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Abstract

An Algebra Isomorphism for the

Landau-Ginzburg Mirror Symmetry Conjecture

Drew Johnson

Department of Mathematics

Master of Science

Landau-Ginzburg mirror symmetry takes place in the context of affine singularities in CN .
Given such a singularity defined by a quasihomogeneous polynomial W and an appropriate
group of symmetries G, one can construct the FJRW theory (see [3]). This construction fills
the role of the A-model in a mirror symmetry proposal of Berglund and Hübsch [1]. The
conjecture is that the A-model of W and G should match the B-model of a dual singularity
and dual group (which we denote by WT and GT). The B-model construction is based on
the Milnor ring, or local algebra, of the singularity. We verify this conjecture for a wide class
of singularities on the level of Frobenius algebras, generalizing work of Krawitz [10]. We also
review the relevant parts of the constructions.

Keywords: mirror symmetry, Landau-Ginzburg models, FJRW theory, mathematical physics,
Frobenius algebra
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Chapter 1. Introduction

1.1 Background

Landau-Ginzburg mirror symmetry was inspired by an early proposal of Berglund and

Hübsch [1] in 1993. This version of mirror symmetry involves a duality between construc-

tions based on affine complex singularities with certain groups of symmetries, called orbifold

groups. For such a pair, there are two constructions which are called the A-model and the

B-model. The conjecture is that the A-model of a singularity and symmetry group should

match the B-model of an appropriately chosen dual singularity and dual group. We call

the dual singularity and dual group the transpose singularity and transpose group. This is

suggestive of the construction of the dual singularity (see Section 2.1). In this paper, we

consider the Frobenius algebra structures of the A-model and the B-model, although we

should note that the conjecture extends to even larger structures.

For some time, the constructions of the A-model and the B-model were incomplete.

In a series of papers [4, 2, 3] Fan, Jarvis, and Ruan resolved a conjecture of Witten and

constructed a full cohomological field theory (called the FJRW theory) for a singularity and

a group of symmetries. A restriction of this theory (to genus zero with three marked points)

gives a Frobenius algebra for the A-model which we call HW,G, where W is the polynomial

defining the singularity and G is the orbifold group.

For the B-model, in the case that the orbifold group is trivial, the Frobenius algebra is

given by the Milnor ring (or local algebra) of the singularity. However, to formulate the

conjecture in more generality, one needs to consider B-models with non-trivial orbifolding.

The construction of the orbifold B-model as a vector space was given by Intrilligator and

Vafa [5], however, until more recently the orbifold B-model was lacking a product structure.

In [10], Krawitz followed a recipe of Kaufmann [8, 7, 9] and wrote down a multiplication
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for the orbifold Milnor ring, which we call BW,G. He also gave a general formula for the

transpose group and resolved the conjecture completely on the level of vector spaces. He

also proved the conjecture on the level of algebras for the case of the B-model with trivial

orbifold group.

The purpose of this paper is to extend these results. We show that for a wide class of

singularities, for any admissible orbifold group the A-model Frobenius algebra matches the

dual orbifold B-model Frobenius algebra.

The FJRW theory is a geometric construction based on the moduli space of curves. It

is thus interesting to see it match up with the orbifold Milnor ring, which is defined more

algebraically. The product structure of the FJRW theory is determined by the genus-zero

three-point correlators, which are given by a C-valued function on H ⊗3
W,G. The FJRW theory

satisfies the axioms of a cohomological field theory, and these axioms allow us to compute

some of these correlators in a straightforward way. When orbifolding by a trivial symmetry

group on the B-side (and thus the maximal group on the A-side), the relevant insertions

are mostly what we call narrow (called Neveu-Schwarz in [3] and [11]). In these cases, the

axioms we mentioned do provide straightforward ways to compute the correlators. Thus,

the case of the trivial group on the B-side is more tractable and was solved in [10].

When we orbifold by non-trivial symmetry groups on the B-side (and thus smaller groups

on the A-side) the situation is more difficult, and instead of being narrow, more of the

insertions may be broad (called Ramond in [3]). In many of these cases, the axioms do not

give us enough information. The problem under study in such cases is a PDE-problem, and

we do not yet have techniques to solve it explicitly in most cases. In a partial solution to

this, we use an additional selection rule (see Property 2.20) that seems not to have been

fully exploited in some previous papers.

Orbifolding by a smaller group on the A-side also introduces another difficulty. According

to the classification in [13], quasihomogeneous polynomials that meet our non-degeneracy

criteria are the decoupled sums of polynomials of three “atomic types”. When the orbifold
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group is a product of groups acting on these sums (as in the case of the maximal symmetry

group), the FJRW ring is the tensor product of the pieces, and the B-model can similarly be

broken up as a tensor product (see Axiom 2.19 and Proposition 2.23). Thus, attention has

been focused on these atomic types. However, if we consider more arbitrary groups that do

not necessary break into a product of groups acting independently on the atomic pieces, this

method does not apply directly. This paper introduces and justifies a new strategy to take

advantage of the “breaking up into tensor products” techniques even in the case of more

arbitrary orbifold groups. This also allows us to avoid computation of some of the difficult

correlators. Essentially, for each product, we take a subalgebra containing the factors that

can also be thought of as a subalgebra of a theory with a group that does break up as a

direct product in a useful way.

We consider the case of a polynomial

W =
N∑
i=1

Wi,

where each Wi is of either Fermat type or loop type (according to the classification of Kreuzer

and Skarke [13], see Section 3.1 of this paper), and prove the following:

Theorem 5.1. If W is polynomial of the type described above, and G is any admissible

orbifold group, then there is an isomorphism of Frobenius algebras

HW,G
∼= BWT,GT .

where HW,G is the Frobenius algebra of the FJRW theory, and BWT,GT is the Frobenius

algebra of the orbifold Milnor ring for the transpose singularity and transpose group.

We also show explicitly how to make the pairing of the Frobenius algebras match. This

was omitted in [10].
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1.2 Overview

In Chapter 2, we review the construction of the A-model and the B-model of a quasihomo-

geneous polynomial, as well as some properties of these polynomials, for the convenience of

the reader and to fix our notation. We focus on providing the definitions and facts needed

for our computations rather than on completeness. Then in Chapter 3, we recall some facts

about loop and Fermat polynomials and prove some new lemmas that we will need. In

Chapter 4, we review the construction of the mirror map in [10] and discuss some issues

that complicate our proof. In Chapter 5, we define our own variation of the mirror map and

prove Theorem 5.1.

Chapter 2. Review of Construction

2.1 Quasihomogeneous Polynomials

We call a polynomial invertible if it has the same number of variables as monomials. We

start with an quasihomogeneous, invertible polynomial in variables X1, . . . XN :

W =
N∑
i=1

ci

N∏
j=1

X
aij
j ∈ C[X1, . . . , XN ].

The matrix A = (aij) encodes the exponents of the polynomial. We require the polynomial

to have uniquely determined weights which give it weighted degree 1, i.e., that

A


q1
...

qN

 =


1

...

1


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has a unique solution. The weighted degree of Xi is then qi. Alternatively, we can clear the

denominators of the qi to get integer weights wi. We also require that the polynomial defines

an isolated singularity, i.e., the system of equations
{
∂W
∂Xi

= 0
}

has a unique solution at the

origin. A polynomial satisfying these two conditions we call non-degenerate.

Since the ci can be absorbed by rescaling the variables, in the sequel we take ci = 1

without loss of generality.

One can form the transpose singularity WT by taking the polynomial corresponding to

the matrix AT. This will again be a invertible, non-degenerate polynomial.

Example 2.1. If

W = x3y + y7z + z4,

then the exponent matrix is

A =


3 1 0

0 7 1

0 0 4

 .
Then

AT =


3 0 0

1 7 0

0 1 4


defines the transpose polynomial

WT = x3 + xy7 + yz4.

Notation 2.2. We use boldface type to represent a column vector, and regular italic type to

represent entries in the vector. Thus, by g we mean the vector [g1, . . . , gN ]T, where the N

must be understood from context. We also write 1 for the vector [1, . . . , 1]T.

There is an action of (C∗)N on C[X1, . . . , XN ] where the tuple (λ1, . . . , λN) ∈ (C∗)N acts
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on Xj by multiplication by λj.

Definition 2.3. The maximal group of diagonal symmetries Gmax
W (or simply Gmax if W is

clear from context) is the maximal subgroup of (C∗)N which fixes the polynomial W .

We prefer to think of symmetries Gmax
W as a subgroup of (Q/Z)N , where the element [g]

corresponding to the class of the vector g ∈ QN acts on Xj by multiplication by exp(2πigj).

Definition 2.4. If g = [Θ] with 0 ≤ Θj < 1, then the Θj are called the phases of the group

element g.

We can find a special set of generators for Gmax
W as follows.

Definition 2.5. The group element corresponding to the class of the ith column of A−1 we

call ρi.

Proposition 2.6. The ρi generate the maximal symmetry group Gmax. Similarly, the rows

ρ̄i of A−1 generate the maximal symmetry group of WT.

Proof. If [g] is a symmetry of W , then Ag = v ∈ ZN , which implies g = A−1v, so [g] =∑
i viρi.

Definition 2.7. The symmetry

J :=
N∑
j=1

ρj = [A−11] = [q]

is called the exponential grading operator.

Example 2.8. Consider W = x2y + xy3 + z5. The exponent matrix is

A =


2 1 0

1 3 0

0 0 5

 .
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The exponent matrix A for W is symmetric, thus WT = W .

The exponent matrix has inverse

A−1 =


3
5
−1

5
0

−1
5

2
5

0

0 0 1
5

 .

The weights are

qx =
2

5
, qy =

1

5
, qz =

1

5
.

The maximal symmetry group is generated by the columns of A−1:

Gmax =

〈(
3

5
,−1

5
, 0

)
,

(
−1

5
,
2

5
, 0

)
,

(
0, 0,

1

5

)〉
=

〈(
0, 0,

1

5

)
,

(
1

5
,
3

5
, 0

)〉
.

2.2 Milnor Rings

Definition 2.9. The Jacobian ideal Jac(W ) of a polynomial W is the ideal generated by

the partial derivatives:

Jac(W ) :=

(
∂W

∂X1

, . . . ,
∂W

∂XN

)
and the Milnor ring QW (also called the local algebra) is

QW := C[X1, . . . , XN ]/ Jac(W ).

The Milnor ring is a finite-dimensional C-vector space. Its dimension is given by the

Milnor number µW . The Milnor number can be computed using the formula

µW =
N∏
j=1

(
1

qj
− 1

)
.

The Milnor ring is graded by the weighted degree of monomials. The subspace of highest
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weighted degree is one-dimensional and has weighted degree equal to the central charge ĉ of

the singularity. The central charge is given by the formula

ĉ =
N∑
j=1

(1− 2qj).

Let hessW be the determinant of the Hessian matrix
(

∂2W
∂Xi∂Xj

)
ij

. Then hessW spans the

one-dimensional subspace of top weighted degree in the Milnor ring.

There is a pairing on the Milnor ring determined by

fg =
〈f, g〉
µW

hessW + lower degree terms.

Thus, if f and g are weighted-homogeneous elements of QW , then the pairing is given by

〈f, g〉 =


µW

fg
hessW

if fg has weighted degree ĉ,

0 otherwise.

The quotient fg/ hessW makes sense since the ĉ degree subspace is one-dimensional, and so

fg must be a scalar multiple of hessW . This pairing makes the Milnor ring into a Frobenius

algebra, i.e., it has the property that 〈fg, h〉 = 〈f, gh〉.

Example 2.10. Consider the polynomial from Example 2.8, W = x2y + xy3 + z5. The

Jacobian ideal is (
2xy + y3, x2 + 3xy2, 5z4

)
.

We can compute the Milnor number

µw = (
5

2
− 1)(5− 1)(5− 1) = 24

8



and we can find a basis of monomials

QW = span(1, z, z2, z3, y, yz, yz2, yz3, y2, y2z, y2z2, y2z3, x, xz, xz2, xz3, xy, xyz, xyz2,

xyz3, xy2, xy2z, xy2z2, xy2z3).

The central change is

ĉ =
7

5

and we see that the monomial xy2z3 has weighted degree 7
5
. We can compute the Hessian

determinant as

hessW = −80x2z3 − 180y4z3,

but using the Jacobian relations we can write this as an element of QW as

hessW = 600xy2z3.

We can use this information to compute the pairing. For example,

〈
xy, yz3

〉
= 24

1

600
=

1

25

while

〈z, y〉 = 0

since yz does not have top degree.

2.3 The A-model

The A-model is the so-called FJRW ring. We give a description in terms of Milnor rings

which is more elementary than the full definition and sufficient for our computations.

We pick a subgroup of G of Gmax, and we require that J ∈ G. We call a group containing
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J admissible. For each g ∈ G, we define Wg to be the restriction of the polynomial W to the

coordinates that are fixed by g. The unprojected g sector Hg can be described by

Hg
∼= QWg · dXi1 ∧ · · · ∧ dXiNg

,

where Ng is the number of variables fixed by g, and i1, . . . iNg are the indexes of the fixed

coordinates. The sector is called narrow if Ng = 0, and broad otherwise. The group G acts

on Hg by acting on the Milnor ring and the volume form— we note that the addition of the

volume form gives the action of G a “determinant twist”. The state space of the A-model is

then given by taking the direct sum of these sectors and taking G invariants:

HW,G :=

(⊕
g∈G

Hg

)G

. (2.1)

The Milnor ring always has a basis of monomials. Thus, we can write a basis for HW,G of

elements of the form

dXr ; gc .

Here by Xr we mean the monomial
∏Ng

j=1X
rj
ij

, which is an element of Qg. We say that this

element is in the g-sector. We do not explicitly write the volume form, since it is determined

by the group element. We should mention that the notation d• ; •c is not standard, but was

invented for this paper to avoid various problems with other notations.

We endow HW,G with a pairing as follows. Since g and −g fix the same coordinates,

there is a natural isomorphism

I : (Hg)
G ∼= (H−g)

G

dXr ; gc 7→ dXr ;−gc

10



Then the pairing on the Milnor ring Qg induces a pairing

〈·, ·〉g : (Hg)
G ⊗ (H−g)

G → C

by

〈dXr ; gc , dXs ;−gc〉g =
〈
dXr ; gc , I−1(dXs ;−gc)

〉
QWg

.

Then the pairing on HW,G is the “direct sum” of these pairings— that is, if two basis elements

are from sectors g and −g, we use the pairing 〈·, ·〉g above, and otherwise, the pairing is 0.

We write the matrix of this pairing (with respect to a fixed basis) as ηα,β and its inverse as

ηα,β.

The A-model is a graded Frobenius algebra with a new Q-grading that we call the W -

degree. For α ∈Hg, the W -degree is given by

degW α = Ng + 2
N∑
j=1

(Θj − qj)

where the Θj are the phases of g.

The FJRW theory consists of a full cohomological field theory. The Frobenius algebra

structure, however, comes from just the genus-zero, three-point correlators. These are a map

〈·, ·, ·〉 : H ⊗3
W,G → C.

If we wish to emphasize that the correlator is being computed in HW,G, we will use a

superscript, as in 〈·, ·, ·〉W,G. We discuss the computation of the correlators in Section 2.4.

The product of the FJRW ring is given by

α ? β =
∑
τ,σ

〈α, β, τ〉 ητ,σσ (2.2)

11



where the sum is over all pairs of elements σ, τ from a fixed basis.

The product ? on the A-model respects the W -degree. That is, for basis elements α, β,

we have

degW (α ? β) = degW (α) + degW (β).

Example 2.11. Consider again W = x2y + xy3 + z5. Let us pick the group

G = 〈J〉 =

〈(
2

5
,
1

5
,
1

5

)〉
.

The restricted polynomial W(0,0,0) is just W , since (0, 0, 0) fixes all three variables. Thus

H(0,0,0) = QW · dx ∧ dy ∧ dz.

Examining the basis for QW from Example 2.10, we see that the only G-invariants are

xyz3 dx ∧ dy ∧ dz, xy2z2 dx ∧ dy ∧ dz, y dx ∧ dy ∧ dz, z dx ∧ dy ∧ dz.

Any other group element g has no fixed variables. Thus, Wg = 0 and QWg
∼= C. Thus

Hg
∼= C with no volume form. The action of G on Hg is trivial, so we see that HW,G has

12



the following basis (sorted by W -degree):

Basis element Degree⌈
1 ;
(
2
5
, 1
5
, 1
5

)⌋
0⌈

1 ;
(
1
5
, 3
5
, 3
5

)⌋
6
4

dxyz3 ; (0, 0, 0)c 7
5

dxy2z2 ; (0, 0, 0)c 7
5

dy ; (0, 0, 0)c 7
5

dz ; (0, 0, 0)c 7
5⌈

1 ;
(
4
5
, 2
5
, 2
5

)⌋
8
5⌈

1 ;
(
3
5
, 4
5
, 4
5

)⌋
14
5

2.4 A-model axioms

The genus-zero, three-point correlators may be difficult to compute in general. However,

they satisfy some axioms and properties that allow us to compute them in a straightforward

way in many cases.

For this section, we assume that for i = 1, 2, 3, γi ∈ (Hgi)
G ⊂ HW,G are basis elements

of the FJRW ring, with the phases of gi being Θi
j.

Axiom 2.12 (Dimension). A genus 0 three point correlator 〈γ1, γ2, γ3〉 vanishes unless

3∑
i=1

degW γi = 2ĉ.

Axiom 2.13 (Symmetry). Let σ ∈ S3. Then

〈γ1, γ2, γ3〉 =
〈
γσ(1), γσ(2), γσ(3)

〉
The next axioms relate to the degree of certain line bundles. For genus zero, these degrees

13



are given by

lj = qj −
3∑
i=1

Θi
j

for j = 1, 2, 3.

Axiom 2.14 (Integer Line Bundle Degrees). The correlator 〈γ1, γ2, γ3〉 vanishes unless lj ∈ Z

for j = 1, . . . , N .

The following observation follows from Axiom 2.14 and is recorded in [10].

Proposition 2.15. Suppose 〈γ1, γ2, γ3〉 does not vanish. Then g3 = J − g1 − g2. Thus

γ1 ? γ2 ∈H G
g1+g2−J .

Proof. Notice that Axiom 2.14 tells us that

J − g1 − g2 − g3 = 0

so

g3 = J − g1 − g2.

Then the definition of the A-side multiplication and pairing implies that the product is in

the sector −g3, which gives the desired result.

Remark 2.16. The A-model product is not G graded, but it has a related property. Another

way to state the result of Proposition 2.15 is

H G
g1+J

?H G
g2+J

⊂H G
g1+g2+J

Axiom 2.17 (Concavity). If the correlator is not required to vanish by Axiom 2.12 or Ax-

iom 2.14, and if lj < 0 for all j = 1, 2, 3, then 〈γ1, γ2, γ3〉 = 1.

.
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Axiom 2.18 (Pairing). Let 1 = d1 ; Jc. Then

〈γ1, γ2, 1〉 = 〈γ1, γ2〉 .

One can check from this axiom that 1 is the identity element (with respect to the multi-

plication (2.2)) in the FJRW ring. Do not confuse the identity element of the ring with the

elements in the identity sector (the sector corresponding to the group identity of G).

For the next axiom, notice that for two singularities W1 and W2, we have a natural

isomorphism QW1+W2
∼= QW1 ⊗QW2 . We state this axiom in somewhat more detail than it

appears in, for example, [10] or [11].

Axiom 2.19 (Sums of Singularities). Suppose W1 and W2 are non-degenerate, quasihomo-

geneous polynomials with no variables in common. Suppose G1 and G2 are admissible groups

of diagonal symmetries for W1 and W2 respectively. Then G1⊕G2 is an admissible group of

diagonal symmetries for W1 +W2. Suppose

dmini ; gi + hic ∈HW1+W2,G1⊕G2

for i = 1, 2, 3, with mi ∈ QW1, ni ∈ QW2, gi ∈ G1, and hi ∈ G2. Then the three point

correlator

〈dm1n1 ; g1 + h1c , dm2n2 ; g2 + h2c , dm3n3 ; g3 + h3c〉W1+W2,G1⊕G2 ,

has the same value as

〈dm1 ; g1c , dm2 ; g2c , dm3 ; g3c〉W1,G1 · 〈dn1 ;h1c , dn2 ;h2c , dn3 ;h3c〉W2,G2 .
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This gives an isomorphism

HW1,G1 ⊗HW2,G2
∼= HW1+W2,G1⊕G2 .

The following property is an additional selection rule which is crucial to our proof.

Property 2.20 (Gmax-invariance of correlators). The three point correlator is invariant

under the action of Gmax, i.e.

〈hγ1, hγ2, hγ3〉 = 〈γ1, γ2, γ3〉

for all h ∈ Gmax.

One can verify Property 2.20 by examining the construction of the virtual class. See [3]

for details of the construction.

Remark 2.21. Property 2.20 gives us another selection rule as follows. Recall that the

correlators are C-multilinear and that the action of h on a monomial is multiplication by a

scalar in C. Thus, if we take the product of these actions on each insertion, the correlator

vanishes unless this product is 1.

If the monomial of γi is Xri , and h = [h] ∈ Gmax
W , then this can be reduced to the criteria

that
3∑
i=1

(ri + 1)Th ∈ Z.

(where in each summand we restrict h and ri to only the fixed coordinates of gi). The 1

comes from the determinant twist (the h-action on the volume form in Hg).

Example 2.22. Continuing with Example 2.11, let us compute the product

⌈
1 ;

(
1

5
,
3

5
,
3

5

)⌋
?

⌈
1 ;

(
4

5
,
2

5
,
2

5

)⌋
.
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To use Proposition 2.15, we compute

J −
(

1

5
,
3

5
,
3

5

)
−
(

4

5
,
2

5
,
2

5

)
=

(
2

5
,
1

5
,
1

5

)
−
(

1

5
,
3

5
,
3

5

)
−
(

4

5
,
2

5
,
2

5

)
=

(
2

5
,
1

5
,
1

5

)
.

Thus we need only compute correlators of the form

〈⌈
1 ;

(
1

5
,
3

5
,
3

5

)⌋
,

⌈
1 ;

(
4

5
,
2

5
,
2

5

)⌋
,

⌈
m ;

(
2

5
,
1

5
,
1

5

)⌋〉
.

The only possible monomial for m is 1. The value of this correlator is 1. This can be

computed using either Axiom 2.17 or Axiom 2.18. We also need to compute the appropriate

entry of the inverse pairing matrix. Since the pairing matrix is a symmetric block matrix

with only one non-zero block in each block-row, we only need to compute the inverse of

the appropriate block. In this case, we are concerned with the block containing
⌈
1 ; 2

5
, 1
5
, 1
5

⌋
,

which is a 1 × 1-block since the only thing that pairs with it
⌈
1 ;
(
3
5
, 4
5
, 4
5

)⌋
. The pairing of

these two is 1. Thus, the product is

⌈
1 ;

(
1

5
,
3

5
,
3

5

)⌋
?

⌈
1 ;

(
4

5
,
2

5
,
2

5

)⌋
=

〈⌈
1 ;

(
1

5
,
3

5
,
3

5

)⌋
,

⌈
1 ;

(
4

5
,
2

5
,
2

5

)⌋
,

⌈
1 ;

2

5
,
1

5
,
1

5

⌋〉
×

· · · × ηd1 ;( 2
5
, 1
5
, 1
5)c,d1 ;( 3

5
, 4
5
, 4
5)c
⌈

1 ;

(
3

5
,
4

5
,
4

5

)⌋
=

⌈
1 ;

(
3

5
,
4

5
,
4

5

)⌋
.

2.5 The B-model

The construction of the state space of the B-model is very similar to the Milnor ring con-

struction of the A-model state space. This time, instead of requiring that the orbifold group

G contain J , we require it to be contained in SLN . Here, we are thinking of the elements of

G as linear transformations of CN . In our notation, [g] ∈ SLN is equivalent to
∑

i gi ∈ Z.
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We take unprojected sectors

Bg = QWg · dXi1 ∧ · · · ∧ dXiNg

and then take G-invariants of the direct sum:

BW =

(⊕
g

Bg

)G

.

The pairing is defined in the same way as the A-model.

A product was suggested in [10], making the B-model into a Frobenius algebra. This

product is a generalization of the product on the Milnor ring (which is just the product

on the polynomial quotient ring). Contrast this with the very geometric definition of the

A-model product.

To define the B-model product, first note that for all g there is a surjective homomorphism

of Milnor rings Qe → Qg given by setting all variables not fixed by g equal to 0. Thus, Qg

may be thought of as a cyclic Qe-module with generator d1 ; gc. Thus the multiplication

is determined by the products of the module generators d1 ; gc. The B-model product is G

graded. The product of the module generators d1 ; gc and d1 ;hc is determined by choice of

elements γg,h ∈ Qg+h via

d1 ; gc ? d1 ;hc = γg,h d1 ; g + hc .

Let Ig, Ih, Ig+h be the sets of indexes fixed by the group elements g, h, and g+h, respectively.

Then γg,h is given by

γg,h =


(µg∩h hessWg+h) / (µg+h hessWg∩h) if Ig ∪ Ih ∪ Ig+h = {1, . . . , N}

0 otherwise.

(2.3)

where by Wg∩h we mean W restricted to the variables fixed by both g and h, and µg and
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µg∩h are the Milnor numbers for Wg and Wg∩h respectively. In [10], it is shown that this

product is associative. It is also possible to show that the quotient of hessians is always a

polynomial.

The orbifold Milnor ring also has a Q-grading that matches the W -degree in our mirror

symmetry. For an element dm ; gc, with the non-fixed variables of g being {i1, . . . , iMg}, the

grading can be computed by the formula

deg dm ; gc = Mg + 2 degm− 2

Mg∑
j=1

qij ,

where degm is the weighted degree of the monomial m.

The orbifold Milnor ring has the tensor product property analogous to Axiom 2.19.

Proposition 2.23. Suppose W1 and W2 are non-degenerate, quasihomogeneous polynomials

with no variables in common. Suppose G1 and G2 are groups of diagonal symmetries con-

tained in SLN . Then G1 ⊕ G2 is contained in SLN and is a group of diagonal symmetries

for W1 +W2. There is an isomorphism

BW1,G1 ⊗BW2,G2
∼= BW1+W2,G1×G2 .

Proof. This is easy to check from the definitions. One uses the facts that hess(W1 +W2) =

hessW1 + hessW2 and µW = µW1µW2 .

The motivation for the orbifold Milnor ring product comes from orbifold cohomology.

Suppose g, h, and k are group elements with g + h+ k = 0. We have a diagram

Bg

rg

##

Bh

rh

{{

B(g,h,k)

r∗k

77
Bk

rkoo
∼= //Bg+h

Here B(g,h,k) is the Milnor ring of W restricted to the common fixed variables of g, h,
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and k, and the map rg is the map that sets all variables not fixed by g, h and k to 0. Since

we have a non-degenerate pairing, one can get the dual map r∗k. To multiply an element of

Bg with an element of Bh, one maps them both into B(g,h,k) and computes their product

with some analog of the virtual class of orbifold cohomology. In our case this is either 1 or 0

depending on the rule described above. This is necessary to ensure associativity. Then one

maps by r∗k and then by the natural isomorphism between Bk and B−k = Bg+h to land in

the correct sector to preserve the G grading. Working out the dual map results in formula

(2.3) above. Our paper offers further evidence that this is the correct product for the B-side.

Example 2.24. Let us use the polynomial W T = x2y + xy3 + z5. We pick the symmetry

group

GT =

〈(
1

5
,
3

5
,
1

5

)〉
.

We will see later the method of constructing the transpose group GT. Notice that the sum

of the entries in the group generator is an integer. We can compute a basis for BWT,GT as

Basis element Degree

d1 ; (0, 0, 0)c 0

dyz2 ; (0, 0, 0)c 6
5⌈

1 ;
(
1
5
, 3
5
, 1
5

)⌋
7
5⌈

1 ;
(
2
5
, 1
5
, 2
5

)⌋
7
5⌈

1 ;
(
3
5
, 4
5
, 3
5

)⌋
7
5⌈

1 ;
(
4
5
, 2
5
, 4
5

)⌋
7
5

dxyz ; (0, 0, 0)c 8
5

dxy2z3 ; (0, 0, 0)c 14
5

.

Notice that the dimension of the vector space and the degrees match those of Example 2.11,

as guaranteed by the theorem in [10].
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We can compute the multiplication. For example,

⌈
1 ;

(
1

5
,
3

5
,
1

5

)⌋
?

⌈
1 ;

(
4

5
,
2

5
,
4

5

)⌋
= (hessW/µW ) d1 ; 0c = 25

⌈
xy2z3 ; (0, 0, 0)

⌋
but ⌈

1 ;

(
1

5
,
3

5
,
1

5

)⌋
?

⌈
1 ;

(
3

5
,
4

5
,
3

5

)⌋
= 0

since γg,h = 0.

Chapter 3. Fermat and Loop Polynomials

3.1 Classification and Properties

Invertible non-degenerate quasihomogeneous polynomials are completely classified. The

usual reference is [13]. Any such polynomial is the decoupled sum of polynomials of one

of three types. There is the Fermat type:

W = Xa,

the loop type:

W = Xa1
1 X2 +Xa2

2 X3 + · · ·+XaN
N X1,

and the chain type:

W = Xa1
1 X2 +Xa2

2 X3 + · · ·+XaN
N .

We also assume that ai ≥ 2, so that there are no terms of the form XiXj. Notice that taking

the transpose of any of these preserves the atomic type. The variables, however, will be in

the reverse order.

Example 3.1. The polynomial W = x2y+xy3+z5 that we have been using in our examples
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is a sum of a two-variable loop and a Fermat.

Remark 3.2. One can easily check that both the loop type and the Fermat type polynomials

have the property that an element of Gmax either fixes all variables (i.e., is the identity) or

has non-trivial action on all of them. This property will be important in our proof.

We recall the following lemma from [12] which we will need.

Lemma 3.3. The Milnor ring of a loop type polynomial is generated over C by the basis

{
∏N

i=1X
αi
i : 0 ≤ αi ≤ ai − 1} and has dimension µW =

∏N
i=1 ai.

Notice that the element of top degree is Xa−1, so the Hessian is scalar multiple of Xa−1.

The analogous lemma for Fermat types is obvious.

Lemma 3.4. The Milnor ring of a Fermat type polynomial is generated over C by the basis

{Xα : 0 ≤ α ≤ ai − 2} and has dimension µW = a− 1.

To define the mirror map, we will also need the following lemma, also from [12].

Lemma 3.5. Let W be a loop polynomial. Any symmetry other than −J of W may be

written uniquely as

g = A−1α =
N∑
i=1

αiρi

with 0 ≤ αi ≤ ai − 1. If N is even then

−J =
∑
i even

(ai − 1)ρi =
∑
i odd

(ai − 1)ρi.

(If N is odd, then −J cannot be written in the form described here.)

We restate this in a way that is often more useful for us.

Corollary 3.6. Let W be a loop polynomial. Then any non-trivial symmetry of W may be

written uniquely as

J +
N∑
i=1

αiρi
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with 0 ≤ αi ≤ ai − 1.

If N is even, then the identity can be written as either

0 = J +
∑
i even

ρai−1i = J +
∑
i odd

ρai−1i .

(If N is odd, then the identity cannot be written in the form described here.)

The corresponding fact for Fermat is obvious:

Lemma 3.7. Let W be a Fermat polynomial. Then the symmetries of W are precisely

{[α
a
] : 0 ≤ α ≤ a − 1} = {αρ : 0 ≤ α ≤ a − 1}. Every non-trivial symmetry can be written

uniquely as αρ+ J with 0 ≤ α ≤ a− 2.

In the sequel, when we are given elements of the Milnor rings and symmetry groups

associated to Fermat and loop type polynomials, we will assume that they are written in the

special forms described here.

3.2 Some new loop lemmas

We will need some more lemmas about loops that we prove here. Suppose W is a loop type

polynomial

W = Xa1
1 X2 +Xa2

2 X3 + · · ·+XaN
N X1,

with exponent matrix

A =



a1 1 0 · · · 0

0
. . . . . . . . .

...

...
. . . . . . . . . 0

0
. . . . . . . . . 1

1 0 . . . 0 aN


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and let a = [a1, . . . , aN ]T. Notice that these lemmas apply also to WT, since WT is also a

loop polynomial.

Notation 3.8. In the following lemmas, we take the indexes modulo N , i.e., if i = N then

ai+1 = a1.

Lemma 3.9. For a loop type polynomial with exponent matrix A, we have

−J = [A−1a].

Proof. Observe that

−1 = a− A1

−A−11 = A−1a− 1

−J = [A−1a]

Lemma 3.10. If Xt ∈ QW is a scalar multiple of the hessian, then [(AT)−1(t + 2)] = 0.

Proof. Recall that Xa−1 is a multiple of the hessian. Notice that if t = a − 1, then the

result follows from Lemma 3.9. For a loop polynomial, the Jacobian relations are Xai
i =

−ai+1X
ai+1−1
i+1 Xi+2. Using one of these relations corresponds to adding or subtracting the

vector ui = [0, . . . , 0, ai,−(ai+1 − 1),−1, 0, . . . , 0]T to t, where the first non-zero entry is in

the ith spot and we “wrap around” as necessary. Thus, if Xt is a multiple of the hessian,

then we will have a − 1 = t +
∑
kiui for some integers ki. We see then that it is sufficient

to show for all i that [(AT)−1ui] = 0, i.e. that (AT)−1ui = n for some integer vector n. If

we let n = [0, . . . , 0, 1,−1, 0, . . . 0]T, with the 1 in the ith spot, then ATn = ui.
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Notation 3.11. In the next lemma we use the following variation of the Kronecker δ function:

δieven =


1 if i is even

0 if i is odd

with δiodd defined similarly.

Lemma 3.12. Suppose that

v = An

where v has integer entries 2 ≤ vi ≤ 2ai. Then one of the following is true:

1. v = a + 1

2. vi = δiodd(2ai − 2) + 2

3. vi = δieven(2ai − 2) + 2.

The latter two cases can occur only if N is even.

Proof. We have a set of inequalities

aini + ni+1 ≤ 2ai (3.1)

and

aini + ni+1 ≥ 2. (3.2)

Now, suppose that nj ≤ 0 for some j. Then, using (3.2), we see that nj+1 ≥ 2. Then we

use (3.1) to see that

aj+12 + nj+2 ≤ 2aj+1

which implies that nj+2 ≤ 0.
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This tells us that if any ni is not 1, then the entries of the vector n must alternate being

less than or equal to zero and being greater than or equal to 2. This is not possible, of

course, if N is odd.

Suppose now that for some j, nj ≥ m, where m ≥ 3 is an integer. Then equation (3.1)

gives

ajm+ nj+1 ≤ 2ai

nj+1 ≤ (2−m)aj

Then from (3.2) we have

aj+1(2−m)aj + nj+2 ≥ 2

nj+2 ≥ 2 + ajaj+1(m− 2)

≥ 2 + 4(m− 2)

= m+ (3m− 6)

≥ m+ 1.

We can continue repeating this argument to show that we can find an entry of n larger than

any natural number, which is of course impossible. So we see that ni ≤ 2 for all i. Using

(3.2), we then have

aini + 2 ≥ 2

so we see that ni ≥ 0. Thus, we see that either n = 1, n = [2, 0, 2, 0, . . . , 2, 0]T, or n =

[0, 2, 0, 2, . . . , 0, 2]T, and the latter two cases can occur only when n is even.

Now if n = 1, then we see that v = A1 = a + 1, as desired.
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Now, suppose that k is even and n = [2, 0, 2, 0 . . . , 2, 0]T. We see then that

v =



a1 1 0 · · · 0

0
. . . . . . . . .

...

...
. . . . . . . . . 0

0
. . . . . . . . . 1

1 0 . . . 0 ak





2

0

...

2

0


=



2a1

2

...

2ak−1

2


so for i odd we have vi = 2ai, and for i even we have vi = 2. A symmetric argument applies

when n = [0, 2, 0, 2, . . . , 0, 2]T.

Remark 3.13. Suppose that 0 ≤ ri, si ≤ ai−1 (as in Lemma 3.5) and [(AT)−1(r+s+2)] = 0.

Then we see that the vector v = r + s + 2 satisfies the hypothesis of Lemma 3.12. We can

then conclude that one of the following is true:

1. r + s = a− 1

2. ri = si = δiodd(ai − 1)

3. ri = si = δieven(ai − 1)

Lemma 3.14. If W has an even number of variables, then in the Milnor ring we have

∏
i odd

X2ai−2
i =

∏
i even

(−ai)
N∏
i=1

Xai−1
i

and ∏
i even

X2ai−2
i =

∏
i odd

(−ai)
N∏
i=1

Xai−1
i .

(Thus these are also multiples of hessW .)

Proof. By symmetry it suffices to prove the first equality. Notice that the Jacobian relations
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for a loop polynomial are Xai
i = −ai+1X

ai+1−1
i+1 Xi+2. We apply this relation and get

∏
i odd

X2ai−2
i =

∏
i odd

(−ai+1)X
ai−2
i X

ai+1−1
i+1 Xi+2

=
∏
i odd

Xai−2
i Xi+2

∏
i even

(−ai)Xai−1
i

=
∏
i odd

Xai−1
i

∏
i even

(−ai)Xai−1
i

=
∏
i even

(−ai)
N∏
i=1

Xai−1
i

Corollary 3.15. Suppose now that W is a sum of Fermat type polynomials and loop type

polynomials with exponent matrix A. Suppose 0 ≤ ri, si ≤ ai − 1 for i corresponding to a

variable in a loop polynomial, and 0 ≤ ri, si ≤ ai − 2 for i corresponding to a variable in a

Fermat polynomial. Then the following are equivalent:

1. [(AT)−1(r + s + 2)] = 0

2. Xr+s is a scalar multiple of the hessian.

Proof. First we notice that it suffices to prove this for an atomic loop type and an atomic

Fermat type polynomial. For the Fermat type, it is obvious.

For the loop type, to see that (1) implies (2), first use Remark 3.13. Then apply

Lemma 3.14, if necessary, to show that Xr+s is a scalar multiple of Xa−1.

The implication (2) implies (1) is the content of Lemma 3.10.
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Chapter 4. The Mirror Map

4.1 The Transpose Group

We recall here the definition of the transpose group from [10]. If G is a symmetry group

for the polynomial W with exponent matrix A, then the transpose group GT is a symmetry

group for the transpose polynomial WT. Informally, one could say that the transpose group

is the maximal group of symmetries that would fix all elements of G if the elements of G

were interpreted as monomials (i.e. if the coefficients of the generators were interpreted as

exponents of monomials). This interpretation hints at the mirror map described in the next

section. More precisely, we have:

Definition 4.1. The dual group GT is defined as a set to be

GT :=
{

[g] | gTa ∈ Z for all [A−1a] ∈ G
}

(4.1)

=
{

[g] | gTAb ∈ Z for all [b] ∈ G
}

(4.2)

One can check that GT is a group and that the definition is independent of the presen-

tation of the elements of G. Additionally, the transpose group has the following properties,

which are verified in [10]:

• If G contains J , then GT is contained in SLN , and vice-versa.

• (GT)T = G

• If G′ ≤ G, then GT ≤ (G′)T.

Example 4.2. Using the groups from our previous examples, one can check that if

G =

〈(
2

5
,
1

5
,
1

5

)〉
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then

GT =

〈(
1

5
,
3

5
,
1

5

)〉
.

For example, we check that

[
1
5

3
5

1
5

]
2 1 0

1 3 0

0 0 5




2
5

1
5

1
5

 = 1.

(It is coincidence that these two groups have the same order. In fact, |Gmax : G| = |GT |.)

4.2 The Vector Space Mirror Map

The vector space mirror map BWT,GT →HW,G (inspired at least in part by [12]) is described

in [10] as ⌈∏
j

Y
αj

j ;
∑
i

(ri + 1)ρ̄i

⌋
7→

⌈∏
i

Xri ;
∑
j

(αj + 1)ρj

⌋
(4.3)

Notice that the roles of the group elements and monomials are interchanged. The +1 ap-

pearing in the coefficients of the group elements can be thought of as corresponding to the

volume form which we have suppressed.

In (4.3) the range of the index i should be the same on both sides, and the range of the

index j should be the same on both sides. The index j should range over the indexes of the

fixed coordinates of
∑

i(ri + 1)ρ̄i and the index i should range over the indexes of the fixed

coordinates of
∑

j(αj + 1)ρj. This condition ensures that the mirror map is well defined

except in the case of an even-variable loop.

There is some subtlety in the case of an even-variable loop polynomial. Suppose we want

to map an element from the identity sector and that α is such that [A−1(α + 1)] = 0. This

happens precisely when either αi = δiodd(ai − 1) or αi = δieven(ai − 1) (see Corollary 3.6). In

this case the range of i should be {1, . . . , N}, thus, we must write the identity as
∑N

i=1(ri +
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1)ρ̄i. By Corollary 3.6, there are two ways to do this. Thus, the description above leaves

an ambiguity about how to map a certain two dimensional subspace of BWT,GT to a two

dimensional subspace of HW,G. However, these subspaces are homogeneous and have the

right grading, so this is no obstruction to proving the graded vector space isomorphism.

For example, one could simply pick one way to write the group identity for the case αi =

δiodd(ai − 1) and the other for the case αi = δieven(ai − 1).

Example 4.3. We demonstrate the vector space mirror map for some of the basis elements

of the FJRW ring and orbifold Milnor ring in Example 2.11 and Example 2.24.

d1 ; (0, 0, 0)c =
⌈
x0y0z0 ; 0

⌋
7→


1 ;A−1


0 + 1

0 + 1

0 + 1


 =

⌈
1 ;

(
2

5
,
1

5
,
1

5

)⌋

⌈
yz2 ; (0, 0, 0)

⌋
=
⌈
x0y1z2 ; 0

⌋
7→


1 ;A−1


0 + 1

1 + 1

2 + 1


 =

⌈
1 ;

(
1

5
,
3

5
,
3

5

)⌋

⌈
1 ;

(
1

5
,
3

5
,
1

5

)⌋
=


1 ;
(
AT
)−1


0 + 1

1 + 1

0 + 1


 7→ ⌈

x0y1z0 ; 0
⌋

= dy ; (0, 0, 0)c

⌈
1 ;

(
4

5
,
2

5
,
4

5

)⌋
=


1 ;
(
AT
)−1


1 + 1

1 + 1

3 + 1


 7→ ⌈

x1y1z3 ; 0
⌋

=
⌈
xyz3 ; (0, 0, 0)

⌋
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4.3 Algebra Isomorphism

For the algebra isomorphism for unorbifolded Milnor ring, [10] uses the map BWT,0 →

HW,Gmax
W

that acts on generators as follows:

Yi 7→ d1 ; ρi + Jc . (4.4)

Lemma 3.2 in [10] asserts that the product of two narrow sectors is given by

⌈
1 ; [A−1(β + 1)]

⌋
?
⌈
1 ; [A−1(γ + 1)]

⌋
=
⌈
1 ; [A−1(β + γ + 1)]

⌋
(4.5)

as long as β+γ � a−1 (componentwise) and [A−1(β+γ +1)] 6= 0. It then follows that the

algebra map (4.4) agrees with the vector space map (4.3) on the basis element Yα as long as

neither αi = δiodd(ai−1) nor αi = δieven(ai−1). In [10] it is shown that images of the generators

Yi satisfy the same relations as the Jacobian relations of the Milnor ring. Since the spaces

have the same dimension, it then suffices to show that this map is surjective. As we noted,

this map “almost” agrees with the vector space map, which is surjective. In the cases of

αi = δiodd(ai−1) and αi = δieven(ai−1), one can check that the image does in fact land in the

identity sector, so this map is a graded vector space homomorphism. Although it is omitted

in [10], one can generalize a trick used in the computations of [11] to prove that the images

of these two are linearly independent. We provide this proof in Appendix A. However, we

do not know how to say more than that the images of
∏

i odd Y
ai−1
i and

∏
i even Y

ai−1
i under

the map (4.4) are linearly independent in the two dimensional identity sector. Thus, in the

case of the even-variable loop, we cannot explicitly describe the algebra isomorphism on all

basis elements.

Our proof will use both of these maps to define a mirror map for “sum of Fermat and loop”

types. We will also rescale these maps so that they give a Frobenius algebra isomorphisms

rather than just an algebra isomorphism.
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Chapter 5. Frobenius Algebra Isomorphism for Sums of Loops

and Fermats

5.1 Set up

We consider the special case of a polynomial

W =
∑
i

Wi (5.1)

with transpose polynomial

WT =
∑
i

WT
i

where each Wi is either of a Fermat type or loop type. Let G be an arbitrary admissible

group of diagonal symmetries of W and GT the transpose group defined in [10].

Our main result is the following.

Theorem 5.1. There is an isomorphism of Frobenius algebras

HW,G
∼= BWT,GT .

Notation 5.2. Notice that for dm ; gc ∈ BWT,GT we can write m =
∏

imi where mi is a

monomial in QWi
. We can also write g =

∑
i gi, where gi acts trivially except on Wi. In

the sequel when we write any element of BWT,GT in this form, assume that the product and

group element are as described above. Similar remarks apply to the A-model.

Notation 5.3. Let I a subset of {1, . . . , N}. Then we let

• gI =
∑
i∈I

gi

• mI =
∏
i∈I

mi
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• WT
I =

∑
i∈I

WT
i .

5.2 Summary of Proof

We would like to utilize the tensor product property of both the FJRW rings and the orb-

ifold Milnor rings, but our group may not break up into a product. Our idea is to take

some partitions I of {1, . . . , N} and for each such partition break up the polynomial as

WT =
∑
I∈I

WT
I . We pick a new group

⊕
I∈I

GT
I (which is not necessarily isomorphic to GT)

and take the subalgebra BI that is essentially the “intersection” of BWT,GT with B∑
WT

I ,
⊕
GT

I
.

Then we apply the tensor product property (see Proposition 2.23) to move to
⊗
I∈I

BWT
I ,G

T
I
.

Then we apply a suitable modification φI of Krawitz’s mirror map to the pieces. The image

of BI under φI will turn out to be the subalgebra that is essentially the intersection of HW,G

and H∑
WI ,

⊕
GI

which can also be considered as a subalgebra of the desired FJRW ring

HW,G. This is summarized by the following diagram.

BWT,GT HW,G

B∑
WT

I ,
⊕
GT

I

∼=
��

H∑
WI ,

⊕
GI

⊗
I∈I

BWT
I ,G

T
I

BI?
_oo
1 Q

cc

, L

ZZ

φI // φI(BI)
� � //

1�

BB

, �

::

⊗
I∈I

HWI ,GI

∼=

OO

We will have show why we can consider BI and φI(BI) as subalgebras as shown above.

We will check that each basis element of BWT,GT is contained in some BI , and it will be

clear that the maps agree on the overlaps for varying choices of I and GI , so these maps

determine a well defined set map from a basis of BWT,GT to a basis of HW,G. Such a map is

not automatically a homomorphism, but we will to check that for most pairs of basis elements

α, β ∈ BWT,GT , one can find a BI containing both. Then we will check that φI respects the

product α?β. For pairs where this method fails, we will check the homomorphism properties

directly.
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5.3 Splitting on the B-side

Lemma 5.4. Suppose P is a quasihomogeneous, non-degenerate, invertible polynomial, and

H and H ′ are symmetry groups of P contained in SL. Suppose that B is a subalgebra of

BP,H that is invariant under H ′ and which contains only sectors with group elements in H ′.

Then one can consider B as a subalgebra of BP,H′ in the obvious way.

Proof. Notice that the definition of the B-model multiplication makes no reference to the

orbifold group, but only to the group elements involved.

Now suppose that d
∏
mi ;

∑
gic ∈ BWT,GT . Let I be a partition of {1, . . . , N}. Suppose

for each I ∈ I we have a group of symmetries GT
I of WT

I contained in SL.

Definition 5.5. We say the element d
∏
mi ;

∑
gic splits nicely with respect to I and {GT

I }

if it satisfies the following properties (for all I ∈ I):

1. dmI ; gIc ∈ BWT
I ,G

T
I

2. gI is either trivial, or acts non-trivially on all Wi for i ∈ I.

3. If gI = 0 and mI 6= 1, then |I| = 1, i.e. WI = Wj for some j.

We say
⊗

I∈I dmI ; gIc ∈
⊗

I∈IBWT
I ,G

T
I

is split nicely if it satisfies these properties.

Given I and {GT
I }, let BI be the subalgebra of BWT,GT generated by basis elements

that split nicely. Then by Lemma 5.4, we can consider BI as a subalgebra of B∑
WI ,

⊕
GI

.

Thus we may also consider it as a subalgebra of
⊗
I∈I

BWT
I ,G

T
I

via the tensor product property

(Proposition 2.23).
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5.4 The New Mirror Map

We next want to define a map

φI : BI →
⊗
I∈I

HWI ,GI
.

We consider BI as a subalgebra of
⊗

I∈IBWT
I ,G

T
I

and define our map on generators: consider⊗
I d
∏
mI ;

∑
gIc. We can give definitions separately for each factor in the tensor product.

On the factors with gI = (AT
I )−1(r + 1) non-trivial, we take

⌈
1 ; (AT

I )−1(r + 1)
⌋
7→

(∏
i∈I

k−wi·ri
i

)
dXr ; 0c (5.2)

where the ki are complex constants to be determined, r is as described in Corollary 3.6 and

Lemma 3.7, ri is the vector containing the entries of r corresponding to Wi, wi is the integer

weight vector for the variables of Wi, and wi · ri is the vector dot product.

On the factors with gI = 0 and |I| = 1, the domain of this map is a subalgebra of BWi,0,

which is just the Milnor ring of Wi, an atomic Fermat or loop polynomial. The map is

defined on generators of the Milnor ring by

dYi,j ; 0c 7→ k
wi,j

i d1 ; ρi + Jic (5.3)

and then restricted to the appropriate domain. Here Yi,j is the jth variable in WT
i , wi,j is

the integer weight of the jth variable in Wi, and Ji is the exponential grading operator for

Wi.

If gI = 0 and mI = 1, φI takes the identity to the identity:

d1 ; 0c 7→ d1 ; JIc .
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One can easily see that these maps are rescaling of the maps in Chapter 4, so the definition

of the transpose group ensures that they land in the specified codomain. We will show that

this map respects the product in Section 5.5.

By Axiom 2.19, we know that
⊗

I∈IHWI ,GI
∼= H∑

WI ,
⊕
GI

, so we can think of φI(BI)

as a subalgebra of H∑
WI ,

⊕
GI

. Since our map is a combination and rescaling of Krawitz’s

mirror maps, one can see that we the elements of φI(BI) actually look like elements of HW,G.

We will prove the following analog of Lemma 5.4 in Section 5.5.

Lemma 5.6. The subalgebra φI(BI) of

⊗
I∈I

HWI ,GI
∼= HW,

⊕
I∈I GI

can be considered as a subalgebra of HW,G.

We now have a map from a set of generators of BI to HW,G. We want to get a map from a

set of generators for BWT ,GT to HW,G defined as follows. For any basis element γ ∈ BWT,GT ,

pick any I and groups GI so that γ splits nicely and define

ϕ(γ) = φI(γ) (5.4)

and extend the map linearly. To check that this is well defined, we need the following

observation.

Lemma 5.7. For any standard basis element γ = d
∏
mi ;

∑
gic ∈ BWT,GT there exists a

partition I and groups GI so that γ splits nicely.

Furthermore, the image φI(γ) is independent of choice of I and {GI}.

Proof. Let I0 be the set of i so that gi = 0. Let Ig be the set of i with gi 6= 0. Then we

choose the partition

I = {Ig} ∪ {{i}}i∈I0 .
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We choose the group GT
Ig

for WT
Ig

to be the group generated by gIg , and we choose the

trivial groups for the others. In light of Remark 3.2, it is clear that these groups satisfy the

properties described in Definition 5.5.

The second claim is easy to check from the definitions— equation (5.2) respects the

splitting, and both (5.2) and (5.3) make reference only to the group elements, and not to

which subgroup they are members of.

Example 5.8. Suppose WT was the sum of five Fermat types and we had a basis element

that looked like ⌈
X3

1 ;

(
0, 0,

1

3
,
1

2
,
1

6

)⌋
.

Then we would take Ig = {3, 4, 5}, I0 = {1, 2} and let GIg =
〈(

1
3
, 1
2
, 1
6

)〉
(where GIg acts

on the variables indexed by Ig) and take GI0 to be the trivial group acting on the first two

variables.

Remark 5.9. We see that ϕ still gives the graded vector space isomorphism. See Chapter 4

for a discussion of this.

5.5 Splitting on the A-side

In this section we prove the A-side analog of Lemma 5.4. The key observation is in the

following lemma. The proof is due to Tyler Jarvis.

Lemma 5.10. Let P be a quasihomogeneous, non-degenerate, invertible polynomial and H

and H ′ be admissible subgroups of Gmax
P . Suppose we have dm ; gc, dn ;hc, and dp ; kc which

may be thought of as elements of either HP,H or HP,H′ (i.e., the group elements are in both

H and H ′ and the monomials with volume forms are invariant under both H and H ′.)

Then

〈dm ; gc , dn ;hc , dp ; kc〉P,H = 〈dm ; gc , dn ;hc , dp ; kc〉P,H
′
. (5.5)

That is, we may compute the three point correlator in either FJRW ring.
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Proof. First we consider the special case when H ≤ H ′.

The correlator 〈dm ; gc , dn ;hc , dp ; kc〉P,H is defined (see [3, Def 4.6.2]) as

〈dm ; gc , dn ;hc , dp ; kc〉P,H :=

∫
M 0,3

ΛP,H
0,3 (m,n, p),

where M 0,3 is the moduli space of three-pointed, genus-zero stable curves, and ΛP,H
0,3 (m,n, p)

is defined (see [3, Def 4.2.1]) to be the Poincaré dual of the pushforward of the virtual cycle,

capped with the classes m, n, and p:

ΛP,H
0,3 (m,n, p) :=

1

deg(stP,H)
PD stP,H∗

([
W 0,3,H(P ; g, h, k)

]vir ∩ (m ∪ n ∪ p)
)
.

Here stP,H : W 0,3,H(P ; g, h, k)→M 0,3 is the forgetful map taking the moduli space of genus-

zero, stable P -curves with admissible group H to the moduli space of genus-zero stable curves

with three marked points, defined simply by forgetting the P -structure on the curve.

Similarly, the correlator 〈dm ; gc , dn ;hc , dp ; kc〉P,H
′

is defined (see [3, Def 4.6.2]) as

〈dm ; gc , dn ;hc , dp ; kc〉P,H
′
:=

∫
M 0,3

ΛP,H′

0,3 (mi, ni, pi),

with

ΛP,H′

0,3 (m,n, p) :=

1

deg(stP,H
′
)
PD stP,H

′

∗

([
W 0,3,H′(P ; g, h, k)

]vir ∩ (m ∪ n ∪ p)
)
.

According to [3, 2.3.1], there is a finite morphism of stacks a : W 0,3,H(P ; g, h, k) →

W 0,3,H′(P ; g, h, k), surjective onto an open and closed substack of W 0,3,H′(P ). Moreover,

W 0,3,H′(P ) actually has only a single geometric point, corresponding to the unique genus-

zero, three-pointed P -curve with markings g, h, and k, respectively. Therefore, in this case,
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the morphism a is surjective and finite.

Theorem 6.3.5 of [2] shows that the virtual class
[
W 0,3,H′(P ; g, h, k)

]vir
is the pullback

along a of the virtual cycle
[
W 0,3,H′(P ; g, h, k)

]vir
on W 0,3,H′(P ).

Now since dmi ; gic, dni ;hic, and dpi ; kic are in HPi,Hi
, we have

〈dm ; gc , dn ;hc , dp ; kc〉P,H

=

∫
M 0,3

ΛP,H
0,3 (m,n, p),

=

∫
M 0,3

PD stP,H∗

([
W 0,3,H(P ; g, h, k)

]vir ∩ (m ∪ n ∪ p)
)

deg(stP,H)

=

∫
M 0,3

PD stP,H
′

∗ a∗

(
a∗
[
W 0,3,H′(P ; g, h, k)

]vir ∩ (m ∪ n ∪ p)
)

deg(stP,H)

=

∫
M 0,3

deg(a)PD stP,H
′

∗

([
W 0,3,H′(P ; g, h, k)

]vir ∩ (m ∪ n ∪ p)
)

deg(stP,H)

=

∫
M 0,3

PD stP,H
′

∗

([
W 0,3,H′(P ; g, h, k)

]vir ∩ (m ∪ n ∪ p)
)

deg(stP,H
′
)

=

∫
M 0,3

ΛP,H′

0,3 (m,n, p),

= 〈dm ; gc , dn ;hc , dp ; kc〉P,H
′
.

Most of these equalities are immediate consequences of the definitions, and the fourth equality

follows from the fact that, in this case, the morphism a is finite and surjective, so the

pushforward of the pullback of any class along a is simply deg(a) times the original class.

For the general case when H is not necessarily a subgroup of H ′, notice that the special

case proved above implies that we could compute both correlators in HP,H∩H′ and get the

same result.

Lemma 5.10 allows us to prove the following.

Corollary 5.11. Suppose dm ; gc and dn ;hc can be thought of as elements of either HP,H
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or HP,H′. Then the product dm ; gc ? dn ;hc looks the same whether is it computed in HP,H

or HP,H′.

Proof. By definition of multiplication

dm ; gc ?P,H dn ;hc =
∑
σ,τ

〈dm ; gc , dn ;hc , σ〉 ησ,ττ

where σ and τ range over a basis of HP,H . On the other hand,

dm ; gc ?P,H′ dn ;hc =
∑
σ′,τ ′

〈dm ; gc , dn ;hc , σ′〉 ησ′,τ ′τ ′

where σ′ and τ ′ range over a basis of HP,H′ .

For basis elements that are in the basis of both HP,H and HP,H′ , Lemma 5.10 tells us that

we can compute the correlators (and thus also the pairing) in either place. It suffices then

to show that if we have a basis element dp ; kc of HP,H that is not in HP,H′ , the correlator

〈dm ; gc , dn ;hc , dp ; kc〉P,H (5.6)

vanishes. (This also gives us the symmetric condition with H and H ′ interchanged.) There

are two reasons why dp ; kc might not be in HP,H′ . It may be that dp ; kc is not invariant

under H ′. However dm ; gc and dn ;hc are invariant under H ′, thus the three point correlator

(5.6) is not invariant and vanishes by Property 2.20. It may be that k /∈ H ′. But g and h

are in H ′, so (5.6) vanishes by Proposition 2.15 and group closure.

Now the proof promised in Section 5.4 follows easily.

Proof of Lemma 5.6. As we noted, the construction of the mirror maps implies that the

elements of HW,
⊕

I inI GI
“look like” elements of HW,G, so this is just an application of

Corollary 5.11.
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5.6 The Product

We need to check that ϕ, as defined by (5.4), is a homomorphism. Our strategy is to first

show that for most products, we can choose a partition I and groups {GI}I∈I so that both

factors split nicely. Then we will check that φI respects such products.

The are some cases where we can not chose a partition that splits both factors nicely,

but we can handle them in a different way. Before proving the necessary lemma, we isolate

the following fact.

Lemma 5.12. Suppose P is a decoupled sum P1 + P2, and following Notation 5.2, we have

three basis elements dm1 ·m2 ; g1 + g2c, dn1 · n2 ;h1 + h2c, and dp1 · p2 ; k1 + k2c of HP,H .

Suppose dm1 ; g1c and dn1 ;h1c are invariant under Gmax
P1

. Then the correlator

〈dm1 ·m2 ; g1 + g2c , dn1 · n2 ;h1 + h2c , dp1 · p2 ; k1 + k2c〉 (5.7)

is vanishes unless both

1. dp1 ; k1c is also invariant under Gmax
P1

.

2. The correlator

〈dm1 ; g1c , dn1 ;h1c , dp1 ; k1c〉P1,Gmax
P1 (5.8)

is non-vanishing.

Proof. Condition 1 follows from Gmax-invariance (Property 2.20) since Gmax
P1

is a subgroup

of Gmax
P . If this condition is satisfied, then we can pick groups H1 = Gmax

P1
and H2 = π2(H),

where π2 is projection onto the second factor of Gmax
P
∼= Gmax

P1
⊕Gmax

P2
. We want to see that

the element dm2 ; g2c is invariant under π2(H). A group element l2 ∈ π2(H) comes from

an element (l1, l2) ∈ H. The ring element dm1 +m2 ; g1 + g2c is invariant under (l1, l2) and

(−l1, 0) and thus under (0, l2). Thus dm2 ; g2c is invariant under l2. Similar arguments apply

to dn1 ;h1c and dp1 ; k1c.
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Thus Lemma 5.10 applies and we can compute (5.7) in the ring HW1+W2,H1⊕H2 . Thus by

Axiom 2.19, the value of the correlator (5.7) is the product of (5.8) and

〈dm2 ; g2c , dn2 ;h2c , dp2 ; k2c〉P2,H2 ,

from which the result follows.

For pairs described in the following lemma, we cannot simultaneously split them nicely.

However, the lemma shows that both the product and the product of the images vanish.

Notation 5.13. We write the vector of variables of WT
j as Yj and similarly the vector of

variables of Wj as Xj.

Lemma 5.14. Suppose we have a pair of B-side elements, d
∏
mi ;

∑
gic and d

∏
ni ;
∑
hic,

and suppose that for some j, we have mj = 1, gj = [(AT
j )−1(s + 1)] 6= 0, and nj = Yβ

j 6= 1,

hj = 0. Then the products

⌈∏
mi ;

∑
gi

⌋
?
⌈∏

ni ;
∑

hi

⌋
(5.9)

and

ϕ(
⌈∏

mi ;
∑

gi

⌋
) ? ϕ(

⌈∏
ni ;
∑

hi

⌋
) (5.10)

both vanish.

Remark 5.15. We noted in Chapter 4 that there is some subtlety involved in determining

the mirror map for even-variable loops. In particular we have not been able to determine

in all cases whether the algebra isomorphism should take the a basis element of the B-side

to a scalar multiple of a basis element on the A-side or to some linear combination of basis

elements. This will complicate the notation of the following proof, but will not disrupt the

strategy.
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Proof of Lemma 5.14. Since gj + hj 6= 0 but Yβ
j 6= 1, it follows from the definition of the

B-side multiplication that (5.9) will vanish.

It remains to see that (5.10) vanishes as well. The image of d
∏
mi ;

∑
gic will be a linear

combination ∑
l

cl

⌈∏
m̂l
i ;
∑

ĝli

⌋
,

where m̂l
j = Xs

j, ĝ
l
j = 0 for any l.

In the case that Wj is an even variable loop and βk = δkodd(ak−1) or βk = δkeven(ak−1), we

can see that the image of d
∏
ni ;
∑
hic will be a linear combination

∑
l c
′
l

⌈∏
n̂li ; ĥli

⌋
where

ĥlj = 0 and nlj is either
∏

k evenX
aj,k−1
j,k or

∏
k oddX

aj,k−1
j,k . For the potentially non-vanishing

correlators, we can apply Lemma 5.12) and examine pieces of the form

〈⌈
Xs
j ; 0
⌋
,


∏

k odd/even

X
aj,k−1
j,k ; 0

 , ⌈1 ; JWj

⌋〉
(5.11)

(where we filled in the third spot using Proposition 2.15). We see that this is non-vanishing

only if Xs
j pairs with

∏
k odd/evenX

aj,k−1
j,k , which will only happen if s is of the form sk =

δkodd/even(ak−1). But in that case we have [(AT
j )−1(s+1)] = 0, contradicting our assumption.

Suppose now that β is not of that special form. Then n̂lj = 1, ĥlj = [A−1j (β + 1)] 6= 0.

Again using Lemma 5.12, we can examine pieces of the form

〈⌈
Xs
j ; 0
⌋
,
⌈
1 ; [A−1j (β + 1)]

⌋
,
⌈
1 ; [−A−1j β]

⌋〉
(5.12)

(where we filled in the third spot using Proposition 2.15). Notice that is follows from

Lemma 3.5 that A−1j β 6= 0. Now we apply Remark 2.21 to ρj,k and see that this corre-

lator vanishes unless ρTi,k(s + 1) ∈ Z. But this implies that [(AT
j )−1(s + 1)] = 0, again

contradicting the hypothesis.

We can now show how to pick the partitions and groups promised at the beginning of
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the chapter.

Definition 5.16. Excluding the cases described in Lemma 5.14, consider a B-side product

d
∏
mi ;

∑
gic ? d

∏
ni ;
∑
hic. Define the following subsets of indexes as follows:

• Let Ih be the set of indexes such that gi = 0 and hi 6= 0 (then by assumption mi = 1).

• Let Ig be the set of indexes such that hi = 0 and gi 6= 0 (then ni = 1).

• Let Ig,h be the set of indexes where gi, hi 6= 0.

• Let I0 be the set of indexes such that gi = hi = 0.

Now we define the partition

I = {Ig, Ih, Ig,h} ∪ {{i}}i∈I0 .

Definition 5.17. For the partition I, define groups as follows:

• Let GT
Ih

be the group of symmetries of WIh generated by hIh .

• Let GT
Ig

be the group of symmetries of WIg generated by gIg

• Let GT
Ig,h

be the group of symmetries of WIg,hgenerated by hIg,h and gIg,h .

• Let GT
i be the trivial group of symmetries of Wi for i ∈ I0

Example 5.18. Suppose we have a sum of six Fermats, and have a pair of basis elements

that look like: ⌈
x03x

•
6 ; (•, •, 0, •, •, 0)

⌋
and ⌈

x04x
0
5x
•
6 ; (•, •, •, 0, 0, 0)

⌋
,
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where the • in the group elements represents a non-zero entry, and the • in the exponent

represents a possibly non-zero exponent. Then we would take Ig = {4, 5}, Ih = {3}, Ig,h =

{1, 2}, and I0 = {6}.

Lemma 5.19. The groups {GT
I } described in Definition 5.17 are each contained in SL. Both

d
∏
mi ;

∑
gic and d

∏
ni ;
∑
hic split nicely (see Definition 5.5) with respect to I and {GT

I }.

Proof. Conditions 2 and 3 of Definition 5.5 follow directly from the construction. It is also

easy to see that g and h are contained in
⊕

I∈I G
T
I , so to check condition 1 we just need to

see that the elements d
∏
mi ;

∑
gic and d

∏
ni ;
∑
hic are invariant under

⊕
I∈I G

T
I .

We will check that all the generators mentioned in Definition 5.17 fix d
∏
ni ;
∑
hic. It

is clear that d
∏
ni ;
∑
hic is invariant under hIh and hIg,h , since the indexes in Ih and Ig,h

have no fixed variables in d
∏
ni ;
∑
hic.

Notice that the only non-trivial part of the action of g on d
∏
ni ;
∑
hic is the action of

gIg on d1 ; 0c ∈ BWT
Ig
,GT

Ig
since all other indexes i have either gi trivial or represent non-fixed

variables. Since d
∏
ni ;
∑
hic is invariant under g, this shows that d

∏
ni ;
∑
hic is invariant

under the action of gIg . Also, the action of gIg on d1 ; 0c is precisely the determinant of gIg ,

which shows that gIg ∈ SL.

Notice that g = gIg + gIg,h . But g ∈ SL and fixes both by hypothesis and we found above

that gIg ∈ SL, so by group closure gIg,h ∈ SL as well. Also g fixes d
∏
ni ;
∑
hic, and we

showed above that gIg fixes this as well, so it follows that gIg,h fixes d
∏
ni ;
∑
hic.

A completely symmetric argument shows that d
∏
mi ;

∑
gic is invariant under

⊕
I∈I G

T
I

and that hIh and hIg,h are in SL.

Lemma 5.20. With I and {GT
I } as defined above in Definition 5.16 and Definition 5.17,

there are choices of ki ∈ C in (5.2) and (5.3) so that φI is a homomorphism.

Proof. It suffices to check this for each factor in the tensor product. There are three cases.

First, consider one of the factors BWi,0 for i ∈ I0. The map (5.3) is the same as the map in
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[10] (see (4.4) in this paper) up to a scalar. But notice that if Wi is quasihomogeneous with

weights wi,j, then the Jacobian relations are also quasihomogeneous with the same weights.

Thus, the rescaling preserves the Jacobian relations, and thus the isomorphism in [10]. The

isomorphism for the Fermat case was verified in [6].

Next, in the symmetric cases BWT
Ig
,GT

Ig
and BWT

Ih
,GT

Ih

, notice that the products here are

just products with the identity. Since φI preserves the identity, we are good here.

Lastly, we consider the factor BWIg,h
,GIg,h

. To reduce notational clutter, we drop the

subscript Ig,h in the following computations. The product is of the form

⌈
1 ; (AT)−1(r + 1)

⌋
?
⌈
1 ;AT(s + 1)

⌋
,

with both group elements non-trivial. Notice that by definition the B-side product vanishes

precisely when [(AT)−1(r + s + 2)] 6= 0. The corresponding A-side product is

 ∏
i∈Ig,h

k
−wi·(ri+si)
i

⌈∏Xr ; 0
⌋
?
⌈∏

Xs ; 0
⌋

(5.13)

We need to show that the B-side product vanishes if and only if the A-side product does.

The A-side product in the identity sector is computed using the pairing, and is non-vanishing

if and only if Xr+s is a scalar multiple of the Hessian. Thus, Corollary 3.15 gives us what

we need.

Now, if the products do not vanish, then we see that we must have r + s = a− 1. This

follows from Remark 3.13, since if either (2) or (3) were true the B-side product would not

be a product of non-identity sectors. Then the B-side product is by definition

1

µ
dhessW ; 0c (5.14)
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Notation 5.21. For Wi a loop, let

bi = µiY
ai−1
i / hessWi,

and for Wi a Fermat, let

bi = µiY
ai−2
i / hessWi.

Using this notation, (5.14) may be written

(∏
i

1

b i

)⌈∏
i loop

Yai−1
i

∏
i Fermat

Y ai−2
i ; 0

⌋
.

To compute the image of this under φI , we can use Lemma 4.2 in [10], quoted in this paper

as (4.5). Note the this is valid for any polynomial, not just loops. The image is then

(∏
i loop

1

b i
k
wi·(ai−1)
i

)( ∏
i Fermat

1

b i
k
wi(ai−2)
i

)⌈
1 ;
∑
i loop

[A−1i ai] +
∑

i Fermat

[
1

ai
(ai − 1)

]⌋
(5.15)

Here the exponent of ki in the first product is the vector dot product. We choose ki so that

k
wi·(ai−1)
i = bi for a loop, and k

wi(ai−2)
i = bi for a Fermat. Simplifying and using Lemma 3.9,

(5.15) becomes

d1 ;−Jc

On the other hand the A-side product (5.13) is

∏
i∈I3

(
k
−wi·(ri+si)
i

〈⌈∏
Xri
i ; 0

⌋
,
⌈∏

Xsi
i ; 0

⌋〉)
d1 ;−Jc (5.16)

(Here we used the fact that the pairing “breaks up” across decoupled sums.) As we noted,

since Xr+s is equal to the Hessian, we must have ri+si = ai−1 for a loop and ri+si = ai−2
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for a Fermat. Also notice that the pairing in (5.16) just bi. Thus (5.16) is

(∏
i loop

bik
−wi·(ai−1)
i

)( ∏
i Fermat

bik
−wi(ai−2)
i

)
d1 ;−Jc .

By our choice of ki, this is d1 ;−Jc, as desired.

5.7 The Pairing

We have now established the algebra isomorphism, and it remains to check that our choices

of ki cause the pairing to be preserved.

Lemma 5.22. Consider a pair as described in Lemma 5.14. The both the pairing of these

elements and the pairing of their images vanish.

Proof. Clearly the pairing of the elements on the B-side vanishes, since they are not from

inverse sectors. The form of their images was computed explicitly in the proof of Lemma 5.14,

and we saw in (5.11) that if the pairing were non-trivial, it would violate the hypothesis. In

(5.12), we can see that the images do not come from inverse sectors.

Now excluding that case, we can construct I and {GI} as we did in Definition 5.16 and

Definition 5.17, so we just need the following.

Lemma 5.23. The map φI respects the pairing. That is,

〈α, β〉 = 〈φI(α), φI(β)〉 .

Proof. It suffices to check for each factor in the tensor product.

First we check the pieces corresponding to Ig and Ih. Here the B-side pairing of d1 ; gc and

d1 ; 0c vanishes. The image of d1 ; 0c is d1 ; Jc, which pairs non-trivially only with d1 ;−Jc.

But the element d1 ; gc will map to the A-side identity sector. So the A-side pairing vanishes

as well.
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We next check the pairing in the I0 pieces. Let j ∈ I0, and suppose Wj is a loop. We

drop the subscript j and consider

〈
dYα ; 0c ,

⌈
Yβ ; 0

⌋〉
(5.17)

This pairing is non-zero if and only if Yα+β is a multiple of the hessian. The corresponding

A-side pairing is

kw·(α+β)
〈⌈

1 ;A−1(α + 1)
⌋
,
⌈
1 ;A−1(β + 1)

⌋〉
= kw·(α+β) · 1 (5.18)

To compute the mirror map above, we assumed that both A−1(α+ 1) and A−1(β + 1) were

non-trivial and used (4.5). We lose no generality by doing this— we already know that ϕ is

a homomorphism, and so we can use the Frobenius property of the pairing to adjust (5.17)

to ensure that we can use (4.5). The A-side pairing (5.18) is non-vanishing if and only if

[A−1(α + β + 2)] = 0. Corollary 3.15 gives the same vanishing criteria for (5.17), so it only

remains to check that (5.17) matches (5.18) when both are non-vanishing.

By Remark 3.13 there are three cases. If α + β = a− 1, then kw·(α+β) = b (by choice of

k), and (5.17) is equal to b straight from the definitions (b is defined in Notation 5.21, recall

that we have dropped the subscript).

If we have αi + βi = δodd(2ai − 2), then we have (using Lemma 3.14)

〈
dYα ; 0c ,

⌈
Yβ ; 0

⌋〉
= b

∏
even

(−ai).
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On the other hand, using the Frobenius property,

〈
φ (dYα ; 0c) , φ

(⌈
Yβ ; 0

⌋)〉
=
〈
φ
(⌈

Yα+β ; 0
⌋)
, φ (d1 ; 0c)

〉
=

〈∏
even

(−aj)φ
(⌈

Ya−1 ; 0
⌋)
, d1 ; Jc

〉

=

(∏
even

(−aj)

)
b

where the second equality follows from Lemma 3.14, and the last equality is as in the first

case. A symmetric argument works for the case of αj + βj = δeven(2aj − 2).

If Wj is of Fermat type, it is easy to perform the check described above, since there is

only one case.

Next, we need to check the pairing in the factor corresponding to Ig,h. We consider

〈⌈
1 ; (AT)−1(r + 1)

⌋
,
⌈
1 ; (AT)−1(s + 1)

⌋〉
which is non vanishing (and equal to 1) if and only if [(AT)−1(r + s + 2)] = 0. The corre-

sponding A-side pairing is

(∏
i∈I0

k
−wi·(ri+si)
i

)
〈dXr ; 0c , dXs ; 0c〉 (5.19)

which is also non-vanishing if and only if [(AT)−1(r + s + 2)] = 0 by Corollary 3.15. If it is

non-vanishing, then given that neither [(AT)−1(r + 1)] nor [(AT)−1(s + 1)] is the identity, we

know by Remark 3.13 that ri+si = ai−1 for Wi a loop. We also easily see that ri+si = ai−2

for Wi a Fermat. Thus (5.19) is equal to

(∏ 1

bi

)(∏
bi

)
= 1

as desired.
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This completes the proof of Theorem 5.1.

Appendix A. Proof of Surjectivity of the Algebra

Isomorphism for Even-Variable Loops

For Fermats, chains, and odd-variable loops, the following result was easy from Lemma 3.2

of [10], but for even variable loops, we need the following.

Lemma A.1. Suppose W is a loop polynomial with an even number of variables. Then the

map BW,0 →HW,Gmax
W

from equation (4.4), given on algebra generators by

Yi 7→ d1 ; ρi + Jc

is surjective.

Proof. For brevity, let Zi be the image of Yi under (4.4), so Zi = d1 ; ρi + Jc. Recall from

Sections 4.2 and 4.3 that all that remains to check is that the map is onto the two dimensional

sector of the identity group element. One can check using Remark 2.16 and Corollary 3.6

that
∏
odd

Zai−1
i and

∏
odd

Zai−1
i are in this subspace. Let

α =
∏
odd

Zai−1
i −

∏
even

(
−aiZai−1

i

)
and

β =
∏
even

Zai−1
i −

∏
odd

(
−aiZai−1

i

)
.

These are both elements of the two-dimensional identity sector, and are images of (4.4).

Thus, in order to check surjectivity, it suffices to show that these two are linearly independent.
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It is sufficient to find δ and ε such that

α ? δ = 0, β ? δ 6= 0

α ? ε 6= 0, β ? ε = 0

For then suppose c1α+c2β = 0. Then c1α?δ+c2β?δ = 0, so c2 = 0. Similarly, multiplication

by ε gives c1 = 0.

Lemmas 3.3 and 3.4 of [10] say that

d1 ; ρi + Jcai = −ai−1 d1 ; ρi−2 + (ai−1 − 1)ρi−1 + Jc (A.1)

and combining this with (4.5) we have

Zai
i = −ai−1Zai−1−1

i−1 Zi−2

Pick δ =
∏

odd Zi. Then, using (4.5) and (A.1), we have

α ? δ =
∏
odd

Zai
i −

(∏
even

(
−aiZai−1

i

))(∏
odd

Zi

)

=
∏
odd

(
−ai−1Zai−1−1

i−1 Zi−2

)
−
∏
odd

(
−ai−1Zai−1−1

i−1 Zi

)
= 0.
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Pick ε =
∏

even Zi. Then

α ? ε =

(∏
odd

Zai−1
i

)(∏
even

Zi

)
−
∏
even

(−aiZai
i )

=
∏
odd

Zai−1
i Zi−1 −

∏
even

(−aiZai
i )

=
∏
even

Z
ai−1−1
i−1 Zi−2 −

∏
even

(
aiai−1Z

ai−1−1
i−1 Zi−2

)
=

(
1−

∏
i

ai

)∏
even

Z
ai−1−1
i−1 Zi−2.

The coefficient is non-zero since ai ≥ 2, and we can use (4.5) to see that
∏
even

Z
ai−1−1
i−1 Zi−2 is

non-zero. The same computations, replacing even with odd, give the desired relations for

β.
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