
Brigham Young University Brigham Young University

BYU ScholarsArchive BYU ScholarsArchive

Theses and Dissertations

2011-11-23

A Foveated System for Wilderness Search and Rescue in Manned A Foveated System for Wilderness Search and Rescue in Manned

Aircraft Aircraft

Carson D. Fenimore
Brigham Young University - Provo

Follow this and additional works at: https://scholarsarchive.byu.edu/etd

 Part of the Computer Sciences Commons

BYU ScholarsArchive Citation BYU ScholarsArchive Citation
Fenimore, Carson D., "A Foveated System for Wilderness Search and Rescue in Manned Aircraft" (2011).
Theses and Dissertations. 2744.
https://scholarsarchive.byu.edu/etd/2744

This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion
in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please
contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.

http://home.byu.edu/home/
http://home.byu.edu/home/
https://scholarsarchive.byu.edu/
https://scholarsarchive.byu.edu/etd
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F2744&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsarchive.byu.edu%2Fetd%2F2744&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/2744?utm_source=scholarsarchive.byu.edu%2Fetd%2F2744&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu,%20ellen_amatangelo@byu.edu

A Foveated System for Wilderness Search and Rescue

in Manned Aircraft

Carson D. Fenimore

A thesis submitted to the faculty of
Brigham Young University

in partial fulfillment of the requirements for the degree of

Master of Science

Bryan S. Morse, Chair
Michael A. Goodrich

Scott Woodfield

Department of Computer Science

Brigham Young University

December 2011

Copyright c© 2011 Carson D. Fenimore

All Rights Reserved

ABSTRACT

A Foveated System for Wilderness Search and Rescue
in Manned Aircraft

Carson D. Fenimore
Department of Computer Science, BYU

Master of Science

Wilderness search and rescue can be assisted by video searchers in manned aircraft.
The video searcher’s primary task is to find clues on the ground. Due to altitude, it may
be difficult to resolve details on the ground with a standard video camera. As the video
streams at a constant frame rate, the searcher may become distracted by other tasks. While
handling these tasks the searcher may miss important clues or spend extra time flying over
the search area; either outcome decreases both the effectiveness of the video searcher and
the chances of successfully finding missing persons.

We develop an efficient software system that allows the video searcher to deal with
distractions while identifying, resolving, and geolocating clues using mixed-resolution video.
We construct an inexpensive camera rig that feeds video and telemetry to this system. We
also develop a simple flight simulator for generating synthetic search video for simulation
and testing purposes.

To validate our methods we conduct a user study and a field trial. An analysis of
the user study results suggests that our system can combine the video streams without loss
of performance in the primary or secondary search task. The resulting gains in screen-
space efficiency can then be used to present more information, such as scene context or
larger-resolution images. Additionally, the field trial suggests that the software is capable of
robustly operating in a real-world environment.

Keywords: Wilderness Search and Rescue, Mixed-Resolution Video, Homography

ACKNOWLEDGMENTS

I am indebted to many individuals who have helped me through the years, especially

to my colleagues Daniel Thornton, Greg Alldredge, Nathan Rasmussen, Doug Kennard,

Cameron Engh, Stephen Cluff, and Mike Roscheck. I am also grateful for guidance and

patience of my advisors Dr. Goodrich and Dr. Morse.

Several kind friends have provided help along the way. Jacob Bishop helped make the

field trial possible and has provided invaluable support and assistance throughout this long

journey. Others have made seemingly small but meaningful contributions. While I cannot

provide an exhaustive list of all who have helped, I would particularly like to thank Joel

Smith, Taylor Goodhart, Rob and Beth VanVliet, and Chris Harrison.

Above all, I am blessed by the love and encouragement of my beautiful wife Celeste

and the smiles of my sweet daughter Esther. They deserve the bulk of the credit for inspiring,

encouraging, and helping me through this process.

iv

Table of Contents

List of Figures vii

List of Tables ix

List of Listings xi

List of Algorithms xiii

1 Introduction 1

2 Background and Related Work 5

2.1 Wilderness Search and Rescue . 5

2.2 Processing Images from Multiple Cameras 6

2.3 Geolocation . 8

2.4 Video Seek . 9

2.5 Coverage Maps and Seeability . 11

2.6 Augmented Reality User Interfaces for Video Search 12

2.7 Improving Upon Past Work . 13

3 Methods 15

3.1 System Overview . 15

3.2 Video Streams . 18

3.3 Image Warpings . 23

3.4 Geolocated Annotations . 26

v

3.5 Accelerated Coverage Maps . 27

3.6 Video Scrub . 29

3.7 Render Pipeline . 32

4 Results 39

4.1 User Study . 39

4.2 Field Trial . 49

5 Conclusion 53

References 55

A User Study Test Matrix 61

B OpenGL Shaders 63

C User Study Instructions 69

D User Study Questionnaire 71

vi

List of Figures

1.1 Cessna 172 . 1

3.1 Functional View of the System . 16

3.2 Video Frame Sequential and Random Access 16

3.3 Database Schema . 17

3.4 Camera Rig Prototype . 20

3.5 Paired Images from the Simple Flight Simulator 22

3.6 Paired Images from the FlightGear Flight Simulator 22

3.7 Example of Efficient Cross-Stream Warping 25

3.8 GPU-Acclerated Coverage Maps . 28

3.9 Coverage Performance . 29

3.10 Path Scrubbing . 30

3.11 Controls for Thumbnail Scrubbing . 31

3.12 Controls for Sequential Scrubbing . 32

3.13 Render Pipeline . 33

3.14 Side-by-Side Configuration . 35

3.15 Side-by-Side Zoom . 35

3.16 Combined Configuration . 37

3.17 Combined Zoom . 37

4.1 Search Targets and Distractors . 40

4.2 Training Session . 42

4.3 Pre-Flight Search Instructions . 42

vii

4.4 In-Flight Search Instructions . 43

4.5 Post Flight and Post Study Questionnaires 43

4.6 Uncalibrated Images from the Field Trial . 49

4.7 Field Trial Cross-Stream Warpings . 50

4.8 Effects of Parallax on Zoom . 51

4.9 Marker by Sign . 51

C.1 User Study Instructions - Page 1 . 69

C.2 User Study Instructions - Page 2 . 70

D.1 User Questionnaire . 71

viii

List of Tables

4.1 User Study Demographics . 45

4.2 User Study Post Flight Assessment . 46

4.3 User Study Performance Results . 47

A.1 User Study Test Matrix . 61

ix

x

List of Listings

3.1 Terrain and Coverage Protobufs . 18

B.1 Picking Shader . 63

B.2 Coverage Shader . 63

B.3 Pipeline Shader . 64

xi

xii

List of Algorithms

1 Simple Flight Simulator Position Update . 21

2 Direct Image Warping . 23

3 Efficient Cross-Stream Warping . 24

4 Efficient Coverage Rendering Pass . 27

xiii

xiv

Chapter 1

Introduction

Manned aircraft, such as the one shown in Figure 1.1, are a valuable tool for Wilder-

ness Search and Rescue (WiSAR) teams. Along with providing numerous benefits, they

bring certain challenges to the search effort. Specifically, their limited cabin space often

permits room for only one searcher and one pilot. In order to be effective, the searcher alone

must deal with the primary search task as well as secondary tasks, such as ensuring thorough

search coverage.

Secondary tasks may draw the searcher’s attention from the ground. When this occurs

the searcher may miss clues or prolong the search. When the search is prolonged both the

lost persons and the search party face increased exposure to risks. By helping the searcher

deal with distractions and secondary tasks we may help save the lives of missing or lost

persons as well as reduce the risk to search members.

Searching is inherently difficult. Objects on the ground may be hard to see. Even

Figure 1.1: Cessna 172

1

with assistive hardware, such as binoculars or cameras, there is no guarantee that objects can

be easily found. For example, they may blend in with their surroundings or may be hidden

by foliage. While this thesis does not directly address the difficulty of actually finding things,

we seek to help the searcher avoid missing things that were otherwise within their ability to

detect.

When a searcher sees something of interest they may need to ask the pilot to take

another pass over the area to take a closer look. Extra passes over an area result in pro-

longed search times. Additionally, while aloft the search crew is exposed to increased risk of

mechanical failure or mid-air collisions. A software solution that allows searchers to pause,

replay, and zoom in on video of the search area could effectively shrink search times by

avoiding the need for multiple passes over the search area.

While searchers are scanning the ground below they must keep track of what areas

they have covered. Manually tracking coverage can be very error-prone, resulting in missed

or under-covered areas. While methods exist for automatically calculating coverage from a

UAV [Morse et al., 2010], many of these are CPU-intensive and inefficient over large search

areas. More efficient methods are needed in order to operate in low-power environments such

as manned aircraft.

Video-based solutions should allow searchers to resolve both detail and motion. Many

excellent hardware solutions exist that meet this criteria, however, the cost of these solutions

often outstrip the limited budgets of search teams. An inexpensive hardware solution is

needed that provides video both high resolution and frame rate.

By developing an inexpensive camera rig and an efficient mobile software user-interface

we can enable searchers to effectively perform their primary search task in the presence of

secondary tasks and distractions.

The contributions of this thesis are as follows:

1. An inexpensive hardware prototype for capturing telemetry-linked mixed-resolution

video.

2

2. A software system for processing and displaying telemetry-linked video in a WiSAR

context.

3. A user study comparing two user interfaces based on this system.

4. An efficient method for computing the cross-stream warping between video frames

captured from cameras that have very different intrinsic parameters and frame rates.

5. An efficient method for calculating search coverage.

6. An efficient method for simultaneously stabilizing and geolocating video annotations.

7. A simple WiSAR simulator.

8. A method of interfacing to third-party simulators for more advanced WiSAR simula-

tions.

This document is organized as follows. Chapter 2 presents relevant background theory

and an overview of related research. Chapter 3 details the methods and hardware developed

in this thesis and presents examples of these methods working in simulated and real-world

environments. Chapter 4 presents a user study and a field trial that partially validate the

methods developed. Chapter 5 summarizes the work presented and suggests directions for

future work.

3

4

Chapter 2

Background and Related Work

In the previous chapter we introduced the main problems being approached. In this

chapter we present various relevant areas of research. For each area we give a brief back-

ground of relevant theory. We also show, for each area, relevant past work and subsequently

describe its deficiencies in fully addressing the central problems of this work. We conclude

this chapter by describing how we address these deficiencies in order to achieve the goals of

this thesis.

2.1 Wilderness Search and Rescue

WiSAR has the goal of finding lost or missing persons in outdoor environments and shares

many of the essential activities of Urban or Marine search and rescue [Setnicka, 1980, Burke

et al., 2004]. As described in [Adams et al., 2009], the key activities of WiSAR include

finding and communicating information about clues that have been found. These operations

are often carried out by numerous volunteers organized through an incident commander.

The search will progress in stages, often beginning with a hasty search and ending

with a more exhaustive pass through the search area [Adams et al., 2009]. Although manned

aircraft can be employed at any stage, the speed and wide view of the search area they afford

may be especially effective when the search area is large.

Searchers use plain eyesight, binoculars, or cameras to see objects on the ground.

Cameras provide numerous benefits, providing live video of the search area that can be

reviewed at a later time. A camera can be mounted on the airframe using FAA-approved

5

wing mounts [McCarthy et al., 2007].

The use of imagery for tracking people has been studied in the field of video surveil-

lance and monitoring. Kumar et al. [2001] developed methods for detecting moving people

in video. They combined multiple video frames to form mosaics of the search area. Oth-

ers demonstrated similar systems that perform automated activity classification using video

from fixed cameras [Collins et al., 2000, Stauffer and Grimson, 2000].

Research has also been performed into performing Search and rescue from autonomous

vehicles. In [Morse et al., 2008] temporally-local mosaics enhanced search performance by

decreasing the mental effort of the searcher to view the video. Thornton [2010] developed an

anomaly detector and a user interface that helped users direct their attention to important

parts of the video. This was shown to increase the likelihood of finding important clues.

Lin and Goodrich [2009] developed a model that suggests where a lost person might have

wandered; this information can be used by the incident commander to focus the search on

areas where the lost person is most likely to be found.

2.2 Processing Images from Multiple Cameras

Searchers may look for small objects on the ground, such as a hat or clothing, or moving

objects, such as a walking person. In order to resolve both small objects and motion the

camera must have sufficiently high resolution and frame rate. In terms of cost, these pa-

rameters are typically mutually exclusive. For this reason it is often desirable to use a pair

of inexpensive yet complimentary cameras. The images from these cameras can then be

combined by applying various image warping concepts.

Relationships between images from multiple cameras are covered in [Hartley and

Zisserman, 2000]. Typically before images are combined they will be calibrated as in [Tsai,

1987]. Video often results in a very high-volume of data. It is often expedient to compress

video for storage and retrieval [Gonzalez and Woods, 2007].

Once calibrated and conditioned, video can be combined in a number of ways. One

6

approach is to warp each pixel from one image onto corresponding pixels in another image.

Precise sub-pixel locations can be used to form “super-resolution” images—so called because

they have a higher resolution than the sensor from which they came [Farsiu et al., 2004,

Baker and Kanade, 1999]. Most of these methods have the disadvantage of being very

computationally demanding, thus limiting their use in real-time mobile applications.

A different approach involves finding a sparse set of feature correspondences. RANSAC

can be used to find a consensus set of feature mappings between images from which is de-

rived an invertible warping matrix known as a homography [Ma et al., 2003]. Sparse cor-

respondence methods are typically very fast and robust. The homography makes a planar

assumption of the scene, however, which limits its effectiveness in video with large amounts

of parallax. At the higher altitudes the effects of parallax may be minimized thus permitting

the effective use of homographies.

Feature detection is one of the core aspects of sparse correspondence methods. Simple

features include strong corners or regions with large eigenvalues. SURF features [Bay et al.,

2006] are more robust to changes in illumination and scale which is particularly relevant when

time-synchronized images come from different cameras. While simple features may be easily

tracked across frames using optical flow, SURF feature descriptors are highly dimensional

and may require nearest-neighbor matching techniques [Valgren and Lilienthal, 2007].

There are several relevant applications of image processing and warping techniques in

the literature. Nagahara et al. [2006] used a beam splitter to send incoming light into a pair

of cameras. One camera captured high-resolution low-rate images while the other captured

low-resolution high-rate images. Their method performs motion compensation and image

fusion at the sub-pixel level, effectively allowing the viewer to see an up-sampled version

of the low-res video. This method relies on special hardware to ensure that both sensors

capture the identical scene, thus adding additional complexity and cost.

Gupta et al. [2009] explored a software based solution for combining images from

multiple cameras. Their method makes use of optical flow to track pixel movement of

7

pixels from adjacent high resolution frames around a target low-resolution frame. Patches

are then selected from the high and low resolution frames using a min-cut/max-flow graph

approach. High-resolution patches are used only where they meet a smoothness constraint;

low-resolution patches are used wherever this constraint is violated. Because this method

takes several minutes to compute each frame it is not suitable for real-time use.

Ude et al. [2006] developed a camera with foviated vision. Each robot eye consisted of

two identical cameras. The zoom of one of these cameras could be controlled. This approach

allowed for an optical magnification of a portion of the scene; in other words the user could

select the region over which a higher sampling rate was needed. This has the disadvantage

that high-resolution images can only be obtained over regions that have been zoomed in on.

In search and rescue, the user does not necessarily know where to focus the search and

may need to quickly zoom in on several areas within a single frame. Video may be reviewed

at a later time, at which point new areas may need to be viewed at a higher resolution.

Existing methods are either computationally expensive or do not provide high resolution

video over the entirety of each frame.

2.3 Geolocation

Geolocation consists of mapping image pixels to the geophysical locations. This can be

done by projecting a ray from the focal point of the camera through a selected pixel. The

intersection of this ray with a model of the earth is gives the pixel’s physical location.

Projecting rays into the scene requires a very accurate estimate of camera location

and pose. The accuracy of these estimates can decrease due to sensor noise, wind, or under-

sampling of the telemetry. A Digital Elevation Map (DEM) can be used in order to produce

more accurate results than a simple flat-earth model.

When imagery of the terrain is available it can be used to accurately perform geolo-

cation [Kumar et al., 2000]. This is done by warping the image to the existing georeferenced

imagery. Since a single frame may not provide sufficient information for determining the

8

necessary warping, several frames may be first warped locally and then fit as a group onto

the aerial imagery.

Research at Sarnoff has resulted in effective methods of georeferencing [Kumar et al.,

2000]. These approaches map frames to reference imagery using specialized hardware. The

resulting location information can be inaccurate in certain circumstances. For example, it

may be hard to find a match due to some earth-changing event or diurnal differences. Addi-

tionally, the need for specialized hardware makes this approach expensive and complicated.

Collins et al. [1998] used a DEM model for calculating the intersection of the ray

from a user-selected point. They tracked their estimated positions and compared them to

time-synchronized observations made using surveying equipment. It was found that error

variance was largest in the direction of flight; averaging estimates did not increase accuracy.

Barber [2007] developed a method for estimating and correcting the effects of heading

error and wind resulting in increased geolocation accuracy using a single camera. He showed

that error increases with the angle or distance between the camera and the object. Their

methods are especially useful because they provide good results within requiring reference

imagery.

While past work has shown effective ways of increasing georeferencing accuracy, it has

focused on a monocular setup; in this thesis we use a two-camera configuration. Existing

methods do not show a clear way to ensure that geolocation can scale up as the number of

cameras increases.

2.4 Video Seek

In order to allow users to seek through video quickly it is often important to present some

subset of the video. The selection of an appropriate video seek method depends on the task

at hand. For example, in one type of task users may be asked to perform “fact-finding,”

looking for an object of interest, where video-seek precision may be paramount. In another

task, users may only need a high-level understanding of the content, in which case video

9

summaries may suffice [Christel et al., 1998].

The points at which summarizations are made are often referred to as key frames.

The summaries may be presented as “film-strip” containing of single frames from the video

or a series of short video clips [Christel et al., 1999]. Key frame selection can be done by

finding breaks in the audio stream, analyzing texture changes in the video, or by skipping

every N th frame.

Christel et al. [1998] conducted several experiments with various video skimming ap-

proaches. Some of these approaches involved a simple slider that represented the temporal

length of the video; other approaches allowed the user to select frames generated using auto-

matic key-frame clustering techniques. In conducting user studies they found no difference

in performance across the various methods for finding a particular object within the video.

Users could more easily recall what they saw using full video rather than video summaries.

Drucker et al. [2002] developed an interface that placed a large view in the context

of nearby frames. When users paused the video they were shown click-able thumbnails

of the video in a filmstrip. Users took longer to seek using the new method than with

traditional methods. One possible explanation for this is that users wanted to spend more

time consuming the additional information given by the thumbnails. Although performance

decreased using this method, users still preferred it. This research invokes the question of

whether user preference or performance is more important [Nielsen and Levy, 1994].

Wildemuth et al. [2003] studied the effects of playing video at various speeds. It

was found that users could perform well across various genres of 30 frame-per-second video

clips temporally down-sampled by factors between 32 and 256. Users strongly disliked the

temporal discontinuities of down-sampling factors above 64.

Existing research does not consider how video seek can make use of geospatial data

such as telemetry and terrain in a WiSAR context. While content is paramount, it is possible

that users could more intuitively seek through video using geospatial cues or controls.

10

2.5 Coverage Maps and Seeability

Coverage maps and occupancy grids are used extensively in robotics [Elfes, 1989, Schiele

and Crowley, 1994]. A robot can build these maps from sonar or laser sensor readings. The

sensor values for each occupancy cell can be combined using statistical inference to filter

out noisy readings. The resulting map gives operators a better understanding of the robot’s

surroundings.

During a search and rescue operation it is often important to keep track of search

coverage or, in other words, what was seen. Coverage is defined over the non-occluded regions

within the camera frustum for each frame. The frustum is defined using accurate estimates

of camera parameters, position, and pose. An inertial measurement unit can provide position

and pose information using a GPS and gyroscopes.

Seeability extends the concept of search coverage to include a quality measure. Quality

for an area increases based on a number of factors such as uniqueness of viewing angles and

distance from the camera. These quality measures form a vector that can be rendered onto

the terrain model to give operators an idea of how thoroughly the search is being completed.

Morse et al. [2010] created coverage maps with a seeability metric composed of mul-

tiple parameters such as distance to the viewer and uniqueness of views. For each video

frame a new coverage calculation was made using the current video frame as well as the

corresponding past coverage. Areas that were seen more often had correspondingly higher

coverage. The terrain was rendered such that areas with better coverage had higher levels

of color saturation.

Existing coverage methods rely heavily on the CPU. In mobile applications this can

result in higher power consumption and lower battery life. More efficient methods of coverage

calculation are needed to address theses problems.

11

2.6 Augmented Reality User Interfaces for Video Search

Augmented Reality (AR) literature addresses many of the challenges of combining real-

world objects, such as a video stream, with synthetic objects, such as 3D terrain models or

annotations [Azuma, 1997]. Often synthetic and real objects are combined using positional

sensor values. AR seeks to combine the objects accurately, or at least in a way which is

convincing to the user.

Rendering 3D terrain models builds upon computer graphics methods [Shirley, 2005].

High-resolution terrain data is available for many parts of the world. In order to load this

data into the GPU efficiently it must be broken down into tiles. Various methods for creating

and rendering multi-scale terrain tiles are documented in [Lindstrom and Pascucci, 2002].

It is often useful to determine occluded regions in 3D scenes, for example, to see if

an area is visible from a camera. Shadow mapping is one well-studied technique that can

be used for this purpose and consists of two steps [Crow, 1977]. The first step computes a

depth map for the scene from the perspective of the light. In the second step the occlusion

value for each pixel is calculated from the camera view by consulting the depth map. Shadow

mapping has several deficiencies for which several solutions have been proposed [Stamminger

and Drettakis, 2002, Wimmer et al., 2004, Williams, 1978].

Nielsen [2007] developed a user interface that combined sensor information and video.

It was shown that this arrangement made it easier for users to understand the spatial rela-

tionship between the data and the video. Others have developed and studied similar user

interfaces [Baker et al., 2004, Burke et al., 2004].

Morse et al. [2010] developed a user interface that presents video from arbitrary

views by rendering it inside the camera frustum. Users could query past video frames using

a temporal slider or by clicking on the terrain. Video was accurately georeferenced by fitting

it to reference aerial photography.

Past work has shown that video and context can be combined effectively, however

the video resolution in these methods was often diminished because of the presentation

12

viewing angle. While some research has demonstrated user interfaces that maximize the

video resolution, it remains to be seen how 3D annotations can be efficiently created using

such displays in a WiSAR environment.

2.7 Improving Upon Past Work

Past methods have laid an excellent framework upon which this thesis builds. Some of these

methods suffer from high computational demands. Still others are not suited for the dual-

camera setup used in this thesis. We can improve upon past work by developing methods

that are better suited to our specific application.

Specifically, we can more efficiently compute coverage by offloading it to the GPU.

Additionally, we can develop more methods of cross-stream warping that scale well with the

number of cameras. The efficiency of these warping methods can in turn help improve the

performance of ray-intersection geolocation across multiple cameras.

The combination of these improvements results in a solution that meets the stated

goals of this thesis; namely to help the searcher in manned aircraft efficiently perform their

primary and secondary search tasks. In the following chapter, we define the methods used

to create this solution.

13

14

Chapter 3

Methods

The previous chapter described the background upon which this thesis builds. This

chapter details various software and hardware elements that we have developed and shows

examples of these elements operating in real and simulated environments. This chapter

concludes with an explanation of how these methods can be used to perform video search

from manned aircraft.

3.1 System Overview

The methods in this chapter fit into the system depicted in Figure 3.1. This diagram shows a

high-level functional view of the main components in the system. Some parts in the diagram

are duplicated for each camera.

Data enters the system from the video sensors. The user can select which frames

are displayed or create annotations. Frames are serialized into Google Protocol Buffers

(Protobufs). Protobufs are used instead of other formats, such as XML, because they afford

both flexibility and speed [Google, 2011]. Serialized Protobufs are stored sequentially on

disk using the format shown in Figure 3.2.

The file locations and offsets of each frame are indexed by a database with the schema

shown in Figure 3.3. Frames can therefore be read sequentially, without the need of the

database, or in random fashion by using the database indices. Search indices are provided

based on geographical location, time of capture, source device, or image format.

The database also allows multiple encodings of a video frame to coexist. This is

15

Video Calibration Database

Coverage Calculator

Render Pipeline

Video Cache

2D Marker Tracking

Cross-Stream WarperHomography Calculator

User Interaction

Terrain Tiles

Aerial Photography Tiles

Coverage Tiles

Markers

Marker Geolocation

Legend

Control Flow

Data Flow

Combined Video and Telemetry

Network Streaming

Figure 3.1: Functional View of the System

Serialized Length

Serialized Frame

Serialized Length

Serialized Frame

Database

Figure 3.2: Video Frame Sequential and Random Access

16

Figure 3.3: Database Schema

useful when there are, for example, uncompressed and compressed versions of each frame.

Uncompressed frames may be needed for computer vision algorithms while the compressed

version is suitable for display or network streaming.

For network streaming, we use a simple but flexible approach described on Google’s

website [Google, 2011]. Messages are placed inside a “message container,” serialized, and

placed on the network. The protocol consists of only two fields: the serialized size, sent as

a 4-byte integer, followed by the serialized bytes.

We use a uniform grid to store all geospatial data, such as terrain models, aerial

orthorenderings, and coverage. Our grid divides a single UTM zone into tiles that are 20,000

meters on edge. As the plane flies over the grid, all tiles within a visibility radius are loaded

17

and rendered in a single pass.

Aerial photography tiles are based on data from the National Agricultural Imagery

Program (NAIP), consisting of ortho-imagery sampled at 1-meter resolution. Our software

automatically downloads imagery and forms tiles aligned with the uniform grid. The tiles

are stored as single-scale 2048× 2048 JPEG, uncompressed RGB, or DXT1 images.

Terrain and Coverage tiles are serialized using the Protobuf formats shown in List-

ing 3.1; use of the packed attribute is essential for performance reasons when the vector data

is large. Terrain was sampled at 50 meter resolution, resulting in 400× 400 samples per tile.

Coverage can be sampled at any multiple of the terrain tile rate.

Listing 3.1: Terrain and Coverage Protocol Buffers (Protobufs)

message Ter r a inT i l e

{

r epeated in t32 a l t i t u d e v a l u e s = 1 [packed=true] ;

r epeated f l o a t norm x = 2 [packed=true] ;

r epeated f l o a t norm y = 3 [packed=true] ;

r epeated f l o a t norm z = 4 [packed=true] ;

}

message CoverageTi le

{

r epeated uint32 cove rage r = 1 [packed=true] ;

r epeated uint32 coverage g = 2 [packed=true] ;

r epeated uint32 coverage b = 3 [packed=true] ;

r epeated uint32 coverage a = 4 [packed=true] ;

}

3.2 Video Streams

While this software is designed to support an arbitrary number of video streams, we focus

on the two-camera configuration. In this setup the primary camera has a high frame-rate

18

and a low-resolution while the secondary camera has a low frame-rate and high resolution.

The high frame-rate of the primary stream is often sufficient for resolving motion, whereas

its low resolution is unable to resolve fine details. The secondary camera resolution is higher,

permitting better resolution of detail, at the cost of a low frame rate. When used together,

therefore, these cameras can provide complimentary capabilities—allowing both the resolu-

tion of fine detail and motion.

Frames from each video stream are linked to the most recently captured telemetry

received from the positional sensor. Telemetry includes geographical position, roll, pitch,

and yaw. The positional information is stored as latitude and longitude, as well as UTM

projections using the WGS84 datum.

Video compression is of paramount importance for fast scrubbing and network stream-

ing. For this reason we support various compression schemes in the “Video Cache” element

of Figure 3.1. Although there are many excellent video codecs available, we have found that

implementations of the H.264 standard provide excellent performance and quality.

3.2.1 Prototype Camera Rig

We have developed the inexpensive prototype camera rig shown in Figure 3.4. The primary

camera captures 720 × 480 pixel frames at 30 frames per second. The secondary camera

captures 3872 × 2592 pixel frames at 1–4 frames per second. The telemetry unit captures

positional information at 25 Hz.

3.2.2 Simulated Video

Flying in a real airplane can be expensive and dangerous. For training purposes, therefore,

it is useful to provide simulated video. In this section we describe how such video can be

generated using flight simulators.

The first flight simulator was developed as part of this thesis. While it is effective for

producing simple simulations, it cannot handle complex aircraft motion. For this purpose,

19

Figure 3.4: Camera Rig Prototype. The primary camera, secondary camera, and telemetry
units are shown from left to right.

20

an Open Source flight simulator called FlightGear can be used. While FlightGear has many

more features than our simple flight simulator, it may drop frames if the simulated video

resolution is extremely large or has very high frame rate.

A Simple Flight Simulator

We have designed a simple flight simulator for search operations consisting of straight flight

paths. This simulator permits the placement of static and moving objects on the terrain.

At each time interval, the position of the airplane is updated using the method shown in

Algorithm 1.

Algorithm 1 Position Update from point WA to WB at time Tx

WA and WB are in UTM. Tx is in seconds. Airspeed, v, is in meters per second.

1. yaw = atan(WB.northing −WA.northing,WB.easting −WA.easting)

2. dist = v(Tx − Tx−1)

3. position = positionlast + dist < cos(yaw), sin(yaw) >

Frames are scheduled to be rendered off-line at the target frame-rate of each camera,

thus avoiding the possibility of dropped frames. The captured video can be subsequently

played back in real time. Example images from both primary and secondary cameras are

shown in Figure 3.5.

FlightGear

FlightGear supports numerous aircraft and accurate flight dynamics models, permitting

much more realistic non-linear flight paths than the simple flight simulator described pre-

viously. FlightGear also supports distributing rendering loads across multiple machines.

Depending on the resolution of the simulated cameras, such distributed renderings may be

necessary to avoid dropped frames.

We have integrated FlightGear by making modifications to its source code as follows:

21

(a) Primary Camera (b) Secondary Camera

Figure 3.5: Paired Images from the Simple Flight Simulator

(a) Primary Camera (b) Secondary Camera

Figure 3.6: Paired Images from the FlightGear Flight Simulator

• Added a module to FlightGear that captures frames from its render pipeline and sends

them over the network

• Added a module to FlightGear to control the flight path using messages sent over a

control link

• Modified FlightGear’s Cessna PID controllers to use altitude, rather than barometric

pressure, as the feedback variable for pitch control

Flightgear examples from the primary and secondary cameras are shown in Figure 3.6.

22

3.3 Image Warpings

Homographies define a perspective warping between images. Warpings can be used to overlay

two images together or to track the motion of objects across frames. An approach for

calculating warpings is shown in Algorithm 2.

Algorithm 2 Direct method for warping image A onto image B

1. Resize A to the size of B

2. Track features in B onto A

3. Search for a valid homography (RANSAC):

Randomly select points

Compute the perspective homography

Verify that the homography tracks the consensus set, otherwise loop

For the primary-primary image warpings, pyramidal Lucas-Kanade optical flow is

sufficient for feature tracking. The primary stream frame rate must be sufficiently high for

this method to work. When the frame rate is not sufficiently high, other feature trackers

must be used.

At low frame rates, or when the images come from two different cameras, we turn to

more robust feature trackers. We have found good results using SURF features and random-

ized kd-trees for matching [Valgren and Lilienthal, 2007]. This method can be somewhat

slower than optical flow.

3.3.1 Efficient Cross-Stream Warping

We often want to warp a secondary frame onto a primary frame, for example, to give the user

a high-resolution view of some feature in the video. While a direct warping would accomplish

this task, we can achieve the same effect more efficiently.

We define a key frame as the temporally-nearest primary frame to a given sec-

ondary frame. When the user requests a warping from an arbitrary primary frame onto

23

its temporally-nearest secondary frame, we first compose the homographies from the pri-

mary frame to the key frame. We then compute the direct cross-stream warping from the

key frame onto the secondary frame. This approach is described in Algorithm 3.

Algorithm 3 Efficiently warp secondary frame Sx onto primary frame PN

1. Retrieve the primary frame PA that is temporally-nearest to Sx

2. Compose the primary homographies from PN to PA to form Hprimary

3. Obtain the direct warping from Sx onto PA to form Hcross

4. The final warping H = HcrossHprimary

To further explain this method, consider the example image sequence shown in Fig-

ure 3.7. Assume that we want to warp S1 onto P3. P1 is the key frame for S1. Therefore

Hprimary = H−1

2 H−1

3 and Hcross = H−1

p1s1. The final homography, H−1

p1s1H
−1

2 H−1

3 , can be used

to render points from S1 onto P3.

This method is efficient because primary-primary warpings are precalculated. Direct

cross-stream warpings only need to be calculated for key frames. Therefore, this method

requires M direct homography calculations per second, where M is the frame rate of the

secondary stream, and at most F
2
matrix multiplications per primary frame, where F is

the number of primary frames between adjacent secondary frames. Once calculated, all

homographies can be cached, such that a homography need be calculated only once between

any two frames.

Consider the case where a user wants to perform warpings between N primary and M

secondary frames. This method can reduce the number of direct cross-stream homographies

that need to be calculated from NM to M . As mentioned previously, this computational

reduction relies on precalculated primary-primary warpings. Additionally, the accuracy of

the warpings decrease due to numerical instability as the number homographies grows large.

There are cases where this method is not efficient. For example, if the image size of S

is not larger than P , or if the frame rate of S is greater than that of P , it may be necessary

to swap P and S or use the direct method. Additionally, if primary-primary warpings are

24

P1

P2

...

P3

H
−1

2
H2

P31
S2

S1

H
−1

3
H3

Hp1s1

H
−1

p1s1

Hp31s2

H
−1

p31s2

Figure 3.7: Example of Efficient Cross-Stream Warping

25

not precomputed and only a sparse set of cross-stream warpings are needed, direct warpings

should be calculated.

3.4 Geolocated Annotations

During a search operation it is important to mark, or annotate, the location of points of

interest. Positional information for these annotations can be sent to ground crews to get

a closer look. Annotations also provide historical information that is useful for reviewing

search operations.

In order to geolocate annotations we find ray-terrain intersection as in [Collins et al.,

1998, Barber et al., 2006]. This approach is error prone in part because it involves mapping

a single pixel to a potentially large geographical area. Errors increase as the camera moves

farther from the point of interest, or when the angle between the camera and the terrain is

highly oblique.

Other inaccuracies afflict this method. For example, if there is a slight difference

between the reference and actual terrain a single 3D point will appear to drift as each

new frame comes in. Additionally, the telemetry may be inaccurate, resulting in the ray

intersecting the wrong spot.

Inaccuracies can confuse users. For example, when a user drops a marker on a feature

it may initially appear in the “right spot.” However, as the plane flies nearer to the point the

marker’s true location may not be where the user expected. In order to address this problem,

as well as some of the aforementioned inaccuracies, we make improvements as follows:

• Automatically track marker locations across frames. This allows the points to appear

in the “right” spot at all times.

• Geolocate multiple annotations in parallel. This allows us to accelerate the geolocation

process and feasibly obtain 3D positions for every annotation across every frame. The

resulting locations can then be filtered to improve geolocation accuracy.

26

Marker tracking can be done using the primary-primary warpings. When the user

places annotations on secondary frames, we can use the efficient cross-stream warping method

defined in Section 3.3.1. This approach is efficient and scales well as the number of cameras

grows.

For the sake of efficiency we offload gelocation to the graphics hardware. This is done

by rendering the location of all points across the terrain to an off-screen buffer using the

shader in Appendix B.1 and the OpenGL ARB float extensions. The points of interest for

each frame are then queried from the off-screen buffer.

3.5 Accelerated Coverage Maps

To ensure that a search area is covered we can automatically create a “coverage map.” This

map indicates the region that was seen by the camera—not necessarily which areas were

seen by the searcher. Coverage may also include a quality metric to indicate how well areas

were seen [Morse et al., 2010].

Using the telemetry of each video frame we calculate coverage for all the tiles within

a visibility radius. We first obtain a depth map of the scene. We then use this depth map

to update each tile by performing an orthographic rendering with a GLSL shader. This

approach is described in Algorithm 4.

Algorithm 4 Rendering Pass for a Single Coverage Tile for Frame F

1. Load past coverage Cprev

2. Use the depth map for F to determine whether a point is obscured

3. For each obscured pixel, return the coverage in Cprev

4. For each non-obscured pixel, calculate its instantaneous coverage C and blend this
with Cprev

The coverage metric may include several independent components, such as distance

from the viewer, uniqueness of camera angles, and so forth. Traditional graphics hardware

supports four components per pixel. Where more than four components are needed, multiple

27

(a) No Coverage (b) Coverage for Single Frame (c) Coverage for 100 Frames

Figure 3.8: GPU-Acclerated Coverage Maps

textures or rendering passes could be used.

Samples of this method in action are shown in Figure 3.8; these examples use the

shader in Appendix B.2 which includes a distance cutoff quality metric. A model of the

airplane is shown in the center of each image to indicate plane’s location. The lack of

coverage near the top of Figure 3.8(c) indicates that there is a large hill or mountain partly

occluding the camera’s view.

In order to assess the performance of this method we ran several tests on a 2-Ghz

quad-core i7 with 12GB of RAM and an NVidia GTX 460 GPU. We ran the test on various

tile resolutions. For each resolution we averaged sample throughput over 100 iterations using

from one to four tiles. Each measurement includes the time to calculate the depth map and

coverage as well as the time to copy the coverage from GPU memory into a protobuf. The

results of these tests are shown in Figure 3.9.

Our results show that this method is easily capable of rendering coverage in real-time

assuming a 2-mile cutoff radius, 20, 000 meter terrain tiles, 400×400 coverage tile resolution,

and a 30 frame-per-second video stream. The results also indicate that this method has

sufficient headroom to handle higher sampling resolutions; for the specific hardware used,

sample throughput appears to level out around tile resolutions of 1200× 1200.

This method has some drawbacks. The occlusion detection step suffers from “Z-

fighting” [Williams, 1978]. Because coverage is rendered orthographically, there will be sam-

ple mismatches when the camera angle is oblique. Additionally, the efficiency of this method

28

6e+07

8e+07

1e+08

1.2e+08

1.4e+08

1.6e+08

1 2 3 4

S
am

p
le
s
p
er

S
ec
on

d

Tile Count

6e+07

8e+07

1e+08

1.2e+08

1.4e+08

1.6e+08

1 2 3 4

S
am

p
le
s
p
er

S
ec
on

d

Tile Count

400× 400
800× 800

1200× 1200
1600× 1600

400× 400
800× 800

1200× 1200
1600× 1600

Figure 3.9: Coverage Performance

depends largely on the capabilities of the available graphics hardware. Perhaps the largest

drawback is that this method requires the use of a single scalar for each coverage element;

other more general methods may be needed if more elaborate coverage data structures, such

as lists, are required.

3.6 Video Scrub

Features in the video may pass through the video too quickly for the searcher to resolve

them. The searcher may also miss clues as they deal with occasional distractions. To help

the searcher deal with both of these cases we provide methods for pausing, resuming, and

selecting frames from the video. Frame selection permits users to take a closer look at

something or to see it from multiple views.

29

Figure 3.10: Path Scrubbing - Flight path is shown in red and the current position is indicated
by the green dot along the path.

3.6.1 Random Geospatial Scrubbing

In this form of scrubbing the user can select video frames based on the flight path of the

airplane as shown in Figure 3.10. When the user pauses the video the view is zoomed out in

order to display the last few seconds of the flight path. The user then selects a point along

the path causing the corresponding video frame to be loaded.

This method has the advantage of giving the user good spatial context for the video.

Because the video position changes relative to the viewer, the rendered resolution changes

as the user scrubs further “away,” making it harder to resolve details. Even if the video

resolution is held constant, for example by magnifying it as it moves away, the user can only

scrub across a short period of the flight path. This could be addressed by permitting the

user to zoom even further out to reveal more of the flight path.

30

Figure 3.11: Controls for Thumbnail Scrubbing

3.6.2 Random Thumbnail Scrubbing

This approach is similar to the one described by Christel et al. [1999] except that video is dis-

played within its geospatial context. This method presents video key-frames in a thumbnail

ribbon as shown in Figure 3.11. The ribbon is divided into regions that represent a duration

of the primary video stream. One thumbnail is shown for each duration. As the mouse

moves across each region, the frame captured at the corresponding time offset replaces the

thumbnail for the region. If the user clicks on any thumbnail it is loaded into the main view.

The advantage of this method is that the user can quickly search the video purely

based on its content. If the thumbnails are too small to resolve detail, the user may be

forced to resort to clicking on thumbnails in order to see them in the main view. In order to

address this, the thumbnail size could be configured dynamically.

3.6.3 Sequential Scrubbing

Sequential scrubbing controls are found on most commercial video players. By holding either

the fast-forward or rewind buttons the user moves forward or backward through the video.

31

Figure 3.12: Controls for Sequential Scrubbing

An example of these controls is shown in Figure 3.12.

This method has the advantage of being familiar and intuitive to most users. When

the user needs to move through large amounts of video quickly, random scrubbing may be

more appropriate.

3.7 Render Pipeline

The render pipeline is responsible for displaying annotated video and context to the user. It

also permits displaying zoomed video regions. The pipeline consists of multiple layers shown

in Figure 3.13. These layers are combined in a single pass using the shader in Appendix B.3.

Context – The context consists of a terrain model overlayed with aerial photography. A

model of the Cessna is rendered above the video stream to avoid obscuring the con-

tent. In order to avoid confusion between simulation video and the context, the aerial

photography is desaturated.

Base Video – The base video stream is rendered on a plane inside the base camera frustum.

Rendering directly on the terrain is possible, however this can result in video being

32

Zoom Markers

Zoom Stream

Base Markers

Base Stream

Environment

When Zoomed

Figure 3.13: Render Pipeline

33

culled due to inaccuracies in the telemetry. Rendering onto a plane solves this problem

but introduces issues with user perception of marker locations. For this reason, it is

important to render the video with the same telemetry, pose, and intrinsic parameters

as defined by the base video stream to ensure that markers appear in the right spot.

The field of view can be made to be larger than the primary camera’s field of view in

order to accommodate scene context.

Base Markers – Markers are rendered at the base video resolution.

Zoom Video – If zoom has been requested, the zoom video stream is rendered over a

window centered around the requested zoom area. If the video is being overlayed the

warping matrix can be used to transform texture coordinates from the secondary to

the primary frame.

Zoom Markers – Markers are rendered at the zoom stream resolution when zoomed. When

the zoom and base streams are identical, the base marker layer can be used.

3.7.1 Side-by-Side Configuration

It is possible to use use the pipeline in various configurations. The side-by-side configuration

makes use of two pipelines. One pipeline uses only the primary stream while the other

uses only the secondary stream. For simplicity the context is disabled. The two pipelines

are rendered next to each other, with the primary to the left of the secondary as shown in

Figure 3.14. Examples of zoom operations on both sides are shown in Figure 3.15.

3.7.2 Combined Configuration

In the combined view, the primary and secondary video streams are used for the base and

zoom layers, respectively, as shown in Figure 3.16. The field of view is slightly larger than

that of the primary camera in order to accommodate scene context.

When the user requests a zoom operation on a given primary frame, the base video is

initially used for display. In a background process the secondary frame and its cross-stream

34

Figure 3.14: Side-by-Side Configuration

(a) Primary Zoom

(b) Secondary Zoom

Figure 3.15: Side-by-Side Zoom

35

warping are retrieved. Once retrieved, the secondary frame and warping are used for display

as shown in Figure 3.17. The switch between primary and secondary streams is usually less

than 500 milliseconds.

3.7.3 Using the System for Searching

We have presented the components of a system for use in search and rescue environments.

The individual components in this system address specific needs of the searcher. For example,

in order to automate search coverage, we presented an efficient algorithm that provides

sufficient computational headroom for the other portions of the system. If a user misses a

feature they can scrub back to it using one of the scrubbing methods developed. Users can

zoom in on a feature and see it in higher resolution using the efficient cross-stream warping.

If a feature is of interest, the user can drop a marker and quickly obtain its geolocation

across all frames.

The components of the system can be configured and combined in numerous ways. For

example, we have shown two different types of view configurations and three zoom methods.

While many of the methods can be combined into a user interface, display configurations are

mutually exclusive.

In the following chapter we present a user study to measure the effect of display

configuration on user performance. Additionally, we partially validate the system as a whole

through the user study and field trial.

36

Figure 3.16: Combined Configuration

(a) Zoom waiting for secondary (b) Zoom with secondary loaded

Figure 3.17: Combined Zoom

37

38

Chapter 4

Results

The previous chapter presented methods for enhancing the search experience. In this

chapter we verify the effectiveness of these methods through a user study. This chapter also

presents a field trial to verify that the approach is robust in real-world settings.

4.1 User Study

We have presented methods for displaying the video streams side-by-side or combined. The

combined configuration offers several advantages due to the reduction in required screen

space. The following user study was designed to determine if the advantages of the combined

display can be had without loss of user performance.

4.1.1 Study Design

This study places users in a simulated search environment. Users were given the primary

task of searching for lost persons in simulated video. In order to test cognitive loading, we

gave users a secondary task that consisted of counting certain audio clips while performing

the primary search task.

We tested each user multiple times using a series of ten video clips. These clips were

captured using the simulator described in Section 3.2.2. The video was then played back

for each user through our software. Two of the video clips were used for user training. The

remaining clips were used to test user performance.

Each clip contained between two and eight search targets (representing lost persons)

39

(a)
Red Target

(b)
Blue Target
(moving)

(c)
Red Distractor

(d)
Blue Distractor
(not moving)

Figure 4.1: Search Targets and Distractors

as well as several distractors (representing members of a search crew). In order to require

the use of both types of video sources, we used two types of targets. One type was static

with high-resolution detail and the other was moving.

Static red targets had an ‘L’ on their shirt to indicate that they represented lost

persons (see Figure 4.1(a)). Static red distractors had an ‘S’ on their shirt indicating that

they represented searchers (see Figure 4.1(c)). In order for users to distinguish between red

targets and distractors they needed to use the high-resolution imagery.

In addition to the red figures, we provided blue targets and distractors. Discrimi-

nating between blue figures required the high-rate video. The blue moving targets (shown

in Figure 4.1(b)) represented lost persons while the static blue figures represented searchers

(shown in Figure 4.1(d)). Motion in the targets was relative to the ground; the figures did

not move their arms or legs.

For each flight the video was displayed using either the side-by-side or combined

configuration. The combined view included scene context as shown in Figure 3.16. Users

could not interact with the scene context; e.g. they could only drop markers on the video

portion of the display. The dimensions of the video in both the side-by-side and combined

configurations were equal.

To facilitate the secondary task we recorded several short audio clips of each callsign.

There were fourteen distractor callsigns and two target callsigns. Distractor and target

callsign audio clips were played in random order and with a spacing of two to six seconds.

40

During each flight the software logged the actual playcount of each callsign to a file.

When users clicked the right mouse button in either view a toolbox would open as

shown in Figure 3.12. Users could then scrub sequentially, resume, or drop markers. Users

could delete a marker by moving the mouse over the marker and pressing the escape key.

Additionally, users could zoom by pressing and holding the left mouse button.

Before beginning the study users were provided with an overview of the study (show

in Appendix C.1). They were also asked to complete a brief demographic questionnaire (see

Appendix D.1). Users were then trained on both views.

Training covered how to add and delete markers, scrub, zoom, and listen for callsigns.

Training steps were shown below the flight video (see Figure 4.2). In order to complete a

training step users were required to pass a corresponding test.

After the training flights users participated in ten short flights. The first two flights

were practice performing the primary and secondary search tasks. User performance was

measured during all flights, but only data from the last eight were included in our analysis.

Before commencing each flight users were instructed to search quickly for the search

target. Users were also reminded which callsigns to listen to. These instructions are shown

in Figures 4.3(a) and 4.3(b).

During each flight users were reminded which target to search for as well as how much

time was remaining, as shown in Figures 4.4(a) and 4.4(b). Users were allowed up to 150%

of video clip time in order to perform their search. The flight terminated when users reached

the end of the clip or when the timeout expired.

After each flight, users were asked to compare the current view with the previous one

using the dialog in Figure 4.5(a). If the user was presented with the same view consecutively

they were asked to give an absolute, rather than comparative, evaluation of the current

display; in this case the user could mark the current view as either hard, easy, or neither

hard nor easy.

After concluding all eight real flights users were asked to describe the relative strengths

41

Figure 4.2: Training Session - Training instructions are shown at the bottom of the window.
In this case the user is being asked to demonstrate how to pause the video. When the user
completes this action they are given positive reinforcement and shown the next training
message.

(a) Instructions for Red Target (b) Instructions for Blue Target

Figure 4.3: Pre-Flight Search Instructions

42

(a) Searching for Red Target (b) Searching for Blue Target

Figure 4.4: In-Flight Search Instructions

(a) Post Flight (b) Post Study

Figure 4.5: Post Flight and Post Study Questionnaires

43

and weaknesses of the two views using the form shown in Figure 4.5(b). In addition to this

information, all user actions and mouse movements were logged to disk.

We balanced combinations of view type, video clip, and search target according to

the matrix shown in Appendix A. Each user was presented with each view type exactly four

times. View-target-video combinations were shown an equal number of times to avoid bias

towards any one configuration. Video clip presentation order was shuffled to avoid bias due

to learning effects.

All users took the test in the same room using the same keyboard, mouse, display,

headphones, and computer. The software ran on Ubuntu Linux using a 2.8-Ghz quad-core

i7 with 12 GB of RAM. Only one user participated in the test at a time.

4.1.2 Results and Discussion

In order to obtain test subjects we posted flyers advertising the study. The flyer encouraged

all users with normal (or corrected-to-normal) vision to participate. Flyers were placed

throughout buildings on the campus of Brigham Young University. Due to the limited

extent of advertising, the set of test subjects we obtained is likely a convenience sample that

may not reflect the general population.

Early in the study a small bug was found that would occasionally end a single flight

prematurely. This affected three flights before being identified and fixed. The data from the

affected flights was discarded.

Through observation of the data and post-test conversations it was discovered that

some users had trouble following the instructions. Specifically, a handful of users searched

for all targets rather than the search target. Other users, when searching for red targets,

correctly avoided blue targets but still marked both red targets and red distractors. The

data from the users that did not follow instructions was also discarded and identical tests

were re-run with new subjects.

The final set of results included flights from thirty-two users. The demographics for

44

Table 4.1: User Study Demographics

Gender
Male 65.6%
Female 34.4%

Physical limitations
Yes 6.3%
No 93.7%

Computer Experience
Expert 34.4%
Average 65.6%
Novice 0.0%

Experience with WiSAR
Expert 0.0%
Average 9.5%
Novice 90.6%

Experience Searching from the Air
Expert 0.0%
Average 28.1%
Novice 71.9%

Research and Display Methods
Unfamiliar with research and display methods 62.5%
Familiar with research but not display methods 34.4%
Familiar with research and display methods 3.1%

Other’s Display Method Preferences
I know many people’s preference 0.0%
I know a couple other people’s preferences 3.1%
I know somebody else’s preferences 0.0%
I know nobody else’s preference 96.9%

this group are shown in Table 4.1. Most subjects had no prior knowledge of this research or

WiSAR and considered themselves to have average computer experience. Almost two-thirds

of users were male.

Subjective results from post-flight questionnaires are shown in Table 4.2 indicating

a strong preference towards the combined view. Many users reported that it was hard to

switch between the two cameras in the side-by-side view. Conversely, some said it seemed

easier to resolve static red targets on the side-by-side display, whereas the combined view

allowed them to resolve blue moving objects more easily.

During the study we found that users liked to place markers as soon as they saw a

target. Because of this, markers were located a great distance from the actual target along

the flight path. This made it difficult to automatically grade true and false positive rates,

requiring the use of a manual grading process.

45

Table 4.2: User Study Post Flight Assessment

Easier Same Harder

Combined 61.7% 35.2% 3.1%
SBS 25.0% 39.8% 43.0%

Manual grading was performed by placing the software in evaluation mode. For each

flight user markers were loaded and shown as orange flags. The true position of the search

targets was shown using red flags. User markers were deleted if they were not unambiguously

in the path of a target. Duplicate user markers were combined. The graded results were

then saved into a file.

Using the manually graded results we calculated true and false positive rates. True

positives were given as the ratio of correct user flags to actual targets. False positives were

calculated as the ratio of incorrect flags to actual targets.

We used the actual and reported callsign counts for each flight to measure secondary

task performance. Specifically, we calculated the relative error rate as |actual−reported|
actual

.

Users were required to complete all flights within 150% of clip time and could not

exit out of a flight early. Given these constraints, completion time varied between 100% to

150% of clip time.

We performed a mixed model analysis of variance, blocking on each user, with a Tukey-

Kramer adjustment for post-hoc pairwise comparisons. This analysis measured interactions

between display type, interface, and target type with respect to user performance. User

performance included true and false positive rates on the primary search task, secondary

task error rates for each callsign, and time to completion. A summary of the data for this

analysis is shown in Table 4.3.

The results suggest that view type did not have a statistically significant effect on

true positive rate when both target types were considered together (F (1, 205) = 0.02, p =

0.886). When target types were separated, however, we did observe a weak but statistically-

46

Table 4.3: User Study Performance Results

Combined SBS p F

True Positives 80.7% 80.4% 0.886 F (1, 205) = 0.02

False Positives 12.6% 9.9% 0.341 F (1, 191) = 0.91

Callsign1 Error 11.3% 10.9% 0.879 F (1, 191) = 0.02

Callsign2 Error 17.7% 9.9% 0.041 F (1, 191) = 4.22

Time to Completion 117.0% 119.0% 0.185 F (1, 191) = 1.77

significant effect (F (1, 205) = 5.28, p = 0.0226). In this case, as expected, users did better

in the combined view (81.6%) than in the side-by-side view (76.2%) when looking for blue

moving targets. For static red targets, users did better in the side-by-side view (84.6%) than

in the combined view (79.8%), although it is not clear why this was the case.

In terms of false positives, we did not observe any statistically significant effects due

to view type (F (1, 191) = 0.91, p = 0.341). We found that false positive rates were twice

as high for static red targets (15.3%) as for blue moving targets (7.3%). While we cannot

explain this effect quantitatively, it may have to do with the fact that the motion of the

blue targets was easier to spot than it was to resolve the ‘L’ and ‘S’ letters on red figures.

Observations during the study support this idea—many users reported that it was harder

to discriminate between static red figures than it was to discriminate between moving blue

figures.

For one callsign in the secondary task there did not appear to be a statistically

significant effect due to display type on user performance (F (1, 191) = 0.02, p = 0.879). For

the other callsign, however, there was a mildly significant effect (F (1, 191) = 4.22, p = 0.041)

indicating that users did better on the side-by-side interface for this callsign. A subsequent

analysis of the callsign counts revealed that the second callsign was played 3% less often

in the combined display than in the side-by-side; it is possible that this reduction in play

counts resulted in errors being more pronounced.

No statistically significant effect was observed between time to completion and display

47

type (F (1, 191) = 1.77, p = 0.185). Users took 117% of clip time using the combined view

and 119% of clip time using the side-by-side view.

4.1.3 Additional Discussion and Observations

Although users indicated a strong preference towards the combined view this was not reflected

in their performance. The combined view, however, did appear to be more intuitive. For

example, users took very little time to learn how to zoom with the combined view; they

took longer in the side-by-side view in order to realize that only one side offered additional

information when zoomed.

Users shifted their focus based on target type when using the side-by-side view. When

searching for moving targets users primarily watched the high-rate side; when searching for

static targets they focused on the high-resolution side. While this approach is effective in

simulation, during real searches users will likely need to resolve both motion and detail thus

requiring both sides of the display.

Even when users adopted a target-type focus strategy in the side-by-side view, they

still shifted their focus from side to side. Users indicated that this made using this interface

harder. It is possible that over prolonged searches this behavior could lead to fatigue and

decreased performance. The combined view avoids these problems by allowing the user to

focus on a single video stream.

The analysis of the data suggests that display configuration neither increased nor

decreased user performance. We can therefore use the combined view to achieve a savings in

screen space. The additional screen space can then be employed to display higher-resolution

video. Increased resolution could in turn help users to resolve details and thereby increase

performance.

Additional screen space can also be used to help on secondary tasks such as tracking

coverage. When coverage is overlayed on the scene context the searcher can focus on the

video while the coverage is in their periphery. This configuration may permit a user to

48

(a) Primary Camera (b) Secondary Camera

Figure 4.6: Uncalibrated Synchronized Images from the Field Trial

effectively maintain good coverage while watching the video; further research is needed to

validate this idea.

4.2 Field Trial

The field trial that follows is a qualitative evaluation of the software elements in a real-world

setting using real, rather than simulated, video. While it would be ideal to test our solution

on a real aircraft, we have not yet obtained FAA approval for our camera rig mount. For this

reason we chose to test the software on the ground by placing the prototype rig described in

Section 3.2.1 in the front of an automobile cabin.

One person drove the vehicle while another ran the software on a dual-core 2-Ghz

Macbook laptop with 2 GB of RAM. The laptop captured the primary stream at ten frames

per second. The secondary stream was captured with 4 seconds between frames.

Uncalibrated sample images are shown in Figure 4.6. It is very apparent from these

images that the two camera sensors provide images of different qualities. The most distinct

differences are due to white balance and focal length settings; it is possible to compensate

for some of these effects in the “Video Calibration” element of the system (see Figure 3.1.)

The software was able to obtain good primary-primary homographies on more than

99.0% of primary frames. Even in the presence of large image quality differences, accurate

49

Figure 4.7: Successful Cross-Stream Warpings. In many cases the added resolution of the
secondary camera allowed the user to resolve blob-like objects into trees or rocks. Note that
in some cases, due to parallax, the center of the zoom area (shown as red boxes) is slightly
offset from the user-requested region (shown as red circles).

cross-stream warpings were obtained 76% of the time. Examples of successful cross-stream

warpings are shown in Figure 4.7.

Most frames had a large amount of parallax due to the close proximity of the camera

to the scene. This resulted in mismatches between the requested and displayed image regions

in some cases. For example, when the user tried to zoom in on a region in Figure 4.8(a), the

object of interest appeared offset from the expected location (see Figure 4.8(b)). Parallax

also caused cross-stream warpings to fail in some cases.

In order to measure the geolocation accuracy we placed a marker by a large object

as shown in Figure 4.9. We then found the position of this object using online mapping

software. The average error of the marker position was around 26 meters. Most of this

appeared to be due to inaccuracies in the terrain model, which was sampled at 50 meters.

50

(a) Mouse Near White Pole (b) Zooming on White Pole

Figure 4.8: Effects of Parallax on Zoom. Notice that the white pole in 4.8(a) is not in the
expected position under the mouse in 4.8(b)

Figure 4.9: Marker Dropped by a Sign During the Field Trial

51

One way to decrease the error is to increase the terrain sampling rate.

The field trial shows that the software works well in a real-world environment. The

image warping methods are robust enough to handle large differences in image qualities,

however they struggled in some cases near turns due to large amounts of inter-frame motion.

Marker placement and geolocation methods are suitable for obtaining positional information;

however, in order for more accurate results at low altitudes higher-resolution terrain models

are needed.

52

Chapter 5

Conclusion

This thesis has presented methods for accurately geolocating objects across multiple

video streams. We have shown an effective method for offloading coverage calculations to the

GPU. We have also presented an efficient method for combining video streams that reduces

the amount of required screen space. The user study verified that the savings in screen space

come without loss of performance. The field trial suggests that these methods are robust in

real-world environments.

While the approach as implemented provides many benefits to the searcher, it has

some shortcomings. For example, many users had trouble with the method of dropping

markers while others wanted to be able to control the video scrub and playback speeds.

Also, while the method of video warping is fast and robust, it is not accurate in the presence

of large amounts of parallax.

The system allows users to seamlessly switch between video streams, however only

while the video is paused. The software therefore does not provide a way to use the video

streams simultaneously while the video is running. Additionally, while the resolutions of the

cameras used were suitable for searching from altitudes of less than a couple hundred feet, it

was found during simulation that higher-resolution video will be needed for higher altitudes.

Based on observations and user comments, there is a need for further work on the

user interface. Several users requested a method of varying playback and scrubbing speed

dynamically. This could be done by inferring the desired playback speed from user mouse

movements. For example, the playback speed could be increased based on the distance from

53

the mouse to the playback control icon.

More work is needed to find an intuitive method of placing 3D video annotations.

The current method requires users to press the mouse button on the marker and release it

on the desired target. Based on observations in the user study it appeared that most users

wanted to click once to grab a marker and once more to drop it. It would also be useful to

find a method of moving existing annotations.

Future work could focus on methods of better utilizing information from both video

streams. For example, the resolution of the secondary stream is well suited for detecting

anomalies. An anomaly detector could run on video from the secondary camera and feed

patches into the primary display. Patch locations could be translated from the secondary to

primary frames using the cross-stream warping method presented in this work.

When the altitude of the airplane varies greatly during a search operation, the soft-

ware needs to adjust the terrain resolution accordingly. Additional work could focus on

incorporating or developing methods of multi-scale rendering. Future work might also allow

for searches to span multiple UTM zones.

Planar homographies have been shown to be an efficient means of combining video

streams. In some cases, homographies cannot accurately track motion. To address this

deficiency, future work might focus on image warping methods that better cope with parallax.

54

References

Julie A. Adams, Curtis M. Humphrey, Michael A. Goodrich, Joseph L. Cooper, Bryan S.

Morse, Cameron Engh, and Nathan Rasmussen. Cognitive task analysis for developing

UAV wilderness search support. Journal of Cognitive Engineering and Decision Making,

3:1–26, March 2009.

Ronald Azuma. A survey of augmented reality. Presence: Teleoperators and Virtual Envi-

ronments, 6:355–385, August 1997.

Michael Baker, Brenden Keyes, and Holly A. Yanco. Improved interfaces for human-robot

interaction in urban search and rescue. In Proceedings of the IEEE Conference on Systems,

Man and Cybernetics, pages 2960–2965, October 2004.

Simon Baker and Takeo Kanade. Super-resolution optical flow. Technical report, The

Robotics Institute, Carnegie Mellon University, October 1999.

D. Barber, Joshua Redding, Timothy McLain, Randal Beard, and Clark Taylor. Vision-

based target geo-location using a fixed-wing miniature air vehicle. Journal of Intelligent

& Robotic Systems, 47:361–382, December 2006.

Duncan B. Barber. Accurate target geolocation and vision-based landing with application

to search and engage missions for miniature air vehicles. Master’s thesis, Brigham Young

University, April 2007.

Herbert Bay, Tinne Tuytelaars, and Luc Van Gool. Surf: Speeded up robust features. In Ale

Leonardis, Horst Bischof, and Axel Pinz, editors, Proceedings of the European Conference

on Computer Vision, volume 3951 of Lecture Notes in Computer Science, pages 404–417.

May 2006.

Jennifer L. Burke, Robin R. Murphy, Michael D. Coovert, and Dawn L. Riddle. Moonlight

in Miami: A field study of human-robot interaction in the context of an urban search and

rescue disaster response training exercise. Human-Computer Interaction, 19:85–116, June

2004.

55

Michael G. Christel, Michael A. Smith, C. Roy Taylor, and David B. Winkler. Evolving video

skims into useful multimedia abstractions. In Proceedings of the SIGCHI Conference on

Human Factors in Computing Systems, pages 171–178, April 1998.

Michael G. Christel, Alexander G. Hauptmann, Adrienne S. Warmack, and Scott A. Crosby.

Adjustable filmstrips and skims as abstractions for a digital video library. In Proceedings

of the IEEE Forum on Research and Technology Advances in Digital Libraries, page 98,

May 1999.

R. Collins, Y. Tsin, J.R. Miller, and A. Lipton. Using a dem to determine geospatial object

trajectories. In Proceedings of the DARPA Image Understanding Workshop, pages 115–122,

November 1998.

Robert T. Collins, Alan J. Lipton, Takeo Kanade, Hironobu Fujiyoshi, David Duggins, Yang-

hai Tsin, David Tolliver, Nobuyoshi Enomoto, Osamu Hasegawa, Peter Burt, and Lambert

Wixson. A system for video surveillance and monitoring. Technical report, Carnegie Mel-

lon University, May 2000.

Franklin C. Crow. Shadow algorithms for computer graphics. SIGGRAPH Computer Graph-

ics, 11:242–248, July 1977.

Steven M. Drucker, Asta Glatzer, Steven De Mar, and Curtis Wong. Smartskip: consumer

level browsing and skipping of digital video content. In Proceedings of the SIGCHI Confer-

ence on Human Factors in Computing Systems: Changing our world, changing ourselves,

pages 219–226, April 2002.

A. Elfes. Using occupancy grids for mobile robot perception and navigation. IEEE Computer

Society, 22:46–57, June 1989.

S. Farsiu, M. D. Robinson, M. Elad, and P. Milanfar. Fast and robust multiframe super

resolution. IEEE Transactions on Image Processing, 13:1327–1344, October 2004.

Rafael C. Gonzalez and Richard E. Woods. Digital Image Processing. Prentice Hall, 3 edition,

August 2007.

Google. Google protocol buffers. http://code.google.com/p/protobuf, July 2011.

A. Gupta, P. Bhat, M. Dontcheva, B. Curless, O. Deussen, and M. Cohen. Enhancing and

experiencing spacetime resolution with videos and stills. In Proceedings of the International

Conference on Computational Photography, pages 1–9, April 2009.

56

R.I. Hartley and A. Zisserman. Multiple View Geometry. Cambridge University Press, April

2000.

R. Kumar, S. Samarasekera, S. Hsu, and K. Hanna. Registration of highly-oblique and

zoomed in aerial video to reference imagery. In Proceedings of the International Conference

on Pattern Recognition, volume 4, pages 303–307, September 2000.

R. Kumar, H. Sawhney, S. Samarasekera, S. Hsu, H. Tao, Y. Guo, K. Hanna, A. Pope,

R. Willdes, D. Hirvonen, M. Hansen, and P. Burt. Aerial video surveillance and exploita-

tion. In Proceedings of the IEEE, volume 89, pages 1518–1539, October 2001.

Lanny Lin and Michael A. Goodrich. UAV intelligent path planning for wilderness search and

rescue. In Proceedings of the International Conference on Intelligent Robots and Systems,

pages 709–714, Piscataway, NJ, USA, October 2009.

Peter Lindstrom and Valerio Pascucci. Terrain simplification simplified: A general framework

for view-dependent out-of-core visualization. IEEE Transactions on Visualization and

Computer Graphics, 8:239–254, May 2002.

Y. Ma, S. Soatto, J. Kosecka, and S. Sastry. An Invitation to 3-D Vision: From Images to

Geometric Models. Springer-Verlag, November 2003.

Timothy McCarthy, A. Stewart Fotheringham, and Gearoid O’Riain. Compact airborne

image mapping system (CAIMS). The International Archives of the Photogrammetry,

Remote Sensing and Spatial Information Sciences, 36(Part 5):198–202, May 2007.

Bryan S. Morse, Damon Gerhardt, Cameron Engh, Michael A. Goodrich, Nathan Rasmussen,

Daniel Thornton, and Dennis Eggett. Application and evaluation of spatiotemporal en-

hancement of live aerial video using temporally local mosaics. In Proceedings of the IEEE

Computer Society Conference on Computer Vision and Pattern Recognition, pages 1–8,

June 2008.

Bryan S. Morse, Cameron H. Engh, and Michael A. Goodrich. UAV video coverage quality

maps and prioritized indexing for wilderness search and rescue. In Proceedings of the

International Conference on Human-robot Interaction, volume 5, pages 227–234, March

2010.

Hajime Nagahara, Toru Matsunobu, Yoshio Iwai, Masahiko Yachida, and Toshiya Suzuki.

High-resolution video generation using morphing. In Proceedings of the International

Conference on Pattern Recognition, pages 338–341, August 2006.

57

Curtis Nielsen. Ecological interfaces for improving mobile robot teleoperation. IEEE Trans-

actions on Robotics, 23, October 2007.

Jakob Nielsen and Jonathan Levy. Measuring usability: Preference vs. performance. Com-

munications of the ACM, 37:66–75, April 1994.

Bernt Schiele and James L. Crowley. A comparison of position estimation techniques using

occupancy grids. In Proceedings of the IEEE International Conference on Robotics and

Automation, pages 1628–1634, May 1994.

T. J. Setnicka. Wilderness Search and Rescue. Appalachian Mountain Club, March 1980.

Peter Shirley. Fundamentals of Computer Graphics. A K Peters, July 2005.

Marc Stamminger and George Drettakis. Perspective shadow maps. ACM Transactions on

Graphics, 21:557–562, July 2002.

Chris Stauffer and W. Eric L. Grimson. Learning patterns of activity using real-time tracking.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(8):747–767, August

2000.

Daniel Thornton. Unusual-object detection in color video for wilderness search and rescue.

Master’s thesis, Brigham Young University, December 2010.

Roger Y. Tsai. A versatile camera calibration technique for high-accuracy 3D machine

vision metrology using off-the-shelf TV cameras and lenses. IEEE Journal of Robotics and

Automation, 3(4):323–344, June 1987.

A. Ude, C. Gaskett, and G. Cheng. Foveated vision systems with two cameras per eye. In

Proceeedings of the International Conference on Robotics and Automation, pages 3457–

3462, May 2006.

Christoffer Valgren and A. Lilienthal. SIFT, SURF and seasons: Long-term outdoor local-

ization using local features. In Proceedings of the European Conference on Mobile Robots,

volume 128, pages 253–258, September 2007.

Barbara M. Wildemuth, Gary Marchionini, Meng Yang, Gary Geisler, Todd Wilkens, An-

thony Hughes, and Richard Gruss. How fast is too fast?: evaluating fast forward surrogates

for digital video. In Proceedings of the 3rd ACM/IEEE-CS Joint Conference on Digital

libraries, pages 221–230, May 2003.

58

Lance Williams. Casting curved shadows on curved surfaces. SIGGRAPH Computer Graph-

ics, 12:270–274, August 1978.

Michael Wimmer, Daniel Scherzer, and Werner Purgathofer. Light space perspective shadow

maps. In Proceedings of the Eurographics Symposium on Rendering, pages 143–151. Euro-

graphics, June 2004.

59

60

Appendix A

User Study Test Matrix

Table A.1: The test configuration for each flight is encoded into a four character sequence

[SO][RB][12][1-8], where S is “side-by-side”, O is “overlay”, R is “red lost persons”, and B is “blue

lost persons.” The third characters identifies the repeat count; the forth character gives the video

clip flight number.
User Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8

1 SR27 SR16 SB13 OR24 OB25 OR18 OB12 SB21
2 SB17 SR26 OB23 SR14 OB15 OR28 SB22 OR11
3 OB23 OR18 OB16 SB24 SB12 SR21 SR15 OR27
4 SR17 OR26 SR23 OR14 SB15 SB28 OB22 OB11
5 OR28 OB21 OR15 SR22 SR14 OB13 SB26 SB17
6 SB28 SR11 SB15 OR12 OB14 OR23 SR26 OB27
7 SR28 OB11 OB25 SB12 OR24 SB23 OR16 SR17
8 SB13 OB18 SR16 OB24 OR22 OR11 SR25 SB27
9 OR14 SB22 OB26 SR21 OB15 OR27 SB13 SR18
10 SB24 SR22 OR16 OR21 OB25 SR17 OB13 SB18
11 OB18 SB11 SR25 SB22 OB24 SR13 OR26 OR17
12 SR23 OR28 SB26 SR14 OR12 SB11 OB25 OB17
13 OB17 OB26 SB23 SB14 OR15 SR28 OR22 SR11
14 OB14 OB22 SB16 OR11 SR15 SB27 OR23 SR28
15 SB18 SB21 OB15 SR12 SR24 OR13 OB26 OR27
16 OR18 OR21 SR15 OB22 SB24 SR23 SB16 OB17
17 OR23 SR18 SR26 SB14 SB22 OB11 OR15 OB27
18 SR24 OR22 SB26 SR11 OR15 SB17 OB23 OB18
19 OR17 SB26 OR23 OB14 SR15 OB28 SR22 SB11
20 OR27 OR16 SR13 SB24 SR25 OB18 SB12 OB21
21 SR18 OR11 SB25 OR22 SB14 OB23 OB16 SR27
22 SB14 OB12 SR16 OB21 OR25 OR17 SR23 SB28
23 OB24 OR12 OB16 SB21 SB15 SR27 SR13 OR28
24 OR24 SR12 SR26 SB11 SB25 OB17 OR13 OB28
25 OR13 SB28 OB26 SR24 OB12 OR21 SB15 SR17
26 SR13 SB18 OR26 OB14 SR22 OB21 SB25 OR17
27 OB27 SB16 OB13 SR24 SB25 SR18 OR12 OR21
28 SR14 SB12 OR26 OB11 SR25 OB27 SB23 OR18
29 SB23 SR28 OR16 OR24 OB22 SR11 OB15 SB17
30 OB28 SR21 OR25 OB12 OR14 SB13 SR16 SB27
31 OB13 OB28 SB16 OR14 SR12 SB21 OR25 SR27
32 SB27 OB16 OR13 OB24 OR25 SB18 SR12 SR21

61

62

Appendix B

OpenGL Shaders

Listing B.1: Picking Shader

vary ing vec4 vertPos ;

vo id main ()

{

g l FragCo lor = vertPos ;

}

Listing B.2: Coverage Shader

vary ing vec4 vertPos ;

uniform vec3 eyePos i t i on ;

uniform sampler2D depthMapTexture ;

uniform sampler2D las tCoverageTexture ;

uniform f l o a t textureWidth ;

uniform f l o a t textureHe ight ;

vary ing vec4 vertPos ;

vary ing vec3 vertNorm ;

void main ()

{

g l FragCo lor = g l Co l o r ;

vec4 texCoord = gl TextureMatr ix [0] ∗ vertPos ;

g l FragCo lor . g = texture2D (lastCoverageTexture , vec2 (g l FragCoord . x/

textureWidth , g l FragCoord . y/ textureHe ight)) . g ;

// Only work on po in t s that could be in the frustum ’ s forward d i r e c t i o n

i f (texCoord .w > 0 . 0)

{

// normal i ze the homogeneous coo rd ina te

63

texCoord = texCoord / texCoord .w;

i f ((texCoord . x) <= 1 . && (texCoord . x) >= 0 .0 && (texCoord . y) >=

0 .0 && (texCoord . y) <= 1 .)

{

i f (texCoord . z <= texture2D (depthMapTexture , texCoord . s t) . z)

{

// Only draw non−occluded f a c e s with normals f a c i n g us

i f (dot (normal i ze (eyePos i t ion− vertPos . xyz) , normal i ze (

vertNorm)) > 0 . 1)

{

g l FragCo lor . g = 1 .0 − (1 . 0 − g l FragCo lor . g) ∗ (1 . −

250 . / (2 5 0 . + d i s tance (vertPos . xyz , eyePos i t i on)))

;

g l FragCo lor . r = 0 . 0 ;

g l FragCo lor . b = 0 . 0 ;

g l FragCo lor . a = 1 . 0 ;

}

}

}

}

}

Listing B.3: Pipeline Shader

vary ing vec4 vertPos ;

vary ing vec4 vertTrans ;

// The background image

uniform sampler2D backgroundTexture ;

uniform bool enableBackgroundTexture ;

uniform f l o a t zoomBiasViewS ;

uniform f l o a t zoomBiasViewT ;

// the unzoomed image

uniform sampler2D unzoomTexture ;

uniform bool unzoomTextureFlip ;

// the zoomed image

uniform bool zoomEnable ;

uniform sampler2D zoomTexture ;

uniform bool zoomTextureFlip ;

uniform mat3 zoomTransformMat ;

uniform f l o a t zoomBiasS ;

64

uniform f l o a t zoomBiasT ;

uniform f l o a t zoomMult ;

// the render o f the markers

uniform sampler2D markerTex ;

uniform sampler2D zoomMarkerTex ;

vo id main ()

{

f l o a t windowSize = . 2 ;

vec4 texCoord ;

vec2 texLookup = 0 .5 ∗ (vertTrans . xy/vertTrans .w + 1 .) ;

texCoord = gl TextureMatr ix [0] ∗ vertPos ;

texCoord . s t = texCoord . s t / texCoord .w;

vec4 texCoordUnfl ipped = texCoord ;

vec2 zoomTexCoordUnflipped = vec2 (zoomMult ∗ (texCoord . s − . 5 −

zoomBiasS) + zoomBiasS + . 5 ,

zoomMult ∗ (texCoord . t − . 5 −

zoomBiasT) + zoomBiasT + .5) ;

vec4 zoomTexCoord = texCoord ;

i f (zoomTextureFlip)

{

zoomTexCoord . t = 1 .0 − zoomTexCoord . t ;

}

i f (unzoomTextureFlip)

{

texCoord . t = 1 .0 − texCoord . t ;

}

vec3 zoomTexCoordTrans = vec3 (zoomMult ∗ (zoomTexCoord . s − . 5 −

zoomBiasS) + zoomBiasS + . 5 ,

zoomMult ∗ (zoomTexCoord . t − . 5 −

zoomBiasT) + zoomBiasT + .5 ,

1 .) ;

zoomTexCoordTrans . xyz = zoomTransformMat ∗ zoomTexCoordTrans . xyz ;

zoomTexCoordTrans . xy /= zoomTexCoordTrans . z ;

65

bool insideZoomWindow = zoomEnable && abs (texCoord . s − . 5 − zoomBiasS)

< windowSize && abs (texCoord . t − . 5 − zoomBiasT) < windowSize ;

vec4 zoomMarkerColor = texture2D (zoomMarkerTex , zoomTexCoordUnflipped .

s t) ;

vec4 zoomColor = zoomMarkerColor . a ∗ zoomMarkerColor + (1 . −

zoomMarkerColor . a) ∗ texture2D (zoomTexture , zoomTexCoordTrans . s t) ;

vec4 unzoomMarkerColor = texture2D (markerTex , texCoordUnfl ipped . s t) ;

vec4 unzoomColor = unzoomMarkerColor . a ∗ unzoomMarkerColor + (1 . −

unzoomMarkerColor . a) ∗ texture2D (unzoomTexture , texCoord . s t) ;

vec2 backgroundTex = vec2 (zoomMult ∗ (texLookup . s − . 5 −

zoomBiasViewS) + zoomBiasViewS + .5 ,

zoomMult ∗ (texLookup . t − . 5 −

zoomBiasViewT) + zoomBiasViewT + .5) ;

vec4 backgroundColor = texture2D (backgroundTexture , backgroundTex . s t) ;

i f (texCoord . s >= 0 . && texCoord . s <= 1 . && texCoord . t >= 0 . &&

texCoord . t <= 1 .)

{

// box zoom

i f (insideZoomWindow)

{

i f (zoomTexCoordTrans . s >= 0 . && zoomTexCoordTrans . s <= 1 . &&

zoomTexCoordTrans . t >= 0 . && zoomTexCoordTrans . t <= 1 .)

{

g l FragCo lor = zoomColor ;

}

e l s e

{

g l FragCo lor = vec4 (0 . , 0 . , 0 . , 0 .) ;

}

}

e l s e

{

g l FragCo lor = unzoomColor ;

}

}

e l s e

{

i f (enableBackgroundTexture && insideZoomWindow)

{

66

g l FragCo lor = backgroundColor ;

}

e l s e

{

g l FragCo lor = vec4 (0 . , 0 . , 0 . , 0 .) ;

}

}

}

67

68

Appendix C

User Study Instructions

Figure C.1: User Study Instructions - Page 1

69

����������	
����	�����
�����������	������� ���	�	�������	�����������	���	����	���	���������
���������������

��	������������
��	���������	��������	�������	��������
�����	� ����
����
��	�!� �� �"��	�������	����	� ����
�

�	���	�������	�������
���#���������$����	�	����	���� ������	
������������	���� ������

���������������������

��	�	��	������	���	��������	�
�������������#��� ���������	�������	����������	��������������	��	���������
�

��������%�������	������������
��	�&�������	����	����	��������
�����	� ������	������
��	�'��

(����
�	������
��������������������#�������	������	��������	�����������	�������������
���������������� ������

��	�	��	���	���)���#������������	��*�	������������������	������������������������
������������������	�������

���������������
������
���	�������
��������������������������
�����	���	�����+�	�	����	�������	���
��������

�	�������	������	��	��������������	$�������	�������	�	��������		������	����	������������������

,��������������	�����
�����������	�����$�����������	��#	���������	���������������	 ������	�����

������
����-�������
�������)�	��	�����	��	����� �������	�������	�������������������	������������	�	�������	�

���������
���������	�	����./0/*1����./02�%���������������������	�������������������#		��������������	�

�� �	������� 	��	��������
������	����	����.		����	���	�����������	��������
��

3	 	 �	�������������������������������	�������	��������������	
���������	������	��������������
���	������
���

+�	�	���	����������������	����		����	�������	��	�����������

��������	�
��������������������������������	������������

��������	�
��������������������������	�������������������

Figure C.2: User Study Instructions - Page 2

70

Appendix D

User Study Questionnaire

����������	

	
����	��������������������������������	
������	�

�	������������������
����
�����	�������

����	�
��������
����������������	�
����
�����������������	�	�	�	�����������������

�� ��������������������������

�
�������

�� !"�

!# "$�

"� #$�

#� %$�

&'���%$�

!� ������������������
����

(����

)������

"� *��������'���
�����	�����	�	���	�
������������	������������������������
���	
���	�

���������+	��������� ��	
�
���'		�
�	���	���
�������	
��	���	���
���	���	����������

�	��������,-�

.��

���+�/���	
,�000�

#� 1����/���	�
������������������������������	����	
����������-�

2/�����

3'������

.�'	���

%� 1����/���	�
������������������������������	����	����
���������
�����������-�

2/�����

3'������

.�'	���

4� 1����/���	�
������������������������������	�������	
'��'	
�������	
��������	
���
�

��������
��������	���������'��	
������	��+���	��������	
�����,-�

2/�����

3'������

.�'	���

5� 1������	�	������������	����������������������������	�����-�

6���'��
�'��������������	�����������	��������	�����������

6���'�������������������������������6���'��
�'�����
������	�������������

6��
�����������������������
��6���'����
������	��������������������

�� 1������	�	������������	��������7��������
�����������	����������������������	������

����
�����	���	
���	�����-�

6��
�����
��������7��������
����

6��
������������������������7��������
����

6��
��������������7��������
����

6��
���
���������7��������
����

Figure D.1: User Questionnaire

71

	A Foveated System for Wilderness Search and Rescue in Manned Aircraft
	BYU ScholarsArchive Citation

	Title Page
	Abstract
	Table of Contents
	List of Figures
	List of Tables
	List of Listings
	List of Algorithms
	1 Introduction
	2 Background and Related Work
	2.1 Wilderness Search and Rescue
	2.2 Processing Images from Multiple Cameras
	2.3 Geolocation
	2.4 Video Seek
	2.5 Coverage Maps and Seeability
	2.6 Augmented Reality User Interfaces for Video Search
	2.7 Improving Upon Past Work

	3 Methods
	3.1 System Overview
	3.2 Video Streams
	3.3 Image Warpings
	3.4 Geolocated Annotations
	3.5 Accelerated Coverage Maps
	3.6 Video Scrub
	3.7 Render Pipeline

	4 Results
	4.1 User Study
	4.2 Field Trial

	5 Conclusion
	References
	A User Study Test Matrix
	B OpenGL Shaders
	C User Study Instructions
	D User Study Questionnaire

