t)yn,

as our update. Thus given the initial data y0 = y0, we make each time step forward by

calculating the new value using the above scheme. A solution was constructed in Matlab

to solve the equation y′ = y from time 0 to time 5 using 100 time steps and initial data

y0 = 1. We display the results of our solution computed using the forward Euler’s method,

79

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

100

200

300

400

500

600

700

800

t

y

Figure A.1: The ODE, y′ = sy, solved using forwards Euler scheme in a MATLAB plot. The
solid line is the true solution and the dashed line is the approximation.

our explicit scheme.

We now solve this same system using an implicit scheme and then compare the benefits

and disadvantages of both methods. For our implicit method, we suppose we are sitting at

time n+ 1 and then use the backward difference for our time derivative

yn+1 − yn
∆t

= syn+1 +O(∆t),

which when simplified gives us the update

(1− s∆t)yn+1 = yn

or

yn+1 =
1

1− s∆ty
n.

So for the same example above, we also display the solution computed using the backward

Euler’s method in Figure A.2.

80

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

100

200

300

400

500

600

700

800

900

t

y

Figure A.2: The ODE, y′ = sy, solved using backwards Euler scheme in a MATLAB plot.
The solid line is the true solution and the dashed line is the approximation.

If we let the grid size ∆t → 0, we find that both of these methods approach the true

solution. In this case, there was not too much difference in solving implicitly or explicitly, but

for more complicated systems, the implicit method requires solving a system of equations at

each time step, where as the explicit method is merely the action of an operator at each time

step. For a class of differential equations which are called stiff, meaning there are certain

parts of the equation which lead to rapid variation in the solution, the explicit methods

are unstable unless we use extremely small time increments. But the implicit methods are

stable for solving the stiff equations. The explicit methods generally require a much smaller

time step than implicit methods, so the simplicity of each update being multiplication by a

matrix requires a much greater number of evaluations to get the same quality of solution as

the implicit methods.

It is up to the user to decide which schemes they decide to use for their differential

equation. Each implicit or explicit method has advantages and disadvantages which must

be weighed out before deciding which method is best for the specific differential equation.

81

A.2.2 Finite Difference Schemes for PDE. We will demonstrate an explicit and

implicit scheme to solve the heat equation with diffusivity constant k, and initial heat dis-

tribution f(x) for x ∈ [0, l]


ut = kuxx, κ > 0

u(x, 0) = f(x) initial condition

u(0, t) = g(t), u(l, t) = h(t) boundary conditions.

Explicit Scheme for the Heat Equation.. We will use the explicit forward-time

centered-space (FTCS) method where subscripts denote location in space and superscripts

denote location in time (u(xi, tn) = uni). Then the approximation for the equation at u(xi, tn)

is

un+1
i − uni

∆t
= k

(
uni+1 − 2uni + uni−1

(∆x)2

)
,

which is O(∆t, (∆x)2). Then if we let r = k∆t
(∆x)2

, we get the simplified update

un+1
i = uni

(
1− 2k∆t

(∆x)2

)
+

k∆t

(∆x)2
[uni+1 + uni−1]

= runi−1 + (1− 2r)uni + runi+1.

We notice that the next time step at xi is updated by the values at the previous time step

of xi−1, xi, and xi+1 which we display using a stencil. This type of stencil is characteristic

of explicit schemes.

xi−1 xi xi+1

tj

tj+1

Figure A.3: Stencil for explicit (FTCS) scheme on heat equation.

82

Since our update equation is linear, we can create a matrix M which represents the

update for all xi to the next time step. We suppose that there are m+ 2 points in our grid

in space numbered 0 to m+ 1 for each time step, and that the boundary values u0 and um+1

are given to us. (Remember that in order to have a unique solution, we must have boundary

conditions defined and known for all all time.) Our system is then

M~un +~bn = ~un+1,

where M is an m×m matrix

M =



1− 2r r 0 0 . . . 0

r 1− 2r r 0 . . . 0

0 r 1− 2r r 0

...
.

...

0 r 1− 2r r

0 0 . . . 0 r 1− 2r


,

and b is an n× 1 vector,

~bn =



run0

0

...

0

runm+1


.

83

Written out completely, we get the system



1− 2r r 0 0 . . . 0

r 1− 2r r 0 . . . 0

0 r 1− 2r r 0

...
.

...

0 r 1− 2r r

0 0 . . . 0 r 1− 2r





un1

un2

un3
...

unm−1

unm


+



run0

0

0

...

0

runm+1


=



un+1
1

un+1
2

un+1
3

...

un+1
m−1

un+1
m


with initial conditions 

u0
1

u0
2

u0
3

...

u0
m−1

u0
m


=



f(x1)

f(x2)

f(x3)

...

f(xm−1)

f(xm)


.

We implement this method in Matlab for the equation

ut = kuxx, k = 1, (A.1)

with x ∈ [0, 5π/2] and t ∈ [0, 1]. We use the initial condition f(x) = sin(πx) and boundary

conditions f(0, t) = 0 and f(5π/2, t) = 1. Since this is a stiff equation, the explicit method

is highly unstable and we were required to make at least 3,200 time steps and only 100 space

steps to deal with the stiffness.

Stability of Explicit FTCS Method for Heat Equation. As a general rule, for

this FTCS method (Euler’s method for time) to be stable, we must have s = κ∆t
(∆x)2

≤ 1
2
.

This is a strict requirement and is obtained in studying the stability of the Euler’s method

typically using the Fourier Transform. We call this restriction a Courant-Friedrich-Levy

84

(CFL) Condition on grid sizes. For smaller numbers of time steps (larger time steps), our

solution quickly blew up because s > 1/2. An explicit scheme typically requires many more

time steps to achieve the convergence desired than an implicit scheme but it is typically a

simple update. Our final result was fairly close to the actual solution which is known to be

F (x, t) = e−π
2tsin(πx). We will see quickly that the implicit method is much preferred than

explicit methods for this equation.

0
0.5

1
1.5

2
2.5

0

0.5

1
1

0.5

0

0.5

1

(a) Explicit FTCS solution

0
0.5

1
1.5

2
2.5

0
0.2

0.4
0.6

0.8
1
0

2

4

6

8

x 10 3

X

FD error

T

ab
s(

Tr
ue

 E

st
im

at
e)

(b) Absolute error in explicit FTCS solution

Figure A.4: Explicit FTCS method solution and absolute error for heat equation (A.1) in a
MATLAB plot. This required a very fine grid to accomplish with this accuracy.

85

Implicit Scheme for the Heat Equation. Our implicit scheme is a backward-time

centered-space (BTCS) where we work from the n + 1 time step. Thus we get as our

approximation of our heat equation at u(xi, tn)

un+1
i − uni

∆t
= k

(
un+1
i+1 − 2un+1

i + un+1
i−1

(∆x)2

)
,

which is also O(∆t, (∆x)2). We make the same simplification, r = k∆t
(∆x)2

, to get

un+1
i − uni = r(un+1

i+1 − 2un+1
i + un+1

i−1)

or

−run+1
i+1 + (1 + 2r)un+1

i − run+1
i−1) = uni .

We note that the the next time step of xi is dependent upon xi in the previous step and

xi+1, xi−1 in the same time step which we also display in a stencil which is characteristic of

implicit methods.

xi−1 xi xi+1

tj

tj+1

Figure A.5: Stencil for implicit (BTCS) scheme on heat equation

86

We can again write our system in matrix notation as



1 + 2r −r 0 0 . . . 0

−r 1 + 2r −r 0 . . . 0

0 −r 1 + 2r −r 0

...
.

...

0 −r 1 + 2r −r
0 0 . . . 0 −r 1 + 2r





un+1
1

un+1
2

un+1
3

...

un+1
m−1

un+1
m


+



−run+1
0

0

0

...

0

−run+1
m+1


=



un1

un2

un3
...

unm−1

unm


or

M~un+1 +~bn+1 = ~un,

or in other words, our update in time to is

~un+1 = M−1
(
~un −~bn+1

)
.

We solve this last equation using a good numerical system solver instead of outright com-

puting the inverse of M as calculating inverses can be numerically much more difficult and

even unstable.

A.2.3 Stability of Implicit BTCS Scheme for Heat Equation. With the same

system, equation (A.1), we only require 150 time steps and 100 space steps with the implicit

scheme and are easily able to solve the inverse problem to get the same result as the 3,250

time steps and 100 space steps using the explicit system. The implicit scheme is stable

and so there is no CFL condition on the time steps like in the explicit scheme. The inverse

system is stable for any size time steps or space steps so the accuracy desired will dictate how

small of grid size steps you need to use. We show the plots for the implicit BTCS solution

in Figure A.6.

87

0
0.5

1
1.5

2
2.5

0

0.5

1
1

0.5

0

0.5

1

(a) Implicit BTCS solution

0
0.5

1
1.5

2
2.5

0
0.2

0.4
0.6

0.8
1
0

2

4

6

8

x 10 3

X

BD error

T

ab
s(

Tr
ue

 E

st
im

at
e)

(b) Absolute error in implicit BTCS solution

Figure A.6: Implicit BTCS method solution and absolute error for heat equation (A.1) in a
MATLAB plot. This was done on a fairly course grid.

A.2.4 Crank-Nicolson Scheme for Heat Equation. In the implicit scheme for the

heat equation, we have a stable system for any ∆t and ∆t, whereas with the explicit scheme

we had a CFL condition that

k∆t

(∆x)2
<

1

2
.

88

However, both of these schemes had order of convergenceO (∆t,∆x2). We will now formulate

a scheme that has the same stability properties as the implicit scheme which is O (∆t2,∆x2).

We will do this by considering ourselves at time step t + 1/2 and then using a centered

difference in time (O (∆t2) of step ∆t/2. This can be accomplished through an average of

the forward and backwards differences. So the heat equation becomes

un+1
i − uni
2(∆t/2)

+O(∆t2) =
k

2

(
un+1
i−1 − 2un+1

i + un+1
i+1

∆x2
+
uni−1 − 2uni + uni+1

∆x2

)
+O(∆x2).

This turns out to have no CFL condition, meaning that the Crank-Nicolson scheme is

unconditionally stable. The stencil for this Crank-Nicolson scheme is

xi−1 xi xi+1

tj

tj+1

Figure A.7: Stencil for Crank-Nicolson scheme on heat equation

While we just state this result here, it follows nicely from the standard Fourier argument

that is in every textbook of that treats this material. Likewise, instead of solving this

system as has been done previously, we will leave the greater details in the discussion of the

Crank-Nicolson scheme for a more complicated nonlinear wave equation and merely give the

results for the heat equation using Crank-Nicolson in Figure A.8. Before we proceed to the

wave equation, we give a side by side comparison of the absolute errors in the three models.

Figure A.9 gives an error comparison against the true solution for time t = 0.0268. The

forward difference scheme is given on very fine grid and the other two schemes are on the

same course grid. We can easily see the varying accuracies of the models and especially note

that the forward difference scheme required 3250 time steps to be equivalent to the 100 time

steps of the other models.

89

0
0.5

1
1.5

2
2.5

0

0.5

1
1

0.5

0

0.5

1

(a) CN solution

0
0.5

1
1.5

2
2.5

0
0.2

0.4
0.6

0.8
1
0

1

2

3

4

5

x 10 3

X

CN error

T

ab
s(

Tr
ue

 E

st
im

at
e)

(b) Absolute error in CN solution

Figure A.8: Crank-Nicolson method solution and absolute error for heat equation (A.1) in
a MATLAB plot. This was done on a fairly course grid.

90

0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10 3

X

ab
s(

Tr
ue

 E

st
im

at
e)

t=.0268

Forward difference
Backward difference
Crank Nicholson

Figure A.9: The heat equation solved using forward difference, backward difference, and
Crank-Nicolson schemes. This is a cut across space at the time t = 0.0268 in the evolution
of the heat equation. The backward difference (dashed line) and Crank-Nicolson (solid line)
schemes use the same course mesh while the forward difference (dotted line) scheme required
a mesh roughly 32 times as dense to get equivalent results.

A.3 Burger’s Wave Equation solved with Crank-Nicolson scheme.

We look for solutions to what is called the general Cauchy problem for any ordinary or

partial differential equation.

ut = f(u, ux, uxx, . . .)

u(0, x) = ũ(x) = û(x) + v(x)

The right hand side can take on any form and use any number of derivatives of u. The Cauchy

problem essentially asks the following question: How does a perturbation of a solution evolve

under the it’s differential equation? In other words are solutions stable or do they evolve into

something else? We can consider û to be a solution to the equation and v(x) a perturbation.

We work to see what happens to this perturbed solution.

91

A specific equation which is studied is the Burger’s equation. It is given by

f(u, ux, uxx) = − d

dx

(
u2

2

)
+ νuxx

where ν is a small parameter which effects our diffusion. Thus we desire to find solutions to

the equation

ut + uux = νuxx

given some perturbed initial solution.

In the case of Burger’s equation, we transform our coordinates into the moving frame

(x, t)→ (x− st, t) to get the equivalent equation

ut − sux + uux − νuxx = 0,

and initial condition

u(0, x) = û(x) + v(x),

where v(x) is a small perturbation.

We will create a finite difference scheme for this equation using the Crank-Nicolson

method by taking an average of forward and backward difference schemes. To solve for the

n+1th time step, where we know already the nth time step, we consider our scheme as if we

were standing at the n + 1/2 time step and then take the average of the forward half time

step and backward half time step. So our equation is

un+1
i − uni

∆t
+

(
un+1
i + uni

2
− s
)(

1

2

)(
un+1
i+1 − un+1

i−1

2∆x
+
uni+1 − uni−1

2∆x

)
−ν

2

(
un+1
i+1 − 2un+1

i + un+1
i−1

(∆x)2
+
uni+1 − 2uni + uni−1

(∆x)2

)
= 0.

(A.2)

92

To continue and simplify, we let r = ∆t
(∆x)2

. Then we get the following nonlinear equation in

the time n+ 1.

un+1
i

[
1 + rν +

r∆x

8

(
un+1
i+1 − un+1

i−1 + uni+1 − uni−1

)]
+ un+1

i−1

[−r∆x
8

uni −
rν

2
+
rs∆x

4

]
+un+1

i+1

[
r∆x

8
uni −

rν

2
− rs∆x

4

]
+ uni

[
rν − 1 +

r∆x

8

(
uni+1 − uni−1

)]
+uni−1

[
rs∆x

4
− rν

2

]
+ uni+1

[
−rν

2
− rs∆x

4

]
= 0.

(A.3)

To see how we will solve this, we use the notation wi = un+1
i and ui = uni . Then our vector of

variables is w since u is already known. We write the above equation as G(w, u) = 0 which

we will find the roots of in w using Newton’s method.

93

G(w, u) =



−1.5
∆x

w0 + 2
∆x
w1 − 1

2∆x
w2

w1

[
1 + rν +

r∆x

8
(w2 − w0 + u2 − u0)

]
+ w0

[−r∆x
8

u1 − rν

2
+
rs∆x

4

]
+w2

[
r∆x

8
u1 − rν

2
− rs∆x

4

]
+ u1

[
rν − 1 +

r∆x

8
(u2 − u0)

]
+u0

[
rs∆x

4
− rν

2

]
+ u2

[−rν
2
− rs∆x

4

]
...

...

wi

[
1 + rν +

r∆x

8
(wi+1 − wi−1 + ui+1 − ui−1)

]
+ wi−1

[−r∆x
8

ui − rν

2
+
rs∆x

4

]
+wi+1

[
r∆x

8
ui − rν

2
− rs∆x

4

]
+ ui

[
rν − 1 +

r∆x

8
(ui+1 − ui−1)

]
+ui−1

[
rs∆x

4
− rν

2

]
+ ui+1

[−rν
2
− rs∆x

4

]
...

...

wm−1

[
1 + rν +

r∆x

8
(wm − wm−2 + um − um−2)

]
+ wm−2

[−r∆x
8

um−1 − rν

2
+
rs∆x

4

]
+wm

[
r∆x

8
um−1 − rν

2
− rs∆x

4

]
+ um−1

[
rν − 1 +

r∆x

8
(um − um−2)

]
+um−2

[
rs∆x

4
− rν

2

]
+ um

[−rν
2
− rs∆x

4

]

1
2∆x

wm−2 − 2
∆x
wm−1 + 1.5

∆x
wm


In order to do the newton step, we need to also calculate the Jacobian DG(w, u). In

94

order to do so, we define the following terms

ai =
r∆x

8
(−wi − ui)− rν

2
+
rs∆x

4

bi = 1 + rν +
r∆x

8
(ui+1 − ui−1 + wi+1 − wi−1)

ci =
r∆x

8
(wi + ui)− rν

2
− rs∆x

4
.

Then our Jacobian is

DG(w, u) =



−1.5
∆x

2
∆x

−0.5
∆x

a1 b1 c1

a2 b2 c2

.

.

am−1 bm−1 cm−1

0.5
∆x

−2
∆x

1.5
∆x



.

And we can solve for the roots using Newtons method

xn+1 = xn + (DG)−1G(xn, u).

A.3.1 Stability of Crank-Nicolson Method. The Crank-Nicolson scheme is stable

just like the implicit methods. There is no CFL condition on time steps. It is of higher

order accuracy O(∆t2,∆x2) and involves a little more work in solving each update but is

much more accurate than the implicit schemes. Sometimes the Crank-Nicolson scheme can

be pretty complicated to implement but it is one of the preferred techniques for solving

problems like this nonlinear burger’s wave equation.

95

A.4 Hyperbolic Equations using Techniques from Computational

Fluid Dynamics

A.4.1 Upwind Scheme. These previous schemes deal well when information is flowing

in all directions. For instance, when we have a second order derivative, then the value at

any point is being influenced by the points to its left and right. We get a smoothing type of

effect. This is why we often call the heat equation (which has a second order derivative) a

diffusive equation. When we are dealing with wave equations, we typically are dealing with

information being propagated along a certain direction called the characteristic line. For

instance, if we are dealing with the equation

ut + aux = 0,

where a > 0, then a wave will propagate to its right over time with speed a. Hence, the

Figure A.10: Plot of ut + aux = 0 with a > 0. The wave travels from left to right with
positive constant a.

96

information flows from left to right and our scheme should gather information to be prop-

agated from the left. Now, the backwards difference operator for the spatial derivative will

gather information from the left to propagate but the forwards difference operator gathers

from the right, so for our specific example, our knowledge of which direction the wave should

propagate tells us we need to use the backwards difference. We say that the scheme is an

upwind scheme when it correctly passes information in the direction of the characteristic

lines. In addition, we need our time step for the explicit scheme to be such that we are

passing information slower than the speed of our wave is moving. This keeps the domain of

dependence for each point on the correct side of the point and ensures that we do not lose

information. Typically this translates into a Courant-Friedrich-Levy (CFL) condition on our

time step of

a∆t

∆x
< 1.

When we know which direction information is flowing, we can hard code the scheme used

to reflect that knowledge. However, in many instances the direction of flow might change or

we may not know which direction it is flowing in. We can still use a generic scheme which

deals with this case.

Define forwards, backwards and centered difference operators on a function u to be

D−xi =
uni − uni−1

∆x
,

D+x
i =

uni+1 − uni
∆x

,

Dox
i =

uni+1 − uni−1

2∆x
,

Then we can write our first order explicit upwind scheme for the system, ut + aux = 0,

as

un+1
i − uni

∆t
= −max(a, 0)D−xi −min(a, 0)D+x

i .

97

In other words, we have the explicit upwind scheme with first order accuracy,

un+1
i = uni −∆t

(
max(a, 0)D−xi + min(a, 0)D+x

i

)
,

which is stable for
∣∣a∆t

∆x

∣∣ < 1.

Notice that this correctly chooses the forward or backward scheme depending on the

direction of characteristic flow. We can think of a− and a+ as switches to turn on or off the

forward and backward difference flows. This generalizes to multiple spatial dimensions as

well as higher order schemes. Example: for a second order scheme in space, we would use

u−x =
3uni − 4uni−1 + uni−2

2∆x

and

u+
x =

−uni+2 + 4uni+1 − 3uni
2∆x

.

A.4.2 Lax-Wendroff Scheme. There are other types of schemes which are not exactly

upwind schemes, but still do a good job with preserving information flow. The Lax-Wendroff

scheme uses the Taylor series expansion of u(xj, tn + ∆t) around u(xj, tn) to get a higher

order accurate system

un+1
j = unj + (∆t)

∂u

∂t

n

j
+

1

2
(∆t)2∂

2u

∂t2

n

j
+O(∆t3),

so we attempt to replace the time derivatives by space derivatives on the right hand side:

ut = −aux

98

and

utt =
∂

∂t
(ut) =

∂

∂t
(−aux)

= −atux − autx
= −atux − a ∂

∂x
(ut)

= −atux − a ∂
∂x

(−aux)

= −atux + a
∂

∂x
(aux).

So if a is a constant, then this simplifies to

ut = −aux,

and

utt = a2uxx.

Hence when we evaluate these at (xj, tn) and plug into our taylor expansion (for a, a con-

stant), we get with centered differences in space,

un+1
j = unj + ∆t(−aux)|(j,n) +

1

2
(∆t)2(a2uxx)

∣∣∣∣
(j,n)

+O(∆t3),

We finally have the Lax-Wendroff scheme, a second order scheme in space

un+1
j = unj −

a∆t

2∆x
(unj+1 − unj−1) +

a2∆t2

2∆x2
(unj+1 − 2unj + unj−1),

which is stable for
∣∣a∆t

∆x

∣∣ < 2.

A.4.3 Beam-Warming Scheme. The Beam-Warming Scheme is one of the most popu-

lar methods in computational fluid dynamics with Lax-Wendroff being next in preference. It

99

takes the Lax-Wendroff scheme one more step and instead of using second order centered dif-

ferences in space, we use the second order one sided difference from the direction of upwind.

The Beam-Warming scheme for (a > 0) yields a second order accurate model

un+1
j = unj −

a∆t

2∆x
(3unj − 4unj−1 + unj−2) +

a2∆t2

2∆x2
(unj − 2unj−1 + unj−2),

which is stable for
∣∣a∆t

∆x

∣∣ < 2. Hence the Beam-Warming method could be considered as an

upwind version of Lax-Wendroff. Likewise for (a < 0), we have

un+1
j = unj −

a∆t

2∆x
(−3unj + 4unj+1 − unj+2) +

a2∆t2

2∆x2
(unj − 2unj+1 + unj+2).

A.4.4 Implicit Hyperbolic Schemes. It is possible to write many of these schemes in

implicit form, but the benefit of doing so compared to the extra computational and coding

time makes it often not worth the effort.

100

Appendix B. Triangulation Formulation and Geometry

B.1 The Triangulation Problem

We derive and formulate the triangulation problem for refining our solution R, T given by the

8-point algorithm to accommodate n measured data points x̃1 = {x̃j1}nj=1 and x̃2 = {x̃j2}nj=1

under what we assume to be unstructured noise.

We wish to find x1 and x2 on the image planes that minimize in the least squares sense

the difference from our measured points x̃1 and x̃2 which also satisfy our epipolar constraint

xjT2 T̂Rxj1 = 0.

Hence we wish to find the points x1 and x2 that minimize the function

φ(x1,x2, R, T) =
n∑
j=1

‖x̃j1 − xj1‖2 + ‖x̃j2 − xj2‖2,

subject to the constraints

xjT2 T̂Rxj1 = 0,

xjT1 e3 = 1,

xjT2 e3 = 1,

where e3 = [0, 0, 1]T , R ∈ SO(3), T . The last two constraints are added to ensure our solution

space for xi is on the image planes for each camera. Now, since constrained optimization

is difficult to work under, we obtain the unconstrained optimization problem through the

101

X

o1 o2

x1

x2

e2e1

x̃1

x̃2

(a) Epipolar geometry with error

X

(b) the data points with error
might not satisfy the epipolar con-
straint

Figure B.1: Under the assumption of noisy measured data, x̃1 and x̃2 , the epipolar constraint
may not hold, ie. the three lines do not form a triangle. The triangulation problem posed
to refine our solution with noise is to find x1 and x2 that satisfy the epipolar constraint and
minimize the Euclidean distance to x̃1 and x̃2. Figure B.1(a) shows the geometry with error
and figure B.1(b) shows a close up and different angle of how the epipolar constraint may
not be satisfied.

method of Lagrange multipliers. Hence, the unconstrained minimization function is

φ(x1,x2, R, T, λ, η, µ) =
n∑
j=1

‖x̃j1−xj1‖2+‖x̃j2−xj2‖2+λjxjT2 T̂Rxj1+ηj(xjT1 e3−1)+µj(xjT2 e3−1).

(B.1)

102

Now, the necessary conditions for a minimum is that the gradient ∇φ must be zero, so

we proceed by setting the derivative with respect to xj1, xj2, λj, ηj, and µj equal to zero.

Thus for each j ∈ {1, . . . , n}, the following must be satisfied

−2(x̃j1 − xj1) + λjRT T̂ Txj2 + ηje3 = 0

−2(x̃j2 − xj2) + λjT̂Rxj1 + µje3 = 0

xjT2 T̂Rxj1 = 0

xjT1 e3 = 1

xjT2 e3 = 1.

Now, in order to solve for our optimal λj, we use the first two equations to obtain

xj1 = x̃j1 −
1

2

(
λjRT T̂ Txj2 + ηje3

)
(B.2)

xj2 = x̃j2 −
1

2

(
λjT̂Rxj1 + µje3

)
. (B.3)

To simplify more, we multiply by êT3 ê3 = diag([1, 1, 0]) and add e3 to both sides to get

xj1 = x̃j1 −
1

2
λj êT3 ê3R

T T̂ Txj2

xj2 = x̃j2 −
1

2
λj êT3 ê3T̂Rxj1.

Now if we use equation B.2 to obtain our optimal λj, we must premultiply both sides of it

by xjT2 T̂R and use our epipolar constraint to get

0 = xjT2 T̂Rxj1 = xjT2 T̂Rx̃j1 −
1

2
λjxjT2 T̂RêT3 ê3R

T T̂ Txj2,

so

2xjT2 T̂Rx̃j1 = λj
∥∥∥ê3R

T T̂ Txj2

∥∥∥2

,

103

and our optimal λj satisfies

λj =
2xjT2 T̂Rx̃j1∥∥∥xjT2 T̂RêT3

∥∥∥2 . (B.4)

Likewise, if we use equation B.3, we premultiply by xjT1 RT T̂ T to get

λj =
2x̃jT2 T̂Rxj1∥∥∥ê3T̂Rxj1

∥∥∥2 . (B.5)

Finally, if we add both solutions together, we obtain

λj =
2
(
xjT2 T̂Rx̃j1 + x̃jT2 T̂Rxj1

)
∥∥∥xjT2 T̂RêT3

∥∥∥2

+
∥∥∥xjT2 T̂RêT3

∥∥∥2 . (B.6)

Now, we return to our unconstrained minimization equation B.1 with our optimal values

to obtain our simplified function which we can optimize not only over x1 and x2, but also

over R ∈ SO(3) and T ∈ R3. We substitute equation B.6 for λj to get,

φ(x1,x2, R, T) =
n∑
j=1

‖x̃j1 − xj1‖2 + ‖x̃j2 − xj2‖2 + λjxjT2 T̂Rxj1 + ηj(xjT1 e3 − 1) + µj(xjT2 e3 − 1)

=
n∑
j=1

‖x̃j1 − xj1‖2 + ‖x̃j2 − xj2‖2

=
n∑
j=1

‖1

2
λj êT3 ê3R

T T̂ Txj2‖2 + ‖1

2
λj êT3 ê3T̂Rxj1‖2

=
n∑
j=1

1

4

(
λj
)2
(
‖xjT2 T̂RêT3 ‖2 + ‖ê3T̂Rxj1‖2

)

=
n∑
j=1

1

4

 2
(
xjT2 T̂Rx̃j1 + x̃jT2 T̂Rxj1

)
∥∥∥xjT2 T̂RêT3

∥∥∥2

+
∥∥∥ê3T̂Rxj1

∥∥∥2


2 (
‖xjT2 T̂RêT3 ‖2 + ‖ê3T̂Rxj1‖2

)
,

104

and hence, we have

φ(x1,x2, R, T) =
n∑
j=1

(
xjT2 T̂Rx̃j1 + x̃jT2 T̂Rxj1

)2

∥∥∥xjT2 T̂RêT3

∥∥∥2

+
∥∥∥ê3T̂Rxj1

∥∥∥2 . (B.7)

or substituting equations B.4 and B.5, we obtain

φ(x1,x2, R, T) =
n∑
j=1

(
xjT2 T̂Rx̃j1

)2

∥∥∥xjT2 T̂RêT3

∥∥∥2 +

(
x̃jT2 T̂Rxj1

)2

∥∥∥ê3T̂Rxj1

∥∥∥2 . (B.8)

105

B.2 The Geometry of the Parameterizations of the Optimiza-

tion Variables

We remind the reader that `2 is the normal vector to the epipolar plane of our measurement

error free data points in the second camera coordinates as shown in Figure B.2. We will talk

about a vector ` in general, but in actual practice we will use `2.

X

o1 o2

x1

x2

e2e1

x̃1

x̃2 N2

N1
`2

Figure B.2: We show the triangulation problem where ` is the normal vector to the epipolar
plane. We will express our point x as a function of this vector ` given our measured data x̃
which minimizes the distance from x̃ to the epipolar plane given by `.

We now prove the claim that the closest point, x, to x̃ on the epipolar line at the

intersection of the epipolar plane with ` as it’s unit normal vector and the image plane is

given by

x(`) =
ê3``

T êT3 x̃ + ˆ̀T ˆ̀e3

eT3
ˆ̀T ˆ̀e3

. (B.9)

In Figures B.3, B.4(a) and B.4(b) the geometry of x(`) in the image plane is demonstrated

106

from the three useful views. Now to prove this claim, we proceed to manipulate the above

equation into recognizable geometric projections.

x(`) =
ê3``

T êT3 x̃ + ˆ̀T ˆ̀e3

eT3
ˆ̀T ˆ̀e3

=
(ê3`)(ê3`)

T x̃ + ˆ̀(ê3`)

(ê3`)T (ê3`)

=
(e3 × `)(e3 × `)T x̃

‖e3 × `‖2
+
`× (e3 × `)
‖e3 × `‖2

= Proj e3×`
‖e3×`‖

x̃ + the pt closest to e3 on epipolar line (see Fig. B.4(a) and B.4(b))

o

−e3 × `
`×(e3×`)
‖e3×`‖2

e

x(`)

x̃

e3
Proj e3×`

‖e3×`‖
x̃

`

Figure B.3: The point x(`) is given by x(`) = Proj e3×`
‖e3×`‖

x̃ + `×(e3×`)
‖e3×`‖2 . It can be seen that it

is the point on the epipolar line closest to x̃. In Figure B.3, the dashed line on the image
plane is the direction of the vector −e3× ` projected onto the image plane which also shows
up in Figure B.4(b) as a dotted line.

107

`

o
e3

x and e

x̃

(a) View of side of image plane along epipolar line

x(`)

e

e3

`×(e3×`)
‖e3×`‖2

x̃

(b) Front view of image plane

Figure B.4: Other views of the image plane to see the geometry of the above discussion. The
dotted line in Figure B.4(b) is the projection of the vector −e3 × ` onto the image plane.

108

Bibliography

[1] Richard L. Burden and J. Douglas Faires. Numerical Analysis, Eighth Edition. Thomson
Brooks/Cole, 2005.

[2] Manfredo P. Do Carmo. Differential Geometry of Curves and Surfaces. Prentice-Hall,
Inc., 1976.

[3] Olivier Faugeras and Renaud Keriven. Variational principles, surface evolution, pde’s,
level set methods and the stereo problem. Technical report, INRIA, November 1996.

[4] Olivier Faugeras, Quang-Tuan Luong, and with contributions from T. Papadopoulo.
The Geometry of Multiple Images: The Laws that Govern the Formation of Multiple
Images of a Scene and some of their Applications. The MIT Press, 2001.

[5] José Gomes and Olivier Faugeras. Reconciling distance functions and level sets. Journal
of Visual Communication and Image Representation, 11:209–223.

[6] Richard I. Hartley. In defense of the eight-point algorithm. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 19:580–593.

[7] T.S. Huang and O.D. Faugeras. Some properties of the e matrix in two-view motion esti-
mation. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 11(12):1310
–1312, dec 1989.

[8] Allan Jepson and David J. Heeger. Linear subspace methods for recovering translational
direction. In Spatial Vision in Humans and Robots, pages 39–62. Cambridge University
Press, 1992.

[9] Randall J. LeVeque. Finite Difference Methods for Ordinary and Partial Differential
Equations: Steady-State and Time Dependent Problems. Society for Industrial and
Applied Mathematics, 2007.

[10] H. Christopher Longuet-Higgins. A computer algorithm for reconstructing a scene from
two projections. Nature, 293:133–135, 1981.

[11] Yi Ma, Stefano Soatto, Jana Kosecka, and S. Shankar Sastry. An Invitation to 3-D
Vision: From Images to Geometric Models. Springer - Verlag New York, Inc., 2004.

[12] Yi Ma and Jana Ko seck. Optimization criteria and geometric algorithms for motion
and structure estimation. International Journal of Computer Vision, 44:219–249, 2001.

[13] Michael B. Nielsen and Ken Museth. Dynamic tubular grid: An efficient data structure
and algorithms for high resolution level sets. Journal of Scientific Computing, 26(3):261–
299, March 2006.

109

[14] Stanley Osher and Ronald Fedkiw. Level Set Methods and Dynamic Implicit Surfaces.
Springer Science + Business Media, LLC, 2003.

[15] Stanley Osher and Nikos Paragios. Geometric Level Set Methods in Imaging, Vision
and Graphics. Springer-Verlag, 2003.

[16] Giovanni Russo and Peter Smereka. A remark on computing distance functions. Journal
of Computational Physics, 163:51–67, 2000.

[17] Guillermo Sapiro. Geometric Partial Differential Equations and Image Analysis. Cam-
bridge University Press, 1996.

[18] Shankar Sastry. Optimization criteria, sensitivity and robustness of motion and struc-
ture estimation. In In Proceedings of ICCV workshop on Vision Theory and Algorithms,
pages 9–16, 1999.

[19] J. A. Sethian. Theory, algorithms, and applications of level set methods for propagating
interfaces. Acta Numerica, 1995.

[20] J. A. Sethian. Level Set Methods and Fast Marching Methods: Evolving Interfaces in
Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science.
Cambridge University Press, 1999.

[21] John A. Strain. Tree methods for moving interfaces. Journal of Computational Physics,
151:616–648, 1999.

110

Index

8-Point Algorithm, 43, 44, 48, 49, 53

backward difference, 74
Beam-Warming method, 99

camera
calibrated, 34, 35
ideal, 30
projection, 31

CFL condition, 97
Crank-Nicolson scheme, 89
explicit scheme, 85, 88
implicit scheme, 87, 88

Crank-Nicolson method, 95
curvature, 5

2D, 5, 6
3D

Gaussian, 7, 8
mean, 5, 8, 9, 13

3d
mean, 62

∂Γ, 11
diffusive, 96
dN, differential of Gauss Map, 62

epipolar constraint, 37–40, 45, 101, 102
Epipolar geometry, 35–43
epipolar line, 38
epipolar plane, 38
epipole, 38
essential matrix, 37, 40, 43, 44
essential space, 44
extension velocities, 15

Fast Marching Method, 23
focal length, 33
focal plane, 33
forward difference, 74

Γ+, 11
Γ−, 11
general position, 45
gcw, 30

gwc, 29

homogeneous coordinate, 24, 25
homography, 34, 35

planar, 39, 40, 45

`, 50, 106
Laplacian, 13
Lax-Wendroff method, 98, 99
Level Set Equation, 4
logarithm of a rotation matrix, 28

minimal surface, 8

narrow band level set method, 23

occlusion, 60
octree level set method, 23
osculating circle, 5

P0, 33
parameters

intrinsic, 33
planar homography, 64
Pn, see projective space
principal point, 33

radius of curvature, 5
re-initialization equation, 22
Rodrigues’ formula, 28

signed distance function
definition of, 2, 11
intersection of, 13
set subtraction of, 13
union of, 13

skeleton, 9, 16
space

Euclidean, 24
projective, 24

stencil, 82, 86, 89
stiff differential equation, 81

thin lens, 30
transformation

111

affine, 25
projective, 35
rigid body, 24, 25

triangulation, 44, 101
triple product, 37

upwind scheme, 97

vandermonde matrix, 77

112

	3D Image Reconstruction and Level Set Methods
	BYU ScholarsArchive Citation

	Title Page
	Abstract
	Acknowledgments
	Table of Contents
	List of Figures
	1 The Level Set Method
	1.1 Introduction
	1.2 Derivation of Model
	1.3 Curvature of Curves and Surfaces
	1.4 Signed Distance Functions
	1.5 The Choice of Forcing Function

	2 Numerical Schemes for Solving the Level Set Equation
	2.1 The Unit Normal
	2.2 Mean Curvature
	2.3 The Normed Gradient
	2.4 Combinations of Simple Motions
	2.5 The Re-initialization Equation
	2.6 Efficient Schemes for Level Set Methods

	3 The Language and Geometry of Cameras.
	3.1 Introduction
	3.2 Homogeneous Coordinates or Projective Coordinates
	3.3 Camera Coordinate Transform
	3.4 The Geometry of a Camera
	3.5 Epipolar Geometry or The Geometry of Two Cameras
	3.6 Traditional Reconstruction Techniques
	3.7 Some Examples of Reconstruction from Simulated and Actual Images

	4 Image Reconstruction with the Level Set Method
	5 Elements of Level Set Method Stereo Problem
	5.1 The measure of error, (S,N)
	5.2 Formal Definitions of the derivatives of
	5.3 Derivatives of the correlation integral
	5.4 Extending from the surface, S, to R3

	A An Introduction to Finite Differences for Numerical Analysis
	A.1 What is a Finite Difference?
	A.2 Finite Difference Schemes
	A.3 Burger's Wave Equation solved with Crank-Nicolson scheme.
	A.4 Hyperbolic Equations using Techniques from Computational Fluid Dynamics

	B Triangulation Formulation and Geometry
	B.1 The Triangulation Problem
	B.2 The Geometry of the Parameterizations of the Optimization Variables

	References
	Index

