
Brigham Young University Brigham Young University

BYU ScholarsArchive BYU ScholarsArchive

Theses and Dissertations

2011-05-18

Adaptive Threat Detector Testing Using Bayesian Gaussian Adaptive Threat Detector Testing Using Bayesian Gaussian

Process Models Process Models

Bradley Thomas Ferguson
Brigham Young University - Provo

Follow this and additional works at: https://scholarsarchive.byu.edu/etd

 Part of the Statistics and Probability Commons

BYU ScholarsArchive Citation BYU ScholarsArchive Citation
Ferguson, Bradley Thomas, "Adaptive Threat Detector Testing Using Bayesian Gaussian Process Models"
(2011). Theses and Dissertations. 2728.
https://scholarsarchive.byu.edu/etd/2728

This Selected Project is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for
inclusion in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more
information, please contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.

http://home.byu.edu/home/
http://home.byu.edu/home/
https://scholarsarchive.byu.edu/
https://scholarsarchive.byu.edu/etd
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F2728&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/208?utm_source=scholarsarchive.byu.edu%2Fetd%2F2728&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/2728?utm_source=scholarsarchive.byu.edu%2Fetd%2F2728&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu,%20ellen_amatangelo@byu.edu

Adaptive Threat Detector Testing Using

Bayesian Gaussian Process Models

Bradley Ferguson

A project submitted to the faculty of
Brigham Young University

in partial fulfillment of the requirements for the degree of

Master of Science

Dr. Shane Reese, Chair
Dr. Natalie Blades

Dr. Gilbert Fellingham

Department of Statistics

Brigham Young University

August 2011

Copyright c© 2010 Bradley Ferguson

All Rights Reserved

ABSTRACT

Adaptive Threat Detector Testing Using
Bayesian Gaussian Process Models

Bradley Ferguson
Department of Statistics, BYU

Master of Science

Detection of biological and chemical threats is an important consideration in the
modern national defense policy. Much of the testing and evaluation of threat detection tech-
nologies is performed without appropriate uncertainty quantification. This paper proposes
an approach to analyzing the effect of threat concentration on the probability of detecting
chemical and biological threats. The approach uses a probit semi-parametric formulation be-
tween threat concentration level and the probability of instrument detection. It also utilizes
a bayesian adaptive design to determine at which threat concentrations the tests should
be performed. The approach offers unique advantages, namely, the flexibility to model
non-monotone curves and the ability to test in a more informative way. We compare the
performance of this approach to current threat detection models and designs via a simulation
study.

Keywords: Gaussian process, bayesian, adaptive design

ACKNOWLEDGMENTS

I would like to thank and acknowledge all those that have helped me through this

master’s project. First, I must thank Dr. Reese. He was willing to take me on as a

research assistant at the beginning of my junior year and has helped me ever since. He has

consistently found time to meet with me and help me progress in my research. Second, I

would like thank my parents and family. They were always asking me how my research was

going and would get excited with my accomplishments. Lastly, I must thank my wife Emily.

She is my best friend and has been incredibly patient with all the time that this project has

taken. Whenever things get hard, she is there for me.

CONTENTS

Contents . iv

1 Introduction . 1

1.1 Biological Threats . 1

1.2 Bayesian Gaussian Process Models . 2

1.3 Adaptive Design . 3

2 Literature Review . 4

2.1 Bayesian Analysis . 4

2.2 Markov Chain Monte Carlo . 5

2.3 Gaussian Process Models . 7

2.4 Adaptive Design . 9

3 Methods . 11

3.1 Logistic Model . 11

3.2 Gaussian Process Model . 15

3.3 Adaptive Trial Design . 19

3.4 Simulation Study . 21

4 Results . 23

4.1 Posterior Distributions . 23

4.2 Mean Squared Error of Ĉ50 . 29

4.3 Posterior Variances . 31

iv

5 Conclusions . 34

5.1 Future Work . 36

Bibliography . 37

Appendices . 39

Appendix A: Complete Conditional Distributions . 40

A.1 Gaussian Process Model . 40

A.2 Logistic Model . 42

Appendix B: Code . 43

B.1 Simulation . 43

B.2 Results . 67

v

chapter 1

INTRODUCTION

Statistical models are developed in order to summarize and understand phenomena in nature.

By design, they are used to capture some sort of relationship. While no model can completely

capture the true relationship, some are more effective than others. In the case of biological

threat detector testing, there are two values of interest: first, the concentration of the

biological agent that is being tested, and second, whether or not the detector’s alarm was

triggered. The relationship of interest between these two variables is a probability curve

that explains the probability of a successful detection given a specific threat concentration.

1.1 Biological Threats

In the past decade, bioterrorism has become a central focus of the United States military.

Just one week after the events of September 11, 2001, multiple letters were sent out that

contained anthrax spores which resulted in 5 deaths and 17 seriously infected. Two years

later, a similar incident occurred in which two letters containing ricin were distributed, one

found at the White House, another in South Carolina. Since then, bioterrorism related

funding has dramatically increased. In 2003, the National Institute of Allergy and Infectious

Diseases received a 1.5 billion dollar increase in funding. A year later, the Project Bioshield

Act was passed which provided 5.6 billion dollars to bioterrorism prevention.

The United States Center of Disease Control and Prevention established the following

formal definition for a bioterrorism attack:

“A bioterrorism attack is the deliberate release of viruses, bacteria, or other germs

(agents) used to cause illness or death in people, animals, or plants. These agents

are typically found in nature, but it is possible that they could be changed to

1

increase their ability to cause disease, make them resistant to current medicines,

or to increase their ability to be spread into the environment. Biological agents

can be spread through the air, through water, or in food. Terrorists may use

biological agents because they can be extremely difficult to detect and do not

cause illness for several hours to several days” (Borelli 2007).

Because of the danger brought about by bioterrorism, many detection instruments

have been developed to detect threat agents. These instruments must be tested in order

to determine their effectiveness. An appropriate statistical model and experimental design

should be utilized when testing these instruments in order to best determine their ability to

detect biological threats at varying concentrations.

1.2 Bayesian Gaussian Process Models

As the threat detection result is a binary response (detection or no detection), the most com-

mon statistical model to use is a parametric generalized linear model that utilizes the logit

link. While this method is intuitive and simple, it lacks the ability to capture non-monotone

probability curves. A Bayesian approach can be applied to this problem by introducing a

prior distribution to specify a prior belief about certain parameters in the model. While this

can be of use when the prior is informative, it still does a poor job at modeling non-monotone

curves.

Instead of assuming a parametric model to model the relationship between threat

concentration and response, a nonparametric model can be used. By doing so, no assump-

tions about the relationship are made. In this case, because there are no parameters in the

model, a different kind of prior must be used—a stochastic process. A stochastic process

prior is a prior distribution over functions.

When choosing a stochastic process prior distribution, the goal is to choose a process

that would behave in a similar fashion to the function of interest. In the case of biological

threat detection, a Gaussian process is the distribution of choice. It is robust, computation-

2

ally convenient, and can be made as flexible or rigid as needed. This is done by specifying

an appropriate mean and covariance kernel that emulates attributes of the function. Then,

with an appropriate assumed likelihood, the posterior distribution of the underlying function

can be learned by incorporating data into the model and using Markov Chain Monte Carlo

computational methods.

1.3 Adaptive Design

Because threat detection testing is an expensive and time consuming endeavor, an efficient

experimental design piece should be implemented. There has been much progress made in

the area of clinical trials using adaptive design techniques that use early results to help

decide new dose levels and patient allocation. The same sort of benefits can be gained in

the area of threat detector testing. By using an adaptive experimental design, the results

from the Gaussian process model can be used to determine which concentrations should be

tested to provide the most information.

3

chapter 2

LITERATURE REVIEW

2.1 Bayesian Analysis

Introduction to Bayesian Methods

For most of the twentieth century, frequentist analysis dominated the field of statistics.

Many statisticians such as L. J. Savage, Bruno de Finetti, and Dennis Lindley advocated for

Bayesian methods (Carlin and Louis 2009) but the methods required solutions to complex

integrals which made implementation prohibitive.

Bayesian analysis is based on Bayes Theorem which was the first use of the idea of

inverse probability. Bayes Theorem states that for two events A and B,

P (A|B) =
P (B|A)P (A)

P (B)
.

A common approach to statistical analysis is to assume a parametric sampling distribution

f(y|θ) that governs a data set y and then use likelihood-based methods to make infer-

ence about the unknown parameters θ. From a Bayesian perspective, inference about the

parameters uses Bayes Theorem in the form

P (θ|y) =
f(y|θ)π(θ)∫
f(y|θ)π(θ)dθ

,

where π(θ) is an assumed prior distribution for θ, specified before any data is collected.

Often the posterior distribution, f(y|θ)π(θ), is an unknown distribution and the

marginalizing density,
∫
f(y|θ)π(θ)dθ, is impossible to integrate analytically. With advances

in computer technology, these quantities may now be approximated using Markov Chain

Monte Carlo (MCMC) computer algorithms. The posterior distribution of the parameters

represents the uncertainty associated with each parameter after data has been collected.

4

Having a distributions of parameters conveniently allows for direct probability statements

to be made about where the parameters lie.

In this paper, we approach the problem of biological threat detector testing from a

Bayesian perspective. A Bayesian model is well suited to an adaptive experimental design as

both involve updating assumptions in the light of new data. At each step in the experimental

design, we use the posterior distribution to make decisions about where to perform the next

tests. All of our computations are done in R using MCMC algorithms.

2.2 Markov Chain Monte Carlo

Much of the computation in this paper is done using MCMC methods to sample from the

joint posterior distribution. Two of the most common methods are Gibbs Sampling and

Metroplis-Hastings. We will discuss both in detail.

Gibbs Sampling

The Gibbs Sampling algorithm, named after J. W. Gibbs, is a way to sample from a joint

distribution of two or more random variables. When doing Bayesian inference, these random

variables are typically parameters of interest. The first step is to initialize a vector of random

variables

θ0 = (θ01, θ
0
2, ..., θ

0
k).

Let π(θ) be the joint density that we want to sample from and let π(θi|θ−i) be the complete

conditional distribution of θi given all the other parameters. We then proceed by drawing

5

from the complete conditional distributions in the following way (Hamada et al. 2008):

Draw θ11 from π(θ1|θ0−1)

Draw θ12 from π(θ2|θ11, θ03, θ04, ..., θ0k)

Draw θ13 from π(θ3|θ11, θ12, θ04, θ05, ..., θ0k)
...

Draw θ1k from π(θk|θ1−k).

The value of k is then incremented and the process is repeated. The resulting se-

quence θ1,θ2, ...,θk are draws from the posterior distribution of θ. Smith and Roberts (2003)

discuss that if the components in a Gibbs sampling algorithm are highly correlated then the

convergence will take much longer. They propose blocking correlated scalars together to

form sub-vectors and drawing simultaneously from a multivariate conditional distribution.

In this paper, we use their approach as the parameters that make up our unknown probabil-

ity function are sampled jointly from a Gaussian process. This Gaussian process is simply

an extension of a multivariate normal conditional distribution.

Metropolis-Hastings

For some of the parameters in this paper, their respective complete conditional distribu-

tions are not known distributions. In these settings, a Gibbs sampler does not work and a

Metropolis-Hastings MCMC procedure must be used instead. Metropolis-Hastings proce-

dures have grown in popularity and although there are many ways to implement them, they

typically exhibit the following general framework as found in Carlin and Louis (2009). Let

g(θ) be the complete conditional distribution for θ and let q(·|θ) be a symmetric distribution

known as the candidate distribution. Choose a starting value θ0 and iterate the following

6

from i = 2, ..., N :

1. Draw θ∗ from q(·|θi−1)

2. Compute p =
g(θ∗)

g(θi−1)

3. If p < 1, set θi = θ∗ with probability p. Otherwise set θi = θ∗.

A more thorough exposition on this topic can be found in Chib and Greenberg (1995)

where they discuss the effects of selecting different candidate distributions. In this paper,

we will use the normal distribution as our candidate distribution because it is symmetric

and we can conveniently center it at a previous value in our Markov chain.

2.3 Gaussian Process Models

A Gaussian process is a generalization of a Gaussian distribution. Instead of describing

random variables, Gaussian processes describe random functions. Gaussian process models

are highly flexible statistical models in which a Gaussian process prior is placed on an

unknown function. These models are very popular in machine learning because they allow

prior knowledge (often in the form of prior data) to help learn an unknown function.

A Gaussian process is uniquely defined by its mean function µ(x) and covariance

kernel k(x,x′). The mean function controls the location of the function while the covariance

kernel controls the local smoothness. The covariance kernel function must be symmetric and

produce only positive output. The most common form of covariance kernel is the univariate

Euclidean distance function,

k(x,x′) =
e−β(x−x

′)

τ
,

which gives high correlation to values that are close together and low correlation to values

that are far apart. Rasmussen and Williams (2006) explore different covariance kernels such

as a piecewise polynomial kernel that gives zero correlation to values beyond a certain thresh-

old and a γ-exponential kernel that is similar to the Euclidean distance function but instead

measures |x− x′|γ, making it non-differentiable when γ = 1. Abrahamsen (1997) examines

7

more covariance kernels including some that work well with high-dimensional data. We im-

plement the Euclidean distance covariance function in this paper because of its flexibility

and simplicity.

Often, the mean function and/or the covariance function can be parameterized by

hyperparameters. This lends itself to hierarchical modeling in which prior distributions are

specified for each of the hyperparameters. Kennedy et al. (2002) use hierarchical Gaussian

process models to incorporate complex computer-simulated data with actual observed data in

an effort to better understand hyperparameters in the model. After arriving at a posterior

distribution of underlying functions, they present posterior distributions on each of the

hyperparameters and then make probability statements about each one. In this paper, we

also incorporate hyperparameters. We use them in the covariance function and place priors

on each of them so that the data can help learn their correct values.

Gaussian Process Models for Binary Response Data

The most convenient form of data to model with Gaussian process models is normally dis-

tributed data. The Gaussian process prior has a conjugate Gaussian process posterior when

the likelihood is normal (Nickisch and Rasmussen 2008), which allows for more efficient com-

putational algorithms. In the case of biological threat detector testing, the data is binary

classification data, so the reasonable assumed sampling distribution is binomial.

Nickisch and Rasmussen (2008) explore whether the logit link function or the probit

link function should be used. They conclude that both behave very similarly and that the

main difference is that the logit link has a weaker penalty for misclassification compared to

that of the probit. In this paper, a probit link is used for computational simplicity which is

described later.

Albert and Chib (1993) propose a latent-variable data augmentation technique that

makes for more efficient MCMC convergence. This technique is implemented in this paper.

Choudhuri et al. (2007) expand the latent variable data augmentation technique and explore

8

representing the Gaussian process mean function as an additive model. They perform a

simulation study where they show that their model outperforms a local likelihood estimator.

We do not treat the mean function as an additive model as we are only working with one

covariate.

2.4 Adaptive Design

The main benefit of utilizing an adaptive experimental design is the continual updating of

the design based on data and prior experience. The Bayesian paradigm fits this design well

because the Bayesian philosophy is rooted in using prior knowledge to make inference. We

follow the same approach as Loredo (2003), which is (1) make observations and/or gather

data, (2) make inferences from the data using an assumed likelihood and prior, and (3)

update the design. These steps are then repeated until the experiment is complete.

The use of adaptive experimental designs has become especially popular in the area of

clinical drug trials. When testing drugs, some doses may be more effective than others, and

it wastes time and money when patients are given doses that are ineffective. An adaptive

design scheme allows for ineffective doses to be detected early so that resources can be

spent on the dose levels that produce desired results. Carlin et al. (1997) discuss different

decisions that can be made at the interim step. They describe the decision theory behind

continuing or stopping an experiment. In this paper we do not stop the experiment until

a predetermined number of tests is reached. Stacey and Reese (2007) assign new doses

to patients based on a combination of ED95 probabilities and the variance associated in

the parameters corresponding to each dose level. The ED95 measures how effective each

drug dose is. In our interim step we compare each concentration with the estimated Ĉ50

and/or Ĉ90 values. Concentrations that are closer to these estimated values get assigned

a higher probability of being tested. We also assign a higher probability of being tested to

concentrations that have greater uncertainty in their estimated probability of detection.

9

Cheng and Shen (2005) propose designs where the number of tests performed is

determined from prior information and the data. This allows for clinical drug trials to end

early if there is enough evidence of drug effectiveness. In this paper the ultimate number

of tests is fixed. We perform a simulation study to determine the desired total number of

tests, along with the desired number of tests to introduce at each interim step. We base our

conclusions on when the variance in our estimators fail to get significantly smaller.

10

chapter 3

METHODS

In this chapter we explain in detail the experiment we will be performing. We describe two

different models we will compare, a Bayesian logistic regression model and a Bayesian Gaus-

sian process model. We discuss model assumptions and derive the posterior distributions

of each model. We find that the Gaussian process model is more computationally intensive

yet much more flexible. Lastly, we explain how to implement the adaptive design, and we

outline our simulation experiment to compare the different approaches.

3.1 Logistic Model

A common approach to modeling binary data from a Bayesian perspective is using a logistic

model. We will compare this model with the Gaussian process model discussed later. Let

y = (y1, ..., yn) be the response variable from the detection instruments, where each yi takes

on values of 0 or 1 (success or failure). We will let x = (x1, ..., xn) be the concentration of

the biological agent. Our goal is understand the underlying relationship between these two

variables, namely P (Y = 1|X = x). Because we are working with binary data, we assume

yi ∼ Bernoulli(p(xi)),

where p(xi) ∈ [0, 1] is P (Y = 1|X = x), the unknown parameter of interest. The logistic cdf

is used as a link function to relate p(xi) to a linear function of the threat concentration in

the form

log

(
p(xi)

1− p(xi)

)
= α + βxi, (3.1)

where α, β ∈ (−∞,∞) (Hastie et al. 2001). Thus the probability of detection can be

expressed as

p(xi) =
exp(α + βxi)

1 + exp(α + βxi)
, (3.2)

11

which is a function of the threat concentration.

The logistic model has two main benefits. First, it is simple to use and is not compu-

tationally expensive. Second, the parameters have interpretable quantities. The parameter

α is the probability of detection when concentration is zero or no biological agent is present—

namely, the probability of a false alarm. The β parameter is the logged-value for which a

change in x accounts for a change in the log-odds of y. The main drawback of this model

is illustrated in Figure 3.1. The figure shows different probability curves that are generated

with various values of α and β. Note the model’s inability to model non-monotone curves.

This could be a potential problem in biological weapons testing because sometimes detection

instruments get overloaded in the presence of too much threat concentration, resulting in a

failed detection. We would want a model that could take into account this possibility. The

Gaussian process model described later can handle these situations much more effectively.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Decreasing Curves

Concentration

P
ro

ba
bi

lit
y

of
 D

et
ec

tio
n

(α , β)

(4,-10)
(1,-3)
(4,-20)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Increasing Curves

Concentration

P
ro

ba
bi

lit
y

of
 D

et
ec

tio
n

(α , β)

(-4,10)
(-1,3)
(-4,20)

Figure 3.1: Plots of sample logistic model curves for various α and β values. Note the

smooth, monotonic nature of the curves.

12

Likelihood

With the logit link, the likelihood can be represented as

f(y|α, β,x) =
n∏
i=1

(
exp(α + βxi)

1 + exp(α + βxi)

)yi (1

1 + exp(α + βxi)

)1−yi
. (3.3)

Prior Specification

We choose prior distributions for α and β that have the same support as that of the parame-

ters. Because α and β are not restricted to a specific interval of the real line, it is reasonable

to assume they follow normal distributions. The prior distributions for this model are then

α ∼ Normal(mα, s
2
α) and β ∼ Normal(mβ, s

2
β).

We do not know how α and β will interact so we will assume a priori independence. We

will also use diffuse Normal(0,1000) priors for both α and β to allow for many possible

relationships.

Joint Posterior Distribution

Using the likelihood and priors specified above, the joint posterior distribution is

f(α, β|y,x) ∝
n∏
i=1

(
exp(α + βxi)

1 + exp(α + βxi)

)yi (1

1 + exp(α + βxi)

)1−yi

× (2πs2α)−
1
2 exp

(
−(α−mα)2

2s2α

)
× (2πs2α)−

1
2 exp

(
−(α−mα)2

2s2α

)
. (3.4)

Because this unnormalized posterior distribution is an unknown distribution we will

need to use a Gibbs-Metropolis algorithm to draw from it. As described previously, a Gibbs

sampling algorithm requires that we simultaneously sample from the complete conditional

distributions f(α|β,y,x) and f(β|α,y,x). The complete conditional distributions for α and

13

β are

[α] ∝
n∏
i=1

(
exp(α + βxi)

1 + exp(α + βxi)

)yi (1

1 + exp(α + βxi)

)1−yi
(

1√
2πs2α

)
exp

(
−(α−mα)2

2s2α

)
,

and

[β] ∝
n∏
i=1

(
exp(α + βxi)

1 + exp(α + βxi)

)yi (1

1 + exp(α + βxi)

)1−yi
 1√

2πs2β

 exp

(
−(β −mβ)2

2s2β

)
.

Because both of these distributions are unknown, we must implement the Metropolis-Hastings

algorithm within the Gibbs sampler. Once the Gibbs sampler has completed, we are left with

draws from the joint posterior distribution of α and β. We discard an appropriate number

of draws near the beginning because the algorithm takes some time to correctly draw from

the right distributions. Once this burn-in period has been discarded, we can move on to

posterior inference.

Posterior Distribution

With each combination of (α, β) from our joint posterior distribution, we can compute a

corresponding probability curve. With this distribution of curves we can determine the

expected probability of detection for any concentration along with a corresponding 95%

credible interval. One of the many benefits of the Bayesian paradigm is the interpretability

of credible intervals. In the case of threat detection, a 95% credible interval would allow us

to make a direct probability statement about the probability of detection at a certain threat

concentration.

In biological threat detection testing, it is often of interest to determine the C50 and

C90 concentrations. These are the threat concentrations that have a probability of 50% and

90% detection respectively. In the logistic model, these quantities can be easily obtained by

solving for xi in our probability function by the equation,

xi =
log(pi

1−pi)− α
β

, (3.5)

where pi is the probability of detection at concentration xi. Figure 3.2 illustrates how the

C50 and C90 concentrations are calculated for a sample probability curve.

14

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Calculating C50

Concentration

P
ro

ba
bi

lit
y

of
 D

et
ec

tio
n

p(x)=.5

CD50=.442

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Calculating C90

Concentration

P
ro

ba
bi

lit
y

of
 D

et
ec

tio
n

p(x)=.9

CD50=.681

Figure 3.2: Calculating the C50 and C90 concentrations for a sample probability curve.

3.2 Gaussian Process Model

Instead of using the function logit(p(xi)) = α + βxi to relate xi with p(xi), we will use

some unknown function η(xi). By using η(xi), we are making no assumptions about the

form of η(xi); it could be one of infinitely many functions of threat concentration. We will

again use a link function to relate η(xi) to p(xi), but this time we will use the standard

normal cdf (probit link). We will illustrate later how the probit link allows us to be more

computationally efficient when we are drawing from the posterior distribution of interest.

Gaussian Process Prior

Because the parameter of interest, η(x), is a function, a prior distribution must be used that

(1) is a distribution over functions and (2) has infinite support. A Gaussian process prior of

the form

η(x) ∼ GP (µ(x), σ(x,x′))

fulfills both of these requirements. A Gaussian process is a stochastic process such that

any finite number of draws, (η(x1), η(x2), ..., η(xn))′, have a multivariate normal distribution

15

with E(η(xi)) = µ(xi) and cov(η(xi), η(xj)) = σ(xi, xj), for i, j = 1, ..., n. The two functional

hyperparameters µ(x) and σ(x,x′) in the Gaussian process prior can be selected to reflect

any prior belief about η(x). The mean function µ(x) reflects our prior belief about η(x),

while the covariance kernel σ(x,x′) reflects our prior belief about the local smoothness of

η(x).

We will always standardize the x values so a priori we assume µ(x) = 0. There is a

extensive literature on choosing an appropriate covariance kernel, and in this paper we will

use the standard Euclidean distance function

σ(x,x′) =
exp(−γ(x− x′)2)

τ
, (3.6)

where γ ∈ (0,∞) and τ ∈ (0,∞). This distance function has a nice interpretation when

modeling the results of threat detection tests because it gives higher correlation to values

that are closer together and lower correlation to values that are farther apart. This is

reasonable because it suggests that if two tests are performed at similar concentrations then

their corresponding probabilities of detection should also be similar. The γ and τ values are

hyperparameters that govern the magnitude of the correlations obtained from the covariance

kernel.

Hyperpriors

We do not know which values γ and τ should take in our covariance kernel so we will place

prior distributions on both of them. Because both hyperparameters have strictly positive

support, we assume a priori

γ ∼ Uniform(αγ, βγ) and τ ∼ Gamma(ατ , βτ),

where αγ, βγ, ατ , βτ ∈ (0,∞). The uniform prior is used for γ because our earlier models

suggested that the prior heavily influenced the posterior distribution. We chose the Gamma

distribution for τ because it established conjugacy in the model. We do not know how these

16

hyperparameters interact, so we will assume a priori independence. Figure 3.3 displays

realizations from the Gaussian process prior using the standard Euclidean distance covariance

function. The first plot shows the effect of increasing the value of γ. Larger values of γ bring

about smaller correlations between points, which allows for more flexibility. The second

panel illustrates how larger values of τ have the opposite effect and bring about higher

correlations.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Prior Realizations - Changing γ

Concentration

P
ro

ba
bi

lit
y

of
 D

et
ec

tio
n

(γ , τ)

(5,1)
(10,1)
(50,1)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Prior Realizations - Changing τ

Concentration

P
ro

ba
bi

lit
y

of
 D

et
ec

tio
n

(γ , τ)

(5,.1)
(5,3)
(5,30)

Figure 3.3: Plots of realizations from the Gaussian process prior with varying values of γ

and τ . Note that for high values of γ the curves become much more flexible. Also note that

for large values of τ the curves become more rigid.

From the plots above, we decided on a Uniform(0, 20) distribution for γ and a

Gamma(.5, 2) for τ . The parameters lead to probability curves that are flexible but not

overly so.

Data Augmentation for Computational Efficiency

The unnormalized posterior distribution for η(x) is

π(η(x)|γ, τ,x,y) ∝ f(y|η(x), γ, τ,x)π(η(x))π(γ)π(τ).

17

In order to sample from this unnormalized posterior, we need to determine the complete

conditional distributions for η(x), γ, and τ , and implement a Gibbs-Metropolis sampler.

Choudhuri et al. (2007) found that doing so led to very slow movements in the Markov chain

because the individual components of η(x) are highly correlated and partial conjugacy is not

obtained for η(x), γ, or τ . Albert and Chib (1993) propose augmenting the data set with a

latent variable Zi that establishes partial conjugacy in the model.

Let z = (z1, ..., zn) be unobservable latent variables such that, conditional on η(xi),

the zi’s are independent normal random variables with mean η(xi) and unit variance; that

is

zi ∼ Normal(η(xi), 1).

Then, define yi to be a function of zi in the following way:

yi =

 1 if zi > 0

0 if zi ≤ 0.

This suggests that

P (yi = 1) = P (zi > 0)

= P

(
zi − η(xi)

1
>

0− η(xi)

1

)
= Φ(η(xi)), (3.7)

where Φ is the standard normal cdf. Thus, our yis are Bernoulli random variables with

success probability Φ(η(xi)), which leads to the probit link model.

Joint Posterior Distribution

Since z is unobservable, yet required for the model, we will sample from the joint posterior

distribution of (z, η(x), γ, τ) and discard z at the end. With the zi’s, and assuming a priori

18

independence in the priors, the joint posterior density is

π(η(x), z|γ, τ,y) ∝ f(y|z, η(x), γ, τ)π(z, η(x), γ, τ)

∝ f(y|z)π(z|η(x))π(η(x))π(γ)π(τ)

∝

[
n∏
i=1

[I(zi > 0)(yi = 1) + I(zi ≤ 0)(yi = 0)]× 1√
2π

exp

(
(zi − η(xi))

2

2

)]

× 1

(
√

2π)n|Σ|1/2
exp

(
−η(x)′Σ−1η(x)

2

)
× β

αγ
γ

Γ(αγ)
γαγ−1 exp (−γβγ)

× βαττ
Γ(ατ)

τατ−1 exp (−τβτ) . (3.8)

Complete Conditional Distributions

The complete conditional distributions required for the Gibbs-Metropolis sampler are

[η(x)] ∼ MVN(Z′(I + Σ−1)−1, (I + Σ−1)−1), (3.9)

[zi] ∼

N(η(xi), 1)+ if yi = 1

N(η(xi), 1)− if yi = 0

[τ] ∼ Gamma

(
ατ +

n

2
,
1

2
η(x)′Σ−10 η(x) + βτ

)
,

[γ] ∝ γαγ−1|Σ|−
1
2 exp

(
−γβγ −

1

2
η(x)′Σ−1η(x)

)
,

where Σ0(i,j) = exp (−γ(xi − xj)2) and N(η(xi), 1)+ is a normal distribution truncated at

the left by 0 and N(η(xi), 1)− is a normal distribution truncated at the right by 0.

3.3 Adaptive Trial Design

In this section we will discuss the design piece of our experiment. Instead of using a tradi-

tional experimental design, we propose an iterative adaptive framework that works efficiently

with our Bayesian model. The main difference between this approach and classical designs

is that we do not perform the same number of tests at each concentration. Instead, as more

19

data is gathered and more information becomes available, we would like to adapt our design

to perform a higher number of tests at concentrations in which we are most interested.

Adaptive Allocation

In a classical experimental design, we fix the number of tests, n, performed at a specific

number of concentrations, t. This means that at each concentration xi where i = 1, ..., t, the

same number of tests are performed despite the fact that we may not be equally interested

in all t concentrations. As stated earlier, two of the most important quantities to deter-

mine from our experiment are the C50 and C90 concentrations. Because of this, we would

like to use an experimental design piece that allows us to perform more tests around the

concentrations that we believe to be the C50 and C90 concentrations.

In addition to wanting more tests performed at concentrations of interest, we would

also like to perform more tests where the uncertainty in the probability of detection is

greatest. One of the biggest downfalls of a classical approach is that sometimes after a couple

of tests, the uncertainty in the probability of detection at a certain concentration may be

very low compared to other concentrations, yet the concentrations are tested equally. We

would like to have a design piece that performs more tests where we have less information.

When using an adaptive experimental design, we do not perform all n × t tests at

the same time. Instead, we start off by testing the threat detection instrument a small

(and equal) number of times at each of the t concentrations. With these initial results, we

implement our Gibbs-Metropolis algorithm to get a posterior distribution of our probability

function p(x). Using the mean of this posterior distribution we estimate Ĉ50 and Ĉ90 along

with the absolute distances

d50i = |Ĉ50− xi| and d90i = |Ĉ90− xi|,

for each of the t concentrations. The values d50i and d90i give us an indication of how

close each concentration is to the true values of C50 and C90. We also use the posterior

distribution of p(x) to compute the standard deviation σi of p(xi) for each concentration.

20

The next step of the adaptive design is to perform n more tests, add the results to

our data set, and refit the model with these new results. In order to test more frequently at

concentrations that are closer to the C50 and C90 values and more frequently where there

is greater uncertainty, we will assign a probability to each concentration and construct a

mechanism that gives higher probability to performing tests at such concentrations.

We will construct a vector p = p1, ..., pt, where pi is the probability of performing one

of the next n tests at concentration xi. If we define pi such that

pi =
(1− d50i + 1− d90i)σi∑t
i=1(1− d50i + 1− d90i)σi

i = 1, ..., t, (3.10)

then each pi is a probability between 0 and 1. This method of assigning probabilities gives

higher probabilities to concentrations that are closer in absolute value to Ĉ50 and Ĉ90 and

to concentrations with higher variances associated with them. If we wanted to use only d50

or d90 as our criteria in determining where to perform the next tests, then we would simply

use

pi =
(1− di)σi∑t
i=1(1− di)σi

i = 1, ..., t (3.11)

instead, where di = d50i or d90i . With this p vector, we can then sample with replacement

the concentrations x1, ..., xt, where each xi corresponds to a specific pi. This will give us a

selection of concentrations for performing the next n tests. This process is then repeated for

each of the next batches of tests that need to be performed.

3.4 Simulation Study

In order to determine which model is the most effective, we will perform a simulation study.

We will generate data from four known probability curves and then for each curve we will

compare the performance of the following four models: a standard logistic model with a fixed

number of tests, a standard logistic model implementing the adaptive design, our Gaussian

process model with a fixed number of tests, and our Gaussian process model implementing

the adaptive design. This way we can compare both the logistic model versus the Gaussian

21

process model and the classical design versus the adaptive design. We will also vary the

total number of tests, N , that will be performed for each model at N = 24, 72, and 120. The

six different concentrations at which the tests will be performed are

x = (10, 25, 50, 100, 500, 1000)

= (x10, x25, x50, x100, x500, x1000).

Our MCMC algorithms will be performed with 50,000 iterations, each with a burn-in period

of 5,000. The measure by which we will compare the four models is the bias in the Ĉ50

estimators along with the overall variability of the posterior probability curves.

The four probability curves that will be used in the simulation study are illustrated in

Figure 3.4. Each curve represents a possible relationship between threat concentration and

detection probability. The black non-monotonic curve shows the possibility of the detection

instrument getting overloaded at higher concentration levels. The blue flat curve represents a

null case in which there is no relationship between concentration and probability of detection.

The green s-shaped curve represents the situation in which the probability of detection

increases quickly and levels off at higher concentrations. Lastly, the red slow increasing curve

depicts the case in which the detection probability gradually increases with concentration.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Sample Probability Curves

Concentration

P
ro

ba
bi

lit
y

of
 D

et
ec

tio
n

Figure 3.4: Four probability curves that will be used in the simulation study.

22

chapter 4

RESULTS

4.1 Posterior Distributions

The following three sections provide plots of the posterior distributions with the three sample

sizes.

Small Sample Size (24)

Figure 4.1 displays plots of the posterior distributions for the smallest sample size. For the

non-monotone curve, the Gaussian process adaptive model clearly did a better job modeling

the underlying curve. It also had the lowest MSE when estimating Ĉ50 (for plots of MSE

across sample sizes, refer to section 4.2). With the slowly increasing curve, the Gaussian

process non-adaptive model performed best both in terms of estimating Ĉ50 and getting at

the shape of the curve. In the sharply increasing curve, the two logistic models modeled the

underlying curve best with the Gaussian process non-adaptive model having the lowest MSE

in Ĉ50. Because there were no data points between .5 and 1, the Gaussian process models

had a hard time modeling that region and tried to go straight to the last point. In the case

of the null curve, the logistic non-adaptive model did a nearly perfect job at modeling the

curve; the others did a fair job.

23

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Non Monotone

Concentration

P
ro

ba
bi

lit
y

of
 D

et
ec

tio
n

GP Adapt
GP Non Adapt
Log Adapt
Log Non Adapt
Truth

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Slow Increasing

Concentration

P
ro

ba
bi

lit
y

of
 D

et
ec

tio
n

GP Adapt
GP Non Adapt
Log Adapt
Log Non Adapt
Truth

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Sharp Increasing

Concentration

P
ro

ba
bi

lit
y

of
 D

et
ec

tio
n

GP Adapt
GP Non Adapt
Log Adapt
Log Non Adapt
Truth

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Null

Concentration

P
ro

ba
bi

lit
y

of
 D

et
ec

tio
n

GP Adapt
GP Non Adapt
Log Adapt
Log Non Adapt
Truth

Figure 4.1: Plots of Mean Posterior Curves Across Functions for Small Sample Size

Table 4.1 displays the number of tests that were performed at each concentration. For

the non-monotone curve, the true C50 value is 180.4. These results show that the Gaussian

process model performed the greatest number of tests at the value closest to C50, x100, with

the second highest number of tests performed at x500. A similar result occurred for the

logistic model except that the greatest number of tests were performed at x500. This is likely

due to the difficulty the logistic model had in estimating Ĉ50 in the non-monotone curve.

The true C50 value for the slowly increasing curve is 580.3. Note that the Gaussian

process model performed the greatest number of tests closest to the value x500 (tied with

x10 and x50). The logistic model did not perform the most tests around C50. This again

is likely due to the difficulty that the logistic model had in modeling the slowly increasing

probability curve.

24

The sharply increasing curve was the easiest curve to model and estimate Ĉ50. Con-

sequently, both models performed the highest number of tests at x500 which is the closest

concentration to the C50 = 400 value.

The null curve did not have a true C50 value since it had 50% probability of detection

across the entire curve. Because of that, we expected the number of tests performed to be

roughly uniform across the concentrations. Table 4.1 suggests that this is the case.

Table 4.1: Number of Tests Performed for Small Sample Size. Each cell contains the number

of tests that were performed at each concentration.

Model Concentration

10 25 50 100 500 1000

GP Adaptive Non-monotone 4 2 3 7 6 2

GP Adaptive Slow Increasing 5 4 5 3 5 2

GP Adaptive Sharp Increasing 4 3 6 3 6 2

GP Adaptive Null 3 5 4 5 4 3

Logistic Adaptive Non-monotone 5 3 2 4 8 2

Logistic Adaptive Slow Increasing 3 6 3 6 4 2

Logistic Adaptive Sharp Increasing 3 2 4 2 10 3

Logistic Adaptive Null 4 4 3 5 3 5

Non-adaptive 4 4 4 4 4 4

Medium Sample Size (72)

The posterior distributions for the medium sample size (Figure 4.2) illustrated a similar

story to that of the small sample size. With more data, the Gaussian process non-adaptive

and logistic adaptive models did a much better job at modeling the non-monotone curve.

While neither of them performed quite as well as the Gaussian process adaptive model, the

Gaussian process non-adaptive performed equally well at estimating Ĉ50. For the slowly

25

increasing curve, the Gaussian process models did much better than the logistic models

both in terms of the MSE in Ĉ50 and overall shape. The logistic models had a hard time

getting the slowly increasing aspect of the curve. In the sharply increasing curve, again, the

logistic models did better at modeling the shape of the curve while the Gaussian process

non-adaptive model was near perfect at estimating Ĉ50. With the null curve, the logistic

non-adaptive again performed the best.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Non Monotone

Concentration

P
ro

ba
bi

lit
y

of
 D

et
ec

tio
n

GP Adapt
GP Non Adapt
Log Adapt
Log Non Adapt
Truth

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Slow Increasing

Concentration

P
ro

ba
bi

lit
y

of
 D

et
ec

tio
n

GP Adapt
GP Non Adapt
Log Adapt
Log Non Adapt
Truth

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Sharp Increasing

Concentration

P
ro

ba
bi

lit
y

of
 D

et
ec

tio
n

GP Adapt
GP Non Adapt
Log Adapt
Log Non Adapt
Truth

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Null

Concentration

P
ro

ba
bi

lit
y

of
 D

et
ec

tio
n

GP Adapt
GP Non Adapt
Log Adapt
Log Non Adapt
Truth

Figure 4.2: Plots of Mean Posterior Curves Across Functions for Medium Sample Size

Table 4.2 displays the number of tests that were performed at each concentration

for the medium-sized data set. The Gaussian process model consistently performed more

tests around the C50 concentration in all of the curves. Note that the logistic model did

not perform the highest number of tests around the C50 value in the non-monotone curve.

This is again likely due to the fact that the logistic model had a hard time modeling the

26

true underlying curve. For the slowly and sharply increasing curves, the logistic model did

perform more tests around the true C50 with an extremely high number of tests performed

at x500.

Table 4.2: Number of Tests Performed for Medium Sample Size. Each cell contains the

number of tests that were performed at each concentration.

Model Concentration

10 25 50 100 500 1000

GP Adaptive Non-monotone 14 5 9 20 17 7

GP Adaptive Slow Increasing 13 11 12 7 20 9

GP Adaptive Sharp Increasing 11 6 11 10 25 9

GP Adaptive Null 18 11 11 13 13 6

Logistic Adaptive Non-monotone 17 8 11 14 20 2

Logistic Adaptive Slow Increasing 12 12 13 15 18 2

Logistic Adaptive Sharp Increasing 8 4 8 15 33 4

Logistic Adaptive Null 14 11 7 12 15 13

Non-adaptive 12 12 12 12 12 12

Large Sample Size (120)

Figure 4.3 displays the results of the simulation study for the largest sample size. With the

non-monotone curve, the logistic models again had a difficult time capturing the underlying

curve. The Gaussian process models did equally well in estimating Ĉ50 with the Gaussian

process model doing better at modeling the height of the curve. The plot of the slowly

increasing curve tells a similar story. Both Gaussian process models again did about the

same in estimating Ĉ50 with the Gaussian process non-adaptive doing slightly better at

modeling the entire curve. For the sharply increasing curve, there was no difference between

the two Gaussian process models; both doing equally well at estimating Ĉ50. For the logistic

27

models, the adaptive model did quite a bit better at estimating Ĉ50 and modeling the entire

curve. In the case of the null curve, there does not appear to be a big difference between

the four curves.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Non Monotone

Concentration

P
ro

ba
bi

lit
y

of
 D

et
ec

tio
n

GP Adapt
GP Non Adapt
Log Adapt
Log Non Adapt
Truth

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Slow Increasing

Concentration

P
ro

ba
bi

lit
y

of
 D

et
ec

tio
n

GP Adapt
GP Non Adapt
Log Adapt
Log Non Adapt
Truth

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Sharp Increasing

Concentration

P
ro

ba
bi

lit
y

of
 D

et
ec

tio
n

GP Adapt
GP Non Adapt
Log Adapt
Log Non Adapt
Truth

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Null

Concentration

P
ro

ba
bi

lit
y

of
 D

et
ec

tio
n

GP Adapt
GP Non Adapt
Log Adapt
Log Non Adapt
Truth

Figure 4.3: Plots of Mean Posterior Curves Across Functions for Large Sample Size

For the large data set, Table 4.3 illustrates that the Gaussian process model again

performed the most number of tests at concentrations close to the true C50. Note also

the low number of tests performed at the x25 concentration. This is likely because x10 and

x50 are right below and above x25 which decreases the uncertainty in the probability curve

at that point. As the adaptive experimental design gives lower probability to tests being

performed at concentrations that have lower variance in the probability curve, x25 was not

tested as frequently.

28

The logistic model again did not perform too many tests around the true C50 value

in the non-monotone curve but it did in the slowly and sharply increasing curves. It is

interesting to note that the logistic model very rarely performed tests at x1000. This is likely

due to the nature of the logistic model. Because it is strictly increasing, once it reaches

its peak, it stays there and the uncertainty in the probability curve gets very small. The

Gaussian process model, however, does not have that limitation.

Table 4.3: Number of Tests Performed for Large Sample Size. Each cell contains the number

of tests that were performed at each concentration.

Model Concentration

10 25 50 100 500 1000

GP Adaptive Non-monotone 23 10 17 38 23 9

GP Adaptive Slow Increasing 23 14 19 12 37 15

GP Adaptive Sharp Increasing 15 12 18 16 43 16

GP Adaptive Null 24 20 21 21 21 13

Logistic Adaptive Non-monotone 24 17 18 23 32 6

Logistic Adaptive Slow Increasing 23 20 17 23 29 8

Logistic Adaptive Sharp Increasing 15 8 14 21 56 6

Logistic Adaptive Null 24 28 14 16 25 13

Non-adaptive 20 20 20 20 20 20

4.2 Mean Squared Error of Ĉ50

The three plots in Figure 4.4 display the MSE of Ĉ50 across sample size. For the non-

monotone curve, the Gaussian process non-adaptive model did uniformly best across all

sample sizes. The Gaussian process adaptive model did equally well for the medium and

large samples. For the slowly increasing curve, the Gaussian process models had the lowest

MSE with the non-adaptive model doing slightly better in the smallest sample. For the

29

logistic models, the non-adaptive model also had a smaller MSE. All four models had a

hard time estimating Ĉ50 with this probability curve. In the sharply increasing curve, all

four models did a good job estimating Ĉ50. The Gaussian process non-adaptive model did

slightly better than the other three models for the small and medium sample sizes with the

Gaussian process adaptive model doing better in the largest sample size.

40 60 80 100 120

0.
00

0.
05

0.
10

0.
15

0.
20

MSE - Non Monotone

Sample Size

M
S
E

GP Adapt
GP Non Adapt
Log Adapt
Log Non Adapt

40 60 80 100 120

0.
00

0.
05

0.
10

0.
15

0.
20

MSE - Slow Increasing

Sample Size

M
S
E

GP Adapt
GP Non Adapt
Log Adapt
Log Non Adapt

40 60 80 100 120

0.
00
0

0.
00
2

0.
00
4

0.
00
6

0.
00
8

0.
01
0

MSE - Sharp Increasing

Sample Size

M
S
E

GP Adapt
GP Non Adapt
Log Adapt
Log Non Adapt

Figure 4.4: MSE of Ĉ50

30

4.3 Posterior Variances

At Observed Points

Figure 4.5 displays plots of the mean variances of the posterior distributions at the observed

data points. Notice for the non-monotone curve, the Gaussian process non-adaptive model

did uniformly better than the other three. In the rest of the plots, the logistic adaptive model

had the lowest mean variance. Note that in all four cases, the Gaussian process adaptive

model has a mean variance equal to or lower than the Gaussian process non-adaptive model.

The same results hold for the logistic models. In all four cases, the mean variance for the

logistic adaptive model was always lower than that of the logistic non-adaptive. This is likely

due to the fact that the adaptive design was built to perform more tests at observations that

have less variance in the probability curve.

31

40 60 80 100 120

0.
00
0

0.
00
5

0.
01
0

0.
01
5

0.
02
0

Median Variances - Non Monotone

Sample Size

M
ed

ia
n

V
ar

ia
nc

e

GP Adapt
GP Non Adapt
Log Adapt
Log Non Adapt

40 60 80 100 120

0.
00
0

0.
00
5

0.
01
0

0.
01
5

0.
02
0

Median Variances - Slow Increasing

Sample Size

M
ed

ia
n

V
ar

ia
nc

e

GP Adapt
GP Non Adapt
Log Adapt
Log Non Adapt

40 60 80 100 120

0.
00
0

0.
00
5

0.
01
0

0.
01
5

0.
02
0

Median Variances - Sharp Increasing

Sample Size

M
ed

ia
n

V
ar

ia
nc

e

GP Adapt
GP Non Adapt
Log Adapt
Log Non Adapt

40 60 80 100 120

0.
00
0

0.
00
5

0.
01
0

0.
01
5

0.
02
0

Median Variances - Null

Sample Size

M
ed

ia
n

V
ar

ia
nc

e

GP Adapt
GP Non Adapt
Log Adapt
Log Non Adapt

Figure 4.5: Variance of the Posterior Distribution at Observed Points

The mean variance in the posterior probability curves at unobserved points tells a

similar story. All four plots in Figure 4.6 illustrate the fact that between observed points,

the logistic model has less variance. This is unsurprising as the Gaussian process models

are designed to do much better at observed points compared to between points. Note again

that in all four plots the adaptive designs always (with the exception of the small sample

size for the Gaussian process models for the non-monotone curve) out performs the non-

adaptive models. Also, note that for the Gaussian process models, the adaptive design did

considerably better with larger sample sizes. The same cannot be said for the logistic models.

As the data set grew, the logistic adaptive and non-adaptive models did about the same.

32

Between Observed Points

40 60 80 100 120

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

Median Variances - Non Monotone

Sample Size

M
ed

ia
n

V
ar

ia
nc

e

GP Adapt
GP Non Adapt
Log Adapt
Log Non Adapt

40 60 80 100 120

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

Median Variances - Slow Increasing

Sample Size

M
ed

ia
n

V
ar

ia
nc

e

GP Adapt
GP Non Adapt
Log Adapt
Log Non Adapt

40 60 80 100 120

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

Median Variances - Sharp Increasing

Sample Size

M
ed

ia
n

V
ar

ia
nc

e

GP Adapt
GP Non Adapt
Log Adapt
Log Non Adapt

40 60 80 100 120

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

Median Variances - Null

Sample Size

M
ed

ia
n

V
ar

ia
nc

e

GP Adapt
GP Non Adapt
Log Adapt
Log Non Adapt

Figure 4.6: Variance of the Posterior Distribution at Unobserved Points

33

chapter 5

CONCLUSIONS

Threat detector testing is costly and time consuming and should be performed as efficiently

as possible. We looked at four different approaches to this problem and compared their

performances via a simulation study. In our simulation study, we ran two different models

with two different experimental designs to compare model/design performance. We ran each

of the four model/design combinations at three different samples sizes across four different

probability curves and found that the Gaussian process model combined with the adaptive

experimental design was overall the most useful combination.

Our results suggest that if the underlying probability curve is believed to be non-

standard (non-monotone or slowly increasing) then the Gaussian process model is a better

choice. In the simulation study, both the adaptive and non-adaptive Gaussian process models

were better at modeling the probability curve when it was non-monotone or slowly increasing.

Conversely, the monotonic nature of the logistic models hindered their ability to model curves

that were not s-shaped. While it is true that the overall variance in the posterior probability

curve was lower for the logistic models, they did too poor a job at modeling the underlying

curve to be considered better than the Gaussian process models.

There wasn’t a strong difference between the adaptive and non-adaptive Gaussian

process models in terms of estimating Ĉ50 and modeling the entire curve. In large sample

sizes, they either performed the same or the adaptive model did better. In smaller sample

sizes, it depended on the probability curve that was being modeled — the adaptive model

outperforming in the non-monotone case and the non-adaptive outperforming in the slowly

increasing case. Both did equally well for the sharp increasing and null curves. The biggest

difference between the two models was the uncertainty in their posterior probability curves.

34

The Gaussian process adaptive model essentially always had a lower variance both at the

observed points and between the observed points. This is due to the fact that the adaptive

experimental design is designed not to waste tests at concentrations that are already well

understood from the data. Instead, tests were often performed were there was greater

uncertainty in the probability curve.

If the underlying probability curve is believed to be a traditional s-shaped curve, then

our findings suggest that the logistic model is the better choice, especially at small sample

sizes. With only 24 observations, both logistic models had a good grasp on the underlying

curve and both got better as the number of observations increased. Also, uncertainty in the

curve was quite a bit lower in the logistic models compared to the Gaussian process models.

Much like the Gaussian process models, the adaptive experimental design was the

better design scheme for the logistic models. In most of the cases, the adaptive logistic

model outperformed the non-adaptive in terms of estimating Ĉ50 and modeling the entire

curve. The the only exception to this was the slowly increasing curve and possibly the

null curve at smaller sample sizes. In terms of the variance in the estimated curves, the

adaptive logistic model was always the best, both at observed points and at unobserved

points. Again, this is due to the fact that the adaptive design scheme is less likely to

perform tests at concentrations where there is lower uncertainty in the probability curve.

If nothing is known about the underlying probability curve, the model of choice would

be the Gaussian process model with the adaptive experimental design. It performed tests

at concentrations we were most interested in and was able to model a wider variety of

curves. Also, while the logistic model does outperform the Gaussian process model when

the underlying curve is s-shaped, the cost of using a Gaussian process model is not much.

It may have more variance but it appears to do equally well at estimating Ĉ50.

35

5.1 Future Work

In the future, it would be interesting to compare the four model/design combinations in a

space filling design. Our study used only 6 different threat concentrations that were not

equally spaced. The results may differ if there were more concentrations being considered

and/or if they were equally spaced apart. From what we have seen thus far, the Gaussian

process models would likely be even more powerful because the variance between the observed

concentrations gets drastically reduced when there are not large gaps between the data

points.

Another aspect of this study that would be interesting to examine further would

be the choice of criteria that is used in the adaptive design steps. Our criteria involved

only the variance in the posterior probability curve and the absolute proximity to Ĉ50. It

would be interesting to look at different sets of criteria when deciding where to assign the

next test. Maybe a Gaussian kernel should be used to get a measure of closeness between

Ĉ50 and the probability curve at each data point. Maybe the standard deviation or a 95%

credible interval should be used instead of the variance when quantifying the uncertainty in

the posterior probability curve.

36

BIBLIOGRAPHY

Abrahamsen, P. (1997), A Review of Gaussian Random Fields and Correlation Functions,

Oslo, Norway: Norwegian Computing Center.

Albert, J., and Chib, S. (1993), “Bayesian Analysis of Binary and Polychotomous Response

Data,” Journal of the American Statistical Association, 88, 669–679.

Anscombe, F. J. (1964), “Normal likelihood functions,” Annals of the Institute of Statistical

Mathematics, 26, 1–19.

Borelli, J. V. (2007), Bioterrorism: Prevention, Preparedness And Protection, New York:

Nova Science Publishers.

Carlin, B. P., Kadane, J. B., and Gelfand, A. E. (1997), “Approaches for Optimal Sequential

Decision Analysis in Clinical Trials,” Biometrics, 54, 964–975.

Carlin, B. P., and Louis, T. A. (2009), Bayesian Methods for Data Analysis (3rd ed.), Boca

Raton, FL: Chapman & Hall/CRC.

Cheng, Y., and Shen, Y. (2005), “Bayesian Adaptive Designs for Clinical Trials,” Biometrika,

92, 633–646.

Chib, S., and Greenberg, E. (1995), “Understanding the Metropolis-Hastings Algorithm,”

The American Statistician, 49, 327–335.

Choudhuri, N., Ghosal, S., and Roy, A. (2007), “Nonparametric binary regression using a

Gaussian process prior,” Statistical Methodology, 4, 227–243.

Hamada, M. S., Wilson, A. G., Reese, C. S., and Martz, H. F. (2008), Bayesian Reliability,

New York: Springer Science+Business Media, LLC.

37

Hastie, T., Tibshirani, R., and Friedman, J. (2001), The Elements of Statistical Learning:

Data Mining, Inference, and Prediction, New York: Springer Science+Business Media,

LLC.

Kennedy, M. C., O’Hagan, A., and Higgins, N. (2002), “Bayesian Analysis of Computer

Code Outputs,” Quantitative Methods for Current Environmental Issues, 1, 227–243.

Loredo, T. J. (2003), “Bayesian Adaptive Exploration in a Nutshell,” Phystat, 1, 162–165.

Nickisch, H., and Rasmussen, C. E. (2008), “Approximations for Binary Gaussian Process

Classification,” Journal of Machine Learning Research, 9, 2035–2078.

Rasmussen, C. E., and Williams, C. K. I. (2006), “Gaussian Processes for Machine Learning,”

The American Statistician, 49, 327–335.

Smith, A. F. M., and Roberts, G. O. (2003), “Bayesian Computation Via the Gibbs Sam-

pler and Related Markov Chain Monte Carlo Methods,” Journal of the Royal Statistical

Society, 55, 3–23.

Stacey, A., and Reese, C. S. (2007), “An Adaptive Bayesian Approach to Bernoulli-Response

Clinical Trials,” Master’s Thesis, Brigham Young University, 1, 1.

38

APPENDICES

39

appendix a

COMPLETE CONDITIONAL DISTRIBUTIONS

A.1 Gaussian Process Model

Complete Conditional for η(x)

π(η(x)|z,x) ∝ 1

(2π)
k
2 (|Σ|) 1

2

exp

(
−1

2
(η(x))′Σ−1(η(x))

)
1

(2π)
1
2

exp

(
−1

2
(z− η(x))′(z− η(x))

)
∝ exp

(
−1

2
(η(x))′Σ−1(η(x))

)
exp

(
−1

2
(z− η(x))′(z− η(x))

)
= exp

(
−1

2
[z′z− 2z′η(x) + η(x)′η(x) + η(x)′Σ−1η(x)]

)
∝ exp

(
−1

2
[−2z′η(x) + η(x)′η(x) + η(x)′Σ−1η(x)]

)
= exp

(
−1

2
[η(x)′(I + Σ−1)η(x)− 2z′η(x)]

)
= exp

(
−1

2
[η(x)′(I + Σ−1)η(x)− 2z′(I + Σ−1)−1(I + Σ−1)η(x)]

)
Define

µ∗ = z′(I + Σ−1)−1

Σ∗ = (I + Σ−1)−1

thus

π(η(x)|z,x) ∝ exp

(
−1

2
[η(x)′Σ∗−1η(x)− 2µ∗Σ∗−1η(x)]

)
∝ exp

(
−1

2
[η(x)′Σ∗−1η(x)− 2µ∗Σ∗−1η(x) + µ∗Σ∗−1µ∗]

)
= exp

(
−1

2
[(η(x)− µ∗)′Σ∗−1(η(x)− µ∗)]

)
∼ MVN(µ∗,Σ∗) (A. 1)

40

Complete Conditional for τ

π(τ |η(x),x) ∝ 1

Γ(ατ)βαττ
τατ−1 exp(τβτ)

1

(2π)
k
2 (|Σ|) 1

2

exp

(
1

2
(η(x))′Σ−1(η(x))

)
∝ τατ−1 exp(τβτ)(|Σ|)−

1
2 exp

(
1

2
(η(x))′Σ−1(η(x))

)
Define

Σ0 = exp
(
−γ(x− x′)2

)

∝ τατ+
k
2
−1 exp−τ

(
1

2
(η(x))′Σ−10 (η(x)) + βτ

)
∼ Gamma

(
ατ +

k

2
,
1

2
(η(x))′Σ−10 (η(x)) + βτ

)
(A. 2)

Complete Conditional for γ

π(γ|η(x),x) ∝ 1

b− a
1

(2π)
k
2 (|Σ|) 1

2

exp

(
1

2
(η(x))′Σ−1(η(x))

)
∝ (|Σ|)−

1
2 exp

(
1

2
(η(x))′Σ−1(η(x))

)
∝ (|Σ0|)−

1
2 exp

(
1

2
(η(x))′Σ−1(η(x))

)
(A. 3)

Complete Conditional for zi

π(zi|η(xi), xi) ∝

[
n∏
i=1

I(zi > 0)(yi = 1) + I(zi ≤ 0)(yi = 0)× 1√
2π

exp

(
(zi − η(xi))

2

2

)]

∼

N(η(xi), 1)+ if yi = 1

N(η(xi), 1)− if yi = 0

(A. 4)

41

A.2 Logistic Model

Complete Conditional for α

π(α|x,y) ∝

[
m∏
i=1

(
exp(α + βxi)

1 + exp(α + βxi)

)yi (
1− exp(α + βxi)

1 + exp(α + βxi)

)1−yi
]

× 1

(2πs2α)
exp

(
−(α−mα)2

2s2α

)
∝

[
m∏
i=1

(exp(α + βxi))
yi

(
1

1 + exp(α + βxi)

)]

× 1

(2πs2α)
exp

(
−(α−mα)2

2s2α

)
(A. 5)

Complete Conditional for β

π(α|x,y) ∝

[
m∏
i=1

(
exp(α + βxi)

1 + exp(α + βxi)

)yi (
1− exp(α + βxi)

1 + exp(α + βxi)

)1−yi
]

× 1

(2πs2β)
exp

(
−(β −mβ)2

2s2β

)

∝

[
m∏
i=1

(exp(α + βxi))
yi

(
1

1 + exp(α + βxi)

)]

× 1

(2πs2β)
exp

(
−(β −mβ)2

2s2β

)
(A. 6)

42

appendix b

CODE

B.1 Simulation

##

###################### FINAL EXPERIMENT #######################

Bradley Ferguson

Masters Project

##

##

Comparing Gaussian Process Adaptive vs Non -adaptive and Logistic model

Adaptive vs. Non -Adaptive

Doing three sample sizes , 24, 72, and 120 (small , med , large)

Generating data from 4 probability curves , 1-Non -monotone , 2-Slow

increasing , 3-Shark increasing , 4-Null

Running the model at 50000 MCMC iterations with a burnin period of 5000

##

##

#################

Libraries

#################

library(MASS)

library(msm)

#############################

Probability Functions

#############################

fx1 = function(x){

out = 2.5*x*(1.25 -x)

return(out)

}

fx2 = function(x){exp(-4+5*x)/(1 + exp(-4+5*x))+.25} # slow increase

fx3 = function(x){exp (-4+10*x)/(1 + exp (-4+10*x))} # sharp increase

fx4 = function(x){.5+0*x} # null

############################

Covariance Functions

############################

corMatrixFast = function(x,gamma ,tau){

dd = dist(x,upper=T,diag=T)^2

corMat = exp(-gamma*as.matrix(dd)) / tau

return(corMat)

43

}

corMatrix = function(x1,x2,gamma ,tau){ # function that creates correlation

matrix

l1 = length(x1)

l2 = length(x2)

corMat = matrix(nrow=l1 ,ncol=l2)

for(i in 1:l2){

for(j in 1:l1){

corMat[j,i] = exp((-gamma*(x1[j]-x2[i])^2))/tau

}

}

return(corMat)

}

###############################

Error Checking Function

###############################

errorCheck = function(Sigma){

count = 0

psi = 10^-4

n = dim(Sigma)[1]

inverse = try(solve(Sigma),TRUE) # checking for singularity

while(inherits(inverse ,"try -error ") || det(Sigma)==0){

Sigma = Sigma + diag(n)*psi

inverse = try(solve(Sigma),TRUE)

count = count + 1

}

sigList = list(Sigma=Sigma ,psi=count*psi)

return(sigList)

}

########################

Initial Settings

########################

MCMCiter = 50000

xvals = c(10 ,25 ,50 ,100 ,500 ,1000)

numRounds = 19

numTests = rep(2,length(xvals))

burnin =.1* MCMCiter

newTestNum = 6

xvalsStand = xvals/max(xvals)

xNew = seq(min(xvalsStand),max(xvalsStand),length =100)

varVals1 = matrix(nrow=numRounds ,ncol=length(xvals))

varVals2 = matrix(nrow=numRounds ,ncol=length(xNew))

Specifiying if we want ED50 , ED90 , or both , as our criteria

EDTag = c(1,2,3) # 1 = both ED50 and ED90 , 2 = ED50 only , 3 = ED90 only

EDTag = 2

########################

GAUSSIAN PROCESS

44

####### Adaptive #######

########################

for(overallCount in 1:4){

xvals = c(10 ,25 ,50 ,100 ,500 ,1000)

numRounds = 19

numTests = rep(2,length(xvals))

burnin =.1* MCMCiter

newTestNum = 6

xvalsStand = xvals/max(xvals)

xNew = seq(min(xvalsStand),max(xvalsStand),length =100)

varVals1 = matrix(nrow=numRounds ,ncol=length(xvals))

varVals2 = matrix(nrow=numRounds ,ncol=length(xNew))

for(totalCount in 1: numRounds){

probFunction = overallCount

##############

Priors

##############

gamma follows a unif(gamAlpha ,gamBeta)

gamAlpha = .01

gamBeta = 20

gammaMat = rep(0,MCMCiter)

gammaMat [1] = 3

tau follows a gamma(gamAlpha ,gamBeta)

tauAlpha = 1/2

tauBeta = 2

tauMat = rep(0,MCMCiter)

tauMat [1] = .1

if(probFunction == 1){fx = fx1}

if(probFunction == 2){fx = fx2}

if(probFunction == 3){fx = fx3}

if(probFunction == 4){fx = fx4}

if(totalCount ==1){

xx = seq(0,1,length =100)

prob = fx(xx)

#plot(xx,prob ,col=’grey ’,type=’l’,ylim=c(0,1))

#abline(h=c(.5))

}

Concentrations

if(totalCount ==1){

xUnstand = c(rep(xvals [1], numTests [1]),rep(xvals [2], numTests [2]),rep(xvals

[3], numTests [3]),rep(xvals[4], numTests [4]),rep(xvals[5], numTests [5]),

rep(xvals[6], numTests [6]))

x = xUnstand/max(xUnstand)

45

}else{

xUnstandAdd = c(rep(xvals [1], newGroups [1]),rep(xvals [2], newGroups [2]),rep

(xvals [3], newGroups [3]),rep(xvals [4], newGroups [4]),rep(xvals [5],

newGroups [5]),rep(xvals [6], newGroups [6]))

xAdd = xUnstandAdd/max(xUnstand)

x = c(x,xAdd)

}

Creating Tags

tags = rep(0,sum(numTests))

uVals = unique(x)

groups = seq(1,length(numTests),by=1)

for(i in 1:sum(numTests)){

for(j in 1: length(xvals)){

if(x[i]== uVals[j]){tags[i] = groups[j]}

}

}

#######################

Data Generation

#######################

if(totalCount ==1){

prob = fx(x)

m = sum(numTests)

y = rbinom(m,1,prob)

data = cbind(y,1,x)

}else{

prob = fx(xAdd)

mAdd = length(xAdd)

yAdd = rbinom(mAdd ,1,prob)

m = sum(numTests)

y = c(y,yAdd)

data = cbind(y,1,x)

}

###########################

Initializing Values

###########################

n = length(y)

Sigma = diag(n)

mu = rep(0,n)

etaMat = matrix(nrow = n,ncol=MCMCiter)

probMat = matrix(nrow=n,ncol=MCMCiter)

predEtaMat = matrix(nrow=length(xNew),ncol=MCMCiter)

probPredMat = matrix(nrow=length(xNew),ncol=MCMCiter)

#yVec = (-2*(y==0))+rep(1,n) #-1’s and 1’s

zMat = matrix(nrow = n,ncol=MCMCiter)

posIndicator = which(y==1)

negIndicator = which(y==0)

numSuccess = sum(y)

numFailure = n-sum(y)

for (i in 1: numSuccess){

46

zMat[posIndicator[i],1] = rtnorm(1,0,1,lower=0,upper=Inf)

}

for(i in 1: numFailure){

zMat[negIndicator[i],1] = rtnorm(1,0,1,lower=-Inf ,upper =0)

}

#zMat[,1] = zMat [,1]* yVec

psiMat = matrix(0,nrow=9,ncol=MCMCiter)

Tuning information for Gamma (Metropolis -Hastings)

csig = 15

ar = 1

eta follows a guassian process prior

mu = rep(0,n)

Sigma = corMatrixFast(x,gammaMat [1], tauMat [1])

Sigma = errorCheck(Sigma)

################################

Gibbs/Metroplis Hastings

################################

counter = 0

for(i in 2: MCMCiter){

updating Sigma

Sigma = corMatrixFast(x,gammaMat[i-1], tauMat[i-1])

checkError = errorCheck(Sigma)

Sigma = checkError$Sigma

psiMat[1,i] = checkError$psi

updating eta

tempSig = diag(n)+solve(Sigma)

checkError = errorCheck(tempSig)

tempSig = checkError$Sigma

psiMat[2,i] = checkError$psi

muStar = t(zMat[,(i-1)])%*% solve(tempSig)

sigmaStar = solve(tempSig)

etaMat[,i] = mvrnorm(1,muStar ,sigmaStar)

probMat[,i] = pnorm(etaMat[,i])

updating z

for (k in 1: numSuccess){

zMat[posIndicator[k],i] = rtnorm(1,etaMat[posIndicator[k],i],1,lower=0,

upper=Inf)

}

for(k in 1: numFailure){

zMat[negIndicator[k],i] = rtnorm(1,etaMat[negIndicator[k],i],1,lower=-

Inf ,upper =0)

}

#zMat[,i] = abs(rnorm(n,etaMat[,i],1))

#zMat[,i] = zMat[,i]*yVec

getting values in between points

sigma11 = corMatrixFast(xNew ,gammaMat[i-1], tauMat[i-1])

sigma12 = corMatrix(xNew ,x,gammaMat[i-1], tauMat[i-1])

47

sigma21 = t(sigma12)

sigma22 = Sigma

checkError = errorCheck(sigma11)

sigma11 = checkError$Sigma

psiMat[3,i] = checkError$psi

checkError = errorCheck(sigma22)

sigma22 = checkError$Sigma

psiMat[4,i] = checkError$psi

muStar = rep(0,length(xNew)) + sigma12 %*% solve(sigma22)%*%t(t(etaMat[,i]))

sigmaStar = sigma11 - sigma12 %*% solve(sigma22)%*% sigma21

sigmaStar = (sigmaStar + t(sigmaStar))/2

newEta = mvrnorm(1,muStar ,sigmaStar) #chol only one that worked

predEtaMat[,i] = newEta

probPredMat[,i] = pnorm(predEtaMat[,i])

updating tau

sigmaNot = corMatrixFast(x,gammaMat[i-1],1)

checkError = errorCheck(sigmaNot)

sigmaNot = checkError$Sigma

psiMat[5,i] = checkError$psi

tauAlphaStar = tauAlpha + n/2

tauBetaStar = .5*(t(etaMat[,i])%*% solve(sigmaNot)%*% etaMat[,i]) + tauBeta

tauMat[i] = rgamma(1,tauAlphaStar ,tauBetaStar) # using rate parameterizion

as that is how I found nice closed form solution

updating gamma

gammaMat[i] = gammaMat[i-1]

cand = rnorm(1,gammaMat[i-1],csig)

if(cand > gamAlpha && cand < gamBeta){

counter = counter + 1

Sigma = corMatrixFast(x,gammaMat[i],tauMat[i])

checkError = errorCheck(Sigma)

Sigma = checkError$Sigma

psiMat[6,i] = checkError$psi

sigmaNot = corMatrixFast(x,gammaMat[i],1)

checkError = errorCheck(sigmaNot)

sigmaNot = checkError$Sigma

psiMat[7,i] = checkError$psi

llo = log(det(sigmaNot)^(-1/2)) -.5*t(etaMat[,i])%*% solve(Sigma)%*% etaMat[,

i]

Sigma = corMatrixFast(x,cand ,tauMat[i])

checkError = errorCheck(Sigma)

Sigma = checkError$Sigma

psiMat[8,i] = checkError$psi

sigmaNot = corMatrixFast(x,cand ,1)

checkError = errorCheck(sigmaNot)

sigmaNot = checkError$Sigma

psiMat[9,i] = checkError$psi

lln = log(det(sigmaNot)^(-1/2)) -.5*t(etaMat[,i])%*% solve(Sigma)%*% etaMat[,

i]

48

u = runif (1)

if(log(u) < (lln -llo)){

gammaMat[i] = cand

ar = ar + 1

}

}

}

aRate = ar/MCMCiter

print(paste(’Round ’,totalCount ,’prob function ’,probFunction ,’ finished at

’,date()))

###############################

Summerizing Information

###############################

qFun1 = function(vec){quantile(vec ,.025)}

qFun2 = function(vec){quantile(vec ,.975)}

finalP = apply(probMat[,burnin:MCMCiter],1,mean)

finalPLower = apply(probMat[,burnin:MCMCiter],1,qFun1)

finalPUpper = apply(probMat[,burnin:MCMCiter],1,qFun2)

finalPred = apply(probPredMat[,burnin:MCMCiter],1,mean)

finalPredLower = apply(probPredMat[,burnin:MCMCiter],1,qFun1)

finalPredUpper = apply(probPredMat[,burnin:MCMCiter],1,qFun2)

finalGamma = gammaMat[burnin:MCMCiter]

finalTau = tauMat[burnin:MCMCiter]

finalPsiMat = psiMat[,burnin:MCMCiter]

################

Plotting

################

#plot(x,prob ,col=’grey ’,type=’l’,ylim=c(0,1))

#plot(seq(0,1,length =100) ,fx(seq(0,1,length =100)),ylim=c(0,1),type=’lines

’)

#lines(xNew ,finalPred ,col=totalCount)

#lines(xNew ,finalPred ,col=blue ,lty=2)

#lines(x,finalPUpper ,col=’blue ’,lty=2)

#lines(x,finalPLower ,col=’blue ’,lty=2)

#points(xNew ,finalPred ,col=’red ’)

#points(x,finalP ,col=’blue ’)

#abline(h=c(.5 ,.9))

################

Updating

################

Finding variances per concentration

uTags = unique(tags)

for(i in 1:ncol(varVals1)){

index = matrix (1*(tags==uTags[i]))

interval = which(index !=0)

tagMatrix = probMat[interval ,(burnin:MCMCiter)]

varVals1[totalCount ,i] = var(as.vector(tagMatrix))

49

}

for(i in 1:ncol(varVals2)){

varVals2[totalCount ,i] = var(probPredMat[i,(burnin:MCMCiter)])

}

Calculating ED50

allX = c(x,xNew)

allP = c(finalP ,finalPred)

probXMat = cbind(allX ,allP)

probXMat = probXMat[order(probXMat [,1]) ,] # sorted by concentration

ED = c(.5 ,.9)

maxP = max(allP)

minP = min(allP)

maxX = allX[which(allP==maxP)]

minX = allX[which(allP==minP)]

checking to see if C50 and C90 can be calculated

ED50 = TRUE # TRUE means it can be calculated

ED90 = TRUE # TRUE means it can be calculated

if((maxP <ED[1] && minP <ED[1]) || (maxP >ED[1] && minP >ED[1])){

ED50 = FALSE

}

if((maxP <ED[2] && minP <ED[2]) || (maxP >ED[2] && minP >ED[2])){

ED90 = FALSE

}

if(ED50==TRUE){

checking for parabolic nature

parabolic = FALSE

index1 = which(probXMat [,1]<maxX)

if(length(index1) >0){

maxPIndex1 = max(probXMat[index1 ,2])

minPIndex1 = min(probXMat[index1 ,2])

if((maxPIndex1 > ED[1] && minPIndex1 <ED[1])){

ED1Index = index1

}

}

index2 = which(probXMat [,1]<minX)

if(length(index2) >0){

maxPIndex2 = max(probXMat[index2 ,2])

minPIndex2 = min(probXMat[index2 ,2])

if((maxPIndex2 > ED[1] && minPIndex2 <ED[1])){

ED1Index = index2

}

}

newProbXMat = probXMat[ED1Index ,]

diff1 = abs(newProbXMat [,2] - ED[1])

diff2 = abs(newProbXMat [,2] - ED[2])

EDindex1 = which(diff1 ==min(diff1))

50

EDindex2 = which(diff2 ==min(diff2))

EDval1 = newProbXMat[EDindex1 ,1]

EDval2 = newProbXMat[EDindex2 ,1]

EDval = EDval1

}

Assigning new probabilities

newProbs = rep(0,length(xvals))

if(ED50==TRUE){

for(i in 1: length(xvals)){

if(EDTag == 1){

d1 = abs(xvalsStand[i]-EDval1)

d2 = abs(xvalsStand[i]-EDval2)

d = (1-d1) + (1-d2) # the smaller the d values , the greater the

weight is given to them

}else if(EDTag == 2){

d1 = (abs(xvalsStand[i]-EDval1))

d = 1 - d1

}else if(EDTag == 3){

d1 = (abs(xvalsStand[i]-EDval2))

d = 1 - d1

}

newProbs[i] = (d) * sqrt(varVals1[totalCount ,i])

}

newProbs = newProbs /(sum(newProbs))

}else{

newProbs = rep (1/6 ,6)

EDval = NA

}

Saving information to a list

fileName=paste(’GP_Adapt_Trial ’,totalCount ,’Function ’,probFunction ,’ED’,

EDTag)

l = list(x=x,finalP=finalP ,finalPred=finalPred ,finalPredLower=

finalPredLower ,finalPredUpper=finalPredUpper ,finalPUpper=finalPUpper ,

finalPLower=finalPLower ,varVals1=varVals1 ,varVals2=varVals2 ,numTests =

numTests ,xNew=xNew ,aRate=aRate ,EDval=EDval ,finalGamma=finalGamma ,

finalPsiMat=finalPsiMat ,finalTau=finalTau)

save(l,file=fileName)

Creating new data

newAllocation = sample(groups ,size=newTestNum ,replace=TRUE ,prob=newProbs)

newGroups = rep(0,length(groups))

newNumTests = numTests

for(i in 1: length(groups)){

newGroups[i] = sum(newAllocation == groups[i])

}

numTests = numTests + newGroups

}

numTests = numTests - newGroups

}

51

######################

GAUSSIAN PROCESS

Non - Adaptive

######################

for(overallCount in 1:4){

xvals = c(10 ,25 ,50 ,100 ,500 ,1000)

numRounds = 19

numTests = rep(2,length(xvals))

burnin =.1* MCMCiter

newTestNum = 6

xvalsStand = xvals/max(xvals)

xNew = seq(min(xvalsStand),max(xvalsStand),length =100)

varVals1 = matrix(nrow=numRounds ,ncol=length(xvals))

varVals2 = matrix(nrow=numRounds ,ncol=length(xNew))

for(totalCount in 1: numRounds){

probFunction = overallCount

##############

Priors

##############

gamma follows a unif(gamAlpha ,gamBeta)

gamAlpha = .01

gamBeta = 20

gammaMat = rep(0,MCMCiter)

gammaMat [1] = 3

tau follows a gamma(gamAlpha ,gamBeta)

tauAlpha = 1/2

tauBeta = 2

tauMat = rep(0,MCMCiter)

tauMat [1] = .1

if(probFunction == 1){fx = fx1}

if(probFunction == 2){fx = fx2}

if(probFunction == 3){fx = fx3}

if(probFunction == 4){fx = fx4}

if(totalCount ==1){

xx = seq(0,1,length =100)

prob = fx(xx)

#plot(xx,prob ,col=’grey ’,type=’l’,ylim=c(0,1))

#abline(h=c(.5))

}

Concentrations

52

if(totalCount ==1){

xUnstand = c(rep(xvals [1], numTests [1]),rep(xvals [2], numTests [2]),rep(xvals

[3], numTests [3]),rep(xvals[4], numTests [4]),rep(xvals[5], numTests [5]),

rep(xvals[6], numTests [6]))

x = xUnstand/max(xUnstand)

}else{

xUnstandAdd = c(rep(xvals [1], newGroups [1]),rep(xvals [2], newGroups [2]),rep

(xvals [3], newGroups [3]),rep(xvals [4], newGroups [4]),rep(xvals [5],

newGroups [5]),rep(xvals [6], newGroups [6]))

xAdd = xUnstandAdd/max(xUnstand)

x = c(x,xAdd)

}

Creating Tags

tags = rep(0,sum(numTests))

uVals = unique(x)

groups = seq(1,length(numTests),by=1)

for(i in 1:sum(numTests)){

for(j in 1: length(xvals)){

if(x[i]== uVals[j]){tags[i] = groups[j]}

}

}

#######################

Data Generation

#######################

if(totalCount ==1){

prob = fx(x)

m = sum(numTests)

y = rbinom(m,1,prob)

data = cbind(y,1,x)

}else{

prob = fx(xAdd)

mAdd = length(xAdd)

yAdd = rbinom(mAdd ,1,prob)

m = sum(numTests)

y = c(y,yAdd)

data = cbind(y,1,x)

}

###########################

Initializing Values

###########################

n = length(y)

Sigma = diag(n)

mu = rep(0,n)

etaMat = matrix(nrow = n,ncol=MCMCiter)

probMat = matrix(nrow=n,ncol=MCMCiter)

predEtaMat = matrix(nrow=length(xNew),ncol=MCMCiter)

probPredMat = matrix(nrow=length(xNew),ncol=MCMCiter)

#yVec = (-2*(y==0))+rep(1,n) #-1’s and 1’s

zMat = matrix(nrow = n,ncol=MCMCiter)

posIndicator = which(y==1)

53

negIndicator = which(y==0)

numSuccess = sum(y)

numFailure = n-sum(y)

for (i in 1: numSuccess){

zMat[posIndicator[i],1] = rtnorm(1,0,1,lower=0,upper=Inf)

}

for(i in 1: numFailure){

zMat[negIndicator[i],1] = rtnorm(1,0,1,lower=-Inf ,upper =0)

}

#zMat[,1] = zMat [,1]* yVec

psiMat = matrix(0,nrow=9,ncol=MCMCiter)

Tuning information for Gamma (Metropolis -Hastings)

csig = 15

ar = 1

eta follows a guassian process prior

mu = rep(0,n)

Sigma = corMatrixFast(x,gammaMat [1], tauMat [1])

Sigma = errorCheck(Sigma)

################################

Gibbs/Metroplis Hastings

################################

if(sum(totalCount == c(1,3,11,19)) >0){ # only look at desired sample sizes

counter = 0

for(i in 2: MCMCiter){

updating Sigma

Sigma = corMatrixFast(x,gammaMat[i-1], tauMat[i-1])

checkError = errorCheck(Sigma)

Sigma = checkError$Sigma

psiMat[1,i] = checkError$psi

updating eta

tempSig = diag(n)+solve(Sigma)

checkError = errorCheck(tempSig)

tempSig = checkError$Sigma

psiMat[2,i] = checkError$psi

muStar = t(zMat[,(i-1)])%*% solve(tempSig)

sigmaStar = solve(tempSig)

etaMat[,i] = mvrnorm(1,muStar ,sigmaStar)

probMat[,i] = pnorm(etaMat[,i])

updating z

for (k in 1: numSuccess){

zMat[posIndicator[k],i] = rtnorm(1,etaMat[posIndicator[k],i],1,lower=0,

upper=Inf)

}

for(k in 1: numFailure){

zMat[negIndicator[k],i] = rtnorm(1,etaMat[negIndicator[k],i],1,lower=-

Inf ,upper =0)

}

54

#zMat[,i] = abs(rnorm(n,etaMat[,i],1))

#zMat[,i] = zMat[,i]*yVec

getting values in between points

sigma11 = corMatrixFast(xNew ,gammaMat[i-1], tauMat[i-1])

sigma12 = corMatrix(xNew ,x,gammaMat[i-1], tauMat[i-1])

sigma21 = t(sigma12)

sigma22 = Sigma

checkError = errorCheck(sigma11)

sigma11 = checkError$Sigma

psiMat[3,i] = checkError$psi

checkError = errorCheck(sigma22)

sigma22 = checkError$Sigma

psiMat[4,i] = checkError$psi

muStar = rep(0,length(xNew)) + sigma12 %*% solve(sigma22)%*%t(t(etaMat[,i]))

sigmaStar = sigma11 - sigma12 %*% solve(sigma22)%*% sigma21

sigmaStar = (sigmaStar + t(sigmaStar))/2

newEta = mvrnorm(1,muStar ,sigmaStar) #chol only one that worked

predEtaMat[,i] = newEta

probPredMat[,i] = pnorm(predEtaMat[,i])

updating tau

sigmaNot = corMatrixFast(x,gammaMat[i-1],1)

checkError = errorCheck(sigmaNot)

sigmaNot = checkError$Sigma

psiMat[5,i] = checkError$psi

tauAlphaStar = tauAlpha + n/2

tauBetaStar = .5*(t(etaMat[,i])%*% solve(sigmaNot)%*% etaMat[,i]) + tauBeta

tauMat[i] = rgamma(1,tauAlphaStar ,tauBetaStar) # using rate parameterizion

as that is how I found nice closed form solution

updating gamma

gammaMat[i] = gammaMat[i-1]

cand = rnorm(1,gammaMat[i-1],csig)

if(cand > gamAlpha && cand < gamBeta){

counter = counter + 1

Sigma = corMatrixFast(x,gammaMat[i],tauMat[i])

checkError = errorCheck(Sigma)

Sigma = checkError$Sigma

psiMat[6,i] = checkError$psi

sigmaNot = corMatrixFast(x,gammaMat[i],1)

checkError = errorCheck(sigmaNot)

sigmaNot = checkError$Sigma

psiMat[7,i] = checkError$psi

llo = log(det(sigmaNot)^(-1/2)) -.5*t(etaMat[,i])%*% solve(Sigma)%*% etaMat[,

i]

Sigma = corMatrixFast(x,cand ,tauMat[i])

checkError = errorCheck(Sigma)

Sigma = checkError$Sigma

55

psiMat[8,i] = checkError$psi

sigmaNot = corMatrixFast(x,cand ,1)

checkError = errorCheck(sigmaNot)

sigmaNot = checkError$Sigma

psiMat[9,i] = checkError$psi

lln = log(det(sigmaNot)^(-1/2)) -.5*t(etaMat[,i])%*% solve(Sigma)%*% etaMat[,

i]

u = runif (1)

if(log(u) < (lln -llo)){

gammaMat[i] = cand

ar = ar + 1

}

}

#print(i)

}

aRate = ar/MCMCiter

print(paste(’Round ’,totalCount ,’prob function ’,probFunction ,’ finished at

’,date()))

###############################

Summerizing Information

###############################

qFun1 = function(vec){quantile(vec ,.025)}

qFun2 = function(vec){quantile(vec ,.975)}

finalP = apply(probMat[,burnin:MCMCiter],1,mean)

finalPLower = apply(probMat[,burnin:MCMCiter],1,qFun1)

finalPUpper = apply(probMat[,burnin:MCMCiter],1,qFun2)

finalPred = apply(probPredMat[,burnin:MCMCiter],1,mean)

finalPredLower = apply(probPredMat[,burnin:MCMCiter],1,qFun1)

finalPredUpper = apply(probPredMat[,burnin:MCMCiter],1,qFun2)

finalGamma = gammaMat[burnin:MCMCiter]

finalTau = tauMat[burnin:MCMCiter]

finalPsiMat = psiMat[,burnin:MCMCiter]

################

Updating

################

Finding variances per concentration

uTags = unique(tags)

for(i in 1:ncol(varVals1)){

index = matrix (1*(tags==uTags[i]))

interval = which(index !=0)

tagMatrix = probMat[interval ,(burnin:MCMCiter)]

varVals1[totalCount ,i] = var(as.vector(tagMatrix))

}

for(i in 1:ncol(varVals2)){

varVals2[totalCount ,i] = var(probPredMat[i,(burnin:MCMCiter)])

56

}

Calculating ED50

allX = c(x,xNew)

allP = c(finalP ,finalPred)

probXMat = cbind(allX ,allP)

probXMat = probXMat[order(probXMat [,1]) ,] # sorted by concentration

ED = c(.5 ,.9)

maxP = max(allP)

minP = min(allP)

maxX = allX[which(allP==maxP)]

minX = allX[which(allP==minP)]

checking to see if C50 and C90 can be calculated

ED50 = TRUE # TRUE means it can be calculated

ED90 = TRUE # TRUE means it can be calculated

if((maxP <ED[1] && minP <ED[1]) || (maxP >ED[1] && minP >ED[1])){

ED50 = FALSE

}

if((maxP <ED[2] && minP <ED[2]) || (maxP >ED[2] && minP >ED[2])){

ED90 = FALSE

}

checking for parabolic nature

parabolic = FALSE

index1 = which(probXMat [,1]<maxX)

if(length(index1) >0){

maxPIndex1 = max(probXMat[index1 ,2])

minPIndex1 = min(probXMat[index1 ,2])

if((maxPIndex1 > ED[1] && minPIndex1 <ED[1])){

ED1Index = index1

}

}

index2 = which(probXMat [,1]<minX)

if(length(index2) >0){

maxPIndex2 = max(probXMat[index2 ,2])

minPIndex2 = min(probXMat[index2 ,2])

if((maxPIndex2 > ED[1] && minPIndex2 <ED[1])){

ED1Index = index2

}

}

newProbXMat = probXMat[ED1Index ,]

diff1 = abs(newProbXMat [,2] - ED[1])

diff2 = abs(newProbXMat [,2] - ED[2])

EDindex1 = which(diff1 ==min(diff1))

EDindex2 = which(diff2 ==min(diff2))

EDval1 = newProbXMat[EDindex1 ,1]

EDval2 = newProbXMat[EDindex2 ,1]

EDval = EDval1

if(ED50== FALSE){EDval=NA}

57

Saving information to a list

fileName=paste(’GP_Non_Adapt_Trial ’,totalCount ,’Function ’,probFunction ,’ED

’,EDTag)

l = list(x=x,finalP=finalP ,finalPred=finalPred ,finalPredLower=

finalPredLower ,finalPredUpper=finalPredUpper ,finalPUpper=finalPUpper ,

finalPLower=finalPLower ,varVals1=varVals1 ,varVals2=varVals2 ,numTests =

numTests ,xNew=xNew ,aRate=aRate ,EDval=EDval ,finalGamma=finalGamma ,

finalPsiMat=finalPsiMat ,finalTau=finalTau)

save(l,file=fileName)

} # ending the if statement

Creating new data

newGroups = rep(1,length(groups))

numTests = numTests + newGroups

}

numTests = numTests - newGroups

}

################

LOGISTIC

Adaptive

################

for(overallCount in 1:4){

xvals = c(10 ,25 ,50 ,100 ,500 ,1000)

numRounds = 19

numTests = rep(2,length(xvals))

burnin =.1* MCMCiter

newTestNum = 6

xvalsStand = xvals/max(xvals)

xNew = seq(min(xvalsStand),max(xvalsStand),length =100)

varVals1 = matrix(nrow=numRounds ,ncol=length(xvals))

varVals2 = matrix(nrow=numRounds ,ncol=length(xNew))

for(totalCount in 1: numRounds){

probFunction = overallCount

##############

Priors

##############

alpha follows a normal(meanAlpha ,sdAlpha)

meanAlpha = 0

sdAlpha = 100

58

alphaVec = rep(0,MCMCiter)

alphaVec [1] = 1

beta follows a normal(meanBeta ,sdBeta)

meanBeta = 0

sdBeta = 100

betaVec = rep(0,MCMCiter)

betaVec [1] = 1

#####################################

Complete Conditional Function

#####################################

aFunction = function(data ,alpha ,beta){

m = length(data [,1])

n = data[,2]

y = data[,1]

x = data[,3]

prob =1/(1+ exp(-(alpha+beta*x)))

result = sum(dbinom(y,n,prob ,log=T)) + dnorm(alpha ,meanAlpha ,sdAlpha ,log=T

)

result

}

bFunction = function(data ,alpha ,beta){

m = length(data [,1])

n = data[,2]

y = data[,1]

x = data[,3]

prob =1/(1+ exp(-(alpha+beta*x)))

result = sum(dbinom(y,n,prob ,log=T)) + dnorm(beta ,meanBeta ,sdBeta ,log=T)

result

}

if(probFunction == 1){fx = fx1}

if(probFunction == 2){fx = fx2}

if(probFunction == 3){fx = fx3}

if(probFunction == 4){fx = fx4}

if(totalCount ==1){

xx = seq(0,1,length =100)

prob = fx(xx)

#plot(xx,prob ,col=’grey ’,type=’l’,ylim=c(0,1))

#abline(h=c(.5))

}

Concentrations

if(totalCount ==1){

xUnstand = c(rep(xvals [1], numTests [1]),rep(xvals [2], numTests [2]),rep(xvals

[3], numTests [3]),rep(xvals[4], numTests [4]),rep(xvals[5], numTests [5]),

rep(xvals[6], numTests [6]))

x = xUnstand/max(xUnstand)

}else{

59

xUnstandAdd = c(rep(xvals [1], newGroups [1]),rep(xvals [2], newGroups [2]),rep

(xvals [3], newGroups [3]),rep(xvals [4], newGroups [4]),rep(xvals [5],

newGroups [5]),rep(xvals [6], newGroups [6]))

xAdd = xUnstandAdd/max(xUnstand)

x = c(x,xAdd)

}

Creating Tags

tags = rep(0,sum(numTests))

uVals = unique(x)

groups = seq(1,length(numTests),by=1)

for(i in 1:sum(numTests)){

for(j in 1: length(xvals)){

if(x[i]== uVals[j]){tags[i] = groups[j]}

}

}

#######################

Data Generation

#######################

if(totalCount ==1){

prob = fx(x)

m = sum(numTests)

y = rbinom(m,1,prob)

data = cbind(y,1,x)

}else{

prob = fx(xAdd)

mAdd = length(xAdd)

yAdd = rbinom(mAdd ,1,prob)

m = sum(numTests)

y = c(y,yAdd)

data = cbind(y,1,x)

}

###########################

Initializing Values

###########################

n = length(y)

csAlpha = c(1.5 ,1.5 ,2 ,1.5)

csBeta = c(1.5 ,1.5 ,2 ,1.5)

countAlpha =0

countBeta =0

probMat = matrix(nrow=n,ncol=MCMCiter)

probPredMat = matrix(nrow=length(xNew),ncol=MCMCiter)

################################

Gibbs/Metroplis Hastings

################################

for(i in 2: MCMCiter)

{

candAlpha = rnorm(1,alphaVec[i-1], csAlpha[overallCount])

alphaOld = aFunction(data ,alphaVec[i-1], betaVec[i-1])

60

alphaNew = aFunction(data ,candAlpha ,betaVec[i-1])

if ((alphaNew - alphaOld) > log(runif (1,0,1)))

{

alphaVec[i] = candAlpha

countAlpha= countAlpha + 1

}else

{

alphaVec[i] = alphaVec[i-1]

}

betaVec[i] = betaVec[i-1]

candBeta = rnorm(1, betaVec[i-1], csBeta[overallCount])

betaOld = bFunction(data ,alphaVec[i],betaVec[i-1])

betaNew = bFunction(data ,alphaVec[i],candBeta)

if ((betaNew - betaOld) > log(runif (1,0,1)))

{

betaVec[i] = candBeta

countBeta = countBeta + 1

}else

{

betaVec[i] = betaVec[i-1]

}

probMat[,i] = exp(alphaVec[i]+ betaVec[i]*x)/(1+ exp(alphaVec[i]+ betaVec[

i]*x))

probPredMat[,i] = exp(alphaVec[i]+ betaVec[i]*xNew)/(1+ exp(alphaVec[i]+

betaVec[i]*xNew))

}

aRate = countAlpha/MCMCiter

bRate = countBeta/MCMCiter

print(paste(’Round ’,totalCount ,’prob function ’,probFunction ,’ finished at

’,date()))

###############################

Summerizing Information

###############################

finalAlpha = alphaVec[burnin:MCMCiter]

finalBeta = betaVec[burnin:MCMCiter]

pFunction = function(alpha ,beta ,x){

result = exp(alpha+beta*x)/(1+ exp(alpha+beta*x))

result

}

xx = seq(0,1,length =100)

qFun1 = function(vec){quantile(vec ,.025)}

qFun2 = function(vec){quantile(vec ,.975)}

finalP = rep(0,length(xx))

finalPUpper = rep(0,length(xx))

finalPLower = rep(0,length(xx))

for(k in 1: length(xx)){

finalP[k] = mean(pFunction(finalAlpha ,finalBeta ,xx[k]))

finalPLower[k] = qFun1(pFunction(finalAlpha ,finalBeta ,xx[k]))

finalPUpper[k] = qFun2(pFunction(finalAlpha ,finalBeta ,xx[k]))

61

}

################

Updating

################

Finding variances per concentration

uTags = unique(tags)

for(i in 1:ncol(varVals1)){

index = matrix (1*(tags==uTags[i]))

interval = which(index !=0)

tagMatrix = probMat[interval ,(burnin:MCMCiter)]

varVals1[totalCount ,i] = var(as.vector(tagMatrix))

}

for(i in 1:ncol(varVals2)){

varVals2[totalCount ,i] = var(probPredMat[i,(burnin:MCMCiter)])

}

Calculating ED50

ED50 = (log ((.5) /(1 -.5))-mean(alphaVec)) / mean(betaVec)

ED90 = (log ((.9) /(1 -.9))-mean(alphaVec)) / mean(betaVec)

EDval1 = ED50

EDval2 = ED90

EDval = EDval1

Assigning new probabilities

newProbs = rep(0,length(xvals))

if(EDval >0 && EDval < 1){

for(i in 1: length(xvals)){

if(EDTag == 1){

d1 = abs(xvalsStand[i]-EDval1)

d2 = abs(xvalsStand[i]-EDval2)

d = (1-d1) + (1-d2) # the smaller the d values , the greater the

weight is given to them

}else if(EDTag == 2){

d1 = (abs(xvalsStand[i]-EDval1))

d = 1 - d1

}else if(EDTag == 3){

d1 = (abs(xvalsStand[i]-EDval2))

d = 1 - d1

}

newProbs[i] = (d) * sqrt(varVals1[totalCount ,i])

}

newProbs = newProbs /(sum(newProbs))

}else{

newProbs = rep (1/6 ,6)

EDval = NA

print(c(totalCount ,EDval))

}

Saving information to a list

62

fileName=paste(’Log_Adapt_Trial ’,totalCount ,’Function ’,probFunction ,’ED’,

EDTag)

l = list(x=x,finalP=finalP ,finalPUpper=finalPUpper ,finalPLower=finalPLower

,varVals1=varVals1 ,varVals2=varVals2 ,numTests = numTests ,aRate=aRate ,

bRate=bRate ,EDval=EDval)

save(l,file=fileName)

Creating new data

newAllocation = sample(groups ,size=newTestNum ,replace=TRUE ,prob=newProbs)

newGroups = rep(0,length(groups))

newNumTests = numTests

for(i in 1: length(groups)){

newGroups[i] = sum(newAllocation == groups[i])

}

numTests = numTests + newGroups

}

numTests = numTests - newGroups

}

####################

LOGISTIC

Non -Adaptive

####################

for(overallCount in 1:4){

xvals = c(10 ,25 ,50 ,100 ,500 ,1000)

numRounds = 19

numTests = rep(2,length(xvals))

burnin =.1* MCMCiter

newTestNum = 6

xvalsStand = xvals/max(xvals)

xNew = seq(min(xvalsStand),max(xvalsStand),length =100)

varVals1 = matrix(nrow=numRounds ,ncol=length(xvals))

varVals2 = matrix(nrow=numRounds ,ncol=length(xNew))

for(totalCount in 1: numRounds){

probFunction = overallCount

##############

Priors

##############

alpha follows a normal(meanAlpha ,sdAlpha)

meanAlpha = 0

sdAlpha = 100

alphaVec = rep(0,MCMCiter)

alphaVec [1] = 1

63

beta follows a normal(meanBeta ,sdBeta)

meanBeta = 0

sdBeta = 100

betaVec = rep(0,MCMCiter)

betaVec [1] = 1

#####################################

Complete Conditional Function

#####################################

aFunction = function(data ,alpha ,beta){

m = length(data [,1])

n = data[,2]

y = data[,1]

x = data[,3]

prob =1/(1+ exp(-(alpha+beta*x)))

result = sum(dbinom(y,n,prob ,log=T)) + dnorm(alpha ,meanAlpha ,sdAlpha ,log=T

)

result

}

bFunction = function(data ,alpha ,beta){

m = length(data [,1])

n = data[,2]

y = data[,1]

x = data[,3]

prob =1/(1+ exp(-(alpha+beta*x)))

result = sum(dbinom(y,n,prob ,log=T)) + dnorm(beta ,meanBeta ,sdBeta ,log=T)

result

}

if(probFunction == 1){fx = fx1}

if(probFunction == 2){fx = fx2}

if(probFunction == 3){fx = fx3}

if(probFunction == 4){fx = fx4}

if(totalCount ==1){

xx = seq(0,1,length =100)

prob = fx(xx)

#plot(xx,prob ,col=’grey ’,type=’l’,ylim=c(0,1))

#abline(h=c(.5))

}

Concentrations

if(totalCount ==1){

xUnstand = c(rep(xvals [1], numTests [1]),rep(xvals [2], numTests [2]),rep(xvals

[3], numTests [3]),rep(xvals[4], numTests [4]),rep(xvals[5], numTests [5]),

rep(xvals[6], numTests [6]))

x = xUnstand/max(xUnstand)

}else{

64

xUnstandAdd = c(rep(xvals [1], newGroups [1]),rep(xvals [2], newGroups [2]),rep

(xvals [3], newGroups [3]),rep(xvals [4], newGroups [4]),rep(xvals [5],

newGroups [5]),rep(xvals [6], newGroups [6]))

xAdd = xUnstandAdd/max(xUnstand)

x = c(x,xAdd)

}

Creating Tags

tags = rep(0,sum(numTests))

uVals = unique(x)

groups = seq(1,length(numTests),by=1)

for(i in 1:sum(numTests)){

for(j in 1: length(xvals)){

if(x[i]== uVals[j]){tags[i] = groups[j]}

}

}

#######################

Data Generation

#######################

if(totalCount ==1){

prob = fx(x)

m = sum(numTests)

y = rbinom(m,1,prob)

data = cbind(y,1,x)

}else{

prob = fx(xAdd)

mAdd = length(xAdd)

yAdd = rbinom(mAdd ,1,prob)

m = sum(numTests)

y = c(y,yAdd)

data = cbind(y,1,x)

}

###########################

Initializing Values

###########################

n = length(y)

csAlpha = c(1.5 ,1.5 ,2 ,1.5)

csBeta = c(1.5 ,1.5 ,2 ,1.5)

countAlpha =0

countBeta =0

probMat = matrix(nrow=n,ncol=MCMCiter)

probPredMat = matrix(nrow=length(xNew),ncol=MCMCiter)

################################

Gibbs/Metroplis Hastings

################################

if(sum(totalCount == c(1,3,11,19)) >0){ # only look at desired sample sizes

for(i in 2: MCMCiter)

65

{

candAlpha = rnorm(1,alphaVec[i-1], csAlpha[overallCount])

alphaOld = aFunction(data ,alphaVec[i-1], betaVec[i-1])

alphaNew = aFunction(data ,candAlpha ,betaVec[i-1])

if ((alphaNew - alphaOld) > log(runif (1,0,1)))

{

alphaVec[i] = candAlpha

countAlpha= countAlpha + 1

}else

{

alphaVec[i] = alphaVec[i-1]

}

betaVec[i] = betaVec[i-1]

candBeta = rnorm(1, betaVec[i-1], csBeta[overallCount])

betaOld = bFunction(data ,alphaVec[i],betaVec[i-1])

betaNew = bFunction(data ,alphaVec[i],candBeta)

if ((betaNew - betaOld) > log(runif (1,0,1)))

{

betaVec[i] = candBeta

countBeta = countBeta + 1

}else

{

betaVec[i] = betaVec[i-1]

}

probMat[,i] = exp(alphaVec[i]+ betaVec[i]*x)/(1+ exp(alphaVec[i]+ betaVec[

i]*x))

probPredMat[,i] = exp(alphaVec[i]+ betaVec[i]*xNew)/(1+ exp(alphaVec[i]+

betaVec[i]*xNew))

}

aRate = countAlpha/MCMCiter

bRate = countBeta/MCMCiter

print(paste(’Round ’,totalCount ,’prob function ’,probFunction ,’ finished at

’,date()))

###############################

Summerizing Information

###############################

finalAlpha = alphaVec[burnin:MCMCiter]

finalBeta = betaVec[burnin:MCMCiter]

pFunction = function(alpha ,beta ,x){

result = exp(alpha+beta*x)/(1+ exp(alpha+beta*x))

result

}

xx = seq(0,1,length =100)

qFun1 = function(vec){quantile(vec ,.025)}

qFun2 = function(vec){quantile(vec ,.975)}

finalP = rep(0,length(xx))

finalPUpper = rep(0,length(xx))

finalPLower = rep(0,length(xx))

for(k in 1: length(xx)){

finalP[k] = mean(pFunction(finalAlpha ,finalBeta ,xx[k]))

66

finalPLower[k] = qFun1(pFunction(finalAlpha ,finalBeta ,xx[k]))

finalPUpper[k] = qFun2(pFunction(finalAlpha ,finalBeta ,xx[k]))

}

################

Updating

################

Finding variances per concentration

uTags = unique(tags)

for(i in 1:ncol(varVals1)){

index = matrix (1*(tags==uTags[i]))

interval = which(index !=0)

tagMatrix = probMat[interval ,(burnin:MCMCiter)]

varVals1[totalCount ,i] = var(as.vector(tagMatrix))

}

for(i in 1:ncol(varVals2)){

varVals2[totalCount ,i] = var(probPredMat[i,(burnin:MCMCiter)])

}

Calculating ED50

ED50 = (log ((.5) /(1 -.5))-mean(finalAlpha)) / mean(finalBeta)

ED90 = (log ((.9) /(1 -.9))-mean(finalAlpha)) / mean(finalBeta)

EDval1 = ED50

EDval2 = ED90

EDval = EDval1

if(EDval <0 || EDval >1){EDval = NA}

Saving information to a list

fileName=paste(’Log_Non_Adapt_Trial ’,totalCount ,’Function ’,probFunction ,’

ED’,EDTag)

l = list(x=x,finalP=finalP ,finalPUpper=finalPUpper ,finalPLower=finalPLower

,varVals1=varVals1 ,varVals2=varVals2 ,numTests = numTests ,aRate=aRate ,

bRate=bRate ,EDval=EDval)

save(l,file=fileName)

} # end if statement

Creating new data

newGroups = rep(1,length(unique(xvals)))

numTests = numTests + newGroups

}

numTests = numTests - newGroups

}

B.2 Results

####################################

######## ANALYZING RESULTS ########

####################################

67

Initializing Arrays and Vectors

biasArray = array(0,dim=c(3,3,4)) # 3 sample sizes (24 ,72 ,120) ,3

probability curves , 4 scenarios (GP Adapt , GP Non Adapt , Log Adapt , Log

Non Adapt)

varVal1Array = array(0,dim=c(19,6,4,4)) #19 interim steps ,6 concentrations

, 4 probability curves , 4 scenarios (GP Adapt , GP Non Adapt , Log Adapt ,

Log Non Adapt)

varVal2Array = array(0,dim=c(19 ,100 ,4 ,4)) #19 interim steps ,6

concentrations , 4 probability curves , 4 scenarios (GP Adapt , GP Non

Adapt , Log Adapt , Log Non Adapt)

numTestArray = array(0,dim=c(19,6,4,4))#19 interim steps ,6 concentrations ,

4 probability curves , 4 scenarios (GP Adapt , GP Non Adapt , Log Adapt ,

Log Non Adapt)

trueC50 = c(0.18839377008567554 ,0.5802775 ,.4)

sampleSizes = c(3 ,11 ,19) # 24 ,72 ,120

#############################

Initializing Numbers

#############################

numSampleSizes = 3

numProbCurves = 4

numScenario = 4

numAdaptTrials = 19

######################

GAUSSIAN PROCESS

Adaptive

######################

ensemble = 1

for(i in 1: numSampleSizes){

for(j in 1: numSampleSizes){

fName = paste(’GP_Adapt_Trial ’,sampleSizes[j],’Function ’,i,’ED ’,2)

load(fName)

biasArray[j,i,ensemble] = abs(l$EDval -trueC50[i])

}

}

for(k in 1: numProbCurves){

for(i in 1: numAdaptTrials){

fName = paste(’GP_Adapt_Trial ’,i,’Function ’,k,’ED ’,2)

load(fName)

varVal1Array[i,,k,ensemble] = l$varVals1[i,]

}

}

for(k in 1: numProbCurves){

for(i in 1: numAdaptTrials){

fName = paste(’GP_Adapt_Trial ’,i,’Function ’,k,’ED ’,2)

load(fName)

varVal2Array[i,,k,ensemble] = l$varVals2[i,]

}

}

68

for(k in 1: numProbCurves){

for(i in 1: numAdaptTrials){

fName = paste(’GP_Adapt_Trial ’,i,’Function ’,k,’ED ’,2)

load(fName)

numTestArray[i,,k,ensemble] = l$numTests

}

}

for(i in 1: numSampleSizes){

j = sampleSizes[i]

fName = paste(’GP_Adapt_Trial ’,j,’Function ’,1,’ED ’,2)

load(fName)

if(j== sampleSizes [1]){

plot(xx,l$finalPred ,ylim=c(0,1),type=’lines ’,col=i,main=’Comparing

Sample Size ’,xlab=’Concentration ’,ylab=’Probability of Detection

’)

abline(h=.5)

}else{

lines(xx,l$finalPred ,col=i)

}

}

lines(xx ,fx1(xx),lwd=3,col=’grey ’)

legend(’topleft ’,c(’30’,’60’,’90’,’120’),col=c(1,2,3,4),lwd=c(2,2,2,2))

for(i in 1: numSampleSizes){

j = sampleSizes[i]

fName = paste(’GP_Adapt_Trial ’,j,’Function ’,1,’ED ’,2)

load(fName)

if(j== sampleSizes [1]){

plot(xx,l$finalPred ,ylim=c(0,1),type=’lines ’,col=i,main=’Comparing

Sample Size ’,xlab=’Concentration ’,ylab=’Probability of Detection

’)

abline(h=.5)

lines(xx,l$finalPredUpper ,lty=2,col=i)

lines(xx,l$finalPredLower ,lty=2,col=i)

}else{

lines(xx,l$finalPred ,col=i)

lines(xx,l$finalPredUpper ,lty=2,col=i)

lines(xx,l$finalPredLower ,lty=2,col=i)

}

}

lines(xx ,fx1(xx),lwd=3,col=’grey ’)

legend(’topleft ’,c(’30’,’60’,’90’,’120’),col=c(1,2,3,4),lwd=c(2,2,2,2))

for(i in 1: numSampleSizes){

j = sampleSizes[i]

fName = paste(’GP_Adapt_Trial ’,j,’Function ’,1,’ED ’,2)

load(fName)

if(j== sampleSizes [1]){

plot(xx,l$finalPred ,ylim=c(0,1),type=’lines ’,col=i,main=’Comparing

Sample Size ’,xlab=’Concentration ’,ylab=’Probability of Detection

’)

fName = paste(’Log_Adapt_Trial ’,j,’Function ’,1,’ED ’,2)

load(fName)

69

lines(xx,l$finalP ,col=i,lty=2)

abline(h=.5)

}else{

lines(xx,l$finalPred ,col=i)

fName = paste(’Log_Adapt_Trial ’,j,’Function ’,1,’ED ’,2)

load(fName)

lines(xx,l$finalP ,col=i,lty=2)

}

}

lines(xx ,fx1(xx),lwd=3,col=’grey ’)

legend(’topleft ’,c(’24’,’72’,’120’),col=c(1,2,3),lwd=c(2,2,2))

######################

GAUSSIAN PROCESS

Non - Adaptive

######################

ensemble = 2

for(i in 1: numSampleSizes){

for(j in 1: numSampleSizes){

fName = paste(’GP_Non_Adapt_Trial ’,sampleSizes[j],’Function ’,i,’ED

’,2)

load(fName)

biasArray[j,i,ensemble] = abs(l$EDval -trueC50[i])

}

}

for(k in 1: numProbCurves){

for(i in 1: numSampleSizes){

j = sampleSizes[i]

fName = paste(’GP_Non_Adapt_Trial ’,j,’Function ’,k,’ED ’,2)

load(fName)

varVal1Array[j,,k,ensemble] = l$varVals1[j,]

}

}

for(k in 1: numProbCurves){

for(i in 1: numSampleSizes){

j = sampleSizes[i]

fName = paste(’GP_Non_Adapt_Trial ’,j,’Function ’,k,’ED ’,2)

load(fName)

varVal2Array[j,,k,ensemble] = l$varVals2[j,]

}

}

for(k in 1: numProbCurves){

for(i in 1: numSampleSizes){

j = sampleSizes[i]

fName = paste(’GP_Non_Adapt_Trial ’,j,’Function ’,k,’ED ’,2)

load(fName)

numTestArray[j,,k,ensemble] = l$numTests

}

}

for(i in 1: numSampleSizes){

70

j = sampleSizes[i]

fName = paste(’GP_Non_Adapt_Trial ’,j,’Function ’,1,’ED ’,2)

load(fName)

if(i==1){plot(xx ,l$finalPred ,ylim=c(0,1),type=’lines ’,col=i)}else{

lines(xx,l$finalPred ,col=i)

}

}

lines(xx ,fx1(xx),lwd=3)

################

LOGISTIC

Adaptive

################

ensemble = 3

for(i in 1: numSampleSizes){

for(j in 1: numSampleSizes){

fName = paste(’Log_Adapt_Trial ’,sampleSizes[j],’Function ’,i,’ED ’,2)

load(fName)

if(l$EDval >0 && l$EDval <1){

biasArray[j,i,ensemble] = abs(l$EDval -trueC50[i])

}else{

biasArray[j,i,ensemble] = ’NA’

}

}

}

for(k in 1: numProbCurves){

for(i in 1: numAdaptTrials){

fName = paste(’Log_Adapt_Trial ’,i,’Function ’,k,’ED ’,2)

load(fName)

varVal1Array[i,,k,ensemble] = l$varVals1[i,]

}

}

for(k in 1: numProbCurves){

for(i in 1: numAdaptTrials){

fName = paste(’Log_Adapt_Trial ’,i,’Function ’,k,’ED ’,2)

load(fName)

varVal2Array[i,,k,ensemble] = l$varVals2[i,]

}

}

for(k in 1: numProbCurves){

for(i in 1: numAdaptTrials){

fName = paste(’Log_Adapt_Trial ’,i,’Function ’,k,’ED ’,2)

load(fName)

numTestArray[i,,k,ensemble] = l$numTests

}

}

for(i in 1: numSampleSizes){

j = sampleSizes[i]

fName = paste(’Log_Adapt_Trial ’,j,’Function ’,1,’ED ’,2)

71

load(fName)

if(j== sampleSizes [1]){

plot(xx,l$finalP ,ylim=c(0,1),type=’lines ’,col=i,main=’Comparing

Sample Size ’,xlab=’Concentration ’,ylab=’Probability of Detection

’)

abline(h=.5)

lines(xx,l$finalPUpper ,lty=2,col=i)

lines(xx,l$finalPLower ,lty=2,col=i)

}else{

lines(xx,l$finalP ,col=i)

lines(xx,l$finalPUpper ,lty=2,col=i)

lines(xx,l$finalPLower ,lty=2,col=i)

}

}

lines(xx ,fx1(xx),lwd=3,col=’grey ’)

legend(’topleft ’,c(’24’,’72’,’120’),col=c(1,2,3),lwd=c(2,2,2))

####################

LOGISTIC

Non -Adaptive

####################

ensemble = 4

for(i in 1: numSampleSizes){

for(j in 1: numSampleSizes){

fName = paste(’Log_Non_Adapt_Trial ’,sampleSizes[j],’Function ’,i,’ED

’,2)

load(fName)

biasArray[j,i,ensemble] = abs(l$EDval -trueC50[i])

}

}

for(k in 1: numProbCurves){

for(i in 1: numSampleSizes){

j = sampleSizes[i]

fName = paste(’Log_Non_Adapt_Trial ’,j,’Function ’,k,’ED ’,2)

load(fName)

varVal1Array[j,,k,ensemble] = l$varVals1[j,]

}

}

for(k in 1: numProbCurves){

for(i in 1: numSampleSizes){

j = sampleSizes[i]

fName = paste(’Log_Non_Adapt_Trial ’,j,’Function ’,k,’ED ’,2)

load(fName)

varVal2Array[j,,k,ensemble] = l$varVals2[j,]

}

}

for(k in 1: numProbCurves){

for(i in 1: numSampleSizes){

j = sampleSizes[i]

fName = paste(’Log_Non_Adapt_Trial ’,j,’Function ’,k,’ED ’,2)

72

load(fName)

numTestArray[j,,k,ensemble] = l$numTests

}

}

for(i in 1: numSampleSizes){

j = sampleSizes[i]

fName = paste(’Log_Non_Adapt_Trial ’,j,’Function ’,1,’ED ’,2)

load(fName)

if(i==1){plot(xx ,l$finalP ,ylim=c(0,1),type=’lines ’,col=i)}else{

lines(xx,l$finalP ,col=i)

}

}

lines(xx ,fx1(xx),lwd=3)

#################################

Plotting Posterior Curves

#################################

par(mfrow=c(1,2))

j = sampleSizes [1] # can use 1,2,3 here

probFunc = 1

fName = paste(’GP_Adapt_Trial ’,j,’Function ’,probFunc ,’ED ’,2)

load(fName)

plot(xx,l$finalPred ,ylim=c(0,1),type=’lines ’,lwd=3,col=1,main=’Non

Monotone ’,xlab=’Concentration ’,ylab=’Probability of Detection ’)

fName = paste(’GP_Non_Adapt_Trial ’,j,’Function ’, probFunc ,’ED ’,2)

load(fName)

lines(xx,l$finalPred ,col=2,lwd=3)

fName = paste(’Log_Adapt_Trial ’,j,’Function ’, probFunc ,’ED ’,2)

load(fName)

lines(xx,l$finalP ,col=3,lwd=3)

fName = paste(’Log_Non_Adapt_Trial ’,j,’Function ’, probFunc ,’ED ’,2)

load(fName)

lines(xx,l$finalP ,col=4,lwd=3)

abline(h=.5)

lines(xx,fx1(xx),lwd=3,lty=2,col=’grey ’)

legend(’bottomright ’,c(’GP Adapt ’,’GP Non Adapt ’,’Log Adapt ’,’Log Non

Adapt ’),col=c(1,2,3,4),lty=c(1,1,1,1),lwd=c(3,3,3,3))

probFunc = 2

fName = paste(’GP_Adapt_Trial ’,j,’Function ’,probFunc ,’ED ’,2)

load(fName)

plot(xx,l$finalPred ,ylim=c(0,1),type=’lines ’,lwd=3,col=1,main=’Slow

Increasing ’,xlab=’Concentration ’,ylab=’Probability of Detection ’)

fName = paste(’GP_Non_Adapt_Trial ’,j,’Function ’, probFunc ,’ED ’,2)

load(fName)

lines(xx,l$finalPred ,col=2,lwd=3)

fName = paste(’Log_Adapt_Trial ’,j,’Function ’, probFunc ,’ED ’,2)

load(fName)

lines(xx,l$finalP ,col=3,lwd=3)

fName = paste(’Log_Non_Adapt_Trial ’,j,’Function ’, probFunc ,’ED ’,2)

load(fName)

lines(xx,l$finalP ,col=4,lwd=3)

73

abline(h=.5)

lines(xx,fx2(xx),lwd=3,lty=2,col=’grey ’)

legend(’bottomright ’,c(’GP Adapt ’,’GP Non Adapt ’,’Log Adapt ’,’Log Non

Adapt ’),col=c(1,2,3,4),lty=c(1,1,1,1),lwd=c(3,3,3,3))

probFunc = 3

fName = paste(’GP_Adapt_Trial ’,j,’Function ’,probFunc ,’ED ’,2)

load(fName)

plot(xx,l$finalPred ,ylim=c(0,1),type=’lines ’,lwd=3,col=1,main=’Sharp

Increasing ’,xlab=’Concentration ’,ylab=’Probability of Detection

’)

fName = paste(’GP_Non_Adapt_Trial ’,j,’Function ’, probFunc ,’ED ’,2)

load(fName)

lines(xx,l$finalPred ,col=2,lwd=3)

fName = paste(’Log_Adapt_Trial ’,j,’Function ’, probFunc ,’ED ’,2)

load(fName)

lines(xx,l$finalP ,col=3,lwd=3)

fName = paste(’Log_Non_Adapt_Trial ’,j,’Function ’, probFunc ,’ED ’,2)

load(fName)

lines(xx,l$finalP ,col=4,lwd=3)

abline(h=.5)

lines(xx,fx3(xx),lwd=3,lty=2,col=’grey ’)

legend(’bottomright ’,c(’GP Adapt ’,’GP Non Adapt ’,’Log Adapt ’,’Log Non

Adapt ’),col=c(1,2,3,4),lty=c(1,1,1,1),lwd=c(3,3,3,3))

probFunc = 4

fName = paste(’GP_Adapt_Trial ’,j,’Function ’,probFunc ,’ED ’,2)

load(fName)

plot(xx,l$finalPred ,ylim=c(0,1),type=’lines ’,lwd=3,col=1,main=’Null

’,xlab=’Concentration ’,ylab=’Probability of Detection ’)

fName = paste(’GP_Non_Adapt_Trial ’,j,’Function ’, probFunc ,’ED ’,2)

load(fName)

lines(xx,l$finalPred ,col=2,lwd=3)

fName = paste(’Log_Adapt_Trial ’,j,’Function ’, probFunc ,’ED ’,2)

load(fName)

lines(xx,l$finalP ,col=3,lwd=3)

fName = paste(’Log_Non_Adapt_Trial ’,j,’Function ’, probFunc ,’ED ’,2)

load(fName)

lines(xx,l$finalP ,col=4,lwd=3)

abline(h=.5)

lines(xx,fx4(xx),lwd=3,lty=2,col=’grey ’)

legend(’bottomright ’,c(’GP Adapt ’,’GP Non Adapt ’,’Log Adapt ’,’Log Non

Adapt ’),col=c(1,2,3,4),lty=c(1,1,1,1),lwd=c(3,3,3,3))

#####################

Plotting Bias

#####################

par(mfrow=c(1,1))

ll=c(24 ,72 ,120)

plot(ll ,biasArray [,1,1],type=’lines ’,lwd=3,ylim=c(0,.2),ylab=’Absolute

Bias ’,xlab=’Sample Size ’)

lines(ll ,biasArray [,1,2],col=2,lwd=3)

74

lines(ll ,biasArray [,1,3],col=3,lwd=3)

lines(ll ,biasArray [,1,4],col=4,lwd=3)

legend(’topright ’,c(’GP Adapt ’,’GP Non Adapt ’,’Log Adapt ’,’Log Non Adapt ’)

,col=c(1,2,3,4),lty=c(1,1,1,1),lwd=c(3,3,3,3))

plot(ll ,biasArray [,2,1],type=’lines ’,lwd=3,ylim=c(0,.2),ylab=’Absolute

Bias ’,xlab=’Sample Size ’)

lines(ll ,biasArray [,2,2],col=2,lwd=3)

lines(ll ,biasArray [,2,3],col=3,lwd=3)

lines(ll ,biasArray [,2,4],col=4,lwd=3)

legend(’topright ’,c(’GP Adapt ’,’GP Non Adapt ’,’Log Adapt ’,’Log Non Adapt ’)

,col=c(1,2,3,4),lty=c(1,1,1,1),lwd=c(3,3,3,3))

plot(ll ,biasArray [,3,1],type=’lines ’,lwd=3,ylim=c(0,.2),ylab=’Absolute

Bias ’,xlab=’Sample Size ’)

lines(ll ,biasArray [,3,2],col=2,lwd=3)

lines(ll ,biasArray [,3,3],col=3,lwd=3)

lines(ll ,biasArray [,3,4],col=4,lwd=3)

legend(’topright ’,c(’GP Adapt ’,’GP Non Adapt ’,’Log Adapt ’,’Log Non Adapt ’)

,col=c(1,2,3,4),lty=c(1,1,1,1),lwd=c(3,3,3,3))

#########################

Plotting Variance

#########################

look at variance at concentrations

par(mfrow=c(1,1))

criteria = ’mean ’

plot(ll ,apply(varVal1Array[sampleSizes ,,1,1],1, criteria),xlab=’Sample

Size ’,ylab=’Mean Variance ’,main=’Mean Variances - Non Monotone ’,type=’

lines ’,col=1,ylim=c(0 ,.05),lwd =3)

lines(ll ,apply(varVal1Array[sampleSizes ,,2,1],1, criteria),col=2,lwd=3)

lines(ll ,apply(varVal1Array[sampleSizes ,,3,1],1, criteria),col=3,lwd=3)

lines(ll ,apply(varVal1Array[sampleSizes ,,4,1],1, criteria),col=4,lwd=3)

legend(’topright ’,c(’GP Adapt ’,’GP Non Adapt ’,’Log Adapt ’,’Log Non Adapt ’)

,col=c(1,2,3,4),lwd=c(3,3,3,3))

plot(ll ,apply(varVal1Array[sampleSizes ,,1,2],1, criteria),xlab=’Sample

Size ’,ylab=’Mean Variance ’,main=’Mean Variances - Slow Increasing ’,type

=’lines ’,col=1,ylim=c(0 ,.05),lwd=3)

lines(ll ,apply(varVal1Array[sampleSizes ,,2,2],1, criteria),col=2,lwd=3)

lines(ll ,apply(varVal1Array[sampleSizes ,,3,2],1, criteria),col=3,lwd=3)

lines(ll ,apply(varVal1Array[sampleSizes ,,4,2],1, criteria),col=4,lwd=3)

legend(’topright ’,c(’GP Adapt ’,’GP Non Adapt ’,’Log Adapt ’,’Log Non Adapt ’)

,col=c(1,2,3,4),lwd=c(3,3,3,3))

plot(ll ,apply(varVal1Array[sampleSizes ,,1,3],1, criteria),xlab=’Sample

Size ’,ylab=’Mean Variance ’,main=’Mean Variances - Sharp Increasing ’,

type=’lines ’,col=1,ylim=c(0 ,.05),lwd =3)

lines(ll,apply(varVal1Array[sampleSizes ,,2,3],1, criteria),col=2,lwd=3)

lines(ll,apply(varVal1Array[sampleSizes ,,3,3],1, criteria),col=3,lwd=3)

lines(ll,apply(varVal1Array[sampleSizes ,,4,3],1, criteria),col=4,lwd=3)

legend(’topright ’,c(’GP Adapt ’,’GP Non Adapt ’,’Log Adapt ’,’Log Non Adapt ’)

,col=c(1,2,3,4),lwd=c(3,3,3,3))

75

plot(ll ,apply(varVal1Array[sampleSizes ,,1,4],1, criteria),xlab=’Sample

Size ’,ylab=’Mean Variance ’,main=’Mean Variances - Null ’,type=’lines ’,

col=1,ylim=c(0 ,.05),lwd=3)

lines(ll ,apply(varVal1Array[sampleSizes ,,2,4],1, criteria),col=2,lwd=3)

lines(ll ,apply(varVal1Array[sampleSizes ,,3,4],1, criteria),col=3,lwd=3)

lines(ll ,apply(varVal1Array[sampleSizes ,,4,4],1, criteria),col=4,lwd=3)

legend(’topright ’,c(’GP Adapt ’,’GP Non Adapt ’,’Log Adapt ’,’Log Non Adapt ’)

,col=c(1,2,3,4),lwd=c(3,3,3,3))

looking at variance throughout curve

par(mfrow=c(1,1))

criteria = ’mean ’

plot(ll ,apply(varVal2Array[sampleSizes ,,1,1],1, criteria),xlab=’Sample Size

’,ylab=’Mean Variance ’,main=’Mean Variances - Non Monotone ’,type=’lines

’,col=1,ylim=c(0 ,.15),lwd=3)

lines(ll ,apply(varVal2Array[sampleSizes ,,2,1],1, criteria),col=2,lwd=3)

lines(ll ,apply(varVal2Array[sampleSizes ,,3,1],1, criteria),col=3,lwd=3)

lines(ll ,apply(varVal2Array[sampleSizes ,,4,1],1, criteria),col=4,lwd=3)

legend(’topright ’,c(’GP Adapt ’,’GP Non Adapt ’,’Log Adapt ’,’Log Non Adapt ’)

,col=c(1,2,3,4),lwd=c(3,3,3,3))

plot(ll ,apply(varVal2Array[sampleSizes ,,1,2],1, criteria),xlab=’Sample Size

’,ylab=’Mean Variance ’,main=’Mean Variances - Slow Increasing ’,type=’

lines ’,col=1,ylim=c(0 ,.15),lwd =3)

lines(ll ,apply(varVal2Array[sampleSizes ,,2,2],1, criteria),col=2,lwd=3)

lines(ll ,apply(varVal2Array[sampleSizes ,,3,2],1, criteria),col=3,lwd=3)

lines(ll ,apply(varVal2Array[sampleSizes ,,4,2],1, criteria),col=4,lwd=3)

legend(’topright ’,c(’GP Adapt ’,’GP Non Adapt ’,’Log Adapt ’,’Log Non Adapt ’)

,col=c(1,2,3,4),lwd=c(3,3,3,3))

plot(ll ,apply(varVal2Array[sampleSizes ,,1,3],1, criteria),xlab=’Sample Size

’,ylab=’Mean Variance ’,main=’Mean Variances - Sharp Increasing ’,type=’

lines ’,col=1,ylim=c(0 ,.05),lwd =3)

lines(ll ,apply(varVal2Array[sampleSizes ,,2,3],1, criteria),col=2,lwd=3)

lines(ll ,apply(varVal2Array[sampleSizes ,,3,3],1, criteria),col=3,lwd=3)

lines(ll ,apply(varVal2Array[sampleSizes ,,4,3],1, criteria),col=4,lwd=3)

legend(’topright ’,c(’GP Adapt ’,’GP Non Adapt ’,’Log Adapt ’,’Log Non Adapt ’)

,col=c(1,2,3,4),lwd=c(3,3,3,3))

plot(ll ,apply(varVal2Array[sampleSizes ,,1,4],1, criteria),xlab=’Sample Size

’,ylab=’Mean Variance ’,main=’Mean Variances - Null ’,type=’lines ’,col=1,

ylim=c(0 ,.05),lwd =3)

lines(ll ,apply(varVal2Array[sampleSizes ,,2,4],1, criteria),col=2,lwd=3)

lines(ll ,apply(varVal2Array[sampleSizes ,,3,4],1, criteria),col=3,lwd=3)

lines(ll ,apply(varVal2Array[sampleSizes ,,4,4],1, criteria),col=4,lwd=3)

legend(’topright ’,c(’GP Adapt ’,’GP Non Adapt ’,’Log Adapt ’,’Log Non Adapt ’)

,col=c(1,2,3,4),lwd=c(3,3,3,3))

76

	Adaptive Threat Detector Testing Using Bayesian Gaussian Process Models
	BYU ScholarsArchive Citation

	Title
	Abstract
	Acknowledgments
	Contents
	1 Introduction
	1.1 Biological Threats
	1.2 Bayesian Gaussian Process Models
	1.3 Adaptive Design

	2 Literature Review
	2.1 Bayesian Analysis
	2.2 Markov Chain Monte Carlo
	2.3 Gaussian Process Models
	2.4 Adaptive Design

	3 Methods
	3.1 Logistic Model
	3.2 Gaussian Process Model
	3.3 Adaptive Trial Design
	3.4 Simulation Study

	4 Results
	4.1 Posterior Distributions
	4.2 Mean Squared Error of "0362C50
	4.3 Posterior Variances

	5 Conclusions
	5.1 Future Work

	Bibliography
	Appendices
	Appendix A: Complete Conditional Distributions
	A.1 Gaussian Process Model
	A.2 Logistic Model

	Appendix B: Code
	B.1 Simulation
	B.2 Results

