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ABSTRACT

Experimental Performance Evaluation of ATP (Ad-hoc Transport
Protocol) in a Wireless Mesh Network

Xingang Zhang
Department of Computer Science, BYU

Master of Science

It is well known that TCP performs poorly in wireless mesh networks. There has
been intensive research in this area, but most work uses simulation as the only evaluation
method; however, it is not clear whether the performance gains seen with simulation will
translate into benefits on real networks. To explore this issue, we have implemented ATP
(Ad-hoc Transport Protocol), a transport protocol designed specifically for wireless ad hoc
networks. We have chosen ATP because it uses a radically different design from TCP and
because reported results claim significant improvement over TCP. We show how ATP
must be modified in order to be implemented in existing open-source wireless drivers,
and we perform a comprehensive performance evaluation on mesh testbeds under dif-
ferent operating conditions. Our results show that the performance of ATP is highly sen-
sitive to protocol parameters, especially the epoch timeout value. To improve its perfor-
mance we design an adaptive version that utilizes a self-adjustable feedback mechanism
instead of a fixed parameter. A comprehensive measurement study demonstrates the ad-
vantages of our adaptive ATP under various operating conditions. For networks with
high bit-rate, low quality links, our adaptive version of ATP demonstrates an average
of more than 50% gain in goodput over the default ATP for a single flow case. With re-
spect to fairness, the adaptive ATP generally outperforms the default ATP by an order of
magnitude in most results.

Keywords: performance evaluation, ATP, wireless mesh network
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Chapter 1

Introduction

Wireless mesh networks1 provide an economical, yet flexible solution to the “last

mile” problem of Internet connection, where the cost of laying fiber may be too expensive.

However, TCP performs poorly, in terms of both throughput and fairness, in multi-hop

wireless networks2 [9, 10]. This is primarily due to the unique characteristics of wire-

less networks, including spatial reuse and interference constraints, which can be further

exaggerated by the IEEE 802.11 MAC layer protocol that was initially intended for single-

hop wireless communication3. Furthermore, packet loss caused by signal fading, route

changes, or interference can be misinterpreted as a sign of congestion by TCP, and the

subsequent rate reduction may lead to under-utilization of the wireless network.

Due to the wide deployment of TCP and its severe performance degradation in

multi-hop wireless network, substantial effort has been made to improve the efficiency

and fairness of the 802.11MAC [3, 4, 11], provide better scheduling of flows [12, 25], to im-

prove TCP performance [5, 7, 17, 27], and to create new transport protocols [16, 19, 20, 22].

Much of the earlier work in this area relies on mathematical modeling or packet-level sim-

ulation to validate the improvements made, with substantially less work validated with

implementation and experiments. This can be attributed to the difficulty in modifying

the network stack, which is normally built into the kernel of modern operating systems.

1A wireless network where nodes are mostly stationary and communicate using the ad hoc mode of the
wireless driver rather than the access point mode.

2Any network where packets must travel over multiple wireless hops.
3For example, a wireless LAN, where a single access point provides an Internet connection to multiple

stations.
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However, despite this difficulty, experimental evaluations are indispensable since it’s dif-

ficult to accurately model radio wave propagation with simulations [15], and simulation

results based on simplified assumptions may differ significantly from experimental re-

sults [13, 15]. As a result, recent work has often recognized the need for implementation

and experimental results [12, 13, 16, 25].

In this thesis, we add to the body of experimental work on wireless transport pro-

tocols by implementing and conducting a thorough performance evaluation of ATP (Ad-

hoc Transport Protocol). ATP is a clean-slate design of a transport protocol for wireless

networks, using rate-based congestion control and cross-layer feedback on MAC-layer

packet delays [22]. We chose this protocol because relatively little work has been done to

evaluate clean-slate and cross-layer designs in an experimental setting, and the original

work on ATP included only packet-level simulations. Our approach differs from one pre-

vious implementation of ATP [25] in that we have implemented the entire protocol, rather

than just the congestion-control algorithm. This enables us to study additional features,

such as quick-start rate probing and epoch-based feedback, that have not previously been

evaluated with experiments. Our work focuses on the details that go into developing a

new transport protocol, whereas prior experimental work has typically examined overall

performance or fairness [3, 12, 19].

Our implementation of ATP consists of three parts: driver-level delay averaging,

per-hop delay collection, and an end-to-end user-level transport protocol. ATP’s conges-

tion control algorithm relies on measurement of the average transmission and queueing

delay experienced by packets along the path used by a connection. We have modified an

open-source wireless driver to collect this data. ATP’s delay measurements must then be

collected and inserted into packets as they are forwarded along a path. We have imple-

mented a daemon that intercepts packets at each hop, reads the current delay measure-

ment from the driver, and inserts this information into an ATP header. Finally, we have

implemented the transport protocol itself on top of UDP using Python.

2



Our experimental results are obtained by running ATP in an indoor wireless mesh

testbed located at BYU and comparing its performance to a TCP Tahoe implementation,

also written in Python. By examining packet-level traces of ATP, we are able to identify

several issues that cause it to perform poorly. First, the quick-start probe used to calculate

an initial sending rate is extremely inaccurate, often resulting in an initial rate that is much

too slow or much too fast. Then, two other default ATP parameters, the epoch timeout (1

second) and the rate increase factor (0.2), result in ATP adjusting its rate too slowly. Sec-

ond, ATP is highly sensitive to the operating environment – the MAC layer transmission

rate and link quality; this may explain why our results show worse performance than

the original simulations. Making ATP more aggressive improves its performance some-

what, but it is difficult to find one set of parameters that works well in all conditions. We

design an adaptive scheme for ATP that provides more prompt feedback as needed and

also includes a better initial rate estimation. Our results show that these improvements to

ATP allow it to provide better performance and fairness than TCP over paths of varying

lengths. The advantages of our adaptive ATP are best demonstrated in the case of single

flow multi-hop experiments with high bit-rate, low quality links. From our experimen-

tal results, adaptive ATP demonstrates an average of 64% goodput gain over the default

ATP and almost 100% over TCP Tahoe. This performance gain is reduced when the links

become saturated with more simultaneous flows. However, due to a flexi- ble and self-

adaptive feedback mechanism, adaptive ATP generally performs an order of magnitude

better in fairness than both default ATP and TCP Tahoe.
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Chapter 2

Ad-hoc Transport Protocol (ATP)

ATP is a clean-slate design of a transport protocol for wireless ad-hoc networks,

with an emphasis on support for mobility. The design can be divided into three separate

functions, performed by intermediate nodes, the receiver, and the sender.

2.1 Intermediate Nodes

Intermediate nodes maintain an exponentially weighted moving average (EWMA) of the

queuing delay (Qt) and the transmission delay (Tt) for each packet:

Qt = α ∗Qt + (1− α) ∗Qsample,

Tt = α ∗ Tt + (1− α) ∗ Tsample,

where α = 0.75. Each data packet carries the maximum delay it has encountered so

far, Dmax in an ATP header. A node calculates D = Qt + Tt and compares it to Dmax,

replacing the packet’s value if D > Dmax. Whenever the node observes an idle channel,

then D = η ∗ (QT + Tt), where η = 3. This multiplier may increase to 5 for a path length

of 5 or more hops [22].

5



2.2 ATP Receiver

For every received packet belonging to a flow, the receiver maintains an EWMA of the

received Dmax along the path:

Davg = β ∗Davg + (1− β) ∗Dmax (2.1)

where β = 0.85. Whenever an epoch timer expires (E = 1s), the receiver sends a feedback

packet to the sender with this Davg and up to 20 SACK blocks, which helps the sender

know which packets are missing.

2.3 ATP Sender

ATP senders implement a rate-based congestion control algorithm that operates in three

phases: increase, decrease, and maintain. If the feedback rate (1/Davg) from the receiver

is (φ) times greater than the current rate (φ = 1.1), the sender increases its sending rate

linearly by 1/5 (κ = 0.2) times the difference between the current rate and the feedback

rate [22]. If the feedback rate is smaller than the current rate, the sender immediately

lowers it sending rate to the feedback rate. Otherwise, the sender simply maintains its

current sending rate.

To determine the initial sending rate, the ATP sender performs quick-start by send-

ing a short probe packet along its path. The receiver returns the probe immediately, with-

out any averaging applied to the maximum measured delay along the path. The ATP

sender repeats quick-start whenever it misses three consecutive feedback packets from

the receiver, effectively restarting the congestion control algorithm.

For clarity, we list the relevant ATP parameters, their meaning, and default values

in Table 2.1. The default values are directly from the ATP paper [22] and are claimed to

provide optimal performance from exhaustive simulations.

6



Parameter Meaning Default Value

E epoch timeout 1 s
α intermediate nodes averaging 0.75
β receiver averaging 0.85
η idle multiplier 3
φ rate increase threshold 1.1
κ rate increase factor 0.2

Table 2.1: List of Important ATP Parameters

The only part of ATP that we do not implement is link failure notification from

intermediate nodes, similar to ELFN [27]. We omit this because we use static routing for

our experiments, without testing any link failure scenarios.
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Chapter 3

Implementation

The architecture of our ATP implementation consists of threemajor components: 1)

delay averaging, 2) delay collection, and 3) transport protocol. Figure 3.1 illustrates how these

components interact. Delay averaging is done by modifying the open source ath5k driver

[1]. Delay collection is performed by writing an application for the WiFu toolkit, which is

software that has recently been developed at BYU. The transport protocol, shown as ATP

in the figure, is implemented on top of UDP in Python.

3.1 Delay Averaging

ATP requires each intermediate node to measure the real-time queuing and transmission

delay for every packet transmitted and to maintain a moving average of each of these

values. However, these measurements are not readily available in the ath5k driver we

use in our experiments, because packets are dequeued and transmitted in hardware. This

means that even if we can tell exactly when a packet is put into the transmit queue, it’s

ATP

TCP/UDP

IP

ath5k

WiFu

IP

ath5k

WiFu

iptables iptables IP

ath5k

WiFu

iptables

ATP

TCP/UDP

IP

ath5k

WiFu

iptables

Figure 3.1: ATP Implementation Architecture
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not possible for us to know when it’s dequeued and the actual transmission starts. Thus

to approximate ATP’s delay measurements, we modified the ath5k driver to measure the

sum of (Qsample + Tsample). This is the total time from when a packet enters the transmit

queue until an interrupt is received, signalling the packet was successfully transmitted.

The driver maintains a moving average of this sum:

D = Qt + Tt = α ∗ (Qt + Tt) + (1− α) ∗ (Qsample + Tsample) (3.1)

Mathematically, this is equivalent to keeping two separate averages of the delays and

then summing them. The driver writes D to the /procfs file system every time it changes.

One complicationwe encountered involves interrupt handling for transmitted pack-

ets in the ath5k driver. In the driver initialization phase, an interrupt mask is configured

to determinewhich interrupts will be handled by the driver. Although this can be enabled

to generate an interrupt for every single successful packet transmission (TXOK), this may

cause a performance degradation due to high interrupt load. Thus, by default the driver is

configured to only enable two interrupts: one for the end-of-line (AR5K INT TXEOL), which

indicates this data frame is the last one in the transmit queue; and one for the transmit

descriptor (AR5k INT TXDESC), which indicates that a group of frames were transmitted

from the transmit queue. This default interrupt handling configuration will create an in-

accuracy for our measurement of the total delay for each packet under heavy load. When

the wireless network card is not busy transmitting data frame, the EOL interrupt can be

used as a good approximation for transmission finish time for a packet because it may be

the only packet in the transmit queue. However, if the wireless card is busy sending data

frames, the descriptor interrupt only reflects the last transmitted packet’s finish time, and

no interrupt is sent for the other packets in the batch. Therefore, the trade-off between a

more accurate measurement and better performance under load is inevitable. We choose

the latter since this is the default configuration for ath5k driver and we want to evalu-

10



ate ATP performance in a more realistic environment. We will discuss the impact of this

trade-off in our experimental results.

3.2 Delay Collection

We implement delay collection using the WiFu toolkit, which allows user-space applica-

tions to intercept and process IP packets as they are forwarded by the kernel. With WiFu,

the application specifies a set of iptables rules to indicate which packets to intercept, and

then reads these packets using the netfilter interface. Thus our delay collection daemon

reads packets from the netfilter queue, and then compares Dmax from the packet with

the current delay measurement stored in /procfs. If the local delay is larger, then the dae-

mon replacesDmax with this node’s current delay measurement. All packets are then sent

back down to the kernel to continue the forwarding process.

3.3 Transport Protocol

We implement ATP’s transport protocol functionality using Python, running on top of

UDP. This includes connection establishment and teardown, reliability, and congestion

control. During connection establishment, ATP uses quick-start to find the initial rate,

and it begins transmitting packets at this speed. The TCP receiver averages delay mea-

surements and sends a periodic ACK to the sender, once per epoch. After each received

ACK, the sender will calculate a new rate and may choose to retransmit some missing

packets.

Our use of Python has some drawbacks. It is well established that interpreted lan-

guages are usually slower than compiled languages. When building a transport protocol

in Python, this means that fine-grained timers may be less accurate than in a C imple-

mentation, and that per-packet network I/O may be slower. In our experiments, these

drawbacks become more obvious with multiple flows when multiple senders reside on

11
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Figure 3.2: ATP Header Format

the same nodes and compete for the system resources. However, for most cases our code

is efficient, and we are able to make comparisons between ATP in Python and TCP in

Python. We are currently rewriting our code in C to make it more efficient, so that we can

compare ATP to a kernel implementation of TCP.

Because previous ATP publications do not include a header format [21, 22], we

design our own ATP header, which is shown in Figure 3.2. Figure 3.2(a) shows a UDP

datagram with an ATP packet as the payload. Figure 3.2(b) shows the ATP header and

body, including:

• protocol ID: a number specifying ATP or TCP,

• version: the ATP version number,

12



• control: control flags,

• SACK len: total length in bytes of the SACK1 blocks,

• sequence number: sequence number in bytes, as with TCP,

• acknowledgement number: ACK number in bytes, as with TCP, and

• delay: maximum delay (Dmax) seen by intermediate nodes along the path the packet

traverses, and

• data/SACK: contains data for a packet going forward along a path, contains SACK

blocks for an ACK.

Note that for simplicity ACK packets do not carry data.

Figure 3.2(c) shows the structure of control flags for ATP packet. Most of them

have the same meaning as that of TCP except the first three: SACK-MORE, SACK-OPT,

and SACK-REQ. Our implementation of ATP relies on SACK blocks to trigger retransmis-

sion, which means that the SACK functions essentially like a negative acknowledgement.

When the sender is bursty or otherwise finishes sending a burst of data, the receiver can-

not detect dropped packets from the end of the burst. Thus the receiver sets the SACK-

MORE flag whenever it has not received any data for half of the epoch timeout period.

When receiving an ACK with this flag set, the sender will retransmit anything that has

not yet been acknowledged. The SACK-OPT flag is set by the receiver to indicate that the

packet contains a SACK block rather than data. The SACK-REQ flag is set by the sender

during quick-start to ask the receiver to immediately send a feedback packet, rather than

waiting for an epoch to expire.

The reliability portion of ATP will resend packets that appear to be missing, based

on the received SACK blocks in a feedback packet. Retransmitted packets always have

priority over new packets. The sender expects a feedback packet once every 1.1 ∗ E sec-

1Selective Ack, which only acknowledges missing packets.

13



onds; the additional 10% of waiting time is used to allow time for the feedback to travel

from the receiver to the sender.
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Chapter 4

Experiment Design and Setup

Experimental evaluation has several drawbacks. First, it can be hard to generalize

experiments from one case to another, because the operating conditions (transmit power,

placement of nodes, link quality, etc.) may be different in each deployment. Second, it can

be difficult to achieve repeatable results, because there are so many factors that can affect

performance. We have been careful to design our experiments to avoid these pitfalls as

much as possible, by varying the operating conditions and by limiting variability from

run to run as much as we can.

4.1 Experiment Design

Wemade an initial assessment of ATP performance using a set of simple experiments and

found that the following variables influence performance and repeatability:

• environmental variation: Since our mesh nodes are distributed in TMCB, there are sig-

nificant differences in human activities and wireless connectivity between different

periods of day. To avoid this fluctuation in interference from other wireless sources,

we use IEEE 802.11a rather than 802.11b, since there is no other traffic using this

frequency in our building. In addition, we alternate the test sequence between dif-

ferent protocols or parameters in a random order to ensure that differences seen

between versions are not due to an abrupt environment change.

15



• MAC rate control: By default, the ath5k driver uses a rate control algorithm called

minstrel [2] to find the best transmit rate given current conditions. This affects

repeatability when different experiments see different MAC rates. To eliminate this

possibility, we turn off minstrel and use a fixed transmit rate for our experiments.

• routing protocol: We initially used OLSR [24] to compute routes for our experiments,

but found that it would withdraw routes under heavy congestion, causing periods

of time without any route between neighboring nodes. As a result, for most experi-

ments we use static routing to ensure the routes are consistent across experiments.

4.2 Experiment Setup

The primary factor affecting transport protocol performance in a single radio wireless

mesh network is path length. For this reason, our experiments primarily use a single

path of varying length to evaluate ATP performance. Figure 4.1 illustrates the portion

of our mesh testbed located on the second floor of our building, with a 6-hop chain from

mesh9→mesh6. To provide greater generality, we use a second 6-hop chain frommesh18

→mesh28 on the first floor of our building, as shown in Figure 4.2. For brevity, we name

these configurations Testbed A and Testbed B. In our experiments, we activate only the

nodes in the chain and turn the rest to a different frequency.

Each mesh node in these two configurations is a Dell desktop running Ubuntu

Linux (kernel 2.6.32) with a 3Com 3CRDAG675B wireless card (Atheros AR5413 chip)

that supports IEEE 802.11a/b/g. Each wireless card is loaded with our modified ath5k

driver. In all our experiments, RTS/CTS is disabled and the MAC retransmission retry

is set to zero. We configure each mesh node to operate on the 802.11a band to minimize

uncontrolled wireless interference. In all our experiments, we transfer a 2MB text file

from the sender to the receiver and record all packet events at both ends for analysis.

We repeat each experiment at least 10 times to obtain a sufficient sample. Finally, we

16
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Figure 4.2: 1st Floor Mesh Nodes and Path (Testbed B)
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explicitly change the combination of transmit power and transmit bitrate on the wireless

card to emulate different link quality and operating conditions. Due to space limitations,

we only present some of our results in the following sections.
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Chapter 5

Experimental Results and Analysis

We compare the performance of ATP to our implementation of TCP Tahoe, which

we also wrote in Python to provide a fair comparison. We first examine the performance

of ATP regulating a single flow of traffic on Testbed A, so that we can examine the details

of its performance. Using this experiment, we develop aggressive and adaptive versions

of ATP, to overcome some of its shortcomings. We then examine the performance of these

versions with multiple flows, and generalize our results to also consider Testbed B. We

finish by examining the fairness of ATP in a common stack topology and the performance

of ATP in randomized flows experiments.

In all of our results, the error bars represent the standard deviation of the measure.

Also, we use goodput, which only counts the useful information bits received, instead of

throughput which counts every bit received.

5.1 Single Flow

For our single flow experiments, we vary the length of the path over which ATP and TCP

operate, from one to six hops, in Testbed A. We configure the nodes to use a bit rate of

24Mbps and a power of 10 dBm.
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5.1.1 Default ATP

We begin by running ATP with its default parameters, which are listed in Table 2.1. These

are the parameters used by the simulations run by the designers of ATP [21, 22]. Figure 5.1

shows the average goodput versus path length. Generally, default ATP obtains better

goodput than TCP, with significant gains for a single hop and for a six-hop path. ATP

also demonstrates more variance in experiments than TCP Tahoe.

To investigate ATP performance in more detail, we plot the goodput and delay

evolution over time from one sample 3-hop experiment in Figure 5.2(a). The upper half

of the figure shows the instantaneous goodput of the connection over a 200 ms sliding

time frame. The lower half shows a delay trace, with green points representing the Dmax

field of every incoming packet at the receiver, blue points marking the sending delay Ds

chosen by the sender, and pink points marking the periodic feedback ofDavg to the sender

every epoch. At the beginning of this trace, the sender transmits with a rate (1/Ds) that

is too fast, which congests the network and causes Dmax to increase by more than 60 ms.
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Because the receiver only sends feedback at the expiration of the epoch (1 second), the

sender won’t reduce its rate for a long period. When the sender receives the feedback

from receiver, it overreacts by reducing to a sending rate of less than 1 Mbps, and then

slowly increases its rate (represented by a steadily decreasing Ds) over multiple epochs

due to a small rate increase factor (κ). Figure 5.2(b) shows a different trace where the

initial sending rate is too slow and it takes multiple epochs to adjust the sending rate to

take advantage of the link speed.

From the above analysis, we can see there are several obvious faults with the rec-

ommended ATP implementation: (a) quick-start may not obtain an appropriate sending

rate with only one probe, (b) the epoch timeout of 1 second is too large for a high bi-

trate network, and (c) the rate increase factor κ of 0.2 may be too slow, particularly when

combined with a long epoch period.

5.1.2 Aggressive ATP

To correct these problems, we explore using a more aggressive set of parameters for ATP

by reducing the epoch timeout E to 0.04 second and increasing the rate increase factor

κ to 0.5. Referring again to Figure 5.1, we can see that with more prompt feedback, ag-

gressive ATP performs better than default ATP by an average of 47%. The lower half of

Figure 5.3(a) shows how a faster rate adaption helps ATP adjust to a poor choice of an

initial rate. However, we also observe that the instantaneous goodput is highly variable

with these new settings. Furthermore, the more aggressive feedback does not necessarily

mean more prompt feedback, which is best illustrated in Figure 5.3(b). This figure zooms

in on the delay trace and adds an additional set of light blue points to indicate when the

feedback from the receiver is actually received by the sender, denoted Davg′ . There is a

significant delay for some of these feedback packets, indicating that they must contend

for the channel on the reverse path; note a cluster of feedback packets received at 0.15
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Figure 5.2: Goodput and delay traces, default ATP, single flow, Testbed A
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Figure 5.3: Goodput and delay traces, aggressive and adaptive ATP, single flow, testbed
A
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seconds in the figure. This clustering occurs because we do not use a priority queue for

feedback packets.

We experimented with many different settings for E and κ, and the results shown

here are the best we obtained on Testbed A. It is not guaranteed that these parameters

will be best in all deployments and along all paths. The designers of ATP realized the

potential problems with a fixed epoch timeout of 1 second and mention that it needs to

be adapted for different environments [22]. However, no solution has been provided on

how to adapt the epoch to fit different wireless paths.

5.1.3 Adaptive ATP

To find a better solution for this problem, we introduce an adaptive SACK feedback mech-

anism that can adjust the feedback delivery time according to different operating situa-

tions. Our adaptive version of ATP uses the same settings for E and κ as the aggressive

ATP, but augments the receiver to send quicker feedback. For every outgoing packet from

the sender, ATP inserts the current sending delayDs in the ATP header as depicted in Fig-

ure 3.2. It then uses the following rules to send a feedback packet immediately, rather

than waiting for an epoch:

• if the receiver detects two dropped packets,

• if there are 10 consecutive incoming packets with Dmax > Ds (this indicates the cur-

rent sending rate is too fast and is causing some contention in network), and

• if there are 10 consecutive incoming packets with Dmax < (1 − φ) ∗Ds (the sender is

going too slowly).

We choose a threshold of 10 consecutive packets to avoid any temporal turbulence in the

network that would induce false alarms and oscillation.

In addition, we add a number of hops fieldNh to the ATP header. This field simply

records the number of hops traversed from sender to receiver, similar to the IP TTL field.
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The sender can use this total number of hops to better adjust its idle multiplier (η) at the

initiation stage of connection. We use η = 3.0 + 0.5 ∗ (h − 1), where h is the number of

hops. The data collection portion of ATP updates this field as the packet is forwarded.

Referring again to Figure 5.1, we can see that in this same single flow experiment,

adaptive ATP performs 64% better than default ATP. In addition, Figure 5.3(c) clearly

shows a more smooth rate curve for adaptive ATP, which confirms our algorithm’s re-

silience to small turbulence.

5.2 Multiple Flows

Fairness is another important evaluation criteria for ATP and our variants. We perform

experiments with two and five simultaneous flows between the same sender and receiver

pair in Testbed A. Figure 5.4 shows the results for two flows. Figure 5.4(a) shows that

adaptive ATP generally achieves the best average goodput among the variants and TCP.

Second, the performance advantage obtained with aggressive ATP over default ATP di-

minishes with increasing path length. Figure 5.4 (b) shows a CDF (Cumulative Distribu-

tion Function) of goodput for 6 hops, verifying the performance advantage of ATP over

TCP Tahoe in a multihop mesh network. Finally, Figure 5.4(c) uses the same normalized

standard deviation of goodput, which is introduced in [22] as an unfairness index to cali-

brate the fairness between the two flows. Smaller values indicate better fairness, with our

modified versions of ATP performing much better than default ATP and TCP.

Figure 5.5 shows the results for five flows. Default ATP performs surprisingly well

in this experiment for flows longer than one hop, and aggressive ATP fares poorly. This

makes sense, because conservative rate adjustment should work better when the network

is more congested. However, our adaptive version of ATP demonstrates remarkable con-

sistency, and generally performs on a par with default ATP, with better fairness.
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5.3 Generality

To demonstrate the generality of our results, we examine ATP’s performance under a

significantly different environment using Testbed B from Figure 4.2. We configure each

mesh node to use a bit rate of 6Mbps and a power of 17 dBm. The increased transmission

power and reduced bitrate, in addition to the sparser distribution of nodes, provides a

more reliable, stable mesh with lower bandwidth. For brevity, we show only the goodput

and fairness results with respect to the number of flows.

Figure 5.6 shows the goodput for the one, two, and five flow experiments. Due to

the low bandwidth and better link quality, there is not much difference exhibited between

different protocols in the one and two flow scenarios, and TCP’s performance is much

better. For five flows, TCP outperforms ATP and its variants for paths over three hops

long. Aggressive ATP generally has the worst goodput among all the tested protocols in

this scenario, which further confirms that the aggressive parameters setting may not be

beneficial under all circumstances.

Figure 5.7 shows the fairness results for the same two and five flow experiments

on Testbed B. It is clear that the goodput advantage of both TCP and default ATP shown

in the previous figure are achieved at the sacrifice of fairness. TCP generally exhibits the

worst fairness among all those tested. Meanwhile, aggressive ATP generally shows the

best fairness over all, which suggests that a shorter epoch timeout contributes to better

fairness. It is possible that adaptive ATP should also try to adjust the epoch time so that

it is more fair in this situation.

5.4 Fairness with Stack Topology

Our fairness results so far are all for flows that share the same path during experiments. A

common stack topology tests fairness when two flows on the edges of a network starve a

flow in the middle due to the MAC layer unfairness [26]. The research community has ad-
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dressed this issue in numerous works [12, 19, 25, 26] with various approaches. To explore

ATP’s behavior in this situation, we construct a stack topology using our 1st floor nodes

as shown in Figure 5.8. We run an experiment that starts flows 1, 2 and 3 sequentially,

with a 3 second delay between each flow.

flow 1 flow 2

flow 3

Figure 5.8: Stack Topology Constructed on 1st Floor Mesh

Figure 5.9 shows the instantaneous goodput of each flow for different protocols.

Since our stack topology does not contain the exact spacing that is often used in simula-

tions and mathematical models, we can not estimate the appropriate fair share for each

flow. However, the difference among the protocols in how they handle this situation are

enlightening. Tahoe periodically starves the flow in the middle (flow 3), which validates

our topology configuration. Default ATP does not perform as badly, but does provide the

middle flow with only 1/5 the throughput of the other two flows. The sawtooth pattern

in this case is due to the combination of severe penalty for a missed feedback packet and

ATP’s conservative rate recovery. Both aggressive and adaptive ATP provide much better
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Figure 5.9: Goodput trace, TCP and ATP variants, Stack topology

goodput for the middle flow, with aggressive ATP taking more bandwidth away from

flow 1. Table 5.1 lists the average goodput each flow obtains when all three flows are ac-

tive with transmission. From the channel utilization perspective, both adaptive ATP and

default ATP achieve better total goodput during the contention period, and adaptive ATP

provides the best utility, as measured by the log of the goodput.

5.5 Randomized Flows

Finally, we perform a series of experiments that mimic the use of a mesh network. In

these experiments, we randomly choose a set of flows in both the 1st and 2nd floors of

our mesh network, varying the number of simultaneous flows to impose different loads.
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Flow 1 Flow 2 Flow 3 Aggreg.
Protocol (kbps) (kbps) (kbps) (kbps) Utility

TCP Tahoe 703 1184 480 2368 8.60
Default ATP 2246 2483 546 5275 9.48
Aggressive ATP 966 1992 951 3909 9.26
Adaptive ATP 2085 2410 875 5369 9.64

Table 5.1: Goodput Share of Each Flow in Stack Experiment

We examine two scenarios: file transfer and streaming. For file transfer, we simultaneously

initiate a 1MB file transfer between randomly pairs of nodes and then calculate the overall

goodput. For streaming, we simultaneously initiate a backlogged TCP transfer between

the randomly chosen pairs and terminate the transmission after 30 seconds.

In these experiments, we use the OSLR [24] routing protocol, rather than static

routing, similar to how a mesh network would be operated. To obtain longer routes, we

reduce the power to 2 dBm and use a bit rate of 6Mbps. This provides a maximum path

length of 4 hops in our mesh. We repeat each experiment 10 times with different random

flows.

5.5.1 File Transfer

Figure 5.10 shows the CDF of per-flow measured goodput for different number of simul-

taneous flows. We consider any flow with goodput lower than 1Kbps as starved. Clearly,

TCP Tahoe has a greater proportion of starved flows. With 32 flows, the Tahoe starves

nearly half of the total flows. All versions of ATP perform very well from the fairness

perspective, with almost no starvation for up to 8 simultaneous flows. For 32 flows, ATP

also has some starvation, with percentages from 20% to 30%, and adaptive ATP performs

best among the variations.

We next consider the tradeoff of aggregate goodput and fairness for this exper-

iment. For fairness, we use the log utility, which is the sum of the log of each flow’s

goodput, with a minor adjustement to avoid a singularity in the calculation. When taking
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Figure 5.10: CDF of per-flow goodput, random file transfer

the log of a flow’s goodput, any totally starved flow yields negative infinity. Thus for

starved flows, we assign their goodput to one byte.

Figure 5.11 shows both the aggregate goodput and log utility for the file transfer

experiments. Tahoe generally obtains the best aggregate goodput for the multiple flows

runs. However, this performance is achieved at the cost of overall utility, which is the

lowest of all protocols tested and is zero for 32 flows due to starvation of some flows.

Adaptive ATP has both the best aggregate goodput among all ATP versions and also the

highest utility.
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Figure 5.11: Goodput and fairness, random file transfer
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Figure 5.12: Goodput and fairness, random streaming
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5.5.2 Streaming

The streaming experiments show drastically different goodput and utility results than the

file transfer experiments. Figure 5.12(a) shows the aggregate goodput for the 30 second

streaming experiments. Default ATP has much better performance here, and fairly good

utility. This performance advantage can be attributed to the similar operating environ-

ment, i.e. low bitrate links, where default ATP has been optimized for in the original

ATP paper [21]. Adaptive ATP performs competitively with the default settings in most

cases, but has much better utility as the number of flows increases. The CDF of per-flow

goodput is similar to the file transfer case, so we do not show them here.
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Chapter 6

Related Work

There has been extensive research to improve the performance of transport proto-

cols in multihop wireless networks in the last decade. However, relatively few fully im-

plemented transport protocols are available, and experimental results are still uncommon.

Two TCP alternatives that have been implemented are DiffQ [25] and Hop [16]. DiffQ

applies the theoretical work of cross-layer optimization and develops a practical backlog-

based MAC scheduling algorithm with router-assisted backpressure congestion control.

This work includes an implementation of ATP, but only the congestion control portion of

the protocol. Hop builds hop-by-hop transport protocol with in-network caching. It uses

blocks, large segments of contiguous data, instead of packets, and uses transport-layer

reliability to achieve both higher overall throughput and robustness with lossy wireless

links. Their implementation is also done in user space running over UDP. Other recent

experimental work focuses on the fairness of TCP in wireless networks, using protocols

that allocate rates and work in conjunction with existing TCP protocols [12, 19].

Implementing network protocols at the user-level is not something new to the net-

working community [23] [6] [14]. The comparative advantages of user-level protocol im-

plementation, such as the ease of prototyping and debugging are well established. No-

table transport protocols include Alpine [8], which provides a framework for user-level

network protocol development in FreeBSD, and Daytona [18], which implements a user-

level TCP stack for Linux.
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Chapter 7

Conclusion

In this thesis, we present an extensive performance evaluation of ATP in a wire-

less mesh testbed. We have examined the performance of ATP as it was designed, with

regard to both goodput and fairness, and found that its original design does not perform

as well as shown in earlier simulation results. Although it generally outperforms TCP

Tahoe in terms of goodput, especially for the longer paths with lossy links, ATP’s quick-

start and fixed epoch feedback mechanism need improved designs. This is another piece

of evidence that network protocols should be evaluated with both simulations and an

implementation in order to properly validate their performance.

Our exploration of a revised design for ATP includes both using more aggressive

parameters and creating a more adaptive feedback mechanism. A more aggressive ATP

improves performance in some circumstances, but does not perform as well withmultiple

competing flows. Our adaptive design of ATP demonstrates a good mix of high goodput

and fairness under most circumstances tested. In the particular case of high bit-rate, low

quality links as shown in our testbed A, the goodput gain obtained by adaptive ATP over

default ATP is on average of 64% for a single flow. This goodput gain is diminishing

for the more saturated links and multiple flows scenarios. For low bit-rate, high-quality

links, the advantages of adaptive ATP with respect to goodput are much less significant,

since all transport protocols tested operate in a near ideal environment. However, in all

situations our adaptive version of ATP generally has much better fairness – usually an

order of magnitude better than default ATP and TCP Tahoe.
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Due to unfairness at the MAC layer, ATP and our variants alone will not solve all

the problems encountered by transport protocols in a wireless mesh network. However,

we are encouraged that rate-based congestion control has been shown to be useful in a

wireless setting, and that cross-layer feedback of delays encountered at the MAC layer

can improve performance.

With the help of the WiFu toolkit, we plan to expand our experimental evaluations

to include more transport protocols proposed by other researchers. In particular, those

works that haven’t been evaluated with implementations and experiments are of special

interest to us.
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Appendix A

Delay Calculation and Driver Modification

The ATP congestion control algorithm is built upon the real-time measurement of

queuing delay (Qt) and transmission delay (Tt) on each intermediate node. Queuing de-

lay (Qt) is the duration between when a packet is inserted into a transmission (TX) queue

and when it is removed from the queue for transmitting, i.e. Qt = Tdequeue − Tenqueue.

Transmission delay (Tt) measures how long it takes to actually send the data packet, i.e.

Tt = Ttx done − Tdequeue. Due to contention experienced by wireless medium access con-

trol, this transmission delay can not be calculated by simply dividing the packet size by

the current transmission rate. Generally, queuing delay reflects the congestion among

multiple flows that traverse the current node and transmission delay is influenced by the

contention among the current node and its neighbors. In ATP, the exponential average

(EWMA) of these two delays are considered to be indicators of congestion and contention

and they are used to derive the appropriate transmission rate at the sender.

However, these two measurements are not readily available via the current open

source Linux wireless driver, i.e. ath5k. Instead, we measure the total of queuing and

transmission delay for each packet. This section provides background on the Linux kernel

network stack and explains our modifications of the ath5k driver.
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A.1 Architecture of Linux Network Stack

The architecture of Linux networking stack is directly inherited from the BSD stack, with

well organized encapsulated interfaces. Figure A.1 illustrates a high-level overview of

the stack. User-space applications, such as Firefox, FTP, etc., gain access to the kernel’s

networking stack via the system call interface. This interface de-multiplexes the call from

user-space to a specific targeted socket through the system socketcall(). Furthermore,

the system call interface defines the network I/O as normal file operations, where socket

read/write corresponds to file read/write to the socket file descriptor.

Figure A.1: Overview of Linux Network Stack

The Network Sockets layer provides support for different protocols, such as TCP,

UDP, IP, etc., via the socket structure sock (defined in linux/include/net/sock.h). Ba-

sically, sock contains the state information of a connection, the particular protocol, and

the operations that could be performed on the specific socket. The Network Protocols
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layer defines a wide variety of networking protocols and initializes them as the system

boots. It also maps the individual protocol to the corresponding module that supply the

operations. One critical data structure socket buffer (sk buff) stores data across the multi-

ple layers of the protocol stack. The Network Subsystem layer connects network proto-

cols to network interface drivers. The device drivers are registered to the kernel via the

net device structure. To transmit a packet (or sk buff) to a network interface, this layer

en-queues the packet using dev queue xmit and then calls dev->hard start xmit to initi-

ate the transmission to the network device driver. Recently, a new application program

interface (NAPI) was introduced into the kernel to provide support for the low-level net-

work device drivers to operate with the high-level protocol stack. mac80211 is a special

network subsystem that implements shared code for soft-MAC wireless devices. Finally,

the Network Interface Driver manages operations on the physical network hardware.

Most of the modern network device drivers are implemented as kernel modules, which

can be flexibly loaded/unloaded as the device is inserted/pulled.

A.2 mac80211 Subsystem

The IEEE 802.11 specification defines common operations, such as: beacon, probe, asso-

ciate, authenticate, etc., that should be available on any IEEE 802.11 compliant wireless

device. The MLME (Media Access Control (MAC) Sublayer Management Entity) imple-

ments these operations in hardware or software for awireless network device. Depending

on where the MLME is implemented, the wireless network card can be classified as either

Full-MAC (hardware) or Soft-MAC (software). Most modern wireless network cards are

classified as Soft-MAC.

The mac80211 subsystem of the Linux kernel sits between the network interface

driver and network protocols in the kernel network stack. It provides a framework for the

Soft-MACwireless device development and greatly reduces the effort required to develop

wireless device drivers. Figure A.2 demonstrates the structure of mac80211 subsystem,
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Figure A.2: Architecture of mac80211

where cfg80211 provides the configuration interface between user-space applications and

802.11 devices via mac80211. mac80211 implements the shared code of common MLME

functionality for all Soft-MAC compatible 802.11 wireless devices. From the packet trans-

mission perspective, mac80211 helps convert a packet from the network protocols layer

to the IEEE 802.11 format, direct it to the master interface, initialize the transmit han-

dlers, and create control information for transmission by the wireless hardware driver. In

addition to the configuration hand-off through the cfg80211 module (via cfg80211 ops)

and the TX/RX hand-off through individual wireless device drivers (via ieee80211 ops),

there is another important functionality handled by mac8021 called rate control. This is

a mac80211 subsystem that implements a variety of rate control algorithms, which an

individual driver can select from. mac80211 is also informed of the actual transmission

status, either success or fail, from the driver and adjusts the actual transmission rate for

the subsequent packets.

A.3 Ath5k Driver

ath5k is a complete open source Linux driver for Atheros wireless cards. It is derived

from MadWifi, a Linux wireless driver that uses a proprietary, closed-source HAL, and

OpenHAL, an effort to replace HAL with open source code. It’s still under heavy devel-
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opment but considered to be stable enough to ship as the default wireless driver for many

Linux distributions. In ath5k, the driver directly calls the hardware functions instead of

intermediate HAL or OpenHAL layer.

The ath5k driver has a number of source code files that are relevant to our project.

First, the hardware registers are defined inside reg.h under /wireless/ath/ath5k/. The

initialization and PHY control is managed by initvals.c and phy.c. Themajor mac80211

and PCI interface is defined in base.h and implemented in base.c. Finally, the data

structures of the ath5k driver are defined inside ath5k.h.

Since packet transmitting and receiving is an asynchronous process, ath5k utilizes

an interrupt mechanism to coordinate transmission and reception between the hardware

and the kernel. Basically, at the driver initialization phase, an interrupt handler and

tasklet is registered for each major event, such as TX and RX. When a new packet is re-

ceived/transmitted by the hardware, an interrupt is raised and the tasklet is scheduled at

a later time to process the TX/RX descriptor. After successfully processing the interrupt,

the tasklet will inform the mac80211 subsystem about the TX/RX status, which is used

for rate control or other control information generation.

A.4 Important Data Structures

In order to trace a packet’s movement inside the Linux kernel, we need to understand how

a packet is represented and manipulated across the network stack. There are two critical

data structures, socket buffer (skb) and network device (net device), that make the Linux

network implementation both efficient and flexible. A socket buffer (skb) represents a

packet during its lifetime inside the kernel. The net device provides an abstraction for

the network adapter and a uniform interface for higher protocol instances.

Figure A.3 illustrates the basic structure of the skb. This doubly linked list consists

of all the buffers used by the network layers. It’s used to keep the status of each packet

with a block of memory attached. For example, next and prev are pointers to the adjacent
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Figure A.3: Structure of socket buffers

socket buffers and concatenate skb into queues; dev is a reference to the designated net-

work devices this packet is intended for or received from; stamp specifies the arrival time

of this packet in Linux kernel; h, nh, and mac are pointers to packet headers of the trans-

port layer, network layer, and the link layer; head and end point to the range of memory

allocated for the packet data; data points to the currently valid protocol data unit for the

specific layer processing the packet.

The life cycle of a socket buffer can be summarized as following. When a new

packet is received or some data is ready to transmit from an application, a new socket

buffer is created and memory is allocated for it. As the packet travels across different

layers in kernel network stack, operations are performed on the data using skb pointers.

After it’s processed and delivered, the corresponding skb is destructed and memory is

freed.
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For the ath5k driver, there is a wrapper structure, ath5k buff, around skb with

a link to a virtual descriptor and the physical address of socket buffer data. Figure A.4

demonstrates the structure of ath5k buff, where a similar doubly-linked list is used. desc

is a pointer to the virtual descriptor address and skb is pointing to the socket buffer we

described above. daddr and skbaddr are physical addresses of the descriptor and socket

buffer data. Corresponding to the role of skb for a packet, ath5k buff identifies a specific

packet inside the wireless device driver.

Figure A.4: Structure of ath5k buffers

A.5 Packet Transmission Path in ath5k Driver

Since we are most interested in measuring the transmission delay and queuing delay of

a packet, we will only focus on the discussion of packet transmission path. Figure A.5

shows an overview of the functional flow related to packet transmission. At the bot-

tom is the wireless network card, where registers are used to control the actual send-

ing and receiving of the IEEE 802.11 data frame. On the top is the mac80211 subsystem,

which implements MLME, provides rate control, and converts a packet into the IEEE

802.11 format. Because our wireless network cards are PCI type, the PCI device driver

(ath5k pci driver) performs the common initialization job (ath5k pci probe) duringma-
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chine boot time. Also, it helps “attach” the hardware interface to the mac80211 interface

(ath5k attach) so that driver can talk directly to hardware. One of the critical tasks fin-

ished during this attach call is the tasklet initialization, where tasklets for TX/RX are

initialized to handle interrupts from the wireless network card.

Figure A.5: Functional flow of packet transmission in ath5k

The mac80211 subsystem interacts with ath5k driver through ieee80211 ops. Two

of the most important calls are start and tx, which are directed to the ath5k init and

ath5k tx functions in the driver, respectively. ath5k init basically resets the hardware

and configures the interrupt masks for interrupt handling during TX/RX. When a packet

is passed along from the mac80211, ath5k tx queuewill initialize the transmission buffer

and map it to the hardware queue. ath5k txbuf setup then pushes the packet into the TX
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queue if there’s still room left, otherwise, it drops the data packet. ath5k hw start tx dma

starts the DMA transmit for a specific TX queue in hardware and ath5k hw reg write

actually writes the data frame into the wireless network card’s registers and makes it

ready to send. After the data frame is successfully transmitted, the wireless network card

will inform the driver via an interrupt, where the interrupt handler, ath5k intr, puts

it into the TX tasklet, ath5k tasklet tx, and schedules a later time to process the TX

descriptor by ath5k tx processq.

A.6 Driver Modification and Kernel Data Export

The goal of our driver modification is measuring the exponential averaging of queuing (Qt)

and transmission delay (Tt) and exporting them to user-space. However, there are two details

in this process that hinder our exact measurement of queuing and transmission delay. The

first issue is the detailed de-queue behavior of wireless network card. Even though the

driver has control over the packet enqueue process, the dequeue process is controlled by

a QCU (Queue Control Unit), which is built into the hardware. This means that even if

we can tell exactly when a packet is put into the TX queue (Tenqueue) without modifying

the firmware, it’s impossible for us to know when it’s de-queued (Tdequeue) and the actual

transmission starts. This points to one of the inherited limitations of using simulation

as the performance evaluation method for wireless transport protocols. It’s quite easy to

“measure” the queuing and transmission delay of a packet in the simulation. In reality,

due to constraints from a hardware implementation, it’s very difficult, if not totally impos-

sible, for us to measure the exact de-queue time. However, there’s a compromise solution

to this issue. ATP maintains an exponential average of both transmission and queuing

delay per node and then sums it as the exponential average of total delay. Instead, we

can measure the combined total delay (DQ+DT ), since we can get the transmission finish

time (Ttx done) by recording the TX interrupt time. The difference between this transmis-

sion finish time and a packet’s enqueue time is the sum of transmission and queuing
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delay:

DT +DQ = (Ttx done − Tdequeue) + (Tdequeue − Tenqueue)

= Ttx done − Tenqueue (A.1)

Then, we can maintain an exponential average of this total delay per node. Theoretically,

this approach is the same as the one proposed by ATP.

The second issue is the interrupt handling for transmission. In the driver initializa-

tion phase (ath5k init), an interrupt mask is configured to determine which interrupts

will be handled by the driver. Even though we can enable it to process the interrupt for

every single successful packet transmission (TXOK), overall performance will suffer due to

the interrupt overload. Thus, by default, ath5k driver is configured to only enable two

interrupts: one for the end-of-line (AR5K INT TXEOL), which indicates this data frame is the

last of current TX queue; and one for TX descriptor (AR5k INT TXDESC), which indicates

the TX queue is getting deep and a bunch of data frames is being transmitted. This default

interrupt handling configuration imposes a potential problem to our total delay measure-

ment since we rely on the interrupt as the TX finish time. When the wireless network

card is not busy transmitting data, the EOL interrupt can be used as a good approxima-

tion for the TX finish time for a packet because it may be the only packet in the TX queue.

However, if the wireless card is busy sending data frames, the descriptor interrupt only

reflects the last transmitted packet’s finish time, not for the rest of packets sent over air in

a batch, especially the first one in the TX queue. Therefore, the trade-off between a more

accurate measurement and better performance under load is inevitable. We choose the

latter since that’s the default configuration for ath5k driver and we want to evaluate ATP

performance in a more realistic environment.

The ath5k driver modification consists of two parts: 1) time-stamping every out-

going data frame; and 2) exporting the data from kernel to user-space. For the first part,
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Figure A.6: Modified ath5k buff data structure for data frame time-stamping

we can simply add three timeval structures to ath5k buff, which represents a data frame

inside ath5k driver. Figure A.6 illustrates the new, modified ath5k buff structure, where

usts en, usts intr, and usts done, are used to record the enqueue, interrupt, and inter-

rupt processing time, respectively.

In the Linux device driver, jiffies is normally used to manage the time interval.

However, due to its low-resolution (millisecond precision), we use do gettimeofday to

achieve resolution of 1 microsecond. The rest of this time-stamping is straight forward,

we can simply update the value of those three time structures of modified ath5k buff at

the proper place of the TX functional flow, as depicted in Figure A.5. For example, we

update the usts enq value inside ath5k txbuff setup, where a data frame is en-queued,

and record usts intr and usts done at ath5k intr and ath5k tx processq, for the in-

terrupt and interrupt processing time, respectively. We apply an α value of 0.75 for the

exponential averaging of the total delay (refer to Eqn. (2.1)).

Finally, to export the kernel data to user space, we have three choices: procfs (/proc/

filesystem), sysctl (/proc/sys/ directory), and sysfs (/sys/ filesystem). The first and the third

are virtual filesystems mounted at machine boot time. For simplicity, we choose procfs
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because we only want to read the exponential average of the total delay exported from the

ath5k driver. We create a sub-directory, /proc/ath5k/, under /proc/ filesystem, to contain all

the exported kernel information, where /proc/ath5k/Da is the running average of the total

delay for this node and /proc/ath5k/sample is one sample delay for the last transmitted

data frame. Applications can simply read the value out like a regular file or monitor the

variation with a cat or less command under the Linux shell.
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